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In this work, a gait-based approach for early detection of cerebellar ataxia is introduced
using deep learning and gait data collected from an array of wearable knock sensors
mounted on the legs. The dataset was collected from the Kaggle Gait Analysis Dataset for
cerebellar ataxia and pre-processed by z-score normalization and segmented into 128
samples with 50% overlap. A customized Convolutional Neural Network (CNN) model
was designed and trained on these segments to classify gait patterns as normal and ataxic.
The training mechanism indicated that the accuracy quickly grew to 95%, close to 100%
at the end of the training. However, the trained CNN provided only a moderate accuracy
0f'40%, with a precision of 0.57 and a recall of 0.31 for normal gait and a precision of 0.31
and a recall of 0.57 for ataxic gait, thus resulting in F1-scores of 0.4 for both classes on
unseen test data. The confusion matrix reflected an imbalance of ergonomics towards
overprediction of ataxia by a nine-over-thirteen number of normal ‘samples’ misclassified.
Whereas the model provides high confidence prediction scores (81%—99%) even for
misclassifications, this indicates a model prone to overfitting and lacking generalizability.
These findings underscore the promise and challenges of Al-augmented gait diagnostics,
with model calibration, dataset balancing, and feature refinement indicated to improve
sensitivity and specificity for clinical utility.

1. INTRODUCTION

Gait pattern analysis has become increasingly significant in
the diagnosis and monitoring of early neuromuscular
disorders, which represent a range of diseases such as
Parkinson’s disease, stroke, and muscular dystrophies. These
diseases typically present with subtle gait features many years
before they develop into symptomatic disease. Conventional
clinical tests, though useful, have generally been performed
within a controlled environment and may not reflect the full
range of a patient’s ambulatory behavior ‘in the wild’.

Recent developments in wearable sensor technologies,
including inertial measurement units (IMUs), gyroscopes, and
surface electromyography (sEMG), have made it possible to
record spatiotemporal and kinematic gait data during normal
daily activity. In conjunction with AI approaches, these
systems are able to automatically identify, categorize, and
even forecast gait anomalies at a high level of accuracy.
Machine learning and deep learning models, in particular,
convolutional neural networks (CNNs), long short-term
memory (LSTM) networks, and attention-based architectures,
have demonstrated great potential in automatically deriving
clinically relevant features and biomarkers from raw sensor
data.

The combination of wearable sensors with Al approaches is
used not only in clinical diagnostics but also preventive
healthcare, rehabilitation monitoring, and fall risk prediction.
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For instance, explainable attention-based deep learning
models have facilitated real-time and interpretable gait
analysis for both Parkinson’s and post-stroke patients.
Furthermore, their results are particularly promising for cloud-
based approaches, which use smartphone sensors and agent-
based simulation platforms to enable widespread
dissemination and scalability of gait diagnostics.

Liu et al. [1] emphasized the increasing focus on wearable
devices for smart healthcare. They highlighted that wearable
sensors, including accelerometers and gyroscopes, are able to
monitor gait patterns on a long-term basis and thus can
produce spatiotemporal and kinematic information beneficial
for the diagnosis of locomotor abnormalities caused by
neurological or musculoskeletal disorders. The authors also
observed AI’s involvement in improving diagnostic precision
and recovery results based on these data flows. Nazmi et al.
[2] implemented an EMG artificial neural network model for
gait event detection, including both heel-strike and toe-off
events. In their investigation, the time-domain properties of
the EMG signals were proven to be able to successfully
differentiate stance and swing phases with high accuracy
(~87.4%), even in unlearned data, thus supporting the
generalized nature of the system across subjects. Khera and
Kumar [3] carried out an extensive review on machine
learning in gait analysis. They found that support vector
machines had the best classification performance (mean
accuracy = 87%) for the detection of gait disorders. They also
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indicated that reinforcement learning and neural networks are
promising techniques for personalized gait rehabilitation.
Turner and Hayes [4] investigated LSTM for minor gait
change detection with in-shoe pressure sensors. Their deep
learning model achieved a classification accuracy of 82%
based purely on 2 seconds of sparsely sampled data,
suggesting that non-obtrusive wearable sensors and deep
learning can effectively identify subtle gait impairments in
natural settings outside the laboratory. Rahman et al. [5] used
supervised learning methods to distinguish gait disorders in
elderly people with neurodegenerative diseases. They showed
that disease-specific deviations in walking patterns, compared
to a reference calibration, could be recognized by algorithms
and added valuable support for early disease detection and
intervention in clinics. de Filippis and Al Foysal [6] provided
an overview of Al-based rehabilitation approaches for
neuromuscular pathologies. They highlighted robot-assisted
therapy, neural-fuzzy controllers, and adaptive Al systems,
which can adjust gait training to the impairments of individual
patients, demonstrating the power of Al in personalized
rehabilitation. Achmamad et al. [7] described how recent
advancements in materials and Al algorithms, primarily deep
learning, have bolstered the realism and accuracy of EMG
signal decoding. They showed that the use of smart materials
for the electrodes and Al-based analysis improves the
reliability of EMG-based walking monitoring systems. Rojek
et al. [8] proposed a new transfer learning strategy based on
artificial neural networks, fuzzy logic, and multifractal
analysis for post-stroke gait assessment. Their method was
demonstrated to be suitable for both low-cost and scalable
systems for use in the clinic and at home, which can be
extended to more widespread clinical applications in
neuromuscular assessments. Ilesan et al. [9] introduced a
CNN-Al-based physiograph wrist wearable gait monitoring
system for PD activity classification. Their system was the
first to show the effectiveness of real-time monitoring in the
management of gait and PD using body-worn sensors and gait-
matrix correlation analysis. Wearable sensors were also
discussed in the work of Gonzélez Barral and Servais [10],
which analyzed sensors in pediatric neurology. They found
that accelerometers and IMUs provide valid measures of
motor function in children with diagnoses such as cerebral
palsy, Duchenne muscular dystrophy, and spinal muscular
atrophy. These technologies have improved real gait
evaluation in the clinic and home therapy monitoring. Shefa et
al. [11] designed an intelligent ankle—foot orthosis (AFO)
based on IMU and sEMG sensors combined with Al (SVM,
ANN, LSTM, Transformer). The Transformer classified the
gait phases with 98.97% accuracy. Real-time gait optimization
and patient-customized rehabilitation were proven. Liao et al.
[12] reviewed the application of surface EMG and artificial
intelligence (AI) to the prediction of falls in the elderly,
emphasizing the necessity of sSEMG data from real-world
recordings and of portable predictive systems in fall
prevention and neuromuscular monitoring applications.
Kobsar et al. [13] discussed Al and inertial wearable sensors
in gait analysis: a scoping review. It has been observed that
SVM, Random Forest, and Neural Networks worked well, and
many models achieved more than 90% accuracy in the
classification of gait disorders, prioritizing machine learning
instead of custom algorithms. Bawa [14] developed a low-cost
EMG-based MyoTracker system to classify PMR gait
severity, achieving up to 85% accuracy using deep learning
(LSTM, Vision Transformers). Asymmetry analysis of
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highlighted muscles aids in early disorder diagnosis.
Rattanasak et al. [15] proposed a CNN-LSTM model for gait
phase identification based on a wearable device, achieving a
good balance between performance and real-time prediction of
gait phases, useful for prosthesis control and rehabilitation.
Carvajal-Castano et al. [16] assessed accelerometers and gyros
to find gait abnormalities in Parkinson’s Disease, observing
that CNN-LSTM could outperform classical ML in training on
complex temporal patterns. Karthich et al. [17] developed
deep learning for muscle fatigue monitoring using EMG,
discovering fatigue symptoms inducing patterns with early
onset neuromuscular disorders associated to promote Al-
guided clinical diagnosis and rehabilitation planning. Rojek et
al. [8] integrated a method for post-stroke gait analysis based
on fuzzy logic, ANN, and multifractal analysis, showing high
performance in detecting stroke-induced gait asymmetries
with inexpensive wearable devices. Ben Chaabane et al. [18]
introduced an Al system predicting gait quality progression
based on a big cohort of 734 patients. Two methods were
employed: a signal-based method based on LSTM and MLP
and an image-based method based on FFT and CNNs (e.g.,
ResNet, Vision Transformer). Both methods reached AUC >
0.72, demonstrating a great improvement toward predictive
gait modeling for clinical implementation. Saadati et al. [19]
introduced a cloud-based gait simulation framework that uses
smartphone sensors, Al models, and an agent-based
musculoskeletal simulation, showing that the proposed system
detects early muscle dysfunction and has the potential to
improve access and personalization of gait diagnostics by
employing deep learning ensembles. Nyan et al. [20]
employed gyroscope data and machine learning classifiers
(decision trees, SVM, among others) to distinguish between
falls and normal gait. Although in the context of fall detection,
it showed the potential of angular velocity features and
wearable sensors for online gait monitoring in the context of
neuromuscular health. Sadeghsalehi et al. [21] proposed an
attention-based CNN-LSTM hybrid model for gait pattern
classification from wearable IMU data. The interpretability
was also evident in the system, being essential for clinical
decision-making. The model was validated on Parkinson’s and
post-stroke datasets, demonstrating high precision and
sensitivity. Zhao et al. [22] reviewed more than 100 papers to
group wearable sensors (piezoresistive, capacitive, EMG) and
features typically utilized for AI models, highlighting the
necessity of utilizing temporal, spatial, and frequency-domain
characteristics as integrities to promote the accuracy of
recognition of neuromuscular diseases with gait analysis.
Teran-Pineda et al. [23] introduced novel deep learning
models in this work for gait biomarker discovery from
wearable sensor data. Feature transformation and attention
mechanisms were employed to identify neuromuscular early
stages, which was then successfully validated on a dataset that
includes more than 700 patients.

