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Attention-deficit and hyperactivity disorder (ADHD) is a clinical challenge because its
signs and symptoms overlap with those of other conditions, making accurate and objective
diagnosis difficult using behavioral tests alone. The study aims at a multi-view EEG signal
classification model for ADHD, as well as interpretation of clinical implications. Three
kinds of features were extracted: temporal statistical features, power waveform retorn
time, and frequency-domain analyzed data across four levels and power spectral density

Key ;vlt{ortlls: . tet ADED. PSD. ti (PSD). The Random Forest method was employed to analyze them. Additionally, to
machine tearning, wave et ’ , time support anatomical interpretation, the most important channel-related features were
domain features

projected onto a topographic map. The suggested method surpassed the other machine
learning models tested in this study, including the K-nearest Neighbor algorithm (95.1%
test accuracy) and the Decision Tree model (82% test accuracy). The Logistic Regression
algorithm attained an accuracy of 69%, while the Support Vector Machine algorithm
recorded the lowest accuracy at 55.9% The Random Forest model achieved 95.7% test
accuracy. These results were further confirmed through cross-validation, which showed
consistent performance and low variability for the Random Forest model. This comparison
demonstrated the Random Forest model's ability to handle nonlinear, time-varying data
and its generalization capability. The results indicate the potential of the proposed
approach as a robust and clinically applicable tool for ADHD detection, laying the

groundwork for future

methodologies.

investigations involving larger datasets and advanced

1. INTRODUCTION

Attention-deficit and hyperactivity disorder (ADHD) is one
of the most common neurodevelopmental disorders, making it
very difficult to treat. Surprisingly, this disorder makes
children very active, yet easily distracted, whether by what
they are currently doing or what they are thinking about next.
As a result, school becomes more difficult for children with
this disorder, and they often fall behind their peers in terms of
educational attainment or even life satisfaction. National and
international studies have shown that about 6% of children
have been diagnosed with ADHD. However, despite its
prevalence, accurate diagnosis remains as challenging as it has
been throughout history [1]. This is because the symptoms that
constitute the basic diagnostic criteria — in addition to other
accompanying features — are very similar to those found in
behavioural disorders, as well as those typical of children
suffering from any type of anxiety disorder. At the same time,
traditional diagnosis relies heavily on subjective assessments
by parents or teachers who observe the child over a period of
time, leading to difficulties in ruling out other disorders that
may present similarly [2]. As well as traditional diagnostic
practices, which rely on interviews and questionnaires, often
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lack objectivity and consistency among clinicians,
highlighting the urgent need for new diagnostic tools based on
biological markers and data-driven quantitative methods [3].

Due to its high temporal resolution and ability to accurately
capture neural oscillations, EEG has recently become a key
tool for detecting neurological markers associated with ADHD
[4]. The use of machine learning algorithms applied to ERP
data has enabled the extraction of characteristic patterns that
distinguish children with ADHD from healthy controls [5].
Support vector machines (SVMs) and other machine learning
algorithms have shown some success in an early study in
distinguishing the two groups according to their spectral
characteristics and power spectral density (PSD) features [6,
7]. However, many of these studies were limited in terms of
the diversity of features used and lacked clear neural
interpretation, making them difficult to use clinically.

In the last few years, deep learning models, particularly
convolutional neural networks (CNNs) and CNN-LSTM
hybrid models, have achieved extremely high classification
accuracies (ranging from 97% to 99%) in detecting ADHD
from EEG signals. For example, in 2023, Alkahtani et al. [8]
released a study that included temporal, spectral, and entropy
information with different classification techniques. The
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model, which utilized a CNN, achieved an accuracy of 97.75%.

In 2024, Chugh et al. [9] release a study that adopts a hybrid
model combining CNN and LSTM. Not only able to capture
brain signals' spatial and temporal fashion, but also this model
even climbers an accuracy of 98.86%. In 2025, Hu et al. came
up with a new method. In their work, they used the SCANet
model on selective channel attention mechanism. The model
managed to be 99.78% accurate and this study provided a clear
explanation of just how crucial it is for diagnosis [10]. Despite
the excellent performance of these models, they are often
treated as “black box” models that are difficult to interpret
clinically or link their outputs to underlying neural
mechanisms.

