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The integration of the Internet of Things (IoT) into everyday life is revolutionizing 

personal safety and health monitoring. In increasingly busy and distracting urban 

environment, ensuring child safety exponentially growing to become a serious concern. 

The objective of this study is to design a wearable IoT system, helping keep track of a 

child’s location and health to support early emergency action. For the child’s safety, a 

simple tracking system app was designed that helps parents set boundaries and receive real 

time notifications whenever their child leaves the designated area, detected through GPS. 

To assess health-related risks, the system collects and analyzes seven key physiological 

and motion signals: acceleration (accel_x, accel_y, accel_z), gyroscopic movement 

(gyro_x, gyro_y, gyro_z), and heart rate. To improve detection of health anomalies such 

as minor seizure, a hybrid deep learning framework consisting of convolutional neural 

networks (CNN) and long short-term memory (LSTM) networks was developed and 

trained using modified version of the SHAR-100-20 dataset which simulates human 

activity in individuals with disabilities. A total of 300,000 measurements were sampled 

from the modified version of the data and divided into 70% for the training and 30% for 

the testing to train and apply cross validation for evaluation purposes. The proposed system 

achieved an excellent 99% accuracy in detecting minor seizures. It surpassed other 

tracking systems by providing better detection rates, greater awareness of what is 

happening and faster responses. Moreover, the flexible structure is supporting the use in 

elderly and medical care monitoring, supplying a complete framework for monitoring 

health and location in an effective way, and offering a comprehensive solution for real-

time health and location tracking. 
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1. INTRODUCTION

All over the world, more people are concerned about 

children because the number of public incidents and child 

disappearances is increasing. Every year, research shows that 

64% of all abduction cases involved children, and one child 

goes missing every two minutes in the European Union [1]. 

The Malaysian National Crime Record Center found that 

child-related crimes went up by 10.5% from 2019 to 2020 [2]. 

The serious numbers highlight the need for solutions that 

quickly safeguard children in all environments. Using printed 

wristbands, surveillance cameras and centrally controlled 

systems for children has shown it is difficult to offer quick 

answers to security issues [3]. Such systems often cannot stop 

major incidents in places where there are many visitors, for 

example in museums and schools [4, 5]. As a consequence, 

new research has turned towards using GPS, GSM and 

wireless communication modules together with the Internet of 

Things (IoT) to design advanced monitoring systems. Some 

experts suggest that wearable devices that include GPS and 

GSM technology could send updates on a child’s location to 

parents, either through text or mobile application alerts [6-8]. 

Advanced tracking solutions now use both RFID for indoor 

positioning and GPS for outdoor tracking [9], along with 

techniques such as Time of Arrival, Angle of Arrival and 

Received Signal Strength [10]. 

A growing number of healthcare experts believe that human 

action recognition (HAR) technologies are very helpful for 

continuously monitoring patients with neurological illnesses. 

Hence, smart monitoring systems and patterns recognition for 

different applications are vital [11-16]. In this context, 

artificial intelligence and deep learning have achieved 

impressive results across various domains of applications, 

making them promising tools for improving health monitoring 

[17, 18]. Spotting seizures, for example, is a crucial part of 

such monitoring systems, as failure to do so can place a 

person’s life at risk. An important difficulty is that seizure-

related events in HAR datasets are much less common than 

other activities which worsens the performance of traditional 

classification algorithms. To address this, we proposed an 

embedded system with hybrid architecture that processes 

sensors input frames by integrating convolutional neural 

networks (CNNs) for spatial feature extraction with long 

short-term memory (LSTM) for temporal sequence analysis. 

New developments used in wearables help identify and 

address health problems early which benefits those 

Journal Européen des Systèmes Automatisés 
Vol. 58, No. 12, December, 2025, pp. 2485-2495 

Journal homepage: http://iieta.org/journals/jesa 

2485

https://orcid.org/0000-0002-6841-5259
https://orcid.org/0009-0008-3564-0776
https://orcid.org/0000-0002-3211-3355
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.581204&domain=pdf


individuals—primarily children—susceptible to health 

emergencies. Furthermore, we put into practice biometric 

sensors and anomaly detection models incorporated into a 

wearable smart watch on an ESP32 microcontroller according 

to our system. While previous works only used geofencing 

[19-21], our system monitors both the child’s and parent’s 

device location in real time to send an alert when the child 

walks into an unsafe area. With the simple Flutter-tracker app 

for parents, they can track the satellite’s condition, set alert 

distances and receive instant notifications, helping meet the 

rising need for user-friendly parenting tools. 

