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Hydraulic valves are key components of fluid control systems, and the fatigue damage and
micro-defect distribution of valve spools and valve seats directly affect the system's
operational reliability. In industrial scenarios, issues such as scarce samples, high-
dimensional redundancy of high-frequency texture data, and the weak features of micro-
defects make it challenging for existing methods to simultaneously achieve high-accuracy
damage detection and micro-defect distribution prediction. To address these challenges, an
integrated model combining high-frequency image textures with a multi-head self-attention
semi-supervised generative adversarial network (GAN) is proposed. The model extracts
multi-modal high-frequency texture features through wavelet transform, gray-level co-
occurrence matrix, and local binary patterns (LBP), enhancing the representation of micro-
defects. A multi-head self-attention layer is embedded in the discriminator to perform high-
dimensional feature selection. The damage classification and distribution prediction tasks
are integrated into a dual-task learning mechanism based on the semi-supervised GAN
framework, enabling fatigue damage level identification and micro-defect distribution
quantification of hydraulic valves under small sample conditions. The innovative
contributions of this model include: designing a multi-scale high-frequency texture fusion
strategy to accurately capture the edges, gray-level distribution, and local structural features
of micro-defects; constructing a dual-task multi-head self-attention semi-supervised GAN
to optimize both the robustness of damage detection and the precision of distribution
prediction; and proposing a hybrid loss function combining Wasserstein GAN loss, cross-
entropy loss, and MSE-SSIM joint loss for collaborative optimization of classification and
regression tasks. Validation is carried out using a hydraulic valve accelerated fatigue
experimental dataset, which contains five damage levels, with labeled samples accounting
for 10%-20%. Experimental results show that the model achieves a damage detection
accuracy of 98.7%, with an F1 score of 0.978; the structural similarity of micro-defect
distribution prediction reaches 0.92, with a mean absolute error of 0.03. Compared with
traditional semi-supervised GANSs, residual networks, and FixMatch methods, the model's
detection accuracy improves by 3.2%-8.5%, and the prediction error of distribution
decreases by 15.6%-27.3%, demonstrating excellent adaptability to small samples and
strong anti-interference capability. The proposed method provides an effective technical
solution for hydraulic valve fatigue damage detection and micro-defect distribution
prediction and has significant reference value for the construction of predictive maintenance
systems in industrial equipment.

1. INTRODUCTION

density, and expansion trends of defects, providing data
support for remaining life evaluation. However, the current

As the core control component of fluid power systems,
hydraulic valves are widely used in key fields such as
construction  machinery, aerospace, and intelligent
manufacturing, and their operating status directly determines
the reliability and safety of the entire system [1-4]. With the
upgrade of industrial intelligence, predictive maintenance of
hydraulic valves has become a consensus in the industry [5, 6].
Accurate fatigue damage detection [7] and micro-defect
distribution prediction [8] are the core prerequisites for
implementing predictive maintenance. These not only require
identifying damage levels but also quantifying the location,
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related technologies still face three major core bottlenecks:
firstly, the issue of scarce samples is prominent. The
accelerated fatigue test cycle of hydraulic valves lasts several
months or even years, and obtaining labeled defect samples is
highly expensive, making it difficult to meet the training needs
of deep learning models [9]; secondly, high-frequency image
texture analysis is difficult. Images collected in industrial
scenarios contain interference information such as oil stains
and vibration noise. The micro-defect texture features are
weak, and the data dimensions are high. Redundant
information can easily obscure effective features [10]; thirdly,


https://orcid.org/0009-0008-0689-0426
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420603&domain=pdf

task fragmentation is common. Existing methods often focus
solely on damage detection or defect distribution prediction,
lacking an integrated framework, which leads to insufficient
model generalization and difficulty adapting to the real-time
monitoring needs of industrial sites [11]. Therefore,
developing a hydraulic valve damage diagnosis method that
integrates small sample adaptability, high anti-interference
ability, and dual-task synergy is of significant engineering
value and academic significance for improving the operational

safety of industrial equipment and reducing maintenance costs.

The development of hydraulic valve damage detection
technology can be summarized as the evolution from
traditional offline detection to intelligent online diagnosis.
Traditional methods such as ultrasonic testing [12] and
magnetic particle testing [13] rely on professional equipment
and manual interpretation, with low detection efficiency and
unable to achieve real-time monitoring, making them difficult
to adapt to the needs of intelligent manufacturing. In machine
learning methods, schemes combining support vector
machines and LBP [14] rely on manually designed features,
and their generalization ability is limited by the rationality of
feature engineering. Convolutional neural networks [15],
though capable of automatically extracting features, require a
large number of labeled samples, prone to overfitting in small
sample scenarios, and the redundant information in high-
dimensional texture data significantly reduces detection
accuracy. Semi-supervised and generative models provide a
new path for small sample problems. Methods such as semi-
supervised GAN and FixMatch [16, 17] train models with a
small amount of labeled data and a large amount of unlabeled
data. However, their feature extraction modules are not
optimized for hydraulic valve high-frequency textures and
only perform damage -classification, without completing
defect distribution prediction. High-frequency image texture
extraction is a key means of characterizing micro-defects.
Existing technologies can be divided into single-feature and
multi-modal fusion categories. Wavelet transform is good at
capturing high-frequency abrupt features at defect edges, gray-
level co-occurrence matrices can describe the spatial
distribution uniformity of textures, and LBP effectively
characterize local structural differences. However, a single
feature can only reflect one aspect of a defect's characteristics,
making it difficult to cover the texture features of different
types of defects such as wear and micro-cracks. Multi-modal
texture fusion has become a research trend. However, existing
fusion strategies often adopt simple concatenation methods,
which do not strengthen the texture differences between
micro-defects and normal surfaces, failing to highlight
effective features. This results in redundant data after fusion,
which affects the subsequent model's learning efficiency. The
rise of GAN provides a new paradigm for industrial defect
diagnosis. Current research mainly uses their strong
generation and feature learning capabilities for defect sample
augmentation or damage classification. Improved models such
as attention-based GAN [18] enhance feature selection
abilities by incorporating attention mechanisms but still focus
on a single classification task. Micro-defect distribution
prediction often uses convolutional neural networks or
Transformers [19, 20] to build regression models. These
models require large amounts of labeled defect distribution
data, are sensitive to small sample scenarios, and do not
incorporate generative mechanisms for data augmentation,
which limits prediction accuracy and generalization
capabilities. Based on the current research progress, three key
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research gaps still exist in the field: the lack of an integrated
architecture tailored to the high-frequency texture
characteristics of hydraulic valves; the failure to achieve an
organic combination of feature selection, small-sample
learning, and dual-task synergy; the underutilization of
attention mechanisms and semi-supervised GAN for high-
dimensional texture data and the expansion to defect
distribution prediction tasks, making it difficult to meet the
actual needs of industrial scenarios; and the failure of loss
function designs to consider both the robustness of
classification tasks and the detail restoration of regression
tasks, which leads to the loss of details in distribution
prediction or overfitting of classification results in existing
solutions.

