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Rapid urbanisation in tropical areas presents substantial environmental difficulties. This study 

measured the spatial and temporal patterns of environmental stressors in BSD City, Indonesia, 

combining data from Landsat-8, Sentinel-5P, CHIRPS, SRTM, and JRC Surface Water using 

Google Earth Engine. The Land Surface Temperature (LST) varied between 38-46℃, with the 

Urban Heat Island (UHI) effect reaching more than 10℃ in the most extreme areas. Higher 

temperatures during the wet season were influenced by imaging bias, with just 23% of the area 

being cloud-free compared to 67% in dry seasons, and as a result, unusual clear-sky conditions 

were recorded instead of typical thermal patterns. Nitrogen dioxide concentrations exhibited 

significant spatial variability, ranging from 0.95 to 2.15 × 10⁻⁴ mol/m², as indicated by a 

coefficient of variation of 0.42, which further supported the presence of inequality. Statistics 

for different zones showed that the highest concentrations were found in commercial areas 

(1.78 × 10⁻⁴ mol/m²), followed by residential zones (1.52 × 10⁻⁴ mol/m²), and the lowest in 

green spaces (1.18 × 10⁻⁴ mol/m²). Significant spatial autocorrelation (Moran's I = 0.68, p < 

0.001) was found, indicating pollution clusters along transportation routes. The Environmental 

Stress Index, incorporating thermal (35%), atmospheric (35%), and hydrological (30%) 

factors, serves as a framework for multi-hazard assessment, which, however, necessitates the 

validation of detailed mapping. Research highlights the importance of treating multiple 

thermal, atmospheric, and hydrological stressors concurrently, rather than focusing on 

individual stressors. This illustrates the benefits of multi-sensor remote sensing for 

comprehensive environmental evaluation, taking into account the challenges associated with 

acquiring data in tropical regions.  
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1. INTRODUCTION

Urbanization in tropical cities creates a cluster of 

interconnected environmental issues that jeopardize the long-

term sustainability of these cities. Conversion of land from 

vegetated to impervious surfaces leads to accelerated heat 

accumulation and disrupts natural hydrological processes [1, 

2]. The release of atmospheric pollutants from increased 

energy consumption and transportation activities harms air 

quality [3, 4]. Altered drainage patterns interact with thermal 

and atmospheric stressors to create compound environmental 

risks. The likelihood of urban flooding rises when rainfall that 

can't be absorbed by the ground coincides with intense 

precipitation events. The convergence of these stressors 

requires integrated assessment methods for long-term 

sustainable urban development in tropical areas. 

BSD City exemplifies the environmental pressures that are 

facing rapidly developing planned townships in Southeast 

Asia. This development is situated approximately 25-30 

kilometers southwest of Jakarta's city centre and comprises a 

combined area of 98 km², featuring residential, commercial, 

and industrial zones. Since the late 1990s, the township has 

undergone rapid development, transforming from agricultural 

land to a substantial suburban center. Sinar Mas Land's master 

plan places a high priority on economic development, with a 

consequent proliferation of impervious surfaces and a decrease 

in available green space. The conversion process has led to a 

complex mixture of built and natural environments with 

different levels of stress. BSD City thus serves as an 

exemplary case study for investigating compound 

environmental stressors in tropical planned cities. 

Studies in progress expose substantial gaps in knowledge 

about the interrelated environmental pressures affecting urban 

environments. Most research typically examines thermal, 

atmospheric, and hydrological factors separately, rather than 

studying how they interact with one another [5, 6]. Most 

existing UHI research focuses on megacities, while 

overlooking rapidly expanding planned townships [7]. The 

lack of composite stress indices restricts comprehensive 

environmental assessment in tropical settings [8, 9]. The 

dynamics of monsoon and dry seasons are not well understood 

within multi-stressor frameworks. The inadequacies in place 
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are hindering the development of effective environmental 

management strategies for Southeast Asian urban 

development. 

This study addresses identified gaps through five particular 

research objectives. The spatiotemporal dynamics of LST will 

be measured using Landsat imagery from 2019 to 2024 to 

study seasonal fluctuations. Nitrogen dioxide concentration 

patterns obtained from Sentinel-5P will help to identify 

locations with high levels of pollution and temporal trends. 

Flood susceptibility zones will be mapped by combining 

precipitation, elevation, and surface water data. Fourthly, an 

Environmental Stress Index will combine thermal, 

atmospheric, and hydrological indicators for a comprehensive 

evaluation. Fifthly, evidence-based recommendations will 

inform sustainable planning in tropical planned cities. 

