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Sustainable air quality management in large and rapidly growing megacities requires the 

implementation of forecasting systems capable of accounting for nonlinear interactions 

between meteorological conditions and the dynamics of suspended particles. Almaty, 

characterized by pronounced mountain-valley circulation and frequent winter inversions, is 

one of the cities in Central Asia where PM₂.₅ and PM₁₀ concentrations regularly exceed WHO 

recommendations. As part of the study, an interpretable model for short-term and conditional 

medium-term air pollution forecasting was developed based on Random Forest and LSTM 

algorithms using data from AQICN, AirKaz, Dashboard.air.org.kz, Ogimet and ERA5 for 

2020–2024. Modelling was performed in two scenarios: (A) using only pollutant concentration 

lags and (B) adding a complete set of meteorological parameters, including temperature, 

relative humidity, wind speed, boundary layer height (BLH), surface pressure and cloud cover. 

Accuracy assessment at 7- and 30-day horizons showed that the inclusion of meteorological 

data significantly improves forecast quality, especially for PM₂.₅, with Random Forest 

providing the most stable RMSE and MAE values. The LSTM model demonstrates high 

sensitivity to short-term peak values, more accurately reflecting the dynamics of pollution 

episodes. Feature importance analysis shows the key role of atmospheric stability (BLH), wind 

regime, and autocorrelation structure in the formation of winter smog situations. Compared to 

the baseline methods (Persistence and Seasonal Naïve), the forecast accuracy over a 7-day 

horizon shows poor performance and in some cases, is inferior to the “persistence” method, 

while over a 30-day horizon, it improved to 40% for PM₂.₅ and to 15% for PM₁₀. The developed 

system has high potential for integration into digital monitoring platforms, early warning 

services, and Smart City solutions. The study fills an existing scientific gap in the field of 

interpretable weather-dependent air quality forecasting for cities with mountain-valley 

circulation in Central Asia and strengthens the analytical basis for sustainable environmental 

management.  
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1. INTRODUCTION

The problem of atmospheric pollution in large cities has 

once again become the focus of attention for researchers and 

urban policymakers in recent years, as growing urbanization, 

changing climatic conditions and increasing traffic loads pose 

serious challenges to the sustainable development of the urban 

environment. The scientific agenda is increasingly focused on 

the development of effective environmental monitoring and 

forecasting systems that can support urban planning, health 

risk management and the development of long-term 

environmental strategies. Almaty, Kazakhstan's largest 

metropolis, is one of the most characteristic examples of a city 

where the environmental situation creates significant barriers 

to achieving sustainable development goals. 

According to data from the National Statistical Service of 

Kazakhstan [1], between 2020 and 2024, annual pollutant 

emissions in Almaty remained stable at 40–44 thousand tones, 
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while winter concentrations of PM2.5 exceeded WHO 

recommendations by 5–8 times [2]. The highest contribution 

comes from the Alatau, Zhetysu and Turksibsky districts, 

where large man-made sources are located: industrial hubs, 

thermal power plants, logistics and transport infrastructure. 

Per capita emissions in some districts reach 173 kg per year, 

which is significantly higher than in the central districts 

(Medeu, Almaly), reflecting the spatial asymmetry of the 

environmental burden. The factors driving this trend are well 

known: population growth (2.337 million people as of October 

2025), building density (3,419 people/km2), the characteristics 

of the heating season, and the city's unique foothill 

topography, which is prone to temperature inversions and the 

retention of polluted air masses. 

Despite the fact that the city's current environmental 

protection expenditures have increased from USD 12.06 

million in 2020 to USD 20.14 million in 2024, there has been 

no systematic improvement in air quality. The increase in the 

number of vehicles, the expansion of private heating, and the 

growth of local industrial emissions are exacerbating the 

concentration of fine particulate matter PM2.5 and PM10. This 

trend is consistent with global urbanization trends identified 

by Burnett et al. [3] and is observed in megacities with similar 

mountain-valley morphology, including Tehran, Ulaanbaatar 

and Santiago [4, 5]. Recent data from AQICN, AirKaz, 

Dashboard.air.org.kz and research by Kerimray et al. [6] 

confirm the operation of a similar mechanism for the 

formation of a ‘winter bowl’ in Almaty, making the city a key 

model site for studying weather-dependent smog episodes and 

developing tools for sustainable environmental management. 

The relevance of the study is reinforced by the lack of 

comprehensive pollution forecasting systems based on modern 

machine learning (ML) and deep learning (DL) methods that 

are capable of accounting for nonlinear interactions between 

PM₂.₅/PM₁₀ concentrations, meteorological parameters 

(temperature, humidity, wind speed, boundary layer height - 

BLH, surface pressure, cloud cover) and the topographical 

heterogeneity of the urban environment. In addition, 

expanding the set of meteorological parameters to include 

atmospheric stability characteristics (BLH) and wind 

conditions significantly enhances the physical validity of 

forecast models. Despite the expansion of the monitoring 

network to 71 stations (2024), most studies for Almaty are 

descriptive in nature, and there are no tools for short- or 

medium-term pollution forecasting. This creates a critical gap 

between scientific knowledge and the practical needs of urban 

policy: without high-precision forecasting systems, it is 

impossible to develop early warning services, adaptive 

transport management, environmental health risk assessment, 

and sustainable urban infrastructure planning. 

In these circumstances, the aim of the study is to develop 

and empirically evaluate a weather-dependent system for 

short-term and conditional medium-term forecasting of PM₂.₅ 

and PM₁₀ concentrations for Almaty using Random Forest and 

LSTM algorithms and integrating data from three monitoring 

networks and key meteorological characteristics. This 

approach allows us to combine intelligent data analysis 

methods with sustainable urban planning tasks, improving the 

basis for decision-making in the field of air quality 

management. 

To achieve this goal, the following research tasks were set: 

1. analyze natural, climatic and anthropogenic determinants 

of pollution; 

2. create a unified database based on multiple network 

sources; 

3. build two types of models (RF and LSTM) for 7- and 30-

day horizons and assess the contribution of meteorological 

factors; 

4. identify spatial heterogeneity of pollution and conduct a 

comparative analysis of models; 

5. develop recommendations for integrating the results into 

urban monitoring systems and Smart City infrastructure. 

Based on the research tasks, the following hypotheses were 

formulated: 

 

H1: Meteorological factors have a statistically significant 

impact on the short-term dynamics of PM₂.₅/PM₁₀. 

H2: The inclusion of meteorological parameters significantly 

improves the accuracy of ML models. 

H3: The topography of Almaty creates a pronounced spatial 

asymmetry of pollution. 

H4: LSTM more accurately predicts peak pollution, while 

Random Forest provides stability over medium horizons. 

H5: Combining multi-network monitoring data improves the 

predictive power of models. 

 

The scientific novelty of the study includes several points. 

First, an integrated weather-dependent ML model for short-

term forecasting of PM₂.₅ and PM₁₀ has been developed, 

combining data from public and private stations with 

meteorological parameters for the city of Almaty. Second, a 

comparative study of RF and LSTM models has been carried 

out under conditions of mountain-valley circulation and winter 

inversions. Thirdly, an original conceptual scheme of a 

‘weather-dependent forecasting ecosystem’ was proposed, 

linking topography, climatic factors, the distribution of 

emission sources and the location of stations with pollution 

forecasts. Fourth, a quantitative analysis of the impact of the 

regional emission structure on PM₂.₅/PM₁₀ concentrations in 

the short term has been carried out. Fifth, recommendations 

have been formulated for the integration of models into urban 

digital platforms, Smart City and PPP mechanisms in the field 

of environmental monitoring. 

Thus, the study fills a key scientific and practical gap in the 

field of sustainable air quality management in Central Asia. 

The results provide an analytical and technological basis for 

the implementation of early warning systems based on 

interpretable ML/DL algorithms and can serve as a model for 

the development of a digital ecosystem for environmental 

monitoring in cities in Kazakhstan and the region. 

 

 

2. LITERATURE REVIEW 

 

The environmental situation in Almaty has been the subject 

of growing interest among the scientific community in recent 

decades due to consistently high concentrations of PM₂.₅ and 

PM₁₀ particulate matter, their seasonal variability, and their 

pronounced dependence on meteorological conditions. 

Existing studies on air quality in Almaty provide important 

retrospective observations, but they lack modern approaches 

to pollution forecasting based on ML methods. To justify the 

need for such an approach, this section reviews key scientific 

areas in the field of air quality forecasting, analyses modern 

ML/DL methods, assesses the role of meteorological factors, 

topography and anthropogenic sources, and identifies gaps 

that remain significant for Almaty. 
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2.1 Air quality studies in Almaty and Central Asia 

 

One of the most significant studies of air quality in Almaty 

is the work of Kerimray et al. [6], based on data from 

Airkaz.org. The authors established a clear vertical 

stratification of pollution, significant variability of PM₂.₅ 

within the city, and the key role of domestic heating during 

periods of temperature inversions. However, the study did not 

go beyond a statistical description of PM dynamics and did not 

use predictive models. 

