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Sustainable air quality management in large and rapidly growing megacities requires the
implementation of forecasting systems capable of accounting for nonlinear interactions
between meteorological conditions and the dynamics of suspended particles. Almaty,
characterized by pronounced mountain-valley circulation and frequent winter inversions, is
one of the cities in Central Asia where PMz.s and PMio concentrations regularly exceed WHO
recommendations. As part of the study, an interpretable model for short-term and conditional
medium-term air pollution forecasting was developed based on Random Forest and LSTM
algorithms using data from AQICN, AirKaz, Dashboard.air.org.kz, Ogimet and ERAS for
2020-2024. Modelling was performed in two scenarios: (A) using only pollutant concentration
lags and (B) adding a complete set of meteorological parameters, including temperature,
relative humidity, wind speed, boundary layer height (BLH), surface pressure and cloud cover.
Accuracy assessment at 7- and 30-day horizons showed that the inclusion of meteorological
data significantly improves forecast quality, especially for PM..s, with Random Forest
providing the most stable RMSE and MAE values. The LSTM model demonstrates high
sensitivity to short-term peak values, more accurately reflecting the dynamics of pollution
episodes. Feature importance analysis shows the key role of atmospheric stability (BLH), wind
regime, and autocorrelation structure in the formation of winter smog situations. Compared to
the baseline methods (Persistence and Seasonal Naive), the forecast accuracy over a 7-day
horizon shows poor performance and in some cases, is inferior to the “persistence” method,
while over a 30-day horizon, it improved to 40% for PM..s and to 15% for PMio. The developed
system has high potential for integration into digital monitoring platforms, early warning
services, and Smart City solutions. The study fills an existing scientific gap in the field of
interpretable weather-dependent air quality forecasting for cities with mountain-valley
circulation in Central Asia and strengthens the analytical basis for sustainable environmental
management.

1. INTRODUCTION

The problem of atmospheric pollution in large cities has

forecasting systems that can support urban planning, health
risk management and the development of long-term
environmental strategies. Almaty, Kazakhstan's largest

once again become the focus of attention for researchers and
urban policymakers in recent years, as growing urbanization,
changing climatic conditions and increasing traffic loads pose
serious challenges to the sustainable development of the urban
environment. The scientific agenda is increasingly focused on
the development of effective environmental monitoring and
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metropolis, is one of the most characteristic examples of a city
where the environmental situation creates significant barriers
to achieving sustainable development goals.

According to data from the National Statistical Service of
Kazakhstan [1], between 2020 and 2024, annual pollutant
emissions in Almaty remained stable at 40—44 thousand tones,
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while winter concentrations of PM.s exceeded WHO
recommendations by 5-8 times [2]. The highest contribution
comes from the Alatau, Zhetysu and Turksibsky districts,
where large man-made sources are located: industrial hubs,
thermal power plants, logistics and transport infrastructure.
Per capita emissions in some districts reach 173 kg per year,
which is significantly higher than in the central districts
(Medeu, Almaly), reflecting the spatial asymmetry of the
environmental burden. The factors driving this trend are well
known: population growth (2.337 million people as of October
2025), building density (3,419 people/km?), the characteristics
of the heating season, and the city's unique foothill
topography, which is prone to temperature inversions and the
retention of polluted air masses.

Despite the fact that the city's current environmental
protection expenditures have increased from USD 12.06
million in 2020 to USD 20.14 million in 2024, there has been
no systematic improvement in air quality. The increase in the
number of vehicles, the expansion of private heating, and the
growth of local industrial emissions are exacerbating the
concentration of fine particulate matter PM» s and PM;o. This
trend is consistent with global urbanization trends identified
by Burnett et al. [3] and is observed in megacities with similar
mountain-valley morphology, including Tehran, Ulaanbaatar
and Santiago [4, 5]. Recent data from AQICN, AirKaz,
Dashboard.air.org.kz and research by Kerimray et al. [6]
confirm the operation of a similar mechanism for the
formation of a ‘winter bow!’ in Almaty, making the city a key
model site for studying weather-dependent smog episodes and
developing tools for sustainable environmental management.

The relevance of the study is reinforced by the lack of
comprehensive pollution forecasting systems based on modern
machine learning (ML) and deep learning (DL) methods that
are capable of accounting for nonlinear interactions between
PM:.s/PMio  concentrations, meteorological parameters
(temperature, humidity, wind speed, boundary layer height -
BLH, surface pressure, cloud cover) and the topographical
heterogeneity of the wurban environment. In addition,
expanding the set of meteorological parameters to include
atmospheric stability characteristics (BLH) and wind
conditions significantly enhances the physical validity of
forecast models. Despite the expansion of the monitoring
network to 71 stations (2024), most studies for Almaty are
descriptive in nature, and there are no tools for short- or
medium-term pollution forecasting. This creates a critical gap
between scientific knowledge and the practical needs of urban
policy: without high-precision forecasting systems, it is
impossible to develop early warning services, adaptive
transport management, environmental health risk assessment,
and sustainable urban infrastructure planning.

In these circumstances, the aim of the study is to develop
and empirically evaluate a weather-dependent system for
short-term and conditional medium-term forecasting of PMa.s
and PMo concentrations for Almaty using Random Forest and
LSTM algorithms and integrating data from three monitoring
networks and key meteorological characteristics. This
approach allows us to combine intelligent data analysis
methods with sustainable urban planning tasks, improving the
basis for decision-making in the field of air quality
management.

To achieve this goal, the following research tasks were set:

1. analyze natural, climatic and anthropogenic determinants
of pollution;

2. create a unified database based on multiple network
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sources;

3. build two types of models (RF and LSTM) for 7- and 30-
day horizons and assess the contribution of meteorological
factors;

4. identify spatial heterogeneity of pollution and conduct a
comparative analysis of models;

5. develop recommendations for integrating the results into
urban monitoring systems and Smart City infrastructure.

Based on the research tasks, the following hypotheses were
formulated:

H1: Meteorological factors have a statistically significant
impact on the short-term dynamics of PMz.s/PMo.

H2: The inclusion of meteorological parameters significantly
improves the accuracy of ML models.

H3: The topography of Almaty creates a pronounced spatial
asymmetry of pollution.

H4: LSTM more accurately predicts peak pollution, while
Random Forest provides stability over medium horizons.

HS: Combining multi-network monitoring data improves the
predictive power of models.

The scientific novelty of the study includes several points.
First, an integrated weather-dependent ML model for short-
term forecasting of PM:.s and PMio has been developed,
combining data from public and private stations with
meteorological parameters for the city of Almaty. Second, a
comparative study of RF and LSTM models has been carried
out under conditions of mountain-valley circulation and winter
inversions. Thirdly, an original conceptual scheme of a
‘weather-dependent forecasting ecosystem’ was proposed,
linking topography, climatic factors, the distribution of
emission sources and the location of stations with pollution
forecasts. Fourth, a quantitative analysis of the impact of the
regional emission structure on PM2.s/PMio concentrations in
the short term has been carried out. Fifth, recommendations
have been formulated for the integration of models into urban
digital platforms, Smart City and PPP mechanisms in the field
of environmental monitoring.

Thus, the study fills a key scientific and practical gap in the
field of sustainable air quality management in Central Asia.
The results provide an analytical and technological basis for
the implementation of early warning systems based on
interpretable ML/DL algorithms and can serve as a model for
the development of a digital ecosystem for environmental
monitoring in cities in Kazakhstan and the region.

2. LITERATURE REVIEW

The environmental situation in Almaty has been the subject
of growing interest among the scientific community in recent
decades due to consistently high concentrations of PMa.s and
PMio particulate matter, their seasonal variability, and their
pronounced dependence on meteorological conditions.
Existing studies on air quality in Almaty provide important
retrospective observations, but they lack modern approaches
to pollution forecasting based on ML methods. To justify the
need for such an approach, this section reviews key scientific
areas in the field of air quality forecasting, analyses modern
ML/DL methods, assesses the role of meteorological factors,
topography and anthropogenic sources, and identifies gaps
that remain significant for Almaty.



2.1 Air quality studies in Almaty and Central Asia

One of the most significant studies of air quality in Almaty
is the work of Kerimray et al. [6], based on data from
Airkaz.org. The authors established a clear vertical
stratification of pollution, significant variability of PMa.s
within the city, and the key role of domestic heating during
periods of temperature inversions. However, the study did not
go beyond a statistical description of PM dynamics and did not
use predictive models.

A comprehensive regional analysis conducted by
Kozhagulov et al. [7] shows that over the past three decades,
Central Asian countries have remained structurally dependent
on fossil fuels: up to 78% of CO: emissions are associated with
the combustion of energy carriers, and the main exports of
Kazakhstan and Turkmenistan consist of raw materials. At the
same time, limited financial resources, fragmented regional
cooperation and the lack of a modern air quality monitoring
system mean that the climate and environmental measures
taken so far have not led to a significant reduction in
atmospheric emissions. At the city level, the findings of
Tursumbayeva et al. [8] demonstrate that cities in Central
Asia, including Almaty, are forming a new global ‘hot belt’ of
pollution: average annual PM..s concentrations exceed WHO
recommendations by 4.3-12.6 times, winter peaks are
associated with stagnation and slow air mass transport, and
coal combustion remains the dominant source of PMa.s in most
of the cities studied. The authors also emphasize that official
emissions inventories are often based on outdated
methodologies, which hinders the development of
scientifically sound air quality management strategies and
further highlights the need to create modern, weather-
dependent predictive models for urbanized areas in the region.

Satellite analysis of NO. over Kazakhstan [9] revealed
spatial heterogeneity of pollution, but did not address
forecasting issues and was limited to retrospective assessment.

Thus, existing studies on Almaty form an important
empirical basis, but do not offer predictive ML/DL models,
confirming the existence of a significant scientific gap.

