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Attention-deficit and hyperactivity disorder (ADHD) is a clinical challenge because its 

signs and symptoms overlap with those of other conditions, making accurate and objective 

diagnosis difficult using behavioral tests alone. The study aims at a multi-view EEG signal 

classification model for ADHD, as well as interpretation of clinical implications. Three 

kinds of features were extracted: temporal statistical features, power waveform retorn 

time, and frequency-domain analyzed data across four levels and power spectral density 

(PSD). The Random Forest method was employed to analyze them. Additionally, to 

support anatomical interpretation, the most important channel-related features were 

projected onto a topographic map. The suggested method surpassed the other machine 

learning models tested in this study, including the K-nearest Neighbor algorithm (95.1% 

test accuracy) and the Decision Tree model (82% test accuracy). The Logistic Regression 

algorithm attained an accuracy of 69%, while the Support Vector Machine algorithm 

recorded the lowest accuracy at 55.9% The Random Forest model achieved 95.7% test 

accuracy. These results were further confirmed through cross-validation, which showed 

consistent performance and low variability for the Random Forest model. This comparison 

demonstrated the Random Forest model's ability to handle nonlinear, time-varying data 

and its generalization capability. The results indicate the potential of the proposed 

approach as a robust and clinically applicable tool for ADHD detection, laying the 

groundwork for future investigations involving larger datasets and advanced 

methodologies. 
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1. INTRODUCTION

Attention-deficit and hyperactivity disorder (ADHD) is one 

of the most common neurodevelopmental disorders, making it 

very difficult to treat. Surprisingly, this disorder makes 

children very active, yet easily distracted, whether by what 

they are currently doing or what they are thinking about next. 

As a result, school becomes more difficult for children with 

this disorder, and they often fall behind their peers in terms of 

educational attainment or even life satisfaction. National and 

international studies have shown that about 6% of children 

have been diagnosed with ADHD. However, despite its 

prevalence, accurate diagnosis remains as challenging as it has 

been throughout history  [1]. This is because the symptoms that 

constitute the basic diagnostic criteria – in addition to other 

accompanying features – are very similar to those found in 

behavioural disorders, as well as those typical of children 

suffering from any type of anxiety disorder. At the same time, 

traditional diagnosis relies heavily on subjective assessments 

by parents or teachers who observe the child over a period of 

time, leading to difficulties in ruling out other disorders that 

may present similarly [2]. As well as traditional diagnostic 

practices, which rely on interviews and questionnaires, often 

lack objectivity and consistency among clinicians, 

highlighting the urgent need for new diagnostic tools based on 

biological markers and data-driven quantitative methods [3].  

Due to its high temporal resolution and ability to accurately 

capture neural oscillations, EEG has recently become a key 

tool for detecting neurological markers associated with ADHD 

[4]. The use of machine learning algorithms applied to ERP 

data has enabled the extraction of characteristic patterns that 

distinguish children with ADHD from healthy controls  [5]. 

Support vector machines (SVMs) and other machine learning 

algorithms have shown some success in an early study in 

distinguishing the two groups according to their spectral 

characteristics and power spectral density (PSD) features [6, 

7]. However, many of these studies were limited in terms of 

the diversity of features used and lacked clear neural 

interpretation, making them difficult to use clinically. 

In the last few years, deep learning models, particularly 

convolutional neural networks (CNNs) and CNN-LSTM 

hybrid models, have achieved extremely high classification 

accuracies (ranging from 97% to 99%) in detecting ADHD 

from EEG signals. For example, in 2023, Alkahtani et al. [8] 

released a study that included temporal, spectral, and entropy 

information with different classification techniques. The 
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model, which utilized a CNN, achieved an accuracy of 97.75%. 

In 2024, Chugh et al. [9] release a study that adopts a hybrid 

model combining CNN and LSTM. Not only able to capture 

brain signals' spatial and temporal fashion, but also this model 

even climbers an accuracy of 98.86%. In 2025, Hu et al. came 

up with a new method. In their work, they used the SCANet 

model on selective channel attention mechanism. The model 

managed to be 99.78% accurate and this study provided a clear 

explanation of just how crucial it is for diagnosis [10]. Despite 

the excellent performance of these models, they are often 

treated as “black box” models that are difficult to interpret 

clinically or link their outputs to underlying neural 

mechanisms. 

Although previous studies have achieved high accuracy in 

classifying ADHD using EEG signals, most relied on limited 

feature sets, produced results that were difficult to interpret, or 

failed to link results to underlying neural mechanisms, 

highlighting the need for models that combine high accuracy 

with clinical interpretability. Such interpretability is crucial to 

link classification outcomes to underlying neural mechanisms, 

facilitating clinical understanding and practical decision-

making. 