In addition, the system allows mobile usage and 

compatibility with various environmental setups since static 

RFID or Wi-Fi nodes are replaced by a flexible ESP32-based 

system that uses GPS and GSM for communication. The 

access to biometric and location details is allowed only to the 

school’s authorized members. With real-time monitoring, 

biometric analysis and intelligent detection, our system offers 

a powerful and flexible method for keeping children safe 

today. A patron can expand the foundation to elderly care, 

long-term health care and supportive health care when 

emergencies arise. The proposed method presents valuable 

contortions including the following: 

1. A comprehensive framework leveraged the tracking

capabilities of location and health status by integrating 

biometric sensors into a smartwatch. 

2. The system offers a dual location monitoring mechanism

for both child and parent using GPS and developed mobile app 

with flexible configuration of the safe zones. 

3. The proposed model combined CNN and LSTM to

integrate the spatial features with the temporal sequence 

pattern to recognize health anomalies, particularly seizures, in 

children based on their movements and heart rate. 

4. The designed system can be extended easily to scalable

use, such as elderly care, long-term patient monitoring, and 

emergency health interventions. 

2. LITERATURE REVIEW

This section presents a detailed analysis of past 

investigations along with recent procedural methods which 

resolve similar issues within the research scope of this study. 

Understanding previous research enables us to understand the 

value of our work by placing its significance in the scientific 

body of knowledge.  

Isa et al. [22] proposed child-tracking system incorporates 

GPS for time-based position tracking while Bluetooth operates 

for nearness alerts. The Arduino MEGA functions as the main 

controller while triggering the transmission of child GPS data 

as text messages after Bluetooth disconnects. This system 

failed to perform biometric monitoring as well as incorporate 

intelligent behavior prediction functions. Taha et al. [23] 

illustrated how an Arduino connected to a GPS/GSM device 

allows tracking of children and notifies their caregivers by 

SMS. However, the device did not measure heart rate or 

movement, it was unable to act if there’s an emergency. 

Secondly, since there is no mobile app, all user interaction and 

management depend completely on SMS. Marhoon et al. [24] 

designed a child monitoring system wherein smart bracelets 

with ESP8266 chips to help parents monitor their children 

through their smartphones. Combined hardware and software 

elements to notify parents the moment the child strayed further 

than a marked 50 meters. If the child travelled beyond a 

predefined distance, the system played a sound and sent the 

position by SMS with a link to Google Maps. In the test range, 

the solution managed to track and alert both ends in real time. 

However, the system can’t use biometric monitoring, it cannot 

be used for health or emergency purposes. Because it needs a 

strong internet connection for GPS updates and sending out 

messages, the system can be less reliable for users in remote 

areas or places with bad access to the internet.  

Al-Hussaini and Mitchell [25] introduced a flexible 

machine learning method for the detection of seizures using 

EEG readings from wearable devices. By focusing on class 

balance and using feature extraction in Random Forest 

classifiers, the study demonstrated how the system can be 

understandable and gave an accuracy of 93.7%. An energy-

efficient neural network for embedded systems was shown by 

another contribution, EpiDeNet [26]. The model, which 

focused on reducing energy usage while maintaining detection 

quality, obtained over 91% accuracy using CHB-MIT EEG 

data, making it appropriate for continuous monitoring in 

wearable devices. The system used EEG only and did not 

support other biometric signals. Gelbard-Sagiv et al. [27] 

studied a different method for making wearable EEGs better 

by improving the arrangement of electrodes. The idea was to 

use less memory in the design by using fewer electrodes and 

still attain a strong 89% detection accuracy. Shirt sensors was 

used to measure sleep biomarkers from patients who might 

seize [28]. UC San Diego’s team found that their SVM model 

with an AUC of 0.80 might let sleep features be added to pre-

seizure warning systems. Strongly depends on night-time rest 

and cannot do its work when you are awake or up. A complete 

seizure prediction system utilized a selection of wearable 

sensors that monitor ECG, PPG and EEG [29]. The study 

revealed that when physiological info is included, model 

performance is greatly enhanced and SVM classifiers 

predicted 94.3% correctly. They utilized standard methods 

(SVM), not including those from deep learning methods. 

