

Multi-Criteria Decision Analysis Approach to the Assessment of the Utilization Pathway of Hermentia Illucens Oil as an Environmentally Friendly Raw Material

Sugeng Nuraji^{1*}, Dino Rimantho², Dita Ariyanti³

¹ Environmental Health Department, Palu Ministry of Health Politechnic, Palu 94148, Indonesia

² Industrial Engineering Department, Pancasila University, Jakarta 12460, Indonesia

³ Research Centre for Applied Microbiology, National Research and Innovation Agency, Bogor 16911, Indonesia

Corresponding Author Email: sugengadjie777@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license (<http://creativecommons.org/licenses/by/4.0/>).

<https://doi.org/10.18280/ijsp.201239>

ABSTRACT

Received: 8 September 2025

Revised: 22 December 2025

Accepted: 29 December 2025

Available online: 31 December 2025

Keywords:

organic waste, MCDA, *Hermentia Illucens*, BSF, bio-diesel, bio-lubricant, animal feed, bioproducts

Inadequate disposal of organic waste results in adverse environmental impacts and financial losses. The aim was to determine the most profitable option, considering environmental, economic, technological, and regulatory issues. This approach involves appointing a team of organic waste management experts as decision-makers in the organic waste recycling sector. This method facilitates resource recovery while addressing the problem of organic waste disposal. This study used multicriteria decision analysis techniques to evaluate four potential recycling pathways for organic waste as feedstock in manufacturing biodiesel, bio-lubricants, animal feed, and bioproducts. The priority scale uses the paired comparison technique as a weighting approach to assess the selected criteria. Findings indicate that decision-makers prioritize environmental sustainability as the most essential assessment factor, followed by economic criteria. Conversely, process management elements are considered less critical. Among the options evaluated, using organic waste as a raw material for bioproduct synthesis was identified as the most effective organic waste recycling method. This option had the lowest coefficient of variation and was the most profitable. Bio-lubricant production was recognized as the second most preferred approach. The applied MCDA method demonstrated reliability and efficacy, identifying the preferred organic waste recycling alternative among the evaluated options. This was achieved through the application of decision-makers' skills and knowledge.

1. INTRODUCTION

Several methods have been evaluated globally in the past decade to address environmental challenges, including adopting a circular economy model across sectors to reduce carbon emissions by fifty percent by 2030 and attain carbon neutrality by 2050 [1]. Disposing of the organic portion of municipal solid waste (OFMSW) is a considerable difficulty, amounting to 900 million tons annually worldwide, and is projected to climb by 70% by 2050 owing to increased food waste [2]. Solid waste management (SWM) is a multifaceted issue that impacts several aspects of development across the three pillars of sustainability: environmental, economic, and social [3]. The fundamental principles of the Sustainable Development Goals (SDGs) can be broadly aligned with the objectives that have historically influenced the evolution of solid waste management (SWM) practices, specifically public health (SDG 3), environmental concerns (SDGs 6 and 13), and resource valuation (SDG 11), alongside the more recent emphasis on climate change (SDG 13). For instance, SDG 12.3 (to reduce per capita global food waste at retail and consumer levels) and SDG 14 (addressing the indiscriminate use and disposal of plastic waste that leads to marine litter and microplastic issues) cannot be achieved without fulfilling the

objectives of sustainable solid waste management. Accumulated garbage and improperly discarded refuse pose considerable health and environmental risks (SDG 6 & 13). Mitigating these effects significantly exceeds the real expenditure of establishing and maintaining basic, sufficient waste management systems [4]. The SWM is directly associated with 12 of the 17 UN-SDGs, serving as the primary utility system for over 2 billion people [3, 5].

Global trash is projected to increase to 3.4 billion tonnes by 2050, up from 2.01 billion tons. Without advancements in the solid waste industry, emissions will rise to 2.38 billion tons of CO₂-equivalent by 2050 [4]. A paradigm shift is essential from the depletive 'produce-consume-dispose' model of the linear economy to the 'reduce-reuse-recovery-recycle-redesign-remake' model of the circular economy, which is more regenerative and restorative, potentially benefiting SDGs 1, 3, 6-9, 11, and 13-15 [6]. The circular economy signifies a structural transformation that fosters long-term stability and optimizes the utilization and circulation of commodities, resources, and nutrients (SDG 12) while delivering economic, environmental, and societal advantages (SDG 1, 2, 9, 13-15) that assist both public and private sectors in achieving short- and long-term SDG objectives (Ellen MacArthur Foundation, 2020). Waste management based on a circular economy may

be a fundamental element in advancing the three pillars of sustainable development: economic growth, social inclusion, and environmental conservation [7].

The Ellen MacArthur Foundation delineates three principles of Circular Economy (CE): (1) safeguard and augment natural capital by managing finite resources and equilibrating renewable resource flows; (2) maximize resource yields by perpetually circulating products, components, and materials at optimal utility within both technical and biological cycles; (3) enhance system efficacy by identifying and eliminating negative externalities [8]. Circular Economy (CE) is an overarching concept aimed at reducing material inputs and minimizing waste production [9]. Despite being a term that has been discussed since 1960, significant disparities remain regarding its conceptualization [10], characteristics [11], definition of objectives [12], implementation, and performance evaluation indicators [13]. Furthermore, its genuine contribution to sustainable development is perpetually scrutinized as its goals have predominantly focused on economic prosperity and environmental quality [10], neglecting the social equity aspect that must address the needs of both present and future generations [14].

One of the efforts to implement the CE concept in general organic waste management can be done through bioconversion. Bioprocesses provide a viable and eco-friendly alternative to the conventional chemical methods now used to manufacture platform chemicals, fuels, and many commercial items [15]. Extensive research is underway to enhance bioconversion processes and biorefineries, which now cohabit to a degree alongside traditional refineries. Various choices and technologies are now being researched and are available to produce diverse beneficial end-products using bioprocesses. Numerous processes prioritize renewable resources, biomass, or contaminants as principal feedstocks. The latter circumvents food-fuel rivalry, in contrast to some feedstocks evaluated before and, at times, continue in contemporary discussions. Appropriate feedstocks include biomass [16, 17], solid waste [18-20], sludge [21], wastewater [22], waste gases [23], and byproducts such as glycerol from other biorefineries [24].

