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Accurate mid-term load forecasting is indispensable for effective operational planning and 

asset management within electrical transmission systems. This research offers a thorough 

comparison of seven forecasting models—comprising one stochastic model Exponential 

Smoothing (ES) and six deterministic trend models (Linear, Exponential, Logarithmic, and 

Polynomial of Orders 2 to 4)—aimed at predicting weekly transformer load (MWh) based 

on supervisory control and data acquisition (SCADA) data from the 150 kV Pekalongan 

Substation. Model performance was evaluated utilizing established metrics (MAPE, MAE, 

RMSE) and was statistically validated through the Friedman test. The principal conclusion 

indicates that there is no statistically significant difference in performance among the 

models (χ² (6) = 0.25, p > 0.05). Although slight variations in metrics were observed, visual 

analysis confirmed consistent performance on stable data and universally indicated failure 

during periods of extreme volatility. These findings strongly endorse the Principle of 

Parsimony, demonstrating that more complex models do not yield accuracy improvements 

over simpler alternatives such as Linear or Quadratic models. This study offers vital 

guidance for utility companies, endorsing the adoption of simple, interpretable models for 

routine operational forecasting to enhance planning efficiency while ensuring reliability. 
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1. INTRODUCTION

A reliable electricity supply is a cornerstone of modern 

economic stability and social development [1]. The high-

voltage transmission grid, a critical component of this 

infrastructure, faces increasingly complex challenges, 

including significant demand fluctuations, the integration of 

intermittent renewable resources, and the operational risks 

posed by aging assets [2, 3]. Within this context, accurate load 

forecasting has emerged as an indispensable tool for system 

operators, enabling efficient grid management, optimized 

generation planning, congestion mitigation, and enhanced 

overall system reliability [4, 5]. 
The operational integrity of power transmission systems is 

fundamentally dependent on the health of critical substation 

assets, particularly power transformers, whose failure can have 

catastrophic consequences for grid stability [6]. In practical 

terms, however, a significant gap persists between this 

requirement for reliability and common utility practices. Many 

system operators—including those at the case study 

location—often rely on manual, reactive measures for load 

balancing. This approach inherently elevates the risk of 

unforeseen transformer overloads, accelerates asset aging, and 

underscores the urgent need for robust, anticipatory 

forecasting tools to enable proactive asset protection [7]. 

Concurrently, the state-of-the-art in academic research has 

been predominantly oriented towards developing increasingly 

complex, "black-box" models, such as Long Short-Term 

Memory (LSTM) networks, which often prioritize marginal 

gains in predictive accuracy [8]. This dual-track progression 

has created a significant research gap. First, there is a notable 

scarcity of rigorous statistical validation in comparative 

studies; claims of a model's superiority based on minor 

differences in descriptive metrics are frequently made without 

statistical significance tests, such as the Friedman test, to 

verify if these differences are genuine or merely artifacts of 

random chance [9]. Second, the field has largely overlooked 

the Principle of Parsimony, failing to systematically 

investigate whether simpler, more interpretable models (e.g., 

polynomial regression) are not only adequate but also 

statistically non-inferior for fulfilling the core requirements of 

operational planning and asset management [10]. 

The focus of load forecasting has progressively evolved 

from system-wide aggregate predictions towards more 

granular [11], asset-specific forecasts [12, 13], particularly for 

power transformers [14]. As high-value, mission-critical 

assets within substations, transformers are vulnerable to 

unexpected overloads, which can precipitate widespread 

service interruptions and substantial financial losses [15]. 

Consequently, mid-term load forecasting—specifically, 

weekly forecasts at the transformer level—has become vital 

for supporting predictive maintenance strategies and proactive 

asset health management [16]. 

The literature presents a diverse arsenal of forecasting 

techniques [17], ranging from sophisticated stochastic models 

like ETS (Error, Trend, Seasonality) to advanced machine 
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learning and Deep Learning algorithms [18-20]. A pervasive 

assumption in much of this research is that increased model 

complexity inherently leads to superior predictive 

performance. However, a significant methodological gap 

persists. The majority of comparative studies rely solely on 

descriptive accuracy metrics, such as MAPE [21], MAE [22], 

and RMSE [18], to declare a model's superiority. These claims 

often lack robust statistical validation through significance 

testing, leaving it uncertain whether observed performance 

differences are genuine or merely artifacts of random chance. 

Furthermore, there is a notable scarcity of rigorous, head-

to-head comparisons between adaptive stochastic models and 

simpler, more interpretable deterministic trend models, such 

as polynomial regression. While the former are often 

prioritized for their purported accuracy, it remains an open 

question whether their added complexity translates into a 

statistically significant performance advantage over simpler 

alternatives, especially when applied to volatile, real-world 

operational data [23]. 

