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Accurate mid-term load forecasting is indispensable for effective operational planning and
asset management within electrical transmission systems. This research offers a thorough
comparison of seven forecasting models—comprising one stochastic model Exponential
Smoothing (ES) and six deterministic trend models (Linear, Exponential, Logarithmic, and
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Polynomial of Orders 2 to 4)—aimed at predicting weekly transformer load (MWh) based
on supervisory control and data acquisition (SCADA) data from the 150 kV Pekalongan
Substation. Model performance was evaluated utilizing established metrics (MAPE, MAE,
RMSE) and was statistically validated through the Friedman test. The principal conclusion
indicates that there is no statistically significant difference in performance among the
models (2 (6) =0.25, p>0.05). Although slight variations in metrics were observed, visual
analysis confirmed consistent performance on stable data and universally indicated failure
during periods of extreme volatility. These findings strongly endorse the Principle of
Parsimony, demonstrating that more complex models do not yield accuracy improvements
over simpler alternatives such as Linear or Quadratic models. This study offers vital
guidance for utility companies, endorsing the adoption of simple, interpretable models for
routine operational forecasting to enhance planning efficiency while ensuring reliability.
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1. INTRODUCTION

A reliable electricity supply is a cornerstone of modern
economic stability and social development [1]. The high-
voltage transmission grid, a critical component of this
infrastructure, faces increasingly complex challenges,
including significant demand fluctuations, the integration of
intermittent renewable resources, and the operational risks
posed by aging assets [2, 3]. Within this context, accurate load
forecasting has emerged as an indispensable tool for system
operators, enabling efficient grid management, optimized
generation planning, congestion mitigation, and enhanced
overall system reliability [4, 5].

The operational integrity of power transmission systems is
fundamentally dependent on the health of critical substation
assets, particularly power transformers, whose failure can have
catastrophic consequences for grid stability [6]. In practical
terms, however, a significant gap persists between this
requirement for reliability and common utility practices. Many
system operators—including those at the case study
location—often rely on manual, reactive measures for load
balancing. This approach inherently elevates the risk of
unforeseen transformer overloads, accelerates asset aging, and
underscores the urgent need for robust, anticipatory
forecasting tools to enable proactive asset protection [7].

Concurrently, the state-of-the-art in academic research has
been predominantly oriented towards developing increasingly
complex, "black-box" models, such as Long Short-Term
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Memory (LSTM) networks, which often prioritize marginal
gains in predictive accuracy [8]. This dual-track progression
has created a significant research gap. First, there is a notable
scarcity of rigorous statistical validation in comparative
studies; claims of a model's superiority based on minor
differences in descriptive metrics are frequently made without
statistical significance tests, such as the Friedman test, to
verify if these differences are genuine or merely artifacts of
random chance [9]. Second, the field has largely overlooked
the Principle of Parsimony, failing to systematically
investigate whether simpler, more interpretable models (e.g.,
polynomial regression) are not only adequate but also
statistically non-inferior for fulfilling the core requirements of
operational planning and asset management [10].

The focus of load forecasting has progressively evolved
from system-wide aggregate predictions towards more
granular [11], asset-specific forecasts [12, 13], particularly for
power transformers [14]. As high-value, mission-critical
assets within substations, transformers are vulnerable to
unexpected overloads, which can precipitate widespread
service interruptions and substantial financial losses [15].
Consequently, mid-term load forecasting—specifically,
weekly forecasts at the transformer level—has become vital
for supporting predictive maintenance strategies and proactive
asset health management [16].

The literature presents a diverse arsenal of forecasting
techniques [17], ranging from sophisticated stochastic models
like ETS (Error, Trend, Seasonality) to advanced machine
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learning and Deep Learning algorithms [18-20]. A pervasive
assumption in much of this research is that increased model
complexity inherently leads to superior predictive
performance. However, a significant methodological gap
persists. The majority of comparative studies rely solely on
descriptive accuracy metrics, such as MAPE [21], MAE [22],
and RMSE [18], to declare a model's superiority. These claims
often lack robust statistical validation through significance
testing, leaving it uncertain whether observed performance
differences are genuine or merely artifacts of random chance.