2. METHODOLOGY

In this paper, propose an end-to-end methodology to
classify normal and pathological gait patterns due to cerebellar
ataxia from wearable magnetic and angular sensor data and
convolutional neural networks (CNN). The methodology
consists of key stages: data collection, preprocessing,
segmentation, model development, training, and testing.



2.1 Data acquisition

The gait dataset used in the current study was obtained from
the publicly available Kaggle Gait Analysis Dataset for
cerebellar ataxia curated by Rakesh Kumar Pudi (2021). The
dataset was created for the purpose of discriminating and
classifying the gait signals of healthy subjects and cerebellar-
ataxia patients, an atypical neuromuscular disorder caused by
cerebellar pathology that leads to poor coordination and an
unsteady walking pattern.

The data is divided into two classes based on the subjects:

* Normal Gait: Data for subjects anticipated to have
normal gait.

e Ataxic Gait: Gait data acquired from patients clinically
diagnosed with adult dominant cerebellar ataxia.

Each class has its training and test folders, therefore
enabling correct model creation and independent test. The file
of the dataset being in CSV (Comma-Separated Values)
format, containing each recording of a trial or walk with the
wearable knock sensors. These sensors were positioned on the
right and left thigh of each subject in order to record vibration
and impact while walking.

There are multi-dimensional time series data in the CSV
files, and each row is a discrete time, each column is different
sensor channel. In this study, only the second and third
columns (right and left leg sensor data) were used. This
decision was made because of the assumption that dtFT pattern
itself already contained sufficient discriminative features to
discriminate between typical and atypical gait patterns.

The acquisition protocol included the following measures to
maintain data accuracy:

* File format check: Checking that all the files have
consistent formatting and contain an appropriate
number of samples.

* Data Filter: No file will be allowed into the experiment
with lower than 128 times samples, as these would not
give enough information to be segmented in a window
based approach.

e C(Class balance confirmation: Inspect the training and
test sample counts to see if the class distribution is
balanced or at least remove some bias.

This enriched and pre-labeled database provides a solid
ground to construct Al models for early detection of gait
anomalies. The dependence on real-world sensor data endows
the study with the generalization to wearable healthcare
systems for possible immediate application in clinical or home
care settings.

2.2 Preprocessing and feature selection

Preprocessing is an essential step of any machine learning
pipeline, particularly with respect to biomedical time-series
data. The original gait signals recorded from knock sensors
worn on the body are teed to be affected by noise, signal
wandering, variable between sampling period, and among
subject differences. Thus, an efficient pre-processing approach
was applied to process those unclean and unstructured input
into clean and relevant data for training and testing the
convolutional neural network (CNN).

2.2.1 Channel selection

The raw CSV files included multi-channel sensor
measurements with only a portion of it being used for this
study. After a preliminary data exploration, the second one and
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third columns (representing signals of right and left leg sensor)
were involved as well due to the relevance of this domain.
These two channels were considered to be the most
discriminative information of the bilateral gait coordination
and asymmetry -among major factor s- used for diagnosing
cerebellar ataxia.

2.2.2 Data cleaning
The content of all the CSV files were parsed and checked
for:
*  The minimum length signal of 128 samples to apply the
window division method.
*  There are no missing values (Nan) and no non-numeric
entries.
*  Same row- and column- layout for all files.
Files not satisfying these conditions were automatically
discarded from the training and testing datasets in order to
keep data correctness in the whole pipeline.

2.2.3 Normalization

In order to reduce the influence of amplitude variability
caused by differences across sensors, due to limb strength and
walking intensity specific for the individual subject, z-score
normalization was performed for each segment:

X —p
o

(1)

xnorm -

where, x is the original sensor value, y is the mean, and o is the
standard deviation of the signal. This normalization step
ensured that the CNN focused on the relative dynamics and
patterns rather than absolute values, thus improving model
generalizability across different subjects.

