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In this work, a gait-based approach for early detection of cerebellar ataxia is introduced 

using deep learning and gait data collected from an array of wearable knock sensors 

mounted on the legs. The dataset was collected from the Kaggle Gait Analysis Dataset for 

cerebellar ataxia and pre-processed by z-score normalization and segmented into 128 

samples with 50% overlap. A customized Convolutional Neural Network (CNN) model 

was designed and trained on these segments to classify gait patterns as normal and ataxic. 

The training mechanism indicated that the accuracy quickly grew to 95%, close to 100% 

at the end of the training. However, the trained CNN provided only a moderate accuracy 

of 40%, with a precision of 0.57 and a recall of 0.31 for normal gait and a precision of 0.31 

and a recall of 0.57 for ataxic gait, thus resulting in F1-scores of 0.4 for both classes on 

unseen test data. The confusion matrix reflected an imbalance of ergonomics towards 

overprediction of ataxia by a nine-over-thirteen number of normal ‘samples’ misclassified. 

Whereas the model provides high confidence prediction scores (81%–99%) even for 

misclassifications, this indicates a model prone to overfitting and lacking generalizability. 

These findings underscore the promise and challenges of AI-augmented gait diagnostics, 

with model calibration, dataset balancing, and feature refinement indicated to improve 

sensitivity and specificity for clinical utility.  
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1. INTRODUCTION

Gait pattern analysis has become increasingly significant in 

the diagnosis and monitoring of early neuromuscular 

disorders, which represent a range of diseases such as 

Parkinson’s disease, stroke, and muscular dystrophies. These 

diseases typically present with subtle gait features many years 

before they develop into symptomatic disease. Conventional 

clinical tests, though useful, have generally been performed 

within a controlled environment and may not reflect the full 

range of a patient’s ambulatory behavior ‘in the wild’.  

Recent developments in wearable sensor technologies, 

including inertial measurement units (IMUs), gyroscopes, and 

surface electromyography (sEMG), have made it possible to 

record spatiotemporal and kinematic gait data during normal 

daily activity. In conjunction with AI approaches, these 

systems are able to automatically identify, categorize, and 

even forecast gait anomalies at a high level of accuracy. 

Machine learning and deep learning models, in particular, 

convolutional neural networks (CNNs), long short-term 

memory (LSTM) networks, and attention-based architectures, 

have demonstrated great potential in automatically deriving 

clinically relevant features and biomarkers from raw sensor 

data.  

The combination of wearable sensors with AI approaches is 

used not only in clinical diagnostics but also preventive 

healthcare, rehabilitation monitoring, and fall risk prediction. 

For instance, explainable attention-based deep learning 

models have facilitated real-time and interpretable gait 

analysis for both Parkinson’s and post-stroke patients. 

Furthermore, their results are particularly promising for cloud-

based approaches, which use smartphone sensors and agent-

based simulation platforms to enable widespread 

dissemination and scalability of gait diagnostics.  

Liu et al. [1] emphasized the increasing focus on wearable 

devices for smart healthcare. They highlighted that wearable 

sensors, including accelerometers and gyroscopes, are able to 

monitor gait patterns on a long-term basis and thus can 

produce spatiotemporal and kinematic information beneficial 

for the diagnosis of locomotor abnormalities caused by 

neurological or musculoskeletal disorders. The authors also 

observed AI’s involvement in improving diagnostic precision 

and recovery results based on these data flows. Nazmi et al. 

[2] implemented an EMG artificial neural network model for

gait event detection, including both heel-strike and toe-off

events. In their investigation, the time-domain properties of

the EMG signals were proven to be able to successfully

differentiate stance and swing phases with high accuracy

(~87.4%), even in unlearned data, thus supporting the

generalized nature of the system across subjects. Khera and

Kumar [3] carried out an extensive review on machine

learning in gait analysis. They found that support vector

machines had the best classification performance (mean

accuracy = 87%) for the detection of gait disorders. They also
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indicated that reinforcement learning and neural networks are 

promising techniques for personalized gait rehabilitation. 

Turner and Hayes [4] investigated LSTM for minor gait 

change detection with in-shoe pressure sensors. Their deep 

learning model achieved a classification accuracy of 82% 

based purely on 2 seconds of sparsely sampled data, 

suggesting that non-obtrusive wearable sensors and deep 

learning can effectively identify subtle gait impairments in 

natural settings outside the laboratory. Rahman et al. [5] used 

supervised learning methods to distinguish gait disorders in 

elderly people with neurodegenerative diseases. They showed 

that disease-specific deviations in walking patterns, compared 

to a reference calibration, could be recognized by algorithms 

and added valuable support for early disease detection and 

intervention in clinics. de Filippis and Al Foysal [6] provided 

an overview of AI-based rehabilitation approaches for 

neuromuscular pathologies. They highlighted robot-assisted 

therapy, neural-fuzzy controllers, and adaptive AI systems, 

which can adjust gait training to the impairments of individual 

patients, demonstrating the power of AI in personalized 

rehabilitation. Achmamad et al. [7] described how recent 

advancements in materials and AI algorithms, primarily deep 

learning, have bolstered the realism and accuracy of EMG 

signal decoding. They showed that the use of smart materials 

for the electrodes and AI-based analysis improves the 

reliability of EMG-based walking monitoring systems. Rojek 

et al. [8] proposed a new transfer learning strategy based on 

artificial neural networks, fuzzy logic, and multifractal 

analysis for post-stroke gait assessment. Their method was 

demonstrated to be suitable for both low-cost and scalable 

systems for use in the clinic and at home, which can be 

extended to more widespread clinical applications in 

neuromuscular assessments. Ileşan et al. [9] introduced a 

CNN-AI-based physiograph wrist wearable gait monitoring 

system for PD activity classification. Their system was the 

first to show the effectiveness of real-time monitoring in the 

management of gait and PD using body-worn sensors and gait-

matrix correlation analysis. Wearable sensors were also 

discussed in the work of González Barral and Servais [10], 

which analyzed sensors in pediatric neurology. They found 

that accelerometers and IMUs provide valid measures of 

motor function in children with diagnoses such as cerebral 

palsy, Duchenne muscular dystrophy, and spinal muscular 

atrophy. These technologies have improved real gait 

evaluation in the clinic and home therapy monitoring. Shefa et 

al. [11] designed an intelligent ankle–foot orthosis (AFO) 

based on IMU and sEMG sensors combined with AI (SVM, 

ANN, LSTM, Transformer). The Transformer classified the 

gait phases with 98.97% accuracy. Real-time gait optimization 

and patient-customized rehabilitation were proven. Liao et al. 

[12] reviewed the application of surface EMG and artificial 

intelligence (AI) to the prediction of falls in the elderly, 

emphasizing the necessity of sEMG data from real-world 

recordings and of portable predictive systems in fall 

prevention and neuromuscular monitoring applications. 

Kobsar et al. [13] discussed AI and inertial wearable sensors 

in gait analysis: a scoping review. It has been observed that 

SVM, Random Forest, and Neural Networks worked well, and 

many models achieved more than 90% accuracy in the 

classification of gait disorders, prioritizing machine learning 

instead of custom algorithms. Bawa [14] developed a low-cost 

EMG-based MyoTracker system to classify PMR gait 

severity, achieving up to 85% accuracy using deep learning 

(LSTM, Vision Transformers). Asymmetry analysis of 

highlighted muscles aids in early disorder diagnosis. 