Table 1 shows a comprehensive comparison of some of the 

previous work.

Table 1. Literature review of previous works 

Reference 
System 

Type 
Technology Used Additional Features Limitations Accuracy 

[22] 
child 

tracking 

GPS + Bluetooth + 

Arduino MEGA 

SMS alerts when 

Bluetooth disconnects 

Bluetooth dependency, poor long-range 

tracking, no biometric or ML 

Not 

specified 

[23] 
child 

tracking 

GPS + GSM + 

Arduino 

low-cost tracking via 

SMS 

No heart rate or movement monitoring, no 

mobile app, risk of losing device, prepaid 

SIM dependency 

Not 

specified 

[24] 
child 

tracking 

ESP8266 + GPS + 

GSM + buzzer/LED 

distance alert + mutual 

alarms on devices 

No biometric monitoring, high power 

consumption, needs strong internet 

Not 

specified 

[25] 
seizure 

detection 

EEG + ML (Random 

Forest) 

class balancing + 

feature extraction 
EEG only 93.7% 
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[26] 
seizure 

detection 

EEG + Energy-

efficient Neural Net 

low power consumption 

+ high accuracy 
supports EEG only > 91% 

[27] 
seizure 

detection 

EEG + Electrode 

Optimization 

reduced electrodes for 

lower memory usage 

focuses on electrode placement, not model 

improvement 
89% 

[28] 
seizure 

prediction 

SVM + Shirt Sensors 

(sleep biomarkers) 

nighttime sleep-based 

seizure prediction 
not effective when awake or active 

AUC = 

0.80 

[29] 
seizure 

prediction 

ECG + PPG + EEG + 

SVM 

multi-sensor 

physiological data 

fusion 

uses traditional SVM, no deep learning 94.3% 

 

 

3. SYSTEM OVERVIEW 

 

This section presents the details of the proposed system and 

all its components: hardware, software, and machine learning 

algorithms implementation to predicate child’s pattern 

behavior.  

 

3.1 Hardware implementation 

 

The proposed embedded system is designed as a wearable 

IoT which include sensing, tracking, and communication. This 

section presents the main components and focusing on the 

system functions. The central microcontroller ESP32-C3 

SuperMini is used to process data and controls communication 

with sensors. To track motion and orientation of the child GY-

521 (MPU6050) is used. SIM800L Module (SIM800L BO1) 

is utilized to send and receives SMS or data over mobile 

networks [30]. ATGM336H GPS Module is responsible for 

providing real-time geographic coordinates. The Pulse 

oximeter and heart-rate sensor MAX30102 is designed for 

monitoring blood oxygen levels and heart rate [31]. The 

system is powered by Li-Po Battery (3.3V, 1100 mAh). Figure 

1 shows the proposed system. Figure 2(a) and (b) show the pub 

top and bottom layer. 

 

 
 

Figure 1. The proposed system

 

  
(a) Top layer (b) Bottom layer 

 

Figure 2. The Pcb top and bottom layers for the proposed system 

 

3.2 Software design 

 

A cross-platform IDE application known as Arduino 

integrated development environment (IDE), is used to 

program the proposed micro controller, as exists primarily in 

Java coding language to operate on Windows and macOS and 

Linux platforms. Within the IDE code can be edited via a text 

editor that supports features including text movement 

capabilities and text search tools and formatting assistance 

while also providing single-step functions for Arduino boards 

including our micro controller Esp32-C3 Super Mini program 

compilation and upload processes. 

In addition, Flutter tracking application was used. The 

mobile application delivered a pair of essential values to the 

ESP32 which includes the guardian's present GPS position and 

the security distance selected by the user (10, 15, 20 or 25 

meters). The ESP32 obtains GPS coordinates from itself as 

well as from the received guardian data to perform the distance 

calculation between both points. The ESP32 sends an 

instruction to the SIM800L module so it initiates a GSM call 

to the guardian's phone after calculating distance 

measurements exceed the defined limit.  
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If the child moves beyond the predefined threshold, the 

system marks the child’s location as outside the safe zone. 