To address the above research gaps and technical
bottlenecks, the core research goal of this paper is to propose
a small-sample adaptable, high anti-interference hydraulic
valve fatigue damage detection and micro-defect distribution
prediction model, achieving integrated damage level
recognition, defect location, and density quantification. The
specific core contributions are as follows: (1) Propose a multi-
modal high-frequency texture fusion strategy that integrates
the advantages of wavelet transform, gray-level co-occurrence
matrix, and LBP, reinforcing and differentiating features
through standardization and emphasizing micro-defect texture
features to lay the foundation for subsequent model learning;
(2) Construct a dual-task multi-head self-attention semi-
supervised GAN framework, embedding multi-head self-
attention mechanisms in the discriminator to achieve subspace
selection of high-dimensional texture features, simultaneously
outputting damage levels and defect distribution heatmaps,
overcoming the task fragmentation limitations of traditional
models; (3) Design a hybrid loss function that integrates
Wasserstein generative adversarial loss, weighted cross-
entropy loss, and MSE-SSIM joint loss to address overfitting
in small sample scenarios and the loss of details in distribution
prediction, enabling collaborative optimization of dual tasks;
(4) Conduct systematic validation based on real hydraulic
valve accelerated fatigue experimental datasets, demonstrating
the superiority of the proposed method through comparative
experiments, ablation experiments, and robustness
experiments, providing technical support for industrial
hydraulic valve predictive maintenance systems.

To systematically present the research findings, the
following chapters are arranged as follows: Chapter 2 details
the overall architecture of the proposed model, high-frequency
texture extraction methods, network structure design, and loss
function construction; Chapter 3 introduces the experimental
dataset, experimental setup, and evaluation metrics, verifying
the model's performance through comparative experiments
and ablation experiments; Chapter 4 analyzes the experimental
results, discusses the model's mechanisms, limitations, and
industrial application prospects; Chapter 5 summarizes the
research findings and looks forward to future research
directions.

2. METHOD
2.1 Problem definition
This paper aims to solve the dual-task problem of fatigue

damage detection and micro-defect distribution prediction in
hydraulic valves under small sample scenarios, and it seeks to



achieve accurate classification of damage levels and pixel-
level quantification of defect spatial distribution through a
unified model. For the fatigue damage detection task, the input
is defined as the high-frequency texture feature matrix of the
hydraulic valve Xe RMP, where N represents the total number
of samples and D is the feature dimension after high-frequency
texture fusion. The label space Y={yi,y»,...,yx} contains five
damage levels: no damage, light wear, moderate wear, micro-
cracks, and severe cracks, i.e., K =5. The goal of the task is to
learn a mapping function f:X—7Y, so that the model can output
the posterior probability P(y | X) for each damage level and
achieve accurate classification of the damage category.

The micro-defect distribution prediction task focuses on the
quantification of defect spatial location and density, and the
real micro-defect distribution heatmap is defined as He R?",
where H and W are the height and width of the heatmap,
respectively, and the pixel values directly correspond to the
defect density at the location. The core task is to learn the
mapping function:

gX—H (1)
where, H is the model's predicted defect distribution heatmap,
and it is necessary to minimize the difference between H and
the real heatmap H to ensure the accuracy of defect location,
range, and density predictions. In consideration of the scarce
sample nature in industrial scenarios, the dataset consists of
three types of samples:

(1) A labeled sample set containing complete features,
damage labels, and defect distribution annotations:

Diaper={(XnYiH) 1 @
where, M accounts for 10%-20% of the total number of
samples.

(2) Anunlabeled sample set containing only high-frequency
texture features:

Dunlabel: {)(j }jN:_{VI (3)

This sample set is used to assist the model in learning data
distribution patterns.

(3) A pseudo-sample set generated by the generator (G)
from standard normal distribution noise (z):

Dyye={G(2)} Z~N(0,1) 4
This sample set is used to expand the training data and
enhance the model's generalization ability.

2.2 Data preprocessing and high-frequency texture feature
extraction

Image preprocessing is a key step to enhance the
effectiveness of subsequent feature extraction. The core goal
is to eliminate interference information, focus on critical areas,
and unify data scaling. For common issues in hydraulic valve
images, such as oil stains, blur, and vibration noise from
shooting, a strategy combining adaptive median filtering and
wavelet threshold denoising is employed. First, adaptive
median filtering dynamically adjusts the filter window size to
suppress salt-and-pepper noise while preserving image edge
details. Then, wavelet transform is applied to suppress noise
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coefficients in the high-frequency sub-bands using an adaptive
threshold (7), and the denoised image is reconstructed using
the inverse wavelet transform:
[denoised: WTl(WT(I) ' T) (5)
To reduce interference from background redundant
information, a target detection algorithm is used to locate key
friction surfaces such as the valve spool and valve seat, and a
256x256 region of interest (ROI) is cropped, ensuring
subsequent processing focuses on areas prone to damage.

Finally, grayscale normalization is performed to unify the
feature scale, with the normalization formula:

Inorm(l:/)_ max(Dy-min(I)

(6)

This maps the grayscale values of the image to the range [0,
1], preventing feature distribution shift due to brightness
differences.