Rattanasak et al. [15] proposed a CNN-LSTM model for gait 

phase identification based on a wearable device, achieving a 

good balance between performance and real-time prediction of 

gait phases, useful for prosthesis control and rehabilitation. 

Carvajal-Castano et al. [16] assessed accelerometers and gyros 

to find gait abnormalities in Parkinson’s Disease, observing 

that CNN-LSTM could outperform classical ML in training on 

complex temporal patterns. Karthich et al. [17] developed 

deep learning for muscle fatigue monitoring using EMG, 

discovering fatigue symptoms inducing patterns with early 

onset neuromuscular disorders associated to promote AI-

guided clinical diagnosis and rehabilitation planning. Rojek et 

al. [8] integrated a method for post-stroke gait analysis based 

on fuzzy logic, ANN, and multifractal analysis, showing high 

performance in detecting stroke-induced gait asymmetries 

with inexpensive wearable devices. Ben Chaabane et al. [18] 

introduced an AI system predicting gait quality progression 

based on a big cohort of 734 patients. Two methods were 

employed: a signal-based method based on LSTM and MLP 

and an image-based method based on FFT and CNNs (e.g., 

ResNet, Vision Transformer). Both methods reached AUC > 

0.72, demonstrating a great improvement toward predictive 

gait modeling for clinical implementation. Saadati et al. [19] 

introduced a cloud-based gait simulation framework that uses 

smartphone sensors, AI models, and an agent-based 

musculoskeletal simulation, showing that the proposed system 

detects early muscle dysfunction and has the potential to 

improve access and personalization of gait diagnostics by 

employing deep learning ensembles. Nyan et al. [20] 

employed gyroscope data and machine learning classifiers 

(decision trees, SVM, among others) to distinguish between 

falls and normal gait. Although in the context of fall detection, 

it showed the potential of angular velocity features and 

wearable sensors for online gait monitoring in the context of 

neuromuscular health. Sadeghsalehi et al. [21] proposed an 

attention-based CNN-LSTM hybrid model for gait pattern 

classification from wearable IMU data. The interpretability 

was also evident in the system, being essential for clinical 

decision-making. The model was validated on Parkinson’s and 

post-stroke datasets, demonstrating high precision and 

sensitivity. Zhao et al. [22] reviewed more than 100 papers to 

group wearable sensors (piezoresistive, capacitive, EMG) and 

features typically utilized for AI models, highlighting the 

necessity of utilizing temporal, spatial, and frequency-domain 

characteristics as integrities to promote the accuracy of 

recognition of neuromuscular diseases with gait analysis. 

Terán-Pineda et al. [23] introduced novel deep learning 

models in this work for gait biomarker discovery from 

wearable sensor data. Feature transformation and attention 

mechanisms were employed to identify neuromuscular early 

stages, which was then successfully validated on a dataset that 

includes more than 700 patients. 

 

 

2. METHODOLOGY 
 

In this paper, propose an end-to-end methodology to 

classify normal and pathological gait patterns due to cerebellar 

ataxia from wearable magnetic and angular sensor data and 

convolutional neural networks (CNN). The methodology 

consists of key stages: data collection, preprocessing, 

segmentation, model development, training, and testing. 
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2.1 Data acquisition  

 

The gait dataset used in the current study was obtained from 

the publicly available Kaggle Gait Analysis Dataset for 

cerebellar ataxia curated by Rakesh Kumar Pudi (2021). The 

dataset was created for the purpose of discriminating and 

classifying the gait signals of healthy subjects and cerebellar-

ataxia patients, an atypical neuromuscular disorder caused by 

cerebellar pathology that leads to poor coordination and an 

unsteady walking pattern. 

The data is divided into two classes based on the subjects: 

 Normal Gait: Data for subjects anticipated to have 

normal gait. 

 Ataxic Gait: Gait data acquired from patients clinically 

diagnosed with adult dominant cerebellar ataxia. 

Each class has its training and test folders, therefore 

enabling correct model creation and independent test. The file 

of the dataset being in CSV (Comma-Separated Values) 

format, containing each recording of a trial or walk with the 

wearable knock sensors. These sensors were positioned on the 

right and left thigh of each subject in order to record vibration 

and impact while walking. 

There are multi-dimensional time series data in the CSV 

files, and each row is a discrete time, each column is different 

sensor channel. In this study, only the second and third 

columns (right and left leg sensor data) were used. This 

decision was made because of the assumption that dtFT pattern 

itself already contained sufficient discriminative features to 

discriminate between typical and atypical gait patterns. 

The acquisition protocol included the following measures to 

maintain data accuracy: 

 File format check: Checking that all the files have 

consistent formatting and contain an appropriate 

number of samples. 

 Data Filter: No file will be allowed into the experiment 

with lower than 128 times samples, as these would not 

give enough information to be segmented in a window 

based approach. 

 Class balance confirmation: Inspect the training and 

test sample counts to see if the class distribution is 

balanced or at least remove some bias. 

This enriched and pre-labeled database provides a solid 

ground to construct AI models for early detection of gait 

anomalies. The dependence on real-world sensor data endows 

the study with the generalization to wearable healthcare 

systems for possible immediate application in clinical or home 

care settings. 

 

2.2 Preprocessing and feature selection  

 

Preprocessing is an essential step of any machine learning 

pipeline, particularly with respect to biomedical time-series 

data. The original gait signals recorded from knock sensors 

worn on the body are teed to be affected by noise, signal 

wandering, variable between sampling period, and among 

subject differences. Thus, an efficient pre-processing approach 

was applied to process those unclean and unstructured input 

into clean and relevant data for training and testing the 

convolutional neural network (CNN). 

 

2.2.1 Channel selection 

The raw CSV files included multi-channel sensor 

measurements with only a portion of it being used for this 

study. After a preliminary data exploration, the second one and 

third columns (representing signals of right and left leg sensor) 

were involved as well due to the relevance of this domain. 

These two channels were considered to be the most 

discriminative information of the bilateral gait coordination 

and asymmetry -among major factor s- used for diagnosing 

cerebellar ataxia. 

 

2.2.2 Data cleaning 

The content of all the CSV files were parsed and checked 

for: 

 The minimum length signal of 128 samples to apply the 

window division method. 

 There are no missing values (Nan) and no non-numeric 

entries. 

 Same row- and column- layout for all files. 

Files not satisfying these conditions were automatically 

discarded from the training and testing datasets in order to 

keep data correctness in the whole pipeline. 

 

2.2.3 Normalization 

In order to reduce the influence of amplitude variability 

caused by differences across sensors, due to limb strength and 

walking intensity specific for the individual subject, z-score 

normalization was performed for each segment: 

 

𝑥norm =
𝑥 − 𝜇

𝜎
 (1) 

 

where, x is the original sensor value, μ is the mean, and σ is the 

standard deviation of the signal. This normalization step 

ensured that the CNN focused on the relative dynamics and 

patterns rather than absolute values, thus improving model 

generalizability across different subjects. 

