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The integration of the Internet of Things (IoT) into everyday life is revolutionizing
personal safety and health monitoring. In increasingly busy and distracting urban
environment, ensuring child safety exponentially growing to become a serious concern.
The objective of this study is to design a wearable 10T system, helping keep track of a
child’s location and health to support early emergency action. For the child’s safety, a
simple tracking system app was designed that helps parents set boundaries and receive real
time notifications whenever their child leaves the designated area, detected through GPS.
To assess health-related risks, the system collects and analyzes seven key physiological
and motion signals: acceleration (accel_x, accel_y, accel_z), gyroscopic movement
(gyro_x, gyro_y, gyro_z), and heart rate. To improve detection of health anomalies such
as minor seizure, a hybrid deep learning framework consisting of convolutional neural
networks (CNN) and long short-term memory (LSTM) networks was developed and
trained using modified version of the SHAR-100-20 dataset which simulates human
activity in individuals with disabilities. A total of 300,000 measurements were sampled
from the modified version of the data and divided into 70% for the training and 30% for
the testing to train and apply cross validation for evaluation purposes. The proposed system
achieved an excellent 99% accuracy in detecting minor seizures. It surpassed other
tracking systems by providing better detection rates, greater awareness of what is
happening and faster responses. Moreover, the flexible structure is supporting the use in
elderly and medical care monitoring, supplying a complete framework for monitoring
health and location in an effective way, and offering a comprehensive solution for real-

time health and location tracking.

1. INTRODUCTION

All over the world, more people are concerned about
children because the number of public incidents and child
disappearances is increasing. Every year, research shows that
64% of all abduction cases involved children, and one child
goes missing every two minutes in the European Union [1].
The Malaysian National Crime Record Center found that
child-related crimes went up by 10.5% from 2019 to 2020 [2].
The serious numbers highlight the need for solutions that
quickly safeguard children in all environments. Using printed
wristbands, surveillance cameras and centrally controlled
systems for children has shown it is difficult to offer quick
answers to security issues [3]. Such systems often cannot stop
major incidents in places where there are many visitors, for
example in museums and schools [4, 5]. As a consequence,
new research has turned towards using GPS, GSM and
wireless communication modules together with the Internet of
Things (IoT) to design advanced monitoring systems. Some
experts suggest that wearable devices that include GPS and
GSM technology could send updates on a child’s location to
parents, either through text or mobile application alerts [6-8].
Advanced tracking solutions now use both RFID for indoor
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positioning and GPS for outdoor tracking [9], along with
techniques such as Time of Arrival, Angle of Arrival and
Received Signal Strength [10].

A growing number of healthcare experts believe that human
action recognition (HAR) technologies are very helpful for
continuously monitoring patients with neurological illnesses.
Hence, smart monitoring systems and patterns recognition for
different applications are vital [11-16]. In this context,
artificial intelligence and deep learning have achieved
impressive results across various domains of applications,
making them promising tools for improving health monitoring
[17, 18]. Spotting seizures, for example, is a crucial part of
such monitoring systems, as failure to do so can place a
person’s life at risk. An important difficulty is that seizure-
related events in HAR datasets are much less common than
other activities which worsens the performance of traditional
classification algorithms. To address this, we proposed an
embedded system with hybrid architecture that processes
sensors input frames by integrating convolutional neural
networks (CNNs) for spatial feature extraction with long
short-term memory (LSTM) for temporal sequence analysis.
New developments used in wearables help identify and
address health problems early which benefits those
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individuals—primarily  children—susceptible to health
emergencies. Furthermore, we put into practice biometric
sensors and anomaly detection models incorporated into a
wearable smart watch on an ESP32 microcontroller according
to our system. While previous works only used geofencing
[19-21], our system monitors both the child’s and parent’s
device location in real time to send an alert when the child
walks into an unsafe area. With the simple Flutter-tracker app
for parents, they can track the satellite’s condition, set alert
distances and receive instant notifications, helping meet the
rising need for user-friendly parenting tools.