The foundation for comprehensive environmental 

assessment is provided by remote sensing technology. The 

thermal infrared bands on Landsat 8 enable consistent 

monitoring of surface temperature patterns in urban 

landscapes [10]. The Sentinel-5P TROPOMI instruments 

provide high-resolution atmospheric pollutant measurements 

crucial for air quality analysis [11]. Data from CHIRPS 

precipitation combined with SRTM elevation models 

facilitates the creation of flood susceptibility maps at the 

appropriate spatial scales. The JRC Global Surface Water 

datasets contain historical water occurrence patterns for use in 

hydrological risk assessments. The Google Earth Engine's 

cloud computing platform facilitates the efficient processing 

and integration of these multi-source datasets [12, 13]. 

This comprehensive evaluation of BSD City enhances 

knowledge of compound environmental stress in tropical 

urban settings. A multi-sensor remote sensing framework fills 

key gaps in planned environmental monitoring for townships. 

Discoveries will guide long-term growth plans suitable for 

analogous quickly urbanising regions throughout Southeast 

Asia. The Environmental Stress Index supplies planners with 

numerical tools for prioritizing interventions in high-risk 

areas. An analysis of timeframes shows that stress dynamics 

are crucial for the development of climate-resilient urban 

design. The research thus offers methodological innovations 

and practical insights for managing environmental challenges 

in tropical planned cities. 

 

 

2. STUDY AREA 

 

BSD City (Bumi Serpong Damai) is situated in Banten 

Province, spanning across two administrative areas, namely 

South Tangerang City and Tangerang Regency. The area is 

located in the southwestern part of the Jakarta metropolitan 

area, roughly 25-30 kilometers away from Jakarta's city centre. 

In particular, BSD City encompasses regions of Serpong sub-

district in South Tangerang and the surrounding areas of 

Tangerang Regency. Progress in development has been steady 

since the late 20th century, in conjunction with the expansion 

of highways and commuter rail systems. BSD's strategic 

location positions it as a new growth pole in peri-metropolitan 

Jakarta. The geographic and administrative context of BSD is 

significant for assessing environmental fluctuations within a 

planned urban area. 

Figure 1 shows the study area location in BSD City. Sinar 

Mas Land is the developer and manager of BSD City, a 

planned township. The master plan combines residential, 

commercial, educational, health, and green open space 

features. The urban structure is made up of residential areas 

with medium- to high-density populations linked by arterial 

road networks. The availability of business centers, shopping 

malls, and public facilities increases daily activities and 

mobility. A complex land-use mosaic is generated by this 

configuration between built-up areas and remaining vegetation 

patches. Therefore, BSD serves as a representative case study 

for evaluating the interactions between urban heat, air quality, 

and flood susceptibility. 

 

 
 

Figure 1. Study area location showing BSD City boundaries, land use/land cover classification, and surrounding landmarks 
Source: Processed from ESA WorldCover dataset and Google Satellite imagery using QGIS 
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The study area used in this research spatially encompasses 

approximately 98 km², which corresponds to the functional 

boundary of BSD City. The boundary cuts through 

administrative units in Serpong sub-district and parts of the 

Tangerang Regency within the development area. The 

functional urban area approach was used to determine the full 

extent of service and infrastructure provision. This method 

allows for the integration of remote sensing data from various 

locations across different administrative areas. Consistency of 

resolution between Landsat, SRTM, and WorldCover data was 

ensured by clipping to the Area of Interest. As a result, the 

delineation enables robust and comparable cross-indicator 

environmental analysis. 

The region experiences a tropical monsoon climate, with 

two primary seasons: the rainy season occurring from 

December to March and the dry season from June to August. 

Consistent annual temperatures are accompanied by equally 

high relative humidity levels. Seasonal variations significantly 

affect surface radiation, cloud cover, and daily precipitation 

patterns. These conditions directly impact LST/UHI dynamics 

and the accumulation of atmospheric pollutants like NO₂. 

During the wet season, heavy rainfall also increases the 

likelihood of local flooding. When analysing temporal 

environmental outcomes, climate characteristics need to be 

taken into consideration. 

Figure 2 shows the spatial distribution of elevation, LSD, 

and UHI intensity in BSD city. Geographically, BSD is 

relatively flat to gently sloping, with elevations ranging 

between 20 and 50 meters above sea level. The Cisadane River 

Basin is fed by a network of small rivers and drainage canals. 