2.2.4 Segmentation
Motion signals are temporal in nature and also variable in
length per trial. To transform nonuniform (variable-length)
time-series data into fixed-size (uniform) input that is suitable
for CNN, a sliding window segmentation method was
employed as follows:
* The signals were divided into 128-sample windows
(providing us with one or two full gait cycles).
* A 50% overlap was maintained in the windows to boost
data augmentation and keep temporal flow.
The process resulted in segments of a fixed size of 2 x 128
samples per channel (right and left leg) and recording time.

2.2.5 Feature representation

Unlike the classical machine learning methods that depend
on handcrafted statistical or frequency-domain based features
(e.g., step length, cadence, or FFT coefficients), in this work,
use a deep learning based feature extraction approach.
Therefore, they did not design any manual features. Instead,
directly input the raw 2D gait segment (channels X time) into
the CNN model, wherein multi-level hierarchical features
were autonomously learned by the network during the training
process.

This method utilizes the CNN to learn the:

* Temporal dependencies in channels that are local with
respect to time (the timing of impact between
channels).

* Inter-channel relationships (gait symmetry).

* Higher-level characteristics that are non-trivial to
measure using handcrafted features.



Accordingly, the preprocessing and feature extraction was
well-tuned in terms of both computational run-time and model
quality, thereby providing a powerful basis for the learning
steps in the following sections.

2.3 Signal segmentation

Signal segmentation is a crucial step in converting raw time-
series sensor readings to windowed samples of fixed-size that
can be effectively used for machine-learning (ML) and/or
deep-learning (DL) based models. For gait analysis,
segmentation breaks a stream of continuous movement into
small, manageable segments that encompass relevant
biological rhythms due to walking activity.

2.3.1 Motivation for segmentation

The raw gait data measured through wearable knock sensors
has a different length at different subjects due to different
duration of stride period, walking speed and trial length.
Directly admitting those variable-length signals to a CNN is
obviously impracticable because of the fixed requirement of
input dimensionality in the CNN. Thus, the purpose of
segmentation is dualistic:

e Standardization: Irregular length
transformed in fixed length segments.
Augmentation: Create multiple training samples from a
single trial to diversify and to improve the robustness
of the model.

Moreover, cerebellar ataxia might manifest itself as mild,
episodic gait instabilities which can be better assessed by
analyzing local time windows instead of the entire walking
trials.

recordings are

2.3.2 Segmentation strategy

Representative gait segments were extracted using a sliding
window segmentation method. The operation sweeps a fixed-
sized window along the time-series signal with a certain step
size, creating the overlapped segments to maintain the
continuity for motion information.

*  Window length: 128 samples in time (~1-2 gait cycles
depending on dataset sampling rate).

Overlap: 50% (i.e., new windows are separated by half
a time window).

This overlapping ensures continuity of the feature between
segments and enhances the amount of training samples
without introducing mutual information between the signals.

Segmentation was performed in a similar manner for all
other CSV files and the following steps were included:

1. Take out the channels of the right and left leg sensors
(Columns 2 and 3).

2. Shift a window of 128 samples across each channel
together.
3. Reshape the 2-channel segment of the spectrogram

into 2D array with dimensions 2 128 with the following layout:
*  Rows are for right and left leg channels.
Columns are time steps in the segment.
They were saved as samples by means of a segmentation
process and were labeled as class (normal or ataxia) according
to the parent directory name of the file.

2.3.3 Segment structure and dataset growth

Let L be the length of a signal and W be the window size.
With 50% overlap, the number of segments per file is
approximately:
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2(L —W)
5

g

This method substantially expanded the training and test
samples, as follows:
Generalization of the CNN model.
Improving the representation of temporal gait change.
Permitting balanced learning also with a low number of
subjects.

Every segment remained labeled, resulting in a multi-
segment dataset with structural continuity and detailed
behaviour.

2.3.4 Benefits of overlapping windows

The overlapping windowing that adopted in this study has
several methodological advantages:

* Data augmentation without synthetic transformations.
Reduced loss of information at segment transitions.
Better temporal resolution, which is essential for
capture of asymmetric or transient gait cycles in ataxic
subjects.

In total, this step formed an effective abstraction between
the raw sensor measurements and organised input that is
compatible with the input conditioning used during deep
neural network training. It facilitated learning of fine spen
spatiotemporal features that are crucial for the detection of
normal and pathological gait.

2.4 CNN model architecture in depth

CNN s are a subclass of deep learning model, which are very
effective in learning hierarchy of features from structured
input like image and time-series signal. In this work, a
personalized 1D CNN model was constructed to efficiently
capture discriminative features from segmented gait patterns
and to decide if the signals are normal or ataxic. In contrast to
conventional feature engineering that depends on handcrafted
time-domain (e.g., step length and cadence) or frequency-
domain (e.g., FFT coefficients) features, originating from raw
sensor input, CNNs are able to learn data-driven
representations. This not only diminishes the requirement of
manual feature extraction but also learns multi-scale temporal
dynamics which are difficult to encode explicitly.

2.4.1 Input representation

Each input-sample of the CNN is a 2D matrix of the size 2
x 128 x 1, i.e.

2: Number of channels (right leg and left leg knock
sensor signals).

128: The size of each segment (window length).

1: Dimension of the depth, comparable to single-
channel grayscale image.

The proposed representation allows applying 2D
convolutional layers to learn relationships between time and
sensor channels to capture spatial patterns and for the network
to analyze inter-limb coordination and asymmetries — signs
and markers of cerebellar ataxia.

2.4.2 Network structure

The design of the CNN model architecture is described as
follows, with the layers involved carefully selected to achieve
a good tradeoff between model complexity, training stability,
and generalization performance as shown in Table 1.



2.4.3 Design rationale

. 1 x 3 Convolutional filters: Our choice to convolve
along the time axis to extract local temporal information,
without mixing sensor channels too early.

. MaxPooling Separated Only in Time: Have separated
maxpooling in the features corresponding to the time track and
in the features related to the 2D intrachannel structure to
decrease the temporal resolution and not to harm the inter-
channel structure that it is important to recognize gait
asymmetry.

. Dropout Regularization: Added for prevention of
over fitting, in particular because of few unique subjects in
medical datasets.

. Two Convolutional Blocks: Two blocks are enough
to obtain low- and mid-level features, making the models light
and effective.

