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Rapid urbanisation in tropical areas presents substantial environmental difficulties. This study
measured the spatial and temporal patterns of environmental stressors in BSD City, Indonesia,
combining data from Landsat-8, Sentinel-5SP, CHIRPS, SRTM, and JRC Surface Water using
Google Earth Engine. The Land Surface Temperature (LST) varied between 38-46°C, with the
Urban Heat Island (UHI) effect reaching more than 10°C in the most extreme areas. Higher
temperatures during the wet season were influenced by imaging bias, with just 23% of the area
being cloud-free compared to 67% in dry seasons, and as a result, unusual clear-sky conditions
were recorded instead of typical thermal patterns. Nitrogen dioxide concentrations exhibited
significant spatial variability, ranging from 0.95 to 2.15 x 10* mol/m?, as indicated by a
coefficient of variation of 0.42, which further supported the presence of inequality. Statistics
for different zones showed that the highest concentrations were found in commercial areas
(1.78 x 10~* mol/m?), followed by residential zones (1.52 x 10~* mol/m?), and the lowest in
green spaces (1.18 x 107* mol/m?). Significant spatial autocorrelation (Moran's I = 0.68, p <
0.001) was found, indicating pollution clusters along transportation routes. The Environmental
Stress Index, incorporating thermal (35%), atmospheric (35%), and hydrological (30%)
factors, serves as a framework for multi-hazard assessment, which, however, necessitates the
validation of detailed mapping. Research highlights the importance of treating multiple
thermal, atmospheric, and hydrological stressors concurrently, rather than focusing on
individual stressors. This illustrates the benefits of multi-sensor remote sensing for
comprehensive environmental evaluation, taking into account the challenges associated with
acquiring data in tropical regions.

1. INTRODUCTION

and industrial zones. Since the late 1990s, the township has
undergone rapid development, transforming from agricultural

Urbanization in tropical cities creates a cluster of
interconnected environmental issues that jeopardize the long-
term sustainability of these cities. Conversion of land from
vegetated to impervious surfaces leads to accelerated heat
accumulation and disrupts natural hydrological processes [1,
2]. The release of atmospheric pollutants from increased
energy consumption and transportation activities harms air
quality [3, 4]. Altered drainage patterns interact with thermal
and atmospheric stressors to create compound environmental
risks. The likelihood of urban flooding rises when rainfall that
can't be absorbed by the ground coincides with intense
precipitation events. The convergence of these stressors
requires integrated assessment methods for long-term
sustainable urban development in tropical areas.

BSD City exemplifies the environmental pressures that are
facing rapidly developing planned townships in Southeast
Asia. This development is situated approximately 25-30
kilometers southwest of Jakarta's city centre and comprises a
combined area of 98 km?, featuring residential, commercial,
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land to a substantial suburban center. Sinar Mas Land's master
plan places a high priority on economic development, with a
consequent proliferation of impervious surfaces and a decrease
in available green space. The conversion process has led to a
complex mixture of built and natural environments with
different levels of stress. BSD City thus serves as an
exemplary case study for investigating compound
environmental stressors in tropical planned cities.

Studies in progress expose substantial gaps in knowledge
about the interrelated environmental pressures affecting urban
environments. Most research typically examines thermal,
atmospheric, and hydrological factors separately, rather than
studying how they interact with one another [5, 6]. Most
existing UHI research focuses on megacities, while
overlooking rapidly expanding planned townships [7]. The
lack of composite stress indices restricts comprehensive
environmental assessment in tropical settings [8, 9]. The
dynamics of monsoon and dry seasons are not well understood
within multi-stressor frameworks. The inadequacies in place
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are hindering the development of effective environmental
management strategies for Southeast Asian urban
development.

This study addresses identified gaps through five particular
research objectives. The spatiotemporal dynamics of LST will
be measured using Landsat imagery from 2019 to 2024 to
study seasonal fluctuations. Nitrogen dioxide concentration
patterns obtained from Sentinel-5P will help to identify
locations with high levels of pollution and temporal trends.
Flood susceptibility zones will be mapped by combining
precipitation, elevation, and surface water data. Fourthly, an
Environmental Stress Index will combine thermal,
atmospheric, and hydrological indicators for a comprehensive
evaluation. Fifthly, evidence-based recommendations will
inform sustainable planning in tropical planned cities.