In addition, the system allows mobile usage and
compatibility with various environmental setups since static
RFID or Wi-Fi nodes are replaced by a flexible ESP32-based
system that uses GPS and GSM for communication. The
access to biometric and location details is allowed only to the
school’s authorized members. With real-time monitoring,
biometric analysis and intelligent detection, our system offers
a powerful and flexible method for keeping children safe
today. A patron can expand the foundation to elderly care,
long-term health care and supportive health care when
emergencies arise. The proposed method presents valuable
contortions including the following:

1. A comprehensive framework leveraged the tracking
capabilities of location and health status by integrating
biometric sensors into a smartwatch.

2. The system offers a dual location monitoring mechanism
for both child and parent using GPS and developed mobile app
with flexible configuration of the safe zones.

3. The proposed model combined CNN and LSTM to
integrate the spatial features with the temporal sequence
pattern to recognize health anomalies, particularly seizures, in
children based on their movements and heart rate.

4. The designed system can be extended easily to scalable
use, such as elderly care, long-term patient monitoring, and
emergency health interventions.

2. LITERATURE REVIEW

This section presents a detailed analysis of past
investigations along with recent procedural methods which
resolve similar issues within the research scope of this study.
Understanding previous research enables us to understand the
value of our work by placing its significance in the scientific
body of knowledge.

Isa et al. [22] proposed child-tracking system incorporates
GPS for time-based position tracking while Bluetooth operates
for nearness alerts. The Arduino MEGA functions as the main
controller while triggering the transmission of child GPS data
as text messages after Bluetooth disconnects. This system

failed to perform biometric monitoring as well as incorporate
intelligent behavior prediction functions. Taha et al. [23]
illustrated how an Arduino connected to a GPS/GSM device
allows tracking of children and notifies their caregivers by
SMS. However, the device did not measure heart rate or
movement, it was unable to act if there’s an emergency.
Secondly, since there is no mobile app, all user interaction and
management depend completely on SMS. Marhoon et al. [24]
designed a child monitoring system wherein smart bracelets
with ESP8266 chips to help parents monitor their children
through their smartphones. Combined hardware and software
elements to notify parents the moment the child strayed further
than a marked 50 meters. If the child travelled beyond a
predefined distance, the system played a sound and sent the
position by SMS with a link to Google Maps. In the test range,
the solution managed to track and alert both ends in real time.
However, the system can’t use biometric monitoring, it cannot
be used for health or emergency purposes. Because it needs a
strong internet connection for GPS updates and sending out
messages, the system can be less reliable for users in remote
areas or places with bad access to the internet.

Al-Hussaini and Mitchell [25] introduced a flexible
machine learning method for the detection of seizures using
EEG readings from wearable devices. By focusing on class
balance and using feature extraction in Random Forest
classifiers, the study demonstrated how the system can be
understandable and gave an accuracy of 93.7%. An energy-
efficient neural network for embedded systems was shown by
another contribution, EpiDeNet [26]. The model, which
focused on reducing energy usage while maintaining detection
quality, obtained over 91% accuracy using CHB-MIT EEG
data, making it appropriate for continuous monitoring in
wearable devices. The system used EEG only and did not
support other biometric signals. Gelbard-Sagiv et al. [27]
studied a different method for making wearable EEGs better
by improving the arrangement of electrodes. The idea was to
use less memory in the design by using fewer electrodes and
still attain a strong 89% detection accuracy. Shirt sensors was
used to measure sleep biomarkers from patients who might
seize [28]. UC San Diego’s team found that their SVM model
with an AUC of 0.80 might let sleep features be added to pre-
seizure warning systems. Strongly depends on night-time rest
and cannot do its work when you are awake or up. A complete
seizure prediction system utilized a selection of wearable
sensors that monitor ECG, PPG and EEG [29]. The study
revealed that when physiological info is included, model
performance is greatly enhanced and SVM classifiers
predicted 94.3% correctly. They utilized standard methods
(SVM), not including those from deep learning methods.
Table 1 shows a comprehensive comparison of some of the
previous work.