A comprehensive regional analysis conducted by 

Kozhagulov et al. [7] shows that over the past three decades, 

Central Asian countries have remained structurally dependent 

on fossil fuels: up to 78% of CO₂ emissions are associated with 

the combustion of energy carriers, and the main exports of 

Kazakhstan and Turkmenistan consist of raw materials. At the 

same time, limited financial resources, fragmented regional 

cooperation and the lack of a modern air quality monitoring 

system mean that the climate and environmental measures 

taken so far have not led to a significant reduction in 

atmospheric emissions. At the city level, the findings of 

Tursumbayeva et al. [8] demonstrate that cities in Central 

Asia, including Almaty, are forming a new global ‘hot belt’ of 

pollution: average annual PM₂.₅ concentrations exceed WHO 

recommendations by 4.3–12.6 times, winter peaks are 

associated with stagnation and slow air mass transport, and 

coal combustion remains the dominant source of PM₂.₅ in most 

of the cities studied. The authors also emphasize that official 

emissions inventories are often based on outdated 

methodologies, which hinders the development of 

scientifically sound air quality management strategies and 

further highlights the need to create modern, weather-

dependent predictive models for urbanized areas in the region. 

Satellite analysis of NO₂ over Kazakhstan [9] revealed 

spatial heterogeneity of pollution, but did not address 

forecasting issues and was limited to retrospective assessment.  

Thus, existing studies on Almaty form an important 

empirical basis, but do not offer predictive ML/DL models, 

confirming the existence of a significant scientific gap. 

 

2.2 Global studies of PM₂.₅/PM₁₀ dynamics under inversion 

conditions and complex terrain 

 

Almaty, located in a mountain basin, has climatic 

characteristics similar to cities such as Tehran, Ulaanbaatar, 

Santiago de Chile, and Lahore. All of these cities are 

dominated by the effect of winter temperature inversions, 

which prevent vertical air mixing. Alizadeh-Choobari et al. [4] 

showed that inversions account for up to 70% of extreme 

pollution episodes in Tehran. 

Wang et al. [5] demonstrated similar dynamics for 

Ulaanbaatar, where PM₂.₅ can increase 8–10 times during 

periods of persistent anticyclones and night-time inversions. 

Unlike many mountain cities, where increases in PM₂.₅ 

concentrations are directly linked to air stagnation and 

increased temperature inversions, Santiago's experience shows 

more complex dynamics, in which not only the terrain but also 

the evolution of urban mobility and transport structure play a 

key role. According to Gallardo et al. [10], over the past three 

decades, concentrations of coarse PM₁₀ particles in Santiago 

have decreased significantly thanks to the introduction of 

technological measures – improved fuel quality, the use of 

catalytic converters and diesel particulate filters. However, 

PM₂.₅ concentrations remain high due to the rapid growth of 

the vehicle fleet and the transition of the city's atmosphere to 

a more oxidative regime, which enhances the formation of 

secondary aerosols. The authors emphasize that without 

changes in the transport behavior of the population—in 

particular, without an increase in the share of public 

transport—technological measures are insufficient to improve 

air quality. 

These studies demonstrate that topography and meteorology 

create nonlinear pollution dynamics that cannot be adequately 

described by classical analysis methods. That is why, in global 

scientific practice, considerable attention is paid to the 

integration of meteorological parameters into ML forecasting 

models. 

 

2.3 Meteorological determinants of PM₂.₅ and PM₁₀ 

concentrations 

 

Numerous studies confirm that short-term fluctuations in 

PM₂.₅ and PM₁₀ are determined by a combination of 

temperature, relative humidity, wind activity and the height of 

the planetary boundary layer (PBL). These factors influence 

the processes of accumulation, dispersion, and secondary 

formation of aerosols, shaping the nature of pollution in urban 

environments. 

Atmospheric air temperature is a key regulator of both 

particle formation processes and their temporal dynamics. 

According to Bai et al. [11], a decrease in perceived 

temperature is associated with an increase in the impact of 

PM₂.₅ and NO₂ on the body, reflecting a general mechanism: 

at low temperatures, air stagnation increases, ventilation of the 

surface layer deteriorates, and the likelihood of solid particle 

accumulation increases. Similar physical processes are 

described in studies on COPD [12], which reveal U-shaped 

relationships between temperature and PM₂.₅ exposure, 

particularly pronounced during prolonged periods of exposure 

(7–30 days). These results emphasize that extremely low and 

high temperatures exacerbate the negative effects of PM₂.₅, 

indicating the importance of temperature as a pollution factor. 

Air humidity has a significant effect on the hygroscopic 

growth of aerosols and the intensity of chemical reactions 

leading to the formation of secondary particles. A study by Niu 

et al. [13] showed that high humidity enhances the impact of 

the main components of PM₂.₅ - nitrates, ammonium, black 

carbon and organic aerosols. Zender-Świercz et al. [14] found 

a consistent positive correlation between humidity and 

PM₂.₅/PM₁₀ concentrations in areas with ‘fair & moderate’ air 

quality, where hygroscopic growth of particles is most 

noticeable. These data confirm that high humidity contributes 

to an increase in particle mass, especially at low temperatures. 

Wind activity determines the degree of dispersion of 

suspended particles. In light winds, PM₂.₅ and PM₁₀ 

concentrations increase due to limited horizontal transport. 

According to Purnomo et al. [15], an increase in wind speed 

leads to a decrease in the measured concentration of PM₂.₅ 

from 25.2 to 16.4 μg/m³ when the wind speed increases from 

0.86 to 2.79 m/s. Although the study was conducted on 

sensors, it confirms the general aerodynamic principle: wind 

is the main mechanism of natural aerosol dilution. 

The height of the planetary boundary layer (PBL) 

determines the vertical volume available for mixing pollutants. 

A lower PBL leads to a sharp increase in ground-level 

concentrations. Long-term studies in São Paulo show a 

consistent relationship between low PBL, temperature 

inversions, and increases in PM₂.₅ [16]. The work of Han et al. 
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[17] confirms that the influence of the PBL is particularly 

pronounced for primary aerosols, and during periods of high 

pollution, the PBL exhibits different behavior depending on 

the measurement method, which is important for data 

interpretation. 

It is important to note that in megacities with mountain-

valley circulation, such as Almaty, meteorological factors are 

amplified by topography. A study by Kerimray et al. [6] 

showed that low temperatures, high humidity, and weak 

winds, combined with a reduced boundary layer height, lead 

to pronounced winter pollution peaks – an effect that had not 

previously been quantified using ML. 

 

2.4 Machine learning and deep learning methods in air 

quality forecasting 

 

In recent years, a separate body of work has emerged in the 

literature devoted to the use of ML and DL methods for short-

term forecasting of PM₂.₅ and PM₁₀. A review by Wu et al. [18] 

shows exponential growth in the number of such studies after 

2015: ensemble trees (Random Forest, gradient boosting) and 

recurrent neural networks (LSTM/GRU), as well as their 

hybrids with spatial models, dominate.  

 

2.4.1 Random Forest and gradient boosting 

Ensemble decision trees remain one of the basic tools for 

predicting PM₂.₅ concentrations, especially when mixed 

(meteorological and emission) predictors are available. Pan et 

al. [19] proposed a PM₂.₅ prediction model based on Random 

Forest with subsequent interpretation using SHAP: it was 

shown that such models not only provide high accuracy (R² > 

0.9 on validation), but also allow ranking the contribution of 

temperature, humidity, wind speed, and background pollution 

levels by importance. A similar conclusion is made by 

Alrashidi et al. [20] for monitoring stations in Kuwait, where 

ensemble methods (Random Forest, XGBoost) showed an 

advantage over classical regression approaches for predicting 

the air quality index based on PM₂.₅.  

 

2.4.2 LSTM and hybrid CNN-LSTM 

Recurrent LSTM networks are used to model the temporal 

structure of pollution, taking into account the inertia of 

processes and the delayed effects of meteorological factors. 

Chang et al. [21] showed that the LSTM model provides a 

significant RMSE advantage over classical statistical models 

and simple neural networks when forecasting PM₂.₅ and other 

pollutants in a metropolis, especially over a 24–48 hour 

horizon. Hybrid architectures have been further developed: 

Bai et al. [22] proposed a CNN-LSTM model in which the 

convolutional block extracts local spatio-temporal patterns 

between stations, and LSTM is responsible for dynamics over 

time; this scheme improved the accuracy of PM₂.₅ forecasting 

and better reproduced episodes of high pollution.  