Furthermore, there is a notable scarcity of rigorous, head-
to-head comparisons between adaptive stochastic models and
simpler, more interpretable deterministic trend models, such
as polynomial regression. While the former are often
prioritized for their purported accuracy, it remains an open
question whether their added complexity translates into a
statistically significant performance advantage over simpler
alternatives, especially when applied to volatile, real-world
operational data [23].

This research directly challenges the conventional wisdom
that more complex models are inherently superior for
operational forecasting tasks. It addresses the identified
methodological gap by conducting a rigorous comparative
analysis of seven forecasting models for the weekly load of
critical power transformers at the 150 kV Pekalongan
Substation. The primary contributions of this work are
threefold: (1) A Comprehensive Model Comparison: We
perform a direct and equitable performance comparison
between a modern stochastic model (ETS) and a suite of
deterministic trend models, including Linear, Exponential,
Logarithmic, and Polynomial (Order 2, 3, and 4) regressions;
(2) A Framework for Statistical Validation: Moving beyond
descriptive error metrics, we employ the non-parametric
Friedman test to statistically determine whether performance
differences among the models are significant, thereby
introducing a higher standard of evidence for model selection;
and (3) An Empirical Test of the Parsimony Principle: This
study provides data-driven evidence for the Principle of
Parsimony, offering critical insights into whether the increased
computational and implementational complexity of advanced
models is justified by a commensurate and statistically
significant gain in forecasting accuracy for this practical
application.

By evaluating models on both stable and volatile load
profiles (as exemplified by Transformer 3), this research
provides actionable guidance for substation operators,
identifying which models offer reliable performance under
various conditions and, crucially, which models fail to predict
extreme events, thereby informing more robust and cost-
effective asset management decisions. The remainder of this
paper is structured as follows: Section 2 reviews the relevant
literature on forecasting techniques, Section 3 details the
methodology, Section 4 presents the results and their
discussion, and Section 5 provides the conclusion and
suggestions for future work.

2. LITERATURE REVIEW

2.1 The central role of forecasting in automated energy
systems

In modern automated systems, particularly within the
energy and industrial sectors, forecasting plays a foundational
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role in ensuring efficient operation. Accurate predictions are
indispensable for strategic resource management, operational
planning, and optimizing cost-efficiency. The literature
demonstrates the extensive application of forecasting
methodologies to a diverse array of challenges, from
predicting power consumption and demand [24, 25] to
optimizing drainage pump scheduling [26] and managing
supply chain demand [27]. Within this domain, two principal
methodological paradigms for time series forecasting have
emerged:

1. Statistical and Regression Models: This class of models
operates by expressing data as a function of other variables,
frequently time itself. For instance, research has successfully
applied linear regression and its variants to forecast the
performance of solar photovoltaic panels [5]. The primary
strength of these models lies in their conceptual simplicity and
high interpretability. Other studies have leveraged statistical
techniques such as Exponential Smoothing (ES), which has
proven particularly effective for time series data characterized
by horizontal patterns or stable trends [26]. Models of this
category—including the Linear, Exponential, Logarithmic,
and Polynomial forms examined in our study—constitute the
core of deterministic trend modeling.

2. Machine Learning and Hybrid Models: Techniques such
as Artificial Neural Networks (ANNs), Deep Learning, and
hybrid frameworks are increasingly employed to capture
complex, non-linear relationships that are beyond the capacity
of simpler regression models [28]. While these approaches
often achieve superior predictive accuracy, this gain
frequently comes at the expense of model transparency and
interpretability, presenting a key trade-off for practitioners. Of
particular note in recent literature is the rise of Deep Learning
models, such as LSTM networks, which have demonstrated
high predictive power for highly complex and volatile time
series data [29, 30]. While these advanced approaches often
achieve marginal superior predictive accuracy, this gain
frequently comes at the expense of model transparency,
interpretability, and heightened computational overhead,
presenting a critical trade-off for practitioners and forming the
basis for the Principle of Parsimony explored in this study.

2.2 Model performance evaluation: Established metrics
and a critical gap

The prevailing standard for evaluating forecasting models
in the literature revolves around the use of error-based
statistical metrics. Studies consistently employ Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE), and
Root Mean Square Error (RMSE) as the primary benchmarks
for performance comparison [27, 31]. For example, [31]
utilized this trio of metrics to compare linear regression
models, while [27] applied MAPE to evaluate a Single ES
model.