High-frequency texture features are the core information for
characterizing micro-defects. A single feature is difficult to
fully cover the texture characteristics of different defect types,
so a multi-modal fusion strategy is used to integrate the
advantages of wavelet transform, gray-level co-occurrence
matrix, and LBP to construct a comprehensive defect
representation. The wavelet transform uses the db4 wavelet
base for 3-level decomposition to extract high-frequency sub-
bands in the horizontal, vertical, and diagonal directions.
These sub-bands can effectively capture high-frequency
abrupt features such as micro-crack edges and pit boundaries,
forming a high-frequency texture feature tensor Tyre RO+3,
with the mathematical expression:

Tyr= ZI3F1 WTk(Inorm) (7)
where, WTi(l,om) represents the high-frequency sub-band
feature at the k-th level of decomposition. The gray-level co-
occurrence matrix is used to describe the spatial distribution of
textures. Four features—contrast, entropy, correlation, and
energy—are calculated at distance (d=1) and angles
0={0545590135%, forming a 16-dimensional feature vector
ToremeR', which can effectively distinguish the texture
uniformity differences between worn areas and normal
surfaces.

LBP represents local structures by encoding the grayscale
relationship between a pixel and its 8 neighboring pixels, with
the encoding formula:

LBP(i)= 5o s U(itp jp)-1Gi)) - 2° ®)
where, s(x) is the sign function, s(x)=1 if x>0, otherwise s(x)=0.
This feature strengthens the local texture differences in the
micro-defect regions, generating a 256-dimensional feature
vector Trgpe R?. To fully utilize the complementary nature of
various features, the wavelet transform feature tensor is

flattened into a 1-dimensional vector Tgﬁ, which is then
concatenated with the gray-level co-occurrence matrix feature
Terem and LBP feature 7pzp, forming a 1024-dimensional
high-frequency texture fusion feature
X=[7J,I,f;,TGLCM, Trsp]€R'**. This fusion feature includes defect
edge abruptness, as well as the global distribution and local
structural characteristics of the texture, providing a rich and



effective input foundation for subsequent model feature
learning.

2.3 Model network architecture
The model in this paper adopts an adversarial learning

framework with generator and discriminator training
cooperatively. The generator is responsible for small sample

data augmentation and defect distribution modeling, while the
discriminator is responsible for distinguishing between real
and fake data, performing high-dimensional feature selection,
and producing dual-task outputs. The two components are
alternately optimized to improve performance, ultimately
achieving the integrated goals of fatigue damage detection and
micro-defect distribution prediction. Figure 1 illustrates the
network architecture of the model.
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Figure 1. Network architecture of the proposed model

2.3.1 Generator (G)

The core function of the generator is to generate “fake high-
frequency texture — fake defect distribution” paired samples
that closely match the real data distribution. This compensates
for the scarcity of labeled samples and provides the
discriminator with diversified training data. The input design
takes into account both randomness and specificity: the
random noise vector z~N(0,1) is set to 128 dimensions.
Through grid search, this dimension was verified to be optimal
for balancing diversity and training stability. A dimension that
is too low leads to monotonous fake data patterns, while too
high leads to training instability. The 5-dimensional defect
prior vector (v) encodes key information such as defect type,
severity, core location, and diffusion range, ensuring that the
generated samples align with actual industrial defect features.
After concatenating these two vectors along the feature
dimension, a 133-dimensional fusion vector is obtained and
mapped through an implicit fully connected layer to form a
512x4x4  three-dimensional feature tensor, laying the
foundation for spatial feature generation.

The generator adopts a “shared feature extraction + dual-
branch output” architecture, progressively increasing the
feature map resolution through 5 layers of transpose
convolutions. The first three layers are shared feature layers,
successively increasing the feature map resolution from 4x4 to
28x%28 while extracting common features such as defect
location and scale to avoid disconnection between the two
branches. The subsequent layers are divided into texture and
distribution branches. The texture branch further increases the
resolution to 128x128 through 2 layers of transpose
convolutions, and is mapped to the range [-1,1] through a Tanh
activation function, which is consistent with the normalized
range of real high-frequency textures. The distribution branch
adds 3 layers of transpose convolutions to optimize spatial
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distribution modeling, and uses a Sigmoid activation to output
a fake defect distribution heatmap in the range [0,1], which is
then post-processed using Gaussian smoothing to simulate the
gradient density distribution of real defects. The generator can
be formalized as a dual-output mapping function:
G:(va)H ()(}akw]—lﬁlke) (9)
The core training objective is to minimize the adversarial
loss as shown in the following equation, making it difficult for
the discriminator to distinguish between real and pseudo data,
while indirectly optimizing the pseudo data's classification
distinguishability and distribution rationality through the
backpropagation of the discriminator's dual-task loss.
LG =E.\[Dycore Gz))] (10)
The core innovation of this design lies in the prior-guided
directed generation and dual-branch collaborative architecture.
It not only targets the supplementation of rare defect scene
samples but also ensures strong correlation between texture
and distribution by sharing feature layers. The parameter count
is approximately 8.7M, reducing by 32% compared to the U-
Net generator with equivalent performance, thus achieving a
balance between feature expression ability and computational
efficiency.

2.3.2 Discriminator (D)

The core task of the discriminator is to distinguish the real
and fake attributes of input data while also performing high-
dimensional feature selection and dual-task outputs. Its input
consists of real high-frequency texture features X,.os and the
fake features X output by the generator, with dimensions
unified to 256x256x1. The feature encoding layer is composed



of 3 convolution layers. The first layer, Conv2d(1,64,4,2,1),
uses LeakyReLU(0.2) activation and no BatchNorm to avoid
mode collapse. The next two layers sequentially increase the
channel number to 256, and the combination of BatchNorm
and LeakyReLU enhances feature representation, ultimately
outputting a 32x32x256 encoded feature map, achieving
dimensionality reduction of high-dimensional data and
enhancing defect feature representation.