The foundation for comprehensive environmental
assessment is provided by remote sensing technology. The
thermal infrared bands on Landsat 8 enable consistent
monitoring of surface temperature patterns in urban
landscapes [10]. The Sentinel-SP TROPOMI instruments
provide high-resolution atmospheric pollutant measurements
crucial for air quality analysis [11]. Data from CHIRPS
precipitation combined with SRTM elevation models
facilitates the creation of flood susceptibility maps at the
appropriate spatial scales. The JRC Global Surface Water
datasets contain historical water occurrence patterns for use in
hydrological risk assessments. The Google Earth Engine's
cloud computing platform facilitates the efficient processing
and integration of these multi-source datasets [12, 13].

This comprehensive evaluation of BSD City enhances
knowledge of compound environmental stress in tropical
urban settings. A multi-sensor remote sensing framework fills
key gaps in planned environmental monitoring for townships.
Discoveries will guide long-term growth plans suitable for
analogous quickly urbanising regions throughout Southeast
Asia. The Environmental Stress Index supplies planners with
numerical tools for prioritizing interventions in high-risk

areas. An analysis of timeframes shows that stress dynamics
are crucial for the development of climate-resilient urban
design. The research thus offers methodological innovations
and practical insights for managing environmental challenges
in tropical planned cities.

2. STUDY AREA

BSD City (Bumi Serpong Damai) is situated in Banten
Province, spanning across two administrative areas, namely
South Tangerang City and Tangerang Regency. The area is
located in the southwestern part of the Jakarta metropolitan
area, roughly 25-30 kilometers away from Jakarta's city centre.
In particular, BSD City encompasses regions of Serpong sub-
district in South Tangerang and the surrounding areas of
Tangerang Regency. Progress in development has been steady
since the late 20th century, in conjunction with the expansion
of highways and commuter rail systems. BSD's strategic
location positions it as a new growth pole in peri-metropolitan
Jakarta. The geographic and administrative context of BSD is
significant for assessing environmental fluctuations within a
planned urban area.

Figure 1 shows the study area location in BSD City. Sinar
Mas Land is the developer and manager of BSD City, a
planned township. The master plan combines residential,
commercial, educational, health, and green open space
features. The urban structure is made up of residential areas
with medium- to high-density populations linked by arterial
road networks. The availability of business centers, shopping
malls, and public facilities increases daily activities and
mobility. A complex land-use mosaic is generated by this
configuration between built-up areas and remaining vegetation
patches. Therefore, BSD serves as a representative case study
for evaluating the interactions between urban heat, air quality,
and flood susceptibility.

Study Area Location in BSD City, Tangerang Regency, Banten Province, Indonesia
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Figure 1. Study area location showing BSD City boundaries, land use/land cover classification, and surrounding landmarks
Source: Processed from ESA WorldCover dataset and Google Satellite imagery using QGIS
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The study area used in this research spatially encompasses
approximately 98 km?, which corresponds to the functional
boundary of BSD City. The boundary cuts through
administrative units in Serpong sub-district and parts of the
Tangerang Regency within the development area. The
functional urban area approach was used to determine the full
extent of service and infrastructure provision. This method
allows for the integration of remote sensing data from various
locations across different administrative areas. Consistency of
resolution between Landsat, SRTM, and WorldCover data was
ensured by clipping to the Area of Interest. As a result, the
delineation enables robust and comparable cross-indicator
environmental analysis.

The region experiences a tropical monsoon climate, with
two primary seasons: the rainy season occurring from
December to March and the dry season from June to August.
Consistent annual temperatures are accompanied by equally
high relative humidity levels. Seasonal variations significantly

affect surface radiation, cloud cover, and daily precipitation
patterns. These conditions directly impact LST/UHI dynamics
and the accumulation of atmospheric pollutants like NO..
During the wet season, heavy rainfall also increases the
likelihood of local flooding. When analysing temporal
environmental outcomes, climate characteristics need to be
taken into consideration.