There are still few direct DL studies for Kazakhstan. The 

closest to our work is the article by Yedilkhan et al. [23], which 

compares LightGBM and LSTM with an attention mechanism 

for PM₂.₅ and PM₁₀ forecasting based on meteorological data 

for the city of Almaty; LSTM with attention demonstrates the 

best RMSE values and better captures daily and seasonal 

variations in pollution. However, this work did not provide a 

detailed interpretation of the influence of individual 

meteorological factors and did not analyze spatial 

heterogeneity within the city, which leaves a methodological 

gap. 

2.4.3 Interpretability of models and SHAP 

A key focus in recent years has been the interpretation of 

ML model ‘black boxes.’ Wu et al. [18] emphasized that 

without explaining the contribution of individual features, DL 

predictions are difficult to use in environmental policy and 

urban management. Pan et al. [19] demonstrated that the use 

of SHAP makes it possible to quantitatively assess how 

changes in temperature, humidity, wind speed, and other 

variables shift the predicted PM₂.₅ concentrations, and that 

such assessments are consistent with physical concepts of 

dispersion and accumulation of pollutants. A systematic 

review by Houdou et al. [24] shows that the combination of 

ensemble/neural network models with SHAP analysis is 

becoming the de facto standard in interpretable air quality 

forecasting, but there are still virtually no examples of its 

application for cities in Central Asia.  

Thus, although global literature demonstrates a mature set 

of ML/DL tools for forecasting PM₂.₅/PM₁₀, there are still no 

studies for Almaty and comparable mountain-valley 

megacities that simultaneously: (1) use an extensive network 

of stations, (2) explicitly take into account the weather-

dependent nature of smog, and (3) apply interpretable models 

(e.g., Random Forest / gradient boosting + SHAP) to 

quantitatively assess the role of individual meteorological 

factors. This study fills this gap. 

 

2.5 Research gap 

 

Despite a significant increase in the number of studies on 

air quality in Central Asia and Almaty, the existing scientific 

literature remains fragmented and limited mainly to 

retrospective analysis of pollution. The work of Kerimray et 

al. [6] provides important insights into the spatiotemporal 

structure of PM₂.₅ and PM₁₀ in Almaty, including the influence 

of the heating season, inversions, and local sources, but there 

is a complete lack of short-term weather-dependent 

forecasting models. Similarly, previous studies show systemic 

features of pollution in Central Asia – dependence on fossil 

fuels, strong winter peaks, low boundary layer height and 

weak air ventilation – but do not contain predictive digital 

models that take into account the nonlinear effects of 

meteorological factors [7, 8]. 

Global studies on inversions and complex topography [4, 5, 

10] emphasize that relief and temperature inversions form 

nonlinear PM₂.₅ retention regimes that require the use of ML 

methods to adequately describe the dynamics. However, none 

of these studies apply to Almaty, despite the similarity of 

climatic conditions. 

In the field of studying the influence of meteorological 

factors, contemporary literature demonstrates that 

temperature, humidity, wind speed, and the height of the PBL 

have a decisive influence on daily changes in PM₂.₅/PM₁₀ 

concentrations. These factors in different climatic zones, but 

they do not focus on the mountain-valley conditions of Almaty 

and do not attempt to quantitatively integrate meteorological 

factors into ML models specifically for this city [11-13, 15-

17]. 

At the same time, global experience in using ML/DL for 

pollution forecasting is growing rapidly: Random Forest, 

XGBoost, LSTM and CNN-LSTM demonstrate high 

prediction accuracy in various cities. However, in studies 

related to Kazakhstan, predictive models have been used to a 

limited extent: for example, Yedilkhan et al. [23] applied 

LSTM to Almaty, but the model did not take into account the 
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extensive network of monitoring stations (71 points), did not 

analyze the meteorological dependence of smog, and did not 

interpret the factors using SHAP. 

Thus, the scientific gap consists in the absence of a 

comprehensive weather-dependent ML model for short-term 

forecasting of PM₂.₅ and PM₁₀ for Almaty, which 

simultaneously: 

- uses multi-network monitoring data (AQICN, AirKaz, 

Dashboard.air.org.kz); 

- takes into account key meteorological factors 

(temperature, humidity, wind, PBL); 

- reflects the characteristics of mountain-valley circulation; 

- applies modern algorithms (Random Forest, LSTM) in 

comparative analysis; 

- provides interpretation of the influence of factors on the 

forecast (SHAP). 

It is this scientific gap that this study fills. 

 

 

3. MATERIALS AND METHODS 

 

3.1 Study area and observation network 

 

The object of the study is the city of Almaty, Kazakhstan's 

largest metropolis, located in a foothill basin at the northern 

foot of the Trans-Ili Alatau. The city is characterized by 

pronounced mountain-valley circulation, frequent winter 

inversions and seasonal episodes of smog, making it an ideal 

testing ground for the development of weather-dependent 

PM₂.₅ and PM₁₀ forecasting models. 

The monitoring network includes 71 air quality observation 

stations within the Almaty urban agglomeration. It consists of 

national government network stations, low-cost sensors 

integrated into the AirKz/Airkaz and Dashboard.air.org.kz 

mobile applications, Kazhydromet equipment, and stations of 

the World Air Quality Index (WAQI, AQICN) global network. 

The spatial distribution of monitoring points is shown in 

Figure 1: the central and northern parts of the city are 

characterized by a high density of residential and transport 

development and, accordingly, contain a group of stations that 

record conditions of increased anthropogenic load; the 

southern foothill zone contains stations at higher elevations, 

reflecting the influence of mountain-valley circulation and 

relatively better ventilation; the eastern and western areas are 

represented by a combination of residential areas and local 

industrial sites, providing representative coverage of different 

types of urban environments. 

The spatial distribution of stations reflects the marked 

heterogeneity of air pollution in the city. Central areas 

(Almaly, Auezovsky) with high traffic loads show elevated 

background levels of PM₂.₅ and PM₁₀, while in the Turksibsky 

and Zhetysu districts, individual industrial sites form local 

peaks. The southern foothill areas (Bostandyk, Medeu) have 

lower concentrations due to better ventilation, but are prone to 

pollution accumulation during winter inversions. 

 

   
a b c 

 

Figure 1. Geographical location of 71 pollutant monitoring stations in Almaty included in the analytical dataset (a: AQICN, b: 

AirKaz, c: Dashboard.air.org.kz) 

 

 
 

Figure 2. Location of Almaty City districts 

Given this territorial heterogeneity, the study uses the 

median daily concentration as a stable urban integral indicator, 

reducing the impact of local emissions and data gaps. If 

necessary, the method can be extended to station-specific 

models. The cartographic location and names of the districts of 

Almaty are shown in Figure 2. 

 

3.2 Data sources and observation period 

 

The following open data sources were used to build 

predictive models: 

- PM₂.₅ and PM₁₀ concentrations—hourly measurements 

from the city's air quality monitoring network, aggregated by 

the AQICN, AirKaz and Dashboard.air.org.kz platforms 
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(2020–2024 period); 

- meteorological parameters—average daily relative 

humidity (Ogimet portal), as well as ERA5 reanalysis 

parameters, including air temperature wind speed, BLH, 

surface pressure and cloud cover (2020–2024). 

Hourly PM values were converted to daily averages to align 

with WHO recommendations on daily limits and to reduce the 

impact of short-term emissions. The Ogimet and ERA5 

meteorological series initially have a daily time step. 

Only the primary time series AQICN / AirKaz / 

Dashboard.air.org.kz and Ogimet / ERA5 were used in the 

modelling. BNS statistical materials and WHO 

recommendations were used exclusively to describe the 

environmental situation in the city and were not included in the 

training sample. 

 

3.3 Data pre-processing and quality control 

 

Pre-processing consisted of three consecutive steps. 

Completeness check. Only days for which at least 75% of 

valid hourly observations for the relevant indicator were 

available were included in the daily calculation. This filter is in 

line with international practice for ensuring the 

representativeness of daily air quality values [25, 26]. 

Emissions filtering. Unrealistic values (negative 

concentrations, extreme peaks associated with technical 

failures) were removed using range rules and subsequent time 

series analysis (an approach similar to that implemented in the 

open-air package [27]. 

Synchronization and interpolation. The median was 

calculated for each day based on the available stations. Single-

day gaps in the final city series were filled using linear 

interpolation, provided that the length of the continuous gap 

did not exceed three days; longer intervals were marked as 

missing and were not used in model training. 

At this stage, visual inspection of time series (graphs, 

swings, seasonality) was also performed, allowing for 

additional identification of anomalous areas and verification of 

PM consistency with meteorological data (increase in 

concentrations during periods of low temperatures and weak 

winds, etc.). 