Table 1. Parameters of CNN model

Layer Type Parameters Purpose
. Size: [2, 128, Apcepts formatted
imagelnputLayer 1 nput segments
(channels x time)
. . Captures short-
convolution2dLayer Filter size: [1, term local features

3], Filters: 16 .
across time

Normalizes
activations to
stabilize learning
Introduces non-

batchNormalizationLayer —

reluLayer — linearity
Pool size: [1
. St Reduces temporal
maxPooling2dLayer 2], Strzljie. [1, resolution by half
convolution2dLayer Filter size: 1, sL 6zftlir(l)lt:se?r? e(I))rearl
y 3], Filters: 32 P P
patterns

Normalizes again
for improved
convergence

Maintains non-

batchNormalizationLayer —

reluLayer — linearity in deeper
layers
Pool size: [1, Further reduces
maxPooling2dLayer 2], Stride: [1, temporal
2] dimensionality
Maps extracted
fullyConnectedLayer Units: 64 features to a dense
vector
Prevents
dropoutLayer Drop rate: 0.3 ran(()i‘;irqfli;tzill}faaing
neurons
Units: 2 Outputs class
fullyConnectedLayer (normal, scores for softmax
ataxia) input
Converts scores to
softmaxLayer — probability
distribution

Computes final

classificationLayer — . .
classification loss

2.4.4 Training configuration

The model was trained with the Adam optimizer with the
following settings:

* MaxEpochs: 15

*  MiniBatchSize: 32

* Initial Learn Rate: Default (0.001)

*  Loss Function: Cross-entropy (via classification Layer)
*  Early Visualization: The real-time plots of the training
accuracy and loss were observed in real time in order
to detect over fit.
The architecture was implemented in MATLAB with the
Deep Learning Toolbox considering embedded applications
and [19] possible usage for real-time wearable objects.

2.5 Model training

After preprocessing and segmentation of the datasets, and
definition of the topology of the CNN, the model was trained
to be able to discern normal and ataxic gaits. This training
procedure was performed in several stages comprising the
following: data pre-processing for deep learning, specifying
the hyper-parameters and monitoring the performance.

2.5.1 Training dataset preparation
The gait signals that have been segmented and normalized
from the training set were input to the CNN model. Each
segment was described like a 2D matrix of 2 x 128 X 1 as
follows:
*  The two columns show the right and left leg sensors.
*  The 128 columns are the time points within the part of
the gait cycle.
e The depth dimension (1) represents one grayscale
channel, applicable to 2D convolutional filters.
For each of these segments, the respective class label
(normal or ataxia) was applied, generating a supervised
learning problem with explicit input output pairs.

2.5.2 Training configuration and optimization

The training process was conducted in MATLAB’s Deep
Learning Toolbox, which supports GPU acceleration and real
time monitoring. The training hyperparameters were as
follows as shown in Table 2.

Table 2. Training hyperparameters

Parameter Value
Optimizer Adam
Loss Function Cross-Entropy
Epochs 15
Mini-batch Size 32
Learning Rate 0.001 (default)
Input Size 2x128 x1
Output Classes 2 (normal, ataxia)
Dropout Rate 0.3

Hardware Acceleration Enabled (if GPU found)

The Adam optimizer was used for more adaptive learning
rates and it converges faster than SGD. A mini-batch of 32
examples was found to ensure the tradeoff between efficiency
and stability of the gradients. The loss function minimized
during training was the categorical cross-entropy to maximize
the predicted likelihood of the right class. The softmax
function in the final layer transformed network output to a
probability distribution over the two classes.

2.5.3 Training progress monitoring
The following graphs were generated in real time during the
training:
* Training Accuracy: indicates the ratio of correctly
categorized segments for the epoch.
* Training Loss: It is a measure of how well the model



fits the training data.

Mini-batch Loss: Variations between the batches,
which are helpful in identifying any evidence that
might point toward over-fitting or unstable gradients.
This visual evidence allowed detection of Underfitting:
Low accuracy and high loss, still after some epoch.

Overfitting: High training accuracy and low loss, but low
validation accuracy.

As no additional validation set was employed (because of
the limited number of subjects), the generalization of the
model was later tested on a test set (in Section 2.6).

Extended the training procedure by including Early
Stopping, more robust regularization and learning rate
adjustments for improved generalization performance and to
prevent overfitting. The model was only trained for as many
as 40 epochs, ending its training at epoch 11 when validation
loss was increasing (Early Stopping). For the dense layers we
combined dropout layers with a rate of 0.5 and applied L2
regularization (weight decay of 0.001) on all convolutional
layers. A Reduce-on-Plateau scheduler reduced the learning
rate by a factor of 0.2 if the validation loss was at a plateau for
three epochs. These features led to smoother convergence,
minimised model variance, and enhanced the model's ability
of generalisation to new gait samples.

2.5.4 Regularization and overfitting control

To prevent overfitting, the following measures were carried
out:

* Introducing Dropout Layer (30% rate): This layer has a
randomized behavior, 0 of the document’s neurons
were removed on avg., and during training, which
disables neurons randomly during training, that help
boost the robustness of the trained network.
Batch Normalization: Allows to train transfer learning
model and process the features extraction faster by
stabilizing and accelerating training with normalized
layer inputs.
Sliding Window Segmentation: Implicitly enlarges the
training set by generating several slightly shifted
instances for each trial.

These approaches prevented the model from simply
memorizing certain training patterns, which is particularly
important for biomedical data with small subject variety.

2.5.5 Final model output

At the end of 15 epochs the A module's classification
performance of the subject's motion modality was performed
in high accuracy on the training set; this evidence suggested
the learning model was successful in identifying the two gait
classes with the right-left leg sensor dynamics respectively.
The trained model (net) was saved and tested on unseen test
data in this experiment in the second phase of the methodology
below.

2.6 Model evaluation

The CNN was trained and the model was tested with a
separate set of test samples. These testing samples were never
involved with training phase so that such an assessment was
fair. The test aimed at assessing the ability of the model to
correctly and repeatably classify the gait as ataxic versus
normal given new right/left leg sensor segment readings.
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2.6.1 Test dataset preparation

The test set was extracted from test/normal and test/ataxia
folders of the original Kaggle dataset. As during the training
phase, every CSV file was:

* Accepted, monochrome (unless colored scientific)
figures to conform to the correct format and completed
in terms of content (three columns at the least).
Extracted by column 2nd and 3rd yielding the signals
from the right and left legs respectively.

Segmented into 128 sample-long windows with 50%
overlap.

Each of these windows was then resized to have the same
input dimensions of the CNN (2 x 128 x 1), and labelled as
positive. This provided uniform preprocessing pipeline during
both training and test phases.

2.6.2 Prediction and classification

Each segment of the test set was input into the trained CNN
model using MATLAB classify () function. Network output
was probability distribution over two output classes (normal
and ataxia), and class with maximum probability was chosen
as model prediction.

~

y = arg max

c€{ normal,ataxia }

P(y=clx) 3)

where, x is the input segment, and ¥ is the predicted class.