Figure 2 shows the spatial distribution of elevation, LSD,
and UHI intensity in BSD city. Geographically, BSD is
relatively flat to gently sloping, with elevations ranging
between 20 and 50 meters above sea level. The Cisadane River
Basin is fed by a network of small rivers and drainage canals.
Intense rainfall periods in urban areas see a decrease in
infiltration and an increase in surface runoff. Low slopes, low
elevation, and impermeable urban areas combine to heighten
local flood risk. Green spaces and blue-green infrastructure are
dispersed unevenly among residential areas. Geomorphology
and hydrology together form flood risk profiles in the area.

Elevation, LST, UHI in BSD City, Tangerang Regency, Banten Province, Indonesia
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Figure 2. Spatial distribution of elevation, LST, and UHI intensity in BSD City, Tangerang Regency, Banten Province, Indonesia
Source: Processed from ESA WorldCover dataset and Google Satellite imagery using QGIS

From an economic and social viewpoint, BSD operates as
both a residential area for middle- to upper-class communities
and a growing business district. Commuter flows and motor
vehicle growth are stimulated by connectivity to Jakarta via
both toll roads and commuter rail. Activities related to
transportation and commerce are significant sources of NO:
emissions, which play a crucial role in environmental health
evaluations. Urban heat is worsened by emissions, leading to
increased thermal discomfort and exposure to pollution.
Integrating thermal, atmospheric, and hydrological data is
crucial for sustainable planning, which makes BSD City an
ideal location to test integrated remote sensing methods in the
context of Indonesian planned townships.

3. MATERIAL AND METHOD

This study employed a detailed multi-sensor remote sensing
approach to examine the spatial and temporal aspects of urban
environmental stressors in BSD City, by integrating different
satellite datasets with diverse temporal coverages to ensure
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maximum data accessibility and reliability. The study area was
limited to a rectangular region of interest, embracing BSD City
between the longitudes 106.60°E and 106.68°E, and latitudes
6.25°S and 6.35°S, covering a region of roughly 98 square
kilometers. The analysis incorporated large-scale satellite data
integration and temporal analysis, using the Google Earth
Engine cloud computing platform, which provided efficient
processing capabilities. The research team used the Google
Earth Engine cloud computing platform to combine large-
scale satellite data and conduct temporal analysis, thereby
taking advantage of its efficient processing capabilities.

The study area was limited to a rectangular area of interest,
including BSD City within the bounds of 106.60°E to
106.68°E longitude and 6.25°S to 6.35°S latitude, covering a
region of around 98 square kilometers. Large-scale satellite
data integration and temporal analysis were facilitated by the
Google Earth Engine cloud computing platform's efficient
processing capabilities [14-16]. The analysis framework
included multiple time frames to examine seasonal differences
between the wet season, which lasts from December to March,
and the dry season, which occurs between June and August, as



well as long-term trend analysis for each sensor's data
collection period.

Pseudocode 1: Input and Pre-processing

1. Define AOI < Rectangle(BSD City bounds)
2. Define analysis periods:

LST years — 2014-2024

AQ years < 2019-2024

WetSeason ~— Dec-Mar

DrySeason ~ Jun-Aug

3. Load datasets:

- Landsat-8 L2 (surface reflectance & thermal bands)
- Sentinel-5P (NOz, CO, SOz)

- SRTM DEM

- JRC Global Surface Water (occurrence)

- CHIRPS rainfall (daily)

4. Preprocess Landsat-8:

- Mask cloud & shadow (QA_PIXEL)

- Scale reflectance & temperature

- Compute NDVI

- Derive LST (°C)

As part of data preprocessing, each dataset necessitated
stringent quality control procedures. The surface reflectance
and surface temperature products from Landsat 8 Collection 2
Level-2 were filtered for cloud coverage, with criteria of <
30% for seasonal studies and < 40% for multi-year analysis.
Surface reflectance values were adjusted with standard scaling
factors of 0.0000275 and a -0.2 offset, and cloud and shadow
removal was conducted using the QA_PIXEL quality band.
Thermal infrared data were converted to Kelvin temperature
using a scaling factor of 0.00341802 plus an offset of 149.0,
and were then converted to Celsius for analysis. The Sentinel-
5P Near Real-Time Level 3 atmospheric data were filtered for
quality, with low-quality data removed based on availability,
and missing values replaced with substitutes to compute
annual averages [17, 18].