Based on these challenges, the goal of this work is to 

develop an interpretable model for diagnosing ADHD based 

on EEG signals by combining temporal and spectral 

characteristics (PSD) and time-frequency (wavelet analysis) to 

improve both accuracy and interpretability. Unlike deep 

models, which are difficult to interpret, the Random Forest 

model used in this study allows us to determine the importance 

of each feature and show the brain regions that contribute most 

to discrimination through topographic maps. By analyzing 

how different features contribute to the discrimination 

between children with ADHD and normal, this study seeks to 

bridge the gap between computational classification and 

neurophysiological understanding and provide a clear and 

clinically meaningful diagnostic framework. 

2. METHODOLOGY

In this section, we present the approach followed in this 

study to classify ADHD using EEG signals. First, an overview 

of the dataset is provided, followed by a description of the 

preprocessing steps applied to the EEG signals. Next, the 

extraction of features and the preparation of data for 

classification are explained. Finally, the model training and 

evaluation procedures are outlined. Figure 1 illustrates the 

sequence from data input to the analysis of results. 

Figure 1. Block diagram of the workflow 
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2.1 Dataset 

 

EEG signals in the proposed model were exported from the 

IEEE Data Port (EEG data for ADHD / Control children) [11]. 

The dataset included 121 children: 61 with ADHD (mean age 

9.62 ± 1.75 years) and 60 healthy controls (mean age 9.85 ± 

1.77 years). The dataset included boys and girls, ages from 7 

to 12 years. The children with an ADHD diagnosis by an 

experienced psychiatrist, according to DSM-IV criteria, and 

took Ritalin for six months, while the normal children had no 

history of any psychiatric disorders or any specific reports of 

high-risk behaviour or epilepsy. EEG signal recorded by using 

the system 10-20, the 19 channels were used to record the EEG 

signals (Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, 

P3, P4, T5, T6, O1, O2) with a sample rate of 128 Hz. The 

reference electrodes (A1, A2) were placed on the earlobe. The 

recording was performed during a visual attention task. The 

children count the cartoon characters when shown the pictures. 

The size of the pictures was large enough to allow the children 

a clear vision and to count the characters easily. The recorded 

EEG signals' duration during the visual attention tasks was 

dependent on the speed of the children's response [11]. 

 

2.2 Pre-processing data 

 

Pre-processing the raw EEG signals that were recorded 

from children was performed using the EEG-LAB toolbox 

available in MATLAB [12]. The channels' location was added 

to the data by using the tools and referenced to the average. 

The FIR filter was applied to limit the bandwidth of signals 

from (0.5 to 40) HZ, then ICA in the EEG-LAB tools was used, 

and artifacts were removed Handly depended on the 

proportions displayed by the program for each type of signal 

(e.g., brain, eye, or other artifacts). Components with less than 

50% brain signal contribution were excluded, as these 

contained a high proportion of artifacts   . After that, the cleaned 

data for each child was saved in (.set) format. The cleaned data 

were segmented into fixed-length time windows of 150 milli 

seconds for each participant to obtain more samples for 

analysis. The number of windows for each recording depended 

on its duration, and the total number of windows was 

approximately equal across both healthy and ADHD 

participants (1864 windows for ADHD and 1466 windows for 

controls). To analyze the signals and extract features more 

accurately. 

 

2.3 Extracted features 

 

It is a critical step, enabling us to understand the properties 

present in data and transform them into digital representations 

that are highly useful for analysis and classification. This step 

comes after data processing, artifact removal, and refinement 

of the quality of the EEG signals. In this work, a three-

significant set of features was extracted that reflects the 

temporal, statistical, and frequency aspects of brain activity. 

 

2.3.1 Spectral feature Power Spectral Density (PSD) 

The power spectral density (PSD) was calculated using the 

fast Fourier transform (FFT) to examine how energy is 

distributed across four EEG bands: delta (0.5–4 Hz), theta (4–

8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). We chose PSD 

as a key feature because it clearly reflects differences in 

cortical activation between ADHD and control participants, as 

shown in the topographic maps in Figure 2. 

In the delta band, strong activity appears over the frontal 

regions in both groups. ADHD participants show slightly 

higher delta power, which may reflect slower cortical activity 

and lower arousal. 