A critical analysis of this body of work, however, reveals a
significant methodological shortcoming. The majority of
comparative studies (e.g., [31]) rely predominantly on a
descriptive comparison of these error metrics—for instance,
concluding superiority because Model A's MAPE is 4.5%
compared to Model B's 4.8%. This issue is particularly acute
in comparative studies involving highly complex models (e.g.,
Deep Learning models), where small, statistically insignificant
improvements are often claimed as justification for
significantly increased computational and implementation
costs. These studies typically omit formal statistical



significance testing (such as the Friedman test). Consequently,
it remains uncertain whether such marginal performance
differences are statistically meaningful or merely artifacts of
random chance. This reliance on descriptive comparison
without statistical validation represents a notable gap in the
current methodological rigor.

2.3 Research contribution: Bridging the methodological
divide

This study is explicitly designed to address this identified
gap. While our methodology is grounded in established
practices—employing standard regression [5] and stochastic
models like ETS (a variant of ES [27]), and evaluating them
using the conventional metrics of MAPE, MAE, and RMSE
[28, 31]—We introduce a crucial methodological
enhancement.

The core contribution of this work is the implementation of
the Friedman test to validate the results of model comparisons
statistically. This approach enables us to move beyond
declarative statements about which model appears best and
instead provides a statistical basis for determining if the
observed superiority is significant. Crucially, a finding of
Significant Result: FALSE is itself a valuable insight. It offers
empirical, statistically robust support for the Principle of
Parsimony, demonstrating that a more complex model (e.g., a
Polynomial) is not necessarily significantly superior to a
simpler alternative (e.g., a linear model). This guides the field
towards more efficient, interpretable, and justifiable model
selection.

3. RESEARCH METHODOLOGY
3.1 Research workflow

To ensure a systematic and transparent research process, the
study followed the workflow illustrated in Figure 1. The
process begins with the acquisition of raw SCADA data,
followed by pre-processing (aggregation into weekly data),
and a strict chronological split into a Model Development
Dataset (2020-2023) and a hold-out Test Dataset (2024). The
subsequent stages involve fitting the seven forecasting models,
generating predictions on the test set, and a final evaluation
using both performance metrics (MAPE, MAE, RMSE) and
statistical significance testing (Friedman test).

3.2 Data pre-processing and case study

3.2.1 Case study: The 150 kV Pekalongan Substation

This study focuses on the 150 kV Pekalongan Substation, a
critical node in the North Coast of Java transmission network.
Its strategic importance is twofold: (1) it reinforces grid
reliability for the regional load center of Pekalongan, and (2)
it serves as the primary power evacuation point from the
Batang Steam Power Plant via interconnection with the 150
kV Batang Baru Substation.

3.2.2 Data aggregation and splitting

The dataset consists of historical load data from the three
power transformers. Raw high-resolution SCADA data were
aggregated into weekly energy load (MWh). The dataset was
then partitioned chronologically into two independent sets to
ensure a robust evaluation:
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Model Development Dataset (Training & Validation):
This set encompasses a whole 5-year period from 1 January
2020 to 31 December 2023. This period, comprising 261
weekly data points, was used for model training and parameter
estimation.

Test Dataset: This set covers the subsequent year, from 1
January 2024 to 31 December 2024, providing 52 weekly data
points. This out-of-sample testing approach is crucial for
assessing the models' generalization capability on unseen data.
All final model performance is evaluated exclusively on this

test set.

Data Acquisition

[ /

‘ Data Pre-processing ‘

l

‘ Data Splitting ‘

A

‘ Modeling & Training ‘

!

Testing & Forecasting

I

Model Performance Evaluation

!

Implications and Recommendations

End

Figure 1. Research flowchart

3.2.3 Temporal pattern analysis

Analysis of the Model Development Dataset using Time
Series Decomposition (e.g., Seasonal-Trend Decomposition
using Loess - STL) confirmed a distinct annual seasonality
(period L = 52 weeks) and an underlying deterministic trend.
This validated the need to specifically test the ETS model's
ability to capture this periodicity.

3.3 Proposed forecasting methods

This study evaluates seven forecasting models, chosen to
provide a comprehensive comparison between a modern
stochastic time series approach and a suite of classical
deterministic trend models. For all models, the dependent
variable is the weekly energy load (y;), and the primary
independent variable is a discrete time index (t).