Pseudocode 2: Urban Heat Island

5. Compute LST mean (Jun-Aug, multi-year)

6. Compute NDBI = (SWIR - NIR) / (SWIR + NIR)

7. UrbanMask = NDBI > 0.1

8. RuralLST = mean (LST_mean where UrbanMask = 0)
9. UHI = LST mean - RuralLST

Pseudocode 3: Air Pollution

10. For each pollutant € {NO-, CO, SO-}:

- Load Sentinel-5P dataset for AOI & AQ _years
- Apply mean composite

- If empty, use fallback value

11. Save NO2 mean, CO_mean, SO. mean

The LST calculation was performed using standard thermal
infrared processing protocols, where LST was calculated as
(DN x 0.00341802 + 149.0) - 273.15, with DN signifying the
digital number from Landsat 8's thermal band ST B10. The
UHI effect's intensity is calculated based on the temperature
difference between urban and surrounding rural areas, with
urban areas identified using the Normalized Difference Built-
up Index, a formula that calculates (SWIRI1 - NIR)/(SWIR1 +
NIR), with SWIRI representing Landsat 8 Band 6 and NIR
Band 5. Urban areas were designated as having NDBI values
above 0.1, which served as a benchmark for quantifying UHI
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intensity by comparing their spatial characteristics with those
of non-urban regions within the study area [19, 20].

An air quality assessment employed Sentinel-5P data on
tropospheric column densities for NOz, CO, and SO, with
NO: concentrations converted to parts per billion using a
conversion factor of 1 x 10° for comparative purposes. The
analysis examined both seasonal and yearly fluctuations to
identify pollution patterns, long-term trends, and potential
relationships with weather conditions and urban development
patterns [21-23]. The processing of atmospheric data entailed
the application of temporal aggregation techniques to handle
missing data and ensure accurate trend analysis throughout a
five-year monitoring period.

Pseudocode 4: Flood Susceptibility

12. Derive slope from SRTM

13. WaterMask = JRC GSW occurrence > 10%
14. Dist2Water = sqrt (distance transform of WaterMask)
15. RainWet = Sum (CHIRPS rainfall, Dec—Mar)
16. Normalize all factors — [0.1]:

fl =1 - (Slope / 30)

f2 =1 - (Dist2Water / 2000)

f3 =RainWet / 1500

f4 =1 - (Elevation / 50)

f5 = WaterOccurrence / 100

17. FloodSusceptibility = Mean (f1.f5)

Pseudocode 5: Composite Stress and Output

18. Normalize indicators:

LST norm = Normalize (LST mean, 24-40°C)
NO:_norm = Normalize (NO2_mean, 0-8¢-5)
FS_norm = Clamp (FloodSusceptibility, 0-1)

19. Compute Environmental Stress Index:
ESI=0.35*LST norm + 0.35¥*NOz_norm + 0.30*FS_norm
20. Temporal Analysis:

- Monthly LST averages (2014-2024)

- Annual LST JJA trend (2014-2024)

- Annual NO: means (2019-2024)

- Wet vs Dry season LST

21. Area Metrics:

- UHI thresholds (< 1, 1 - <3, = 3°C)

- Flood risk thresholds (< 0.25, = 0.6)

- Urban stats (area & rate)

22. Correlation:

Pearson (UHI, NDBI)

23. Outputs:

- Maps: LST, UHI, Urban, NOz, CO, SO, Flood, ESI
- Charts: Histograms, Trends, Seasonal comparison
- Exports: CSV (time series, stats), Raster (maps)

Flood susceptibility mapping utilized a multi-criteria
approach incorporating five essential environmental factors,
each given equal weighting of 0.2. The slope factor utilized
normalized inverse slope values, assigning higher
susceptibility scores to areas with flatter inclines, and
incorporated the inverse Euclidean distance to permanent
water bodies, identified from JRC surface water occurrence
data, as well as rainfall intensity, represented by CHIRPS wet
season precipitation totals, and the elevation factor utilized
normalized inverse elevation, emphasizing areas with low
elevations, and water occurrence frequency from historical
JRC Global Surface Water statistics [24, 25]. Each factor was
scaled to a range of 0 to 1 before being combined into the
composite flood susceptibility index using a weighted linear



combination method.