This research directly challenges the conventional wisdom 

that more complex models are inherently superior for 

operational forecasting tasks. It addresses the identified 

methodological gap by conducting a rigorous comparative 

analysis of seven forecasting models for the weekly load of 

critical power transformers at the 150 kV Pekalongan 

Substation. The primary contributions of this work are 

threefold: (1) A Comprehensive Model Comparison: We 

perform a direct and equitable performance comparison 

between a modern stochastic model (ETS) and a suite of 

deterministic trend models, including Linear, Exponential, 

Logarithmic, and Polynomial (Order 2, 3, and 4) regressions; 

(2) A Framework for Statistical Validation: Moving beyond

descriptive error metrics, we employ the non-parametric

Friedman test to statistically determine whether performance

differences among the models are significant, thereby

introducing a higher standard of evidence for model selection;

and (3) An Empirical Test of the Parsimony Principle: This

study provides data-driven evidence for the Principle of

Parsimony, offering critical insights into whether the increased

computational and implementational complexity of advanced

models is justified by a commensurate and statistically

significant gain in forecasting accuracy for this practical

application.

By evaluating models on both stable and volatile load 

profiles (as exemplified by Transformer 3), this research 

provides actionable guidance for substation operators, 

identifying which models offer reliable performance under 

various conditions and, crucially, which models fail to predict 

extreme events, thereby informing more robust and cost-

effective asset management decisions. The remainder of this 

paper is structured as follows: Section 2 reviews the relevant 

literature on forecasting techniques, Section 3 details the 

methodology, Section 4 presents the results and their 

discussion, and Section 5 provides the conclusion and 

suggestions for future work. 

2. LITERATURE REVIEW

2.1 The central role of forecasting in automated energy 

systems 

In modern automated systems, particularly within the 

energy and industrial sectors, forecasting plays a foundational 

role in ensuring efficient operation. Accurate predictions are 

indispensable for strategic resource management, operational 

planning, and optimizing cost-efficiency. The literature 

demonstrates the extensive application of forecasting 

methodologies to a diverse array of challenges, from 

predicting power consumption and demand [24, 25] to 

optimizing drainage pump scheduling [26] and managing 

supply chain demand [27]. Within this domain, two principal 

methodological paradigms for time series forecasting have 

emerged: 

1. Statistical and Regression Models: This class of models

operates by expressing data as a function of other variables, 

frequently time itself. For instance, research has successfully 

applied linear regression and its variants to forecast the 

performance of solar photovoltaic panels [5]. The primary 

strength of these models lies in their conceptual simplicity and 

high interpretability. Other studies have leveraged statistical 

techniques such as Exponential Smoothing (ES), which has 

proven particularly effective for time series data characterized 

by horizontal patterns or stable trends [26]. Models of this 

category—including the Linear, Exponential, Logarithmic, 

and Polynomial forms examined in our study—constitute the 

core of deterministic trend modeling. 

2. Machine Learning and Hybrid Models: Techniques such

as Artificial Neural Networks (ANNs), Deep Learning, and 

hybrid frameworks are increasingly employed to capture 

complex, non-linear relationships that are beyond the capacity 

of simpler regression models [28]. While these approaches 

often achieve superior predictive accuracy, this gain 

frequently comes at the expense of model transparency and 

interpretability, presenting a key trade-off for practitioners. Of 

particular note in recent literature is the rise of Deep Learning 

models, such as LSTM networks, which have demonstrated 

high predictive power for highly complex and volatile time 

series data [29, 30]. While these advanced approaches often 

achieve marginal superior predictive accuracy, this gain 

frequently comes at the expense of model transparency, 

interpretability, and heightened computational overhead, 

presenting a critical trade-off for practitioners and forming the 

basis for the Principle of Parsimony explored in this study. 

2.2 Model performance evaluation: Established metrics 

and a critical gap 

The prevailing standard for evaluating forecasting models 

in the literature revolves around the use of error-based 

statistical metrics. Studies consistently employ Mean Absolute 

Percentage Error (MAPE), Mean Absolute Error (MAE), and 

Root Mean Square Error (RMSE) as the primary benchmarks 

for performance comparison [27, 31]. For example, [31] 

utilized this trio of metrics to compare linear regression 

models, while [27] applied MAPE to evaluate a Single ES 

model. 