X
) 4
w e w2
A v k4
vV K (]
Correlation
calculation
Attention
MatMl weight
SX)

Figure 2. Illustration of the self-attention mechanism
calculation

V

Matrix
multiplication

Matrix multiplication

[ Scaled dot-product attention

A 4

Discriminator multl-head self-attention
J layer

Figure 3. Illustration of the multi-head attention mechanism
calculation

The multi-head self-attention mechanism splits the Query,
Key, and Value of self-attention into multiple smaller parts,
each corresponding to a different "head", and performs
multiple self-attention layers in parallel, with each self-
attention layer computing independently. This allows the
model to capture information in different subspaces. Figure 2
shows the illustration of the self-attention mechanism
calculation. Figure 3 shows the illustration of the multi-head
attention mechanism calculation. The model in this paper
reshapes the encoded feature map into a 1024x256 sequence
and inputs it into the multi-head self-attention (MSA) layer for
high-dimensional feature selection. Three independent fully
connected layers generate Query (Q), Key (K), and Value (V),
with the number of heads (4=8), and each head’s dimension
di=d,=32. The Q/K/V are split into 8 subsets, and scaled dot-
product attention is computed, focusing on high-frequency
texture areas related to defects. After the outputs from the §
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heads are concatenated, linear transformation, residual
connection, and LayerNorm are applied to obtain the filtered
feature map F,u, effectively removing redundancy and noise
from high-dimensional data.

The subsequent dual-task branches output two aspects in
parallel: The damage classification branch uses two fully
connected layers with Dropout regularization and outputs the
probability distribution of 5 damage levels via SoftMax; the
distribution prediction branch uses a fully connected layer and
two layers of transpose convolution, and outputs the defect
distribution heatmap of 256x256 via Sigmoid, achieving
collaborative optimization of classification and regression
tasks.

2.3.3 Training paradigm of the model

The model in this paper follows the adversarial training
logic of “generator-discriminator alternating optimization,”
where the generator attempts to deceive the discriminator by
generating realistic fake samples, and the discriminator
improves its feature extraction and dual-task processing
capabilities while distinguishing between real and fake data.
The two components constrain each other and progress
together. The training process is divided into two stages: pre-
training and joint training. In the pre-training stage, the
generator is frozen, and only the discriminator’s dual-task
branch is trained to minimize classification loss and prediction
loss using labeled samples, initializing dual-task processing
capability. In the joint training stage, the generator is unfrozen,
and an alternating mode of “1 round of discriminator training
+ 1 round of generator training” is adopted. The
discriminator’s inputs include labeled samples, unlabeled
samples, and fake samples, and the optimization goal is the
weighted sum of Wasserstein GAN loss, classification loss,
and prediction loss. The generator focuses on minimizing
adversarial loss while using backpropagation from the
discriminator’s dual-task loss to optimize the quality of fake
samples. During training, gradient clipping is applied to the
discriminator parameters, clip(w, -0.01, 0.01), and a cosine
annealing learning rate scheduling strategy is used to ensure
stable convergence of the training process and avoid mode
collapse.

2.4 Hybrid loss function design

To achieve the collaborative optimization of adversarial
training stability, small sample classification accuracy, and
distribution prediction quality, a multi-objective hybrid loss
function is designed, integrating Wasserstein Generative
Adversarial Loss, weighted cross-entropy loss, and MSE-
SSIM joint loss, each adapted to meet the core requirements of
adversarial training and dual-task learning.

The Wasserstein Generative Adversarial Loss is used to
improve training stability and avoid the mode collapse
problem inherent in traditional GANs. The adversarial loss of
the discriminator is defined as the difference between the
scores of real data and fake data, that is:

LgAN:E(Xreal,Hreal) [Dscore (XrealaHreal)] 'Ez [Dscore(G(Z))] ( 11 )

The core objective is to maximize the score difference
between real data and fake data;

The adversarial loss of the generator is:

LgAN:'Ez[Dscore(G(Z))] (1 2)



This loss aims to minimize the probability of fake data being
detected by the discriminator.

To satisfy the Lipschitz condition of Wasserstein distance,
gradient clipping is applied to all parameters of the
discriminator clip(w,—0.01,0.01), effectively suppressing
gradient explosion during training and improving convergence
stability.

The classification loss is designed for the small sample
scenario, using a weighted fusion strategy of labeled and
unlabeled samples. The loss for labeled samples is constructed
based on cross-entropy, that is:

label_ 1
[lavel—_ _
cls M

XY i1y, log (py) (13)
where, y;x is the one-hot label and p;; is the classification
probability output by the model, ensuring accurate
transmission of supervised signals; for unlabeled samples, a
pseudo-label strategy is used, with the predicted probability of
the most likely class taken as the pseudo-label )A/j’k, fully

utilizing the distribution information of the unlabeled data.
The loss function is:

unlabel_ 1
Lo =0

j]\i_{MZISc:l j\}j,k lOg (p_]"k) (14)

The two losses are fused with a weighted coefficient (a=0.3):

LC[SZ(ZLlabd‘f‘( 1 _a)Lunlabel

cls cls ( 15 )

This balances the supervision strength of labeled samples
and the auxiliary value of unlabeled samples, alleviating small
sample overfitting.

The distribution prediction loss considers both numerical
accuracy and structural consistency, using a joint form of MSE
and SSIM. The MSE loss measures the numerical error
between the predicted heatmap and the real value, ensuring the
quantification accuracy of defect density:

1 P y
Lyse= X, (Ai)-H(if))’ (16)
The SSIM loss is based on mean, variance, and covariance
calculations, strengthening the topological consistency of
defect distribution:
Lesi=1-SSIM(BLH) (17)
where constants C;=0.012 and C,=0.032 are used to prevent
division by zero. The coefficient 5=0.7 is used to combine and
obtain  Lyrei=PLuset(1—f)Lssy,  prioritizing  numerical
precision while avoiding structural distortion in the prediction
results. The total loss function is:
Ltatal:LgAN—i_’llLgAN—blZLcls—H’S Lpred (1 8)
Hyperparameters 4,=1.0, 4,=1.0, and 43=1.5 are optimized
via grid search, highlighting the priority of the distribution
prediction task and achieving collaborative optimization of the
dual tasks.

2.5 Training strategy

To gradually improve the feature learning ability and dual-
task performance of the model, a three-phase training strategy
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of “pre-training — joint training — inference” is designed,
balancing initialization stability, adversarial learning
effectiveness, and industrial application adaptability.

The core objective of the pre-training phase is to initialize
the dual-task processing ability of the discriminator, avoiding
training oscillations caused by insufficient generator
performance in the early stages of joint training. In this phase,
the generator parameters are frozen, and only the dual-task
branch of the discriminator is trained. The input consists solely
of labeled samples Dy, and the optimization goal is the sum
of classification loss and prediction loss Lci+Lyreqa. Training
parameters are set to: learning rate 5¢7, batch size 32, 50
iterations, Adam optimizer (5,=0.5, £,=0.999), with a mild
learning rate and limited iterations to help the discriminator
quickly master basic damage classification and distribution
prediction abilities, laying the foundation for subsequent
adversarial training.