2.2 Global studies of PM:.s/PMio dynamics under inversion
conditions and complex terrain

Almaty, located in a mountain basin, has climatic
characteristics similar to cities such as Tehran, Ulaanbaatar,
Santiago de Chile, and Lahore. All of these cities are
dominated by the effect of winter temperature inversions,
which prevent vertical air mixing. Alizadeh-Choobari et al. [4]
showed that inversions account for up to 70% of extreme
pollution episodes in Tehran.

Wang et al. [S] demonstrated similar dynamics for
Ulaanbaatar, where PMz.s can increase 8—10 times during
periods of persistent anticyclones and night-time inversions.

Unlike many mountain cities, where increases in PMa.s
concentrations are directly linked to air stagnation and
increased temperature inversions, Santiago's experience shows
more complex dynamics, in which not only the terrain but also
the evolution of urban mobility and transport structure play a
key role. According to Gallardo et al. [10], over the past three
decades, concentrations of coarse PMio particles in Santiago
have decreased significantly thanks to the introduction of
technological measures — improved fuel quality, the use of
catalytic converters and diesel particulate filters. However,
PM..s concentrations remain high due to the rapid growth of
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the vehicle fleet and the transition of the city's atmosphere to
a more oxidative regime, which enhances the formation of
secondary aerosols. The authors emphasize that without
changes in the transport behavior of the population—in
particular, without an increase in the share of public
transport—technological measures are insufficient to improve
air quality.

These studies demonstrate that topography and meteorology
create nonlinear pollution dynamics that cannot be adequately
described by classical analysis methods. That is why, in global
scientific practice, considerable attention is paid to the
integration of meteorological parameters into ML forecasting
models.

2.3 Meteorological determinants of PM:s and PMio
concentrations

Numerous studies confirm that short-term fluctuations in
PM:.s and PMio are determined by a combination of
temperature, relative humidity, wind activity and the height of
the planetary boundary layer (PBL). These factors influence
the processes of accumulation, dispersion, and secondary
formation of aerosols, shaping the nature of pollution in urban
environments.

Atmospheric air temperature is a key regulator of both
particle formation processes and their temporal dynamics.
According to Bai et al. [11], a decrease in perceived
temperature is associated with an increase in the impact of
PM:.5 and NO: on the body, reflecting a general mechanism:
at low temperatures, air stagnation increases, ventilation of the
surface layer deteriorates, and the likelihood of solid particle
accumulation increases. Similar physical processes are
described in studies on COPD [12], which reveal U-shaped
relationships between temperature and PM..s exposure,
particularly pronounced during prolonged periods of exposure
(7-30 days). These results emphasize that extremely low and
high temperatures exacerbate the negative effects of PMa.s,
indicating the importance of temperature as a pollution factor.

Air humidity has a significant effect on the hygroscopic
growth of aerosols and the intensity of chemical reactions
leading to the formation of secondary particles. A study by Niu
et al. [13] showed that high humidity enhances the impact of
the main components of PMz.s - nitrates, ammonium, black
carbon and organic aerosols. Zender-Swiercz et al. [14] found
a consistent positive correlation between humidity and
PM..s/PMio concentrations in areas with ‘fair & moderate’ air
quality, where hygroscopic growth of particles is most
noticeable. These data confirm that high humidity contributes
to an increase in particle mass, especially at low temperatures.

Wind activity determines the degree of dispersion of
suspended particles. In light winds, PM2s and PMio
concentrations increase due to limited horizontal transport.
According to Purnomo et al. [15], an increase in wind speed
leads to a decrease in the measured concentration of PMa.s
from 25.2 to 16.4 pg/m* when the wind speed increases from
0.86 to 2.79 m/s. Although the study was conducted on
sensors, it confirms the general aerodynamic principle: wind
is the main mechanism of natural aerosol dilution.

The height of the planetary boundary layer (PBL)
determines the vertical volume available for mixing pollutants.
A lower PBL leads to a sharp increase in ground-level
concentrations. Long-term studies in S3do Paulo show a
consistent relationship between low PBL, temperature
inversions, and increases in PMa.s [16]. The work of Han et al.



[17] confirms that the influence of the PBL is particularly
pronounced for primary aerosols, and during periods of high
pollution, the PBL exhibits different behavior depending on
the measurement method, which is important for data
interpretation.

It is important to note that in megacities with mountain-
valley circulation, such as Almaty, meteorological factors are
amplified by topography. A study by Kerimray et al. [6]
showed that low temperatures, high humidity, and weak
winds, combined with a reduced boundary layer height, lead
to pronounced winter pollution peaks — an effect that had not
previously been quantified using ML.

2.4 Machine learning and deep learning methods in air
quality forecasting

In recent years, a separate body of work has emerged in the
literature devoted to the use of ML and DL methods for short-
term forecasting of PMa.s and PMio. A review by Wu et al. [18]
shows exponential growth in the number of such studies after
2015: ensemble trees (Random Forest, gradient boosting) and
recurrent neural networks (LSTM/GRU), as well as their
hybrids with spatial models, dominate.

2.4.1 Random Forest and gradient boosting

Ensemble decision trees remain one of the basic tools for
predicting PM:.s concentrations, especially when mixed
(meteorological and emission) predictors are available. Pan et
al. [19] proposed a PM..s prediction model based on Random
Forest with subsequent interpretation using SHAP: it was
shown that such models not only provide high accuracy (R* >
0.9 on validation), but also allow ranking the contribution of
temperature, humidity, wind speed, and background pollution
levels by importance. A similar conclusion is made by
Alrashidi et al. [20] for monitoring stations in Kuwait, where
ensemble methods (Random Forest, XGBoost) showed an
advantage over classical regression approaches for predicting
the air quality index based on PMz.s.

2.4.2 LSTM and hybrid CNN-LSTM

Recurrent LSTM networks are used to model the temporal
structure of pollution, taking into account the inertia of
processes and the delayed effects of meteorological factors.
Chang et al. [21] showed that the LSTM model provides a
significant RMSE advantage over classical statistical models
and simple neural networks when forecasting PMz.s and other
pollutants in a metropolis, especially over a 24-48 hour
horizon. Hybrid architectures have been further developed:
Bai et al. [22] proposed a CNN-LSTM model in which the
convolutional block extracts local spatio-temporal patterns
between stations, and LSTM is responsible for dynamics over
time; this scheme improved the accuracy of PMa.s forecasting
and better reproduced episodes of high pollution.

There are still few direct DL studies for Kazakhstan. The
closest to our work is the article by Yedilkhan et al. [23], which
compares LightGBM and LSTM with an attention mechanism
for PM..s and PM.o forecasting based on meteorological data
for the city of Almaty; LSTM with attention demonstrates the
best RMSE values and better captures daily and seasonal
variations in pollution. However, this work did not provide a
detailed interpretation of the influence of individual
meteorological factors and did not analyze spatial
heterogeneity within the city, which leaves a methodological

gap.
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2.4.3 Interpretability of models and SHAP

A key focus in recent years has been the interpretation of
ML model ‘black boxes.” Wu et al. [18] emphasized that
without explaining the contribution of individual features, DL
predictions are difficult to use in environmental policy and
urban management. Pan et al. [19] demonstrated that the use
of SHAP makes it possible to quantitatively assess how
changes in temperature, humidity, wind speed, and other
variables shift the predicted PM..s concentrations, and that
such assessments are consistent with physical concepts of
dispersion and accumulation of pollutants. A systematic
review by Houdou et al. [24] shows that the combination of
ensemble/neural network models with SHAP analysis is
becoming the de facto standard in interpretable air quality
forecasting, but there are still virtually no examples of its
application for cities in Central Asia.

Thus, although global literature demonstrates a mature set
of ML/DL tools for forecasting PM:.s/PMo, there are still no
studies for Almaty and comparable mountain-valley
megacities that simultaneously: (1) use an extensive network
of stations, (2) explicitly take into account the weather-
dependent nature of smog, and (3) apply interpretable models
(e.g., Random Forest / gradient boosting + SHAP) to
quantitatively assess the role of individual meteorological
factors. This study fills this gap.

2.5 Research gap

Despite a significant increase in the number of studies on
air quality in Central Asia and Almaty, the existing scientific
literature remains fragmented and limited mainly to
retrospective analysis of pollution. The work of Kerimray et
al. [6] provides important insights into the spatiotemporal
structure of PM2.s and PMo in Almaty, including the influence
of the heating season, inversions, and local sources, but there
is a complete lack of short-term weather-dependent
forecasting models. Similarly, previous studies show systemic
features of pollution in Central Asia — dependence on fossil
fuels, strong winter peaks, low boundary layer height and
weak air ventilation — but do not contain predictive digital
models that take into account the nonlinear effects of
meteorological factors [7, 8].

Global studies on inversions and complex topography [4, 5,
10] emphasize that relief and temperature inversions form
nonlinear PM..s retention regimes that require the use of ML
methods to adequately describe the dynamics. However, none
of these studies apply to Almaty, despite the similarity of
climatic conditions.

In the field of studying the influence of meteorological
factors, contemporary literature = demonstrates  that
temperature, humidity, wind speed, and the height of the PBL
have a decisive influence on daily changes in PM2.s/PMio
concentrations. These factors in different climatic zones, but
they do not focus on the mountain-valley conditions of Almaty
and do not attempt to quantitatively integrate meteorological
factors into ML models specifically for this city [11-13, 15-
17].

At the same time, global experience in using ML/DL for
pollution forecasting is growing rapidly: Random Forest,
XGBoost, LSTM and CNN-LSTM demonstrate high
prediction accuracy in various cities. However, in studies
related to Kazakhstan, predictive models have been used to a
limited extent: for example, Yedilkhan et al. [23] applied
LSTM to Almaty, but the model did not take into account the



extensive network of monitoring stations (71 points), did not
analyze the meteorological dependence of smog, and did not
interpret the factors using SHAP.