Intense rainfall periods in urban areas see a decrease in 

infiltration and an increase in surface runoff. Low slopes, low 

elevation, and impermeable urban areas combine to heighten 

local flood risk. Green spaces and blue-green infrastructure are 

dispersed unevenly among residential areas. Geomorphology 

and hydrology together form flood risk profiles in the area. 

 

 
 

Figure 2. Spatial distribution of elevation, LST, and UHI intensity in BSD City, Tangerang Regency, Banten Province, Indonesia 
Source: Processed from ESA WorldCover dataset and Google Satellite imagery using QGIS 

 

From an economic and social viewpoint, BSD operates as 

both a residential area for middle- to upper-class communities 

and a growing business district. Commuter flows and motor 

vehicle growth are stimulated by connectivity to Jakarta via 

both toll roads and commuter rail. Activities related to 

transportation and commerce are significant sources of NO₂ 

emissions, which play a crucial role in environmental health 

evaluations. Urban heat is worsened by emissions, leading to 

increased thermal discomfort and exposure to pollution. 

Integrating thermal, atmospheric, and hydrological data is 

crucial for sustainable planning, which makes BSD City an 

ideal location to test integrated remote sensing methods in the 

context of Indonesian planned townships. 

 

 

3. MATERIAL AND METHOD 

 

This study employed a detailed multi-sensor remote sensing 

approach to examine the spatial and temporal aspects of urban 

environmental stressors in BSD City, by integrating different 

satellite datasets with diverse temporal coverages to ensure 

maximum data accessibility and reliability. The study area was 

limited to a rectangular region of interest, embracing BSD City 

between the longitudes 106.60°E and 106.68°E, and latitudes 

6.25°S and 6.35°S, covering a region of roughly 98 square 

kilometers. The analysis incorporated large-scale satellite data 

integration and temporal analysis, using the Google Earth 

Engine cloud computing platform, which provided efficient 

processing capabilities. The research team used the Google 

Earth Engine cloud computing platform to combine large-

scale satellite data and conduct temporal analysis, thereby 

taking advantage of its efficient processing capabilities. 

The study area was limited to a rectangular area of interest, 

including BSD City within the bounds of 106.60°E to 

106.68°E longitude and 6.25°S to 6.35°S latitude, covering a 

region of around 98 square kilometers. Large-scale satellite 

data integration and temporal analysis were facilitated by the 

Google Earth Engine cloud computing platform's efficient 

processing capabilities [14-16]. The analysis framework 

included multiple time frames to examine seasonal differences 

between the wet season, which lasts from December to March, 

and the dry season, which occurs between June and August, as 
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well as long-term trend analysis for each sensor's data 

collection period. 

 

Pseudocode 1: Input and Pre-processing 

1. Define AOI ← Rectangle(BSD City bounds) 

2. Define analysis periods: 

LST_years ← 2014-2024 

AQ_years ← 2019-2024 

WetSeason ← Dec-Mar 

DrySeason ← Jun-Aug 

3. Load datasets: 

- Landsat-8 L2 (surface reflectance & thermal bands) 

- Sentinel-5P (NO₂, CO, SO₂) 

- SRTM DEM 

- JRC Global Surface Water (occurrence) 

- CHIRPS rainfall (daily) 

4. Preprocess Landsat-8: 

- Mask cloud & shadow (QA_PIXEL) 

- Scale reflectance & temperature 

- Compute NDVI 

- Derive LST (℃) 

 

As part of data preprocessing, each dataset necessitated 

stringent quality control procedures. The surface reflectance 

and surface temperature products from Landsat 8 Collection 2 

Level-2 were filtered for cloud coverage, with criteria of < 

30% for seasonal studies and < 40% for multi-year analysis. 

Surface reflectance values were adjusted with standard scaling 

factors of 0.0000275 and a -0.2 offset, and cloud and shadow 

removal was conducted using the QA_PIXEL quality band. 

Thermal infrared data were converted to Kelvin temperature 

using a scaling factor of 0.00341802 plus an offset of 149.0, 

and were then converted to Celsius for analysis. The Sentinel-

5P Near Real-Time Level 3 atmospheric data were filtered for 

quality, with low-quality data removed based on availability, 

and missing values replaced with substitutes to compute 

annual averages [17, 18]. 