Table 1. Literature review of previous works

Reference S¥;t;:;n Technology Used Additional Features Limitations Accuracy
[22] child GPS + Bluetooth + SMS alerts when Bluetooth dependency, poor long-range Not
tracking Arduino MEGA Bluetooth disconnects tracking, no biometric or ML specified
child GPS + GSM + low-cost tracking via No h.eart fate or movement monitoring, no Not
[23] . . mobile app, risk of losing device, prepaid .
tracking Arduino SMS specified
SIM dependency
[24] child ESP8266 + GPS + distance alert + mutual No biometric monitoring, high power Not
tracking GSM + buzzer/LED alarms on devices consumption, needs strong internet specified
. + 1 +
[25] seizure EEG + ML (Random class balancing EEG only 93.7%

detection Forest)

feature extraction




seizure

EEG + Energy-

low power consumption

0,
[26] detection efficient Neural Net + high accuracy supports EEG only = 1%
[27] seizure EEG + Electrode reduced electrodes for focuses on electrode placement, not model 89%
detection Optimization lower memory usage improvement ’
seizure SVM + Shirt Sensors nighttime sleep-based . . AUC =
28] prediction (sleep biomarkers) seizure prediction not effective when awake or active 0.80
) multi-sensor
seizure ECG + PPG + EEG + . . . .
[29] L physiological data uses traditional SVM, no deep learning 94.3%
prediction SVM fusion
3. SYSTEM OVERVIEW system is powered by Li-Po Battery (3.3V, 1100 mAh). Figure

This section presents the details of the proposed system and
all its components: hardware, software, and machine learning
algorithms implementation to predicate child’s pattern
behavior.

3.1 Hardware implementation

The proposed embedded system is designed as a wearable
IoT which include sensing, tracking, and communication. This
section presents the main components and focusing on the
system functions. The central microcontroller ESP32-C3
SuperMini is used to process data and controls communication
with sensors. To track motion and orientation of the child GY-
521 (MPU6050) is used. SIM80OL Module (SIM80OL BO1)
is utilized to send and receives SMS or data over mobile
networks [30]. ATGM336H GPS Module is responsible for
providing real-time geographic coordinates. The Pulse
oximeter and heart-rate sensor MAX30102 is designed for
monitoring blood oxygen levels and heart rate [31]. The
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3.2 Software design

A cross-platform IDE application known as Arduino
integrated development environment (IDE), is used to
program the proposed micro controller, as exists primarily in
Java coding language to operate on Windows and macOS and
Linux platforms. Within the IDE code can be edited via a text
editor that supports features including text movement
capabilities and text search tools and formatting assistance
while also providing single-step functions for Arduino boards
including our micro controller Esp32-C3 Super Mini program
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compilation and upload processes.

In addition, Flutter tracking application was used. The
mobile application delivered a pair of essential values to the
ESP32 which includes the guardian's present GPS position and
the security distance selected by the user (10, 15, 20 or 25
meters). The ESP32 obtains GPS coordinates from itself as
well as from the received guardian data to perform the distance
calculation between both points. The ESP32 sends an
instruction to the SIMS80OL module so it initiates a GSM call
to the guardian's phone after calculating distance
measurements exceed the defined limit.



If the child moves beyond the predefined threshold, the
system marks the child’s location as outside the safe zone.
After that, the child’s movement with heart rate are
continuously monitored, and these signals are sent to the Al
unit to predicate the health status of the child by estimating the
pattern behavior using the trained hydride model.