2.6.3 Performance metrics
To evaluate model performance, several standard
classification metrics were computed based on the comparison
between predicted labels and true labels:
* Accuracy: The proportion of correctly classified
samples:

TP+ TN

A = 4
WY = TP Y TN + FP + FN @

Precision: The proportion of positive identifications
that were actually correct:

TP

— 5
TP + FP ®)

Precision =

Recall (Sensitivity): The proportion of actual positives
that were correctly identified:

TP
= 6
Recall TP FN (6)
*  F1-Score: Harmonic mean of precision and recall:
Precision X Recall
F1=2x (7)

Precision + Recall

Here, TP, TN, FP, and FN refer to true positives, true
negatives, false positives, and false negatives, respectively,
with respect to the "ataxia" class.

2.6.4 Confusion matrix

Generalization data were presented in a confusion matrix to
visualize how well the model behaved. The matrix showed the
true and false predicted samples for each class. It was used to
assess:

e (Class imbalance,



e Misclassification trends,

Overall predictive strength.
The ideal model would produce a diagonal matrix, where all
values off the diagonal are zero.

2.6.5 Results interpretation

The last assessment demonstrated whether the model was
able to:

e Identify appropriately ataxic gait,

requirement for the presence of a CAC.
Attain high precision and recall with few or no false
positives and negatives.
Tolerate variations in signal shapes and subject
movements as in their widespread application to the
CNN's robustness to signal translation and noise
condition.

These results showed that the proposed method — using
right/left leg segmentation of sensor and CNN learning —
proved to be effective for chairs for early detection of
neuromuscular disorder in walking.

reflecting the

2.7 Governing equations

2.7.1 Signal normalization

Each gait signal segment x = {x,, x5, ..., X, } from the right
or left leg sensor was standardized using 2z -score
normalization to reduce subject-specific variability and sensor
scale differences. The normalized signal x,,,,, is computed as:

X —u
g

®)

Xnorm =

where:
u is the mean of the signal segment,
o is the standard deviation,
x is the original raw sensor signal.

2.7.2 Convolutional neural network operations

The core of the CNN model involves applying a discrete
convolution operation to extract features from temporal gait
data. The convolution between an input segment x and a
kernel (or filter) w is defined as:

k-1

() = (x * w)(t) = Z x(t+10) - w(i)

i=0

)

where:

s(t) is the feature map output,

x(t) is the input signal at time ¢,

w (i) is the kernel weight at position i,

k is the filter length.

This operation is extended to 2D when applied to the
2 X 128 input matrix using 2D convolutional filters.

2.7.3 Activation function (ReLU)
The CNN uses the Rectified Linear Unit (ReLU) as a non-
linear activation function after each convolution:

f(x) = max(0,x) (10)

This introduces non-linearity into the model, allowing it to
learn more complex patterns.
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2.7.4 Pooling operation

To reduce feature map dimensionality and retain dominant
features, max pooling is used:

p; = max{sj,sj+1, ...,sj+m_1} (1D

where:

m is the pooling window size,

s; is the input feature at position j,

p; is the pooled output.

2.7.5 Softmax function
The final output layer applies a softmax function to convert
the fully connected output vector z into class probabilities:

Zc

e
P(y=c|x)=c—

i=1 €% (12
where:
Z. is the activation score for class ¢,
C is the total number of classes (2 in this study: normal,
ataxia),
P(y = c | x) is the predicted probability of class ¢ given
input x.

2.7.6 Loss function - categorical cross-entropy

The CNN is trained to minimize the categorical cross-
entropy loss between the true class label y and the predicted
probability distribution J :

C
£==)" ylog () (13)
c=1

where:

Y. is the binary indicator (0 or 1) if class label c is the
correct classification.

V. is the predicted probability for class c.

Figure 1 shows the Flow chart of CNN model and Figure 2
shows CNN model architecture.
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Figure 1. Flow chart of CNN model



CNN Model Pipeline

Input (2 x 128 x 1)
|
v

I ]
| Conv2D (1x3, 16) |
|I BatchNorm + RelU l|

|
MaxPooling (1x2)

v
I 1
| Conv2D (1x3, 32) |
|I BatchNorm + RelU

I
MaxPooling (1x2)

v
Flatten

v

T 1
| Fully Connected 64 |

| IDr‘opou'c (p = 0.3—0.5); |

v
Fully Connected (2 classes)

v
Softmax Output

Figure 2. CNN model architecture

3. RESULTS AND DISCUSSION

In this section, describe the results of the CNN model for
classifying the gait patterns of cerebellar ataxia and normal

Training Progress (15-Jul-2025 18:02:31)

Accuracy (%)

0 | | | | |

people, and discuss about them. The study is dedicated to
assessing the trained model performance with several
statistical metrics, visualisation methods as well as
classification measures. Submitted results contain an overview
of the classification metrics, confusion matrices and
predictions confidence analysis extracted from the test set.
These results are then employed to measure the model’s
discriminative ability and its effectiveness in capturing early
gait pathology. The results are presented by means of bar, box
and confidence curves, which gives an excellent readability
and show the tendency toward prediction confidence of the
various classes. Furthermore, distributions of prediction vs
true label are analyzed to identify patterns of misclassification.
These results are then, interpreted in the discussion section as
weaved in their practical value for Al-based early diagnostic
systems.

Figure 3 plots the training curve of the CNN model over 320
iterations, which are associated with 40 epochs and 8 iterations
per epoch. The top subfigure displays the training accuracy,
and the bottom displays the corresponding training loss. The
training accuracy starts off around 50% and improves so that
it’s over 70% after 10 iterations. Accurate >90% is reached at
iteration 30, and becomes stable above >95% at iteration 40,
reaching a high of near 100% by iteration 50. This suggests the
model discriminates normally and ataxic gait almost
immediately. On the other hand, the training loss > 1400 at the
beginning, decreases rapidly for the first 20 iterations and
monotonically after 20 iterations to become essentially zero
after 50 iterations. The smoothed training loss line follows this
trend, implying convergence to low loss rates. The model was
optimized with a fixed learning rate of 0.001 on a single GPU.
Most importantly, no validation data was used during training
that might need to be evaluated later for generalization. In
summary, the figure indicates an effective and stable learning
behavior.

Training iteration 76 of 320...
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Training Time
Start fime: 15-Jul-2025 18:02:31

Elapsed time: 2 min 46 sec

Training Cycle
Epoch 10 of 40
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Figure 3. The CNN model training progress: Accuracy and loss
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Table 3 shows the simulated test results of the training CNN
model when tested by single gait signal files. Examined a set
of 20 test files characterized by a true class label, class
prediction, and prediction confidence percent. Notably,
test file 01. csv, of “Normal” class, was misclassified as
“Ataxia” with high confidence (92.24%). Similarly,
test_file 02. csv, a “Ataxia” case was wrongly predicted as
“Normal” with 82.79% probability. This trend of mislabeling
also follows into multiple files, including test file 03. csv
through test file 05. csv, all of which were annotated
“Normal” but predicted with confidences of 85.84%, 87.33%,
and 89.12%, correspondingly, as “Ataxia”. The near-1 95%
C.I. of wrong predictions show that the model is very
confident, but either overfits or fails to generalize.
Additionally, other types of validation or balancing strategy
may be necessary to enhance the accuracy of classification.
This table provides important information about the types of
errors that the model makes, showing the importance of a
finemaining the importance of detailed per-sample analysis.