Thus, the scientific gap consists in the absence of a
comprehensive weather-dependent ML model for short-term

forecasting of PMas and PMiwe for Almaty, which
simultaneously:

- uses multi-network monitoring data (AQICN, AirKaz,
Dashboard.air.org.kz);

- takes into account key meteorological factors

(temperature, humidity, wind, PBL);

- reflects the characteristics of mountain-valley circulation;

- applies modern algorithms (Random Forest, LSTM) in
comparative analysis;

- provides interpretation of the influence of factors on the
forecast (SHAP).

It is this scientific gap that this study fills.

3. MATERIALS AND METHODS
3.1 Study area and observation network

The object of the study is the city of Almaty, Kazakhstan's
largest metropolis, located in a foothill basin at the northern
foot of the Trans-Ili Alatau. The city is characterized by
pronounced mountain-valley circulation, frequent winter
inversions and seasonal episodes of smog, making it an ideal
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testing ground for the development of weather-dependent
PM..s and PM.o forecasting models.

The monitoring network includes 71 air quality observation
stations within the Almaty urban agglomeration. It consists of
national government network stations, low-cost sensors
integrated into the AirKz/Airkaz and Dashboard.air.org.kz
mobile applications, Kazhydromet equipment, and stations of
the World Air Quality Index (WAQI, AQICN) global network.
The spatial distribution of monitoring points is shown in
Figure 1: the central and northern parts of the city are
characterized by a high density of residential and transport
development and, accordingly, contain a group of stations that
record conditions of increased anthropogenic load; the
southern foothill zone contains stations at higher elevations,
reflecting the influence of mountain-valley circulation and
relatively better ventilation; the eastern and western areas are
represented by a combination of residential areas and local
industrial sites, providing representative coverage of different
types of urban environments.

The spatial distribution of stations reflects the marked
heterogeneity of air pollution in the city. Central areas
(Almaly, Auezovsky) with high traffic loads show elevated
background levels of PM..s and PMio, while in the Turksibsky
and Zhetysu districts, individual industrial sites form local
peaks. The southern foothill areas (Bostandyk, Medeu) have
lower concentrations due to better ventilation, but are prone to
pollution accumulation during winter inversions.

Anrabac

Figure 1. Geographical location of 71 pollutant monitoring stations in Almaty included in the analytical dataset (a: AQICN, b:
AirKaz, c: Dashboard.air.org.kz)

Location of Almaty city districts

B Alatau district

Almaly district
Auezovsky district
Bostandyk district

Medeu district

EREC

Nauryzbay district

Turksibsky distrier

D Zhelysu district

City area: 633.5 lan®

Papulation: 2.337 million people

Density: 3419 peoplehin®

Truffic toad: up to [35.000 vehicles per day

Figure 2. Location of Almaty City districts
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Given this territorial heterogeneity, the study uses the
median daily concentration as a stable urban integral indicator,
reducing the impact of local emissions and data gaps. If
necessary, the method can be extended to station-specific
models. The cartographic location and names of the districts of
Almaty are shown in Figure 2.

3.2 Data sources and observation period

The following open data sources were used to build
predictive models:

- PM2s and PMio concentrations—hourly measurements
from the city's air quality monitoring network, aggregated by
the AQICN, AirKaz and Dashboard.air.org.kz platforms



(2020-2024 period);

- meteorological parameters—average daily relative
humidity (Ogimet portal), as well as ERAS5 reanalysis
parameters, including air temperature wind speed, BLH,
surface pressure and cloud cover (2020-2024).

Hourly PM values were converted to daily averages to align
with WHO recommendations on daily limits and to reduce the
impact of short-term emissions. The Ogimet and ERAS5
meteorological series initially have a daily time step.

Only the primary time series AQICN / AirKaz /
Dashboard.air.org.kz and Ogimet / ERAS5 were used in the
modelling. BNS  statistical materials and WHO
recommendations were used exclusively to describe the
environmental situation in the city and were not included in the
training sample.

3.3 Data pre-processing and quality control

Pre-processing consisted of three consecutive steps.

Completeness check. Only days for which at least 75% of
valid hourly observations for the relevant indicator were
available were included in the daily calculation. This filter is in
line with international practice for ensuring the
representativeness of daily air quality values [25, 26].

Emissions _filtering.  Unrealistic ~ values (negative
concentrations, extreme peaks associated with technical
failures) were removed using range rules and subsequent time
series analysis (an approach similar to that implemented in the
open-air package [27].

Synchronization and interpolation. The median was
calculated for each day based on the available stations. Single-
day gaps in the final city series were filled using linear
interpolation, provided that the length of the continuous gap
did not exceed three days; longer intervals were marked as
missing and were not used in model training.

At this stage, visual inspection of time series (graphs,
swings, seasonality) was also performed, allowing for
additional identification of anomalous areas and verification of
PM consistency with meteorological data (increase in
concentrations during periods of low temperatures and weak
winds, etc.).

3.4 Regulatory thresholds and setting forecasting targets

In accordance with the WHO Air Quality Guidelines (2021),
the study used the recommended daily air quality guidelines
(AQG levels):

- for PM2.s — 15 pg/m?3;

- for PMio — 45 pg/m?.

Based on these, two interrelated tasks were formulated.

3.4.1 Regression (concentration forecast)
The regression model estimates the expected concentration
of the pollutant # days ahead:

),}\t + h= f(Yt:t—L' My:¢—1, Xt:t—L)s (1)

where, y is the target concentration of the pollutant (PMz.s or
PMio), m is meteorological variables, x is additional predictors
(e.g., calendar features), L is the length of the historical
window.

3.4.2 Classification of exceedances (early warning)
A binary variable was formed based on a regression forecast:
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Zeyn =M (Yeen > MPC), 2
5 )
Zern = 8(Vet-L Met-L Xe-L),
where, MPC is the threshold value specified above.
This formulation corresponds to the applied task of urban
environmental services—to issue a signal about the risk of
exceeding the standard several days before the event.

3.5 Scenarios of signs and forecasting horizons

To assess the impact of meteorological conditions, two
scenarios for the formation of input characteristics were
considered:

- Scenario A (without meteorological parameters)—only
PM:.s/PMio concentration lags for the previous day (up to 24
lags) are transferred to the model.

- Scenario B (with meteorological parameters)—in addition
to concentration lags, lags of meteorological variables are
included: relative humidity (Ogimet), as well as temperature,
wind speed, BLH, surface pressure and cloud cover (ERAS).
Values are generated for each parameter for the current and
previous 1-7 days. The use of ERAS5 data ensures statistical
continuity of meteorological series for the entire period from
2020 to 2024.

Two forecast horizons were tested in both scenarios:

- 7 days—short-term operational forecast;

- 30 days—a conditional medium-term forecast, allowing
the stability of models to be assessed over an extended time
interval.

Before training, all input variables were scaled using the
Min-Max method to the range [0;1] according to the
parameters of the training sample, which eliminates
information leakage between train and test [28].

3.6 Forecasting models

Two classes of models were used to construct forecasts [29,
30].

3.6.1 Random Forest (RF)

Random Forest is used in the study as an interpretable and
robust ML algorithm capable of identifying nonlinear
relationships ~ between  pollutant  concentrations and
meteorological factors.

For each scenario, the model was trained on lagged PM
concentration values (24 previous steps) and, depending on the
scenario, on lagged meteorological parameter values.

Scenario A (without meteorological data):

- only 24 lagged PM values are used.

Scenario B (with meteorological data):

- lags of the following meteorological variables are added to
PM lags;

- air temperature;

- relative humidity;

- wind speed;

- BLH;

- surface pressure;

- cloud cover.

For each meteorological parameter, lag 0 denotes the most
recent available historical observation at the forecast origin,
while lags 1-7 correspond to preceding days; no future
information was used in model training or forecasting. This
feature set reflects the physical mechanisms of pollutant
dispersion and inversions in the mountain-valley conditions of



Almaty.
Main RF hyperparameters:
-number of trees: 400 (scenario A) and 500 (scenario B);
-maximum depth: selected by cross-validation;
-random_state = 42 for reproducibility.
Feature importance indicators were also calculated, which
made it possible to quantitatively assess the contribution of
each meteorological factor to improving forecast accuracy.

3.6.2 LSTM (Long Short-Term Memory)

An LSTM recurrent neural network was used to account for
the temporal structure of the data and the inertia of pollution
accumulation processes. The input data for the network
consisted of sequences with a length of 24-time steps
(approximately 24 previous days of observations).

The output of the model was the PM concentration at a
forecast horizon of 7 or 30 days.

LSTM architecture:

- one LSTM layer with 64 neurons;

- fully connected Dense layer with 32 neurons and ReLU
activation function;

- one output neuron with linear activation (regression).

Training parameters:

- Adam optimizer;

- MSE loss function;

- 40 training epochs;

- batch size — 32;

- carly stopping mechanism (patience = 5) to prevent
overfitting.

In scenario B, the model input data included not only PM
lags, but also the lagged meteorological parameters listed
above.

All algorithms were implemented in Python using the
NumPy, pandas, scikit-learn, and TensorFlow/Keras libraries.

3.7 Accuracy assessment and validation scheme

The division into training and test samples was performed
strictly in chronological order without mixing. The final
version of the study used a horizon-based hold-out validation
scheme, which is methodologically consistent with the general
principles of time samples described in the works [31, 32].

Separate test samples were formed for each modelling
horizon:

- for a short-term forecast of 7 days, the test sample included
the last 7 days of the time series;

- for a conditional medium-term forecast of 30 days, the test

sample included the last 30 days of the series;

The quality of regression forecasts was assessed using
metrics where y, is the true value, ¥, is the forecast, and N is
the number of test points:

MAE (mean absolute error):

N
1
MAE = Iye = 9l G)
t=1

RMSE (mean square error):

N
1
RMSE = NZ(yt — 902 4)
t=1

MAPE (mean absolute percentage error):

N
100%
N

Ve — Ji
Y

MAPE =

: ®)

MAPE is undefined at y, = 0 and overestimates errors at
low concentrations, so a safe value of the denominator y, + €
was used in the calculations. Comparing MAE and RMSE
allows us to assess the sensitivity of the model to outliers: if
RMSE is significantly higher than MAE, the model tends to be
penalized for large errors at peak values.