The ESP32 maintains a continuous data transfer to the
mobile application that includes the location, quantitative
reports of heart rate combined with oxygen level readings,
motion information, and the decision of the AI unit to
predicate the type behaviors (Normal, Pre-Seizure, and
Seizure). The mobile application presents real-time health
information and shows the GPS positions of both child and
guardian at the same time. User interaction with locations is
possible through the map view which utilizes OpenStreetMap
integration from the flutter map plugin. The application
implements real-time connection monitoring to maintain
system reliability. The selected architecture allows
microcontrollers such as ESP32 to execute an efficient
communication protocol which uses minimal resources as well
as the Flutter interface enables user-friendly interaction as
shown in Figure 3. Note that the readings of the sensors are
not shown as the system was in the disconnection state from
the internet. Figure 4 shows a flowchart which demonstrating
the overall process and the steps of the proposed system.
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Figure 3. Child safety tracker platform
3.3 Machine learning implantation

Artificial intelligence and machine learning techniques have
gained a prominent status and are now extensively applied
across a wide range of fields. Thus, Al and ML methods can
contribute significantly to resolving diverse issues of daily
real-life challenges. Activity monitoring and human behavior
analysis are considered as essential tasks in numerous types of
practical applications in modern life. Human patterns
understanding can be used in wide range of applications
including healthcare, smart homes, surveillance systems, and
security systems. For example, monitoring specific patterns in
physical activities and behavioral responses may be very
useful to detect anomalies such as medical emergencies,
psychological distress, or even unauthorized behavior. The
automation of this process with the integration of artificial
inelegance techniques is crucial to achieve speed, accuracy,
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and adaptability.
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Figure 4. Flowchart of the proposed system

On the other hand, mentoring children’s activities and their
behaviors is very important task for parents, caregiver, and
educators because it ensures their safety, offers the required
support, and provides greater peace of mind. Therefore, we
tended to present an automatic system based on Al to predict
kids’ activities and detects any abnormal or risky behavior. For
this purpose, we utilized SHAR-100-20 dataset as the primary
source of the activity classification to provide the necessary
data to train our system. SHAR-100-20 is publicly available
dataset collected from 100 participants, designed to simulate
20 classes of physical activities for human actions recognition.
We used this particular dataset because it offers a set of very
comprehensive variety of activities which are highly relevant
to safety mentoring for children’s behaviors. initially, we



modify the dataset by restructuring the original output labels
of the data to accommodate them for the training part of our
system. To achieve that, a certified medical expert was
consulted to reclassify the original twenty classes into three
types of activities: normal, pre-seizure, and seizure. Then after
that we sample 100,000 recordings for each class.

After the modification, the data labels were consolidated
into three behavioral categories: normal, pre-seizure, and
seizure of 300,000 measurements, few samples from the data
are shown in Figure 5. The primary reason of this
transformation was to align the dataset with the core objective
of our activity recognizer model.

accel_x accel_y accel_z gyro_x gyro_y gyro_z heart_rate class

1.509165 -3.134336 -10.407838 2.399950 -7.166784 12.945217 145.878481 pre_seizure

0.108474 -1.338545 -19.373011 -0.905540 -5.001971 -9.932420 159.253031 pre_seizure

2.691323 -0.901463 -16.966700 -9.755911 -7.886016 -5.048401 154.926879 pre_seizure

4.323601 -3.099938 -15.757118 -5.221432 -0.466844 12.231996 176.520251 pre_seizure

A @ P = O

-1.015163 1.685492 -16.179450 0.744402 -12.862677 0.151253 147.628421 pre_seizure

Figure 5. Few samples from the dataset

The learning process of our system can be divided into two
steps. Firstly, we used the raw data of the collected sensors of
acceleration (accel x, accel y, accel z), gyroscopic
movement (gyro_x, gyro_y, gyro_z), and heart rate. For this
particular step, we utilized traditional methods of machine
learning process where the input of the trained models is a
vector of seven parameters and the output is the predication of
the behavioral type. To perform the training process, we split
the modified data into training part and testing part. We used
the training segment of the data to apply the learning process
of the predication models.

To evaluate the performance of the learned models, we
applied cross validation strategy throughout the training
process. A 10-fold cross validation technique was used by
randomly dividing the dataset ten times into 70% to 30%
segments ratio. In each iteration, we used the training portion
to build the predication model, while the remaining portion of
the data was utilized to measure the classification accuracy and
the other evaluation metrics. Finally, the performance of the
trained model was calculated by averaging the results across
all ten iterations to provide a comprehensive assessment of its
effectiveness.