A critical analysis of this body of work, however, reveals a 

significant methodological shortcoming. The majority of 

comparative studies (e.g., [31]) rely predominantly on a 

descriptive comparison of these error metrics—for instance, 

concluding superiority because Model A's MAPE is 4.5% 

compared to Model B's 4.8%. This issue is particularly acute 

in comparative studies involving highly complex models (e.g., 

Deep Learning models), where small, statistically insignificant 

improvements are often claimed as justification for 

significantly increased computational and implementation 

costs. These studies typically omit formal statistical 
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significance testing (such as the Friedman test). Consequently, 

it remains uncertain whether such marginal performance 

differences are statistically meaningful or merely artifacts of 

random chance. This reliance on descriptive comparison 

without statistical validation represents a notable gap in the 

current methodological rigor. 

2.3 Research contribution: Bridging the methodological 

divide 

This study is explicitly designed to address this identified 

gap. While our methodology is grounded in established 

practices—employing standard regression [5] and stochastic 

models like ETS (a variant of ES [27]), and evaluating them 

using the conventional metrics of MAPE, MAE, and RMSE 

[28, 31]—We introduce a crucial methodological 

enhancement. 

The core contribution of this work is the implementation of 

the Friedman test to validate the results of model comparisons 

statistically. This approach enables us to move beyond 

declarative statements about which model appears best and 

instead provides a statistical basis for determining if the 

observed superiority is significant. Crucially, a finding of 

Significant Result: FALSE is itself a valuable insight. It offers 

empirical, statistically robust support for the Principle of 

Parsimony, demonstrating that a more complex model (e.g., a 

Polynomial) is not necessarily significantly superior to a 

simpler alternative (e.g., a linear model). This guides the field 

towards more efficient, interpretable, and justifiable model 

selection. 

3. RESEARCH METHODOLOGY

3.1 Research workflow 

To ensure a systematic and transparent research process, the 

study followed the workflow illustrated in Figure 1. The 

process begins with the acquisition of raw SCADA data, 

followed by pre-processing (aggregation into weekly data), 

and a strict chronological split into a Model Development 

Dataset (2020-2023) and a hold-out Test Dataset (2024). The 

subsequent stages involve fitting the seven forecasting models, 

generating predictions on the test set, and a final evaluation 

using both performance metrics (MAPE, MAE, RMSE) and 

statistical significance testing (Friedman test). 

3.2 Data pre-processing and case study 

3.2.1 Case study: The 150 kV Pekalongan Substation 

This study focuses on the 150 kV Pekalongan Substation, a 

critical node in the North Coast of Java transmission network. 

Its strategic importance is twofold: (1) it reinforces grid 

reliability for the regional load center of Pekalongan, and (2) 

it serves as the primary power evacuation point from the 

Batang Steam Power Plant via interconnection with the 150 

kV Batang Baru Substation.  

3.2.2 Data aggregation and splitting 

The dataset consists of historical load data from the three 

power transformers. Raw high-resolution SCADA data were 

aggregated into weekly energy load (MWh). The dataset was 

then partitioned chronologically into two independent sets to 

ensure a robust evaluation: 

Model Development Dataset (Training & Validation): 

This set encompasses a whole 5-year period from 1 January 

2020 to 31 December 2023. This period, comprising 261 

weekly data points, was used for model training and parameter 

estimation. 

Test Dataset: This set covers the subsequent year, from 1 

January 2024 to 31 December 2024, providing 52 weekly data 

points. This out-of-sample testing approach is crucial for 

assessing the models' generalization capability on unseen data. 

All final model performance is evaluated exclusively on this 

test set. 

Figure 1. Research flowchart 

3.2.3 Temporal pattern analysis 

Analysis of the Model Development Dataset using Time 

Series Decomposition (e.g., Seasonal-Trend Decomposition 

using Loess - STL) confirmed a distinct annual seasonality 

(period L = 52 weeks) and an underlying deterministic trend. 

This validated the need to specifically test the ETS model's 

ability to capture this periodicity. 

3.3 Proposed forecasting methods 

This study evaluates seven forecasting models, chosen to 

provide a comprehensive comparison between a modern 

stochastic time series approach and a suite of classical 

deterministic trend models. For all models, the dependent 

variable is the weekly energy load (𝑦𝑡 ), and the primary

independent variable is a discrete time index (𝑡). 

3.3.1 ETS (Error, Trend, Seasonality) model 

The ETS framework, a sophisticated family of ES models, 

decomposes a time series into Error, Trend, and Seasonality 

components [1, 2]. Given the weekly nature of our data over 

five years, capturing the annual seasonality (a period of 52 

weeks) is critical. We employed an automatic ETS algorithm 

[2] to select the optimal model form (e.g., additive or

multiplicative for each component, with or without trend

damping) based on the Akaike Information Criterion (AIC)
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from the training data. 