For binary classification tasks, the following were
calculated:

TP+TN .. TP
Accuracy = ———————, Precision = , (6)
TP+FP+TN+FN TP+FP
TP Precision-Recall
Recall = , F1=2.—ccslonReca (7)
TP+FN Precision+Recall

where, TP is correctly predicted exceedances, FP is false
alarms, 7N is correctly predicted ‘norms,” and FN is missed
exceedances. Particular attention was paid to the Recall
(completeness) indicator, since it is critical for early warning
systems to minimize the omission of dangerous episodes (FN).

The configurations and key characteristics of the models
used are presented in Table 1, which summarizes the scenarios
applied, input features, hyperparameters, and the main
advantages and limitations of each approach.

Table 1. Parameters and characteristics of forecast models

Parameter Random Forest

LSTM (Long Short-Term Memory)

Scenarios

24 pollutant concentration lags; Scenario B

A (without weather), B (with weather)

A (without weather), B (with weather)
24-step input sequences (24 previous observations);

Input Features

Main Hyperparameters

Normalization Type

Advantages

Limitations

additionally uses lagged meteorological variables
(tmean, rh, wind speed, BLH, pressure, cloud cover)

n_estimators = 400 — 500; max_depth — auto;
random_state =42

Min — Max scaling (based on training set)
Robustness, interpretability, handling heterogeneous
features
Smoothing of extremes, limited adaptability to
sudden changes

Scenario B additionally uses lagged meteorological
variables
(tmean, rh, wind speed, BLH, pressure, cloud cover)
64 LSTM neurons; 32 Dense (ReLU); Adam; 40
epochs; batch size = 32; early stopping (patience =
5)
Min-Max scaling (by training set)
Captivates long-term dependencies and
nonlinearities in time series

Requires normalization; sensitive to volume
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The approach combines the interpretability of ensemble
models with the adaptability of recurrent networks, which
improves the reliability of short-term pollution forecasts and
the applicability of results for environmental monitoring and
air quality management systems.

3.8 Structural diagram of the methodology

The general sequence of modelling stages is shown in Figure
3. The diagram includes the following blocks:

Data Sources
AQICN / Airkz | Dashboard / Kazhydromet — citywide PM2.5 & PM10
Ogimet — humidity
ERAB — temperature, wind speed, BLH, pressure, cloud cover

Data Preprocessing
Cleaning, synchronization, interpolation,
merge AQ, Ogimet, ERAS; daily averages;
median across all stations

Feature Generation
Creation of lagged PM2.5/PM10 and
meteorological variables

Data Split & Scenarios
Train/Test split; forecast horizons: 7 & 30 days
A— PM lags only; B — PM + meteorology

Model Training
Random Forest and LSTM models

Forecasting & Evaluation
RMSE, MAE, MAPE, Accuracy, F1-score

Exceedance Detection & Alerts
Compare with WHO AQG limits — early warning & visualization

Figure 3. Schematic diagram of the forecasting methodology
for pollutant concentration and exceedance detection

_data_pm

10_pm2

This methodological framework ensures transparency,
reproducibility, and scalability of results: if additional stations
or meteorological parameters become available, the algorithm
can be easily scaled to new data sources and other cities.

4. RESULTS

4.1 Time series dynamics of pollutants and meteorological
parameters

Visualization of time series of average daily concentrations
of PM..s and PMuo, as well as air temperature and relative
humidity for the period 2020-2024, reveals the structure of
seasonal and interannual fluctuations in atmospheric pollution
in Almaty (see Figure 4).

A characteristic feature of the dynamics is stable winter
pollution peaks. During the cold season, PM2.s and PMio
concentrations increase by 2-4 times compared to summer
levels. These seasonal peaks are explained by:

(1) the active phase of the heating season, accompanied by
an increase in emissions from coal and mixed heating systems;

(2) recurring episodes of temperature inversions;

(3) weakening of mountain-valley circulation and a decrease
in wind speed.

Higher amplitudes of fluctuations are recorded for PMio,
reflecting the influence of dust emissions and mechanical
resuspension. PMa.s shows a stable baseline level, and its
increase in winter indicates the predominance of fine particles
of anthropogenic origin. Temperature and humidity show
typical climatic seasonality, confirming the correctness of data
processing and the suitability of meteorological parameters for
inclusion in forecasting models. Additional ERAS parameters
(wind speed, BLH, etc.) also agree with the identified seasonal
phases, but are not included in the visualization to maintain the
readability of the graph.

25 _filled

Figure 4. Time series of daily mean concentrations of PMa.s and PMuo, air temperature (°C), and relative humidity (%) during the
period 2020-2024
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4.2 Correlations between PM:.s/PMio concentrations and
meteorological factors

Correlation analysis revealed statistically significant
relationships between pollutants and weather variables (see
Figure 5 and Table 2).

Key findings:

(1) air temperature

PM:.s and PMio show a consistent negative correlation with
temperature (r = —0.739 and r = -0.708, respectively),
confirming the formation of winter smog under conditions of
cooling of the surface layer, temperature inversions, and
limited vertical turbulence.

(2) relative humidity

The correlation is moderately positive (PMaz.s: r = +0.483;
PMio: r = +0.504), reflecting the hygroscopic growth of
particles and the intensification of secondary aerosol formation
processes at elevated humidity.

(3) boundary layer height (BLH)

BLH has a pronounced negative correlation with pollutant
concentrations (PMoa.s: r = —0.656; PM.o: r = —0.580), which is
consistent with the mechanism of PM accumulation at reduced

mixing layer heights characteristic of stagnant cold periods.

(4) wind speed

A weak negative correlation is observed (PMa.s: r = —0.216;
PMio: r = —0.289), reflecting the role of wind activity in the
dispersion and transport of pollutants.

(5) surface pressure

A positive correlation (PMz.s: r = +0.461; PMio: r = +0.516)
indicates the influence of anticyclonic regimes, which
contribute to stagnant conditions and increased PM
concentrations.

(6) cloud cover

The correlation is weak (PMz.s: r = —0.046; PMio: 1 = —
0.063), the influence is indirect and does not have a key effect
on particle dynamics.

(7) relationship between PMz.s and PM.o

There is a strong correlation between the two fractions (r =
+0.734), indicating common anthropogenic sources of
pollution.

These results confirm the validity of including an extended
set of meteorological parameters (ERAS5 + Ogimet) in the ML
model.

Correlation matrix: PM and meteorological variables

PM2.5

PM10

Temperature
RelativeHumidity
WindSpeed
SurfacePressure
BoundaryLayerHeight

CloudCover

1.00

Correlation

|
I
N
w

—0.50

-0.75

-1.00

Figure 5. Correlation matrix between pollutant concentrations (PM.s, PMio) and meteorological parameters

Table 2. Correlations between pollutants and meteorological parameters

Indicator PMazs PMio Temperature I_l;f Ill?it(li‘i]fy ;;]) 1::(11 PS:el;fs?lch BLH g:)ovueg
PM2s 1.000 0.734 -0.739 0.483 -0.216 0.461 -0.656 —0.046
PMio 0.734 1.000 -0.708 0.504 -0.289 0.516 -0.580 -0.063
Temperature -0.739 -0.708 1.000 -0.746 0.281 -0.747 0.802 -0.094
Relative Humidity 0.483 0.504 —0.746 1.000 -0.325 0.560 -0.630 0.331
Wind Speed -0.216 -0.289 0.281 -0.325 1.000 -0.313 0.307 -0.067
Surface Pressure 0.461 0.516 -0.747 0.560 -0.313 1.000 -0.568 -0.106
BLH -0.656 —-0.580 0.802 —-0.630 0.307 -0.568 1.000 -0.164
Cloud Cover —0.046 —-0.063 —0.094 0.331 -0.067 -0.106 -0.164 1.000

4.3 Results of modelling and forecasting pollutant
concentrations

Two models were used to evaluate predictive capabilities:

- Random Forest — an interpretable ensemble model that is
robust to nonlinearities;

- LSTM - a recurrent neural network focused on temporal
dependencies and smoothing short-term fluctuations.

Both models were tested in two scenarios:

- A — pollutant lags only;

- B — pollutant lags + meteorological parameters

(temperature, humidity, wind speed, BLH, pressure, cloud
cover).

Forecasts were made for 7- and 30-day horizons.

Forecast accuracy assessment.

7-day horizon (see Figure 6 — ‘observed vs. predicted’
correspondence diagrams and Figure 7 — time series).

For PM..s, both models show satisfactory correspondence
with observations, however:

- RF gives more stable predictions that are closer to the
diagonal,

- LSTM better captures local variations but tends to smooth
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Over a long horizon, both models show a regular decrease in
accuracy relative to the short-term forecast.

RF demonstrates more consistent reproduction of the overall
dynamics of PMz.s and PMao.

LSTM better follows the structure of the series, but tends to
underestimate high values and smooth out peaks.

The inclusion of meteorological factors (scenario B)
improves predictability, especially for PMio, which is

them out.

For PM.o, the quality is noticeably lower:

- RF and LSTM predictions show dispersion and
underestimation of sharp jumps,

- This reflects the higher variability of PMio and its
dependence on wind and dust processes.

The addition of meteorological data (scenario B) improves
accuracy, especially for PM..s, as evidenced by the reduction

in deviations from the diagonal.

30-day horizon (see Figure 8 — time series).

consistent with the findings of international studies [33, 34].