Commercially valuable goods derived from the sustainable conversion of biomass in a biorefinery are known as bio-products or bio-based products [25]. Along with the efficient use of resources and the sustainability of the environment, the significance of producing bio-products is centered on making sure that there are good effects on the economic sector. Moreover, insect-mediated bioconversion is one of the newly suggested alternate ways for recycling organic waste. The black soldier flies (BSF), *Hermetia illucens*, are regarded as the most promising insect for valorizing waste and byproducts from the agri-food value chain [26]. Recent research efforts to integrate CE principles through BSF larvae cultivation to improve organic waste management and with ecological benefits [27-29].

The Black Soldier Fly (BSF), a detritivorous insect, has garnered considerable attention due to its capacity to thrive on a variety of organic wastes, including livestock manure [30, 31], human feces [32], the organic fraction of municipal solid waste [33, 34], food waste [35], agricultural residues [36], compost leachate [37], landfill leachate [38], insect farm waste [39], fish offal [40]. This process results in the production of protein- and fat-rich larval, prepupal, or pupal biomass, henceforth referred to as BSF biomass, for applications in animal feed and biofuel. Furthermore, the BSF is neither

recognized as a vector for infections nor a nuisance to companion animals or people [40].

Products generated from black soldier fly larvae (BSFL), and black soldier fly (BSF) protein powder have garnered interest in recent years owing to their potential as a sustainable and nutrient-dense food source, characterized by high protein and fat content and a favorable amino acid profile [41]. Acquiring four from insects is one method to incorporate edible insects into their diet or to create new dishes. These four items may be used for food fortification due to their high protein and mineral content (Ca, P, Cu, Fe, Mg, Mn, K, etc.) and their antioxidant properties. This protein has a high digestibility and a superior amino acid profile [42]. The protein component of BSF resembles a soybean meal and is mostly composed of amino acids. Furthermore, BSFL demonstrates crude protein levels comparable to or marginally above those of some plant-based proteins, such as linseed, sunflower, cottonseed, lupins, or fava beans [43]. The amino acid profile of BSF is similar to that of superior animal and plant proteins, such as egg white and soybean, while exhibiting higher concentrations of tyrosine, phenylalanine, and histidine relative to these protein sources [44].

The BSFL contains significant quantities of lauric, oleic, myristic, palmitic, and palmitoleic acids [44]. Lauric acid, a principal component of coconut oil, constitutes the bulk of the oil content in BSF [41]. The proportion of unsaturated fatty acids in BSFL is modest (19–37%). In comparison to fish oil, black soldier flies larvae (BSFL) exhibit reduced levels of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) while displaying elevated levels of polyunsaturated fatty acids (PUFA) [45].

The utilization of *Hermetia Illucens* as a bioproduct in industrial applications significantly benefits the environment and economy. Furthermore, it helps reconcile social disputes regarding land use for landfills. Thus, this manuscript evaluates several different utilization routes of BSF oil for use as a feedstock in the production of biodiesel (Alt1), bio-lubricant (Alt2), animal feed (Alt3), and bioproducts (Alt4). The main objective of this study is to determine the most appropriate option to assess the utilization of BSF oil, considering technological, economic, and environmental factors. This article was achieved by applying multi-criteria decision analysis (MCDA) methodology and involving a team of experts as decision-makers.

2. METHOD

Various strategies and processes for delineating the decision-making process are present in the literature. This domain encompasses several scientific fields, including operational research, computer science, cognitive science, decision theory, psychology, management, economics, sociology, political science, and statistics [46]. The issue of decision-making may be articulated using mathematical language and models that represent actual realities. The methodologies used in this domain originate from econometrics and its related scientific fields, including statistics (the analysis and processing of data representing reality) and operational research (the optimization of choices) [47]. In operational research, decision-makers are the focal point. They use the established evaluation criteria to evaluate decision-making scenarios according to their preferences. They encounter a decision-making dilemma that often

necessitates the consideration of opposing objectives. This scenario is characterized as a multi-criteria decision dilemma. Multi-criteria decision-making support techniques endorse this methodology. Using statistical methods for a multi-dimensional representation of reality, known as multi-dimensional comparative analysis, enables objective and automated analysis to address the issue. The involvement of a decision-maker is negligible in such a context. This methodology relies on aggregate metrics and may be used, for instance, to categorize and rank decision alternatives [48]. Depending on the methodology utilized, various ideas and approaches for addressing choice issues are used. The concept of multi-dimensional comparative analysis derives from techniques and taxonomic approaches used for the ranking and categorizing of intricate and diverse multi-dimensional entities. They enable the implementation of investigations on intricate economic issues. They are mostly intended to rank and use patterns for their creation. This collection of methodologies includes TOPSIS [49, 50], VIKOR [51, 52], HELWIG [53], VMCM [48], and PVM [48].

The advantages of the VIKOR method include ranking based on appropriate compromises for conflicting criteria, managing qualitative and quantitative standards, not requiring an explicit preference structure, theoretical foundations and basic calculations, producing a complete ranking of choices, and being widely applied in all fields. Meanwhile, the disadvantages of the VIKOR method include sensitivity to criteria weights, instability between alternatives and ranking reversals, limitations in handling inherent uncertainty, and complexity of interpretation with many criteria [54].

The VIKOR approach (Serbian: VIsekrzterijumska Optimizacija Kompromisno Resenje) facilitates the identification of decision alternatives and selecting a compromised solution, accommodating competing assessment criteria. Solutions (variants) are assessed based on their proximity to the ideal and anti-ideal points. For individual decision-making alternatives, the weighted average distance from the ideal answer, the maximum weighted distance from this point, and the comprehensive indicator are calculated. The variations are prioritized using the values derived in this manner, resulting in three distinct rankings. The compromise solution suggestion represents a choice option characterized by the minimal value of the comprehensive indicator, contingent upon the simultaneous fulfillment of acceptable advantage and acceptable stability constraints. If any or both of these requirements are unmet, the solution comprises an appropriate collection of variations [48, 51].