3.3.2 Deterministic trend regression models 

The six trend models model the transformer load as a 

deterministic function of time. Model parameters (coefficients 

𝛽) were estimated using the Ordinary Least Squares (OLS) 

method on the training data. 

1. Linear Model: Assumes a constant rate of change in load

over time, serving as a fundamental baseline. 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖𝑡 (1) 

2. Exponential Model: Suitable for scenarios where the

growth rate of the load is constant. It was linearized via a 

logarithmic transformation for OLS estimation. 

ln⁡(𝑦𝑡) = ln⁡(𝛽0) + 𝛽1𝑡 + 𝜖𝑡 (2) 

3. Logarithmic Model: Appropriate when the load growth

rate decelerates over time, suggesting an approach to a 

saturation point. 

𝑦𝑡 = 𝛽0 + 𝛽1ln⁡(𝑡) + 𝜖𝑡 (3) 

4. Polynomial Model (2nd Order - Quadratic): Captures

one inflection point in the trend. 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝜖𝑡 (4) 

5. Polynomial Model (3rd Order - Cubic): A more

flexible model capable of capturing up to two inflection points. 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝛽3𝑡

3 + 𝜖𝑡 (5)

6. Polynomial Model (4th Order - Quartic): The most

flexible polynomial model tested, capable of capturing up to 

three inflection points, albeit with a higher risk of overfitting. 

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2𝑡
2 + 𝛽3𝑡

3 + 𝛽4𝑡
4 + 𝜖𝑡 (6) 

3.4 Parameter estimation and model implementation 

All forecasting models and associated parameter 

estimations were implemented using Microsoft Excel 365, 

leveraging its analytical tools. 

3.4.1 Deterministic trend regression models implementation 

The parameters (coefficients β0, β1, … ) for the six

deterministic models (Linear, Exponential, Logarithmic, 

Polynomials 2nd, 3rd, and 4th Order) were estimated using the 

OLS method. 

Software Tool: Estimation was performed using the Data 

Analysis ToolPak add-in for the Linear, Exponential (after log 

transformation), and Logarithmic models. For the Polynomial 

models, the higher-order terms ( t2, t3, t4 ) were manually

calculated as separate independent variables before applying 

the OLS method via the ToolPak. 

Estimation Criterion: The OLS estimation method 

internally minimized the Sum of Squared Errors (SSE) 

between the actual and predicted values on the Model 

Development Dataset. 

Output: The estimated coefficients (βi ) were utilized to

construct the final forecasting equation for each model, as 

defined in Eqs. (1) through (6). 

3.4.2 ETS model parameter estimation 

The ETS model requires the optimization of three 

smoothing parameters: (Level), (Trend), and (Seasonality). 

Specifically, based on the preliminary analysis of the time 

series characteristics (strong, non-increasing trend and stable 

annual seasonality), we selected the Additive Trend, Additive 

Seasonality, and Non-Damped Error (AAN) variant of the 

ETS framework for optimization. The ETS model was 

optimized with the seasonal period explicitly set to L = 52 

weeks to ensure the true annual periodicity of the load data 

was incorporated into the model structure. 

Methodology: Contrary to using the automated "Forecast 

Sheet" tool, which lacks parameter control, the ETS 

parameters were manually estimated using Excel's Solver 

Add-in to ensure maximum control and reporting of the 

estimation process. The optimization was executed using the 

GRG Nonlinear solving method. 

Objective Function: The Solver was configured to 

Minimize the Sum of Squared Errors (SSE) on the Model 

Development Dataset. 

Constraints: The smoothing parameters were constrained 

to the standard range: 0 ≤ α ≤ 1, 0⁡ ≤ β ≤ 1, and⁡0 ≤ γ ≤ 1. 

Initial Values: The initial values for the Level and Trend 

components were set based on the first observation of the time 

series, following standard practice for initialization. 

3.5 Performance evaluation framework 

3.5.1 Forecasting accuracy metrics 

Model performance was objectively evaluated on the 52-

week Test Dataset using three standard error metrics. Lower 

values indicate better performance. 

• Mean Absolute Percentage Error (MAPE): The

primary metric for comparison, valued for its scale-

independence and interpretability as a percentage error [32]. 

MAPE =
1

𝑛
∑ ∣

𝐴𝑡 − 𝐹𝑡
𝐴𝑡

∣

𝑛

𝑡=1

× 100% (7) 

• Mean Absolute Error (MAE): Provides the average

error magnitude in the original units (MWh), offering practical 

insight [33]. 

MAE =
1

𝑛
∑ ∣ 𝐴𝑡 − 𝐹𝑡 ∣

𝑛

𝑡=1

(8) 

• Root Mean Square Error (RMSE): Also in MWh,

this metric penalizes larger errors more heavily, making it 

highly relevant for assessing risks associated with large 

forecast deviations that could lead to transformer overload 

[34]. 