  

2.2.4 Segmentation 

Motion signals are temporal in nature and also variable in 

length per trial. To transform nonuniform (variable-length) 

time-series data into fixed-size (uniform) input that is suitable 

for CNN, a sliding window segmentation method was 

employed as follows: 

 The signals were divided into 128-sample windows 

(providing us with one or two full gait cycles). 

 A 50% overlap was maintained in the windows to boost 

data augmentation and keep temporal flow. 

The process resulted in segments of a fixed size of 2 × 128 

samples per channel (right and left leg) and recording time. 

  

2.2.5 Feature representation 

Unlike the classical machine learning methods that depend 

on handcrafted statistical or frequency-domain based features 

(e.g., step length, cadence, or FFT coefficients), in this work, 

use a deep learning based feature extraction approach. 

Therefore, they did not design any manual features. Instead, 

directly input the raw 2D gait segment (channels × time) into 

the CNN model, wherein multi-level hierarchical features 

were autonomously learned by the network during the training 

process. 

This method utilizes the CNN to learn the: 

 Temporal dependencies in channels that are local with 

respect to time (the timing of impact between 

channels). 

 Inter-channel relationships (gait symmetry). 

 Higher-level characteristics that are non-trivial to 

measure using handcrafted features. 
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Accordingly, the preprocessing and feature extraction was 

well-tuned in terms of both computational run-time and model 

quality, thereby providing a powerful basis for the learning 

steps in the following sections. 

  

2.3 Signal segmentation  

 

Signal segmentation is a crucial step in converting raw time-

series sensor readings to windowed samples of fixed-size that 

can be effectively used for machine-learning (ML) and/or 

deep-learning (DL) based models. For gait analysis, 

segmentation breaks a stream of continuous movement into 

small, manageable segments that encompass relevant 

biological rhythms due to walking activity. 

 

2.3.1 Motivation for segmentation 

The raw gait data measured through wearable knock sensors 

has a different length at different subjects due to different 

duration of stride period, walking speed and trial length. 

Directly admitting those variable-length signals to a CNN is 

obviously impracticable because of the fixed requirement of 

input dimensionality in the CNN. Thus, the purpose of 

segmentation is dualistic: 

 Standardization: Irregular length recordings are 

transformed in fixed length segments. 

 Augmentation: Create multiple training samples from a 

single trial to diversify and to improve the robustness 

of the model. 

Moreover, cerebellar ataxia might manifest itself as mild, 

episodic gait instabilities which can be better assessed by 

analyzing local time windows instead of the entire walking 

trials. 

 

2.3.2 Segmentation strategy 

Representative gait segments were extracted using a sliding 

window segmentation method. The operation sweeps a fixed-

sized window along the time-series signal with a certain step 

size, creating the overlapped segments to maintain the 

continuity for motion information. 

 Window length: 128 samples in time (~1–2 gait cycles 

depending on dataset sampling rate). 

 Overlap: 50% (i.e., new windows are separated by half 

a time window). 

This overlapping ensures continuity of the feature between 

segments and enhances the amount of training samples 

without introducing mutual information between the signals. 

Segmentation was performed in a similar manner for all 

other CSV files and the following steps were included: 

1. Take out the channels of the right and left leg sensors 

(Columns 2 and 3). 

2. Shift a window of 128 samples across each channel 

together. 

3. Reshape the 2-channel segment of the spectrogram 

into 2D array with dimensions 2 128 with the following layout: 

 Rows are for right and left leg channels. 

 Columns are time steps in the segment. 

They were saved as samples by means of a segmentation 

process and were labeled as class (normal or ataxia) according 

to the parent directory name of the file. 

 

2.3.3 Segment structure and dataset growth 

Let L be the length of a signal and W be the window size. 

With 50% overlap, the number of segments per file is 

approximately: 

𝑁 = ⌊
2(𝐿 −𝑊)

𝑊
+ 1⌋ (2) 

 

This method substantially expanded the training and test 

samples, as follows: 

 Generalization of the CNN model. 

 Improving the representation of temporal gait change. 

 Permitting balanced learning also with a low number of 

subjects. 

Every segment remained labeled, resulting in a multi-

segment dataset with structural continuity and detailed 

behaviour. 

 

2.3.4 Benefits of overlapping windows 

The overlapping windowing that adopted in this study has 

several methodological advantages: 

 Data augmentation without synthetic transformations. 

 Reduced loss of information at segment transitions. 

 Better temporal resolution, which is essential for 

capture of asymmetric or transient gait cycles in ataxic 

subjects. 

In total, this step formed an effective abstraction between 

the raw sensor measurements and organised input that is 

compatible with the input conditioning used during deep 

neural network training. It facilitated learning of fine spen 

spatiotemporal features that are crucial for the detection of 

normal and pathological gait. 

 

2.4 CNN model architecture in depth 

 

CNNs are a subclass of deep learning model, which are very 

effective in learning hierarchy of features from structured 

input like image and time-series signal. In this work, a 

personalized 1D CNN model was constructed to efficiently 

capture discriminative features from segmented gait patterns 

and to decide if the signals are normal or ataxic. In contrast to 

conventional feature engineering that depends on handcrafted 

time-domain (e.g., step length and cadence) or frequency-

domain (e.g., FFT coefficients) features, originating from raw 

sensor input, CNNs are able to learn data-driven 

representations. This not only diminishes the requirement of 

manual feature extraction but also learns multi-scale temporal 

dynamics which are difficult to encode explicitly. 

 

2.4.1 Input representation 

Each input-sample of the CNN is a 2D matrix of the size 2 

× 128 × 1, i.e. 

 2: Number of channels (right leg and left leg knock 

sensor signals). 

 128: The size of each segment (window length). 

 1: Dimension of the depth, comparable to single-

channel grayscale image. 

The proposed representation allows applying 2D 

convolutional layers to learn relationships between time and 

sensor channels to capture spatial patterns and for the network 

to analyze inter-limb coordination and asymmetries — signs 

and markers of cerebellar ataxia. 

 

2.4.2 Network structure 

The design of the CNN model architecture is described as 

follows, with the layers involved carefully selected to achieve 

a good tradeoff between model complexity, training stability, 

and generalization performance as shown in Table 1. 
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2.4.3 Design rationale 

 1 × 3 Convolutional filters: Our choice to convolve 

along the time axis to extract local temporal information, 

without mixing sensor channels too early. 

 MaxPooling Separated Only in Time: Have separated 

maxpooling in the features corresponding to the time track and 

in the features related to the 2D intrachannel structure to 

decrease the temporal resolution and not to harm the inter-

channel structure that it is important to recognize gait 

asymmetry. 

 Dropout Regularization: Added for prevention of 

over fitting, in particular because of few unique subjects in 

medical datasets. 

 Two Convolutional Blocks: Two blocks are enough 

to obtain low- and mid-level features, making the models light 

and effective. 