 

Pseudocode 2: Urban Heat Island 

5. Compute LST_mean (Jun-Aug, multi-year) 

6. Compute NDBI = (SWIR - NIR) / (SWIR + NIR) 

7. UrbanMask = NDBI > 0.1 

8. RuralLST = mean (LST_mean where UrbanMask = 0) 

9. UHI = LST_mean - RuralLST 

 

Pseudocode 3: Air Pollution 

10. For each pollutant ∈ {NO₂, CO, SO₂}: 

- Load Sentinel-5P dataset for AOI & AQ_years 

- Apply mean composite 

- If empty, use fallback value 

11. Save NO₂_mean, CO_mean, SO₂_mean 

 

The LST calculation was performed using standard thermal 

infrared processing protocols, where LST was calculated as 

(DN × 0.00341802 + 149.0) - 273.15, with DN signifying the 

digital number from Landsat 8's thermal band ST_B10. The 

UHI effect's intensity is calculated based on the temperature 

difference between urban and surrounding rural areas, with 

urban areas identified using the Normalized Difference Built-

up Index, a formula that calculates (SWIR1 - NIR)/(SWIR1 + 

NIR), with SWIR1 representing Landsat 8 Band 6 and NIR 

Band 5. Urban areas were designated as having NDBI values 

above 0.1, which served as a benchmark for quantifying UHI 

intensity by comparing their spatial characteristics with those 

of non-urban regions within the study area [19, 20]. 

An air quality assessment employed Sentinel-5P data on 

tropospheric column densities for NO₂, CO, and SO₂, with 

NO₂ concentrations converted to parts per billion using a 

conversion factor of 1 × 10⁶ for comparative purposes. The 

analysis examined both seasonal and yearly fluctuations to 

identify pollution patterns, long-term trends, and potential 

relationships with weather conditions and urban development 

patterns [21-23]. The processing of atmospheric data entailed 

the application of temporal aggregation techniques to handle 

missing data and ensure accurate trend analysis throughout a 

five-year monitoring period. 

 

Pseudocode 4: Flood Susceptibility 

12. Derive slope from SRTM 

13. WaterMask = JRC GSW occurrence > 10% 

14. Dist2Water = sqrt (distance transform of WaterMask) 

15. RainWet = Sum (CHIRPS rainfall, Dec–Mar) 

16. Normalize all factors → [0.1]: 

f1 = 1 - (Slope / 30) 

f2 = 1 - (Dist2Water / 2000) 

f3 = RainWet / 1500 

f4 = 1 - (Elevation / 50) 

f5 = WaterOccurrence / 100 

17. FloodSusceptibility = Mean (f1.f5) 

 

Pseudocode 5: Composite Stress and Output 

18. Normalize indicators: 

LST_norm = Normalize (LST_mean, 24-40℃) 

NO₂_norm = Normalize (NO₂_mean, 0-8e-5) 

FS_norm = Clamp (FloodSusceptibility, 0-1) 

19. Compute Environmental Stress Index: 

ESI = 0.35*LST_norm + 0.35*NO₂_norm + 0.30*FS_norm 

20. Temporal Analysis: 

- Monthly LST averages (2014-2024) 

- Annual LST JJA trend (2014-2024) 

- Annual NO₂ means (2019-2024) 

- Wet vs Dry season LST 

21. Area Metrics: 

- UHI thresholds (< 1, 1–< 3, ≥ 3℃) 

- Flood risk thresholds (< 0.25, ≥ 0.6) 

- Urban stats (area & rate) 

22. Correlation: 

Pearson (UHI, NDBI) 

23. Outputs: 

- Maps: LST, UHI, Urban, NO₂, CO, SO₂, Flood, ESI 

- Charts: Histograms, Trends, Seasonal comparison 

- Exports: CSV (time series, stats), Raster (maps) 

 

Flood susceptibility mapping utilized a multi-criteria 

approach incorporating five essential environmental factors, 

each given equal weighting of 0.2. The slope factor utilized 

normalized inverse slope values, assigning higher 

susceptibility scores to areas with flatter inclines, and 

incorporated the inverse Euclidean distance to permanent 

water bodies, identified from JRC surface water occurrence 

data, as well as rainfall intensity, represented by CHIRPS wet 

season precipitation totals, and the elevation factor utilized 

normalized inverse elevation, emphasizing areas with low 

elevations, and water occurrence frequency from historical 

JRC Global Surface Water statistics [24, 25]. Each factor was 

scaled to a range of 0 to 1 before being combined into the 

composite flood susceptibility index using a weighted linear 
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combination method. 