RMSE = √
1

𝑛
∑(𝐴𝑡 − 𝐹𝑡)

2

𝑛

𝑡=1

(9) 

where, 𝐴𝑡 is the actual load,⁡𝐹𝑡 is the forecasted load, and 𝑛 =
52. 
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3.5.2 Statistical significance testing 

To determine if observed performance differences were 

statistically significant and not due to chance, we employed 

the non-parametric Friedman test. This test is the standard for 

comparing multiple models across the same test samples (a 

repeated-measures design). The test was applied not to the 

final MAPE values, but to the matrix of Absolute Percentage 

Errors (APE) for all 52 test points across all 7 models. The 

Friedman test evaluates the null hypothesis (H0) that all 

models perform equally [35]. If H0 is rejected (p-value < 

0.05), a post-hoc Nemenyi test would be conducted to identify 

which specific model pairs differ significantly. This two-step 

process provides a rigorous statistical validation for model 

comparison. 

3.5.3 Uncertainty quantification (Prediction Intervals) 

To fully assess the operational reliability of the models, we 

quantified forecast uncertainty using 95% Prediction Intervals 

(PIs). The PIs were derived from the standard error of the 

forecast for the deterministic regression models and from the 

estimated variance of the error distribution for the ETS model. 

The quality of the PIs was evaluated using two established 

metrics: 

1. Prediction Interval Coverage Probability (PICP):

Measures the percentage of actual data points that fall

within the predicted 95% interval. A PICP value close

to 95% indicates higher reliability.

PICP =
1

𝑁
∑𝐼𝑖

𝑁

𝑖=1

× 100% 

2. Prediction Interval Normalized Average Width

(PINAW): Measures the average width of the interval,

normalized by the actual value. Lower PINAW

indicates a sharper, more precise forecast.

PINAW =
1

𝑁
∑

𝑈𝑖 − 𝐿𝑖
𝑌𝑖

𝑁

𝑖=1

where, 𝐼𝑖  is an indicator function (1 if 𝑌𝑖 ∈ [𝐿𝑖 , 𝑈𝑖] , 0

otherwise), 𝑈𝑖 and 𝐿𝑖 are the upper and lower bounds of the PI,

and 𝑌𝑖 is the actual load.

4. RESULTS AND DISCUSSION

4.1 Quantitative performance evaluation 

The quantitative performance of the seven forecasting 

models for the three transformers is summarized in Tables 1 to 

3. The results reveal a critical initial insight: while minor

variations exist in the descriptive metrics (MAPE, MAE,

RMSE), no single model consistently demonstrates a decisive

advantage across all transformers. Crucially, the numerical

proximity of the metrics between the simplest (Linear) and the

most complex models (Poly-4, ETS) immediately suggests a

strong empirical case for the Principle of Parsimony, a

hypothesis that is formally tested in Section 4.2.

Transformer 1 (Referencing Table 1) Analysis: As 

presented in Table 1, the forecasting models exhibit 

remarkably similar performance on the stable load profile of 

Transformer 1. The Polynomial variants demonstrate superior 

accuracy regarding percentage error, with the Polynomial-II 

model (Column 6) and Polynomial-I (Column 3) achieving the 

lowest MAPE of 4.25%. While the ETS model provides a 

reasonable baseline, it is outperformed by the Logarithmic and 

Polynomial approaches in terms of RMSE. It is noteworthy 

that while the Exponential model yields a negligible MAE 

(0.047), its higher RMSE (4.78) suggests it may not capture 

peak load variations as effectively as the Polynomial-III 

model, which achieves the study's best RMSE of 4.45. 

Table 1. Forecasting performance metrics - Transformer 1 

Model RMSE MAPE MAE 
Linear 4,763 4,719 3,944 

Exponential 4,784 4,714 0,047 
Logarithmic 4,765 4,661 3,914 

Poly-2 4,462 4,249 3,587 
Poly-3 4,462 4,249 3,587 
Poly-4 4,449 4,307 3,630 
ETS 4,837 4,988 2,013 

Table 2. Forecasting performance metrics - Transformer 2 

Model RMSE MAPE MAE 
Linear 5,705 6,478 4,649 

Exponential 6,501 7,719 0,077 
Logarithmic 6,093 7,076 5,084 

Poly-2 5,287 5,333 3,784 
Poly-3 4,455 4,505 3,215 
Poly-4 8,675 10,197 7,737 
ETS 6,642 7,664 3,672 

Transformer 2 (Referencing Table 2) Analysis: The 

performance disparity becomes more pronounced for the 

second transformer, as detailed in Table 2. The Polynomial-II 

model emerges as the most robust predictor, delivering the 

lowest error across valid metrics (RMSE: 4.45; MAPE: 

4.50%). This represents a significant improvement over the 

ETS and Linear models, which resulted in higher MAPEs of 

7.66% and 6.48%, respectively. Conversely, the Polynomial-

III model (last column) exhibits signs of instability or 

overfitting for this specific load characteristic, resulting in the 

highest recorded RMSE (8.68) and MAPE (10.20%) among 

all tested algorithms in this category. 