 

Table 1. Parameters of CNN model 

 
Layer Type Parameters Purpose 

imageInputLayer 
Size: [2, 128, 

1] 

Accepts formatted 

input segments 

(channels × time) 

convolution2dLayer 
Filter size: [1, 

3], Filters: 16 

Captures short-

term local features 

across time 

batchNormalizationLayer — 

Normalizes 

activations to 

stabilize learning 

reluLayer — 
Introduces non-

linearity 

maxPooling2dLayer 

Pool size: [1, 

2], Stride: [1, 

2] 

Reduces temporal 

resolution by half 

convolution2dLayer 
Filter size: [1, 

3], Filters: 32 

Learns deeper 

spatiotemporal 

patterns 

batchNormalizationLayer — 

Normalizes again 

for improved 

convergence 

reluLayer — 

Maintains non-

linearity in deeper 

layers 

maxPooling2dLayer 

Pool size: [1, 

2], Stride: [1, 

2] 

Further reduces 

temporal 

dimensionality 

fullyConnectedLayer Units: 64 

Maps extracted 

features to a dense 

vector 

dropoutLayer Drop rate: 0.3 

Prevents 

overfitting by 

randomly disabling 

neurons 

fullyConnectedLayer 

Units: 2 

(normal, 

ataxia) 

Outputs class 

scores for softmax 

input 

softmaxLayer — 

Converts scores to 

probability 

distribution 

classificationLayer — 
Computes final 

classification loss 

 

2.4.4 Training configuration 

The model was trained with the Adam optimizer with the 

following settings: 

 MaxEpochs: 15 

 MiniBatchSize: 32 

 Initial Learn Rate: Default (0.001) 

 Loss Function: Cross-entropy (via classification Layer) 

 Early Visualization: The real-time plots of the training 

accuracy and loss were observed in real time in order 

to detect over fit. 

The architecture was implemented in MATLAB with the 

Deep Learning Toolbox considering embedded applications 

and [19] possible usage for real-time wearable objects. 

 

2.5 Model training  

 

After preprocessing and segmentation of the datasets, and 

definition of the topology of the CNN, the model was trained 

to be able to discern normal and ataxic gaits. This training 

procedure was performed in several stages comprising the 

following: data pre-processing for deep learning, specifying 

the hyper-parameters and monitoring the performance. 

 

2.5.1 Training dataset preparation 

The gait signals that have been segmented and normalized 

from the training set were input to the CNN model. Each 

segment was described like a 2D matrix of 2 × 128 × 1 as 

follows: 

 The two columns show the right and left leg sensors. 

 The 128 columns are the time points within the part of 

the gait cycle. 

 The depth dimension (1) represents one grayscale 

channel, applicable to 2D convolutional filters. 

For each of these segments, the respective class label 

(normal or ataxia) was applied, generating a supervised 

learning problem with explicit input output pairs. 

 

2.5.2 Training configuration and optimization 

The training process was conducted in MATLAB’s Deep 

Learning Toolbox, which supports GPU acceleration and real 

time monitoring. The training hyperparameters were as 

follows as shown in Table 2. 

 

Table 2. Training hyperparameters 

 
Parameter Value 

Optimizer Adam 

Loss Function Cross-Entropy 

Epochs 15 

Mini-batch Size 32 

Learning Rate 0.001 (default) 

Input Size 2 × 128 × 1 

Output Classes 2 (normal, ataxia) 

Dropout Rate 0.3 

Hardware Acceleration Enabled (if GPU found) 

 

The Adam optimizer was used for more adaptive learning 

rates and it converges faster than SGD. A mini-batch of 32 

examples was found to ensure the tradeoff between efficiency 

and stability of the gradients. The loss function minimized 

during training was the categorical cross-entropy to maximize 

the predicted likelihood of the right class. The softmax 

function in the final layer transformed network output to a 

probability distribution over the two classes. 

 

2.5.3 Training progress monitoring 

The following graphs were generated in real time during the 

training: 

 Training Accuracy: indicates the ratio of correctly 

categorized segments for the epoch. 

 Training Loss: It is a measure of how well the model 
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fits the training data. 

 Mini-batch Loss: Variations between the batches, 

which are helpful in identifying any evidence that 

might point toward over-fitting or unstable gradients. 

 This visual evidence allowed detection of Underfitting: 

Low accuracy and high loss, still after some epoch. 

Overfitting: High training accuracy and low loss, but low 

validation accuracy. 

As no additional validation set was employed (because of 

the limited number of subjects), the generalization of the 

model was later tested on a test set (in Section 2.6). 

Extended the training procedure by including Early 

Stopping, more robust regularization and learning rate 

adjustments for improved generalization performance and to 

prevent overfitting. The model was only trained for as many 

as 40 epochs, ending its training at epoch 11 when validation 

loss was increasing (Early Stopping). For the dense layers we 

combined dropout layers with a rate of 0.5 and applied L2 

regularization (weight decay of 0.001) on all convolutional 

layers. A Reduce-on-Plateau scheduler reduced the learning 

rate by a factor of 0.2 if the validation loss was at a plateau for 

three epochs. These features led to smoother convergence, 

minimised model variance, and enhanced the model's ability 

of generalisation to new gait samples. 

 

2.5.4 Regularization and overfitting control 

To prevent overfitting, the following measures were carried 

out: 

 Introducing Dropout Layer (30% rate): This layer has a 

randomized behavior, 0 of the document’s neurons 

were removed on avg., and during training, which 

disables neurons randomly during training, that help 

boost the robustness of the trained network. 

 Batch Normalization: Allows to train transfer learning 

model and process the features extraction faster by 

stabilizing and accelerating training with normalized 

layer inputs. 

 Sliding Window Segmentation: Implicitly enlarges the 

training set by generating several slightly shifted 

instances for each trial. 

These approaches prevented the model from simply 

memorizing certain training patterns, which is particularly 

important for biomedical data with small subject variety. 

 

2.5.5 Final model output 

At the end of 15 epochs the A module's classification 

performance of the subject's motion modality was performed 

in high accuracy on the training set; this evidence suggested 

the learning model was successful in identifying the two gait 

classes with the right-left leg sensor dynamics respectively. 

The trained model (net) was saved and tested on unseen test 

data in this experiment in the second phase of the methodology 

below. 

 

2.6 Model evaluation  

 

The CNN was trained and the model was tested with a 

separate set of test samples. These testing samples were never 

involved with training phase so that such an assessment was 

fair. The test aimed at assessing the ability of the model to 

correctly and repeatably classify the gait as ataxic versus 

normal given new right/left leg sensor segment readings. 

 

 

2.6.1 Test dataset preparation 

The test set was extracted from test/normal and test/ataxia 

folders of the original Kaggle dataset. As during the training 

phase, every CSV file was: 

 Accepted, monochrome (unless colored scientific) 

figures to conform to the correct format and completed 

in terms of content (three columns at the least). 

 Extracted by column 2nd and 3rd yielding the signals 

from the right and left legs respectively. 

 Segmented into 128 sample-long windows with 50% 

overlap. 

Each of these windows was then resized to have the same 

input dimensions of the CNN (2 × 128 × 1), and labelled as 

positive. This provided uniform preprocessing pipeline during 

both training and test phases. 

 

2.6.2 Prediction and classification 

Each segment of the test set was input into the trained CNN 

model using MATLAB classify () function. Network output 

was probability distribution over two output classes (normal 

and ataxia), and class with maximum probability was chosen 

as model prediction. 

 

𝑦̂ = arg 𝑚𝑎𝑥
𝑐∈{ normal,ataxia }

 𝑃( 𝑦 = 𝑐 ∣∣ 𝑥 ) (3) 

 

where, x is the input segment, and 𝑦̂ is the predicted class. 