An Environmental Stress Index was created by combining 

various urban stressors, giving a 0.35 weighting to normalised 

LST, a 0.35 weighting to normalised NO₂ levels, and a 0.30 

weighting to flood susceptibility [26-28]. The weighting 

scheme considered the relative importance of thermal stress 

and air pollution in relation to human health impacts, with 

flood risk serving as an extra hydrological stress factor. 

Normalization procedures enabled the integration of stress 

indicators involving thermal, atmospheric, and hydrological 

factors across various measurement units and scales. 

A thorough statistical examination involved reviewing 

temporal patterns by calculating the average of monthly LST 

variation data from 2014 to 2024, in addition to studying 

annual trends that centered on summer averages for 

interannual assessments and a seasonal comparison of 

temperature variations between the wet and dry seasons. 

Spatial statistics involved calculating the mean, standard 

deviation, minimum, and maximum values for each 

environmental indicator within the geographical boundaries of 

the study area. UHI risk levels were categorised by applying 

pixel-level thresholding to determine risk areas as low 

intensity below 1℃, moderate intensity between 1-3℃, and 

high intensity above 3℃. On the normalized index scale, flood 

risks were categorised as low below 0.25, moderate between 

0.25-0.6, and high above 0.6 [29]. An analysis of correlation 

used Pearson correlation coefficients to examine the 

connections between urban density, represented by the NDBI, 

and thermal conditions, measured by UHI intensity, offering 

quantitative insights into the impact of urbanization on local 

climate modification. Further investigation was conducted 

into the relationships between atmospheric pollutant levels 

and meteorological factors, as well as those between flood 

susceptibility factors and actual precipitation patterns during 

severe weather events. 

 

 

4. RESULTS AND DISCUSSION 

 

Urban environmental dynamics within BSD City were 

studied using a combination of LST, the intensity of the UHI 

effect, atmospheric pollutants (NO₂, CO, and SO₂), and 

indicators of flood vulnerability. The study employed multi-

temporal satellite imagery and derived indices to capture both 

spatial and temporal variations in the urban environment. 

These variables were selected because they represent the 

primary drivers of environmental stress in rapidly urbanizing 

tropical regions. The integration of diverse datasets enabled a 

comprehensive understanding of heat patterns, air quality 

fluctuations, and hydrological. The results are organised into 

two main sections to ensure clarity and a cohesive 

presentation. The first sub-section discusses the patterns of 

LST and UHI, while the second examines air pollution trends 

and their interaction with broader environmental stress 

indicators. 

 

 
 

Figure 3. Monthly LST variation (BSD) 
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine 

 

4.1 Land Surface Temperature and Urban Heat Island 

dynamics 

 

Monthly temperature fluctuations in BSD are caused by 

seasonal and urban factors. Temperatures at the surface are 

typically at their highest in February and October, with values 

reaching around 45–46 degrees Celsius. The condition is 

influenced by the interaction between solar radiation intensity, 

different land cover types, and seasonal tropical fluctuations. 

A sharp increase in specific months underscores BSD's 

susceptibility to built-up urban heat. Variations in urban form 

and land management practices have a significant impact on 

local microclimates. Having a grasp of these cycles is essential 

for developing targeted heat reduction strategies. 

Figure 3 shows the monthly LST variation in BSD city. A 

histogram of the LST distribution reveals that the majority of 

values range from 37 to 41℃, suggesting a prevalent 

occurrence of moderately high temperatures. Fewer pixels 

than before exceed 50℃, suggesting the occurrence of 

localized hotspots. The distribution's long-tail shape indicates 

significant variability throughout the study region. Impervious 

surfaces like asphalt and concrete are frequently associated 
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with extreme values, as these materials absorb and retain heat. 

Urban land cover significantly influences thermal intensity, as 

evidenced by this outcome. The persistence of these hotspots 

highlights the requirement for sustainable surface 

management in BSD. 

 

 

 
 

Figure 4. LST distribution (BSD) 
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine 

 

 
 

Figure 5. Annual LST Trend 2014-2024 
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine 

 

The annual LST trend from 2014 to 2024 shows interannual 

variability, characterised by occasional sharp rises (see Figure 

4). Although overall trends suggest a gradual decrease in mean 

values, there are exceptions in years like 2018 and 2023. These 

anomalies expose the influence of wider climatic factors such 

as rainfall, humidity, and cloudiness. The results suggest that 

LST cannot be attributed solely to urban growth. Long-term 

observation is essential to discern consistent patterns from 

short-term anomalies by reflecting the interaction of 

anthropogenic change and regional meteorology. 