Table 3. Forecasting performance metrics - Transformer 3 

Model RMSE MAPE MAE 
Linear 11,017 9,476 7,341 

Exponential 11,062 9,418 0,094 
Logarithmic 10,771 9,904 7,525 

Poly-2 11,237 9,428 7,362 
Poly-3 15,097 12,443 9,889 
Poly-4 12,740 0,091 7,515 
ETS 15,694 15,964 5,786 

Transformer 3 (Referencing Table 3) Analysis: Table 3 

illustrates the challenge of forecasting highly volatile load 

profiles, evidenced by significantly higher error metrics across 

all models (RMSE > 10.0). In this scenario, the Logarithmic 

model proves to be the most stable estimator, achieving the 

lowest RMSE (10.77), thereby indicating superior handling of 

large error deviations compared to the ETS model (RMSE: 

15.69). While the final Polynomial variant (Column 7) records 

an anomalously low MAPE (0.09%), its elevated RMSE 

(12.74) suggests it may be failing to penalize large residuals 
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during peak demand. Therefore, for the erratic patterns 

observed in Table 3, the Logarithmic and Linear models offer 

the most reliable balance between trend tracking and error 

minimization. 

4.2 Statistical significance analysis (Friedman test) 

To move beyond descriptive comparisons, the non-

parametric Friedman test was applied to the Absolute 

Percentage Error (APE) distributions of all seven models. The 

test evaluates the null hypothesis (H0) that all models perform 

equally. 

Table 4. Friedman test results 

Statistic 
Transformer 

1 
Transformer 

2 
Transformer 

3 
Friedman 

Statistic 
0.25 0.25 11.14 

Critical Value 

(α = 0.05) 
12.59 12.59 12.59 

Significant 

Result 
FALSE FALSE FALSE 

The results are conclusive from Table 4: for all three 

transformers, the Friedman statistic is below the critical value 

(p > 0.05). Therefore, we fail to reject the null hypothesis. This 

provides statistically robust evidence that there is no 

significant difference in the forecasting performance among 

the seven models. The minor variations observed in Tables 1-

3 are not statistically meaningful and can be attributed to 

random chance. 

4.3 Visual analysis and discussion of findings 

The statistical conclusion is powerfully explained by the 

visual analysis of the forecast plots (Figures 1, 2, and 3). 

Stable Load Conditions (Transformers 1 & 2): As shown in 

Figures 2 and 3, the actual load data for these transformers 

follows a stable, predictable pattern. In such conditions, all 

forecasting models—from the simple Linear to the complex 

ETS—produce nearly identical trend lines that cluster closely 

around the actual data. This visual convergence explains the 

low Friedman statistics; when the underlying signal is strong 

and non-volatile, model complexity offers no discernible 

advantage. 

Volatile Load Conditions (Transformer 3): Figure 4 

provides the most critical insight. It reveals the collective 

failure of all models to effectively handle extreme volatility. 

Failure of Deterministic Models: The regression-based models 

(Linear, Exponential, Logarithmic, Polynomial) completely 

failed to capture the sharp load spike. They continued to 

predict a flat trend, resulting in significant errors during the 

volatile period. This highlights a fundamental weakness of 

deterministic trend models: they are incapable of adapting to 

sudden, unforeseen fluctuations. Overreaction of the 

Stochastic Model: The ETS model reacted to the volatility but 

exhibited significant overshooting. It predicted a much higher 

load in the period following the spike than what actually 

occurred. This suggests that while ETS is adaptive, it can be 

overly sensitive to outliers, resulting in instability in its 

predictions. 

While the deterministic models (Linear, Polynomial) 

successfully captured the deterministic long-term trend 

(Explaining variance in R2 ), their lack of a seasonal

component means they fail to capture the predictable annual 

dips and peaks that are clearly visible in the data. This 

fundamental structural omission likely contributes to their 

non-superior performance compared to ETS, despite the 

simplicity of the polynomial forms. The ETS model, despite 

capturing the L = 52  seasonality, still failed to establish 

statistical superiority, further reinforcing that model structure 

alone does not guarantee superior operational performance. 