A broad spectrum of classification methods has been
proposed by researchers to improve the recognition
performance, each algorithm exhibits unique characteristics,
strength and limitations. Consequently, determining the best
candidate classification technique for particular dataset and
task can be both challenging and demanding task. To
overcome this problem, we explored wide range of
classification algorithms by training around 18 different
models. The implemented classification techniques can be
categorized into linear, nonlinear, single classification and
ensemble of classification methods. Logistic Regression,
Linear Discriminant Analysis, and Support Vector Machine
were trained to build predication models as linear classifiers.
On the other hand, Decision Tree, Quadratic Discriminant
Analysis, and K Nearest Neighbors were trained as non-linear
models. Additionally, we extended the scope of the training to
include ensemble of classifiers by training Extra Trees
Classifier, Random Forest Classifier, and Ada Boost
Classifier. The primary objective of deploying various
classification techniques is to achieve comprehensive
comparative analysis.
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The aforementioned classifiers have demonstrated their
effectiveness across different types of applications involving
static data and tabular input, where each measurement is
considered entirely independent. However, these types of
classification approaches do not consider the temporal history
of the input and rely solely on the current state of entered data
sensors. Hence, they are practically unsuitable for problems
involving time series inputs, where data pattern and its
dependencies are essential factors for accurate classification.
Behavior monitoring using physiological signal analysis can
be considered as time series problem where the input features
are time dependent. In this analysis, the temporal relationship
between sensors measurements observations can be very
crucial for the classification performance. Therefore, we used
in the next phase of our project time series models to
implement the predication models.
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Figure 6. The proposed model architecture
Table 2. Proposed model configuration
Layer . N
No Type Configuration Activation
Filters = 64, Kernel
1 ConvlD — 4, Stride = 1 ReLU
2 MaxPooling1 D Pool Size =2 --
3 Dropout Rate =0.3 --
4 LSTM Units = 64 Tanh/Sigmoid
5 Dropout Rate =0.3 --
6 Dense Units = 64 ReLU
7 Dense Units = 64 Softmax

In order to capture the sequential temporal patterns across
time domain of the input sensors, we aggregated 20
consecutive samples to create a single window of input
segment. This window of input allowed the classification
models to learn not only from the data measurements
individually but also from the temporal patterns throughout
multiple steps over time. The segmented time-windows of the
inputs were used to train types of deep learning architectures:
a pure CNN to capture the local spatial features across the
temporal window, a pure RNN to capture the sequential
dependencies relationships of the temporal patterns, and
finally a hybrid CNN-RNN architecture network to leverage
both local spatial features and temporal sequence learning
capabilities. This hybrid architecture model allowed a
comprehensive analysis to accommodate spatial and temporal
features learning. Figure 6 shows the block diagram of the
proposed hybrid architecture network. Table 2 illustrates the
details configuration of the proposed network.

3.4 Evaluation process

In order to evaluate the trained models, we used Accuracy,



precision, recall, and F1-score (as shown in the following
equations) with predication time, size of the model, and
number of learnable parameters (for deep learning model). The
evaluated metrics can provide a complete analysis and
illustrated a trade-off between efficiency and accuracy. The
next section presents the results details of the conducted
experiments.

Accuracy % =— TN ___ 109 (1)
TP+TN + FP+FN
Precision % = _TP %100 )
TP+FP
Recall % = — " 100 3)
TP+FN

F1— Score % — 2% Pre_:c_lsmn x Recall <100 @
Precision + Recall

4. RESULTS AND EVALUATION
4.1 Results of machine learning algorithms

This section presents comprehensive details of the all
experiments conducted in the proposed work. The ultimate
goal of this comparison is to find the best candidate
classification algorithm and to build the most effective model
for recognizing different patterns in child behavior. The results
of our experiments can be divided into two types regarding the
nature of the data handling. Firstly, we treated the inputs
samples measurements independently. For this type of
analysis, we trained traditional machine learning methods
using cross validation methods. We used 10-fold validation
method by splitting the dataset into training and testing
segment using 70%:30% ratio. Table 3 shows a
comprehensive analysis of the obtained results of the
conducted experiments in our project.