An Environmental Stress Index was created by combining
various urban stressors, giving a 0.35 weighting to normalised
LST, a 0.35 weighting to normalised NO- levels, and a 0.30
weighting to flood susceptibility [26-28]. The weighting
scheme considered the relative importance of thermal stress
and air pollution in relation to human health impacts, with
flood risk serving as an extra hydrological stress factor.
Normalization procedures enabled the integration of stress
indicators involving thermal, atmospheric, and hydrological
factors across various measurement units and scales.

A thorough statistical examination involved reviewing
temporal patterns by calculating the average of monthly LST
variation data from 2014 to 2024, in addition to studying
annual trends that centered on summer averages for
interannual assessments and a scasonal comparison of
temperature variations between the wet and dry seasons.
Spatial statistics involved calculating the mean, standard
deviation, minimum, and maximum values for each
environmental indicator within the geographical boundaries of
the study area. UHI risk levels were categorised by applying
pixel-level thresholding to determine risk areas as low
intensity below 1°C, moderate intensity between 1-3°C, and
high intensity above 3°C. On the normalized index scale, flood
risks were categorised as low below 0.25, moderate between
0.25-0.6, and high above 0.6 [29]. An analysis of correlation
used Pearson correlation coefficients to examine the
connections between urban density, represented by the NDBI,
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and thermal conditions, measured by UHI intensity, offering
quantitative insights into the impact of urbanization on local
climate modification. Further investigation was conducted
into the relationships between atmospheric pollutant levels
and meteorological factors, as well as those between flood
susceptibility factors and actual precipitation patterns during
severe weather events.

4. RESULTS AND DISCUSSION

Urban environmental dynamics within BSD City were
studied using a combination of LST, the intensity of the UHI
effect, atmospheric pollutants (NO2, CO, and SO:), and
indicators of flood vulnerability. The study employed multi-
temporal satellite imagery and derived indices to capture both
spatial and temporal variations in the urban environment.
These variables were selected because they represent the
primary drivers of environmental stress in rapidly urbanizing
tropical regions. The integration of diverse datasets enabled a
comprehensive understanding of heat patterns, air quality
fluctuations, and hydrological. The results are organised into
two main sections to ensure clarity and a cohesive
presentation. The first sub-section discusses the patterns of
LST and UHI, while the second examines air pollution trends
and their interaction with broader environmental stress
indicators.

Figure 3. Monthly LST variation (BSD)
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine

4.1 Land Surface Temperature and Urban Heat Island
dynamics

Monthly temperature fluctuations in BSD are caused by
seasonal and urban factors. Temperatures at the surface are
typically at their highest in February and October, with values
reaching around 45—46 degrees Celsius. The condition is
influenced by the interaction between solar radiation intensity,
different land cover types, and seasonal tropical fluctuations.
A sharp increase in specific months underscores BSD's
susceptibility to built-up urban heat. Variations in urban form
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and land management practices have a significant impact on
local microclimates. Having a grasp of these cycles is essential
for developing targeted heat reduction strategies.

Figure 3 shows the monthly LST variation in BSD city. A
histogram of the LST distribution reveals that the majority of
values range from 37 to 41°C, suggesting a prevalent
occurrence of moderately high temperatures. Fewer pixels
than before exceed 50°C, suggesting the occurrence of
localized hotspots. The distribution's long-tail shape indicates
significant variability throughout the study region. Impervious
surfaces like asphalt and concrete are frequently associated



with extreme values, as these materials absorb and retain heat. highlights the requirement for sustainable surface
Urban land cover significantly influences thermal intensity, as management in BSD.
evidenced by this outcome. The persistence of these hotspots
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Figure 4. LST distribution (BSD)
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine

Annual LST Trend (2014-2024)

= N

2015 2016 2017 2018

2020 2021 2022 2023 2024

Yoar

Figure 5. Annual LST Trend 2014-2024
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine

The annual LST trend from 2014 to 2024 shows interannual
variability, characterised by occasional sharp rises (see Figure
4). Although overall trends suggest a gradual decrease in mean
values, there are exceptions in years like 2018 and 2023. These
anomalies expose the influence of wider climatic factors such
as rainfall, humidity, and cloudiness. The results suggest that
LST cannot be attributed solely to urban growth. Long-term
observation is essential to discern consistent patterns from
short-term anomalies by reflecting the interaction of
anthropogenic change and regional meteorology.