3.3.1 ETS (Error, Trend, Seasonality) model

The ETS framework, a sophisticated family of ES models,
decomposes a time series into Error, Trend, and Seasonality
components [1, 2]. Given the weekly nature of our data over
five years, capturing the annual seasonality (a period of 52
weeks) is critical. We employed an automatic ETS algorithm
[2] to select the optimal model form (e.g., additive or
multiplicative for each component, with or without trend
damping) based on the Akaike Information Criterion (AIC)



from the training data.

3.3.2 Deterministic trend regression models
The six trend models model the transformer load as a
deterministic function of time. Model parameters (coefficients
B) were estimated using the Ordinary Least Squares (OLS)

method on the training data.

1. Linear Model: Assumes a constant rate of change in load
over time, serving as a fundamental baseline.
Ve =PBo+ Pt + e (1)
2. Exponential Model: Suitable for scenarios where the
growth rate of the load is constant. It was linearized via a
logarithmic transformation for OLS estimation.
In (y¢) = In (Bo) + Bit + € 2
3. Logarithmic Model: Appropriate when the load growth

rate decelerates over time, suggesting an approach to a
saturation point.

3)

4. Polynomial Model (2nd Order - Quadratic): Captures
one inflection point in the trend.

Ve = Bo+ P1In (t) + €

“4)

5. Polynomial Model (3rd Order - Cubic): A more
flexible model capable of capturing up to two inflection points.

Ve = Bo + Bit + Bot® + €

)

6. Polynomial Model (4th Order - Quartic): The most
flexible polynomial model tested, capable of capturing up to
three inflection points, albeit with a higher risk of overfitting.

Ve = Bo + it + Bot? + Bt + €,

Ve = Bo + Bt + Bot® + Bst® + But* + €, (6)

3.4 Parameter estimation and model implementation

All forecasting models and associated parameter
estimations were implemented using Microsoft Excel 365,
leveraging its analytical tools.

3.4.1 Deterministic trend regression models implementation

The parameters (coefficients fy,f31,... ) for the six
deterministic models (Linear, Exponential, Logarithmic,
Polynomials 2nd, 3rd, and 4th Order) were estimated using the
OLS method.

Software Tool: Estimation was performed using the Data
Analysis ToolPak add-in for the Linear, Exponential (after log
transformation), and Logarithmic models. For the Polynomial
models, the higher-order terms (t2,t3,t*) were manually
calculated as separate independent variables before applying
the OLS method via the ToolPak.

Estimation Criterion: The OLS estimation method
internally minimized the Sum of Squared Errors (SSE)
between the actual and predicted values on the Model
Development Dataset.

Output: The estimated coefficients (3;) were utilized to
construct the final forecasting equation for each model, as
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defined in Egs. (1) through (6).
3.4.2 ETS model parameter estimation

The ETS model requires the optimization of three
smoothing parameters: (Level), (Trend), and (Seasonality).
Specifically, based on the preliminary analysis of the time
series characteristics (strong, non-increasing trend and stable
annual seasonality), we selected the Additive Trend, Additive
Seasonality, and Non-Damped Error (AAN) variant of the
ETS framework for optimization. The ETS model was
optimized with the seasonal period explicitly set to L = 52
weeks to ensure the true annual periodicity of the load data
was incorporated into the model structure.

Methodology: Contrary to using the automated "Forecast
Sheet" tool, which lacks parameter control, the ETS
parameters were manually estimated using Excel's Solver
Add-in to ensure maximum control and reporting of the
estimation process. The optimization was executed using the
GRG Nonlinear solving method.

Objective Function: The Solver was configured to
Minimize the Sum of Squared Errors (SSE) on the Model
Development Dataset.

Constraints: The smoothing parameters were constrained
to the standardrange: 0 < a < 1,0 < <l,and0 <y < 1.

Initial Values: The initial values for the Level and Trend
components were set based on the first observation of the time
series, following standard practice for initialization.

3.5 Performance evaluation framework

3.5.1 Forecasting accuracy metrics

Model performance was objectively evaluated on the 52-
week Test Dataset using three standard error metrics. Lower
values indicate better performance.
Mean Absolute Percentage Error (MAPE): The
primary metric for comparison, valued for its scale-
independence and interpretability as a percentage error [32].