Table 3. Results of comparison

Model Accuracy Recall Prec. F1-Score Execution Time
Light Gradient Boosting Machine 0.9622 0.9622 0.9647 0.9624 1.9310
Random Forest Classifier 0.9578 0.9578 0.9593 0.9579 0.2080
Extreme Gradient Boosting 0.9567 0.9567 0.9588 0.9568 0.3260
Extra Trees Classifier 0.9567 0.9567 0.9587 0.9568 0.1640
CatBoost Classifier 0.9544 0.9544 0.9564 0.9546 5.6520
Gradient Boosting Classifier 0.9522 0.9522 0.9558 0.9525 0.5200
Decision Tree Classifier 0.9344 0.9344 0.9374 0.9342 0.0320
Quadratic Discriminant Analysis 0.8722 0.8722 0.8762 0.8688 0.0420
K Neighbors Classifier 0.8678 0.8678 0.8931 0.8658 0.0620
Ada Boost Classifier 0.8500 0.8500 0.8556 0.8499 0.2280
Naive Bayes 0.8489 0.8489 0.8560 0.8442 0.0520
Gaussian Process Classifier 0.8444 0.8444 0.8782 0.8405 1.1230
MLP Classifier 0.8433 0.8433 0.8519 0.8428 0.2870
Linear Discriminant Analysis 0.7244 0.7244 0.7225 0.7143 0.0230
Ridge Classifier 0.7178 0.7178 0.7164 0.7040 0.0270
Logistic Regression 0.6956 0.6956 0.6921 0.6854 0.0610
SVM - Radial Kernel 0.5767 0.5767 0.8092 0.5557 0.2120
SVM - Linear Kernel 0.5011 0.5011 0.5076 0.4222 0.0370
Dummy Classifier 0.3333 0.3333 0.1111 0.1667 0.0540

To ensure a better evaluation, we calculated the accuracy,
recall, precision, and Fl-score metrics. Additionally, we
computed the execution time of each of the all trained models
to assess the speed of the predication and the suitability for
real-time applications.

LGBMClassifier Confusion Matrix

Normal
True Class

Pre- Seizure

Seizure

[=] o~

—
Predicted Class

Normal Pre- Seizure Seizure

Figure 7. Confusion matrix of the trained model

As illustrated in the Table 3, the trained classifiers were
ranked in descending order based on the accuracy metric.
Notably, Light Gradient Boosting Machine classifiers
achieved superior performance offering accuracy of 96%
predication rate. Furthermore, we determined the confusion
matrix of the learned model to provide the predication rate for
each class individually, this result is shown in Figure 7. In
order to achieve features analysis, we evaluated the significant
of inputs feature to determine their relative contribution on
predication performance.
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Figure 8. The significant of feature in the dataset

Evaluating feature importance provides the contribution of
each feature in the dataset and measure their ranks. The result
of the feature ranking analysis is presented in Figure 8.

In the second phase of our project, we focused on capturing
temporal dynamics of the input sensors. To achieve this goal,
the input features were processed to represent the temporal
pattern by segmenting continuous data stream into windows of
20 consecutive measurement. These samples were created by
aggregating consecutive measurements samples to form a
single instance to reflect the short-time behavioral. Each one
of these accumulated windows presented one label to describe
the children behavioral state and predict one pattern from three
classes (Normal, Pre- Seizures, and Seizure).

As we mentioned before, the conventional machine learning
methods cannot handle temporal states of the sequential data
because they lack the mechanism to model time-based
dependencies. This characteristic makes them unfit for
particular tasks involving patterns classification where the
time and the sequence of the observations play crucial role.
Therefore, we trained deep learning models with capabilities
of capturing temporal dynamic. More specifically, we used
three different architectures of deep learning models: CNN,
RNN, and CNN-RNN. First, Convolutional Neural Networks
(CNNs) was trained to extract spatial and local features predict
the correct behavior and detect seizer. Additionally, we trained

Model Accuracy

Recurrent Neural Networks (RNNs) model to capture the
sequential nature of the data. Finally, we used hydride model
by combining CNN and RNN architectures to accommodate
the strength points of both networks. The hybrid model gains
the potential of leveraging the features extraction capability of
CNN with the capacity of the RNN to learn the temporal
dynamic of the sequential inputs.