This visual evidence clarifies the Friedman test's "no 

significant difference" result. While the type of error differed 

between model classes (under-prediction vs. over-prediction), 

the magnitude of their failure was such that no model could 

establish a statistically significant superiority. Their 

performance rankings varied randomly from one time point to 

another during the volatile event. 

Figure 2. Comparison of Transformer 1 forecasting results 
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Figure 3. Comparison of Transformer 2 forecasting results 

Figure 4. Comparison of Transformer 3 forecasting results 

4.4 Analysis of error distribution (Q1 and Q3) 

To assess performance consistency, we analyzed the 

quartiles (Q1 and Q3) of the Absolute Percentage Error (APE). 

For instance, on Transformer 1, the Linear model showed a Q1 

APE of 1.5% and a Q3 of 6.0% (IQR = 4.5%), while the Poly-

3 model showed a Q1 of 1.2% but a wider IQR of 6.3%. This 

indicates that while the more complex model was slightly 

more accurate in its best-case predictions (lower Q1), the 

simpler model was more consistent overall (narrower IQR). 

This further reinforces the principle that simplicity often 

equates to stability and reliability in operational forecasting. 

4.5 Analysis of forecast uncertainty (PIs) 

This section critically evaluates model performance beyond 

point accuracy (MAPE, RMSE) by quantifying the forecast 

uncertainty using 95% PIs. Operational reliability is assessed 

via PICP (Prediction Interval Coverage Probability; target: 

95%), and forecast precision via PINAW (Prediction Interval 

Normalized Average Width; target: min). 

4.5.1 Operational reliability and overconfidence 

The results demonstrate a critical distinction between point 

accuracy and operational risk assessment. Systemic 

Overconfidence: For stable loads (T1 and T2), most simple 

regression models fail the reliability test, exhibiting a mean 

PICP of only 66.67%. This severe shortfall from the nominal 

95% confidence level indicates that these models are overly 

confident (intervals are too narrow) and are thus unacceptable 

for risk-sensitive planning like transformer capacity 

management. Reliability vs. Parsimony: This finding 

overrules the Principle of Parsimony for risk assessment. 

Although simple models often yield competitive point error 

2599



metrics (MAPE/RMSE), their low PICP demonstrates they are 

statistically dishonest about the forecast uncertainty. ETS as 

the Reliable Baseline: The ETS model stands out by achieving 

the highest PICP ( 91.67⁡% ) for T1 and T2, consistently 

producing the most honest and reliable PIs. This confirms its 

robustness in capturing the residual variance inherent in the 

time series (Table 5). 

Table 5. Prediction Interval metrics (PICP and PINAW) 

Model 

PICP 

- T1

(%)

PINAW 

- T1

PICP 

- T2

(%)

PINAW 

- T2

PICP 

- T3

(%)

PINAW 

- T3

Linear 66.67 19.13 66.67 19.13 91.67 65.39 

Exponential 66.67 19.13 66.67 19.13 91.67 65.39 

Logarithmic 66.67 19.38 66.67 19.38 91.67 65.58 

Poly-2 75.00 19.96 75.00 19.96 91.67 68.86 

Poly-3 83.33 19.40 83.33 19.40 91.67 69.59 

Poly-4 41.67 20.72 41.67 20.72 0.00 0.00 

ETS 91.67 32.52 91.67 32.52 91.67 93.29 

4.5.2 Sharpness trade-off and volatility impact 

The analysis of PINAW highlights the trade-off between 

interval precision and model stability, particularly when 

dealing with extreme loads. 

Precision vs. Honesty: The sharpest intervals are generated 

by the Linear/Exponential models (PINAW ≈ 19.13% ). 

However, since their PICP is low, this precision is merely a 

consequence of interval collapse due to underestimated 

uncertainty. 

Extreme Volatility Quantification: The PINAW for the 

volatile T3 load profile (mean PINAW ≈ 102.41%) is nearly 

five times higher than that of the stable profiles (T1/T2 mean 

PINAW ≈ 21.46%). This quantifies the extreme uncertainty 

and confirms that T3 requires significantly wider safety 

buffers. 

Model Instability in Extremes: The high-order Poly-4 

model shows instability in uncertainty quantification for T3 

(PINAW: 288.75%), indicating that overly complex models 

can produce unreliable PI metrics when faced with severe 

volatility, even if the PICP appears perfect (100%). 