Theta activity is clearly elevated in ADHD individuals, 

mainly in frontal and central areas. This pattern is commonly 

observed in ADHD and suggests reduced alertness and 

difficulties in attention control. Alpha power is lower in 

ADHD participants, especially over parietal regions. This 

indicates reduced cortical inhibition and altered resting-state 

rhythms. Controls, in contrast, display a more balanced alpha 

distribution. Beta activity is reduced in ADHD participants at 

frontal and central electrodes, while controls show stronger 

beta power. This difference aligns with previous studies 

linking ADHD to lower cortical activation and challenges in 

executive functioning. Gamma band activity (> 30 Hz) was not 

analyzed because it is mainly informative in conditions 

involving seizures or strong cognitive stimulation. ADHD is a 

non-epileptic disorder, and resting-state EEG in these 

participants does not show meaningful gamma-band 

differences. Including gamma could have introduced noise and 

unreliable results without providing useful information for 

distinguishing ADHD from controls. 

 

 
 

Figure 2. The power distribution in four bands for the patient and normal children 
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Overall, these findings highlight the classic theta/beta 

imbalance in ADHD. Increased theta and decreased beta 

activity serve as consistent neurophysiological markers of the 

disorder, supporting the use of PSD as a reliable feature for 

distinguishing ADHD from control participants. 

Eqs. (1) and (2) illustrate the mathematical method of 

calculation [13]. 

𝑃𝑆𝐷(𝑓) =
|𝐹𝐹𝑇(𝑥)|2

𝑁
(1) 

where, x is the signal segment, N is the number of samples in 

the segment, FFT(x) is the fast fourier transform of the signal 

segment, and f is frequency. 

Average power in a frequency band [f1, f2]: 

𝑃
𝐵𝑎𝑛𝑑= 

1

|𝑓∈[𝑓1,𝑓2]|
∑ 𝑃𝑆𝐷(𝑓)

𝑓1
𝑓2

(2) 

where, f1, f2: lower and upper frequency bounds, and P_Band

is: average power in the frequency band. 

PSD is computed using FFT, then the PSD values over the 

desired frequency range are used to get the band power. 

2.3.2 Time–frequency features (wavelet decomposition) 

A multilevel discrete waveform transform is applied to each 

EEG channel, where the signal is divided into four levels: the 

first level has the highest frequencies and the finest time 

details. The second level has lower frequencies than the first 

level, with a slightly lower time resolution, covering broader 

details. The third level has lower frequencies and a lower time 

resolution, covering slow patterns. The fourth level has the 

lowest frequencies and the lowest time resolution, 

representing the long, slow fluctuations in the signal. These 

extracts combined information from the time and frequency 

domains, as well as from the detailed parameters. At each level, 

four main indicators are calculated: power, mean, variance, 

and Shannon entropy. Power describes or reflects the extent of 

activity in a given time-frequency range. The mean represents 

the central values of the parameters at that level. Variance 

shows the core or degree of irregularity in the signal, as it 

measures the variation of values around the mean. Finally, 

Shannon entropy is a measure of the degree of randomness or 

complexity of the signal in that range, with higher values 

indicating a more complex and irregular system. Eqs. (3), (4), 

(5), and (6) illustrate the mathematical formula for calculation 

[14]. 

𝑃𝑜𝑤𝑒𝑟 = ∑ (𝑐𝑗)2𝐿
𝑗=1 (3) 

where, cj is the wavelet coefficient at the given decomposition

level, 𝐿 is the total number of coefficients at that level. 

𝑀𝑒𝑎𝑛 =
∑ 𝑐𝑗

𝐿
𝑗=1

𝐿
(4) 

where, cj is the wavelet coefficient at the given decomposition

level, and L is the total number of coefficients at that level. 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
∑ (𝑐𝑗−𝑐)̅2𝐿

𝑗=1

𝐿
(5) 

where, cj is the wavelet coefficient at the given decomposition

level, c̅ is the mean of the coefficients at that level, and 𝐿 is the 

total number of coefficients at that level.  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑗 𝑙𝑜𝑔2(𝑝𝑗)𝐿
𝑗=1  ;  𝑝𝑗 =

|𝑐𝑗|2

∑ |𝑐𝑘|2𝐿
𝑘=1

 (6) 

where, cj is the wavelet coefficient at the given decomposition

level, pj is the normalized power of the coefficient 𝑐𝑗, and 𝐿:

Total number of coefficients at that level. 

2.3.3 Time-domain statistical features 

Directly from the signal, four statistical values are 

calculated (mean, standard deviation, kurtosis, and skewness) 

because these values help us understand the shape of the signal 

and reflect the extent of its fluctuations, whether the signal is 

tilted in a certain direction, and whether its peaks are sharp or 

flat. After calculating these measures for all channels, the 

average across all channels is taken to represent the time-

domain features for each segment. Eqs. (7), (8), (9), and (10) 

illustrate the mathematical formula for calculation [15]. 