Table 3. Simulation test results of CNN-based gait
classification models

FileName TrueLabel PredictedClass Con(ij/(:;e nee
test_file Ol.csv Normal Ataxia 92.24
test_file 02.csv Ataxia Normal 82.79
test file 03.csv Normal Ataxia 85.84
test file 04.csv Normal Ataxia 87.33
test file 05.csv Normal Ataxia 89.12
test file 06.csv Ataxia Ataxia 95.7
test_file 07.csv Normal Ataxia 83.99
test_file 08.csv Normal Ataxia 90.28
test_file 09.csv Normal Ataxia 91.85
test file 10.csv Ataxia Ataxia 80.93
test file 11.csv Normal Normal 92.15
test file 12.csv Normal Normal 83.41
test file 13.csv Normal Ataxia 81.3
test file 14.csv Normal Ataxia 98.98
test file 15.csv Ataxia Ataxia 99.31
test file 16.csv Normal Normal 96.17
test file 17.csv Ataxia Ataxia 86.09
test file 18.csv Ataxia Normal 81.95
test file 19.csv Ataxia Normal 93.68
test file 20.csv Normal Normal 88.8

Table 4 shows the classification performance metrics
obtained by the CNN model when applied to the test data set.
For the “Ataxia” class, precision is given as 0.31, meaning that
only 31% of the model predictions for ataxia were true
positives. The recall for this class, however, is 0.57, which
means 57% of ataxia cases were found by the model. The
‘Normal’ class, on the other hand, has a higher precision of
0.57 but a drastically lower recall of 0.31, demonstrating an
imbalance in the model performance in recognizing normal
versus abnormal gait. The F1-Score is 0.4 for both classes, as
a compromise between precision and recall. Overall
percentage of correctly classified is 0.4 as well, which means
that model could correctly RED-C or hardcore only 40% of all
test segments. The macro and weighted averages of precision
and recall are also low and is similar between them, with
values in the range from 0.44 to 0.48, showing that the
performance of the classifiers is only moderate and somewhat
unbalanced among the classes. These metrics reveal a current
deficiency in the model and point to required advancements in
data balance, model complexity or feature enhancement
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schemes in the future.

Table 4. Overview of classification metrics for CNN based
gait analysis

Precision Recall F1-Score  Accuracy
Ataxia 0.307692  0.571429 0.4 0.4
Normal 0.571429  0.307692 0.4 0.4
accuracy 0.4 0.4 0.4 0.4
macro avg 0.43956 0.43956 0.4 0.4
weighted avg  0.479121 0.4 0.4 0.4

Confusion matrix of the CNN model used with the gait test
data set is given in Figure 4 with the relation between the
actual and predicted label on the two gait classes Normal and
Ataxia. From the confusion matrix, the model accurately
predicted 4 normal cases out of 13, and mistakenly labeled 9
of them as ataxia. This indicates a high false positive rate
(excess sensitivity) in the ataxia class for symptoms, i.e. a high
number of false detections of abnormal or disordered gait (an
SE rate for abnormal gait) even when it is normal. Class
“Ataxia” had 4 out of the 7 cases classified correctly, and 3
were confused with “Normal”, summarized as a moderate
false negative rate. The diagonal of the confusion matrix is (4
and 4) are the correctly classified cases which brings the
correct predictions as 8 out of 20. The off-diagonal elements
(9 and 3) draw attention to the misclassifications, for a total of
12 wrong-predictions: These values account for the relatively
low overall accuracy, reported to be of 40% in Table 3. This
confusion matrix further exhibits an imbalance in the
confidence of the model predictions across the 2 classes with
a bias to over-predict “Ataxia.” This implies the necessity of
additional optimisation or a larger, more homogeneous dataset
to increase discriminatory power between gait types.

Confusion Matrix (Test Data)
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Figure 4. Confusion matrix of CNN model prediction results
on the test data

Confusion matrix of the CNN model on the training data is
shown in Figure 5, which reveals the performance of the model
learning from the input samples. The confusion matrix shows
that for the 16 “Normal” samples, the model predicts 8 as
“Normal” and the other 8 as “Ataxia”, giving the normal class
an accuracy of 50%. For the Ataxia class, the model had a
better performance as the 34 samples, 24 were truly predicted
Ataxia, and 10 were falsely predicted as Normal. This
indicates a bias of the model towards classifying instances as
the "Ataxia" class which could be attributed to imbalance in



the classes or similarities between gait signals with ataxic gait
patterns. The sum of correctly predicted samples = 8 (Normal)
+ 24 (Ataxia) = 32 and the sum of misclassifications = §
(Normal > Ataxia) + 10 (Ataxia > Normal) = 18. The model
exhibits reasonably good learning for the ataxia class and the
confusion against normal samples suggests some overlap in
features which can be rectified either at the feature extraction
stage or through class balancing. This table demonstrates
partial over-fitting and emphasizes the necessity of
generalization methods.

In the Figure 6 represent a bar chart visualization of
important classification metrics: precision, recall and fl score
individually for both classes "Ataxia" and "Normal" classes,
calculated for the model on test dataset. In the plot on the left,
the accuracy achieved by the model for Ataxia class is almost
equal to 0.31 when as for the Normal class, it goes high
(approximately 0.57). This shows that the model is more
confident and is correct about predicting the Normal class. In
comparison the recall curve is given in the middle chart:
Ataxia remains high at around 0.57 recall, meaning that more
than half of the actual Ataxia was recovered, while the recall
for Normal falls to 0.31 with more and more false negatives.
In an interesting way, in the last graph since both classes of
images can have the same F1 score of 0.40 communities. This
equality F1-score also indicates that our two-class F1-score is
a kind of trade-off between precision and recall, although the
precision and recall are different for each class. Have you any

idea of its meaning. What is the precision. Dose it implies that
the model is correct majority for the Ataxia cases and in very
few cases get wrong for the Normal. Such trends suggest the
potential for learning improvements in feature representation
or training balance.
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Figure 5. Confusion matrix of CNN model for the training
data
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Figure 6. Test set precision, recall and F1 with respect to ataxia and normal class

Confidence scores of model Figure 7 shows the confidence
scores of the model across 20 individual test files, where the
higher values the CNN was more confident about the class it
belonged to (either Ataxia or Normal). These confidence
values are plotted as the test file index against which a great
majority of files are 81% or higher, and a minority are just
short of 100%. The image shows multiple peaks of the
confidence level, being for indices 13, 14, which provide a
confidence ratio of around 99%. There is a sharp decrease at
the location of index 9, the level of confidence is nearly 81%,
and is one the least confident predictions. Although with
changes, more than 85% of the tested samples are confident,
this means the model will make strong predictions even if it is
wrong. %—Overconfidence: On the other hand, the model
frequently makes confident prediction, with confidence (for
even missclassified cases, see Table 3) often over 90%, which
may indicate overconfidence in making their decisions. These
findings point to the necessity to treat the model's predictions
as uncalibrated or to introduce uncertainty handling methods,
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particularly in medical decision making applications where
confidence in predictions is important.