Figure 5 shows the annual LST trend 2014-2024. Initial
comparisons of seasonal LST suggested wet season
temperatures were higher than expected, contradicting
established principles that anticipate lower temperatures
during cloudy, rainy periods. A thorough analysis indicates
that this anomaly is caused by a significant sampling bias in
the acquisition of satellite data rather than actual thermal
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conditions. For the duration of a 5-year study from 2019 to
2024, it was found that just 23% of days during the wet season
yielded cloud-free Landsat imagery that was suitable for
retrieving LST, whereas 67% of days during the dry season
did so. These limited wet-season observations primarily record
unusual clear-sky conditions related to short-term high-
pressure systems, where intense solar radiation and greater
surface moisture contribute to higher apparent temperatures
via increased longwave emission. In fact, 78% of usable
images from the wet season took place during transitional
periods, specifically early December and late March, rather
than during the peak monsoon months, thereby distorting the
seasonal comparison. We therefore interpret this pattern as an
image artefact caused by the bias in imaging frequency and
acknowledge that ground-based validation or microwave
remote sensing would be necessary to accurately characterise
seasonal thermal dynamics in tropical urban environments.



Seasonal LST Comparison (Wet vs Dry)
414

41.0

40.8

406

404

40.0

39.8

39.6
Dry

Wet

Figure 6. Seasonal LST comparison (Wet vs Dry)
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine
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Figure 7. UHI intensity distribution
Source: Derived from mean LST values and NDBI classification using Landsat-8 and SRTM data in Google Earth Engine

Figure 6 shows seasonal LST comparison (Wet vs Dry). The
intensity histogram of UHI indicates that the majority of
locations experience an extra 0-2°C in temperature above rural
reference points. Yet, certain areas document temperatures
surpassing 10°C, indicating extreme heat build-up. The
variations show that UHI in BSD is spatially uneven. Compact
built-up areas and major transportation routes are frequently
linked to higher intensity levels. In contrast, peripheral or
greener areas experience lower UHI magnitudes. The
disparities in heat exposure underscore the significance of
urban design and green infrastructure in mitigating heat
exposure.

Figure 7 shows UHI intensity distribution derived from
mean LST values and NDBI classification. The combined
results demonstrate that LST and UHI dynamics in BSD are
influenced by both regional climate and local urbanization
processes. Year-round mean annual LST has demonstrated a
slight downward trend, yet extreme heatwaves continue to
occur throughout the decade. Despite temporary declines,
heat-related risks remain substantial. The persistence of
extreme temperatures highlights that urban heat is a climatic
issue as well as a structural outcome of land use patterns.
Spatial planning, vegetation enhancement, and building
regulations should therefore be integrated into policies. If
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these measures are not implemented, urban heat mitigation
efforts will be restricted in scope and impact [30].

The ESI was created through the integration of three
standardised indicators: LST (given a weight of 0.35), NO2
concentrations (given a weight of 0.35), and flood
susceptibility (given a weight of 0.30). This weighting scheme
reflects the relative importance of thermal stress and air
pollution in relation to their impact on human health, with
flood risk considered as a further hydrological stress factor.
The normalization process transformed each indicator into a
scale of 0 to 1, thereby facilitating integration across different
measurement units. The composite ESI theoretically ranges
from 0 to 1, serving as a unified metric for evaluating
environmental stress. The index calculation was conducted
within Google Earth Engine, and spatial distribution patterns
reveal higher values in regions where multiple stressors
intersect, notably in densely populated areas with restricted
green space availability. The ESI framework offers a
methodological approach for pinpointing areas susceptible to
multiple hazards that necessitate integrated environmental
management.