Although previous studies have achieved high accuracy in
classifying ADHD using EEG signals, most relied on limited
feature sets, produced results that were difficult to interpret, or
failed to link results to underlying neural mechanisms,
highlighting the need for models that combine high accuracy
with clinical interpretability. Such interpretability is crucial to
link classification outcomes to underlying neural mechanisms,
facilitating clinical understanding and practical decision-
making.

Based on these challenges, the goal of this work is to
develop an interpretable model for diagnosing ADHD based

on EEG signals by combining temporal and spectral
characteristics (PSD) and time-frequency (wavelet analysis) to
improve both accuracy and interpretability. Unlike deep
models, which are difficult to interpret, the Random Forest
model used in this study allows us to determine the importance
of each feature and show the brain regions that contribute most
to discrimination through topographic maps. By analyzing
how different features contribute to the discrimination
between children with ADHD and normal, this study seeks to
bridge the gap between computational classification and
neurophysiological understanding and provide a clear and
clinically meaningful diagnostic framework.

2. METHODOLOGY

In this section, we present the approach followed in this
study to classify ADHD using EEG signals. First, an overview
of the dataset is provided, followed by a description of the
preprocessing steps applied to the EEG signals. Next, the
extraction of features and the preparation of data for
classification are explained. Finally, the model training and
evaluation procedures are outlined. Figure 1 illustrates the
sequence from data input to the analysis of results.

Raw EEG Signals

pre-processing

Band Filter 0.5-40

Segment Cleaned EEG
Signals into Windows

Features extraction

Combine Features

Classification by Using
Random Forest Model

Evaluate model

Top 5 features identify
and plot Topographic
maps

Figure 1. Block diagram of the workflow
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2.1 Dataset

EEG signals in the proposed model were exported from the
IEEE Data Port (EEG data for ADHD / Control children) [11].
The dataset included 121 children: 61 with ADHD (mean age
9.62 + 1.75 years) and 60 healthy controls (mean age 9.85 +
1.77 years). The dataset included boys and girls, ages from 7
to 12 years. The children with an ADHD diagnosis by an
experienced psychiatrist, according to DSM-IV criteria, and
took Ritalin for six months, while the normal children had no
history of any psychiatric disorders or any specific reports of
high-risk behaviour or epilepsy. EEG signal recorded by using
the system 10-20, the 19 channels were used to record the EEG
signals (Fz, Cz, Pz, C3, T3, C4, T4, Fpl, Fp2, F3, F4, F7, F8,
P3, P4, T5, T6, O1, O2) with a sample rate of 128 Hz. The
reference electrodes (A1, A2) were placed on the earlobe. The
recording was performed during a visual attention task. The
children count the cartoon characters when shown the pictures.
The size of the pictures was large enough to allow the children
a clear vision and to count the characters easily. The recorded
EEG signals' duration during the visual attention tasks was
dependent on the speed of the children's response [11].

2.2 Pre-processing data

Pre-processing the raw EEG signals that were recorded
from children was performed using the EEG-LAB toolbox
available in MATLAB [12]. The channels' location was added
to the data by using the tools and referenced to the average.
The FIR filter was applied to limit the bandwidth of signals
from (0.5 to 40) HZ, then ICA in the EEG-LAB tools was used,
and artifacts were removed Handly depended on the
proportions displayed by the program for each type of signal
(e.g., brain, eye, or other artifacts). Components with less than
50% brain signal contribution were excluded, as these
contained a high proportion of artifacts. After that, the cleaned
data for each child was saved in (.set) format. The cleaned data
were segmented into fixed-length time windows of 150 milli
seconds for each participant to obtain more samples for
analysis. The number of windows for each recording depended
on its duration, and the total number of windows was
approximately equal across both healthy and ADHD
participants (1864 windows for ADHD and 1466 windows for
controls). To analyze the signals and extract features more
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2.3 Extracted features

It is a critical step, enabling us to understand the properties
present in data and transform them into digital representations
that are highly useful for analysis and classification. This step
comes after data processing, artifact removal, and refinement
of the quality of the EEG signals. In this work, a three-
significant set of features was extracted that reflects the
temporal, statistical, and frequency aspects of brain activity.