The performance values R_{ij} of the options related to specific criteria were analyzed to determine the minimum (R_{ij})min and maximum (R_{ij})max values in the decision matrix.

a. Pairwise comparisons of each criterion

$$w_i = \frac{1}{n} \sum_j a_{ij} \quad (1)$$

b. The maximum and minimum values were used in normalizing and linearizing the score set for each Maggot BSF development factor according to the equation:

$$R_{ij} = \left(\frac{x_j^+ - x_{ij}}{x_j^+ - x_j^-} \right) \quad (2)$$

where R_{ij} and X_{ij} ($i = 1, 2, 3, \dots, m$ and $j = 1, 2, 3, \dots, n$) are the

elements of the decision-making matrix (alternative i to criterion j), and X_j^+ is the best factor of criterion j . X_j^- is the element values of each criterion.

c. Determine the values of S and R using the following equation:

$$S_i = \sum_{j=1}^n w_j \left(\frac{x_j^+ - x_{ij}}{x_j^+ - x_j^-} \right) \quad (3)$$

And,

$$R_i = \max_j \left[W_j = \left(\frac{x_j^+ - x_{ij}}{x_j^+ - x_j^-} \right) \right] \quad (4)$$

where W_j is the weight of each criterion, j .

d. Determine the index value with the equation

$$Qi = \left[\frac{S_i - S^+}{S^+ - S^-} \right] \nu + \left[\frac{R_i - R^+}{R^+ - R^-} \right] (1 - \nu) \quad (5)$$

where,

$$S = \min S_w$$

$$S^+ = \max S_i$$

$$R^- = \min R_i$$

$$R^+ = \max R_i$$

$$\nu = 0.5$$

The ranking result is the result of sorting S, R, and Q. The best alternative solution based on the minimum Q value becomes the best ranking with the following conditions:

$$Q(A^{(2)}) - Q(A^{(1)}) \geq DQ \quad (6)$$

where,

$A^{(2)}$ = alternative with second order in Q ranking

and

$A^{(1)}$ = alternative with the best order in Q ranking

$DQ = 1 - (m-1)$ where m is the number of alternatives.

Alternative $A^{(1)}$ must be ranked best on S and/or R.

Table 1. Criteria and alternatives for utilization pathway of Hermentia Illucens oil as an environmentally friendly raw material or make choices

Criteria	Code	Alternative	Code
The production process is simple and easy	CRT_1	Animal Feed	ALT_1
Process management	CRT_2	Biolubricants	ALT_2
Product quality complies with standards	CRT_3	Biodiesel	ALT_3
Environmentally aware	CRT_4	Bioproducts	ALT_4
High investment costs	CRT_5		
Lack of policies supporting renewable materials	CRT_6		
Changes in strategy and policy	CRT_7		
High potential for conflict of interest	CRT_8		
Low coordination between stakeholders	CRT_9		
Lack of financial support	CRT_10		
Supporting Circular Economy	CRT_11		

3. RESULT

Decision criteria refer to the guiding principles, objectives, standards, benchmarks, and conditions used by a team or organization to refine alternatives or make choices. These features empower the team to select a course of action from among several alternatives. These features enhance the quality, uniformity, and fairness of collective judgment. Criteria are used to evaluate alternatives. Criteria are based on the type and quality of alternatives, which may vary across projects.

Criteria should be determined by stakeholders and policymakers, taking into account each stakeholder's preferences and the components of the situation. Table 1 summarizes the criteria and alternatives derived from the experts' responses to the questionnaire. The initial stage of the criteria assessment is a pairwise comparison using Eq. (1) on each of the predetermined criteria. The results of the pairwise comparisons are presented in Table 2. Next, the normalization determination is carried out from the results of the pairwise comparison, and the results are shown in Table 3.

Table 2. Pairwise comparisons on each criterion

Criteria	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
CRT_1	1.000	2.646	0.416	0.416	0.416	0.379	0.416	0.416	0.416	2.159	1.823
CRT_2	0.378	1.000	0.402	0.402	0.520	0.379	0.402	0.546	0.546	0.546	0.546
CRT_3	2.401	2.489	1.000	2.159	2.159	2.159	0.454	2.159	0.454	2.088	0.494
CRT_4	2.401	2.489	0.463	1.000	0.402	0.454	0.454	0.477	2.019	0.402	0.379
CRT_5	2.401	1.924	0.463	2.489	1.000	1.540	2.019	1.918	2.197	2.197	0.379
CRT_6	2.642	2.642	0.463	2.204	0.649	1.000	2.273	2.197	2.474	2.392	2.474
CRT_7	2.401	2.489	2.204	2.204	0.495	0.440	1.000	0.494	0.494	0.494	0.494
CRT_8	2.401	1.830	0.463	2.096	0.521	0.455	2.023	1.000	2.474	2.392	0.416
CRT_9	2.401	1.830	2.204	0.495	0.455	0.404	2.023	0.404	1.000	0.494	0.416
CRT_10	0.463	1.830	0.479	2.489	0.455	0.418	2.023	0.418	2.023	1.000	0.416
CRT_11	0.549	1.830	2.023	2.642	2.642	0.404	2.023	2.401	2.401	2.401	1.000
Total	19.440	22.998	10.581	18.597	9.715	8.032	15.109	12.433	16.499	16.567	8.838

Table 3. Normalizing and linearizing the score set

Criteria	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	Total
CRT_1	0.051	0.115	0.039	0.022	0.043	0.047	0.028	0.033	0.025	0.130	0.206	0.741 0.068
CRT_2	0.019	0.043	0.038	0.022	0.053	0.047	0.027	0.044	0.033	0.033	0.062	0.422 0.038
CRT_3	0.124	0.108	0.095	0.116	0.222	0.269	0.030	0.174	0.027	0.126	0.056	1.347 0.123
CRT_4	0.124	0.108	0.044	0.054	0.041	0.056	0.030	0.038	0.122	0.024	0.043	0.685 0.063
CRT_5	0.124	0.044	0.134	0.103	0.192	0.134	0.154	0.133	0.133	0.043	0.043	1.235 0.113
CRT_6	0.136	0.115	0.044	0.119	0.067	0.125	0.150	0.177	0.150	0.144	0.280	1.506 0.137
CRT_7	0.124	0.108	0.208	0.119	0.051	0.055	0.066	0.040	0.030	0.030	0.056	0.886 0.081
CRT_8	0.124	0.080	0.044	0.113	0.054	0.057	0.134	0.080	0.150	0.144	0.047	1.026 0.094
CRT_9	0.124	0.080	0.208	0.027	0.047	0.050	0.134	0.033	0.061	0.030	0.047	0.839 0.077
CRT_10	0.024	0.080	0.045	0.134	0.047	0.052	0.134	0.034	0.123	0.060	0.047	0.779 0.071
CRT_11	0.028	0.080	0.191	0.142	0.272	0.050	0.134	0.193	0.146	0.145	0.113	1.494 0.136
												10.959

Table 4. Alternative weights for each criterion

Alternative	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
Animal Feed	90	90	90	90	90	90	90	90	90	90	90
Biolubricants	75	70	80	75	70	80	80	80	70	60	70
Biodiesel	75	80	80	80	80	80	80	80	70	70	80
Bioproducts	75	80	80	80	80	80	80	80	70	80	80