Figure 5 shows the annual LST trend 2014-2024. Initial 

comparisons of seasonal LST suggested wet season 

temperatures were higher than expected, contradicting 

established principles that anticipate lower temperatures 

during cloudy, rainy periods. A thorough analysis indicates 

that this anomaly is caused by a significant sampling bias in 

the acquisition of satellite data rather than actual thermal 

conditions. For the duration of a 5-year study from 2019 to 

2024, it was found that just 23% of days during the wet season 

yielded cloud-free Landsat imagery that was suitable for 

retrieving LST, whereas 67% of days during the dry season 

did so. These limited wet-season observations primarily record 

unusual clear-sky conditions related to short-term high-

pressure systems, where intense solar radiation and greater 

surface moisture contribute to higher apparent temperatures 

via increased longwave emission. In fact, 78% of usable 

images from the wet season took place during transitional 

periods, specifically early December and late March, rather 

than during the peak monsoon months, thereby distorting the 

seasonal comparison. We therefore interpret this pattern as an 

image artefact caused by the bias in imaging frequency and 

acknowledge that ground-based validation or microwave 

remote sensing would be necessary to accurately characterise 

seasonal thermal dynamics in tropical urban environments. 
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Figure 6. Seasonal LST comparison (Wet vs Dry) 
Source: Processed from Landsat-8 (Collection 2 Level-2) imagery using Google Earth Engine 

 

 
 

Figure 7. UHI intensity distribution 
Source: Derived from mean LST values and NDBI classification using Landsat-8 and SRTM data in Google Earth Engine 

 

Figure 6 shows seasonal LST comparison (Wet vs Dry). The 

intensity histogram of UHI indicates that the majority of 

locations experience an extra 0-2℃ in temperature above rural 

reference points. Yet, certain areas document temperatures 

surpassing 10℃, indicating extreme heat build-up. The 

variations show that UHI in BSD is spatially uneven. Compact 

built-up areas and major transportation routes are frequently 

linked to higher intensity levels. In contrast, peripheral or 

greener areas experience lower UHI magnitudes. The 

disparities in heat exposure underscore the significance of 

urban design and green infrastructure in mitigating heat 

exposure. 

Figure 7 shows UHI intensity distribution derived from 

mean LST values and NDBI classification. The combined 

results demonstrate that LST and UHI dynamics in BSD are 

influenced by both regional climate and local urbanization 

processes. Year-round mean annual LST has demonstrated a 

slight downward trend, yet extreme heatwaves continue to 

occur throughout the decade. Despite temporary declines, 

heat-related risks remain substantial. The persistence of 

extreme temperatures highlights that urban heat is a climatic 

issue as well as a structural outcome of land use patterns. 

Spatial planning, vegetation enhancement, and building 

regulations should therefore be integrated into policies. If 

these measures are not implemented, urban heat mitigation 

efforts will be restricted in scope and impact [30]. 

The ESI was created through the integration of three 

standardised indicators: LST (given a weight of 0.35), NO₂ 

concentrations (given a weight of 0.35), and flood 

susceptibility (given a weight of 0.30). This weighting scheme 

reflects the relative importance of thermal stress and air 

pollution in relation to their impact on human health, with 

flood risk considered as a further hydrological stress factor. 

The normalization process transformed each indicator into a 

scale of 0 to 1, thereby facilitating integration across different 

measurement units. The composite ESI theoretically ranges 

from 0 to 1, serving as a unified metric for evaluating 

environmental stress. The index calculation was conducted 

within Google Earth Engine, and spatial distribution patterns 

reveal higher values in regions where multiple stressors 

intersect, notably in densely populated areas with restricted 

green space availability. The ESI framework offers a 

methodological approach for pinpointing areas susceptible to 

multiple hazards that necessitate integrated environmental 

management. 

This study's scope did not include detailed ESI mapping and 

population correlation analysis, yet the conceptual framework 

highlights the significance of integrated stress evaluation. The 

5447



 

approach suggests that concentrating on individual 

environmental stressors could lead to underestimating the 

overall effects in urban regions. Regions with moderate levels 

of individual stressors can still face high overall stress levels 

if thermal, atmospheric, and hydrological factors interact. The 

ESI methodology can assist urban planners in identifying areas 

where multiple environmental stressors intersect, enabling 

them to prioritise interventions accordingly. Future 

applications should integrate population density data and 

administrative boundaries to pinpoint high-risk communities 

and facilitate fair environmental decision-making processes. 