2.3.1 Spectral feature Power Spectral Density (PSD)

The power spectral density (PSD) was calculated using the
fast Fourier transform (FFT) to examine how energy is
distributed across four EEG bands: delta (0.5—4 Hz), theta (4—
8 Hz), alpha (8—13 Hz), and beta (13—-30 Hz). We chose PSD
as a key feature because it clearly reflects differences in
cortical activation between ADHD and control participants, as
shown in the topographic maps in Figure 2.

In the delta band, strong activity appears over the frontal
regions in both groups. ADHD participants show slightly
higher delta power, which may reflect slower cortical activity
and lower arousal.

Theta activity is clearly elevated in ADHD individuals,
mainly in frontal and central areas. This pattern is commonly
observed in ADHD and suggests reduced alertness and
difficulties in attention control. Alpha power is lower in
ADHD participants, especially over parietal regions. This
indicates reduced cortical inhibition and altered resting-state
rhythms. Controls, in contrast, display a more balanced alpha
distribution. Beta activity is reduced in ADHD participants at
frontal and central electrodes, while controls show stronger
beta power. This difference aligns with previous studies
linking ADHD to lower cortical activation and challenges in
executive functioning. Gamma band activity (> 30 Hz) was not
analyzed because it is mainly informative in conditions
involving seizures or strong cognitive stimulation. ADHD is a
non-epileptic disorder, and resting-state EEG in these
participants does not show meaningful gamma-band
differences. Including gamma could have introduced noise and
unreliable results without providing useful information for
distinguishing ADHD from controls.

Patients - Alpha

Patients - Beta

Figure 2. The power distribution in four bands for the patient and normal children
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Overall, these findings highlight the classic theta/beta
imbalance in ADHD. Increased theta and decreased beta
activity serve as consistent neurophysiological markers of the
disorder, supporting the use of PSD as a reliable feature for
distinguishing ADHD from control participants.

Egs. (1) and (2) illustrate the mathematical method of
calculation [13].

_ |IFFT(x)|?

PSD(f) (D
where, x is the signal segment, N is the number of samples in
the segment, FFT(x) is the fast fourier transform of the signal
segment, and f is frequency.

Average power in a frequency band [f, f3]:

Band= PSD(f) (2)

1 f1
Felfa fall >f2

where, f;, f,: lower and upper frequency bounds, and P_Band
is: average power in the frequency band.

PSD is computed using FFT, then the PSD values over the
desired frequency range are used to get the band power.

2.3.2 Time—frequency features (wavelet decomposition)

A multilevel discrete waveform transform is applied to each
EEG channel, where the signal is divided into four levels: the
first level has the highest frequencies and the finest time
details. The second level has lower frequencies than the first
level, with a slightly lower time resolution, covering broader
details. The third level has lower frequencies and a lower time
resolution, covering slow patterns. The fourth level has the
lowest frequencies and the lowest time resolution,
representing the long, slow fluctuations in the signal. These
extracts combined information from the time and frequency
domains, as well as from the detailed parameters. At each level,
four main indicators are calculated: power, mean, variance,
and Shannon entropy. Power describes or reflects the extent of
activity in a given time-frequency range. The mean represents
the central values of the parameters at that level. Variance
shows the core or degree of irregularity in the signal, as it
measures the variation of values around the mean. Finally,
Shannon entropy is a measure of the degree of randomness or
complexity of the signal in that range, with higher values
indicating a more complex and irregular system. Egs. (3), (4),
(5), and (6) illustrate the mathematical formula for calculation
[14].

Power = Y%_,(¢;)* (3)
where, ¢; is the wavelet coefficient at the given decomposition
level, L is the total number of coefficients at that level.
Cj

L
T,

Mean = “)
where, ¢; is the wavelet coefficient at the given decomposition
level, and L is the total number of coefficients at that level.

Yioi(cj—6)?
L

Variance = (5)
where, ¢; is the wavelet coefficient at the given decomposition
level, € is the mean of the coefficients at that level, and L is the
total number of coefficients at that level.
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where, ¢; is the wavelet coefficient at the given decomposition
level, p; is the normalized power of the coefficient ¢;, and L:
Total number of coefficients at that level.