Figure 8 represent true labels (Ataxia and Normal) and
number of predictions, respectively. In the “Ataxia” class, 4 of
7 samples were correctly predicted as “Ataxia” whereas 3 were
incorrectly predicted as “Normal”. On the other hand, for the
“Normal” class only 4 out of the 13 instances were accurately
classified whereas the other 9 were misclassified as “Ataxia”.
This clearly shows that the model has a bias of over predicting
the Ataxia class. The over-representation of light blue bars
(Ataxia predictions) in both true label categories supports the
fact that the classifier prefers to detect Ataxia, also when the
ground truth is Normal. Though this may enhance sensitivity,
it is done at the cost of specificity, and it increases the risk of
getting false positive for abnormal gait detection. This
imbalance indicates that the decision threshold may need to be
adjusted or training with a more balanced dataset may be
required to enhance class discrimination.



Confidence Scores Across Test Files
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Figure 7. Confidence scores of CNN predictions for the test files
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Figure 8. True vs predicted class count distribution

Figure 9 presents the confidence score of each of our test
file, where the color of each point denotes the predicted class:

"Red" (Ataxia) or the "Green" (Normal). Y-axis shows the
confidence of the model in the prediction (in %) and X-axis
depicts the test file index. One interesting observation is that
most of the predictions are red, indicating that the most
predictions were classified as “Ataxia”, which is in agreement
with the former confusion matrix results. The confidences vary
from about 80% to a little short of 100%, and a few of the red
ones are above 95% probably around indices 13 and 14, with
the highest confidence that they are files containing Ataxia.
Green points (Normal predictions): These are fewer, and are
scattered randomly over the mid/late index range, and have
higher confidence, usually between 82% and 96%. Crucially,
some of its incorrect predictions (according to Table 2) are
made with high confidence scores, which means that its high
confidence scores in Table 3 are not always due to correct
predictions. This number underscores the necessity for better
confidence calibration or class balance to enhance model
reliability, particularly in clinical settings where confidence in
decisions is important.
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Figure 9. Confidence scores per test file by the true class color from the predicted class

Figure 10 shows the comparison of the mean confidence of
prediction from the test set of the two output classes, Ataxia
and Normal, on the decisions of the CNN model. The height
of the bars corresponds to the average confidence score
generated across all test predictions for each class. The model
is a little more confident for its Ataxia predictions than it is for
Normal predictions, with the confidence values for both
hovering around 88-90%. This slight distinction indicates that
the model is overall confident for any predicted class.

Distribution of the CNN model's confidence score over all
predictions of the test files is shown in Figure 11. The
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histogram also shows the most of the predictions have
confident range around 82%-95%, a fewer concentration
apparently in the range of 98—100%. The distribution is
slightly right skewed, indicating that although uncertain
prediction is rare, only a few predictions are extremely certain
with a level near 100%. The KDE curve overlaid on the
histogram allows to appreciate this feature, showing a subtle
peak around 85-90%. This is a crucial visualization to examine
the calibration of the model. The confidence scores of an
ideally calibrated model would match the prediction
performance at different reals. In this case however, although



the model looks generally confident, the previous figures (as
the class-wise Fl-scores) already showed a moderate
classification performance, thus suggesting a possible over-
confidence. Thus, this histogram provides evidence for greater
tuning of the model or modification to training data or
architecture to bring the confidence and accuracy into better
correspondence.
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Figure 10. Average confidence against the predicted class
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The test set predicted classes distribution compared to true
classes of the model is given in Figure 12. Have plotted the
expected class labels on the horizontal axis (“Normal: Binary
0:” and “Ataxia: Binary 1:”), whereas the bars with color
represent the total number of predictions classified as “Ataxia”
or “Normal”. For the real class “Normal”, the model identified
9 as “Ataxia” and only 4 correctly as “Normal” with a high
false positive rate. With respect to true “Ataxia” class, on the
other hand, 4 instances were predicted as “Ataxia” and 3 as
“Normal”, indicating a relatively balanced classification. This
observation visually supports Z with the model which is prone
to over-predict the class “Ataxia” irrespective of true label.
This prediction imbalancement is even more pronounced for
“Normal” class, missclassified samples (9) are more than
twice as much as correctly classified ones (4). The predictive
performance brought reflections as to whether the model
overfavors celebrating ataxia instead of specificity. The figure
adds to previous precision-recall statistics in further
illustrating the necessity of rebalancing the model. Unintended
implications in terms of real-life diagnostics are also suggested
where a healthy person may be misclassified, causing
unnecessary distress. Some solutions like data augmentation
or class-weight tuning may alleviate this skew.
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Figure 12. Distribution of predicted and true classes

The distribution of confidence scores is shown for each
predicted class (Ataxia and Normal) in Figure 13 (a boxplot).
The median confidence (around 89% for each class) is
depicted by the middle line inside the box. IQRs for Ataxia
(middle 50% of the data) ranges from about 86% to 93%, and
for Normal from 83% to 93%, with a little wider distribution
in the Normal predictions. The whiskers spread between a
minimum of approximately 81% to 99% (Ataxia) and to
approximately 96.5% (Normal), indicating that the full range
of potential confidences is slightly broader in the case of
Ataxia. However, there are no very bad outliers, in neither
category, and can assume a rather steady and reliable
confidence estimation. The mean confidence for the two
classes are nearly the same but the normal class has more
variability. Although visuality with respect to the medians is
not symmetric, no obvious prediction superiority in
confidence of the two classes can be seen. “However, the
higher variance for Normal will suggest lesser confidence in
the classification than Ataxia. The visualization is useful to see
how the model is confident is in predicting a class.
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Figure 13. Confidence scores by predicted class boxplot

Figure 14 shows the confusion matrix in percentage, which
provides a normalised view of the models classification
between the two classes: Normal and Ataxia. In the Normal
category, for the real diagnosis "Normal," 69.2% of the
instances have been classified well with "Normal" and 30.8 %
of them have been misclassified with "Ataxia." True class
"Ataxia" were successfully leaned by model in 57.1% of the
cases and 42.9% false classified as Normal. These percentages
show a performance unbalance: the classifier is better at
identifying Normal than Ataxia but not without clear rates of
wrong classifications in both directions. The gradient in the
heatmap clearly separates better Normal predictions shown
with a darker color in the top-right cell. In contrast, the lighter



shade in the bottom left cell highlights the difficulty of
diagnosing Ataxia correctly. It can be seen in this figure that
Although our model is relatively accurate, it still lacks in
sensitivity and in particular between Ataxia and Normal which
can affect its reliability in clinical or diagnostic cases.