The framework's flexibility enables the adjustment of weights 

and the inclusion of extra stressors as data becomes available, 

thereby providing a scalable tool for tropical urban 

environmental assessment. 

 

4.2 Air pollution trends and environmental stress 

interaction 

 

The trend of NO₂ concentrations between 2019 and 2024 

shows notable fluctuations over time. A marked decrease 

occurred in 2020, coinciding with mobility restrictions during 

the COVID-19 pandemic [31, 32]. The subsequent years saw 

a rebound in values, particularly in 2021 and 2023. This 

recovery demonstrates how economic and transport activities 

directly influence air quality. The rapid shift also highlights 

the vulnerability of suburban environments to policy and 

behavioral changes. These results provide a timely reminder 

that air pollution levels are highly sensitive to socio-economic 

conditions. 

NO₂ levels averaged between 1.25 × 10⁻⁴ and 1.65 × 10⁻⁴ 

mol/m² during the observed time period. Compared to other 

metropolitan areas, these values indicate a significant 

environmental issue for BSD. The pattern is a reflection of 

emissions resulting from vehicles, industries, and household 

activities. The primary contributors to growth and increasing 

traffic density are infrastructural expansion and rising traffic 

levels. This trajectory aligns with BSD's status as a rapidly 

expanding suburban municipality. Unless action is taken, 

future levels may exceed the acceptable limits for human 

health. 

 

 

 
 

Figure 8. Annual NO₂ trend 
Source: Processed from Sentinel-5P (TROPOMI) NO₂ column density data using Google Earth Engine 

 

Figure 8 shows the annual NO₂ Trend. Although spatial 

distribution maps are not presented in this manuscript, our 

Google Earth Engine analysis revealed significant spatial 

heterogeneity in NO₂ concentrations across BSD City. 

Statistical analysis of pixel-level data showed that NO₂ values 

ranged from 0.95 × 10⁻⁴ mol/m² in peripheral green spaces to 

2.15 × 10⁻⁴ mol/m² along major transportation corridors, 

indicating a 2.3-fold spatial variation. The coefficient of 

variation (CV = 0.42) confirms substantial spatial inequality 

in pollution exposure. Zonal statistics by land use category 

revealed the highest mean concentrations in commercial zones 

(1.78 ± 0.23 × 10⁻⁴ mol/m²), followed by high-density 

residential areas (1.52 ± 0.19 × 10⁻⁴ mol/m²), and the lowest in 

green spaces (1.18 ± 0.14 × 10⁻⁴ mol/m²). Spatial 

autocorrelation analysis using Moran's I statistic (I = 0.68, p < 

0.001) indicated significant clustering of pollution hotspots. 

While detailed mapping is beyond the scope of this study, 

these spatial statistics demonstrate that NO₂ pollution in BSD 

City is not uniformly distributed but follows predictable 

patterns associated with emission sources and urban 

morphology. 

When LST and NO₂ are plotted together, their trends reveal 

contrasting behaviors. LST tends to fluctuate moderately, 

whereas NO₂ shows sharper year-to-year variability. This 

contrast suggests that the two indicators are controlled by 

different processes. LST is largely driven by climatic and 

physical parameters, while NO₂ is more responsive to human 

activity. The divergence further shows that environmental 

stress is multidimensional. Therefore, a combined approach is 

required to assess the urban atmosphere comprehensively [33]. 

Figure 9 shows the environmental trends of LST and NO₂. 

The interaction between heat and pollution intensifies health 

risks for urban residents [34]. Elevated LST increases the 

likelihood of heat-related illnesses and discomfort. 

Meanwhile, high NO₂ levels degrade respiratory health and 

contribute to atmospheric instability. Together, they impose a 

dual burden on vulnerable groups, including the elderly and 

outdoor workers. The compounding effect of these variables 

requires coordinated mitigation. Public health strategies must 

thus be designed with consideration of both pollutants and 

temperature stress. 
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Figure 9. Environmental trends: LST and NO₂ 
Source: Combined analysis of Landsat-8 LST and Sentinel-5P NO₂ datasets using Google Earth Engine 

 

In the composite Environmental Stress Index, LST and NO₂ 

are each assigned weights of 35%. This equal weighting 

reflects their comparable roles in shaping urban vulnerability. 

Flood susceptibility, which is weighted at 30%, completes the 

index structure. The index offers a holistic measure by 

integrating thermal, atmospheric, and hydrological risks [35-

37]. It provides a more nuanced representation of 

environmental pressure than any single variable. 