2.3.3 Time-domain statistical features
Directly from the signal, four statistical values are
calculated (mean, standard deviation, kurtosis, and skewness)
because these values help us understand the shape of the signal
and reflect the extent of its fluctuations, whether the signal is
tilted in a certain direction, and whether its peaks are sharp or
flat. After calculating these measures for all channels, the
average across all channels is taken to represent the time-
domain features for each segment. Eqgs. (7), (8), (9), and (10)
illustrate the mathematical formula for calculation [15].
e The mean is the sum of the values divided by their
number.

N

(7
where, x; is the value of the it sample, and N is the total
number of samples.

e The standard deviation measures how spread out the
values of a dataset are around the mean. A high
standard deviation means the values are more
dispersed, while a low standard deviation indicates
that they are closer to the mean.

Zlivzl(xi—Mea.n)2
N

SD = )]

where, x; is the value of the i sample, N is the total number
of samples, Mean is the average of all samples, and SD is the
standard deviation.

Skewness measures the asymmetry of a data
distribution. A positive skew indicates that the tail on
the right side of the distribution is longer or fatter than
the left side, meaning more low values. A negative
skew indicates that the tail on the left is longer,
meaning more high values.

1¢N
~2iz1(xi—Mean)?
SD3

)

Skewness =

where, x; is the value of the i sample, N is the total number
of samples, Mean is the average of all samples, and SD is the
standard deviation.
e  Kaurtosis values near the mean and long tails, while a
low kurtosis indicates a flatter distribution with fewer
values near the mean and shorter tails.

1N
3 Zic1(xi-Mean)*

SD*

(10)

Kurtosis =

where, x; is the value of the i*" sample, N is the total number
of samples, Mean is the average of all samples, and SD is the
standard deviation.

The three methods described in the previous features were
applied to EEG data recorded from 19 channels for each
participant, including children with ADHD and healthy
children. The process involved calculating wavelet features at
four levels of analysis, as well as calculating power in four



frequency bands using power spectral (PSD) analysis, along
with four temporal features for each channel. three types of
features chose because they complement Each Other in the
capture of EEG signals. PSD reflects the active state of the
cortex at each frequency, wavelet features capture time-
frequency patterns; time-domain statistics made signal scale
and shape concrete. Their combined effort gives a full
accounting of ADHD-related issues EEG characteristics. It
could take 316 distinct features to reflect time, frequency, and
spectral dimensions of brain activity, as shown in Table 1,
based on which constitutes something beyond a meaningful
number for a database into the next step in classifying.

Table 1. The number of features extracted for each method

and their total
Feature Type Calculation Details Total
Features
Spectral Features 8 frequency bands x mean 8
(PSD) across 19 channels
Time-Domain 4 statistical measures x 4
Features mean across 19 channels
Time-Frequency 4 levels x 4 features x 19 304
Features (Wavelet) channels
Total Combination of all features 316

Note: The PSD was calculated for 8 frequency bands because each of the 4
main bands (Delta, Theta, Alpha, Beta) was subdivided into sub-bands (e.g.,
Delta Lower/Upper, Alpha Lower/Upper, etc.).

2.4 Data preparation

After extracting the spectral, temporal-frequency, and
temporal statistical features from the processed EEG signals
of both ADHD and healthy individuals, the features are
standardized in matrix X with vector Y, which is a
classification vector created to represent the ADHD and
healthy individuals, where the value 1 represents the patients
and the value 0 represents the healthy individuals. The data is
randomly divided so that the model is not biased towards one
data group over another using the cvpartition function in
MATLAB, where 70% of the data is used for training and 30%
of the data for testing. The model is also compared with four
other machine learning models (logistic regression, k-nearest
neighbors, decision tree model, and support vector machine)
to ensure the effectiveness of the model in classification and
its robustness. Additionally, k-fold cross-validation was
performed to further assess the generalization capability of the
models and confirm that the Random Forest model is the most
appropriate for distinguishing between children with ADHD
and healthy controls.

2.5 Training model

The Random Forest model was chosen for its high ability to
deal with non-linear data that are of high dimensions, such as
EEG signals, which change continuously and non-linearly
with time. This makes it suitable for analyzing the features
extracted from these signals. The number of trees in the model
was set at 200 trees after the experiment, which showed that
this number of trees gives high classification accuracy and
stability to the model, as well as maintains reasonable
computational time. The X-group is used as an input to the
model, while the Y-group represents the label or category
(infected, healthy). The Out-Of-Bag (OOB) feature is used to
calculate the importance of features using the out-of-sample
error. Using the OOB feature greatly helps us evaluate the
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impact of each feature on the performance of the classifier
without the need for additional data.