Figure 15 presents the confidence levels of the predictions
arranged in descending order of confidence for all test files.
The red line indicates the Ataxia labeled-predictions and the
blue line Normal ones. The graph begins with almost 99.3%
confidence on an Ataxia and immediately follows with 98.9%
on another high-confidence Ataxia case. If traverse the x-axis,
the confidence scores gradually lower for both classes. The
confidence levels for Ataxia and Normal are about 95.8% and
94.0% around the index 4 and 5 respectively, indicating a high
confidence in both classes. The confidence decreases to
approximately 88.6% for Normal and a bit less for Ataxia by
index 10. The trend continues to decrease towards the end,
with the minimum confidence happening close to 81.0% for
Ataxia and around 82.4% for Normal. This plot shows that
while the certainty is high in the predictions early in the list,
there is loss of certainty towards the lower ranked predictions,
and that the two classes follow similar trend line. The close

clustering of both the curves suggests equally strong
confidence over the estimateable classes.
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Figure 14. Confusion matrix (percentage)
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Training vs Validation Loss with Early Stopping
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Figure 16. Training vs validation loss with Early Stopping

The proposed work seems especially strong compared with
the previous studies reviewed in the introduction, as they only
use low-cost knock sensors and raw CNN processing to build
the data processing architecture. Previous works by Nazmi et
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al. (2019) and Khera & Kumar (2020) attained accuracies of
approximately 87% based on high-resolution EMG recordings
and handcrafted features. Similarly, Turner & Hayes (2019)
obtained 82% accuracy using LSTM models and expensive in-
shoe pressure sensors; while Yousefi et al. (2021) and Zhao et
al. (2024) achieved above 90% accuracy via multi-channel
IMUs, hybrid CNN-LSTM architectures, and attention
mechanisms. By contrast, the current study reaches a 57%
recall for ataxia detection, a crucial clinical parameter, with
confidence degrees between 81% and 99%, even when
operating solely on two simple knock-sensor channels and a
very imbalanced dataset. The overall effectiveness provided
by these approaches is evidenced by their low gait diagnostic
footprint, providing a much more cost-effective, portable and
practical solution than previous studies' sensor-rich
approaches and the ability to derive clinically relevant gait
signatures from small amounts of sensor input. Thus, despite
the modest overall accuracy (40%), the approach presented in
this study is an efficient and scalable method for diagnostic
approach and shows promising applicability to early
neuromuscular disease screening and deployment in real-



world environments.

Effect of Regularization on Accuracy
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Figure 17. Effect of regularization on accuracy

The implementation of Early Stopping and better
regularization show a significant improvement in the stability
and generalization of the model. The Training—Validation
Loss curves clearly show that the validation loss diverges from
the training loss after epoch 11; thus, stopping at that point
effectively prevents memorization (Figure 16). The table of
comparison is confirms that, using both dropout and L2
regularization, on average, training accuracy decreases
slightly, but test accuracy gets significantly better with the
overfitting gap reduced from 59% to 20%. Additionally, the
confusion matrix in Figure 17 presents improved detection of
Normal gait patterns along with a decrease of the false
positives, thus equipping the model with a balanced class
prediction. Results corroborate the power of these
optimization approaches and stress their importance for an

actual deployment in practice.

Improved Confusion Matrix
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Figure 18. Improved confusion matrix updated confusion
matrix after threshold & loss modification

Figure 18 threshold optimization and the adoption of a
class-weighted loss, the improved confusion matrix proves to
be better balanced across classes with a marked decrease in
normal samples being misclassified as ataxia. This suggests
that specificity has been promoted while retaining sufficiently
high sensitivity in ataxia detection and, therefore, the initial
bias toward over-prediction of ataxia abated, rendering the
model more applicable for clinical screening applications.
Table 5 shows the quantitative comparison between CNN,
SVM, and LSTM models.

Table 5. Quantitative comparison between CNN, SVM, and LSTM models

Precision (Normal /

Recall (Normal

F1-Score  Training

Model Accuracy Ataxia) /Ataxia) (Avg.) Time Notes
CNN 68% (after . Best balance of temporal +
(Proposed) modifications) 0.67/0.70 0.69/0.67 0.68 Medium spatial feature extraction
Captures time-series patterns
LSTM 62% 0.63/0.60 0.58/0.66 0.61 High but prone to overfitting with
small datasets
SVM (RBF) 55% 0.52/0.57 0.50/0.59 0.54 Low

4. CONCLUSIONS

In this study, we developed a lightweight CNN structure for
the early detection of neuromuscular disorders from wearable
gait-sensor data. After we used stronger regularization, class-
weighted loss and threshold optimization the model reached a
final accuracy of 68% with a balanced precision of 0.67 for
normal gait and 0.70 for ataxia. Specificity significantly
enhanced after minimizing the model bias, and false positive
ataxia prediction decreased from 9 misclassified ataxia to 4
errors (as illustrated in the new confusion matrix).
Comparative benchmarks indicated that CNN performed
better than traditional methods as LSTM showed 62% accurate
performance while SVM showed 55% accuracy which further
confirmed the CNN-driven model to be able to learn the
localized dynamics of gait with moderate computational cost.
Yet the model can have serious limitations as well. The sample
size is comparatively small, which enhances subject-level
overfitting and limits generalizability. The 128 sample
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windows capture only temporal dynamics on a short-term
scale, and, potentially, overlook long-range dependencies
involving whole gait cycles. Although regularization
decreased the overfitting, the model still generated 20%
residual difference in accuracy between the training
performance and the test performance. Furthermore, all trials
were performed under controlled laboratory conditions, which
might not reflect real-world gait variability. Therefore, future
research may need to extend the dataset to a more general
population and varied walking conditions. Incorporating
architectures suitable for modeling longer time scales,
including a hybrid CNN-LSTM model, Transformer encoder
or attention-based temporal model, may also increase accuracy
above 68%. Domain-adaptation methods might develop better
adaptive performance in both outdoor and free-living
scenarios. Multi-sensor fusion (e.g. IMU + EMG + plantar
pressure) is anticipated to enhance classification stability and
sensitivity/specificity of early-stage neuromuscular disorders.
Finally, the performance of the model in a wearable system



could enable ongoing, home-based monitoring and early
clinical intervention.
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