Table 5. Alternative normalization calculations for each criterion

Alternative	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
Animal Feed	0	0	0	0	0	0	0	0	0	0	0
Biolubricants	1	1	1	1	1	1	1	1	1	1	1
Biodiesel	1	0.5	1	0.666667	0.5	1	1	1	1	0.666667	0.5
Bioproducts	1	0.5	1	0.666667	0.5	1	1	1	1	0.333333	0.5

Table 6. Calculation result of normalized weights

Alternative	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
Animal Feed	0	0	0.123	0	0	0	0	0	0	0	0
Biolubricants	0.067	0.038	0.123	0.062	0.113	0.137	0.081	0.094	0.077	0.071	0.136
Biodiesel	0.038	0.061	0.062	0.075	0.069	0.081	0.094	0.077	0.071	0.091	0.5
Bioproducts	0.123	0.031	0	0.092	0.040	0.094	0.077	0	0.136	0.333	0

The questionnaire results showed that 11 criteria influenced the choices related to the utilization of *Hermentia Illucens* oil as a raw material. The responses to the questionnaire also showed the significance attributed to each criterion. Alternatives are potential ways, options, and strategies that must be identified to achieve the objectives. Alternatives are usually selected collectively by the government, and stakeholders generally provide information on the development of *Hermentia Illucens* oil (BSF).

Table 4 contains criteria data where alternative assessments will be calculated based on the assessment criteria that have been given weights for each criterion, and these weights are given by expert respondents. Moreover, expert respondents provided alternative assessments for each criterion using the following thresholds: excellent (90–100); good (75–89); sufficient (60–74); and poor (0–59). The results of the expert assessments are shown in Table 4.

Based on Table 4, the next step is to carry out the normalization and weight normalization assessments shown in Tables 5 and 6.

The next step is to calculate the Utility Measures (S) and Regret Measure (R), which are shown in Table 7.

Table 7. Calculation of S and R values

Alternative	Score S	Score R
Animal Feed	0.122881	0.123
Biolubricants	1	0.137396
Biodiesel	1.219225	0.5
Bioproducts	0.925976	0.333333

Based on the results obtained by the VIKOR method in Table 7, it is known that the main choice of experts related to the use of maggot oil is animal feed, which is around 0.123, and biodiesel is around 0.5. Furthermore, the next choices are bioproducts and biolubricants with values of 0.333 and 0.137, respectively.

4. DISCUSSION

The discussion revealed that the main priority in the strategy for utilizing BSF Maggots is as animal feed. The use of BSF Maggots as animal feed is based on their abundant protein and fat content. According to food futurists, a civilization that prioritizes sustainability will gradually accept insects as a substitute protein source [52]. The demand for feed resources is expected to increase due to the predicted increase in consumption of animal products by 60–70% by 2050. However, conventional feed ingredients such as fish meal and soybean meal are expensive and may eventually become scarce. In this regard, insect farming has emerged as a sustainable substitute, providing an effective way to meet the growing demand for animal feed while reducing dependence on traditional resources [55].

Furthermore, a study conducted by Suryati et al. [56] demonstrated several advantages of BSF maggot oil, such as ease of cultivation, non-competition for land use for food crops, higher oil productivity, and circular economic applications for organic waste. On the other hand, maggot oil also faces disadvantages such as the technology being unfamiliar to the public, oil quality being affected by the type of organic waste, and difficulties in cultivating BSF maggots in some areas [57]. The protein in BSFL is rich in essential

amino acids, which are important for the growth and development of ruminants, and is easily digested, with protein digestibility ranging from 72.78 to 78.67 percent [58]. In addition, the apparent metabolizable energy (AME) value of BSF larvae is high [54]. The most common essential amino acids in prepupal biomass are arginine, valine, and lysine. The amount of amino acids remains constant despite changes in the substrate. The nutritional reliability of BSF prepupae (6) is demonstrated by the persistent presence of threonine, isoleucine, methionine, and tryptophan, despite methionine, cysteine, and tryptophan deficiencies [59].

Conventional procedures, including water-based extraction, salt, detergent, and alkaline solvents, as well as non-conventional procedures such as microwave, ultrasound, enzyme, and pulsed electric field-assisted extraction, can be used to recover proteins from BSF larvae [60]. Furthermore, by using carbohydrates as the primary source of acetyl-CoA, BSF are able to synthesize some fatty acids through de novo biosynthesis. However, BSF cannot produce polyunsaturated fatty acids; instead, they absorb them from the diet and convert them to saturated versions [61]. Up to 76% of the total fatty acids in larvae are saturated fatty acids (SFAs), followed by polyunsaturated fatty acids (PUFAs) up to 23% and monounsaturated fatty acids (MUFAs) up to 32%. Lauric acid (C12:0) is the most common SFA, accounting for up to 52% of the total fatty acid content regardless of diet composition. Palmitic acid (C16:0) and oleic acid (C18:1 n-9) provide 12–22% and 10%–25%, respectively [62].

The availability of sustainable feed that enables livestock farmers to meet the growing demand for highly nutritious animal products is a challenge in animal nutrition. Fishmeal is the primary protein source in livestock feeds, which also contains soybeans, fish oil, and some grains. The fact that land for soybean cultivation is dwindling worldwide and marine overexploitation continues to reduce the abundance of small pelagic forage fish, which are the source of fishmeal and fish oil, poses a significant barrier to the sustainable production of increasingly sought-after fish and meat products [63]. The prices of fishmeal and soybean meal have risen due to increased demand and a lack of resources to produce them, while feed costs, which account for 60–70% of livestock production costs, are already prohibitive and unaffordable for resource-poor livestock farmers [64]. The livelihoods of livestock farmers in Indonesia, particularly small-scale farmers, are also affected by this situation. Therefore, continuing to use fishmeal and soybean meal as protein sources in feed production is not a sustainable alternative [6]. There is considerable interest in potential replacements for these expensive ingredients as Indonesian industries seek alternative protein sources for their growing aquaculture, swine, and poultry subsectors. Therefore, practical and sustainable substitutes are needed.

The availability and willingness to pay of target consumers for proposed new insect products are crucial factors to consider in research, policy, and commercial production. Creating products that target those most likely to accept and benefit from them will be aided by a thorough understanding of the factors influencing consumer demand [65]. Therefore, livestock farmers' knowledge and willingness to pay will be crucial to the acceptance and use of insect-based feeds for livestock production and the consumption of the resulting livestock products [66]. Although little is known about these attitudes, they are crucial for commercial livestock production in Indonesia.