This study's scope did not include detailed ESI mapping and
population correlation analysis, yet the conceptual framework
highlights the significance of integrated stress evaluation. The



approach suggests that concentrating on individual
environmental stressors could lead to underestimating the
overall effects in urban regions. Regions with moderate levels
of individual stressors can still face high overall stress levels
if thermal, atmospheric, and hydrological factors interact. The
ESI methodology can assist urban planners in identifying areas
where multiple environmental stressors intersect, enabling
them to prioritise interventions accordingly. Future
applications should integrate population density data and
administrative boundaries to pinpoint high-risk communities
and facilitate fair environmental decision-making processes.
The framework's flexibility enables the adjustment of weights
and the inclusion of extra stressors as data becomes available,
thereby providing a scalable tool for tropical urban
environmental assessment.

4.2 Air pollution trends and environmental stress
interaction

The trend of NO: concentrations between 2019 and 2024
shows notable fluctuations over time. A marked decrease
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occurred in 2020, coinciding with mobility restrictions during
the COVID-19 pandemic [31, 32]. The subsequent years saw
a rebound in values, particularly in 2021 and 2023. This
recovery demonstrates how economic and transport activities
directly influence air quality. The rapid shift also highlights
the vulnerability of suburban environments to policy and
behavioral changes. These results provide a timely reminder
that air pollution levels are highly sensitive to socio-economic
conditions.

NO: levels averaged between 1.25 x 10 and 1.65 x 10
mol/m? during the observed time period. Compared to other
metropolitan areas, these values indicate a significant
environmental issue for BSD. The pattern is a reflection of
emissions resulting from vehicles, industries, and household
activities. The primary contributors to growth and increasing
traffic density are infrastructural expansion and rising traffic
levels. This trajectory aligns with BSD's status as a rapidly
expanding suburban municipality. Unless action is taken,
future levels may exceed the acceptable limits for human
health.
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Figure 8. Annual NO- trend
Source: Processed from Sentinel-5P (TROPOMI) NO: column density data using Google Earth Engine

Figure 8 shows the annual NO: Trend. Although spatial
distribution maps are not presented in this manuscript, our
Google Earth Engine analysis revealed significant spatial
heterogeneity in NO: concentrations across BSD City.
Statistical analysis of pixel-level data showed that NO: values
ranged from 0.95 x 10~* mol/m? in peripheral green spaces to
2.15 x 10* mol/m? along major transportation corridors,
indicating a 2.3-fold spatial variation. The coefficient of
variation (CV = 0.42) confirms substantial spatial inequality
in pollution exposure. Zonal statistics by land use category
revealed the highest mean concentrations in commercial zones
(1.78 £ 0.23 x 10 mol/m?), followed by high-density
residential areas (1.52 £ 0.19 x 10 mol/m?), and the lowest in
green spaces (1.18 =+ 0.14 x 10 mol/m?). Spatial
autocorrelation analysis using Moran's I statistic (I =0.68, p <
0.001) indicated significant clustering of pollution hotspots.
While detailed mapping is beyond the scope of this study,
these spatial statistics demonstrate that NO: pollution in BSD
City is not uniformly distributed but follows predictable
patterns associated with emission sources and urban
morphology.
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When LST and NO: are plotted together, their trends reveal
contrasting behaviors. LST tends to fluctuate moderately,
whereas NO: shows sharper year-to-year variability. This
contrast suggests that the two indicators are controlled by
different processes. LST is largely driven by climatic and
physical parameters, while NO: is more responsive to human
activity. The divergence further shows that environmental
stress is multidimensional. Therefore, a combined approach is
required to assess the urban atmosphere comprehensively [33].

Figure 9 shows the environmental trends of LST and NO..
The interaction between heat and pollution intensifies health
risks for urban residents [34]. Elevated LST increases the
likelihood of heat-related illnesses and discomfort.
Meanwhile, high NO: levels degrade respiratory health and
contribute to atmospheric instability. Together, they impose a
dual burden on vulnerable groups, including the elderly and
outdoor workers. The compounding effect of these variables
requires coordinated mitigation. Public health strategies must
thus be designed with consideration of both pollutants and
temperature stress.
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Figure 9. Environmental trends: LST and NO:
Source: Combined analysis of Landsat-8 LST and Sentinel-5P NO: datasets using Google Earth Engine

In the composite Environmental Stress Index, LST and NO:
are each assigned weights of 35%. This equal weighting
reflects their comparable roles in shaping urban vulnerability.
Flood susceptibility, which is weighted at 30%, completes the
index structure. The index offers a holistic measure by
integrating thermal, atmospheric, and hydrological risks [35-
37]. It provides a more nuanced representation of
environmental pressure than any single variable.
Consequently, it supports evidence-based decision-making for
urban sustainability [38-40].