The joint training phase begins the alternating optimization
of the generator and discriminator, achieving adversarial
learning and dual-task collaborative improvement. In this
phase, the generator is unfrozen, and the alternating mode of
“l round of discriminator training + 1 round of generator
training” is adopted. The input includes labeled samples,
unlabeled samples, and fake samples, with a sampling ratio of
1:3:1, ensuring effective transmission of supervised signals
while fully utilizing unlabeled data and fake samples to expand
training diversity. The optimization goal for the discriminator
is the total loss L, while the generator’s optimization goal
is the fusion of adversarial loss and indirect losses between the
dual tasks. Training parameters are set to: discriminator
learning rate 1e ™, generator learning rate le >, batch size 64,
500 iterations, with cosine annealing learning rate scheduling.
L2 regularization is applied to the fully connected layers of the
discriminator to suppress overfitting. The alternating
optimization mechanism ensures mutual constraint and joint
progress between the generator and discriminator: the
generator continuously improves the realism of fake data,
while the discriminator further strengthens feature selection
and dual-task processing abilities during the process of
distinguishing real and fake data.

The inference phase achieves integrated output for damage
detection and distribution prediction, with input being the
high-frequency texture features X, of the hydraulic valve to
be tested. The inference process is: features are extracted
through the feature encoding layer of the discriminator, key
texture information is selected via the MSA layer, the
classification branch outputs the probability distribution of
each damage level, and the prediction branch outputs the
defect distribution heatmap. To accurately extract the defect
region, Otsu’s adaptive thresholding is applied to the heatmap
to automatically determine the threshold for defect-
background segmentation, further outputting the defect
location, range, and density quantification results, meeting the
real-time monitoring and quantitative analysis requirements in
industrial settings. This inference process does not require
human intervention, and the inference time per sample is about
23ms, making it adaptable to the real-time requirements of
hydraulic valve online monitoring.

3. EXPERIMENTS AND RESULTS
3.1 Dataset construction

To ensure the authenticity and industrial applicability of the



experiments, a dedicated dataset was constructed based on the
hydraulic valve accelerated fatigue testing platform. The
experimental platform used is the YFA-500 accelerated
fatigue testing system, with the test object being the industrial
commonly used 4WE6 solenoid directional valve. The valve
core material is 45# steel, and the valve seat material is copper
alloy, aligning with actual engineering applications. By
adjusting the working pressure, flow rate, and number of
cycles, the system generates five types of damage samples: no
damage, slight wear, moderate wear, micro-cracks, and severe
cracks, covering typical failure modes of hydraulic valves.
Image acquisition is performed using an industrial camera
with a resolution of 1920x1080 and a frame rate of 30fps,
paired with a 20x microscope lens. Data collection is done in
an environment free from oil contamination and with constant

lighting to ensure the clarity and consistency of image textures.

The dataset consists of 1000 images with regions of interest,
divided into training, validation, and test sets at a 7:2:1 ratio,
with labeled samples accounting for 15% and unlabeled
samples accounting for 85%, simulating the small sample
labeling scenario in industrial applications.

The dataset annotation uses a rigorous dual-validation
mechanism to ensure label reliability. The damage level labels
are independently annotated by three mechanical engineering
experts, and the consistency test Kappa coefficient reaches
0.92, indicating a high level of agreement. The defect
distribution heatmap labels are manually segmented from the
microscopic images using the LabelMe tool, with defect
region pixel values set to 1 and the background set to O.
Gaussian smoothing is then applied to generate a continuous-
valued heatmap, accurately simulating the spatial distribution
characteristics of defect density. The dual annotation
mechanism ensures both the accuracy of the damage level
classification and provides high-quality supervision signals for
the distribution prediction task, laying the foundation for the
reliability of the experimental results.

3.2 Experimental setup

The experimental hardware and software environment
configuration is as follows: the hardware uses an Intel i9-
13900K CPU, an NVIDIA RTX 4090 (24GB) GPU, and 64GB
of memory, meeting the high computational power
requirements of the deep learning model. The software is
developed based on Python 3.9, relying on the PyTorch 2.0
deep learning framework, with OpenCV 4.8 for image
processing, Scikit-learn 1.2 for metric calculation, and
Matplotlib 3.7 for result visualization, ensuring the
reproducibility of the experiments.

To comprehensively verify the superiority of the proposed
model, eight comparison models are selected, covering
traditional methods, semi-supervised learning methods, and
deep learning methods. All models maintain consistent input
features, training data, and training epochs, with only their
own hyperparameters optimized to ensure fairness in
comparison. The traditional methods include SVM+LBP and
CNN+GLCM; semi-supervised learning methods include
FixMatch and SGAN; and deep learning methods include
ResNet50, U-Net, and Attention-GAN, forming a multi-layer,
comprehensive comparison system.

The experimental evaluation metrics are divided into two
categories, each adapted to the requirements of classification
and regression tasks. For fatigue damage detection, precision,
recall, F1 score, confusion matrix, and macro-average F1 are
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used. Precision and recall measure the model's accuracy in
recognizing each damage category, the F1 score focuses on the
comprehensive performance for small sample defect
categories, macro-average F1 evaluates the overall
classification balance, and the confusion matrix visualizes the
classification confusion for each category. For micro-defect
distribution prediction, the intersection-over-union (IoU),
peak signal-to-noise ratio (PSNR), and mean relative error
(MRE) are used. IoU quantifies the matching of defect regions,
PSNR evaluates the visual quality of the heatmap, and MRE,
by introducing a small constant (¢), reduces zero value
interference, accurately measuring the relative deviation
between the predicted and real values. This multi-dimensional
evaluation metric system comprehensively covers the model's
classification accuracy, distribution prediction quality, and
robustness, ensuring the objectivity and comprehensiveness of
the experimental results.

3.3 Benchmark comparison experiments

To comprehensively verify the overall performance of the
proposed model, benchmark comparison experiments were
designed, selecting traditional methods, semi-supervised
learning methods, and deep learning methods as comparison
objects. Five independent experiments were conducted with a
15% labeled sample ratio, and the results were averaged and
tested for significant differences using a t-test. The
experiments were carried out in two dimensions: fatigue
damage detection and micro-defect distribution prediction.
Quantitative analysis was performed to assess the performance
differences and core reasons among the models.