In integrated fish-livestock farming systems, smallholder farmers can increase the supply of local insects for animal feed by cultivating insects. Crop residues and other agricultural waste can be used as inputs for BSF development, and the resulting fly larvae can then be added to animal feed. As a result, the farm's nutrient cycle is closed using a circular strategy. Insect farming can help resource-constrained farmers control waste and increase yields on limited land [67].

With limited resources, smallholder farmers can launch creative ventures to produce insect meal as animal feed, and waste from insect production can be converted into organic fertilizer for crops [68]. The sale of crops and animal products (fish, meat, eggs, and insect meal) can provide food or supplement household income. Thus, by converting waste into resources, insects can efficiently end the nutrient cycle and prevent food waste. Legal restrictions on the use of insect meal as an animal feed ingredient are crucial factors to consider when completing this cycle [69]. Insect meal is currently permitted in Kenya and Uganda for use in fish and livestock feed [70], and is being developed in the European Union. Therefore, regulators are now also beginning to accept this viable concept.

Affordable goods and services related to sustainable livelihoods and participation in value chains in a profitable and sustainable manner are available to individuals, households, entrepreneurs, and micro, small, and medium enterprises through inclusive business models (IB) [71]. Sustainable business solutions that increase low-income communities' access to products, services, and employment opportunities in a profitable manner are known as inclusive business models [72]. By selling these insects to nearby cattle farmers and feed mills, smallholder farmers can engage with the local economy while divesting themselves from expensive external inputs such as fishmeal-based feed.

Several Sustainable Development Goals (SDGs) are interconnected, and the application of creative and sustainable food production techniques, including the use of insect farming for animal feed with smallholder farmers, can contribute significantly to some of them [68]. Globally, the ability of rural populations to earn a decent living, avoid hunger, participate in decision-making, and overcome social and economic marginalization is influenced by their access to and control over natural resources [73]. Resource-poor individuals can establish small-scale insect farms with few inputs to produce, both for their own consumption and for local markets, thereby reducing poverty (SDG 1) and hunger (SDG 2) [66].

Malnutrition is exacerbated by water scarcity, poor water quality, and inadequate sanitation, which negatively impact food production and livelihoods. Preliminary trials conducted in South Africa have shown that BSF larvae can be used to manage human waste in urine-diverting dehydration toilets while conserving water, thereby alleviating sanitation issues that predominantly impact the rural poor (SDG 6). A new industry for job creation and economic expansion is commercial insect farming (SDG 8). In addition to improving gender equality (SDG 5), inclusive insect farming can promote sustainable industrialization, provide employment, and support local technology development in low-income communities (SDG 9). Sustainable use and reduction of food waste can be achieved through insect bioconversion (SDG 12). A sustainable alternative to fishmeal could be increased insect production, which would mitigate the impacts of overfishing and forest conversion for agriculture on biodiversity (SDGs 14

and 15).

5. CONCLUSION

Environmental, economic, and social growth are the three pillars of sustainability, and solid waste management (SWM) is a complex topic that impacts all three. The objectives that have historically shaped the development of solid waste management (SWM) techniques can be broadly equated with the core ideas of the Sustainable Development Goals (SDGs). Bioconversion is one way to apply CE principles to organic waste management in general. Platform chemicals, fuels, and many other industrial products are currently produced using traditional chemical methods; bioprocessing offers a practical and environmentally friendly alternative. Using a multicriteria decision analysis approach to assess the utilization pathways of *Hermentia Illucens* oil as an environmentally friendly raw material, the highest score was obtained for its use as animal feed. The use of maggot oil as a raw material in animal feed can significantly contribute to achieving sustainable development. The implications of this study can encourage all stakeholders to participate in achieving sustainable development. Furthermore, this study still requires further research on system models that can be further developed for the implementation of BSFL oil in animal feed production.

ACKNOWLEDGMENT

This work was supported by the Ministry of Health's Leading Applied Research Program at Polytechnic Universities in 2024.

REFERENCES

- [1] Dantas, T.E.T., de-Souza, E.D., Destro, I.R., Hammes, G., Rodriguez, C.M.T., Soares, S.R. (2021). How the combination of Circular Economy and Industry 4.0 can contribute towards achieving the Sustainable Development Goals. *Sustainable Production and Consumption*, 26: 213-227. <https://doi.org/10.1016/j.spc.2020.10.005>
- [2] Bruno, D., Orlando, M., Testa, E., Miino, M.C., et al. (2025). Valorization of organic waste through black soldier fly: On the way of a real circular bioeconomy process. *Waste Management*, 191: 123-134. <https://doi.org/10.1016/j.wasman.2024.10.030>
- [3] Rodić, L., Wilson, D.C. (2017). Resolving governance issues to achieve priority sustainable development goals related to solid waste management in developing countries. *Sustainability*, 9(3): 404. <https://doi.org/10.3390/su9030404>
- [4] Kaza, S., Yao, L.C., Bhada-Tata, P., Van Woerden, F. (2018). What a waste 2.0: A global snapshot of solid waste management to 2050. World Bank Group. <https://www.semanticscholar.org/paper/What-a-Waste-2.0-A-Global-Snapshot-of-Solid-Waste-Kaza-Yao/acb6d250d15cf366964535caa53c343cf66fc04>.
- [5] Sharma, H.B., Vanapalli, K.R., Samal, B., Cheela, V.R.S., Dubey, B.K., Bhattacharya, J. (2021). Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery.