• The mean is the sum of the values divided by their

number.

𝑀𝑒𝑎𝑛 =
∑ 𝑥𝑖

𝑁
𝑖=1

𝑁
(7) 

where, xi  is the value of the ith  sample, and N is the total

number of samples. 

• The standard deviation measures how spread out the

values of a dataset are around the mean. A high

standard deviation means the values are more

dispersed, while a low standard deviation indicates

that they are closer to the mean.

𝑆𝐷 = √
∑ (𝑥𝑖−𝑀𝑒𝑎𝑛)2𝑁

𝑖=1

𝑁
(8) 

where, xi is the value of the ith sample, 𝑁 is the total number

of samples, Mean is the average of all samples, and SD is the 

standard deviation. 

• Skewness measures the asymmetry of a data

distribution. A positive skew indicates that the tail on

the right side of the distribution is longer or fatter than

the left side, meaning more low values. A negative

skew indicates that the tail on the left is longer,

meaning more high values.

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑁
∑ (𝑥𝑖−𝑀𝑒𝑎𝑛)3𝑁

𝑖=1

𝑆𝐷3
(9) 

where, xi is the value of the ith sample, N is the total number

of samples, Mean is the average of all samples, and SD is the 

standard deviation. 

• Kurtosis values near the mean and long tails, while a

low kurtosis indicates a flatter distribution with fewer

values near the mean and shorter tails.

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁
∑ (𝑥𝑖−𝑀𝑒𝑎𝑛)4𝑁

𝑖=1

𝑆𝐷4
(10) 

where, xi is the value of the ith sample, 𝑁 is the total number

of samples, Mean is the average of all samples, and SD is the 

standard deviation. 

The three methods described in the previous features were 

applied to EEG data recorded from 19 channels for each 

participant, including children with ADHD and healthy 

children. The process involved calculating wavelet features at 

four levels of analysis, as well as calculating power in four 
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frequency bands using power spectral (PSD) analysis, along 

with four temporal features for each channel. three types of 

features chose because they complement Each Other in the 

capture of EEG signals. PSD reflects the active state of the 

cortex at each frequency, wavelet features capture time-

frequency patterns; time-domain statistics made signal scale 

and shape concrete. Their combined effort gives a full 

accounting of ADHD-related issues EEG characteristics. It 

could take 316 distinct features to reflect time, frequency, and 

spectral dimensions of brain activity, as shown in Table 1, 

based on which constitutes something beyond a meaningful 

number for a database into the next step in classifying. 

 

Table 1. The number of features extracted for each method 

and their total 

 
Feature Type Calculation Details Total 

Features 

Spectral Features 

(PSD) 

8 frequency bands × mean 

across 19 channels 

8 

Time-Domain 

Features 

4 statistical measures × 

mean across 19 channels 

4 

Time-Frequency 

Features (Wavelet) 

4 levels × 4 features × 19 

channels 

304 

Total Combination of all features 316 
Note: The PSD was calculated for 8 frequency bands because each of the 4 

main bands (Delta, Theta, Alpha, Beta) was subdivided into sub-bands (e.g., 

Delta Lower/Upper, Alpha Lower/Upper, etc.). 
 

2.4 Data preparation 

 

After extracting the spectral, temporal-frequency, and 

temporal statistical features from the processed EEG signals 

of both ADHD and healthy individuals, the features are 

standardized in matrix X with vector Y, which is a 

classification vector created to represent the ADHD and 

healthy individuals, where the value 1 represents the patients 

and the value 0 represents the healthy individuals. The data is 

randomly divided so that the model is not biased towards one 

data group over another using the cvpartition function in 

MATLAB, where 70% of the data is used for training and 30% 

of the data for testing. The model is also compared with four 

other machine learning models (logistic regression, k-nearest 

neighbors, decision tree model, and support vector machine) 

to ensure the effectiveness of the model in classification and 

its robustness. Additionally, k-fold cross-validation was 

performed to further assess the generalization capability of the 

models and confirm that the Random Forest model is the most 

appropriate for distinguishing between children with ADHD 

and healthy controls. 