 

3.4 Regulatory thresholds and setting forecasting targets 

 

In accordance with the WHO Air Quality Guidelines (2021), 

the study used the recommended daily air quality guidelines 

(AQG levels): 

- for PM₂.₅ – 15 µg/m³; 

- for PM₁₀ – 45 µg/m³. 

Based on these, two interrelated tasks were formulated. 

 

3.4.1 Regression (concentration forecast) 

The regression model estimates the expected concentration 

of the pollutant h days ahead: 

 

𝑦𝑡̂ + ℎ = 𝑓(yt:t−L, mt:t−L, xt:t−L),  (1) 

 

where, y is the target concentration of the pollutant (PM₂.₅ or 

PM₁₀), m is meteorological variables, x is additional predictors 

(e.g., calendar features), L is the length of the historical 

window. 

 

3.4.2 Classification of exceedances (early warning) 

A binary variable was formed based on a regression forecast: 

Zt+ℎ =⇈ (yt+ℎ > MPC ), 
ẑt+ℎ = g(yt:t−L, mt:t−L, xt:t−L),  

(2) 

 

where, MPC is the threshold value specified above. 

This formulation corresponds to the applied task of urban 

environmental services—to issue a signal about the risk of 

exceeding the standard several days before the event. 

 

3.5 Scenarios of signs and forecasting horizons 

 

To assess the impact of meteorological conditions, two 

scenarios for the formation of input characteristics were 

considered: 

- Scenario A (without meteorological parameters)—only 

PM₂.₅/PM₁₀ concentration lags for the previous day (up to 24 

lags) are transferred to the model. 

- Scenario B (with meteorological parameters)—in addition 

to concentration lags, lags of meteorological variables are 

included: relative humidity (Ogimet), as well as temperature, 

wind speed, BLH, surface pressure and cloud cover (ERA5). 

Values are generated for each parameter for the current and 

previous 1–7 days. The use of ERA5 data ensures statistical 

continuity of meteorological series for the entire period from 

2020 to 2024. 

Two forecast horizons were tested in both scenarios: 

- 7 days—short-term operational forecast; 

- 30 days—a conditional medium-term forecast, allowing 

the stability of models to be assessed over an extended time 

interval. 

Before training, all input variables were scaled using the 

Min-Max method to the range [0;1] according to the 

parameters of the training sample, which eliminates 

information leakage between train and test [28]. 

 

3.6 Forecasting models 

 

Two classes of models were used to construct forecasts [29, 

30]. 

 

3.6.1 Random Forest (RF) 

Random Forest is used in the study as an interpretable and 

robust ML algorithm capable of identifying nonlinear 

relationships between pollutant concentrations and 

meteorological factors. 

For each scenario, the model was trained on lagged PM 

concentration values (24 previous steps) and, depending on the 

scenario, on lagged meteorological parameter values. 

Scenario A (without meteorological data): 

- only 24 lagged PM values are used. 

Scenario B (with meteorological data): 

- lags of the following meteorological variables are added to 

PM lags; 

- air temperature; 

- relative humidity; 

- wind speed; 

- BLH; 

- surface pressure; 

- cloud cover. 

For each meteorological parameter, lag 0 denotes the most 

recent available historical observation at the forecast origin, 

while lags 1–7 correspond to preceding days; no future 

information was used in model training or forecasting. This 

feature set reflects the physical mechanisms of pollutant 

dispersion and inversions in the mountain-valley conditions of 
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Almaty. 

Main RF hyperparameters: 

-number of trees: 400 (scenario A) and 500 (scenario B); 

-maximum depth: selected by cross-validation; 

-random_state = 42 for reproducibility. 

Feature importance indicators were also calculated, which 

made it possible to quantitatively assess the contribution of 

each meteorological factor to improving forecast accuracy. 

 

3.6.2 LSTM (Long Short-Term Memory) 

An LSTM recurrent neural network was used to account for 

the temporal structure of the data and the inertia of pollution 

accumulation processes. The input data for the network 

consisted of sequences with a length of 24-time steps 

(approximately 24 previous days of observations). 

The output of the model was the PM concentration at a 

forecast horizon of 7 or 30 days. 

LSTM architecture: 

- one LSTM layer with 64 neurons; 

- fully connected Dense layer with 32 neurons and ReLU 

activation function; 

- one output neuron with linear activation (regression). 

Training parameters: 

- Adam optimizer; 

- MSE loss function; 

- 40 training epochs; 

- batch size – 32; 

- early stopping mechanism (patience = 5) to prevent 

overfitting. 

In scenario B, the model input data included not only PM 

lags, but also the lagged meteorological parameters listed 

above. 

All algorithms were implemented in Python using the 

NumPy, pandas, scikit-learn, and TensorFlow/Keras libraries.  

 

3.7 Accuracy assessment and validation scheme 

 

The division into training and test samples was performed 

strictly in chronological order without mixing. The final 

version of the study used a horizon-based hold-out validation 

scheme, which is methodologically consistent with the general 

principles of time samples described in the works [31, 32]. 

Separate test samples were formed for each modelling 

horizon: 

- for a short-term forecast of 7 days, the test sample included 

the last 7 days of the time series; 

- for a conditional medium-term forecast of 30 days, the test 

sample included the last 30 days of the series; 

The quality of regression forecasts was assessed using 

metrics where yt is the true value, ŷt is the forecast, and N is 

the number of test points: 

MAE (mean absolute error): 

 

MAE =
1

N
∑|yt − ŷt|.

N

t=1

 (3) 

 

RMSE (mean square error): 

 

RMSE = √
1

N
∑(yt − ŷt)

2.

N

t=1

 (4) 

 

MAPE (mean absolute percentage error): 

 

MAPE =
100%

N
∑ |

yt − ŷt

yt

| .

N

t=1

 (5) 

 
MAPE is undefined at yt = 0 and overestimates errors at 

low concentrations, so a safe value of the denominator yt + ε 

was used in the calculations. Comparing MAE and RMSE 

allows us to assess the sensitivity of the model to outliers: if 

RMSE is significantly higher than MAE, the model tends to be 

penalized for large errors at peak values. 

For binary classification tasks, the following were 

calculated: 

 

Accuracy =  
TP+TN

TP+FP+TN+FN
, Precision =

TP

TP+FP
,  (6) 

 

Recall =
TP

TP+FN
,     F1 = 2 ∙

Precision∙Recall

Precision+Recall
.  (7) 

 
where, TP is correctly predicted exceedances, FP is false 

alarms, TN is correctly predicted ‘norms,’ and FN is missed 

exceedances. Particular attention was paid to the Recall 

(completeness) indicator, since it is critical for early warning 

systems to minimize the omission of dangerous episodes (FN). 

The configurations and key characteristics of the models 

used are presented in Table 1, which summarizes the scenarios 

applied, input features, hyperparameters, and the main 

advantages and limitations of each approach. 

 

Table 1. Parameters and characteristics of forecast models 

 
Parameter Random Forest LSTM (Long Short-Term Memory) 

Scenarios A (without weather), B (with weather) A (without weather), B (with weather) 

Input Features 

24 pollutant concentration lags; Scenario B 

additionally uses lagged meteorological variables 

(tmean, rh, wind speed, BLH, pressure, cloud cover) 

24-step input sequences (24 previous observations); 

Scenario B additionally uses lagged meteorological 

variables 

(tmean, rh, wind speed, BLH, pressure, cloud cover) 

Main Hyperparameters 
n_estimators = 400 – 500; max_depth – auto; 

random_state = 42 

64 LSTM neurons; 32 Dense (ReLU); Adam; 40 

epochs; batch size = 32; early stopping (patience = 

5) 

Normalization Type Min – Max scaling (based on training set) Min-Max scaling (by training set) 

Advantages 
Robustness, interpretability, handling heterogeneous 

features 

Captivates long-term dependencies and 

nonlinearities in time series 

Limitations 
Smoothing of extremes, limited adaptability to 

sudden changes 
Requires normalization; sensitive to volume 
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The approach combines the interpretability of ensemble 

models with the adaptability of recurrent networks, which 

improves the reliability of short-term pollution forecasts and 

the applicability of results for environmental monitoring and 

air quality management systems. 

 

3.8 Structural diagram of the methodology 

 

The general sequence of modelling stages is shown in Figure 

3. The diagram includes the following blocks: 

 

 
 

Figure 3. Schematic diagram of the forecasting methodology 

for pollutant concentration and exceedance detection 

This methodological framework ensures transparency, 

reproducibility, and scalability of results: if additional stations 

or meteorological parameters become available, the algorithm 

can be easily scaled to new data sources and other cities. 

 

 

4. RESULTS 

 

4.1 Time series dynamics of pollutants and meteorological 

parameters 

 

Visualization of time series of average daily concentrations 

of PM₂.₅ and PM₁₀, as well as air temperature and relative 

humidity for the period 2020-2024, reveals the structure of 

seasonal and interannual fluctuations in atmospheric pollution 

in Almaty (see Figure 4). 