The model's performance is evaluated using an independent
data set that is not used during the model training phase (the
test set). Several model performance measures are used, such
as calculating the overall accuracy, precision, sensitivity,
specificity, and F1-score extracted from the confusion matrix,
which is also used. These indicators measure the model's
accuracy in distinguishing between the classes (infected and
healthy) accurately and reliably. The training and testing
accuracies were also calculated.

e Accuracy is defined as the percentage of cases that
the model correctly classifies (whether infected or
healthy) out of all cases [16].

ACC = TP +TN

" TP +FP+TN +FN

(11)

where, TP is the True Positives, TN is the True Negatives, FP
is the False Positives, and FN is the False Negatives.
e Positive precision is the percentage of true positive
cases out of all cases classified as positive [17].

_ TP
T TP +FP

PR (12)

Sensitivity or recall measures the model's ability to
identify all actual positive cases [17].

TP
" TP+FN

RE (13)

The Fl-score measure combines positive precision
and recall into a single value. It gives a balanced idea
of the model's performance in classifying positive
cases [17].

2PR XRE
F1 =
PR+RE

(14)
2.6 Feature importance analysis

After the training phase using the Random Forest model has
been completed, the five most important and best features that
have a significant role in influencing the classification
performance are selected. The importance of each feature is
calculated using OOB, as mentioned in the model training
phase, and they are arranged from most important to least
important. The standard 10-20 electrode placement system
was used to create a topographic map of the five features
projected onto their respective channels. These maps provide
a deeper understanding and anatomical interpretation, as they
contribute to knowing which brain regions had the greatest
impact in the process of classifying or distinguishing between
children with ADHD and healthy children.

3. RESULTS AND DISCUSSION

This part of the study will review and discuss the results
obtained using the Random Forest model.

3.1 Results

3.1.1 Random Forest Model Performance
A Random Forest model is used to classify ADHD patients



and healthy controls using EEG signals. The dataset is
randomly divided into 70% for the training set and 30% for the
test set. The model has achieved a test accuracy reached 95%.
The test sensitivity is 0.9767, the specificity is 0.9318, and the
positive accuracy is 0.9421. All of these metrics reflect the
model's accuracy in classifying data that it has not seen before.
The confusion matrices for the training and test sets, as
illustrated in Figure 3(a) and Figure 3(b), indicate how many
cases were correctly or incorrectly classified, helping to
identify where the model makes mistakes. the ROC curves and
AUC values, shown in Figure 4, summarize the model's ability
to distinguish ADHD from controls. Higher AUC means better
discrimination between the two groups.

True Class
control

patient

control

patient

Predicted Class

(2)

control

True Class

patient

control

patient

Predicted Class

(b)

Figure 3. The confusion matrix (a) for the training data. (b)
for the test data

True Positive Rate

———— Train (AUC=1.000)
———— Test (AUC=0.991)

0.1 02 03 04 0s 08 07 08 09 1

False Positive Rate

Figure 4. The ROC curves and corresponding AUC values
for the training and test sets

3.1.2 Comparison of Random Forest with other machine
learning models

The Random Forest model was chosen after evaluating and
comparing its performance with four other machine learning
models SVM (Linear kernel), Decision Tree (Max Num Splits
= 200, Min Leaf Size = 1), Logistic Regression (probability
estimation for class assignment), and KNN (K = 3, city block
distance metric). This comparison aimed to evaluate the
robustness of the proposed model compared to other
traditional classification methods on the test set. These results
are summarized in Table 2.

According to Table 2, the Random Forest model
demonstrates superior performance and high accuracy in
discriminating between children with ADHD and healthy
controls. It is worth noting that the K-NN model also achieved
performance close to Random Forest on the test set before
cross-validation, highlighting its potential effectiveness in this
particular scenario. The other models' performance was
relatively low, and this can be explained as follows:

The SVM model: Although the model is robust in
handling linear data, the data extracted from EEG
signals is high-dimensional and has nonlinear
features, which limit the ability of the linear kernel to
accurately discriminate between classes.