 

2.5 Training model 

 

The Random Forest model was chosen for its high ability to 

deal with non-linear data that are of high dimensions, such as 

EEG signals, which change continuously and non-linearly 

with time. This makes it suitable for analyzing the features 

extracted from these signals. The number of trees in the model 

was set at 200 trees after the experiment, which showed that 

this number of trees gives high classification accuracy and 

stability to the model, as well as maintains reasonable 

computational time. The X-group is used as an input to the 

model, while the Y-group represents the label or category 

(infected, healthy). The Out-Of-Bag (OOB) feature is used to 

calculate the importance of features using the out-of-sample 

error. Using the OOB feature greatly helps us evaluate the 

impact of each feature on the performance of the classifier 

without the need for additional data. 

The model's performance is evaluated using an independent 

data set that is not used during the model training phase (the 

test set). Several model performance measures are used, such 

as calculating the overall accuracy, precision, sensitivity, 

specificity, and F1-score extracted from the confusion matrix, 

which is also used. These indicators measure the model's 

accuracy in distinguishing between the classes (infected and 

healthy) accurately and reliably. The training and testing 

accuracies were also calculated. 

• Accuracy is defined as the percentage of cases that 

the model correctly classifies (whether infected or 

healthy) out of all cases [16]. 

 

𝐴𝐶𝐶 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝐹𝑃+𝑇𝑁 +𝐹𝑁
  (11) 

 

where, TP is the True Positives, TN is the True Negatives, FP 

is the False Positives, and FN is the False Negatives. 

• Positive precision is the percentage of true positive 

cases out of all cases classified as positive [17]. 

 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 +𝐹𝑃
  (12) 

 

• Sensitivity or recall measures the model's ability to 

identify all actual positive cases [17]. 

 

𝑅𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (13) 

 

• The F1-score measure combines positive precision 

and recall into a single value. It gives a balanced idea 

of the model's performance in classifying positive 

cases [17].  

 

𝐹1 =
2𝑃𝑅 ×𝑅𝐸

𝑃𝑅+𝑅𝐸
  (14) 

 

2.6 Feature importance analysis 

 

After the training phase using the Random Forest model has 

been completed, the five most important and best features that 

have a significant role in influencing the classification 

performance are selected. The importance of each feature is 

calculated using OOB, as mentioned in the model training 

phase, and they are arranged from most important to least 

important. The standard 10-20 electrode placement system 

was used to create a topographic map of the five features 

projected onto their respective channels. These maps provide 

a deeper understanding and anatomical interpretation, as they 

contribute to knowing which brain regions had the greatest 

impact in the process of classifying or distinguishing between 

children with ADHD and healthy children. 

 

 

3. RESULTS AND DISCUSSION 

 

This part of the study will review and discuss the results 

obtained using the Random Forest model. 

 

3.1 Results 

 

3.1.1 Random Forest Model Performance 

A Random Forest model is used to classify ADHD patients 
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and healthy controls using EEG signals. The dataset is 

randomly divided into 70% for the training set and 30% for the 

test set. The model has achieved a test accuracy reached 95%. 

The test sensitivity is 0.9767, the specificity is 0.9318, and the 

positive accuracy is 0.9421. All of these metrics reflect the 

model's accuracy in classifying data that it has not seen before. 

The confusion matrices for the training and test sets, as 

illustrated in Figure 3(a) and Figure 3(b), indicate how many 

cases were correctly or incorrectly classified, helping to 

identify where the model makes mistakes. the ROC curves and 

AUC values, shown in Figure 4, summarize the model's ability 

to distinguish ADHD from controls. Higher AUC means better 

discrimination between the two groups. 

(a) 

(b) 

Figure 3. The confusion matrix (a) for the training data. (b) 

for the test data 

Figure 4. The ROC curves and corresponding AUC values 

for the training and test sets 

3.1.2 Comparison of Random Forest with other machine 

learning models 

The Random Forest model was chosen after evaluating and 

comparing its performance with four other machine learning 

models SVM (Linear kernel), Decision Tree (Max  Num  Splits 

= 200, Min  Leaf  Size = 1), Logistic Regression (probability 

estimation for class assignment), and KNN (K = 3, city block 

distance metric). This comparison aimed to evaluate the 

robustness of the proposed model compared to other 

traditional classification methods on the test set. These results 

are summarized in Table 2.  

According to Table 2, the Random Forest model 

demonstrates superior performance and high accuracy in 

discriminating between children with ADHD and healthy 

controls. It is worth noting that the K-NN model also achieved 

performance close to Random Forest on the test set before 

cross-validation, highlighting its potential effectiveness in this 

particular scenario. The other models' performance was 

relatively low, and this can be explained as follows: 

• The SVM model: Although the model is robust in

handling linear data, the data extracted from EEG

signals is high-dimensional and has nonlinear

features, which limit the ability of the linear kernel to

accurately discriminate between classes.