A characteristic feature of the dynamics is stable winter 

pollution peaks. During the cold season, PM₂.₅ and PM₁₀ 

concentrations increase by 2-4 times compared to summer 

levels. These seasonal peaks are explained by: 

(1) the active phase of the heating season, accompanied by 

an increase in emissions from coal and mixed heating systems; 

(2) recurring episodes of temperature inversions; 

(3) weakening of mountain-valley circulation and a decrease 

in wind speed. 

Higher amplitudes of fluctuations are recorded for PM₁₀, 

reflecting the influence of dust emissions and mechanical 

resuspension. PM₂.₅ shows a stable baseline level, and its 

increase in winter indicates the predominance of fine particles 

of anthropogenic origin. Temperature and humidity show 

typical climatic seasonality, confirming the correctness of data 

processing and the suitability of meteorological parameters for 

inclusion in forecasting models. Additional ERA5 parameters 

(wind speed, BLH, etc.) also agree with the identified seasonal 

phases, but are not included in the visualization to maintain the 

readability of the graph. 

 

 
 

Figure 4. Time series of daily mean concentrations of PM₂.₅ and PM₁₀, air temperature (℃), and relative humidity (%) during the 

period 2020-2024 
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4.2 Correlations between PM₂.₅/PM₁₀ concentrations and 

meteorological factors 

 

Correlation analysis revealed statistically significant 

relationships between pollutants and weather variables (see 

Figure 5 and Table 2). 

Key findings: 

(1) air temperature 

PM₂.₅ and PM₁₀ show a consistent negative correlation with 

temperature (r = –0.739 and r = –0.708, respectively), 

confirming the formation of winter smog under conditions of 

cooling of the surface layer, temperature inversions, and 

limited vertical turbulence. 

(2) relative humidity 

The correlation is moderately positive (PM₂.₅: r = +0.483; 

PM₁₀: r = +0.504), reflecting the hygroscopic growth of 

particles and the intensification of secondary aerosol formation 

processes at elevated humidity. 

(3) boundary layer height (BLH) 

BLH has a pronounced negative correlation with pollutant 

concentrations (PM₂.₅: r = –0.656; PM₁₀: r = –0.580), which is 

consistent with the mechanism of PM accumulation at reduced 

mixing layer heights characteristic of stagnant cold periods. 

(4) wind speed 

A weak negative correlation is observed (PM₂.₅: r = –0.216; 

PM₁₀: r = –0.289), reflecting the role of wind activity in the 

dispersion and transport of pollutants. 

(5) surface pressure 

A positive correlation (PM₂.₅: r = +0.461; PM₁₀: r = +0.516) 

indicates the influence of anticyclonic regimes, which 

contribute to stagnant conditions and increased PM 

concentrations. 

(6) cloud cover 

The correlation is weak (PM₂.₅: r = –0.046; PM₁₀: r = –

0.063), the influence is indirect and does not have a key effect 

on particle dynamics. 

(7) relationship between PM₂.₅ and PM₁₀ 

There is a strong correlation between the two fractions (r = 

+0.734), indicating common anthropogenic sources of 

pollution. 

These results confirm the validity of including an extended 

set of meteorological parameters (ERA5 + Ogimet) in the ML 

model. 

 

 
 

Figure 5. Correlation matrix between pollutant concentrations (PM₂.₅, PM₁₀) and meteorological parameters 

 

Table 2. Correlations between pollutants and meteorological parameters 

 

Indicator PM2.5 PM10 Temperature 
Relative 

Humidity 

Wind 

Speed 

Surface 

Pressure 
BLH 

Cloud 

Cover 

PM2.5 1.000 0.734 –0.739 0.483 –0.216 0.461 –0.656 –0.046 

PM10 0.734 1.000 –0.708 0.504 –0.289 0.516 –0.580 –0.063 

Temperature –0.739 –0.708 1.000 –0.746 0.281 –0.747 0.802 –0.094 

Relative Humidity 0.483 0.504 –0.746 1.000 –0.325 0.560 –0.630 0.331 

Wind Speed –0.216 –0.289 0.281 –0.325 1.000 –0.313 0.307 –0.067 

Surface Pressure 0.461 0.516 –0.747 0.560 –0.313 1.000 –0.568 –0.106 

BLH –0.656 –0.580 0.802 –0.630 0.307 –0.568 1.000 –0.164 

Cloud Cover –0.046 –0.063 –0.094 0.331 –0.067 –0.106 –0.164 1.000 

 

4.3 Results of modelling and forecasting pollutant 

concentrations 

 

Two models were used to evaluate predictive capabilities: 

- Random Forest – an interpretable ensemble model that is 

robust to nonlinearities; 

- LSTM – a recurrent neural network focused on temporal 

dependencies and smoothing short-term fluctuations. 

Both models were tested in two scenarios: 

- A – pollutant lags only; 

- B – pollutant lags + meteorological parameters 

(temperature, humidity, wind speed, BLH, pressure, cloud 

cover). 

Forecasts were made for 7- and 30-day horizons. 

Forecast accuracy assessment. 

7-day horizon (see Figure 6 – ‘observed vs. predicted’ 

correspondence diagrams and Figure 7 – time series). 

For PM₂.₅, both models show satisfactory correspondence 

with observations, however: 

- RF gives more stable predictions that are closer to the 

diagonal, 

- LSTM better captures local variations but tends to smooth 
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them out. 

For PM₁₀, the quality is noticeably lower: 

- RF and LSTM predictions show dispersion and 

underestimation of sharp jumps, 

- This reflects the higher variability of PM₁₀ and its 

dependence on wind and dust processes. 

The addition of meteorological data (scenario B) improves 

accuracy, especially for PM₂.₅, as evidenced by the reduction 

in deviations from the diagonal. 

30-day horizon (see Figure 8 – time series). 

Over a long horizon, both models show a regular decrease in 

accuracy relative to the short-term forecast. 

RF demonstrates more consistent reproduction of the overall 

dynamics of PM₂.₅ and PM₁₀. 

LSTM better follows the structure of the series, but tends to 

underestimate high values and smooth out peaks. 

The inclusion of meteorological factors (scenario B) 

improves predictability, especially for PM₁₀, which is 

consistent with the findings of international studies [33, 34].

 

 
 

Figure 6. Comparison of actual and forecast pollutant concentration values over a 7-day period: (a) PM2.5 – Random Forest, (b) 

PM2.5 – LSTM, (c) PM₁₀ – Random Forest, (d) PM₁₀ – LSTM 
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Figure 7. Results of the short-term forecast (7-day horizon). (a) PM2.5 – scenario A; (b) PM2.5 – scenario B; (c) PM10 – scenario 

A; (d) PM10 – scenario B. Each panel shows observations and forecasts of the Random Forest and LSTM models 
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Figure 8. 30-day forecast results. (a) PM2.5 – Scenario A; (b) PM2.5 – Scenario B; (c) PM10 – Scenario A; (d) PM10 – Scenario B. 

Each panel shows the observations and forecasts from the Random Forest and LSTM models 

 

4.4 Quantitative assessment of the accuracy of Random 

Forest and LSTM models 

 

Table 3 reflects the values of RMSE, MAE, MAPE, 

Accuracy, and F1-score metrics for all combinations of ‘model 

× scenario × forecast horizon.’ The results demonstrate 

consistent differences in model behavior and the influence of 

meteorological factors on forecast accuracy. 

PM₂.₅ 

Random Forest shows the lowest errors at both horizons 

(RMSE 3.96–6.91 µg/m³). 

LSTM has higher RMSE (6.49–7.64 µg/m³), but better 

reproduces short-term peaks. 

Scenario B leads to a significant reduction in errors, 

especially at the 7-day horizon (36–43% improvement in 

RMSE). 

The improvement is directly related to the addition of key 

meteorological parameters (temperature, humidity, wind 

speed, boundary layer height), which explain the dynamics of 

winter episodes of air stagnation. 
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PM₁₀ 

Over a 7-day horizon, Random Forest shows more stable 

errors (RMSE 8.44–9.40 µg/m³), while LSTM sometimes 

outperforms RF on a 30-day forecast. 

Meteorological variables have a more noticeable effect on 

PM₁₀ accuracy, reflecting the high sensitivity of coarse 

particles to wind conditions and atmospheric stratification. 

It should be noted that the values Accuracy = 1.00 and F1-

score = 0.00 for PM₁₀ are due to the absence of threshold 

exceedances in the test dataset, which makes the classification 

metrics non-functional but does not affect the interpretation of 

the regression results. 