A — F

| X 100% 7

e Mean Absolute Error (MAE): Provides the average
error magnitude in the original units (MWh), offering practical

insight [33].

n
1
MAE:EZMt—Ftl ®)
t=1

e Root Mean Square Error (RMSE): Also in MWh,
this metric penalizes larger errors more heavily, making it
highly relevant for assessing risks associated with large
forecast deviations that could lead to transformer overload

[34].

)

where, A; is the actual load, F; is the forecasted load, and n =
52.



3.5.2 Statistical significance testing

To determine if observed performance differences were
statistically significant and not due to chance, we employed
the non-parametric Friedman test. This test is the standard for
comparing multiple models across the same test samples (a
repeated-measures design). The test was applied not to the
final MAPE values, but to the matrix of Absolute Percentage
Errors (APE) for all 52 test points across all 7 models. The
Friedman test evaluates the null hypothesis (HO) that all
models perform equally [35]. If HO is rejected (p-value <
0.05), a post-hoc Nemenyi test would be conducted to identify
which specific model pairs differ significantly. This two-step
process provides a rigorous statistical validation for model
comparison.

3.5.3 Uncertainty quantification (Prediction Intervals)

To fully assess the operational reliability of the models, we
quantified forecast uncertainty using 95% Prediction Intervals
(PIs). The PIs were derived from the standard error of the
forecast for the deterministic regression models and from the
estimated variance of the error distribution for the ETS model.
The quality of the PIs was evaluated using two established
metrics:

1. Prediction Interval Coverage Probability (PICP):
Measures the percentage of actual data points that fall
within the predicted 95% interval. A PICP value close
to 95% indicates higher reliability.

1 N
PICP = Nz I; X 100%
i=1
2. Prediction Interval Normalized Average Width

(PINAW): Measures the average width of the interval,
normalized by the actual value. Lower PINAW
indicates a sharper, more precise forecast.

1 N
PINAW = —Z
N

i=1

U;

—L;
Y;

where, I; is an indicator function (1 if Y; € [L;,U;], O
otherwise), U; and L; are the upper and lower bounds of the PI,
and Y; is the actual load.

4. RESULTS AND DISCUSSION
4.1 Quantitative performance evaluation

The quantitative performance of the seven forecasting
models for the three transformers is summarized in Tables 1 to
3. The results reveal a critical initial insight: while minor
variations exist in the descriptive metrics (MAPE, MAE,
RMSE), no single model consistently demonstrates a decisive
advantage across all transformers. Crucially, the numerical
proximity of the metrics between the simplest (Linear) and the
most complex models (Poly-4, ETS) immediately suggests a
strong empirical case for the Principle of Parsimony, a
hypothesis that is formally tested in Section 4.2.

Transformer 1 (Referencing Table 1) Analysis: As
presented in Table 1, the forecasting models exhibit
remarkably similar performance on the stable load profile of
Transformer 1. The Polynomial variants demonstrate superior
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accuracy regarding percentage error, with the Polynomial-II
model (Column 6) and Polynomial-I (Column 3) achieving the
lowest MAPE of 4.25%. While the ETS model provides a
reasonable baseline, it is outperformed by the Logarithmic and
Polynomial approaches in terms of RMSE. It is noteworthy
that while the Exponential model yields a negligible MAE
(0.047), its higher RMSE (4.78) suggests it may not capture
peak load variations as effectively as the Polynomial-III
model, which achieves the study's best RMSE of 4.45.

Table 1. Forecasting performance metrics - Transformer 1

Model RMSE MAPE MAE
Linear 4,763 4,719 3,944
Exponential 4,784 4,714 0,047
Logarithmic 4,765 4,661 3914
Poly-2 4,462 4,249 3,587
Poly-3 4,462 4,249 3,587
Poly-4 4,449 4,307 3,630
ETS 4,837 4,988 2,013

Table 2. Forecasting performance metrics - Transformer 2

Model RMSE MAPE MAE
Linear 5,705 6,478 4,649
Exponential 6,501 7,719 0,077
Logarithmic 6,093 7,076 5,084
Poly-2 5,287 5,333 3,784
Poly-3 4,455 4,505 3,215
Poly-4 8,675 10,197 7,737
ETS 6,642 7,664 3,672