The decision tree is distinguished by its ability to
handle nonlinear features, but overfitting the training
data sometimes leads to deteriorating performance on
the test set.

Logistic regression suffers from poor performance
due to the underlying linear assumption, but the EEG
data contains complex patterns. It cannot be
separated by a single line.

Table 2. The performance measures for all models show that the Random Forest model achieved higher performance compared
to the other models

Model Test Acc  Sensitivity Precision F1_Score Specificity
Random Forest 95.70 97.67 94.79 96.21 93.18
K-Nearest Neighbour 95.10 94.28 96.88 95.56 96.14
Decision Tree 82.08 82.83 84.80 83.80 81.14
Logistic Regression 69.87 89.45 67.39 76.86 45.00
Support Vector Machine 55.96 100.00 55.96 71.76 0.00

Note: This comparison also reflects the effectiveness of the model in distinguishing between children with ADHD and healthy children.

The Random Forest model's superiority over other models
stems from its superior ability to handle non-linear and high-
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dimensional data, in addition to its ability to evaluate the
importance of each feature without the need for resampling the



data, which increases the accuracy of prediction and reduces
overfitting to the training data. The OOB feature also provides
an internal estimate of the model's performance on new data,
making the model more effective and efficient in classifying
children with ADHD compared to other models, such as
Random Forest, Logistic Regression, SVM, and K-NN.

3.1.3 Additional Verification (cross-validation)

While our original approach relied on a data split (70% for
training and 30% for testing) using a hold-out method to
evaluate model performance and compare it with other models,
an additional validation step was performed to ensure the
robustness and reliability of each model. Cross-validation was
performed only within the training set, while the final 30%
hold-out test set remained completely independent to evaluate
model performance on unseen data. This step was intended to
guarantee that what was observed on the performance measure
was not just a matter of favourable occurrence among the data
but reflected too in reality how well models correctly diagnose
infected or healthy children. During cross-validation, the data
was divided into five groups. Each of these groups was both
test data once while all others acted as controller set for
training, as shown in Table 3. Below, the additional validation
results show that the Random Forest model consistently
maintained high accuracy across all datasets, confirming its
stability and robustness. Its low standard deviation (+ 0.58)
also indicates that its performance was consistent across
different cross-validation folds, reinforcing its reliability. In
contrast, the K-nearest neighbor model's performance declined
with cross-validation. Its higher standard deviation (+ 1.28)
indicates that its performance was less stable across different
folds, suggesting that the initially comparable results to the
Random Forest model in the holdout split were partly a result
of the specific data ordering. Other models, such as decision
trees, logistic regression, and SVM, maintained a trend of
declining performance relative to the test set. Decision Tree
showed relatively high wvariability (= 3.16), SVM had
moderate variability (+ 1.56), and Logistic Regression,
although consistently low in accuracy (+ 1.27), reflected stable
but poor performance. This supports the Random Forest
model's selection as the best model for this dataset, as it
combines high accuracy with stability and Performance across
different data splits, reinforced by its low standard deviation.

Table 3. Comparison of classification performance of
different machine learning models using mean accuracy and
standard deviation obtained via cross-validation

Model Mean Accuracy (£ Std)
Random Forest 96.49 +0.58
SVM 81.71+1.56
KNN 75.11+1.28
Logistic Regression 46.58 +1.27
Decision Tree 82.85+3.16

3.1.4 Feature importance analysis

Also, by extracting and identifying the features, they were
arranged from most important to least important, and the five
most important features associated with the channels were
identified. Figure 5 shows a comprehensive topographical
distribution of all 316 extracted features according to their
importance, highlighting the associated brain regions based on
the Random Forest model. These features play a major role in
distinguishing people with ADHD. Table 4, below,
summarizes the 5 most important features and the channels

related to them.

= | < 0.54
05
0.48
0.46

Figure 5. A comprehensive topographical map where each
EEG channel is color-coded according to the maximum
importance among all its features, based on the Random

Forest model

Note: The red-to-blue color gradient highlights channels with high to low
importance, respectively. This visualization provides a clear overview of
which brain regions contribute most to distinguishing ADHD patients from
healthy controls.