The inclusion of an extended set of meteorological 

parameters (Ogimet + ERA5) significantly improves the 

accuracy of short-term and medium-term forecasting. Random 

Forest demonstrates the greatest stability, while LSTM better 

models short-term emissions. This combination of models 

allows for the creation of a more reliable operational air quality 

forecasting system. 

 

Table 3. Forecasting results of Random Forest and LSTM models for short-term (7-day) and medium-term (30-day) horizons 

under two scenarios: A (without weather data) and B (with meteorological variables) 

 
Pollutant Scenario Horizon (days) Model RMSE (µg/m³) MAE (µg/m³) MAPE (%) Accuracy F1 

PM2.5 A (no weather) 7 Random Forest 6.22 4.95 13.89 1.00 1.00 
   LSTM 7.61 6.75 19.34 1.00 1.00 
 B (with weather) 7 Random Forest 3.96 3.30 8.98 1.00 1.00 
   LSTM 6.49 5.00 13.51 1.00 1.00 
 A (no weather) 30 Random Forest 6.91 5.79 17.39 1.00 1.00 
   LSTM 7.64 6.00 15.86 1.00 1.00 
 B (with weather) 30 Random Forest 5.70 4.64 13.50 1.00 1.00 
   LSTM 6.68 4.97 14.36 1.00 1.00 

PM₁₀ A (no weather) 7 Random Forest 9.40 5.93 23.92 1.00 0.00 
   LSTM 9.80 8.24 39.66 1.00 0.00 
 B (with weather) 7 Random Forest 8.44 5.67 23.53 1.00 0.00 
   LSTM 8.03 4.15 14.16 1.00 0.00 
 A (no weather) 30 Random Forest 5.79 3.93 20.18 1.00 0.00 
   LSTM 5.27 3.41 17.50 1.00 0.00 
 B (with weather) 30 Random Forest 5.35 3.66 18.42 1.00 0.00 
   LSTM 5.83 4.19 19.95 1.00 0.00 

 

4.5 The importance of signs and the interpretability of 

models 

 

Figure 9 shows the ranking of predictors in the Random 

Forest model for scenario B (taking into account 

meteorological data) over a 7-day horizon. The results obtained 

are consistent with the physical mechanisms of pollution 

formation in the Almaty Basin. 

The boundary layer height (BLH) is the absolute leading 

predictor for both pollutants (blh_0). 

This reflects the key role of vertical air mixing: the lower the 

BLH in winter, the greater the accumulation of PM₂.₅ and PM₁₀. 

Pollutant lags are among the most significant features 

(lag_1, lag_2, lag_24), confirming the strong autocorrelation 

and inertia of pollution. 

 

Temperature ranks second in influence after BLH (temp_0, 

temp_1, temp_2). 

Low temperatures intensify inversions and reduce BLH → 

this increases PM concentrations. 

Surface pressure (sp_0–sp_3) shows a noticeable 

contribution, which corresponds to anticyclonic, stagnant 

winter conditions. 

Wind speed and cloud cover have a small but interpretable 

contribution: 

- wind_0 and wind_1 weaken pollution (dispersion), 

- cloud_0 reflects changes in radiative cooling and layer 

stability. 

The resulting importance structure demonstrates the 

physical consistency of the model and justifies the inclusion of 

an extended set of meteorological parameters. 

 

 
 

Figure 9. Importance of features in the Random Forest model for predicting concentrations of: (a) PM₂.₅ and (b) PM₁₀ in scenario 

B (taking meteorological factors into account), forecast horizon – 7 days 
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4.6 Comparison of models with basic approaches 

(Persistence and Seasonal Naïve) 

 

The comparison results (Table 4) show that the use of ML 

models provides significant advantages in terms of RMSE 

metrics compared to standard statistical approaches. The 

improvements are particularly pronounced when using an 

extended set of meteorological variables. 

PM₂.₅ 

Over a 30-day horizon, Random Forest demonstrates the 

most significant increase in accuracy: the RMSE improvement 

is +38.6% in scenario A and up to +49.4% in scenario B. 

LSTM also consistently outperforms baselines (+32.2% in 

A, +40.7% in B). 

Over a 7-day horizon, the effect is moderate: 

- RF improves RMSE by +2.9% (A) and +38.3% (B); 

- LSTM is almost comparable to Persistence, which is 

explained by the high autocorrelation of the series. 

Including temperature, humidity, wind speed, boundary 

layer height, and pressure significantly improves the accuracy 

of the short-term forecast. 

PM₁₀ 

A computational modeling experiment revealed that, over a 

7-day forecast horizon, the quality of results obtained using the 

constructed models is, in some cases, inferior to the 

"robustness" method (e.g., Δ = –24.1%). This effect is not due 

to errors or incorrect model specifications, but to the structural 

features of the test time series. Under conditions of smooth 

short-term dynamics and high autocorrelation of observations, 

the "robustness" method serves as a statistically optimal 

benchmark strategy, minimizing forecast error within the 

experimental problem formulation. 

At a 30-day horizon, both models confidently outperform 

the baseline approaches: 

- RF: +7.3% (A) and +14.5% (B) 

- LSTM: +15.7% (A) and +6.8% (B) 

Weather parameters have a noticeable effect due to the 

sensitivity of PM₁₀ to BLH, humidity and wind conditions. 

The Random Forest and LSTM models demonstrate stable 

advantages over the baseline models, especially in medium-

term forecasts and when meteorological factors are included. 

Negative Δ values in some short-term scenarios are explained 

by the properties of the time series, rather than shortcomings 

of the ML models, which confirms the correctness and 

interpretability of the comparisons. 

 

Table 4. Comparison of Random Forest and LSTM model performance with baseline forecasting methods (Persistence and 

Seasonal Naïve) 

 
Pollutant Scenario Horizon (days) Model RMSE (µg/m³) Baseline RMSE (µg/m³) Δ vs Baseline (%) 

PM2.5 A (no weather) 7 Random Forest 6.22 6.40 +2.92 
   LSTM 7.61 6.40 –18.82 
 A (no weather) 30 Random Forest 6.91 11.27 +38.64 
   LSTM 7.64 11.27 +32.20 
 B (with weather) 7 Random Forest 3.95 6.40 +38.30 
   LSTM 6.49 6.40 –1.29 
 B (with weather) 30 Random Forest 6.91 11.27 +49.39 
   LSTM 7.64 11.27 +40.70 

PM₁₀ A (no weather) 7 Random Forest 9.40 7.57 –24.10 
   LSTM 9.80 7.57 –29.43 
 A (no weather) 30 Random Forest 5.79 6.25 +7.34 
   LSTM 5.27 6.25 +15.66 
 B (with weather) 7 Random Forest 8.44 7.57 –11.39 
   LSTM 8.03 7.57 –5.95 
 B (with weather) 30 Random Forest 5.35 6.25 +14.52 
   LSTM 5.83 6.25 +6.78 

Note: Positive values of Δ indicate an improvement in accuracy (lower RMSE) compared to baseline models. Negative values indicate cases where the selected 

model performed worse than the baseline. 
 

4.7 Practical interpretation and significance of results 

 

The results demonstrate that the combination of the Random 

Forest ensemble algorithm and the LSTM recurrent neural 

network provides high accuracy in short-term forecasting of 

PM₂.₅ and PM₁₀ concentrations in the complex mountain-

valley circulation conditions of Almaty. The models are 

resistant to data noise, correctly capture the inertia of time 

series, and demonstrate sensitivity to key meteorological 

parameters, making them applicable to practical tasks of 

environmental monitoring and air quality management. 

 

4.7.1 Practical significance of the results 

1) The basis for an early warning system for pollution. The 

models obtained can be integrated into automated monitoring 

and early warning platforms, providing daily and weekly 

forecasts of likely exceedances of air quality standards. This is 

particularly important for cities in Kazakhstan, where frequent 

winter smog and poor air ventilation require rapid response 

measures. 

2) Use in mobile applications and services for the general 

public. The models can be implemented in existing mobile 

applications, such as AirKz / Airkaz, in the form of a ‘7-day 

PM₂.₅/PM₁₀ forecast’ module. Users will be able to plan 

outdoor physical activity in advance, which is particularly 

relevant for vulnerable groups (children, the elderly, patients 

with respiratory diseases). 

3) Scalability and transferability. The proposed 

methodology could potentially be adapted for other cities in 

Kazakhstan and Central Asia, but it needs to be calibrated to 

local emission structures, heating practices, and 

meteorological conditions. With low input data requirements 

(PM and basic meteorological parameters), the approach 

remains applicable in conditions of limited data availability, 

but additional verification in other cities is necessary to 

confirm the generalizability of the results. 

4) Potential for environmental policy and city management. 

Forecast smog maps can be used to: 
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- optimize public transport route networks; 

- introducing temporary environmental restrictions (low-

emission days); 

- planning utility service schedules; 

- adjusting heating regimes in the private sector. 