Transformer 2 (Referencing Table 2) Analysis: The
performance disparity becomes more pronounced for the
second transformer, as detailed in Table 2. The Polynomial-II
model emerges as the most robust predictor, delivering the
lowest error across valid metrics (RMSE: 4.45; MAPE:
4.50%). This represents a significant improvement over the
ETS and Linear models, which resulted in higher MAPEs of
7.66% and 6.48%, respectively. Conversely, the Polynomial-
IIT model (last column) exhibits signs of instability or
overfitting for this specific load characteristic, resulting in the
highest recorded RMSE (8.68) and MAPE (10.20%) among
all tested algorithms in this category.

Table 3. Forecasting performance metrics - Transformer 3

Model RMSE MAPE MAE
Linear 11,017 9,476 7,341
Exponential 11,062 9,418 0,094
Logarithmic 10,771 9,904 7,525
Poly-2 11,237 9,428 7,362
Poly-3 15,097 12,443 9,889
Poly-4 12,740 0,091 7,515
ETS 15,694 15,964 5,786

Transformer 3 (Referencing Table 3) Analysis: Table 3
illustrates the challenge of forecasting highly volatile load
profiles, evidenced by significantly higher error metrics across
all models (RMSE > 10.0). In this scenario, the Logarithmic
model proves to be the most stable estimator, achieving the
lowest RMSE (10.77), thereby indicating superior handling of
large error deviations compared to the ETS model (RMSE:
15.69). While the final Polynomial variant (Column 7) records
an anomalously low MAPE (0.09%), its elevated RMSE
(12.74) suggests it may be failing to penalize large residuals



during peak demand. Therefore, for the erratic patterns
observed in Table 3, the Logarithmic and Linear models offer
the most reliable balance between trend tracking and error
minimization.

4.2 Statistical significance analysis (Friedman test)

To move beyond descriptive comparisons, the non-
parametric Friedman test was applied to the Absolute
Percentage Error (APE) distributions of all seven models. The
test evaluates the null hypothesis (HO) that all models perform
equally.

Table 4. Friedman test results

Transformer Transformer Transformer
1 2 3

0.25 0.25 11.14

Statistic

Friedman
Statistic
Critical Value
(a.=0.05)
Significant
Result

12.59 12.59 12.59

FALSE FALSE FALSE

The results are conclusive from Table 4: for all three
transformers, the Friedman statistic is below the critical value
(p > 0.05). Therefore, we fail to reject the null hypothesis. This
provides statistically robust evidence that there is no
significant difference in the forecasting performance among
the seven models. The minor variations observed in Tables 1-
3 are not statistically meaningful and can be attributed to
random chance.

4.3 Visual analysis and discussion of findings

The statistical conclusion is powerfully explained by the
visual analysis of the forecast plots (Figures 1, 2, and 3).

Stable Load Conditions (Transformers 1 & 2): As shown in
Figures 2 and 3, the actual load data for these transformers
follows a stable, predictable pattern. In such conditions, all
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forecasting models—from the simple Linear to the complex
ETS—produce nearly identical trend lines that cluster closely
around the actual data. This visual convergence explains the
low Friedman statistics; when the underlying signal is strong
and non-volatile, model complexity offers no discernible
advantage.

Volatile Load Conditions (Transformer 3): Figure 4
provides the most critical insight. It reveals the collective
failure of all models to effectively handle extreme volatility.
Failure of Deterministic Models: The regression-based models
(Linear, Exponential, Logarithmic, Polynomial) completely
failed to capture the sharp load spike. They continued to
predict a flat trend, resulting in significant errors during the
volatile period. This highlights a fundamental weakness of
deterministic trend models: they are incapable of adapting to
sudden, unforeseen fluctuations. Overreaction of the
Stochastic Model: The ETS model reacted to the volatility but
exhibited significant overshooting. It predicted a much higher
load in the period following the spike than what actually
occurred. This suggests that while ETS is adaptive, it can be
overly sensitive to outliers, resulting in instability in its
predictions.