To evaluate the performance of the three proposed
networks, we divided the dataset into two section of 70% for
the training and 30% for the testing. For the training
configuration, Adam optimizer was used to train the model
with an adaptive learning rate technique. The training started
at 0.001 learning rate and then it was adjusted dynamically
based on validation performance to help reducing the effect of
the overfitting problem and accelerating convergence. The
models were learned using a batch size of 32 using categorical
cross-entropy to compute the loss function as suitable
measurement for multi-class classification. The training and
the validation accuracy were computed during the training
process to observe the convergence process, the results
learning process are shown in the Figures 9(a)-(c).
Additionally, we computed the confusion matrix, Figures
10(a)-(c) show these results. Furthermore, we measured the
recall, precision, F1-score, number of the parameters, size, and
predication time for proposed networks, Table 4 illustrates a
comprehensive comparison of the trained models.
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Figure 9. The accuracy measurements during the training
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Figure 10. Confusion matrix of the trained models
Table 4. Results of comparison of the deep learning models
Model Accuracy Recall Prec. F1-Score No of Parameters Size of Model Execution Time
CNN 0.95211 0.95673 0.95335 0.95207 26755 0.10 MB 0.624
RNN 0.9730 0.97763 0.97225 0.96170 22787 0.09 MB 0.549
CNN+RNN 0.99720 0.99739 0.99733 0.99765 39235 0.15 MB 0.882

As show in the Table 4, the hybrid CNN+RNN architecture
outperformed the solo architecture by achieving 0.99 of
accuracy. The superiority of the performance indicates the
effectiveness of leveraging convolutional and recurrent layers
for capturing both spatial and temporal behavioral patterns of
the learned features. Additionally, the trained RNN model
achieved an accuracy of 97% with relatively fast execution
time of 0.5 milliseconds (ms), while maintaining a light weight
model with 22,787 parameters with very compact model size
of 0.09 MB. On the other hand, the standalone CNN offered
95% accuracy with reasonable response time of 0.6
milliseconds, the model allocated 26,755 parameters with a
manageable model size of 0.1 MB. Even though, the hybrid
CNN+RNN model consumes a relatively large size (when it is
compared to stand-alone models CNN and RNN) of 0.15MB
with the longest execution time (882 ms), it stands out to be
the most effective dependable network model by achieving
exceptional accuracy and balanced precision-recall
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performance. The obtained results emphasized that with
combining the CNN and RNN models offered trade-off
between the speed and the predicative accuracy. Hence, the
proposed hybrid model provided resilient and accurate
solution for real-time child behavioral recognition task.

4.2 Optimized power management and battery endurance
evaluation

In the development of the proposed embedded system, a
precise energy assessment was essential to determine the
operational longevity of the device. The hardware includes an
ESP32-C3 microcontroller Ultra-Low-Power SoC with
RISC-V Single-Core CPU Supporting 2.4 GHz Wi-Fi and
Bluetooth LE, GPS unit, MPU6050 accelerometer,
MAX30102 pulse sensor, and a SIM800OL GSM module. Each
component exhibits specific power and current consumption
behavior across operational states such as sleep, idle, and



active as shown in Table 5. These values can be obtained from
the module datasheet or by measurement. The system draws
its power from a 1100 mAh lithium-battery.

Table 5. Battery lifetime and energy consumption

Sleep Idle Active
Module (mA) (mA) (mA)
ESP32-C3

SuperMini 21 28 40
ATGM336H GPS 0 10 100
MPU6050 (GY-521) 0.01 1.0 4.0
MAX30102 0.9 1.0 3.5
SIM80OL (GSM) 1.8 19 108

To calculate the battery lifetime, the current values for
sleep, idle and active should be considered as below:

¢ Sleep: MCU in light sleep, SIM in low-power mode, and
GPS powered down.