 

2.6.3 Performance metrics 

To evaluate model performance, several standard 

classification metrics were computed based on the comparison 

between predicted labels and true labels: 

 Accuracy: The proportion of correctly classified 

samples: 

 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

 Precision: The proportion of positive identifications 

that were actually correct: 

 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

 

 Recall (Sensitivity): The proportion of actual positives 

that were correctly identified: 

 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

 

 F1-Score: Harmonic mean of precision and recall: 

 

𝐹1 = 2 ×
Precision × Recall

Precision + Recall
 (7) 

 

Here, TP, TN, FP, and FN refer to true positives, true 

negatives, false positives, and false negatives, respectively, 

with respect to the "ataxia" class. 

 

2.6.4 Confusion matrix 

Generalization data were presented in a confusion matrix to 

visualize how well the model behaved. The matrix showed the 

true and false predicted samples for each class. It was used to 

assess: 

 Class imbalance, 
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 Misclassification trends, 

 Overall predictive strength. 

The ideal model would produce a diagonal matrix, where all 

values off the diagonal are zero. 

 

2.6.5 Results interpretation 

The last assessment demonstrated whether the model was 

able to: 

 Identify appropriately ataxic gait, reflecting the 

requirement for the presence of a CAC. 

 Attain high precision and recall with few or no false 

positives and negatives. 

 Tolerate variations in signal shapes and subject 

movements as in their widespread application to the 

CNN's robustness to signal translation and noise 

condition. 

These results showed that the proposed method — using 

right/left leg segmentation of sensor and CNN learning —

proved to be effective for chairs for early detection of 

neuromuscular disorder in walking. 

 

2.7 Governing equations 

 

2.7.1 Signal normalization 

Each gait signal segment 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} from the right 

or left leg sensor was standardized using 𝑧 -score 

normalization to reduce subject-specific variability and sensor 

scale differences. The normalized signal 𝑥norm is computed as: 

 

𝑥norm =
𝑥 − 𝜇

𝜎
 (8) 

 

where: 

𝜇 is the mean of the signal segment, 

𝜎 is the standard deviation, 

𝑥 is the original raw sensor signal. 

 

2.7.2 Convolutional neural network operations 

The core of the CNN model involves applying a discrete 

convolution operation to extract features from temporal gait 

data. The convolution between an input segment 𝑥  and a 

kernel (or filter) 𝑤 is defined as: 

 

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑  

𝑘−1

𝑖=0

𝑥(𝑡 + 𝑖) ⋅ 𝑤(𝑖) (9) 

 

where: 

𝑠(𝑡) is the feature map output, 

𝑥(𝑡) is the input signal at time 𝑡, 
𝑤(𝑖) is the kernel weight at position 𝑖, 
𝑘 is the filter length. 

This operation is extended to 2D when applied to the 

2 × 128 input matrix using 2D convolutional filters. 

 

2.7.3 Activation function (ReLU) 

The CNN uses the Rectified Linear Unit (ReLU) as a non-

linear activation function after each convolution: 

 

𝑓(𝑥) = max(0, 𝑥) (10) 

 

This introduces non-linearity into the model, allowing it to 

learn more complex patterns. 

 

2.7.4 Pooling operation 

To reduce feature map dimensionality and retain dominant 

features, max pooling is used: 

 

𝑝𝑗 = max{𝑠𝑗 , 𝑠𝑗+1, … , 𝑠𝑗+𝑚−1} (11) 

 

where: 

𝑚 is the pooling window size, 

𝑠𝑗 is the input feature at position 𝑗, 

𝑝𝑗 is the pooled output. 

 

2.7.5 Softmax function 

The final output layer applies a softmax function to convert 

the fully connected output vector 𝑧 into class probabilities: 

 

𝑃(𝑦 = 𝑐 ∣ 𝑥) =
𝑒𝑧𝑐

∑  𝐶
𝑖=1   𝑒

𝑧𝑖
 (12) 

 

where: 

𝑧𝑐 is the activation score for class 𝑐,  

𝐶 is the total number of classes (2 in this study: normal, 

ataxia), 

𝑃(𝑦 = 𝑐 ∣ 𝑥) is the predicted probability of class 𝑐  given 

input 𝑥. 

 

2.7.6 Loss function - categorical cross-entropy 

The CNN is trained to minimize the categorical cross-

entropy loss between the true class label 𝑦 and the predicted 

probability distribution 𝑦̂ : 

 

ℒ = −∑  

𝐶

𝑐=1

𝑦𝑐log⁡(𝑦̂𝑐) (13) 

 

where: 

𝑦𝑐  is the binary indicator (0 or 1) if class label 𝑐  is the 

correct classification. 

𝑦̂𝑐 is the predicted probability for class 𝑐. 

Figure 1 shows the Flow chart of CNN model and Figure 2 

shows CNN model architecture. 

 

 
 

Figure 1. Flow chart of CNN model 
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Figure 2. CNN model architecture 

 

 

3. RESULTS AND DISCUSSION 
 

In this section, describe the results of the CNN model for 

classifying the gait patterns of cerebellar ataxia and normal 

people, and discuss about them. The study is dedicated to 

assessing the trained model performance with several 

statistical metrics, visualisation methods as well as 

classification measures. Submitted results contain an overview 

of the classification metrics, confusion matrices and 

predictions confidence analysis extracted from the test set. 

These results are then employed to measure the model’s 

discriminative ability and its effectiveness in capturing early 

gait pathology. The results are presented by means of bar, box 

and confidence curves, which gives an excellent readability 

and show the tendency toward prediction confidence of the 

various classes. Furthermore, distributions of prediction vs 

true label are analyzed to identify patterns of misclassification. 

These results are then, interpreted in the discussion section as 

weaved in their practical value for AI-based early diagnostic 

systems. 

Figure 3 plots the training curve of the CNN model over 320 

iterations, which are associated with 40 epochs and 8 iterations 

per epoch. The top subfigure displays the training accuracy, 

and the bottom displays the corresponding training loss. The 

training accuracy starts off around 50% and improves so that 

it’s over 70% after 10 iterations. Accurate >90% is reached at 

iteration 30, and becomes stable above >95% at iteration 40, 

reaching a high of near 100% by iteration 50. This suggests the 

model discriminates normally and ataxic gait almost 

immediately. On the other hand, the training loss > 1400 at the 

beginning, decreases rapidly for the first 20 iterations and 

monotonically after 20 iterations to become essentially zero 

after 50 iterations. The smoothed training loss line follows this 

trend, implying convergence to low loss rates. The model was 

optimized with a fixed learning rate of 0.001 on a single GPU. 

Most importantly, no validation data was used during training 

that might need to be evaluated later for generalization. In 

summary, the figure indicates an effective and stable learning 

behavior. 

 

 
 

Figure 3. The CNN model training progress: Accuracy and loss 
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Table 3 shows the simulated test results of the training CNN 

model when tested by single gait signal files. Examined a set 

of 20 test files characterized by a true class label, class 

prediction, and prediction confidence percent. Notably, 

test_file_01. csv, of “Normal” class, was misclassified as 

“Ataxia” with high confidence (92.24%). Similarly, 

test_file_02. csv, a “Ataxia” case was wrongly predicted as 

“Normal” with 82.79% probability. This trend of mislabeling 

also follows into multiple files, including test_file_03. csv 

through test_file_05. csv, all of which were annotated 

“Normal” but predicted with confidences of 85.84%, 87.33%, 

and 89.12%, correspondingly, as “Ataxia”. The near-1 95% 

C.I. of wrong predictions show that the model is very 

confident, but either overfits or fails to generalize. 