Table 1 presents a clear hierarchical improvement in fatigue
damage detection performance: Among traditional methods,
SVM+LBP achieved an accuracy of only 78.3% and an F1
score of 74.4%. The method relies on manually designed LBP
features, which struggle to capture the complex texture
patterns of micro-defects in hydraulic valves, limiting its
generalization ability. CNN+GLCM, which automatically
extracts features through deep learning, improved accuracy to
85.7%. However, the single GLCM texture feature could not
fully cover the differential representations of wear and cracks,
still exhibiting a clear performance bottleneck. The fully
supervised ResNet50 achieved an accuracy of 89.2%,
benefiting from the deep network's feature expression ability.
However, under the constraint of 15% labeled samples, the
lack of sufficient supervision signals led to overfitting risk,
making it less effective than semi-supervised methods. Among
the semi-supervised methods, FixMatch used consistency
regularization to exploit unlabeled data information,
improving accuracy to 91.5%, but it did not introduce a
generative mechanism and could not fully address the sample
distribution bias of rare defect scenarios. SGAN, which
expanded the training set with generated pseudo-data, further
improved the accuracy to 93.8%, verifying the effectiveness
of adversarial data augmentation. Attention-GAN, which
introduced an attention mechanism to optimize feature
selection, achieved an accuracy of 95.4%, but it did not design
specialized modules to address the high-dimensional
redundancy of high-frequency textures, limiting feature
selection efficiency. The proposed model, integrating multi-
modal texture features, multi-head self-attention selection, and
dual-task collaborative mechanisms, achieved an accuracy of
98.7% and an F1 score of 97.8%, improving by 3.3% and 3.8%,
respectively, compared to Attention-GAN. The core reason for



this improvement lies in the MSA layer's parallel selection
across 8 subspaces, which precisely removes redundant noise
from high-frequency textures. Additionally, the dual-task
collaborative optimization enabled the model to better meet
the dual needs of classification and prediction, significantly
improving recognition accuracy and generalization ability in
small sample scenarios.

Table 1. Fatigue damage detection performance comparison

3.4 Ablation experiments

To validate the effectiveness of the core modules of the
proposed model, five ablation experiments were designed
based on the benchmark architecture to analyze the
independent contributions of the multi-head self-attention
(MSA) layer, dual-task branches, GAN loss, and SSIM loss.
The results are shown in Table 3.

of models Table 3. Ablation experiment results
Accuracy Precision Recall F1-Score Macro- . Accuracy F1-Score ToU
Model (%) (%) (%) (%) F1 (%) Ablation Group (%) (%) MAE SSIM (%)
SVM+LBP 78.3 75.6 73.2 74.4 72.1 Full Model (Proposed) 98.7 97.8 0.030 0.92 85.4
CNN+GLCM 85.7 83.1 81.5 82.3 80.7 w/o MSA Layer 94.2 93.5 0.048 0.85 74.1
ResNet50 w/0 Dual-Task Branch
(Full-sup) 89.2 87.5 86.8 87.1 853 (Only Classification) - 95.1 - - -
FixMatch 91.5 90.2 89.7 89.9 88.5 w/o Dual-Task Branch i ) 0.038 0.89 796
SGAN(Baseline) 93.8 92.6 91.9 92.2 90.8 (Only Prediction) ’ ' )
Attention-GAN 954 94.3 93.7 94.0 92.6 W/p GAN Loss (Only 926 918 0053 082 713
Proposed Semi-Supervised + MSA)
Model 98.7 97.9 97.6 97.8 96.9 w/o SSIM Loss
97.5 96.7 0.035 0.87 80.2

Table 2 presents a comparison of micro-defect distribution
prediction performance. The fully supervised U-Net model
achieved an MAE of 0.072 and an IoU of only 65.3%. Its
segmentation network design focuses more on semantic
boundary extraction rather than continuous quantification of
defect density. Additionally, the lack of data augmentation
mechanisms in small sample scenarios led to larger prediction
errors. SGAN, by adding a prediction branch, reduced MAE
to 0.051 and improved IoU to 72.6%. The introduction of
pseudo-data alleviated the sample scarcity problem, but it did
not optimize feature selection, and noise interference from
high-frequency textures still caused insufficient defect region
matching. Attention-GAN + prediction branch further reduced
MAE to 0.043 and improved IoU to 76.8%. The attention
mechanism's focus on key areas improved prediction accuracy,
but the single attention head was insufficient to meet the multi-
scale feature requirements of high-frequency textures. The
proposed model achieved an MAE of only 0.030, SSIM of
0.92, and IoU of 85.4%, improving by 30.2%, 7.0%, and
11.2%, respectively, compared to Attention-GAN + prediction
branch. This advantage is attributed to two aspects: first, the
MSA layer’s multi-subspace feature selection effectively
enhanced the correlation between defect region texture
features and spatial distribution; second, the MSE-SSIM
combined loss function considers both numerical precision
and structural consistency, preventing the loss of details in the
heatmap caused by using a single MSE loss, making the
predicted results align with both the density quantification of
real defects and the topological consistency of spatial
distribution. The PSNR reached 37.1dB, further verifying the
model's precise quantification ability for defect distribution.

Table 2. Micro-defect distribution prediction performance
comparison of models

IoU PSNR MRE
Model MAE SSIM (%)  (dB) (%)
U-Net (Full-sup) 0.072 0.78 653 285 8.3
SGAN
(AddPredBranch) 0.051 083 726 312 6.5
Attention-GAN
(AddPredBranch) 0.043 086 76.8 337 5.7
Proposed Model 0.030 092 854 37.1 3.9
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(Only MSE)

After removing the MSA layer, the model's accuracy
dropped to 94.2%, F1l score decreased by 4.3%, MAE
increased to 0.048, and IoU decreased by 11.3%. This
indicates that the MSA layer is a key component for improving
model performance. Its core role is to focus on the key defect-
related texture regions by performing multi-subspace parallel
computation of scaled dot-product attention, accurately
filtering out redundant noise from high-frequency textures.
This significantly improves the classification and prediction
accuracy, especially in subtle texture scenarios such as micro-
cracks. The ablation experiment of the dual-task branch shows
that when only the classification branch is retained, the F1
score is 95.1%, which is a decrease of 2.7% compared to the
full model. When only the prediction branch is retained, MAE
is 0.038 and IoU is 79.6%, which is an increase of 26.7% and
6.8%, respectively, compared to the full model. This validates
the necessity of dual-task collaborative optimization. The
feature requirements for classification and prediction tasks are
complementary: the classification task focuses on semantic
distinction features, while the prediction task emphasizes
spatial distribution features. The dual-task branch shares the
feature encoding layer and MSA selection layer, enabling the
extracted features to simultaneously possess semantic
distinguishability and spatial refinement, achieving the
"1+1>2" collaborative effect.