Observed vs predicted PM2.5 and PM10 — Scenario B, 7-day horizon

PM2.5 — RandomForest PM2.5 — LSTM
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Figure 6. Comparison of actual and forecast pollutant concentration values over a 7-day period: (a) PM> s — Random Forest, (b)
PM, s — LSTM, (c¢) PMio — Random Forest, (d) PMio — LSTM
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PM2.5 and PM10 forecasts in Almaty — 7-day evaluation window (Scenarios A/B)
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Figure 7. Results of the short-term forecast (7-day horizon). (a) PM» s — scenario A; (b) PM» s — scenario B; (¢c) PMjo — scenario
A; (d) PMo — scenario B. Each panel shows observations and forecasts of the Random Forest and LSTM models
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PM2.5 and PM10 forecasts in Almaty — 30-day evaluation window (Scenarios A/B)
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Figure 8. 30-day forecast results. (a) PM» s — Scenario A; (b) PM, 5 — Scenario B; (¢) PMio — Scenario A; (d) PMo — Scenario B.
Each panel shows the observations and forecasts from the Random Forest and LSTM models

4.4 Quantitative assessment of the accuracy of Random
Forest and LSTM models

Table 3 reflects the values of RMSE, MAE, MAPE,
Accuracy, and F1-score metrics for all combinations of ‘model
x scenario X forecast horizon.” The results demonstrate
consistent differences in model behavior and the influence of
meteorological factors on forecast accuracy.

PM:z.s

Random Forest shows the lowest errors at both horizons

(RMSE 3.96-6.91 pg/m?).

LSTM has higher RMSE (6.49-7.64 pg/m®), but better
reproduces short-term peaks.

Scenario B leads to a significant reduction in errors,
especially at the 7-day horizon (36-43% improvement in
RMSE).

The improvement is directly related to the addition of key
meteorological parameters (temperature, humidity, wind
speed, boundary layer height), which explain the dynamics of
winter episodes of air stagnation.
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PMio

Over a 7-day horizon, Random Forest shows more stable
errors (RMSE 8.44-9.40 pg/m®), while LSTM sometimes
outperforms RF on a 30-day forecast.

Meteorological variables have a more noticeable effect on
PMio accuracy, reflecting the high sensitivity of coarse
particles to wind conditions and atmospheric stratification.

It should be noted that the values Accuracy = 1.00 and F1-
score = 0.00 for PMio are due to the absence of threshold
exceedances in the test dataset, which makes the classification

metrics non-functional but does not affect the interpretation of
the regression results.

The inclusion of an extended set of meteorological
parameters (Ogimet + ERAS) significantly improves the
accuracy of short-term and medium-term forecasting. Random
Forest demonstrates the greatest stability, while LSTM better
models short-term emissions. This combination of models
allows for the creation of a more reliable operational air quality
forecasting system.

Table 3. Forecasting results of Random Forest and LSTM models for short-term (7-day) and medium-term (30-day) horizons
under two scenarios: A (without weather data) and B (with meteorological variables)

Pollutant Scenario Horizon (days) Model RMSE (ug/m*) MAE (ng/m*) MAPE (%) Accuracy F1
PM2s A (no weather) 7 Random Forest 6.22 4.95 13.89 1.00 1.00
LSTM 7.61 6.75 19.34 1.00 1.00
B (with weather) 7 Random Forest 3.96 3.30 8.98 1.00 1.00
LSTM 6.49 5.00 13.51 1.00 1.00
A (no weather) 30 Random Forest 6.91 5.79 17.39 1.00 1.00
LSTM 7.64 6.00 15.86 1.00 1.00
B (with weather) 30 Random Forest 5.70 4.64 13.50 1.00 1.00
LSTM 6.68 4.97 14.36 1.00 1.00
PMio A (no weather) 7 Random Forest 9.40 5.93 23.92 1.00 0.00
LSTM 9.80 8.24 39.66 1.00 0.00
B (with weather) 7 Random Forest 8.44 5.67 23.53 1.00 0.00
LSTM 8.03 4.15 14.16 1.00 0.00
A (no weather) 30 Random Forest 5.79 3.93 20.18 1.00 0.00
LSTM 5.27 3.41 17.50 1.00 0.00
B (with weather) 30 Random Forest 5.35 3.66 18.42 1.00 0.00
LSTM 5.83 4.19 19.95 1.00 0.00

4.5 The importance of signs and the interpretability of
models

Figure 9 shows the ranking of predictors in the Random
Forest model for scenario B (taking into account
meteorological data) over a 7-day horizon. The results obtained
are consistent with the physical mechanisms of pollution
formation in the Almaty Basin.

The boundary layer height (BLH) is the absolute leading
predictor for both pollutants (blh_0).

This reflects the key role of vertical air mixing: the lower the
BLH in winter, the greater the accumulation of PMa.s and PMo.

Pollutant lags are among the most significant features
(lag_1, lag 2, lag 24), confirming the strong autocorrelation
and inertia of pollution.

(a)

blh_0
lag_1
temp_2
temp_1
wind_1
bih_1
cloud_1
sp_1
rh_0
sp_2
temp_3
temp_0
lag_2
sp_0
lag_3

PM2.5

0.0 0.1 0.2 0.3 0.4 0.5
Importance

Temperature ranks second in influence after BLH (temp_0,
temp 1, temp_2).

Low temperatures intensify inversions and reduce BLH —
this increases PM concentrations.

Surface pressure (sp_O0-sp 3) shows a noticeable
contribution, which corresponds to anticyclonic, stagnant
winter conditions.

Wind speed and cloud cover have a small but interpretable
contribution:

-wind_0 and wind 1 weaken pollution (dispersion),

- cloud O reflects changes in radiative cooling and layer
stability.

The resulting importance structure demonstrates the
physical consistency of the model and justifies the inclusion of
an extended set of meteorological parameters.

(b) PMI10

blh_0
temp_0
temp_1
temp_2
lag_1
sp_3
sp_0
wind_0
temp_3
sp_2
cloud_0
rh_5
lag_24
sp_4
wind_1
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Importance

Figure 9. Importance of features in the Random Forest model for predicting concentrations of: (a) PMz.s and (b) PMio in scenario
B (taking meteorological factors into account), forecast horizon — 7 days
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4.6 Comparison of models
(Persistence and Seasonal Naive)

with basic approaches

The comparison results (Table 4) show that the use of ML
models provides significant advantages in terms of RMSE
metrics compared to standard statistical approaches. The
improvements are particularly pronounced when using an
extended set of meteorological variables.

PM..s

Over a 30-day horizon, Random Forest demonstrates the
most significant increase in accuracy: the RMSE improvement
is +38.6% in scenario A and up to +49.4% in scenario B.

LSTM also consistently outperforms baselines (+32.2% in
A, +40.7% in B).

Over a 7-day horizon, the effect is moderate:

- RF improves RMSE by +2.9% (A) and +38.3% (B);

- LSTM is almost comparable to Persistence, which is
explained by the high autocorrelation of the series.

Including temperature, humidity, wind speed, boundary
layer height, and pressure significantly improves the accuracy
of the short-term forecast.

PMio

A computational modeling experiment revealed that, over a

7-day forecast horizon, the quality of results obtained using the
constructed models is, in some cases, inferior to the
"robustness" method (e.g., A = —24.1%). This effect is not due
to errors or incorrect model specifications, but to the structural
features of the test time series. Under conditions of smooth
short-term dynamics and high autocorrelation of observations,
the "robustness" method serves as a statistically optimal
benchmark strategy, minimizing forecast error within the
experimental problem formulation.

At a 30-day horizon, both models confidently outperform
the baseline approaches:

- RF: +7.3% (A) and +14.5% (B)

- LSTM: +15.7% (A) and +6.8% (B)

Weather parameters have a noticeable effect due to the
sensitivity of PMio to BLH, humidity and wind conditions.

The Random Forest and LSTM models demonstrate stable
advantages over the baseline models, especially in medium-
term forecasts and when meteorological factors are included.
Negative A values in some short-term scenarios are explained
by the properties of the time series, rather than shortcomings
of the ML models, which confirms the correctness and
interpretability of the comparisons.

Table 4. Comparison of Random Forest and LSTM model performance with baseline forecasting methods (Persistence and
Seasonal Naive)

Pollutant Scenario Horizon (days) Model RMSE (ng/m®) Baseline RMSE (ng/m®) A vs Baseline (%)

PM2s A (no weather) 7 Random Forest 6.22 6.40 +2.92
LSTM 7.61 6.40 —-18.82
A (no weather) 30 Random Forest 6.91 11.27 +38.64
LSTM 7.64 11.27 +32.20
B (with weather) 7 Random Forest 3.95 6.40 +38.30

LSTM 6.49 6.40 -1.29
B (with weather) 30 Random Forest 6.91 11.27 +49.39
LSTM 7.64 11.27 +40.70

PMio A (no weather) 7 Random Forest 9.40 7.57 -24.10
LSTM 9.80 7.57 -29.43

A (no weather) 30 Random Forest 5.79 6.25 +7.34
LSTM 5.27 6.25 +15.66

B (with weather) 7 Random Forest 8.44 7.57 -11.39

LSTM 8.03 7.57 -5.95
B (with weather) 30 Random Forest 5.35 6.25 +14.52

LSTM 5.83 6.25 +6.78

Note: Positive values of A indicate an improvement in accuracy (lower RMSE) compared to baseline models. Negative values indicate cases where the selected
model performed worse than the baseline.

4.7 Practical interpretation and significance of results

The results demonstrate that the combination of the Random
Forest ensemble algorithm and the LSTM recurrent neural
network provides high accuracy in short-term forecasting of
PM:.s and PMio concentrations in the complex mountain-
valley circulation conditions of Almaty. The models are
resistant to data noise, correctly capture the inertia of time
series, and demonstrate sensitivity to key meteorological
parameters, making them applicable to practical tasks of
environmental monitoring and air quality management.

4.7.1 Practical significance of the results

1) The basis for an early warning system for pollution. The
models obtained can be integrated into automated monitoring
and early warning platforms, providing daily and weekly
forecasts of likely exceedances of air quality standards. This is
particularly important for cities in Kazakhstan, where frequent
winter smog and poor air ventilation require rapid response

measures.