After that, the child’s movement with heart rate are 

continuously monitored, and these signals are sent to the AI 

unit to predicate the health status of the child by estimating the 

pattern behavior using the trained hydride model. 

The ESP32 maintains a continuous data transfer to the 

mobile application that includes the location, quantitative 

reports of heart rate combined with oxygen level readings, 

motion information, and the decision of the AI unit to 

predicate the type behaviors (Normal, Pre-Seizure, and 

Seizure). The mobile application presents real-time health 

information and shows the GPS positions of both child and 

guardian at the same time. User interaction with locations is 

possible through the map view which utilizes OpenStreetMap 

integration from the flutter map plugin. The application 

implements real-time connection monitoring to maintain 

system reliability. The selected architecture allows 

microcontrollers such as ESP32 to execute an efficient 

communication protocol which uses minimal resources as well 

as the Flutter interface enables user-friendly interaction as 

shown in Figure 3. Note that the readings of the sensors are 

not shown as the system was in the disconnection state from 

the internet. Figure 4 shows a flowchart which demonstrating 

the overall process and the steps of the proposed system. 

 

 
 

Figure 3. Child safety tracker platform 

 

3.3 Machine learning implantation 

 

Artificial intelligence and machine learning techniques have 

gained a prominent status and are now extensively applied 

across a wide range of fields. Thus, AI and ML methods can 

contribute significantly to resolving diverse issues of daily 

real-life challenges. Activity monitoring and human behavior 

analysis are considered as essential tasks in numerous types of 

practical applications in modern life. Human patterns 

understanding can be used in wide range of applications 

including healthcare, smart homes, surveillance systems, and 

security systems. For example, monitoring specific patterns in 

physical activities and behavioral responses may be very 

useful to detect anomalies such as medical emergencies, 

psychological distress, or even unauthorized behavior. The 

automation of this process with the integration of artificial 

inelegance techniques is crucial to achieve speed, accuracy, 

and adaptability.  

 

 
 

Figure 4. Flowchart of the proposed system 

 

On the other hand, mentoring children’s activities and their 

behaviors is very important task for parents, caregiver, and 

educators because it ensures their safety, offers the required 

support, and provides greater peace of mind. Therefore, we 

tended to present an automatic system based on AI to predict 

kids’ activities and detects any abnormal or risky behavior. For 

this purpose, we utilized SHAR-100-20 dataset as the primary 

source of the activity classification to provide the necessary 

data to train our system. SHAR-100-20 is publicly available 

dataset collected from 100 participants, designed to simulate 

20 classes of physical activities for human actions recognition. 

We used this particular dataset because it offers a set of very 

comprehensive variety of activities which are highly relevant 

to safety mentoring for children’s behaviors. initially, we 
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modify the dataset by restructuring the original output labels 

of the data to accommodate them for the training part of our 

system. To achieve that, a certified medical expert was 

consulted to reclassify the original twenty classes into three 

types of activities: normal, pre-seizure, and seizure. Then after 

that we sample 100,000 recordings for each class.  

After the modification, the data labels were consolidated 

into three behavioral categories: normal, pre-seizure, and 

seizure of 300,000 measurements, few samples from the data 

are shown in Figure 5. The primary reason of this 

transformation was to align the dataset with the core objective 

of our activity recognizer model.  

 

 
 

Figure 5. Few samples from the dataset 

 

The learning process of our system can be divided into two 

steps. Firstly, we used the raw data of the collected sensors of 

acceleration (accel_x, accel_y, accel_z), gyroscopic 

movement (gyro_x, gyro_y, gyro_z), and heart rate. For this 

particular step, we utilized traditional methods of machine 

learning process where the input of the trained models is a 

vector of seven parameters and the output is the predication of 

the behavioral type. To perform the training process, we split 

the modified data into training part and testing part. We used 

the training segment of the data to apply the learning process 

of the predication models. 

To evaluate the performance of the learned models, we 

applied cross validation strategy throughout the training 

process. A 10-fold cross validation technique was used by 

randomly dividing the dataset ten times into 70% to 30% 

segments ratio. In each iteration, we used the training portion 

to build the predication model, while the remaining portion of 

the data was utilized to measure the classification accuracy and 

the other evaluation metrics. Finally, the performance of the 

trained model was calculated by averaging the results across 

all ten iterations to provide a comprehensive assessment of its 

effectiveness. 