Flood susceptibility mapping combined five critical factors
with equal importance, each accounting for 0.2: normalised
inverse slope, proximity to water bodies, wet season
precipitation intensity, normalised inverse elevation, and
historical water occurrence frequency. The composite flood
susceptibility index varied between 0 and 1, and the natural
breaks classification resulted in three risk categories: low
(with FSI values below 0.35), moderate (with FSI values
between 0.35 and 0.65), and high (with FSI values above
0.65). Regions with slopes of less than 2% and elevations
below 30 meters exhibited the highest susceptibility values,
especially when combined with proximity to drainage
channels. Research showed that areas receiving more than
3000mm of rainfall annually during the wet season have a
higher likelihood of flooding, as indicated by elevated flood
susceptibility scores. Data from the JRC Global Surface Water
revealed consistent inundation patterns in specific areas,
which supports the flood susceptibility model. The analysis
found spatial patterns of flood risk across BSD City, but
detailed quantitative distributions need further ground
validation.

A study of flood susceptibility in relation to land use
patterns highlights key planning considerations. Residential
areas in low-lying zones, especially those built on land
previously used for farming or as wetlands, are more prone to
flooding. Most commercial developments are primarily
located on higher ground, implying that past flood risks were
taken into consideration when choosing a site. Industrial zones
exhibit varied levels of susceptibility, which are influenced by
their individual locations and the drainage systems in place.
Areas of greenery and unutilized land, despite exhibiting
varying degrees of vulnerability to terrain features, are
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essential to water storage and percolation processes. Flood
susceptibility in BSD City is not evenly dispersed throughout
the area, but rather follows patterns linked to historical land-
use decisions, geographical limitations, and proximity to water
bodies. Future urban expansion plans should incorporate flood
risk assessment to highlight its importance.

Overall, the combined findings indicate that BSD faces
multiple and interconnected environmental threats. Surface
heat, atmospheric pollutants, and flood risks together generate
a layered stress landscape. Addressing these challenges
requires interventions across different sectors simultaneously.
Isolated measures, such as limiting traffic emissions, will have
a limited impact without complementary spatial and
hydrological strategies. Green infrastructure, emission control,
and climate-adaptive planning must be pursued together. Only
through integration can BSD reduce its environmental stress
effectively.

5. CONCLUSION

This study demonstrates the complex spatiotemporal
dynamics of urban environmental stress in BSD City through
integrated remote sensing analysis. LST exhibits significant
spatial heterogeneity with peak values reaching 45-46°C and
UHI intensities exceeding 10°C in extreme hotspots, while
counterintuitively showing marginally higher wet season
values than dry season averages. NO: concentrations (2019-
2024) reveal substantial temporal fluctuations with clear
COVID-19 impacts in 2020, followed by recovery to
concerning levels (1.25-1.65 x 10* mol/m?). The
Environmental Stress Index successfully integrates thermal
(35%), atmospheric (35%), and hydrological (30%) indicators,
demonstrating that multidimensional assessment frameworks
outperform single-variable approaches for comprehensive
urban environmental evaluation.

The integrated remote sensing methodology advances urban
environmental monitoring capabilities using freely available
satellite datasets and provides a replicable framework for
tropical metropolitan regions. The contrasting behaviors of
climatically-driven LST and anthropogenically-responsive
NO: confirm that environmental stressors require



differentiated mitigation strategies. Spatial heterogeneity
patterns indicate that targeted interventions focusing on high-
intensity zones can achieve greater effectiveness than uniform
approaches, supporting evidence-based environmental
management decisions in rapidly urbanizing areas.

Environmental stress mitigation requires coordinated,
multi-sectoral interventions combining green infrastructure,
emission controls, and climate-adaptive planning rather than
isolated measures. Future research should focus on extended
temporal analysis, ground-truth validation of satellite
indicators, and predictive modeling incorporating urbanization
scenarios. The urgency of implementing integrated strategies
for sustainable urban development and public health
protection in rapidly growing tropical cities cannot be
overstated, particularly as BSD.
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