¢ Idle: MCU awake with a low duty cycle sensor reads (1
Hz), GPS maintaining fix, SIM on but not transmitting.

* Active: data sampling from sensors at 50-100 Hz, GPS
refreshing location, SIM80OL performing Tx
(SMS/voice/data) or active TCP session.

To model the system’s energy footprint, two operating
scenarios were defined:

Scenario 1 — Device Remains Within Defined Safe Zone: In
this scenario, the device does not exceed the configured
geographical  threshold,  meaning  the SIMS00L
communication module remains inactive throughout
operation. The energy demands are dominated by the sensing
and control modules: We assume the sensors sample rate to be
every 1 s; GPS query every 5 s; SIM idle (no TX). The
breakdown of duty cycle is every minute. The ESP32 would
be active for 10% of the time to read the sensors data and
upload with a sleep for 90%. GPS active for 20% of the time,
otherwise low- power. MPU6050/MAX30102 both are active
for 10%. By taking the values from Table 5 (active and sleep)
values and calculating the current in each module with the
assumed duty cycle, the average total current for all modules
would be 29.259 mA. The battery life time can be calculated
by dividing the battery capacity by the average current and the
life time would be 37.6 hour. This number depends on duty
cycles chosen and the GPS current. For example, if the GPS
keeps always on, the battery life time will be less.

Scenario 2 — Device Exits Safe Zone: Once the system
crosses the defined boundary, it triggers the SIM800L module,
which significantly increases power usage due to GSM
transmission. The SIM8O0OL, during active communication,
consumes up to 108 mA per session. This results in a total
average current to be 135.459 mA and a shorter battery
lifespan of about 8.1 hour, due to the added energy burden
from cellular data transmission. This dual-scenario evaluation
enables intelligent power budgeting and offers insights into
optimization strategies. These may include selective module
activation, adaptive sampling intervals, and the
implementation of low-power sleep states. Long-term
improvements may leverage techniques such as energy
harvesting or hardware-level optimization to extend device
autonomy.

5. CONCLUSIONS AND FUTURE WORKS

This study introduced a comprehensive loT-based wearable
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system that integrates GPS tracking and biometric monitoring
to ensure child safety and support early detection of medical
emergencies. By combining real-time location tracking with a
hybrid CNN-LSTM model trained on synthetic modified HAR
data, the proposed system effectively monitors children's
movement and health status. The system achieved a high
seizure detection accuracy of 99%, demonstrating the
robustness of the deep learning model, especially. Compared
to existing child tracking solutions, our approach offers a
broader feature set enabling not only precise geofencing alerts
but also health anomaly detection, all within a power-efficient
and user-friendly framework. The implementation on ESP32,
along with mobile support via a Flutter tracking app, ensures
flexibility, low power consumption, and compatibility across
environments. The dual-tracking capability of both child and
guardian enhances situational awareness and allows for quick
response in emergencies. Furthermore, the system’s
adaptability paves the way for potential applications beyond
child safety, including elderly care and continuous health
monitoring for individuals at risk. Overall, this research
contributes a novel, practical, and scalable solution that
bridges the gap between safety and health monitoring, meeting
the growing demand for intelligent, wearable technology in
real-life safety-critical scenarios.

Even though that we achieved promising results, we should
acknowledge several limitations in our project. For example,
the current implementation of our app and the deployed
prototype are not fully matured and need more development.
Additionally, the current system should be tested against real-
world condition to evaluate the system effectiveness under
outdoor/indoor and critical scenarios.

Future work can focus on completing the whole design to
improve the deployment of the prototype, app functionalities,
and expand the testing modes to cover real world scenarios.
Additional directions for future research to include further
development of the proposed system by integrating annotative
techniques such as explainable Al approaches, data transfer
security and privacy methods, different nodes implementation
as a wireless sensor network, and energy optimization
algorithms to extended the battery life time.
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