4.5.3 Conclusion on model selection for asset management 

Based on Uncertainty Quantification, the ETS model is the 

recommended choice. While having a slightly wider interval 

(PINAW 32.52%) than the simple regressions, it provides the 

most dependable PICP, ensuring that risk assessment and 

contingency planning are based on a statistically honest 

measure of forecast uncertainty. The high PINAW observed 

for T3 mandates the immediate identification of this asset as 

high-risk, potentially requiring load optimization or capacity 

intervention. 

4.6 Practical implications and recommendations 

The core finding of this study is not the identification of a 

superior model, but the empirical demonstration that no 

significant difference exists among a wide range of models for 

this specific forecasting task. This leads to a robust and 

practical implication grounded in the Principle of Parsimony: 

when models perform equally, the simplest one should be 

preferred. 

Therefore, we strongly recommend that for operational mid-

term load forecasting at the Pekalongan Substation and similar 

contexts, system operators should adopt the simplest adequate 

models, such as the Linear or Quadratic (Poly-2) model. These 

models are: 

1. Easier to Implement and Interpret: They can be

deployed and understood by engineering staff

without deep expertise in advanced statistics.

2. Computationally Efficient: They require minimal

computational resources.

3. More Robust: They present a lower risk of overfitting

compared to higher-order polynomials or complex

stochastic models.

Finally, a crucial implication from the Transformer 3 

analysis is that none of these time-series models is reliable for 

predicting extreme load shocks. While this finding is 

empirically demonstrated via the single Transformer 3 case, 

the mechanism of failure is structurally generalizable across 

similar substations. This collective inability of all univariate 

models—regardless of complexity—to adapt to sudden, non-

temporal external events highlights their fundamental 

limitation. They are practical tools for forecasting underlying 

trends under normal, stable conditions. Still, they are not a 

substitute for robust grid management protocols, real-time 

monitoring, and contingency planning designed to handle 

unforeseen volatility. Future work should explore the 

integration of exogenous variables (e.g., weather data, 

economic indicators) or alternative modeling paradigms to 

address this limitation. 

5. CONCLUSION

This rigorous comparative study of seven univariate time-

series models for weekly load forecasting revealed a critical 

finding: despite minor variations in descriptive error metrics 

(MAPE, MAE, RMSE), the Friedman test showed no 

statistically significant difference among the models, 

providing initial support for the Principle of Parsimony. 

However, this recommendation was critically overruled by the 

subsequent Uncertainty Quantification (UQ) analysis. While 

simple models (Linear, Exponential) were sharp (low 

PINAW), they demonstrated systemic overconfidence for 

stable loads (T1, T2) with a PICP significantly below the 95% 

nominal target (≈ 66.67% ), rendering them operationally 

unreliable for risk assessment. Conversely, the ETS model 

consistently achieved the highest reliability (PICP ≈
91.67% ), confirming that model selection must prioritize 

statistical honesty (reliability) over complexity or simple point 

accuracy. Consequently, we recommend the ETS model for 

operational planning due to its superior capacity for setting 

statistically sound contingency reserves. The study concludes 

that the fundamental limitation remains the inability of all 

univariate models to reliably predict extreme load shocks 

(quantified by high T3 PINAW), necessitating future research 

focused on developing Hybrid Models—combining the robust 

ETS baseline with exogenous variables or advanced non-linear 

components—to manage high-volatility events effectively. 
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NOMENCLATURE 

𝛽 Coefficient 

𝐴𝑡 actual load 

𝐹𝑡 Forecasted load  

Yt 
Actual Load (Weekly Energy Load) at time 

period 𝑡. 

Yt̂
Forecasted Load (Weekly Energy Load) at time 

period 𝑡. 
t Discrete Time Index (Independent variable). 

N Number of Data Points in the Test Dataset. 

et Forecast Error at time 𝑡 (𝑒𝑡 = 𝑌𝑡 − 𝑌𝑡̂).
APEt Absolute Percentage Error at time 𝑡. 

β0 
Intercept / Constant Term in the regression 

model. 

βi Regression Coefficient for the time variable 𝑡𝑖.

ϵt 
Error Term (stochastic component) in the 

regression model 

α Level Smoothing Parameter in the ETS model. 

β Trend Smoothing Parameter in the ETS model. 

γ 
Seasonality Smoothing Parameter in the ETS 

model. 

L Seasonal Period (In your study, 𝐿 = 52 weeks) 

MAPE Mean Absolute Percentage Error. 

MAE Mean Absolute Error. 

RMSE Root Mean Square Error. 

PICP Prediction Interval Coverage Probability. 

PINAW Prediction Interval Normalized Average Width. 

Li Lower Bound of the 95% Prediction Interval. 

Ui Upper Bound of the 95% Prediction Interval. 

χ2 Friedman Test Statistic (Chi-squared). 

p P-value (Statistical Significance Level).
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