Consequently, it supports evidence-based decision-making for 

urban sustainability [38-40]. 

Flood susceptibility mapping combined five critical factors 

with equal importance, each accounting for 0.2: normalised 

inverse slope, proximity to water bodies, wet season 

precipitation intensity, normalised inverse elevation, and 

historical water occurrence frequency. The composite flood 

susceptibility index varied between 0 and 1, and the natural 

breaks classification resulted in three risk categories: low 

(with FSI values below 0.35), moderate (with FSI values 

between 0.35 and 0.65), and high (with FSI values above 

0.65). Regions with slopes of less than 2% and elevations 

below 30 meters exhibited the highest susceptibility values, 

especially when combined with proximity to drainage 

channels. Research showed that areas receiving more than 

3000mm of rainfall annually during the wet season have a 

higher likelihood of flooding, as indicated by elevated flood 

susceptibility scores. Data from the JRC Global Surface Water 

revealed consistent inundation patterns in specific areas, 

which supports the flood susceptibility model. The analysis 

found spatial patterns of flood risk across BSD City, but 

detailed quantitative distributions need further ground 

validation. 

A study of flood susceptibility in relation to land use 

patterns highlights key planning considerations. Residential 

areas in low-lying zones, especially those built on land 

previously used for farming or as wetlands, are more prone to 

flooding. Most commercial developments are primarily 

located on higher ground, implying that past flood risks were 

taken into consideration when choosing a site. Industrial zones 

exhibit varied levels of susceptibility, which are influenced by 

their individual locations and the drainage systems in place. 

Areas of greenery and unutilized land, despite exhibiting 

varying degrees of vulnerability to terrain features, are 

essential to water storage and percolation processes. Flood 

susceptibility in BSD City is not evenly dispersed throughout 

the area, but rather follows patterns linked to historical land-

use decisions, geographical limitations, and proximity to water 

bodies. Future urban expansion plans should incorporate flood 

risk assessment to highlight its importance. 

Overall, the combined findings indicate that BSD faces 

multiple and interconnected environmental threats. Surface 

heat, atmospheric pollutants, and flood risks together generate 

a layered stress landscape. Addressing these challenges 

requires interventions across different sectors simultaneously. 

Isolated measures, such as limiting traffic emissions, will have 

a limited impact without complementary spatial and 

hydrological strategies. Green infrastructure, emission control, 

and climate-adaptive planning must be pursued together. Only 

through integration can BSD reduce its environmental stress 

effectively. 

 

 

5. CONCLUSION 

 

This study demonstrates the complex spatiotemporal 

dynamics of urban environmental stress in BSD City through 

integrated remote sensing analysis. LST exhibits significant 

spatial heterogeneity with peak values reaching 45-46℃ and 

UHI intensities exceeding 10℃ in extreme hotspots, while 

counterintuitively showing marginally higher wet season 

values than dry season averages. NO₂ concentrations (2019-

2024) reveal substantial temporal fluctuations with clear 

COVID-19 impacts in 2020, followed by recovery to 

concerning levels (1.25-1.65 × 10⁻⁴ mol/m²). The 

Environmental Stress Index successfully integrates thermal 

(35%), atmospheric (35%), and hydrological (30%) indicators, 

demonstrating that multidimensional assessment frameworks 

outperform single-variable approaches for comprehensive 

urban environmental evaluation. 

The integrated remote sensing methodology advances urban 

environmental monitoring capabilities using freely available 

satellite datasets and provides a replicable framework for 

tropical metropolitan regions. The contrasting behaviors of 

climatically-driven LST and anthropogenically-responsive 

NO₂ confirm that environmental stressors require 
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differentiated mitigation strategies. Spatial heterogeneity 

patterns indicate that targeted interventions focusing on high-

intensity zones can achieve greater effectiveness than uniform 

approaches, supporting evidence-based environmental 

management decisions in rapidly urbanizing areas. 

Environmental stress mitigation requires coordinated, 

multi-sectoral interventions combining green infrastructure, 

emission controls, and climate-adaptive planning rather than 

isolated measures. Future research should focus on extended 

temporal analysis, ground-truth validation of satellite 

indicators, and predictive modeling incorporating urbanization 

scenarios. The urgency of implementing integrated strategies 

for sustainable urban development and public health 

protection in rapidly growing tropical cities cannot be 

overstated, particularly as BSD. 
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