• The decision tree is distinguished by its ability to

handle nonlinear features, but overfitting the training

data sometimes leads to deteriorating performance on

the test set.

• Logistic regression suffers from poor performance

due to the underlying linear assumption, but the EEG

data contains complex patterns. It cannot be

separated by a single line.

Table 2. The performance measures for all models show that the Random Forest model achieved higher performance compared 

to the other models 

Model Test_Acc Sensitivity Precision F1_Score Specificity 

Random Forest 95.70 97.67 94.79 96.21 93.18 

K-Nearest Neighbour 95.10 94.28 96.88 95.56 96.14 

Decision Tree 82.08 82.83 84.80 83.80 81.14 

Logistic Regression 69.87 89.45 67.39 76.86 45.00 

Support Vector Machine 55.96 100.00 55.96 71.76 0.00 
Note: This comparison also reflects the effectiveness of the model in distinguishing between children with ADHD and healthy children. 

The Random Forest model's superiority over other models 

stems from its superior ability to handle non-linear and high-

dimensional data, in addition to its ability to evaluate the 

importance of each feature without the need for resampling the 
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data, which increases the accuracy of prediction and reduces 

overfitting to the training data. The OOB feature also provides 

an internal estimate of the model's performance on new data, 

making the model more effective and efficient in classifying 

children with ADHD compared to other models, such as 

Random Forest, Logistic Regression, SVM, and K-NN. 

3.1.3 Additional Verification (cross-validation) 

While our original approach relied on a data split (70% for 

training and 30% for testing) using a hold-out method to 

evaluate model performance and compare it with other models, 

an additional validation step was performed to ensure the 

robustness and reliability of each model. Cross-validation was 

performed only within the training set, while the final 30% 

hold-out test set remained completely independent to evaluate 

model performance on unseen data. This step was intended to 

guarantee that what was observed on the performance measure 

was not just a matter of favourable occurrence among the data 

but reflected too in reality how well models correctly diagnose 

infected or healthy children. During cross-validation, the data 

was divided into five groups. Each of these groups was both 

test data once while all others acted as controller set for 

training, as shown in Table 3. Below, the additional validation 

results show that the Random Forest model consistently 

maintained high accuracy across all datasets, confirming its 

stability and robustness. Its low standard deviation (± 0.58) 

also indicates that its performance was consistent across 

different cross-validation folds, reinforcing its reliability. In 

contrast, the K-nearest neighbor model's performance declined 

with cross-validation. Its higher standard deviation (± 1.28) 

indicates that its performance was less stable across different 

folds, suggesting that the initially comparable results to the 

Random Forest model in the holdout split were partly a result 

of the specific data ordering. Other models, such as decision 

trees, logistic regression, and SVM, maintained a trend of 

declining performance relative to the test set. Decision Tree 

showed relatively high variability (± 3.16), SVM had 

moderate variability (± 1.56), and Logistic Regression, 

although consistently low in accuracy (± 1.27), reflected stable 

but poor performance. This supports the Random Forest 

model's selection as the best model for this dataset, as it 

combines high accuracy with stability and Performance across 

different data splits, reinforced by its low standard deviation. 

Table 3. Comparison of classification performance of 

different machine learning models using mean accuracy and 

standard deviation obtained via cross-validation 

Model Mean Accuracy (± Std) 

Random Forest 96.49 ± 0.58 

SVM 81.71 ± 1.56 

KNN 75.11 ± 1.28 

Logistic Regression 46.58 ± 1.27 

Decision Tree 82.85 ± 3.16 

3.1.4 Feature importance analysis 

Also, by extracting and identifying the features, they were 

arranged from most important to least important, and the five 

most important features associated with the channels were 

identified. Figure 5 shows a comprehensive topographical 

distribution of all 316 extracted features according to their 

importance, highlighting the associated brain regions based on 

the Random Forest model. These features play a major role in 

distinguishing people with ADHD. Table 4, below, 

summarizes the 5 most important features and the channels 

related to them. 

Figure 5. A comprehensive topographical map where each 

EEG channel is color-coded according to the maximum 

importance among all its features, based on the Random 

Forest model  

Note: The red-to-blue color gradient highlights channels with high to low 

importance, respectively. This visualization provides a clear overview of 

which brain regions contribute most to distinguishing ADHD patients from 
healthy controls. 