A broad spectrum of classification methods has been 

proposed by researchers to improve the recognition 

performance, each algorithm exhibits unique characteristics, 

strength and limitations. Consequently, determining the best 

candidate classification technique for particular dataset and 

task can be both challenging and demanding task. To 

overcome this problem, we explored wide range of 

classification algorithms by training around 18 different 

models. The implemented classification techniques can be 

categorized into linear, nonlinear, single classification and 

ensemble of classification methods. Logistic Regression, 

Linear Discriminant Analysis, and Support Vector Machine 

were trained to build predication models as linear classifiers. 

On the other hand, Decision Tree, Quadratic Discriminant 

Analysis, and K Nearest Neighbors were trained as non-linear 

models. Additionally, we extended the scope of the training to 

include ensemble of classifiers by training Extra Trees 

Classifier, Random Forest Classifier, and Ada Boost 

Classifier. The primary objective of deploying various 

classification techniques is to achieve comprehensive 

comparative analysis. 

The aforementioned classifiers have demonstrated their 

effectiveness across different types of applications involving 

static data and tabular input, where each measurement is 

considered entirely independent. However, these types of 

classification approaches do not consider the temporal history 

of the input and rely solely on the current state of entered data 

sensors. Hence, they are practically unsuitable for problems 

involving time series inputs, where data pattern and its 

dependencies are essential factors for accurate classification. 

Behavior monitoring using physiological signal analysis can 

be considered as time series problem where the input features 

are time dependent. In this analysis, the temporal relationship 

between sensors measurements observations can be very 

crucial for the classification performance. Therefore, we used 

in the next phase of our project time series models to 

implement the predication models. 

 

 
 

Figure 6. The proposed model architecture 

 

Table 2. Proposed model configuration 

 
Layer 

No. 
Type Configuration Activation 

1 Conv1D 
Filters = 64, Kernel 

= 4, Stride = 1 
ReLU 

2 MaxPooling1D Pool Size = 2 -- 

3 Dropout Rate = 0.3 -- 

4 LSTM Units = 64 Tanh/Sigmoid 

5 Dropout Rate = 0.3 -- 

6 Dense Units = 64 ReLU 

7 Dense Units = 64 Softmax 

 

In order to capture the sequential temporal patterns across 

time domain of the input sensors, we aggregated 20 

consecutive samples to create a single window of input 

segment. This window of input allowed the classification 

models to learn not only from the data measurements 

individually but also from the temporal patterns throughout 

multiple steps over time. The segmented time-windows of the 

inputs were used to train types of deep learning architectures: 

a pure CNN to capture the local spatial features across the 

temporal window, a pure RNN to capture the sequential 

dependencies relationships of the temporal patterns, and 

finally a hybrid CNN-RNN architecture network to leverage 

both local spatial features and temporal sequence learning 

capabilities. This hybrid architecture model allowed a 

comprehensive analysis to accommodate spatial and temporal 

features learning. Figure 6 shows the block diagram of the 

proposed hybrid architecture network. Table 2 illustrates the 

details configuration of the proposed network. 

 

3.4 Evaluation process 

 

In order to evaluate the trained models, we used Accuracy, 
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precision, recall, and F1-score (as shown in the following 

equations) with predication time, size of the model, and 

number of learnable parameters (for deep learning model). The 

evaluated metrics can provide a complete analysis and 

illustrated a trade-off between efficiency and accuracy. The 

next section presents the results details of the conducted 

experiments. 

 

% 100
TP TN

Accuracy
TP TN FP FN

+
= 

+ + +
 (1) 

 

% 100
TP

Precision
TP FP

= 
+

 (2) 

 

% 100
TP

Recall
TP FN

= 
+

 (3) 

 

2
1 % 100

Precision Recall
F Score

Precision Recall

 
− = 

+
 (4) 

4. RESULTS AND EVALUATION  

 

4.1 Results of machine learning algorithms 

 

This section presents comprehensive details of the all 

experiments conducted in the proposed work. The ultimate 

goal of this comparison is to find the best candidate 

classification algorithm and to build the most effective model 

for recognizing different patterns in child behavior. The results 

of our experiments can be divided into two types regarding the 

nature of the data handling. Firstly, we treated the inputs 

samples measurements independently. For this type of 

analysis, we trained traditional machine learning methods 

using cross validation methods. We used 10-fold validation 

method by splitting the dataset into training and testing 

segment using 70%:30% ratio. Table 3 shows a 

comprehensive analysis of the obtained results of the 

conducted experiments in our project.