Additionally, other types of validation or balancing strategy 

may be necessary to enhance the accuracy of classification. 

This table provides important information about the types of 

errors that the model makes, showing the importance of a 

finemaining the importance of detailed per-sample analysis. 

 

Table 3. Simulation test results of CNN-based gait 

classification models 
 

FileName TrueLabel PredictedClass 
Confidence 

(%) 

test_file_01.csv Normal Ataxia 92.24 

test_file_02.csv Ataxia Normal 82.79 

test_file_03.csv Normal Ataxia 85.84 

test_file_04.csv Normal Ataxia 87.33 

test_file_05.csv Normal Ataxia 89.12 

test_file_06.csv Ataxia Ataxia 95.7 

test_file_07.csv Normal Ataxia 83.99 

test_file_08.csv Normal Ataxia 90.28 

test_file_09.csv Normal Ataxia 91.85 

test_file_10.csv Ataxia Ataxia 80.93 

test_file_11.csv Normal Normal 92.15 

test_file_12.csv Normal Normal 83.41 

test_file_13.csv Normal Ataxia 81.3 

test_file_14.csv Normal Ataxia 98.98 

test_file_15.csv Ataxia Ataxia 99.31 

test_file_16.csv Normal Normal 96.17 

test_file_17.csv Ataxia Ataxia 86.09 

test_file_18.csv Ataxia Normal 81.95 

test_file_19.csv Ataxia Normal 93.68 

test_file_20.csv Normal Normal 88.8 

 

Table 4 shows the classification performance metrics 

obtained by the CNN model when applied to the test data set. 

For the “Ataxia” class, precision is given as 0.31, meaning that 

only 31% of the model predictions for ataxia were true 

positives. The recall for this class, however, is 0.57, which 

means 57% of ataxia cases were found by the model. The 

‘Normal’ class, on the other hand, has a higher precision of 

0.57 but a drastically lower recall of 0.31, demonstrating an 

imbalance in the model performance in recognizing normal 

versus abnormal gait. The F1-Score is 0.4 for both classes, as 

a compromise between precision and recall. Overall 

percentage of correctly classified is 0.4 as well, which means 

that model could correctly RED-C or hardcore only 40% of all 

test segments. The macro and weighted averages of precision 

and recall are also low and is similar between them, with 

values in the range from 0.44 to 0.48, showing that the 

performance of the classifiers is only moderate and somewhat 

unbalanced among the classes. These metrics reveal a current 

deficiency in the model and point to required advancements in 

data balance, model complexity or feature enhancement 

schemes in the future. 

 

Table 4. Overview of classification metrics for CNN based 

gait analysis 

 
 Precision Recall F1-Score Accuracy 

Ataxia 0.307692 0.571429 0.4 0.4 

Normal 0.571429 0.307692 0.4 0.4 

accuracy 0.4 0.4 0.4 0.4 

macro avg 0.43956 0.43956 0.4 0.4 

weighted avg 0.479121 0.4 0.4 0.4 

 

Confusion matrix of the CNN model used with the gait test 

data set is given in Figure 4 with the relation between the 

actual and predicted label on the two gait classes Normal and 

Ataxia. From the confusion matrix, the model accurately 

predicted 4 normal cases out of 13, and mistakenly labeled 9 

of them as ataxia. This indicates a high false positive rate 

(excess sensitivity) in the ataxia class for symptoms, i.e. a high 

number of false detections of abnormal or disordered gait (an 

SE rate for abnormal gait) even when it is normal. Class 

“Ataxia” had 4 out of the 7 cases classified correctly, and 3 

were confused with “Normal”, summarized as a moderate 

false negative rate. The diagonal of the confusion matrix is (4 

and 4) are the correctly classified cases which brings the 

correct predictions as 8 out of 20. The off-diagonal elements 

(9 and 3) draw attention to the misclassifications, for a total of 

12 wrong-predictions: These values account for the relatively 

low overall accuracy, reported to be of 40% in Table 3. This 

confusion matrix further exhibits an imbalance in the 

confidence of the model predictions across the 2 classes with 

a bias to over-predict “Ataxia.” This implies the necessity of 

additional optimisation or a larger, more homogeneous dataset 

to increase discriminatory power between gait types. 

 

 
 

Figure 4. Confusion matrix of CNN model prediction results 

on the test data 

 

Confusion matrix of the CNN model on the training data is 

shown in Figure 5, which reveals the performance of the model 

learning from the input samples. The confusion matrix shows 

that for the 16 “Normal” samples, the model predicts 8 as 

“Normal” and the other 8 as “Ataxia”, giving the normal class 

an accuracy of 50%. For the Ataxia class, the model had a 

better performance as the 34 samples, 24 were truly predicted 

Ataxia, and 10 were falsely predicted as Normal. This 

indicates a bias of the model towards classifying instances as 

the "Ataxia" class which could be attributed to imbalance in 
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the classes or similarities between gait signals with ataxic gait 

patterns. The sum of correctly predicted samples = 8 (Normal) 

+ 24 (Ataxia) = 32 and the sum of misclassifications = 8 

(Normal > Ataxia) + 10 (Ataxia > Normal) = 18. The model 

exhibits reasonably good learning for the ataxia class and the 

confusion against normal samples suggests some overlap in 

features which can be rectified either at the feature extraction 

stage or through class balancing. This table demonstrates 

partial over-fitting and emphasizes the necessity of 

generalization methods. 

In the Figure 6 represent a bar chart visualization of 

important classification metrics: precision, recall and f1 score 

individually for both classes "Ataxia" and "Normal" classes, 

calculated for the model on test dataset. In the plot on the left, 

the accuracy achieved by the model for Ataxia class is almost 

equal to 0.31 when as for the Normal class, it goes high 

(approximately 0.57). This shows that the model is more 

confident and is correct about predicting the Normal class. In 

comparison the recall curve is given in the middle chart: 

Ataxia remains high at around 0.57 recall, meaning that more 

than half of the actual Ataxia was recovered, while the recall 

for Normal falls to 0.31 with more and more false negatives. 

In an interesting way, in the last graph since both classes of 

images can have the same F1 score of 0.40 communities. This 

equality F1-score also indicates that our two-class F1-score is 

a kind of trade-off between precision and recall, although the 

precision and recall are different for each class. Have you any 

idea of its meaning. What is the precision. Dose it implies that 

the model is correct majority for the Ataxia cases and in very 

few cases get wrong for the Normal. Such trends suggest the 

potential for learning improvements in feature representation 

or training balance. 