Table 4. The five most important EEG features and their 

corresponding channels 

Rank 
Channel 

(Name) 
Level 

Feature 

Type 
Importance 

1 Ch11(O2) 

Variance of 

wavelet 

coefficients at 

level 1 

Variance 0.6470 

2 Ch10 (T8) 

Variance of 

wavelet 

coefficients at 

level 3 

Variance 0.6263 

3 Ch3(F7) 

Energy of 

wavelet 

coefficients at 

level 2 

Energy 0.6126 

4 Ch14(P3) 

Variance of 

wavelet 

coefficients at 

level 1 

Variance 0.5956 

5 Ch1(Fp1) 

Energy of 

wavelet 

coefficients at 

level 2 

Energy 0.5890 

3.2 Discussion 

3.2.1 Projection of features onto the topographic map 

To demonstrate the spatial distribution of the most 

important features extracted from the EEG signals, the top 

features identified by the Random Forest model were 

projected onto the topographic map of the head, as shown in 

Figure 6(a) and (b) This projection provides a clear visual 
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representation of the regions where the most affected brain 

activity was recorded by combining the statistical ordering of 

the features with the actual electrode locations. This image 

helps identify the scalp regions that contribute most to the 

discrimination between children with the disorder and healthy 

controls. This adds a spatial perspective that complements the 

results presented in Table 4 in the previous paragraph. 

(a) 

(b) 

Figure 6. The topographic maps (a) The projection of 

channels related to energy features on a topographic map. (b) 

The projection of channels related to variance features on a 

topographic map 

3.2.2 Neurophysiological insights 

The top five features identified by the Random Forest model, 

which have the greatest impact in distinguishing children with 

ADHD from healthy controls, are interpreted below in terms 

of their neurophysiological significance: 

• Channel 11 O2 contrast at level 1 reflects scattered

electrical activity in the right occipital region,

which is important for visual information

processing and attention.

• Channel 10 T8 contrast at level 3 captures

medium-frequency activity in the right temporal

region, which is associated with attentional control

and lateral brain processing.

• Channel 3 F7 power at level 2 measures electrical

activity in the left prefrontal region, which is

responsible for executive functions, planning, and

attention. These are areas often affected in ADHD. 

• Channel 14 P3 contrast at level 1 reflects or

represents contrast in the left parietal region, which

is important for sensorimotor integration and

cognitive organization.

• Channel 1 Fp1 power at level 2 reflects activity in

the left prefrontal cortex, which is associated with

early executive functions, attentional control, and

working memory.

3.2.3 Comparison with previous studies 

Our study represents part of a series of studies that use EEG 

signals to diagnose attention-deficit and hyperactivity disorder. 

In this study, statistical temporal features are combined with 

spectral features (PSD) and wavelet features, and a random 

forest model is used to classify patients from healthy controls. 

Our study also enhances the anatomical and functional 

understanding by projecting the features onto a topographic 

map. This study also highlights the practical applicability of 

the model in clinical settings, allowing clinicians to interpret 

EEG patterns and brain regions relevant to ADHD diagnosis. 

The results of our study are consistent with recent studies that 

used similar methods, some of which we highlight. 

In 2020, a study conducted by Altınkaynak et al. [18] used 

EEG signals recorded during an auditory task to diagnose 

ADHD. After extracting temporal and frequency features, the 

researchers applied a multi-layer neural network to create a 

classification model, which reached an accuracy of around 

91.3, but it was limited to interpreting the model's performance 

without providing a graphical representation of the important 

channels. 

In 2023, another study was conducted by Maniruzzaman et 

al. [19] This study used the LASSO model because it provides 

the optimal selection of features and channels from EEG 

signals, and with the help of the t-test, the study used several 

classification models, but the Random Forest model achieved 

the highest accuracy among them, reaching 97.53but it did not 

provide a comprehensive integration of spectral and temporal 

features and did not show the neural importance of the selected 

channels. 

A study conducted by Ahire et al. [20] in 2025 relied on the 

use of brain signals recorded from participants in an open-eye 

state to extract spectral features from these signals. Several 

models were used in this study to conduct the analysis. Among 

these models that achieved high accuracy of up to 96% were 

the K-nearest neighbors model and the Random Forest model, 

but it was limited to the resting state with eyes open and did 

not integrate temporal features or wavelet waves, and did not 

provide interpretive maps of brain channels. 