2) Use in mobile applications and services for the general
public. The models can be implemented in existing mobile
applications, such as AirKz / Airkaz, in the form of a ‘7-day
PM2.s/PMio forecast” module. Users will be able to plan
outdoor physical activity in advance, which is particularly
relevant for vulnerable groups (children, the elderly, patients
with respiratory diseases).

3) Scalability and transferability. The proposed
methodology could potentially be adapted for other cities in
Kazakhstan and Central Asia, but it needs to be calibrated to
local emission structures, heating practices, and
meteorological conditions. With low input data requirements
(PM and basic meteorological parameters), the approach
remains applicable in conditions of limited data availability,
but additional verification in other cities is necessary to
confirm the generalizability of the results.

4) Potential for environmental policy and city management.
Forecast smog maps can be used to:
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- optimize public transport route networks;

- introducing temporary environmental restrictions (low-
emission days);

- planning utility service schedules;

- adjusting heating regimes in the private sector.

Thus, forecast models become a tool to support decision-
making at the level of government authorities.

4.7.2 Integration of results into public-private partnerships
(PPPs) in the field of ecology

Digital environmental monitoring and forecasting
technologies are increasingly becoming the functional
foundation of next-generation public-private partnerships
(PPPs) focused on decarbonization, sustainable infrastructure,
and the mitigation of environmental risks in cities. Recent
research emphasizes that the effectiveness of environmental
PPPs increases significantly with the presence of quantifiable
impact indicators and digital management tools [35]. The
results of forecasting PM..s and PMio concentrations obtained
in this study can be directly integrated into the architecture of
such partnerships, complementing the investment and
institutional logic of "green" PPPs previously substantiated by
the authors [36].

1) Digital air monitoring services within PPPs

PM:.s and PMio forecasting models can serve as a key
analytical module for digital air quality platforms created
through PPPs between the government, IT companies, and
sensor infrastructure operators. International practice confirms
the viability of such solutions: in Singapore, the National
Environment Agency (NEA), together with private technology
partners, is using ML-based pollution forecasts as part of the
Smart Environment Platform for operational environmental
management [37].

In the context of Kazakhstan, a similar model could be
implemented as a concession or service PPP project,
including:

- a network of low-cost air quality sensors maintained by a
private operator;

- a pollution forecasting module as a B2G service for the
city administration;

- integration of forecasts into the Smart City ecosystem.

This approach is consistent with the characteristics of
effective PPP projects in “green” sectors identified by the
authors earlier [36], where the key role is played by the
technological structure of the project and the participation of
the private partner in the management of the innovative
component.

2) Justification
infrastructure

Forecasting MAC exceedances for PMz.s and PMio allows
us to move from declarative environmental impacts to
quantifiable justifications for investments in PPPs. According
to World Bank and WHO estimates, an increase in PMoz.s
concentrations by 10-15 pg/m* is accompanied by a 1-3%
increase in the burden on the healthcare system, making it
possible to use Cost of Illness (COI) methods to calculate the
socioeconomic benefits of infrastructure projects [38, 39].

In practical terms, this means that ML forecasts can be used:

- to model the benefits of replacing coal-fired heating
systems with gas or electric ones;

- to assess the effectiveness of clean transport support
programs;

- to calculate the environmental impacts of concession
projects for the modernization of combined heat and power

of investments in environmental
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plants and distributed energy systems.

This logic is fully consistent with the findings of Casady et
al. [35], which highlight that low-carbon and sustainable PPP
environments require comprehensive analytical tools that link
environmental performance to project patterns and
institutional parameters.

3) Improving the transparency and manageability of
environmental data

The use of predictive models in PPPs increases the
transparency of environmental data and creates the basis for
objective monitoring of the private partner's performance.
Public air quality forecasts enable the development of KPIs
based not only on actual measurements but also on the
operator's ability to prevent projected exceedances of
maximum permissible concentrations.

The practice of OECD countries shows that the inclusion of
predictive indicators in PPP monitoring systems contributes to
increased public confidence, reduced social risks, and
increased accountability of environmental projects [40]. As a
result, forecasting becomes not just an auxiliary tool, but an
element of the institutional design of environmental PPPs.
Thus, the developed forecasting system for PMa.s and PMio
can be considered a technological component of next-
generation environmental PPPs, providing quantitative
justification for investments, operationalizing environmental
effects, and increasing management transparency. The
integration of forecasting models into PPPs is consistent with
modern international approaches to green infrastructure
development and enhances the practical applicability of the
study's results, complementing previously obtained
conclusions on the structure and effectiveness of PPP projects
in the green economy.

4.7.3 Scientific contribution of the research

The study has several significant scientific results:

1) Weather-dependent ML model for a mountain-valley
metropolis. An interpretable air pollution prediction model has
been developed for the city of Almaty, taking into account
topographical specifics, pronounced temperature inversions
and seasonal features.

2) Comparison of two architectures on a single database. A
direct comparative analysis of Random Forest and LSTM,
trained on the same sample, was conducted, which made it
possible to identify their advantages and limitations in the
context of real data from Central Asia.

3) Quantitative assessment of the influence of
meteorological factors. The significant role of temperature,
humidity, wind speed, atmospheric pressure, cloud cover, and
boundary layer height in shaping the short-term dynamics of
PMaz.s and PMo is demonstrated, which is confirmed by both
ML methods (feature importance) and physical mechanisms of
winter smog.

4) Basis for an intelligent early warning system. The results
from the scientific and technical basis for the creation of a
predictive air quality platform applicable to cities in Central
Asia within the framework of the Smart City ecosystem and
PPP projects.

5. DISCUSSION
This study has shown that the use of ML (Random Forest)

and DL (LSTM) methods provides reliable, interpretable, and
practically applicable short-term forecasting of PM..s and



PMio concentrations in the complex orography and
pronounced meteorological dependence of the city of Almaty.
This section presents the key results of the analysis, their
scientific interpretation, comparison with international
studies, as well as limitations and prospects for further
development of the forecasting system in the context of
sustainable air quality management in a metropolis.

5.1 Comparative analysis of Random Forest and LSTM

A comparison of the simulation results shows that Random
Forest and LSTM demonstrate different accuracy and stability
characteristics at different forecast horizons (see Table 3). For
PMa.s, the Random Forest model provides the lowest RMSE
and MAE values for both the 7-day and 30-day horizons,
especially in scenario B, where the inclusion of meteorological
parameters leads to the most significant improvement in
accuracy (RMSE = 3.96 pg/m?®). This stability is consistent
with the findings of international studies, where RF is
considered a reliable tool for early warning systems [41]. The
LSTM model for PM..s shows higher errors but remains
sensitive to short-term fluctuations in concentrations, which is
due to its recurrent architecture. However, over a 30-day
horizon, there is an increase in error variability — a limitation
characteristic of LSTM with complex seasonality of time
series [42]. For PMo, the results are more heterogeneous. At a
7-day horizon in scenario B, LSTM shows a lower RMSE
(8.03 pg/m?®) than RF, indicating a better response of the
network to short-term changes in coarse particles. However,
on a 30-day horizon, Random Forest remains the most stable
and shows the lowest errors in both scenarios. Thus, Random
Forest is the preferred algorithm for obtaining stable and
interpretable forecasts, while LSTM is appropriate for
increasing sensitivity to short-term peak episodes, especially
when forecasting PMio in the short term.

5.2 Role of meteorological factors and confirmation of
seasonal dependence

The results for two scenarios (A — without meteorological
parameters, B — with meteorological parameters) show a
significant reduction in RMSE and MAE errors when
temperature, relative humidity, wind, pressure, and PBL
height (BLH) are added. The greatest improvement is achieved
for PM..s, where taking BLH and temperature into account
significantly enhances the physical explain ability of the
model; for PMio, the contribution of meteorological
parameters is also noticeable, reflecting the high sensitivity of
coarse particles to vertical mixing and wind activity.

Correlation analysis (Figure 4, Table 2) confirms key
physical relationships:

- a pronounced negative correlation between PMz.s and
PMo and temperature (—0.739 and —0.708), which corresponds
to the mechanism of winter inversions and weakening
turbulence;

- a moderate positive correlation with humidity (0.483 and
0.504), reflecting hygroscopic particle growth and enhanced
secondary aerosol processes;

- a weak negative correlation with wind speed (up to —
0.289), indicating the role of horizontal transport;

- positive correlation with surface pressure (0.461 and
0.516), consistent with the formation of stagnant anticyclonic
conditions;
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- strong negative correlation with boundary layer height
(BLH) (-0.656 and —0.580), confirming the key role of vertical
mixing volume in aerosol accumulation.

These patterns fully reflect the regional specifics of Almaty:
low temperatures, high humidity, frequent anticyclones, and
weakened vertical mixing form stable winter pollution peaks.
Similar conclusions are presented in studies by Gao et al. [43]
and Oziipak et al. [34], where the inclusion of meteorological
factors significantly improves the accuracy of short-term
forecasts.

5.3 Analysis of the predictive capabilities of models at 7-
and 30-day horizons

Graphical visualization of forecasts (Figures 6—8) shows
differences in model behavior in the short term and medium
term. Over a 7-day interval, both models adequately reproduce
the overall dynamics of PMz.s and PMio, but Random Forest
generates more stable forecasts that are closer to the observed
values, especially in scenario B for PM:.s, while LSTM
demonstrates a more pronounced sensitivity to local
fluctuations and, in some cases, better reflects short-term
changes, particularly for PMio. When the horizon is increased
to 30 days, the forecasts of both models become smoother,
which corresponds to an increase in uncertainty and an
increase in RMSE. Nevertheless, Random Forest maintains a
more stable correspondence with the observed values, while
LSTM shows greater smoothing and slightly underestimates
the concentration peaks. In scenario B, the influence of
meteorological factors becomes more noticeable, improving
the model's fit to the trend, which is consistent with global air
quality studies [44], according to which long-term forecasts
are more dependent on large-scale atmospheric dynamics,
while short-term forecasts are formed mainly due to the
autocorrelation structure of time series.