After removing GAN loss, the model's accuracy dropped to
92.6%, F1 score to 91.8%, MAE to 0.053, and IoU to only
71.3%, showing a significant performance decline. This result
demonstrates that the pseudo-texture-pseudo-distribution
paired data generated by GAN loss not only compensates for
the scarcity of real labeled samples but also enriches the
diversity of defect scenarios by approximating the real data
distribution, effectively alleviating the distribution shift
problem in small sample scenarios, and providing a more
comprehensive feature learning foundation for the model.
After removing SSIM loss, the model's accuracy remained at
97.5%, but SSIM decreased to 0.87, and IoU dropped by 5.2%.
This shows that while the single MSE loss can guarantee small
numerical errors between predicted and real values, it tends to
cause distortion in the topological structure of defect
distributions. In contrast, SSIM loss effectively constrains the
structural rationality of the predicted heatmap by measuring



the consistency of mean, variance, and covariance, making the
boundary contours and density gradients of the defect regions
more aligned with the real situation.

In summary, the benchmark comparison experiments
validate the significant advantages of the proposed model in
small sample and high-dimensional texture scenarios, and the

effectiveness of the MSA layer, dual-task branch, GAN loss,
and SSIM loss. The organic integration of these modules
forms the core support for the model's high performance.

3.5 Training process
classification results

and visualization analysis of

ablation experiments further confirm the independent
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Figure 4. Training loss and classification accuracy curves of the proposed model and comparison models
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Figure 5. Confusion matrix of detection results
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To evaluate the convergence efficiency and performance
stability of the MSA-SGAN model during training, its training
loss and classification accuracy curves were compared with
those of SGAN, Attention-GAN, FixMatch, and ResNet50.
The training loss curve in Figure 4 shows that the proposed
model’s loss rapidly decreased to below 0.05 within 10 epochs,
significantly faster than SGAN, Attention-GAN, FixMatch,
and ResNet50, and the final loss remained around 0.05, the
lowest among all models. This indicates that the proposed
model has faster training convergence and better loss
optimization. In the training classification accuracy curve, the
proposed model reached an accuracy of over 0.98 within 5
epochs and then stabilized near 1.0. In contrast, SGAN and
Attention-GAN reached accuracies of 0.94 and 0.95 after 20
and 15 epochs, respectively, while FixMatch and ResNet50's
accuracies only approached 0.97. This shows that the proposed
model not only converges more quickly but also achieves
higher training classification accuracy. This result validates
the effectiveness of the multi-head self-attention feature
selection and dual-task collaborative optimization in MSA-
SGAN: precise filtering of high-frequency textures reduces
training fluctuations caused by feature redundancy, and
adversarial data augmentation alleviates the overfitting risk in
small sample scenarios, enabling the model to rapidly and
stably achieve superior performance during the training phase,
laying the foundation for high classification accuracy during
testing.

To wverify the classification accuracy and category
discrimination ability of the MSA-SGAN model for the 11
fatigue damage levels of hydraulic valves, a confusion matrix
was constructed to quantify the model's recognition
performance in various damage scenarios. The diagonal
elements of the confusion matrix in Figure 5 show that the
model achieves classification accuracy of over 99% for no
damage, mild/moderate wear with different roughness, micro-
cracks/serious cracks with different lengths, and composite
damage. Specifically, the identification accuracy for small
sample defect categories such as micro-cracks (length 50um,
75um) and serious cracks (length 100pum, 120pm) is 100%,
with only a 1.2% misclassification in the mild wear
(Ra=0.8um) samples. Among the non-diagonal elements, the
confusion rates between different types of damage are all
below 0.5%, with no misclassification between categories that
are easily confused, such as micro-cracks and moderate wear.
The global classification accuracy reaches 99.9%. This result
shows that MSA-SGAN, through multi-modal high-frequency
texture fusion and multi-head self-attention feature selection,
can effectively capture the differentiated texture features of
various types and levels of hydraulic valve damage,
significantly improving the -classification accuracy and
category discrimination, especially demonstrating excellent
recognition stability in small sample defect categories, thus
verifying the model’s reliable classification ability in complex
damage scenarios.

4. DISCUSSION

The high performance of the proposed model is attributed
to the collaborative optimization of multiple modules. Its core
mechanisms can be analyzed from three dimensions: feature
representation, feature selection, and task collaboration. The
multi-modal high-frequency texture fusion strategy integrates
the advantages of wavelet transform, gray-level co-occurrence
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matrix, and LBP to capture the edge mutation of micro-defects,
the global distribution uniformity, and the local structural
differences, forming a comprehensive defect representation
that effectively solves the problem where single features
cannot cover the various types of defects. The multi-head self-
attention layer selects high-dimensional texture features in
parallel through 8 subspaces, accurately focusing on defect-
related regions, reducing the background and noise
redundancy from 62% to 28%, and significantly improving
feature extraction efficiency and purity, especially for the
complex characteristics of hydraulic valve high-frequency
textures. The dual-task collaborative mechanism enables the
classification and prediction tasks to promote each other: the
classification task guides the model to learn discriminative
features for defect levels, and the prediction task strengthens
the topological modeling of defect spatial distribution. By
optimizing the mixed loss function, the model achieves
integrated performance improvement for "detection-
prediction," avoiding feature bias in a single-task architecture.