Table 4. The five most important EEG features and their
corresponding channels

Channel Feature
Rank (Name) Level Type
Variance of
wavelet
coefficients at
level 1
Variance of
wavelet
coefficients at
level 3
Energy of
wavelet
coefficients at
level 2
Variance of
wavelet
coefficients at
level 1
Energy of
wavelet
coefficients at
level 2

Importance

1 Ch11(02) Variance 0.6470

2 Ch10 (T8) Variance 0.6263

3 Ch3(F7) Energy 0.6126

4 Ch14(P3) Variance 0.5956

5 Chl1(Fpl) Energy 0.5890

3.2 Discussion

3.2.1 Projection of features onto the topographic map

To demonstrate the spatial distribution of the most
important features extracted from the EEG signals, the top
features identified by the Random Forest model were
projected onto the topographic map of the head, as shown in
Figure 6(a) and (b) This projection provides a clear visual



representation of the regions where the most affected brain
activity was recorded by combining the statistical ordering of
the features with the actual electrode locations. This image
helps identify the scalp regions that contribute most to the
discrimination between children with the disorder and healthy
controls. This adds a spatial perspective that complements the
results presented in Table 4 in the previous paragraph.

Figure 6. The topographic maps (a) The projection of
channels related to energy features on a topographic map. (b)
The projection of channels related to variance features on a
topographic map

3.2.2 Neurophysiological insights

The top five features identified by the Random Forest model,
which have the greatest impact in distinguishing children with
ADHD from healthy controls, are interpreted below in terms
of their neurophysiological significance:

e  Channel 11 O2 contrast at level 1 reflects scattered
electrical activity in the right occipital region,
which is important for visual information
processing and attention.

Channel 10 T8 contrast at level 3 captures
medium-frequency activity in the right temporal
region, which is associated with attentional control
and lateral brain processing.

Channel 3 F7 power at level 2 measures electrical
activity in the left prefrontal region, which is
responsible for executive functions, planning, and
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attention. These are areas often affected in ADHD.
Channel 14 P3 contrast at level 1 reflects or
represents contrast in the left parietal region, which
is important for sensorimotor integration and
cognitive organization.

Channel 1 Fpl power at level 2 reflects activity in
the left prefrontal cortex, which is associated with
early executive functions, attentional control, and
working memory.

3.2.3 Comparison with previous studies

Our study represents part of a series of studies that use EEG
signals to diagnose attention-deficit and hyperactivity disorder.
In this study, statistical temporal features are combined with
spectral features (PSD) and wavelet features, and a random
forest model is used to classify patients from healthy controls.
Our study also enhances the anatomical and functional
understanding by projecting the features onto a topographic
map. This study also highlights the practical applicability of
the model in clinical settings, allowing clinicians to interpret
EEG patterns and brain regions relevant to ADHD diagnosis.
The results of our study are consistent with recent studies that
used similar methods, some of which we highlight.

In 2020, a study conducted by Altinkaynak et al. [18] used
EEG signals recorded during an auditory task to diagnose
ADHD. After extracting temporal and frequency features, the
researchers applied a multi-layer neural network to create a
classification model, which reached an accuracy of around
91.3, but it was limited to interpreting the model's performance
without providing a graphical representation of the important
channels.

In 2023, another study was conducted by Maniruzzaman et
al. [19] This study used the LASSO model because it provides
the optimal selection of features and channels from EEG
signals, and with the help of the t-test, the study used several
classification models, but the Random Forest model achieved
the highest accuracy among them, reaching 97.53but it did not
provide a comprehensive integration of spectral and temporal
features and did not show the neural importance of the selected
channels.

A study conducted by Ahire et al. [20] in 2025 relied on the
use of brain signals recorded from participants in an open-eye
state to extract spectral features from these signals. Several
models were used in this study to conduct the analysis. Among
these models that achieved high accuracy of up to 96% were
the K-nearest neighbors model and the Random Forest model,
but it was limited to the resting state with eyes open and did
not integrate temporal features or wavelet waves, and did not
provide interpretive maps of brain channels.