5.4 Comparison with international studies

A comparison of the results obtained with international
studies shows that the dynamics of air pollution in Almaty
generally correspond to the patterns characteristic of large
cities subject to winter temperature inversions. Similar profiles
of seasonal peaks in PM..s and PMio have been described in
detail for Ulaanbaatar, Tehran and Tashkent [5, 8], where a
combination of low boundary layer height, weak wind activity
and intensive use of carbon-containing fuels leads to
prolonged periods of aerosol accumulation. However, the
regional specifics of Almaty are more pronounced and
manifest themselves in a combination of factors: the
widespread use of coal heating in the private sector, the
peculiarities of mountain-valley circulation that limits vertical
ventilation, and the high frequency of calm conditions in
winter. This combination forms a unique ‘smog profile’ that
significantly increases the meteorological dependence of
pollution and requires the use of models capable of accounting
for the nonlinear interaction of meteorological parameters and
topography. In this context, the scientific contribution of this
study is the construction of an interpretable ML/DL model for
Almaty based on long-term data from 2020-2024, which fills
the identified gap and complements the international literature
on air quality forecasting in cities with complex orographic
conditions.



5.5 Research limitations

Despite the results obtained, the study has a number of
limitations that must be taken into account when interpreting
the conclusions. First, despite the expanded set of
meteorological characteristics (temperature, humidity, wind
speed, atmospheric pressure, cloud cover, and planetary
boundary layer height), the model remains deterministic and
does not take into account possible variations in emissions,
heat energy load and fuel consumption dynamics, which may
affect the reproducibility of peak episodes. Secondly, the
analysis was performed for only one urban agglomeration —
Almaty — which limits the external validity of the results and
does not allow the conclusions to be directly extrapolated to
other cities in Central Asia without additional adaptation; the
transferability of the models may be limited by differences in
emission structures, heating types, terrain and circulation
patterns. Thirdly, spatial heterogeneity is only partially taken
into account: aggregating data into a median urban time series
reduces the influence of local emissions, but at the same time
limits the ability to identify station-specific patterns. Fourth,
the high Accuracy and F1 scores in a number of scenarios are
due to the absence of threshold exceedances in the test period,
which reflects the specificity of the sample rather than the
universal diagnostic capability of the models. Finally, the
LSTM model showed increased error variability over long
horizons and a high computational load, which is typical for
recurrent architectures with limited data volumes. These
limitations determine the directions for further development,
including expanding the set of factors, integrating
spatiotemporal models, and assessing the transferability of
algorithms to other cities in the region.

5.6 Prospects for the development and integration of the
model into air quality management systems

The prospects for further development of the proposed
forecasting system are linked to expanding the set of input
factors and improving model architectures. Despite the
inclusion of key meteorological parameters (temperature,
humidity, wind, pressure, cloud cover, BLH), additional data
on emissions, energy load and heating characteristics can
improve the accuracy of forecasts during periods of winter
inversions. Promising areas also include the use of spatio-
temporal architectures (CNN - LSTM, transformers) and the
transition to probabilistic forecasting using quantile
regression, bootstrap ensembles or Bayesian LSTM, which
will allow the formation of confidence intervals and the
assessment of model uncertainty.

Integrating forecasting algorithms with low-cost sensor IoT
infrastructure will enable real-time data updates and automatic
model retraining. Creating dynamic pollution forecast maps
will enhance the practical value of the results for city services,
researchers, and the public.

The resulting predictive models can be used as analytical
and management tools within environmentally oriented
public-private partnerships (PPPs). Embedding PM..s and
PMio concentration forecasting modules into Smart City
digital dashboards, as well as using the modeling results to
justify heating system modernization projects and deploy air
quality monitoring networks within PPPs, creates the
preconditions for a transition from retrospective monitoring to
proactive air quality management. The practical
implementation of such solutions requires a coordinated
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digital architecture and unified performance indicators, which
allows forecasting to be considered as an element of the
emerging adaptive environmental management system at the
municipal level.

6. CONCLUSIONS

This study develops a modern approach to air quality
management in large cities in Central Asia and proposes an
interpretable weather-dependent system for short-term
forecasting of PM..s and PMio concentrations for the city of
Almaty based on ML (Random Forest) and DL (LSTM)
methods. The use of long-term data for 2020 - 2024 from the
open platforms AQICN, AirKaz and Dashboard.air.org.kz, as
well as the construction of two modelling scenarios — with and
without meteorological factors — made it possible to
comprehensively assess the role of atmospheric conditions in
the formation of smog episodes and to improve the accuracy
of forecasts for mountainous terrain conditions.

The results show that the inclusion of an extended set of
meteorological parameters (temperature, humidity, wind
speed, pressure, cloud cover and planetary boundary layer
height) significantly improves forecast accuracy, especially
for PM..s, highlighting the key role of atmospheric
stratification and winter inversions. The Random Forest
algorithm demonstrated the most stable RMSE/MAE values at
7- and 30-day horizons, ensuring high interpretability and
stability of forecasts. The LSTM model, in turn, showed an
advantage in reproducing short-term fluctuations and daily
peaks, making it a useful component for operational
environmental monitoring. The combination of RF stability
and LSTM adaptability increases the applied value of the
developed approach for sustainable urban planning tasks.

The data obtained forms the basis for the creation of an
intelligent early warning system for risks of exceeding
maximum permissible concentrations and can support
decision-making in the areas of public health, urban transport
and environmental infrastructure management. The
integration of predictive models into mobile services
(AirKZ/Airkaz), urban visualization dashboards, Smart City
systems and public-private partnership projects opens up
opportunities for the development of preventive
environmental policies, raising public awareness and
strengthening the resilience of the urban environment.

The main scientific and practical results of the study are as
follows:

1) a fully functional ML/DL-based air quality forecasting
system has been developed for the mountain-valley territory
of Almaty, taking into account weather-dependent smog
mechanisms;

2) the high significance of meteorological factors and the
key contribution of temperature inversions and boundary layer
structure to the formation of winter pollution episodes have
been confirmed;

3) methodological and practical prerequisites have been
established for adapting the approach to other cities in
Kazakhstan and Central Asia, taking into account differences
in emission structures and meteorological conditions;

4) the possibility of integrating models into existing digital
monitoring platforms and the infrastructure of environmental
PPP projects within the framework of the concept of
sustainable urban development has been demonstrated.

Prospects for further research are related to expanding the



set of meteorological and emission factors, transitioning to
spatiotemporal modelling based on CNN - LSTM and
transformers, integrating data from low-cost IoT sensor
networks, and creating a unified urban predictive analytics
platform. The implementation of these areas will contribute to
the formation of scientifically sound solutions in the field of
sustainable air quality management and the development of
modern environmental planning tools in the context of
accelerated urbanization.

ACKNOWLEDGMENT

The authors acknowledge that this research was carried out
within the framework of the Bolashak International
Scholarship Program (Republic of Kazakhstan) during a joint
academic mobility project hosted by Humboldt University of
Berlin (Germany).

REFERENCES

(1]

(2]

(3]

(3]

(7]

Bureau of National Statistics of the Agency for Strategic
Planning and Reforms of the Republic of Kazakhstan
[BNS]. (2025). Statistics of environment (Almaty city:
Dynamic tables).
https://stat.gov.kz/en/region/almaty/dynamic-
tables/1523/.

WHO. (2021). WHO global air quality guidelines.
https://www.who.int/news-room/questions-and-
answers/item/who-global-air-quality-guidelines.
Burnett, R., Chen, H., Szyszkowicz, M., Fann, N., et al.
(2018). Global estimates of mortality associated with
long-term exposure to outdoor fine particulate matter.
Proceedings of the National Academy of Sciences,
115(38): 9592-9597.
https://doi.org/10.1073/pnas.1803222115
Alizadeh-Choobari, O., Bidokhti, A.A., Ghafarian, P.,
Najafi, M.S. (2016). Temporal and spatial variations of
particulate matter and gaseous pollutants in the urban
area of Tehran. Atmospheric Environment, 141: 443-
453. https://doi.org/10.1016/j.atmosenv.2016.07.003
Wang, M., Kai, K., Jin, Y., Sugimoto, N., Dashdondog,
B. (2017). Air particulate pollution in Ulaanbaatar,
Mongolia: Variation in atmospheric conditions from
autumn to winter. SOLA, 13: 90-95.
https://doi.org/10.2151/s01a.2017-017

Kerimray, A., Azbanbayev, E., Kenessov, B., Plotitsyn,
P., Alimbayeva, D., Karaca, F. (2020). Spatiotemporal
variations and contributing factors of air pollutants in
Almaty, Kazakhstan. Aerosol and Air Quality Research,
20: 1340-1352.
https://doi.org/10.4209/aaqr.2019.09.0464

Kozhagulov, S., Adambekova, A., Quadrado, J.C.,
Salnikov, V., Rysmagambetova, A., Tanybayeva, A.
(2025). Trends in atmospheric emissions in Central
Asian countries since 1990 in the context of regional
development. Climate, 13(9): 176.
https://doi.org/10.3390/cli13090176

Tursumbayeva, M., Muratuly, A., Baimatova, N.,
Karaca, F., Kerimray, A. (2023). Cities of Central Asia:
New hotspots of air pollution in the world. Atmospheric
Environment, 309: 119901.
https://doi.org/10.1016/j.atmosenv.2023.119901

5244

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

Darynova, Z., Maksot, A., Kulmukanova, L.,
Malekipirbazari, M., Sharifi, H., Amouei Torkmahalleh,
M., Holloway, T. (2018). Evaluation of NO: column
variations over the atmosphere of Kazakhstan using
satellite data. Journal of Applied Remote Sensing, 12(4):
042610. https://doi.org/10.1117/1.JRS.12.042610
Gallardo, L., Barraza, F., Ceballos, A., Galleguillos, M.,
et al. (2018). Evolution of air quality in Santiago: The
role of mobility and lessons from the science-policy
interface. Elementa: Science of the Anthropocene, 6(1):
38. https://doi.org/10.1525/elementa.293