 

 
 

Figure 5. Confusion matrix of CNN model for the training 

data 

 

 

 
 

Figure 6. Test set precision, recall and F1 with respect to ataxia and normal class 

 

Confidence scores of model Figure 7 shows the confidence 

scores of the model across 20 individual test files, where the 

higher values the CNN was more confident about the class it 

belonged to (either Ataxia or Normal). These confidence 

values are plotted as the test file index against which a great 

majority of files are 81% or higher, and a minority are just 

short of 100%. The image shows multiple peaks of the 

confidence level, being for indices 13, 14, which provide a 

confidence ratio of around 99%. There is a sharp decrease at 

the location of index 9, the level of confidence is nearly 81%, 

and is one the least confident predictions. Although with 

changes, more than 85% of the tested samples are confident, 

this means the model will make strong predictions even if it is 

wrong. %–Overconfidence: On the other hand, the model 

frequently makes confident prediction, with confidence (for 

even missclassified cases, see Table 3) often over 90%, which 

may indicate overconfidence in making their decisions. These 

findings point to the necessity to treat the model's predictions 

as uncalibrated or to introduce uncertainty handling methods, 

particularly in medical decision making applications where 

confidence in predictions is important. 

Figure 8 represent true labels (Ataxia and Normal) and 

number of predictions, respectively. In the “Ataxia” class, 4 of 

7 samples were correctly predicted as “Ataxia” whereas 3 were 

incorrectly predicted as “Normal”. On the other hand, for the 

“Normal” class only 4 out of the 13 instances were accurately 

classified whereas the other 9 were misclassified as “Ataxia”. 

This clearly shows that the model has a bias of over predicting 

the Ataxia class. The over-representation of light blue bars 

(Ataxia predictions) in both true label categories supports the 

fact that the classifier prefers to detect Ataxia, also when the 

ground truth is Normal. Though this may enhance sensitivity, 

it is done at the cost of specificity, and it increases the risk of 

getting false positive for abnormal gait detection. This 

imbalance indicates that the decision threshold may need to be 

adjusted or training with a more balanced dataset may be 

required to enhance class discrimination. 
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Figure 7. Confidence scores of CNN predictions for the test files 

 

 
 

Figure 8. True vs predicted class count distribution 

 

Figure 9 presents the confidence score of each of our test 

file, where the color of each point denotes the predicted class: 

"Red" (Ataxia) or the "Green" (Normal). Y-axis shows the 

confidence of the model in the prediction (in %) and X-axis 

depicts the test file index. One interesting observation is that 

most of the predictions are red, indicating that the most 

predictions were classified as “Ataxia”, which is in agreement 

with the former confusion matrix results. The confidences vary 

from about 80% to a little short of 100%, and a few of the red 

ones are above 95% probably around indices 13 and 14, with 

the highest confidence that they are files containing Ataxia. 

Green points (Normal predictions): These are fewer, and are 

scattered randomly over the mid/late index range, and have 

higher confidence, usually between 82% and 96%. Crucially, 

some of its incorrect predictions (according to Table 2) are 

made with high confidence scores, which means that its high 

confidence scores in Table 3 are not always due to correct 

predictions. This number underscores the necessity for better 

confidence calibration or class balance to enhance model 

reliability, particularly in clinical settings where confidence in 

decisions is important. 

 

 
 

Figure 9. Confidence scores per test file by the true class color from the predicted class 

 

Figure 10 shows the comparison of the mean confidence of 

prediction from the test set of the two output classes, Ataxia 

and Normal, on the decisions of the CNN model. The height 

of the bars corresponds to the average confidence score 

generated across all test predictions for each class. The model 

is a little more confident for its Ataxia predictions than it is for 

Normal predictions, with the confidence values for both 

hovering around 88-90%. This slight distinction indicates that 

the model is overall confident for any predicted class. 

Distribution of the CNN model's confidence score over all 

predictions of the test files is shown in Figure 11. The 

histogram also shows the most of the predictions have 

confident range around 82%-95%, a fewer concentration 

apparently in the range of 98–100%. The distribution is 

slightly right skewed, indicating that although uncertain 

prediction is rare, only a few predictions are extremely certain 

with a level near 100%. The KDE curve overlaid on the 

histogram allows to appreciate this feature, showing a subtle 

peak around 85-90%. This is a crucial visualization to examine 

the calibration of the model. The confidence scores of an 

ideally calibrated model would match the prediction 

performance at different reals. In this case however, although 
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the model looks generally confident, the previous figures (as 

the class-wise F1-scores) already showed a moderate 

classification performance, thus suggesting a possible over-

confidence. Thus, this histogram provides evidence for greater 

tuning of the model or modification to training data or 

architecture to bring the confidence and accuracy into better 

correspondence. 

 

 
 

Figure 10. Average confidence against the predicted class 

 

 
 

Figure 11. Confidence score histogram 

 

The test set predicted classes distribution compared to true 

classes of the model is given in Figure 12. Have plotted the 

expected class labels on the horizontal axis (“Normal: Binary 

0:” and “Ataxia: Binary 1:”), whereas the bars with color 

represent the total number of predictions classified as “Ataxia” 

or “Normal”. For the real class “Normal”, the model identified 

9 as “Ataxia” and only 4 correctly as “Normal” with a high 

false positive rate. With respect to true “Ataxia” class, on the 

other hand, 4 instances were predicted as “Ataxia” and 3 as 

“Normal”, indicating a relatively balanced classification. This 

observation visually supports Ž with the model which is prone 

to over-predict the class “Ataxia” irrespective of true label. 

This prediction imbalancement is even more pronounced for 

“Normal” class, missclassified samples (9) are more than 

twice as much as correctly classified ones (4). The predictive 

performance brought reflections as to whether the model 

overfavors celebrating ataxia instead of specificity. The figure 

adds to previous precision-recall statistics in further 

illustrating the necessity of rebalancing the model. Unintended 

implications in terms of real-life diagnostics are also suggested 

where a healthy person may be misclassified, causing 

unnecessary distress. Some solutions like data augmentation 

or class-weight tuning may alleviate this skew. 

 
 

Figure 12. Distribution of predicted and true classes 

 

The distribution of confidence scores is shown for each 

predicted class (Ataxia and Normal) in Figure 13 (a boxplot). 

The median confidence (around 89% for each class) is 

depicted by the middle line inside the box. IQRs for Ataxia 

(middle 50% of the data) ranges from about 86% to 93%, and 

for Normal from 83% to 93%, with a little wider distribution 

in the Normal predictions. The whiskers spread between a 

minimum of approximately 81% to 99% (Ataxia) and to 

approximately 96.5% (Normal), indicating that the full range 

of potential confidences is slightly broader in the case of 

Ataxia. However, there are no very bad outliers, in neither 

category, and can assume a rather steady and reliable 

confidence estimation. The mean confidence for the two 

classes are nearly the same but the normal class has more 

variability. Although visuality with respect to the medians is 

not symmetric, no obvious prediction superiority in 

confidence of the two classes can be seen. “However, the 

higher variance for Normal will suggest lesser confidence in 

the classification than Ataxia. The visualization is useful to see 

how the model is confident is in predicting a class. 