All the above-mentioned studies have shown that selecting
and integrating several features, such as spectral and temporal
features, and channel selection, significantly contribute to
improving the diagnostic accuracy of the model. Our study has
strengthened this concept and contributes to this trend by
projecting the most important channel-related features onto a
topographic map. These maps provide an anatomical
interpretation and a deep understanding of the regions that had
the greatest impact in distinguishing between patients and
healthy children. It is worth noting that our study takes into
account limitations such as the small sample size, the specific
age range (7-12 years), and the potential effect of medications
such as Ritalin. Future studies can address these issues and
solve them using deep learning models such as CNN and
others, or use a larger dataset, which will help improve the



slicing interpretation of relevant brain activities. Table 5
summarizes what was mentioned in the previous paragraphs

and displays the similarities and differences between previous
studies that used the same approach and our current study.

Table 5. Comparison of the current study with previous EEG-based ADHD classification studies

Authors Year Features Extracted Classifiers Used Test-Acc (%) Notes
Altinkaynak et al Temporal features, wavelet Multilayer Perceptron Multi-feqture fusion on
[18] T 2020 coefficients, frequency features (MLP), SVM, Random 91.3 the auditory oddball
(ERP) Forest, etc. EEG task
Md. Statistical features, channel selection Random Forest, Optimal channel and
Maniruzzaman et 2023  via t-test and SVM, and LASSO for Gaussian Process, 97.53 feature selection,
al. [19] feature selection KNN, etc. dimensionality reduction
. Random Forest, KNN, Resting state (open-eye
Ahirectal. [20] 2025 Tower Spectral Density (PSD), PCA = 4.5 i "Bemoulli 9% EEG data fmlzltipley )
for dimension reduction . ;
Naive Bayes classifiers
Statistical temporal features, PSD, Feature projection
Our Study 2025 wavelet features, and feature Random Forest 96 enhances anatomical
projection on a topographic map interpretation
Further consideration should be given to the integration of REFERENCES
the proposed Random Forest-based EEG model into existing
clinical workflows. The model can support clinicians by [1] Lépez, C.Q., Vera, V.D.G., Quintero, M.J.R. (2025).

providing an objective decision-support tool for ADHD
diagnosis through the extraction of temporal, spectral, and
wavelet-based EEG features, as well as the generation of
topographic maps that highlight the most relevant brain
regions. These interpretable outputs can facilitate clinical
understanding and contribute to more accurate diagnostic
decisions. However, several practical limitations must be
acknowledged, including dependency on specific EEG
acquisition devices, the requirement for accurate electrode
placement, signal quality control, and the operational
complexity associated with preprocessing and feature
extraction. Addressing these factors is essential for translating
the proposed model from a research setting into routine
clinical practice.

4. CONCLUSION

The study found that combining temporal statistical
information with spectral parameters (PSD) and wavelet scale
derived from EEG signals enhanced the accuracy of ADHD
categorization. The Random Forest model achieved 95.7% test
accuracy, compared to four other machine learning models,
and the most important characteristics were projected onto a
topographic map of the scalp, giving a clear anatomical
interpretation of the results of the study. This study illustrates
the model's utilization in clinical settings, offering medical
professionals an objective tool for ADHD diagnosis. However,
the study has some drawbacks, such as a small sample size
(121 children), a narrow age range (7-12 years), the possible
side effects of Ritalin, and the use is limited to 19 EEG
channels.

Further research should include larger and more diverse
datasets, evaluate the model on medication-naive children, and
explore advanced deep learning techniques such as CNN or
hybrid CNN-LSTM models to improve classification
performance and generalizability. While deep learning models
have shown high performance in previous studies, they were
not used in the current study due to the relatively small dataset
and their “black-box” nature, which prevents identifying
which features contributed most to the classification. In
contrast, Random Forest provides interpretable results with
clear feature importance mapping across brain regions.
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NOMENCLATURE

ACC Accuracy

G Wavelet  coefficient at the given

decomposition level

L Total number of wavelet coefficients at that

level

N Total number of samples

P Band Average power in the frequency band

PSD(f) Power Spectral Density at frequency f

SD Standard deviation

TP True Positives

TN True Negatives

FP False Positives

FN False Negatives

X Feature matrix

Y Classification vector

FFT(x) Fast Fourier Transform of signal segment x

P Power

RE Sensitivity / Recall

PR Positive precision

F1 Fl1-score

X The value of the i*" sample

X Signal segment

Greek symbols

jof Normalized power of the coefficient ¢;

Subscripts

i Index of sample in time-domain features

j Index of wavelet coefficient

k Index used in normalization of wavelet

coefficients