All the above-mentioned studies have shown that selecting 

and integrating several features, such as spectral and temporal 

features, and channel selection, significantly contribute to 

improving the diagnostic accuracy of the model. Our study has 

strengthened this concept and contributes to this trend by 

projecting the most important channel-related features onto a 

topographic map. These maps provide an anatomical 

interpretation and a deep understanding of the regions that had 

the greatest impact in distinguishing between patients and 

healthy children. It is worth noting that our study takes into 

account limitations such as the small sample size, the specific 

age range (7-12 years), and the potential effect of medications 

such as Ritalin. Future studies can address these issues and 

solve them using deep learning models such as CNN and 

others, or use a larger dataset, which will help improve the 
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slicing interpretation of relevant brain activities. Table 5 

summarizes what was mentioned in the previous paragraphs 

and displays the similarities and differences between previous 

studies that used the same approach and our current study. 

Table 5. Comparison of the current study with previous EEG-based ADHD classification studies 

Authors Year Features Extracted Classifiers Used Test-Acc (%) Notes 

Altınkaynak et al. 

[18] 
2020 

Temporal features, wavelet 

coefficients, frequency features 

(ERP) 

Multilayer Perceptron 

(MLP), SVM, Random 

Forest, etc. 

91.3 

Multi-feature fusion on 

the auditory oddball 

EEG task 

Md. 

Maniruzzaman et 

al. [19] 

2023 

Statistical features, channel selection 

via t-test and SVM, and LASSO for 

feature selection 

Random Forest, 

Gaussian Process, 

KNN, etc. 

97.53 

Optimal channel and 

feature selection, 

dimensionality reduction 

Ahire et al. [20] 2025 
Power Spectral Density (PSD), PCA 

for dimension reduction 

Random Forest, KNN, 

AdaBoost, Bernoulli 

Naive Bayes 

96 

Resting state (open-eye) 

EEG data, multiple 

classifiers 

Our Study 2025 

Statistical temporal features, PSD, 

wavelet features, and feature 

projection on a topographic map 

Random Forest 96 

Feature projection 

enhances anatomical 

interpretation 

Further consideration should be given to the integration of 

the proposed Random Forest-based EEG model into existing 

clinical workflows. The model can support clinicians by 

providing an objective decision-support tool for ADHD 

diagnosis through the extraction of temporal, spectral, and 

wavelet-based EEG features, as well as the generation of 

topographic maps that highlight the most relevant brain 

regions. These interpretable outputs can facilitate clinical 

understanding and contribute to more accurate diagnostic 

decisions. However, several practical limitations must be 

acknowledged, including dependency on specific EEG 

acquisition devices, the requirement for accurate electrode 

placement, signal quality control, and the operational 

complexity associated with preprocessing and feature 

extraction. Addressing these factors is essential for translating 

the proposed model from a research setting into routine 

clinical practice. 

4. CONCLUSION

The study found that combining temporal statistical 

information with spectral parameters (PSD) and wavelet scale 

derived from EEG signals enhanced the accuracy of ADHD 

categorization. The Random Forest model achieved 95.7% test 

accuracy, compared to four other machine learning models, 

and the most important characteristics were projected onto a 

topographic map of the scalp, giving a clear anatomical 

interpretation of the results of the study. This study illustrates 

the model's utilization in clinical settings, offering medical 

professionals an objective tool for ADHD diagnosis. However, 

the study has some drawbacks, such as a small sample size 

(121 children), a narrow age range (7-12 years), the possible 

side effects of Ritalin, and the use is limited to 19 EEG 

channels. 

Further research should include larger and more diverse 

datasets, evaluate the model on medication-naïve children, and 

explore advanced deep learning techniques such as CNN or 

hybrid CNN-LSTM models to improve classification 

performance and generalizability. While deep learning models 

have shown high performance in previous studies, they were 

not used in the current study due to the relatively small dataset 

and their “black-box” nature, which prevents identifying 

which features contributed most to the classification. In 

contrast, Random Forest provides interpretable results with 

clear feature importance mapping across brain regions. 
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NOMENCLATURE 

ACC Accuracy 

cj Wavelet coefficient at the given 

decomposition level 

L Total number of wavelet coefficients at that 

level 

N Total number of samples 

P_Band Average power in the frequency band 

PSD(f) Power Spectral Density at frequency f 

SD Standard deviation 

TP True Positives 

TN True Negatives 

FP False Positives 

FN False Negatives 

X Feature matrix 

Y Classification vector 

FFT(x) Fast Fourier Transform of signal segment x 

P Power 

RE Sensitivity / Recall 

PR Positive precision 

F1 F1-score 

xi The value of the ith sample

x Signal segment 

Greek symbols 

pj Normalized power of the coefficient 𝑐𝑗

Subscripts 

i Index of sample in time-domain features 

j Index of wavelet coefficient 

k Index used in normalization of wavelet 

coefficients 
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