 

Table 3. Results of comparison 

 
Model Accuracy Recall Prec. F1-Score Execution Time 

Light Gradient Boosting Machine 0.9622 0.9622 0.9647 0.9624 1.9310 

Random Forest Classifier 0.9578 0.9578 0.9593 0.9579 0.2080 

Extreme Gradient Boosting 0.9567 0.9567 0.9588 0.9568 0.3260 

Extra Trees Classifier 0.9567 0.9567 0.9587 0.9568 0.1640 

CatBoost Classifier 0.9544 0.9544 0.9564 0.9546 5.6520 

Gradient Boosting Classifier 0.9522 0.9522 0.9558 0.9525 0.5200 

Decision Tree Classifier 0.9344 0.9344 0.9374 0.9342 0.0320 

Quadratic Discriminant Analysis 0.8722 0.8722 0.8762 0.8688 0.0420 

K Neighbors Classifier 0.8678 0.8678 0.8931 0.8658 0.0620 

Ada Boost Classifier 0.8500 0.8500 0.8556 0.8499 0.2280 

Naive Bayes 0.8489 0.8489 0.8560 0.8442 0.0520 

Gaussian Process Classifier 0.8444 0.8444 0.8782 0.8405 1.1230 

MLP Classifier 0.8433 0.8433 0.8519 0.8428 0.2870 

Linear Discriminant Analysis 0.7244 0.7244 0.7225 0.7143 0.0230 

Ridge Classifier 0.7178 0.7178 0.7164 0.7040 0.0270 

Logistic Regression 0.6956 0.6956 0.6921 0.6854 0.0610 

SVM - Radial Kernel 0.5767 0.5767 0.8092 0.5557 0.2120 

SVM - Linear Kernel 0.5011 0.5011 0.5076 0.4222 0.0370 

Dummy Classifier 0.3333 0.3333 0.1111 0.1667 0.0540 

 

To ensure a better evaluation, we calculated the accuracy, 

recall, precision, and F1-score metrics. Additionally, we 

computed the execution time of each of the all trained models 

to assess the speed of the predication and the suitability for 

real-time applications. 

 

 
 

Figure 7. Confusion matrix of the trained model 

 

As illustrated in the Table 3, the trained classifiers were 

ranked in descending order based on the accuracy metric. 

Notably, Light Gradient Boosting Machine classifiers 

achieved superior performance offering accuracy of 96% 

predication rate. Furthermore, we determined the confusion 

matrix of the learned model to provide the predication rate for 

each class individually, this result is shown in Figure 7. In 

order to achieve features analysis, we evaluated the significant 

of inputs feature to determine their relative contribution on 

predication performance.  
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Figure 8. The significant of feature in the dataset 

Evaluating feature importance provides the contribution of 

each feature in the dataset and measure their ranks. The result 

of the feature ranking analysis is presented in Figure 8. 

In the second phase of our project, we focused on capturing 

temporal dynamics of the input sensors. To achieve this goal, 

the input features were processed to represent the temporal 

pattern by segmenting continuous data stream into windows of 

20 consecutive measurement. These samples were created by 

aggregating consecutive measurements samples to form a 

single instance to reflect the short-time behavioral. Each one 

of these accumulated windows presented one label to describe 

the children behavioral state and predict one pattern from three 

classes (Normal, Pre- Seizures, and Seizure). 

As we mentioned before, the conventional machine learning 

methods cannot handle temporal states of the sequential data 

because they lack the mechanism to model time-based 

dependencies. This characteristic makes them unfit for 

particular tasks involving patterns classification where the 

time and the sequence of the observations play crucial role. 

Therefore, we trained deep learning models with capabilities 

of capturing temporal dynamic. More specifically, we used 

three different architectures of deep learning models: CNN, 

RNN, and CNN-RNN. First, Convolutional Neural Networks 

(CNNs) was trained to extract spatial and local features predict 

the correct behavior and detect seizer. Additionally, we trained 

Recurrent Neural Networks (RNNs) model to capture the 

sequential nature of the data. Finally, we used hydride model 

by combining CNN and RNN architectures to accommodate 

the strength points of both networks. The hybrid model gains 

the potential of leveraging the features extraction capability of 

CNN with the capacity of the RNN to learn the temporal 

dynamic of the sequential inputs. 