Science of the Total Environment, 800: 149605. <https://doi.org/10.1016/j.scitotenv.2021.149605>

[6] Rimantho, D., Syaiful, S., Nurfaida, Sulandari, U. (2022). Electronic waste bank model as a solution for implementing circular economy: Case study DKI Jakarta-Indonesia. *Frontiers in Built Environment*, 8: 1030196. <https://doi.org/10.3389/fbui.2022.1030196>

[7] Rimantho, D., Suyitno, B.M., Pratomo, V.A., Haryanto, G., Prasidha, I.N.T., Puspita, N. (2023). Circular Economy: Barriers and strategy to reduce and manage solid waste in the rural area at Jepara District, Indonesia. *International Journal of Sustainable Development and Planning*, 18(4): 1045-1055. <https://doi.org/10.18280/ijsdp.180407>

[8] Negrete, M., Genoveva, C., Ortega, R., Leobardo, E., Á, Aros. (2022). Circular economy strategy and waste management: A bibliometric analysis in its contribution to sustainable development, toward a post-COVID-19 era. *Environmental Science and Pollution Research*, 29: 61729-61746. <https://doi.org/10.1007/s11356-022-18703-3>

[9] Moraga, G., Huysveld, S., Mathieu, F., Blengini, G.A., Alaerts, L., Van Acker, K., de Meester, S., Dewulf, J. (2019). Circular economy indicators: What do they measure? *Resources, Conservation and Recycling*, 146: 452-461. <https://doi.org/10.1016/j.resconrec.2019.03.045>

[10] Geissdoerfer, M., Savaget, P., Bocken, N.M.P., Hultink, E.J. (2017). The Circular Economy – A new sustainability paradigm? *Journal of Cleaner Production*, 143: 757-768. <https://doi.org/10.1016/j.jclepro.2016.12.048>

[11] Ghisellini, P., Cialani, C., Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. *Journal of Cleaner Production*, 114: 11-32. <https://doi.org/10.1016/j.jclepro.2015.09.007>

[12] Morseletto, P. (2020). Restorative and regenerative: Exploring the concepts in the circular economy. *Resources, Conservation and Recycling*, 153: 104553. <https://doi.org/10.1016/j.resconrec.2019.104553>

[13] Iacovidou, E., Velis, C.A., Purnell, P., Zwirner, O., et al. (2017). Metrics for optimising the multi-dimensional value of resources recovered from waste in a circular economy: A critical review. *Journal of Cleaner Production*, 166: 910-938. <https://doi.org/10.1016/j.jclepro.2017.07.100>

[14] Kirchherr, J., Reike, D., Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. *Resources, Conservation and Recycling*, 127: 221-232. <https://doi.org/10.1016/j.resconrec.2017.09.005>

[15] Kennes, C. (2018). Bioconversion processes. *Fermentation*, 4(2): 21. <https://doi.org/10.3390/fermentation4020021>

[16] Xiu, S., Zhang, B., Boakye-boaten, N.A., Shahbazi, A. (2017). Green biorefinery of giant miscanthus for growing microalgae and biofuel production. *Fermentation*, 3(4): 66. <https://doi.org/10.3390/fermentation3040066>

[17] Nghiem, N.P., O'Connor, J.P.O., Hums, M.E. (2018). Integrated process for extraction of wax as a value-added co-product and improved ethanol production by converting both starch and cellulosic components in sorghum grains. *Fermentation*, 4(1): 12. <https://doi.org/10.3390/fermentation4010012>

[18] Mahboubi, A., Ferreira, J.A., Taherzadeh, M.J. (2017). Production of fungal biomass for feed, fatty acids, and glycerol by *Aspergillus oryzae* from fat-rich dairy substrates. *Fermentation*, 3(4): 48. <https://doi.org/10.3390/fermentation3040048>

[19] Velasco, D., Gandolfi, S., Scoma, A., Bertin, L. (2017). Optimization of the enzymatic saccharification process of milled orange wastes. *Fermentation*, 3(3): 37. <https://doi.org/10.3390/fermentation3030037>

[20] Chalima, A., Oliver, L., Fern, L., Karnaouri, A., Dietrich, T., Topakas, E. (2017). Utilization of volatile fatty acids from microalgae for the production of high added value compounds. *Fermentation*, 3(4): 54. <https://doi.org/10.3390/fermentation3040054>

[21] Al, K., Pugliese, A., Slopiecka, K. (2017). Codigestion of untreated and treated sewage sludge with the organic fraction of municipal solid wastes. *Fermentation*, 3(3): 35. <https://doi.org/10.3390/fermentation3030035>

[22] Souza, P.F., Id, F., Brancoli, P. (2017). Techno-economic and life cycle assessment of wastewater management from potato starch production: Present status and alternative biotreatments. *Fermentation*, 3(4): 56. <https://doi.org/10.3390/fermentation3040056>

[23] Fernández-Naveira, Á., Veiga, M.C., Kennes, C. (2017). H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas. *Journal of Chemical Technology & Biotechnology*, 92(4): 712-731. <https://doi.org/10.1002/jctb.5194>

[24] Abghari, A., Chen, S. (2017). Engineering *Yarrowia lipolytica* for enhanced production of lipid and citric acid. *Fermentation*, 3(3): 34. <https://doi.org/10.3390/fermentation3030034>

[25] Arshad, M., Maqbool, U., Iqbal, M., Khan, A., Saeed, S., Ahmad, R. (2025). Microbial bioproducts: Current advances, industrial applications, and future perspectives. *Journal of Umm Al-Qura University for Applied Sciences*, 11(3): 545-560. <https://doi.org/10.1007/s43994-025-00247-0>

[26] Athanassiou, C.G., Coudron, C.L., Deruytter, D., Rumbos, C.I., et al. (2024). A decade of advances in black soldier fly research: From genetics to sustainability. *Journal of Insects as Food and Feed*, 11(2): 219-246. <https://doi.org/10.1163/23524588-00001122>

[27] Tanga, C.M., Waweru, J.W., Tola, Y.H., Onyoni, A.A., Khamis, F.M., Ekesi, S., Paredes, J.C. (2021). Organic waste substrates induce important shifts in gut microbiota of black soldier fly (*Hermetia illucens* L.): Coexistence of conserved, variable, and potential pathogenic microbes. *Frontiers in Microbiology*, 12: 635881. <https://doi.org/10.3389/fmicb.2021.635881>

[28] Fernando-Foncillas, C., Estevez, M.M., Uellendahl, H., Varrone, C. (2021). Co-management of sewage sludge and other organic wastes: A Scandinavian case study. *Energies*, 14(12): 3411. <https://doi.org/10.3390/en14123411>

[29] Pajura, R., Masłoń, A., Czarnota, J. (2023). The use of waste to produce liquid fertilizers in terms of sustainable development and energy consumption in the fertilizer industry—A case study from Poland. *Energies*, 16(4): 1747. <https://doi.org/10.3390/en16041747>

[30] Chen, J., Hou, D., Pang, W., Nowar, E.E., Tomberlin, J. K., Hu, R., Chen, H., Xie, J., Zhang, J., Yu, Z. (2019).