While the deterministic models (Linear, Polynomial)
successfully captured the deterministic long-term trend
(Explaining variance in R? ), their lack of a seasonal
component means they fail to capture the predictable annual
dips and peaks that are clearly visible in the data. This
fundamental structural omission likely contributes to their
non-superior performance compared to ETS, despite the
simplicity of the polynomial forms. The ETS model, despite
capturing the L = 52 seasonality, still failed to establish
statistical superiority, further reinforcing that model structure
alone does not guarantee superior operational performance.

This visual evidence clarifies the Friedman test's "no
significant difference" result. While the #ype of error differed
between model classes (under-prediction vs. over-prediction),
the magnitude of their failure was such that no model could
establish a statistically significant superiority. Their
performance rankings varied randomly from one time point to
another during the volatile event.
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Figure 4. Comparison of Transformer 3 forecasting results

4.4 Analysis of error distribution (Q1 and Q3)

To assess performance consistency, we analyzed the
quartiles (Q1 and Q3) of the Absolute Percentage Error (APE).
For instance, on Transformer 1, the Linear model showed a Q1
APE of 1.5% and a Q3 of 6.0% (IQR = 4.5%), while the Poly-
3 model showed a Q1 of 1.2% but a wider IQR of 6.3%. This
indicates that while the more complex model was slightly
more accurate in its best-case predictions (lower QI1), the
simpler model was more consistent overall (narrower IQR).
This further reinforces the principle that simplicity often
equates to stability and reliability in operational forecasting.

4.5 Analysis of forecast uncertainty (Pls)

This section critically evaluates model performance beyond
point accuracy (MAPE, RMSE) by quantifying the forecast
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uncertainty using 95% PIs. Operational reliability is assessed
via PICP (Prediction Interval Coverage Probability; target:
95%), and forecast precision via PINAW (Prediction Interval
Normalized Average Width; target: min).

4.5.1 Operational reliability and overconfidence

The results demonstrate a critical distinction between point
accuracy and operational risk assessment. Systemic
Overconfidence: For stable loads (T1 and T2), most simple
regression models fail the reliability test, exhibiting a mean
PICP of only 66.67%. This severe shortfall from the nominal
95% confidence level indicates that these models are overly
confident (intervals are too narrow) and are thus unacceptable
for risk-sensitive planning like transformer capacity
management. Reliability vs. Parsimony: This finding
overrules the Principle of Parsimony for risk assessment.
Although simple models often yield competitive point error



metrics (MAPE/RMSE), their low PICP demonstrates they are
statistically dishonest about the forecast uncertainty. ETS as
the Reliable Baseline: The ETS model stands out by achieving
the highest PICP (91.67 %) for T1 and T2, consistently
producing the most honest and reliable Pls. This confirms its
robustness in capturing the residual variance inherent in the
time series (Table 5).

Table 5. Prediction Interval metrics (PICP and PINAW)

et " v T v T
(%) (%) (%)

Linear 66.67 19.13 66.67 19.13 91.67 65.39
Exponential 66.67 19.13  66.67 19.13 91.67 65.39
Logarithmic 66.67 19.38 66.67 1938 91.67 65.58

Poly-2 75.00 1996 7500 19.96 91.67 68.86

Poly-3 8333 1940 8333 1940 91.67 69.59

Poly-4 41.67 20.72 41.67 20.72 0.00 0.00

ETS 91.67 3252 91.67 3252 91.67 93.29

4.5.2 Sharpness trade-off and volatility impact

The analysis of PINAW highlights the trade-off between
interval precision and model stability, particularly when
dealing with extreme loads.

Precision vs. Honesty: The sharpest intervals are generated
by the Linear/Exponential models (PINAW = 19.13% ).
However, since their PICP is low, this precision is merely a
consequence of interval collapse due to underestimated
uncertainty.

Extreme Volatility Quantification: The PINAW for the
volatile T3 load profile (mean PINAW =~ 102.41%) is nearly
five times higher than that of the stable profiles (T1/T2 mean
PINAW = 21.46%). This quantifies the extreme uncertainty
and confirms that T3 requires significantly wider safety
buffers.

Model Instability in Extremes: The high-order Poly-4
model shows instability in uncertainty quantification for T3
(PINAW: 288.75%), indicating that overly complex models
can produce unreliable PI metrics when faced with severe
volatility, even if the PICP appears perfect (100%).