To evaluate the performance of the three proposed 

networks, we divided the dataset into two section of 70% for 

the training and 30% for the testing. For the training 

configuration, Adam optimizer was used to train the model 

with an adaptive learning rate technique. The training started 

at 0.001 learning rate and then it was adjusted dynamically 

based on validation performance to help reducing the effect of 

the overfitting problem and accelerating convergence. The 

models were learned using a batch size of 32 using categorical 

cross-entropy to compute the loss function as suitable 

measurement for multi-class classification. The training and 

the validation accuracy were computed during the training 

process to observe the convergence process, the results 

learning process are shown in the Figures 9(a)-(c). 

Additionally, we computed the confusion matrix, Figures 

10(a)-(c) show these results. Furthermore, we measured the 

recall, precision, F1-score, number of the parameters, size, and 

predication time for proposed networks, Table 4 illustrates a 

comprehensive comparison of the trained models. 

(a) CNN (b) RNN

(c) CNN+RNN

Figure 9. The accuracy measurements during the training 
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(a) CNN (b) RNN 

 

(c) CNN +RNN 

 

Figure 10. Confusion matrix of the trained models 

 

Table 4. Results of comparison of the deep learning models 

 
Model Accuracy Recall Prec. F1-Score No of Parameters Size of Model Execution Time 

CNN 0.95211 0.95673 0.95335 0.95207 26755 0.10 MB 0.624 

RNN 0.9730 0.97763 0.97225 0.96170 22787 0.09 MB 0.549 

CNN+RNN 0.99720 0.99739 0.99733 0.99765 39235 0.15 MB 0.882 

 

As show in the Table 4, the hybrid CNN+RNN architecture 

outperformed the solo architecture by achieving 0.99 of 

accuracy. The superiority of the performance indicates the 

effectiveness of leveraging convolutional and recurrent layers 

for capturing both spatial and temporal behavioral patterns of 

the learned features. Additionally, the trained RNN model 

achieved an accuracy of 97% with relatively fast execution 

time of 0.5 milliseconds (ms), while maintaining a light weight 

model with 22,787 parameters with very compact model size 

of 0.09 MB. On the other hand, the standalone CNN offered 

95% accuracy with reasonable response time of 0.6 

milliseconds, the model allocated 26,755 parameters with a 

manageable model size of 0.1 MB. Even though, the hybrid 

CNN+RNN model consumes a relatively large size (when it is 

compared to stand-alone models CNN and RNN) of 0.15MB 

with the longest execution time (882 ms), it stands out to be 

the most effective dependable network model by achieving 

exceptional accuracy and balanced precision-recall 

performance. The obtained results emphasized that with 

combining the CNN and RNN models offered trade-off 

between the speed and the predicative accuracy. Hence, the 

proposed hybrid model provided resilient and accurate 

solution for real-time child behavioral recognition task.  

 

4.2 Optimized power management and battery endurance 

evaluation 

 

In the development of the proposed embedded system, a 

precise energy assessment was essential to determine the 

operational longevity of the device. The hardware includes an 

ESP32-C3 microcontroller Ultra­Low­Power SoC with 

RISC­V Single­Core CPU Supporting 2.4 GHz Wi­Fi and 

Bluetooth LE, GPS unit, MPU6050 accelerometer, 

MAX30102 pulse sensor, and a SIM800L GSM module. Each 

component exhibits specific power and current consumption 

behavior across operational states such as sleep, idle, and 
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active as shown in Table 5. These values can be obtained from 

the module datasheet or by measurement. The system draws 

its power from a 1100 mAh lithium-battery. 

Table 5. Battery lifetime and energy consumption 

Module 
Sleep 

(mA) 

Idle 

(mA) 

Active 

(mA) 

ESP32-C3 

SuperMini 
2.1 28 40 

ATGM336H GPS 0 10 100 

MPU6050 (GY-521) 0.01 1.0 4.0 

MAX30102 0.9 1.0 3.5 

SIM800L (GSM) 1.8 19 108 

To calculate the battery lifetime, the current values for 

sleep, idle and active should be considered as below: 

 Sleep: MCU in light sleep, SIM in low-power mode, and

GPS powered down. 