Thus, forecast models become a tool to support decision-

making at the level of government authorities. 

 

4.7.2 Integration of results into public-private partnerships 

(PPPs) in the field of ecology 

Digital environmental monitoring and forecasting 

technologies are increasingly becoming the functional 

foundation of next-generation public-private partnerships 

(PPPs) focused on decarbonization, sustainable infrastructure, 

and the mitigation of environmental risks in cities. Recent 

research emphasizes that the effectiveness of environmental 

PPPs increases significantly with the presence of quantifiable 

impact indicators and digital management tools [35]. The 

results of forecasting PM₂.₅ and PM₁₀ concentrations obtained 

in this study can be directly integrated into the architecture of 

such partnerships, complementing the investment and 

institutional logic of "green" PPPs previously substantiated by 

the authors [36]. 

1) Digital air monitoring services within PPPs 

PM₂.₅ and PM₁₀ forecasting models can serve as a key 

analytical module for digital air quality platforms created 

through PPPs between the government, IT companies, and 

sensor infrastructure operators. International practice confirms 

the viability of such solutions: in Singapore, the National 

Environment Agency (NEA), together with private technology 

partners, is using ML-based pollution forecasts as part of the 

Smart Environment Platform for operational environmental 

management [37]. 

In the context of Kazakhstan, a similar model could be 

implemented as a concession or service PPP project, 

including: 

- a network of low-cost air quality sensors maintained by a 

private operator; 

- a pollution forecasting module as a B2G service for the 

city administration; 

- integration of forecasts into the Smart City ecosystem. 

This approach is consistent with the characteristics of 

effective PPP projects in “green” sectors identified by the 

authors earlier [36], where the key role is played by the 

technological structure of the project and the participation of 

the private partner in the management of the innovative 

component. 

2) Justification of investments in environmental 

infrastructure 

Forecasting MAC exceedances for PM₂.₅ and PM₁₀ allows 

us to move from declarative environmental impacts to 

quantifiable justifications for investments in PPPs. According 

to World Bank and WHO estimates, an increase in PM₂.₅ 

concentrations by 10–15 μg/m³ is accompanied by a 1–3% 

increase in the burden on the healthcare system, making it 

possible to use Cost of Illness (COI) methods to calculate the 

socioeconomic benefits of infrastructure projects [38, 39]. 

In practical terms, this means that ML forecasts can be used: 

- to model the benefits of replacing coal-fired heating 

systems with gas or electric ones; 

- to assess the effectiveness of clean transport support 

programs; 

- to calculate the environmental impacts of concession 

projects for the modernization of combined heat and power 

plants and distributed energy systems. 

This logic is fully consistent with the findings of Casady et 

al. [35], which highlight that low-carbon and sustainable PPP 

environments require comprehensive analytical tools that link 

environmental performance to project patterns and 

institutional parameters. 

3) Improving the transparency and manageability of 

environmental data 

The use of predictive models in PPPs increases the 

transparency of environmental data and creates the basis for 

objective monitoring of the private partner's performance. 

Public air quality forecasts enable the development of KPIs 

based not only on actual measurements but also on the 

operator's ability to prevent projected exceedances of 

maximum permissible concentrations. 

The practice of OECD countries shows that the inclusion of 

predictive indicators in PPP monitoring systems contributes to 

increased public confidence, reduced social risks, and 

increased accountability of environmental projects [40]. As a 

result, forecasting becomes not just an auxiliary tool, but an 

element of the institutional design of environmental PPPs. 

Thus, the developed forecasting system for PM₂.₅ and PM₁₀ 

can be considered a technological component of next-

generation environmental PPPs, providing quantitative 

justification for investments, operationalizing environmental 

effects, and increasing management transparency. The 

integration of forecasting models into PPPs is consistent with 

modern international approaches to green infrastructure 

development and enhances the practical applicability of the 

study's results, complementing previously obtained 

conclusions on the structure and effectiveness of PPP projects 

in the green economy. 

 

4.7.3 Scientific contribution of the research 

The study has several significant scientific results: 

1) Weather-dependent ML model for a mountain-valley 

metropolis. An interpretable air pollution prediction model has 

been developed for the city of Almaty, taking into account 

topographical specifics, pronounced temperature inversions 

and seasonal features. 

2) Comparison of two architectures on a single database. A 

direct comparative analysis of Random Forest and LSTM, 

trained on the same sample, was conducted, which made it 

possible to identify their advantages and limitations in the 

context of real data from Central Asia. 

3) Quantitative assessment of the influence of 

meteorological factors. The significant role of temperature, 

humidity, wind speed, atmospheric pressure, cloud cover, and 

boundary layer height in shaping the short-term dynamics of 

PM₂.₅ and PM₁₀ is demonstrated, which is confirmed by both 

ML methods (feature importance) and physical mechanisms of 

winter smog. 

4) Basis for an intelligent early warning system. The results 

from the scientific and technical basis for the creation of a 

predictive air quality platform applicable to cities in Central 

Asia within the framework of the Smart City ecosystem and 

PPP projects. 

 

 

5. DISCUSSION  

 

This study has shown that the use of ML (Random Forest) 

and DL (LSTM) methods provides reliable, interpretable, and 

practically applicable short-term forecasting of PM₂.₅ and 
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PM₁₀ concentrations in the complex orography and 

pronounced meteorological dependence of the city of Almaty. 

This section presents the key results of the analysis, their 

scientific interpretation, comparison with international 

studies, as well as limitations and prospects for further 

development of the forecasting system in the context of 

sustainable air quality management in a metropolis. 

 

5.1 Comparative analysis of Random Forest and LSTM  

 

A comparison of the simulation results shows that Random 

Forest and LSTM demonstrate different accuracy and stability 

characteristics at different forecast horizons (see Table 3). For 

PM₂.₅, the Random Forest model provides the lowest RMSE 

and MAE values for both the 7-day and 30-day horizons, 

especially in scenario B, where the inclusion of meteorological 

parameters leads to the most significant improvement in 

accuracy (RMSE = 3.96 µg/m³). This stability is consistent 

with the findings of international studies, where RF is 

considered a reliable tool for early warning systems [41]. The 

LSTM model for PM₂.₅ shows higher errors but remains 

sensitive to short-term fluctuations in concentrations, which is 

due to its recurrent architecture. However, over a 30-day 

horizon, there is an increase in error variability – a limitation 

characteristic of LSTM with complex seasonality of time 

series [42]. For PM₁₀, the results are more heterogeneous. At a 

7-day horizon in scenario B, LSTM shows a lower RMSE 

(8.03 µg/m³) than RF, indicating a better response of the 

network to short-term changes in coarse particles. However, 

on a 30-day horizon, Random Forest remains the most stable 

and shows the lowest errors in both scenarios. Thus, Random 

Forest is the preferred algorithm for obtaining stable and 

interpretable forecasts, while LSTM is appropriate for 

increasing sensitivity to short-term peak episodes, especially 

when forecasting PM₁₀ in the short term. 

 

5.2 Role of meteorological factors and confirmation of 

seasonal dependence 

 

The results for two scenarios (A – without meteorological 

parameters, B – with meteorological parameters) show a 

significant reduction in RMSE and MAE errors when 

temperature, relative humidity, wind, pressure, and PBL 

height (BLH) are added. The greatest improvement is achieved 

for PM₂.₅, where taking BLH and temperature into account 

significantly enhances the physical explain ability of the 

model; for PM₁₀, the contribution of meteorological 

parameters is also noticeable, reflecting the high sensitivity of 

coarse particles to vertical mixing and wind activity. 

Correlation analysis (Figure 4, Table 2) confirms key 

physical relationships: 

- a pronounced negative correlation between PM₂.₅ and 

PM₁₀ and temperature (–0.739 and –0.708), which corresponds 

to the mechanism of winter inversions and weakening 

turbulence; 

- a moderate positive correlation with humidity (0.483 and 

0.504), reflecting hygroscopic particle growth and enhanced 

secondary aerosol processes; 

- a weak negative correlation with wind speed (up to –

0.289), indicating the role of horizontal transport; 

- positive correlation with surface pressure (0.461 and 

0.516), consistent with the formation of stagnant anticyclonic 

conditions; 

- strong negative correlation with boundary layer height 

(BLH) (–0.656 and –0.580), confirming the key role of vertical 

mixing volume in aerosol accumulation. 

These patterns fully reflect the regional specifics of Almaty: 

low temperatures, high humidity, frequent anticyclones, and 

weakened vertical mixing form stable winter pollution peaks. 

Similar conclusions are presented in studies by Gao et al. [43] 

and Özüpak et al. [34], where the inclusion of meteorological 

factors significantly improves the accuracy of short-term 

forecasts. 