Bai, X., Ming, X., Zhao, M., Zhou, L. (2024). Explore
the effect of apparent temperature and air pollutants on
the admission rate of acute myocardial infarction in
Chonggqing, China: A time-series study. BMJ Open,
14(4): ¢084376. https://doi.org/10.1136/bmjopen-2024-
084376

Tran, H.M., Tsai, F.J., Wang, Y.H., et al. (2025). Joint
effects of temperature and humidity with PM..s on
COPD. BMC  Public Health, 25(1): 424
https://doi.org/10.1186/s12889-025-21564-3

Niu, Y., Yuan, M., Jiang, F., Yang, Y., Jia, X., Yang, C.,
Bao, J., Shi, X. (2025). Modification effects of ambient
temperature and relative humidity on acute upper
respiratory infection morbidity by PM..s components in
university students. Atmospheric Pollution Research,
16(4): 102430.
https://doi.org/10.1016/j.apr.2025.102430
Zender-Swiercz, E., Galiszewska, B., Telejko, M.,
Starzomska, M. (2024). The effect of temperature and
humidity of air on the concentration of particulate matter
— PM:.s and PMio. Atmospheric Research, 312: 107733.
https://doi.org/10.1016/j.atmosres.2024.107733
Purnomo, A., Andang, A., Badriah, S., Paryono, E.,
Sambas, A., Umar, R. (2024). Influence of wind speed
and direction on the performance of low-cost particulate
matter sensors. Environment and Ecology Research,
12(4): 446-455.
https://doi.org/10.13189/eer.2024.120409

de Arruda Moreira, G., Marques, M.T. A., da Silva
Lopes, F.J., de Fatima Andrade, M., Landulfo, E. (2024).
Analyzing the influence of the planetary boundary layer
height, ventilation coefficient, thermal inversions, and
aerosol optical depth on the concentration of PMa.s in the
city of Sdo Paulo: A long-term study. Atmospheric
Pollution Research, 15(8): 102179.
https://doi.org/10.1016/j.apr.2024.102179

Han, Z., Wang, Y., Xu, J., Shang, Y., et al. (2024).
Assessment of multiple planetary boundary layer height
retrieval methods and their impact on PMz.s and its
chemical compositions throughout a year in Nanjing.
Remote Sensing, 16(18): 3464.
https://doi.org/10.3390/rs16183464

Wu, C., Wang, R., Lu, S., Tian, J., Yin, L., Wang, L.,
Zheng, W. (2025). Time-series data-driven PMoa.s
forecasting: From theoretical framework to empirical
analysis. Atmosphere, 16(3): 292.
https://doi.org/10.3390/atmos16030292

Pan, M., Xia, B., Huang, W., Ren, Y., Wang, S. (2024).
PMo:.s concentration prediction model based on random
forest and SHAP. International Journal of Pattern
Recognition and Artificial Intelligence, 38(5): 2452012.
https://doi.org/10.1142/S0218001424520128

Alrashidi, H., Sibai, F.N., Abonamah, A., Alrashidi, M.,



(21]

(23]

(24]

[25]

[26]

(28]
[29]

[30]

[31]

[32]

[33]

[34]

Alsaber, A. (2025). PM..s: Air quality index prediction
using machine learning: Evidence from Kuwait’s air
quality monitoring stations. Sustainability, 17(20): 9136.
https://doi.org/10.3390/sul17209136

Chang, Y.S., Chiao, H.T., Abimannan, S., Huang, Y.P.,
Tsai, Y.T., Lin, K.M. (2020). An LSTM-based
aggregated model for air pollution forecasting.
Atmospheric Pollution Research, 11(8): 1451-1463.
https://doi.org/10.1016/j.apr.2020.05.015

Bai, X., Zhang, N., Cao, X., Chen, W. (2024). Prediction
of PM..s concentration based on a CNN-LSTM neural
network algorithm. Peer], 12: el7811.
https://doi.org/10.7717/peerj.17811

Yedilkhan, M., Berdyshev, A., Galiyev, M.,
Merembayev, T. (2025). Air quality prediction based on
the LSTM with attention using meteorological data in
urban area in Kazakhstan. Journal of Problems in
Computer Science and Information Technologies, 3(1):
3-12. https://doi.org/10.26577/jpcsit20253101

Houdou, A., El Badisy, 1., Khomsi, K., Abdala, S.A.,
Abdulla, F., Najmi, H., Obtel, M., Belyamani, L.,
Ibrahimi, A., Khalis, M. (2024). Interpretable machine
learning approaches for forecasting and predicting air
pollution: A systematic review. Aerosol and Air Quality
Research, 24 230151.
https://doi.org/10.4209/aaqr.230151

U.S. Environmental Protection Agency (EPA). (1999).
Guideline on data handling conventions for the PM
NAAQS (EPA-454/R-99-008). Office of Air Quality
Planning and Standards. Research Triangle Park, NC.
https://nepis.epa.gov/Exe/ZyPDF.cgi/2000D6J7.PDF?D
ockey=2000D6J7.PDF.

Grange, S.K., Carslaw, D.C. (2019). Using
meteorological normalisation to detect interventions in
air quality time series. Science of the Total Environment,
653: 578-588.
https://doi.org/10.1016/j.scitotenv.2018.10.344
Carslaw, D.C., Ropkins, K. (2012). Openair — An R
package for air quality data analysis. Environmental
Modelling & Software, 27-28: 52-61.
https://doi.org/10.1016/j.envsoft.2011.09.008

Hyndman, R.J., Athanasopoulos, G. (2021). Forecasting:
Principles and Practice (3rd ed.). OTexts.

Breiman, L. (2001). Random forests. Machine Learning,
45: 5-32. https://doi.org/10.1023/A:1010933404324
Hochreiter, S., Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8): 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Tashman, L.J. (2000). Out-of-sample tests of forecasting
accuracy: An analysis and review. International Journal
of Forecasting, 16(4): 437-450.
https://doi.org/10.1016/S0169-2070(00)00065-0
Bergmeir, C., Benitez, J.M. (2012). On the use of cross-
validation for time series predictor evaluation.
Information Sciences, 191: 192-213.
https://doi.org/10.1016/j.ins.2011.12.028

Zhou, S., Wang, W., Zhu, L., Qiao, Q., Kang, Y. (2024).
Deep-learning architecture for PMa.s concentration
prediction: A review. Environmental Science and
Ecotechnology, 21: 100400.
https://doi.org/10.1016/j.ese.2024.100400

Oziipak, Y., Alpsalaz, F., Aslan, E. (2025). Air quality
forecasting using machine learning: Comparative
analysis and ensemble strategies for enhanced prediction.

5245

[35]

[37]

[38]

[39]

[40]

[41]

[43]

[44]

Water, Air, and Soil Pollution, 236: 464.
https://doi.org/10.1007/s11270-025-08122-8

Casady, C.B., Cepparulo, A., Giuriato, L. (2024). Public-
private partnerships for low-carbon, climate-resilient
infrastructure: Insights from the literature. Journal of
Cleaner Production, 470: 143338.
https://doi.org/10.1016/j.jclepro.2024.143338
Domalatov, Y., Turginbayeva, A., Apysheva, A.,
Azimkhan, A., Kamali, K., Kuangaliyeva, T., Kenzhin,
Z., Aidaraliyeva, A. (2024). Identifying the
characteristics of public-private partnership projects on
green energy in developing countries with different
incomes. FEastern-European Journal of Enterprise
Technologies, 131(13): 14-21.
https://doi.org/10.15587/1729-4061.2024.311836
National Environment Agency. (2019). Air and coastal
water quality monitoring. https://www.nea.gov.sg/our-
services/pollution-control/air-and-coastal-water-quality-
monitoring.

World Bank. (2022). The Global Health Cost of PM2.5
Air Pollution: A Case for Action Beyond 2021. World
Bank Group.
https://openknowledge.worldbank.org/entities/publicati
on/c96eel44-4a4b-5164-ad79-74c051179¢ee.

United Nations Environment Programme. (2024).
Actions on Air Quality Report Update. UNEP.
https://www.unep.org/topics/air/multi-level-air-quality-
management/actions-air-quality-report-update.

OECD. (2023). Improving the Landscape for Sustainable
Infrastructure Financing.
https://www.oecd.org/content/dam/oecd/en/publications
/reports/2023/01/improving-the-landscape-for-
sustainable-infrastructure-
financing_637bd452/bc2757cd-en.pdf.

Samal, K.K.R., Panda, A.K., Babu, K.S., Das, S.K.
(2021). An improved pollution forecasting model with
meteorological impact using multiple imputation and
fine-tuning approach. Sustainable Cities and Society, 70:
102923. https://doi.org/10.1016/j.scs.2021.102923

Li, X., Peng, L., Hu, Y., Shao, J., Chi, T. (2016). Deep
learning architecture for air quality predictions.
Environmental Science and Pollution Research, 23(22):
22408-22417. https://doi.org/10.1007/s11356-016-7812-
9

Gao, Z., Do, K., Li, Z., Jiang, X., Maji, K.J., Ivey, C.E.,
Russell, A.G. (2024). Predicting PMo..s levels and
exceedance days using machine learning methods.
Atmospheric Environment, 323: 120396.
https://doi.org/10.1016/j.atmosenv.2024.120396
Garbagna, L., Saheer, L.B., Oghaz, M.M.D. (2025). Al-
driven approaches for air pollution modelling: A
comprehensive  systematic review. Environmental
Pollution, 373: 125937.
https://doi.org/10.1016/j.envpol.2025.125937

NOMENCLATURE

WHO
PM: s

PMio
RF

LSTM

ML

World Health Organization
Particulate Matter < 2.5 um
Particulate Matter < 10 pm

Random Forest

Long Short-Term Memory

Machine Learning



DL
IoT
LV
RMSE
MAE

Deep Learning MAPE
Internet of Things AQG
Limit Value AQI
Root Mean Square Error

Mean Absolute Error
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Air Quality Guidelines
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