Effect of moisture content on greenhouse gas and NH₃ emissions from pig manure converted by black soldier fly. *Science of the Total Environment*, 697: 133840. <https://doi.org/10.1016/j.scitotenv.2019.133840>

[31] Xiao, X., Mazza, L., Yu, Y., Cai, M., et al. (2018). Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by *Hermetia illucens* L. (Diptera: Stratiomyidae) larvae and functional bacteria. *Journal of Environmental Management*, 217: 668-676. <https://doi.org/10.1016/j.jenvman.2018.03.122>

[32] Nyakeri, E.M., Ogola, H.J.O., Ayieko, M.A., Amimo, F.A. (2017). Valorisation of organic waste material: growth performance of wild black soldier fly larvae (*Hermetia illucens*) reared on different organic wastes. *Journal of Insects as Food and Feed*, 3(3): 193-202. <https://doi.org/10.3920/JIFF2017.0004>

[33] Sarpong, D.E., Oduro-Kwarteng, S., Gyasi, S.F., Buamah, R., Donkor, E., Awuah, E., Baah, M.K. (2019). Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (*Hermetia illucens*) (Diptera: Stratiomyidae) larvae. *International Journal of Recycling of Organic Waste in Agriculture*, 8(Suppl 1): 45-54. <https://doi.org/10.1007/s40093-019-0268-4>

[34] Cai, M., Hu, R., Zhang, K., Ma, S., Zheng, L., Yu, Z., Zhang, J. (2018). Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment. *Environmental Science and Pollution Research*, 25(2): 1559-1567. <https://doi.org/10.1007/s11356-017-0541-x>

[35] Nguyen, T.T., Tomberlin, J.K., Vanlaerhoven, S. (2015). Ability of black soldier fly (Diptera: Stratiomyidae) larvae to recycle food waste. *Environmental Entomology*, 44(2): 406-410. <https://doi.org/10.1093/ee/nvv002>

[36] Lim, J.W., Mohd-Noor, S.N., Wong, C.Y., Lam, M.K., Goh, P.S., Beniers, J.J.A., Oh, W.D., Jumbri, K., Ghani, N.A. (2019). Palatability of black soldier fly larvae in valorizing mixed waste coconut endosperm and soybean curd residue into larval lipid and protein sources. *Journal of Environmental Management*, 231: 129-136. <https://doi.org/10.1016/j.jenvman.2018.10.022>

[37] Green, T.R., Popa, R. (2012). Enhanced ammonia content in compost leachate processed by black soldier fly larvae. *Applied Biochemistry and Biotechnology*, 166(6): 1381-1387. <https://doi.org/10.1007/s12010-011-9530-6>

[38] Grossule, V., Lavagnolo, M.C. (2020). The treatment of leachate using Black Soldier Fly (BSF) larvae: Adaptability and resource recovery testing. *Journal of Environmental Management*, 253: 109707. <https://doi.org/10.1016/j.jenvman.2019.109707>

[39] Jucker, C., Lupi, D., Moore, C.D., Leonardi, M.G., Savoldelli, S. (2020). Nutrient recapture from insect farm waste: Bioconversion with *Hermetia illucens* (L.) (Diptera: Stratiomyidae). *Sustainability*, 12(1): 362. <https://doi.org/10.3390/su12010362>

[40] Jeffery, K., Bussa, M., De Gusseme, B., Verstraete, W., Boon, N., Rabaey, K. (2020). Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (*Hermetia illucens* (L.)) (Diptera: Stratiomyidae) (BSF). *Waste Management*, 117: 58-80. <https://doi.org/10.1016/j.wasman.2020.07.050>

[41] Siddiqui, S.A., Süfer, Ö., Koç, G.Ç., Lutuf, H., Nemat, B. (2024). Enhancing the bioconversion rate and end products of black soldier fly (BSF) treatment—A comprehensive review. *Environment, Development and Sustainability*, 26: 517-549. <https://doi.org/10.1007/s10668-023-04306-6>

[42] Botella-Martínez, C., Lucas-González, R., Pérez-Álvarez, J.A., Fernández-López, J., Viuda-Martos, M. (2020). Assessment of chemical composition and antioxidant properties of defatted flours obtained from several edible insects. *Food Science and Technology International*, 27(5): 383-391. <https://doi.org/10.1177/1082013220958854>

[43] De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A., Zoccarato, I., Gasco, L., Schiavone, A. (2015). Nutritional value of two insect larval meals (*Tenebrio molitor* and *Hermetia illucens*) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. *Animal Feed Science and Technology*, 209: 211-218. <https://doi.org/10.1016/j.anifeedsci.2015.08.006>

[44] Caligiani, A., Marseglia, A., Leni, G., Baldassarre, S., Maistrello, L., Dossena, A., Sforza, S. (2018). Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. *Food Research International*, 105: 812-820. <https://doi.org/10.1016/j.foodres.2017.12.012>

[45] Ewald, N., Vidakovic, A., Langeland, M., Kiessling, A., Sampels, S., Lalander, C. (2020). Fatty acid composition of black soldier fly larvae (*Hermetia illucens*) - Possibilities and limitations for modification through diet. *Waste Management*, 102: 40-47. <https://doi.org/10.1016/j.wasman.2019.10.014>

[46] Mateusz, P. (2018). TOPSIS and VIKOR methods in study of sustainable development in the EU. *Procedia Computer Science*, 126: 1683-1692. <https://doi.org/10.1016/j.procs.2018.08.109>

[47] Kesra, N., Mateusz, P., Sałabun, W. (2019). Selected methodological and practical aspects of the multi-criteria method PVM. *Procedia Computer Science*, 159: 2267-2278. <https://doi.org/10.1016/j.procs.2019.09.402>

[48] Nermend, K., Piwowarski, M. (2018). Cognitive neuroscience techniques in supporting decision making and the analysis of social campaign. *International Journal of Social Sciences and Economic Studies*, 5(1): 122-132. <https://doi.org/10.23918/ijsses.v5i1p122>

[49] Więckowski, J., Sałabun, W. (2020). How to handle with uncertain data in the TOPSIS technique? *Procedia Computer Science*, 176: 2232-2242. <https://doi.org/10.1016/j.procs.2020.09.260>

[50] Kaczyńska, A., Gądotra, N., Sałabun, W. (2022). A new approach to dealing with interval data in the TOPSIS method. *Procedia Computer Science*, 207: 4545-4555. <https://doi.org/10.1016/j.procs.2022.09.518>

[51] Opricovic, S., Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. *European Journal of Operational Research*, 156(2): 445-455. [https://doi.org/10.1016/S0377-2217\(03\)00020-1](https://doi.org/10.1016/S0377-2217(03)00020-1)

[52] Shekhovtsov, A., Sałabun, W. (2020). A comparative case study of the VIKOR and TOPSIS rankings similarity. *Procedia Computer Science*, 176: 3730-3740.

https://doi.org/10.1016/j.procs.2020.09.014

[53] Kasztelan, A. (2017). The use of the Hellwig's pattern model for the evaluation of green growth in OECD countries. In Proceedings of the 29th International-Business-Information-Management-Association Conference, Vienna, Austria, pp. 3-4.