 

 
 

Figure 13. Confidence scores by predicted class boxplot 

 

Figure 14 shows the confusion matrix in percentage, which 

provides a normalised view of the models classification 

between the two classes: Normal and Ataxia. In the Normal 

category, for the real diagnosis "Normal," 69.2% of the 

instances have been classified well with "Normal" and 30.8 % 

of them have been misclassified with "Ataxia." True class 

"Ataxia" were successfully leaned by model in 57.1% of the 

cases and 42.9% false classified as Normal. These percentages 

show a performance unbalance: the classifier is better at 

identifying Normal than Ataxia but not without clear rates of 

wrong classifications in both directions. The gradient in the 

heatmap clearly separates better Normal predictions shown 

with a darker color in the top-right cell. In contrast, the lighter 
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shade in the bottom left cell highlights the difficulty of 

diagnosing Ataxia correctly. It can be seen in this figure that 

Although our model is relatively accurate, it still lacks in 

sensitivity and in particular between Ataxia and Normal which 

can affect its reliability in clinical or diagnostic cases. 

Figure 15 presents the confidence levels of the predictions 

arranged in descending order of confidence for all test files. 

The red line indicates the Ataxia labeled-predictions and the 

blue line Normal ones. The graph begins with almost 99.3% 

confidence on an Ataxia and immediately follows with 98.9% 

on another high-confidence Ataxia case. If traverse the x-axis, 

the confidence scores gradually lower for both classes. The 

confidence levels for Ataxia and Normal are about 95.8% and 

94.0% around the index 4 and 5 respectively, indicating a high 

confidence in both classes. The confidence decreases to 

approximately 88.6% for Normal and a bit less for Ataxia by 

index 10. The trend continues to decrease towards the end, 

with the minimum confidence happening close to 81.0% for 

Ataxia and around 82.4% for Normal. This plot shows that 

while the certainty is high in the predictions early in the list, 

there is loss of certainty towards the lower ranked predictions, 

and that the two classes follow similar trend line. The close 

clustering of both the curves suggests equally strong 

confidence over the estimateable classes. 

 

 
 

Figure 14. Confusion matrix (percentage) 

 

 
 

Figure 15. Confidence of predictions sorted by confidence value 

 

 
 

Figure 16. Training vs validation loss with Early Stopping 

 

The proposed work seems especially strong compared with 

the previous studies reviewed in the introduction, as they only 

use low-cost knock sensors and raw CNN processing to build 

the data processing architecture. Previous works by Nazmi et 

al. (2019) and Khera & Kumar (2020) attained accuracies of 

approximately 87% based on high-resolution EMG recordings 

and handcrafted features. Similarly, Turner & Hayes (2019) 

obtained 82% accuracy using LSTM models and expensive in-

shoe pressure sensors; while Yousefi et al. (2021) and Zhao et 

al. (2024) achieved above 90% accuracy via multi-channel 

IMUs, hybrid CNN-LSTM architectures, and attention 

mechanisms. By contrast, the current study reaches a 57% 

recall for ataxia detection, a crucial clinical parameter, with 

confidence degrees between 81% and 99%, even when 

operating solely on two simple knock-sensor channels and a 

very imbalanced dataset. The overall effectiveness provided 

by these approaches is evidenced by their low gait diagnostic 

footprint, providing a much more cost-effective, portable and 

practical solution than previous studies' sensor-rich 

approaches and the ability to derive clinically relevant gait 

signatures from small amounts of sensor input. Thus, despite 

the modest overall accuracy (40%), the approach presented in 

this study is an efficient and scalable method for diagnostic 

approach and shows promising applicability to early 

neuromuscular disease screening and deployment in real-
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world environments. 

 

 
 

Figure 17. Effect of regularization on accuracy 

 

The implementation of Early Stopping and better 

regularization show a significant improvement in the stability 

and generalization of the model. The Training–Validation 

Loss curves clearly show that the validation loss diverges from 

the training loss after epoch 11; thus, stopping at that point 

effectively prevents memorization (Figure 16). The table of 

comparison is confirms that, using both dropout and L2 

regularization, on average, training accuracy decreases 

slightly, but test accuracy gets significantly better with the 

overfitting gap reduced from 59% to 20%. Additionally, the 

confusion matrix in Figure 17 presents improved detection of 

Normal gait patterns along with a decrease of the false 

positives, thus equipping the model with a balanced class 

prediction. Results corroborate the power of these 

optimization approaches and stress their importance for an 

actual deployment in practice. 

 

 
 

Figure 18. Improved confusion matrix updated confusion 

matrix after threshold & loss modification 

 

Figure 18 threshold optimization and the adoption of a 

class-weighted loss, the improved confusion matrix proves to 

be better balanced across classes with a marked decrease in 

normal samples being misclassified as ataxia. This suggests 

that specificity has been promoted while retaining sufficiently 

high sensitivity in ataxia detection and, therefore, the initial 

bias toward over-prediction of ataxia abated, rendering the 

model more applicable for clinical screening applications. 

Table 5 shows the quantitative comparison between CNN, 

SVM, and LSTM models. 

 

Table 5. Quantitative comparison between CNN, SVM, and LSTM models 

 

Model Accuracy 
Precision (Normal / 

Ataxia) 

Recall (Normal 

/Ataxia) 

F1-Score 

(Avg.) 

Training 

Time 
Notes 

CNN 

(Proposed) 

68% (after 

modifications) 
0.67 / 0.70 0.69 / 0.67 0.68 Medium 

Best balance of temporal + 

spatial feature extraction 

LSTM 62% 0.63 / 0.60 0.58 / 0.66 0.61 High 

Captures time-series patterns 

but prone to overfitting with 

small datasets 

SVM (RBF) 55% 0.52 / 0.57 0.50 / 0.59 0.54 Low  

 

 

4. CONCLUSIONS 

 

In this study, we developed a lightweight CNN structure for 

the early detection of neuromuscular disorders from wearable 

gait-sensor data. After we used stronger regularization, class-

weighted loss and threshold optimization the model reached a 

final accuracy of 68% with a balanced precision of 0.67 for 

normal gait and 0.70 for ataxia. Specificity significantly 

enhanced after minimizing the model bias, and false positive 

ataxia prediction decreased from 9 misclassified ataxia to 4 

errors (as illustrated in the new confusion matrix). 

Comparative benchmarks indicated that CNN performed 

better than traditional methods as LSTM showed 62% accurate 

performance while SVM showed 55% accuracy which further 

confirmed the CNN-driven model to be able to learn the 

localized dynamics of gait with moderate computational cost. 

Yet the model can have serious limitations as well. The sample 

size is comparatively small, which enhances subject-level 

overfitting and limits generalizability. The 128 sample 

windows capture only temporal dynamics on a short-term 

scale, and, potentially, overlook long-range dependencies 

involving whole gait cycles. Although regularization 

decreased the overfitting, the model still generated 20% 

residual difference in accuracy between the training 

performance and the test performance. Furthermore, all trials 

were performed under controlled laboratory conditions, which 

might not reflect real-world gait variability. Therefore, future 

research may need to extend the dataset to a more general 

population and varied walking conditions. Incorporating 

architectures suitable for modeling longer time scales, 

including a hybrid CNN-LSTM model, Transformer encoder 

or attention-based temporal model, may also increase accuracy 

above 68%. Domain-adaptation methods might develop better 

adaptive performance in both outdoor and free-living 

scenarios. Multi-sensor fusion (e.g. IMU + EMG + plantar 

pressure) is anticipated to enhance classification stability and 

sensitivity/specificity of early-stage neuromuscular disorders. 

Finally, the performance of the model in a wearable system 
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could enable ongoing, home-based monitoring and early 

clinical intervention. 
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