 

5.3 Analysis of the predictive capabilities of models at 7- 

and 30-day horizons 

 

Graphical visualization of forecasts (Figures 6–8) shows 

differences in model behavior in the short term and medium 

term. Over a 7-day interval, both models adequately reproduce 

the overall dynamics of PM₂.₅ and PM₁₀, but Random Forest 

generates more stable forecasts that are closer to the observed 

values, especially in scenario B for PM₂.₅, while LSTM 

demonstrates a more pronounced sensitivity to local 

fluctuations and, in some cases, better reflects short-term 

changes, particularly for PM₁₀. When the horizon is increased 

to 30 days, the forecasts of both models become smoother, 

which corresponds to an increase in uncertainty and an 

increase in RMSE. Nevertheless, Random Forest maintains a 

more stable correspondence with the observed values, while 

LSTM shows greater smoothing and slightly underestimates 

the concentration peaks. In scenario B, the influence of 

meteorological factors becomes more noticeable, improving 

the model's fit to the trend, which is consistent with global air 

quality studies [44], according to which long-term forecasts 

are more dependent on large-scale atmospheric dynamics, 

while short-term forecasts are formed mainly due to the 

autocorrelation structure of time series. 

 

5.4 Comparison with international studies 

 

A comparison of the results obtained with international 

studies shows that the dynamics of air pollution in Almaty 

generally correspond to the patterns characteristic of large 

cities subject to winter temperature inversions. Similar profiles 

of seasonal peaks in PM₂.₅ and PM₁₀ have been described in 

detail for Ulaanbaatar, Tehran and Tashkent [5, 8], where a 

combination of low boundary layer height, weak wind activity 

and intensive use of carbon-containing fuels leads to 

prolonged periods of aerosol accumulation. However, the 

regional specifics of Almaty are more pronounced and 

manifest themselves in a combination of factors: the 

widespread use of coal heating in the private sector, the 

peculiarities of mountain-valley circulation that limits vertical 

ventilation, and the high frequency of calm conditions in 

winter. This combination forms a unique ‘smog profile’ that 

significantly increases the meteorological dependence of 

pollution and requires the use of models capable of accounting 

for the nonlinear interaction of meteorological parameters and 

topography. In this context, the scientific contribution of this 

study is the construction of an interpretable ML/DL model for 

Almaty based on long-term data from 2020-2024, which fills 

the identified gap and complements the international literature 

on air quality forecasting in cities with complex orographic 

conditions. 
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5.5 Research limitations 

 

Despite the results obtained, the study has a number of 

limitations that must be taken into account when interpreting 

the conclusions. First, despite the expanded set of 

meteorological characteristics (temperature, humidity, wind 

speed, atmospheric pressure, cloud cover, and planetary 

boundary layer height), the model remains deterministic and 

does not take into account possible variations in emissions, 

heat energy load and fuel consumption dynamics, which may 

affect the reproducibility of peak episodes. Secondly, the 

analysis was performed for only one urban agglomeration – 

Almaty – which limits the external validity of the results and 

does not allow the conclusions to be directly extrapolated to 

other cities in Central Asia without additional adaptation; the 

transferability of the models may be limited by differences in 

emission structures, heating types, terrain and circulation 

patterns. Thirdly, spatial heterogeneity is only partially taken 

into account: aggregating data into a median urban time series 

reduces the influence of local emissions, but at the same time 

limits the ability to identify station-specific patterns. Fourth, 

the high Accuracy and F1 scores in a number of scenarios are 

due to the absence of threshold exceedances in the test period, 

which reflects the specificity of the sample rather than the 

universal diagnostic capability of the models. Finally, the 

LSTM model showed increased error variability over long 

horizons and a high computational load, which is typical for 

recurrent architectures with limited data volumes. These 

limitations determine the directions for further development, 

including expanding the set of factors, integrating 

spatiotemporal models, and assessing the transferability of 

algorithms to other cities in the region. 

 

5.6 Prospects for the development and integration of the 

model into air quality management systems 

 

The prospects for further development of the proposed 

forecasting system are linked to expanding the set of input 

factors and improving model architectures. Despite the 

inclusion of key meteorological parameters (temperature, 

humidity, wind, pressure, cloud cover, BLH), additional data 

on emissions, energy load and heating characteristics can 

improve the accuracy of forecasts during periods of winter 

inversions. Promising areas also include the use of spatio-

temporal architectures (CNN - LSTM, transformers) and the 

transition to probabilistic forecasting using quantile 

regression, bootstrap ensembles or Bayesian LSTM, which 

will allow the formation of confidence intervals and the 

assessment of model uncertainty. 

Integrating forecasting algorithms with low-cost sensor IoT 

infrastructure will enable real-time data updates and automatic 

model retraining. Creating dynamic pollution forecast maps 

will enhance the practical value of the results for city services, 

researchers, and the public. 

The resulting predictive models can be used as analytical 

and management tools within environmentally oriented 

public-private partnerships (PPPs). Embedding PM₂.₅ and 

PM₁₀ concentration forecasting modules into Smart City 

digital dashboards, as well as using the modeling results to 

justify heating system modernization projects and deploy air 

quality monitoring networks within PPPs, creates the 

preconditions for a transition from retrospective monitoring to 

proactive air quality management. The practical 

implementation of such solutions requires a coordinated 

digital architecture and unified performance indicators, which 

allows forecasting to be considered as an element of the 

emerging adaptive environmental management system at the 

municipal level. 

 

 

6. CONCLUSIONS  

 

This study develops a modern approach to air quality 

management in large cities in Central Asia and proposes an 

interpretable weather-dependent system for short-term 

forecasting of PM₂.₅ and PM₁₀ concentrations for the city of 

Almaty based on ML (Random Forest) and DL (LSTM) 

methods. The use of long-term data for 2020 - 2024 from the 

open platforms AQICN, AirKaz and Dashboard.air.org.kz, as 

well as the construction of two modelling scenarios – with and 

without meteorological factors – made it possible to 

comprehensively assess the role of atmospheric conditions in 

the formation of smog episodes and to improve the accuracy 

of forecasts for mountainous terrain conditions. 

The results show that the inclusion of an extended set of 

meteorological parameters (temperature, humidity, wind 

speed, pressure, cloud cover and planetary boundary layer 

height) significantly improves forecast accuracy, especially 

for PM₂.₅, highlighting the key role of atmospheric 

stratification and winter inversions. The Random Forest 

algorithm demonstrated the most stable RMSE/MAE values at 

7- and 30-day horizons, ensuring high interpretability and 

stability of forecasts. The LSTM model, in turn, showed an 

advantage in reproducing short-term fluctuations and daily 

peaks, making it a useful component for operational 

environmental monitoring. The combination of RF stability 

and LSTM adaptability increases the applied value of the 

developed approach for sustainable urban planning tasks. 

The data obtained forms the basis for the creation of an 

intelligent early warning system for risks of exceeding 

maximum permissible concentrations and can support 

decision-making in the areas of public health, urban transport 

and environmental infrastructure management. The 

integration of predictive models into mobile services 

(AirKZ/Airkaz), urban visualization dashboards, Smart City 

systems and public-private partnership projects opens up 

opportunities for the development of preventive 

environmental policies, raising public awareness and 

strengthening the resilience of the urban environment. 

The main scientific and practical results of the study are as 

follows: 

1) a fully functional ML/DL-based air quality forecasting 

system has been developed for the mountain-valley territory 

of Almaty, taking into account weather-dependent smog 

mechanisms; 

2) the high significance of meteorological factors and the 

key contribution of temperature inversions and boundary layer 

structure to the formation of winter pollution episodes have 

been confirmed; 

3) methodological and practical prerequisites have been 

established for adapting the approach to other cities in 

Kazakhstan and Central Asia, taking into account differences 

in emission structures and meteorological conditions; 

4) the possibility of integrating models into existing digital 

monitoring platforms and the infrastructure of environmental 

PPP projects within the framework of the concept of 

sustainable urban development has been demonstrated. 

Prospects for further research are related to expanding the 
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set of meteorological and emission factors, transitioning to 

spatiotemporal modelling based on CNN - LSTM and 

transformers, integrating data from low-cost IoT sensor 

networks, and creating a unified urban predictive analytics 

platform. The implementation of these areas will contribute to 

the formation of scientifically sound solutions in the field of 

sustainable air quality management and the development of 

modern environmental planning tools in the context of 

accelerated urbanization. 
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NOMENCLATURE 

 

WHO World Health Organization 

PM2.5 Particulate Matter ≤ 2.5 µm 

PM₁₀ Particulate Matter ≤ 10 µm 

RF Random Forest 

LSTM Long Short-Term Memory 

ML Machine Learning 
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DL Deep Learning 

IoT Internet of Things 

LV Limit Value 

RMSE Root Mean Square Error 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

AQG Air Quality Guidelines 

AQI Air Quality Index 
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