[54] Ilić, Z., Marinković, G., Bulatović, V., Matić, A., Petrović, V.M. (2025). Comprehensive MCDM approach in the process of land consolidation project choice. *Land*, 14(9): 1798. https://doi.org/10.3390/land14091798

[55] Kumar, S., Negi, S., Mandpe, A., Singh, R.V., Hussain, A. (2018). Rapid composting techniques in Indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes - A comprehensive review. *Journal of Environmental Management*, 227: 189-199. https://doi.org/10.1016/j.jenvman.2018.08.096

[56] Suryati, T., Julaeha, E., Farabi, K., Ambarsari, H., Hidayat, A.T. (2023). Lauric acid from the black soldier fly (*Hermetia illucens*) and its potential applications. *Sustainability*, 15(13): 10383. https://doi.org/10.3390/su151310383

[57] Silitonga, A.S., Shamsuddin, A.H., Mahlia, T.M.I., Sebayang, A.H., Milano, J., Fattah, I.M.R., Kusumo, F., Siswantoro, J., Dharma, S. (2025). ANN-GWO optimization of biolubricants from black soldier fly: A value-added approach to animal waste conversion. *Results in Engineering*, 25: 104437. https://doi.org/10.1016/j.rineng.2025.104437

[58] Makkar, H.P.S., Tran, G., Heuzé, V., Ankers, P. (2014). State-of-the-art on use of insects as animal feed. *Animal Feed Science and Technology*, 197: 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008

[59] Janssen, R.H., Vincken, J.P., van den Broek, L.A.M., Fogliano, V., Lakemond, C.M.M. (2017). Nitrogen-to-protein conversion factors for three edible insects: *Tenebrio molitor*, *Alphitobius diaperinus*, and *Hermetia illucens*. *Journal of Agricultural and Food Chemistry*, 65(11): 2275-2278. https://doi.org/10.1021/acs.jafc.7b00471

[60] Wiryawan, I.K.G., Mandiling, I.H., Purnamasari, D.K., Maslami, V., Syamsuhaidi. (2024). Chemical composition and protein quality of BSF larvae reared with different media in Lombok. *IOP Conference Series: Earth and Environmental Science*, 1360(1): 012013. https://doi.org/10.1088/1755-1315/1360/1/012013

[61] Kumar, M., Tomar, M., Potkule, J., Verma, R., et al. (2021). Advances in the plant protein extraction: Mechanism and recommendations. *Food Hydrocolloids*, 115: 106595. https://doi.org/10.1016/j.foodhyd.2021.106595

[62] Hoc, B., Genva, M., Fauconnier, M.L., Lognay, G., Francis, F., Caparros Megido, R. (2020). About lipid metabolism in *Hermetia illucens* (L. 1758): On the origin of fatty acids in prepupae. *Scientific Reports*, 10(1): 11916. https://doi.org/10.1038/s41598-020-68784-8

[63] Toral, P.G., Renna, M., Frutos, P., Gasco, L., Hervás, G. (2025). Insect fat as feed: Potential to modify the fatty acid composition of animal-derived foods. *Animal Nutrition*, 22: 179-190. https://doi.org/10.1016/j.aninu.2025.03.016

[64] Masuda, T., Goldsmith, P.D. (2009). World soybean production: area harvested, yield, and long-term projections. *International food and agribusiness management review*, 12(4): 1-20. https://doi.org/10.22004/ag.econ.92573

[65] Villasante, S., Rodríguez-González, D., Antelo, M., Rivero-Rodríguez, S., Lebrancón-Nieto, J. (2013). Why are prices in wild catch and aquaculture industries so different? *Ambio*, 42(8): 937-950. https://doi.org/10.1007/s13280-013-0449-8

[66] van Huis, A. (2021). Prospects of insects as food and feed. *Organic Agriculture*, 11(2): 301-308. https://doi.org/10.1007/s13165-020-00290-7

[67] Channa, H., Chen, A.Z., Pina, P., Ricker-Gilbert, J., Stein, D. (2019). What drives smallholder farmers' willingness to pay for a new farm technology? Evidence from an experimental auction in Kenya. *Food Policy*, 85: 64-71. https://doi.org/10.1016/j.foodpol.2019.03.005

[68] Verbeke, W., Spranghers, T., De Clercq, P., De Smet, S., Sas, B., Eeckhout, M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. *Animal Feed Science and Technology*, 204: 72-87. https://doi.org/10.1016/j.anifeedsci.2015.04.001

[69] Pomalégn, S.C.B., Gbemavo, D.S.J.C., Kpadé, C.P., Kenis, M., Mensah, G.A. (2017). Traditional use of fly larvae by small poultry farmers in Benin. *Journal of Insects as Food and Feed*, 3(3): 187-192. https://doi.org/10.3920/JIFF2016.0061

[70] Chaalala, S., Leplat, A., Makkar, H. (2018). Importance of insects for use as animal feed in low-income countries. In *Edible Insects in Sustainable Food Systems*, pp. 303-319. Springer International Publishing. https://doi.org/10.1007/978-3-319-74011-9_18

[71] van Raamsdonk, L.W.D., van der Fels-Klerx, H.J., de Jong, J. (2017). New feed ingredients: The insect opportunity. *Food Additives & Contaminants: Part A*, 34(8): 1384-1397. https://doi.org/10.1080/19440049.2017.1306883

[72] Dicke, M. (2018). Insects as feed and the Sustainable Development Goals. *Journal of Insects as Food and Feed*, 4(3): 147-156. https://doi.org/10.3920/JIFF2018.0003

[73] Likoko, E., Kini, J. (2017). Inclusive business—A business approach to development. *Current Opinion in Environmental Sustainability*, 24: 84-88. https://doi.org/10.1016/j.cosust.2017.03.001

NOMENCLATURE

S	$\min S_w$
S^+	$\max S_i$
R	$\min R_i$
$A^{(2)}$	alternative with second order in Q ranking
$A^{(1)}$	alternative with the best order in Q ranking
DQ	1- (m-1) where m is the number of alternatives
CRT	Criteria
Alt	Alternative