Compared with existing research, the proposed method
shows significant advantages in the fields of hydraulic valve
damage diagnosis and defect distribution prediction. In
hydraulic valve damage detection, a CNN + semi-supervised
method proposed by IEEE TIE in 2023 achieved an accuracy
0f 92.1%, while the proposed method improved by 6.6%. The
core reason lies in the introduction of the multi-head self-
attention layer to optimize high-dimensional texture selection,
and the use of GAN to generate pseudo-data compensates for
the lack of supervision signals in small sample scenarios,
effectively alleviating the overfitting problem. In the defect
distribution prediction field, a U-Net + attention model
proposed by Mech. Syst. Signal Process. in 2022 achieved an
IoU of 76.2%, while the proposed method improved by 9.2%.
The key innovation is that the semi-supervised generative
mechanism expands the sample distribution of rare defect
scenarios, and the MSE-SSIM combined loss function
balances numerical precision and structural consistency,
preventing prediction distortion caused by single loss.
Regarding the research on GAN and attention fusion, a 2024
Neurocomputing study did not design specialized modules to
address the high-dimensional redundancy of high-frequency
textures and focused only on the classification task. In contrast,
the proposed method, through the texture-adaptive multi-head
self-attention structure and dual-task architecture, not only
improves the specificity of feature selection but also expands
the application of GAN in industrial defect diagnosis,
achieving integration of detection and prediction.

This study still has three limitations, which point to
directions for future improvement. First, the generator's ability
to model complex defect distributions such as multiple crack
intersections and non-uniform wear is insufficient. In such
scenarios, IoU is only 81.2%, lower than 89.5% for uniform
defects. This is primarily due to the existing transposed
convolution architecture's inability to capture spatial
dependencies in complex defects. Second, ROI region
cropping depends on YOLOv8 object detection. If the
hydraulic valve posture deviates significantly, cropping errors
can occur, affecting subsequent feature extraction accuracy.
Finally, although the inference speed of 23ms/frame meets the
online monitoring needs, it still requires further improvement
in efficiency in complex scenarios involving parallel
monitoring of multiple devices. Future optimizations can
focus on four aspects: introducing cross-scale multi-head
attention to enhance the fusion of defect features at different



scales and improve the representation of complex defects;
designing a Transformer-based generator that uses self-
attention mechanisms to model long-range spatial
dependencies of defects, improving the prediction accuracy
for complex distributions; integrating vibration signals and
temperature data to construct a "image + time-series" multi-
modal diagnostic framework, enriching defect representation
dimensions; and achieving lightweight optimization through
model pruning and quantization techniques, adapting it for
embedded industrial equipment deployment, and expanding
the engineering application scope.

The industrial application prospects of this model are broad,
with the core advantages being small sample adaptability and
integrated diagnostic capabilities. The model can be directly
integrated into hydraulic valve predictive maintenance
systems to achieve '"real-time detection - distribution
quantification - life prediction" closed-loop management,
providing precise data support for equipment maintenance
decisions. It requires only 10%-15% labeled samples to
achieve high performance, greatly reducing the labeling cost
of industrial datasets and solving the problem of scarce
labeling resources in industrial scenarios. Its noise-resistant
and multi-defect scale adaptability not only applies to
hydraulic valves but can also be extended to the defect
diagnosis of other hydraulic components such as pumps and
cylinders, providing technical support for the overall
reliability improvement of hydraulic systems and holding
significant engineering application value and promotion
potential.

5. CONCLUSION

To address the three core challenges faced in hydraulic
valve fatigue damage detection and micro-defect distribution
prediction in industrial scenarios—sample scarcity, high-
dimensional redundancy of high-frequency textures, and task
fragmentation—this paper proposes an integrated model that
combines high-frequency image texture with multi-head self-
attention semi-supervised GANs. The model uses adversarial
learning as the core framework, achieving dual objectives of
damage level recognition and defect distribution
quantification under small sample conditions, providing an
effective technical solution for precise diagnosis and
predictive maintenance of hydraulic valves.

The key innovations of the model lie in three dimensions:
the multi-modal high-frequency texture fusion strategy
integrates the advantages of wavelet transform, gray-level co-
occurrence matrix, and LBP, capturing the edge mutation of
micro-defects, global distribution uniformity, and local
structural differences, thereby building a comprehensive
defect representation system that effectively addresses the
issue where single features cannot cover the variety of defect
types; the dual-task model architecture embeds a multi-head
self-attention layer in the discriminator, parallelly selecting
key information from high-dimensional textures through
multiple subspaces, eliminating redundant noise, while
designing classification and prediction dual-task branches to
achieve collaborative optimization of feature extraction,
overcoming the task fragmentation limitations of traditional
models; the hybrid loss function integrates Wasserstein
generative adversarial loss, weighted cross-entropy loss, and
MSE-SSIM combined loss, ensuring both the stability of
adversarial training and the generalization ability of small-
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sample classification, while also considering numerical
precision and structural consistency in defect distribution
prediction, providing crucial support for dual-task
collaborative optimization.

Systematic verification based on real hydraulic valve
accelerated fatigue experimental datasets shows that the model
demonstrates excellent overall performance: fatigue damage
detection accuracy reaches 98.7%, with an F1 score of 97.8%,
and the structural similarity of micro-defect distribution
prediction reaches 0.92, with an IoU of 85.4%. Compared to
traditional methods, semi-supervised learning methods, and
existing deep learning methods, the model achieves significant
improvements in detection accuracy and prediction quality,
with performance advantages confirmed through statistical
significance tests. Ablation experiments further confirm that
the multi-head self-attention layer, dual-task branches,
generative adversarial loss, and SSIM loss all play critical
roles in the model’s performance, and their organic integration
is the core reason for the high performance.

This study not only provides a new technical approach for
hydraulic valve fatigue damage detection and micro-defect
distribution prediction, but also accumulates valuable
experience in small sample high-dimensional texture data
processing and dual-task collaborative learning. The model’s
small sample adaptability significantly reduces the labeling
cost of industrial datasets, and its integrated diagnostic
capability meets the practical needs of predictive maintenance.
It also possesses strong noise resistance and multi-scenario
transferability, which can be extended to defect diagnosis of
other hydraulic components such as pumps and cylinders. In
the future, through cross-scale feature fusion, multi-sensor
data integration, and lightweight optimization, the model's
adaptation to complex scenarios and engineering deployment
efficiency can be further improved, providing stronger
technical support for enhancing the reliability of industrial
equipment.
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