 Idle: MCU awake with a low duty cycle sensor reads (1

Hz), GPS maintaining fix, SIM on but not transmitting. 

 Active: data sampling from sensors at 50–100 Hz, GPS

refreshing location, SIM800L performing Tx 

(SMS/voice/data) or active TCP session. 

To model the system’s energy footprint, two operating 

scenarios were defined: 

Scenario 1 – Device Remains Within Defined Safe Zone: In 

this scenario, the device does not exceed the configured 

geographical threshold, meaning the SIM800L 

communication module remains inactive throughout 

operation. The energy demands are dominated by the sensing 

and control modules: We assume the sensors sample rate to be 

every 1 s; GPS query every 5 s; SIM idle (no TX). The 

breakdown of duty cycle is every minute. The ESP32 would 

be active for 10% of the time to read the sensors data and 

upload with a sleep for 90%. GPS active for 20% of the time, 

otherwise low- power. MPU6050/MAX30102 both are active 

for 10%. By taking the values from Table 5 (active and sleep) 

values and calculating the current in each module with the 

assumed duty cycle, the average total current for all modules 

would be 29.259 mA. The battery life time can be calculated 

by dividing the battery capacity by the average current and the 

life time would be 37.6 hour. This number depends on duty 

cycles chosen and the GPS current. For example, if the GPS 

keeps always on, the battery life time will be less. 

Scenario 2 – Device Exits Safe Zone: Once the system 

crosses the defined boundary, it triggers the SIM800L module, 

which significantly increases power usage due to GSM 

transmission. The SIM800L, during active communication, 

consumes up to 108 mA per session. This results in a total 

average current to be 135.459 mA and a shorter battery 

lifespan of about 8.1 hour, due to the added energy burden 

from cellular data transmission. This dual-scenario evaluation 

enables intelligent power budgeting and offers insights into 

optimization strategies. These may include selective module 

activation, adaptive sampling intervals, and the 

implementation of low-power sleep states. Long-term 

improvements may leverage techniques such as energy 

harvesting or hardware-level optimization to extend device 

autonomy. 

5. CONCLUSIONS AND FUTURE WORKS

This study introduced a comprehensive IoT-based wearable 

system that integrates GPS tracking and biometric monitoring 

to ensure child safety and support early detection of medical 

emergencies. By combining real-time location tracking with a 

hybrid CNN-LSTM model trained on synthetic modified HAR 

data, the proposed system effectively monitors children's 

movement and health status. The system achieved a high 

seizure detection accuracy of 99%, demonstrating the 

robustness of the deep learning model, especially. Compared 

to existing child tracking solutions, our approach offers a 

broader feature set enabling not only precise geofencing alerts 

but also health anomaly detection, all within a power-efficient 

and user-friendly framework. The implementation on ESP32, 

along with mobile support via a Flutter tracking app, ensures 

flexibility, low power consumption, and compatibility across 

environments. The dual-tracking capability of both child and 

guardian enhances situational awareness and allows for quick 

response in emergencies. Furthermore, the system’s 

adaptability paves the way for potential applications beyond 

child safety, including elderly care and continuous health 

monitoring for individuals at risk. Overall, this research 

contributes a novel, practical, and scalable solution that 

bridges the gap between safety and health monitoring, meeting 

the growing demand for intelligent, wearable technology in 

real-life safety-critical scenarios. 

Even though that we achieved promising results, we should 

acknowledge several limitations in our project. For example, 

the current implementation of our app and the deployed 

prototype are not fully matured and need more development. 

Additionally, the current system should be tested against real-

world condition to evaluate the system effectiveness under 

outdoor/indoor and critical scenarios.  

Future work can focus on completing the whole design to 

improve the deployment of the prototype, app functionalities, 

and expand the testing modes to cover real world scenarios. 

Additional directions for future research to include further 

development of the proposed system by integrating annotative 

techniques such as explainable AI approaches, data transfer 

security and privacy methods, different nodes implementation 

as a wireless sensor network, and energy optimization 

algorithms to extended the battery life time. 
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