4.5.3 Conclusion on model selection for asset management

Based on Uncertainty Quantification, the ETS model is the
recommended choice. While having a slightly wider interval
(PINAW 32.52%) than the simple regressions, it provides the
most dependable PICP, ensuring that risk assessment and
contingency planning are based on a statistically honest
measure of forecast uncertainty. The high PINAW observed
for T3 mandates the immediate identification of this asset as
high-risk, potentially requiring load optimization or capacity
intervention.

4.6 Practical implications and recommendations

The core finding of this study is not the identification of a
superior model, but the empirical demonstration that no
significant difference exists among a wide range of models for
this specific forecasting task. This leads to a robust and
practical implication grounded in the Principle of Parsimony:
when models perform equally, the simplest one should be
preferred.

Therefore, we strongly recommend that for operational mid-
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term load forecasting at the Pekalongan Substation and similar
contexts, system operators should adopt the simplest adequate
models, such as the Linear or Quadratic (Poly-2) model. These
models are:

1. Easier to Implement and Interpret: They can be
deployed and understood by engineering staff
without deep expertise in advanced statistics.

2. Computationally Efficient: They require minimal
computational resources.

3. More Robust: They present a lower risk of overfitting

compared to higher-order polynomials or complex
stochastic models.

Finally, a crucial implication from the Transformer 3
analysis is that none of these time-series models is reliable for
predicting extreme load shocks. While this finding is
empirically demonstrated via the single Transformer 3 case,
the mechanism of failure is structurally generalizable across
similar substations. This collective inability of all univariate
models—regardless of complexity—to adapt to sudden, non-
temporal external events highlights their fundamental
limitation. They are practical tools for forecasting underlying
trends under normal, stable conditions. Still, they are not a
substitute for robust grid management protocols, real-time
monitoring, and contingency planning designed to handle
unforeseen volatility. Future work should explore the
integration of exogenous variables (e.g., weather data,
economic indicators) or alternative modeling paradigms to
address this limitation.

5. CONCLUSION

This rigorous comparative study of seven univariate time-
series models for weekly load forecasting revealed a critical
finding: despite minor variations in descriptive error metrics
(MAPE, MAE, RMSE), the Friedman test showed no
statistically significant difference among the models,
providing initial support for the Principle of Parsimony.
However, this recommendation was critically overruled by the
subsequent Uncertainty Quantification (UQ) analysis. While
simple models (Linear, Exponential) were sharp (low
PINAW), they demonstrated systemic overconfidence for
stable loads (T1, T2) with a PICP significantly below the 95%
nominal target (= 66.67%), rendering them operationally
unreliable for risk assessment. Conversely, the ETS model
consistently achieved the highest reliability (PICP
91.67% ), confirming that model selection must prioritize
statistical honesty (reliability) over complexity or simple point
accuracy. Consequently, we recommend the ETS model for
operational planning due to its superior capacity for setting
statistically sound contingency reserves. The study concludes
that the fundamental limitation remains the inability of all
univariate models to reliably predict extreme load shocks
(quantified by high T3 PINAW), necessitating future research
focused on developing Hybrid Models—combining the robust
ETS baseline with exogenous variables or advanced non-linear
components—to manage high-volatility events effectively.
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NOMENCLATURE
B Coefficient
A; actual load

F; Forecasted load

Y Actual Load (Weekly Energy Load) at time
t period t.

g Forecasted Load (Weekly Energy Load) at time
t period t.

t Discrete Time Index (Independent variable).

N Number of Data Points in the Test Dataset.

et Forecast Error at time t (e, = Y, — ).

APE, Absolute Percentage Error at time t.

Intercept / Constant Term in the regression

Bo model.

Bi Regression Coefficient for the time variable t'.

c Error Term (stochastic component) in the
t regression model

a Level Smoothing Parameter in the ETS model.

B Trend Smoothing Parameter in the ETS model.

Seasonality Smoothing Parameter in the ETS

Y model.

L Seasonal Period (In your study, L = 52 weeks)

MAPE Mean Absolute Percentage Error.

MAE Mean Absolute Error.

RMSE Root Mean Square Error.

PICP Prediction Interval Coverage Probability.

PINAW  Prediction Interval Normalized Average Width.

L; Lower Bound of the 95% Prediction Interval.

U; Upper Bound of the 95% Prediction Interval.

x? Friedman Test Statistic (Chi-squared).

p P-value (Statistical Significance Level).





