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Condition-based maintenance (CBM) has become a cornerstone for optimizing the 

performance, reliability, and cost-efficiency of industrial systems. Traditional CBM 

strategies, which rely on fixed inspection intervals and static preventive maintenance 

thresholds, often fail to account for the stochastic nature of degradation processes and the 

inherent imperfections in condition monitoring. These limitations can result in suboptimal 

maintenance decisions, such as excessive preventive interventions or missed failures. To 

address these challenges, this study presents a Monte Carlo simulation framework 

designed to evaluate and compare static and adaptive CBM strategies under conditions of 

uncertainty. The framework integrates a Wiener-process degradation model, imperfect 

condition monitoring, adaptive inspection scheduling based on residual useful life (RUL) 

estimates, and dynamically recalibrated preventive maintenance thresholds. Three 

maintenance strategies are examined: (i) a static policy with fixed inspection intervals and 

constant preventive thresholds, (ii) a semi-adaptive policy with fixed inspections and 

adaptive preventive thresholds, and (iii) a fully adaptive policy with both dynamic 

inspection intervals and adaptive preventive thresholds. The performance of these 

strategies is assessed using a comprehensive set of metrics, including total cost, downtime, 

reliability, short-horizon risk, and a penalty-augmented objective function that integrates 

cost, reliability, and risk exposure.  
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1. INTRODUCTION

In contemporary industrial systems, effective maintenance 

strategies are crucial for ensuring operational reliability, 

minimizing downtime, and optimizing cost-efficiency [1]. As 

industries become increasingly complex, with systems that 

demand high performance and safety, the ability to predict and 

prevent failures is paramount. Maintenance plays a pivotal role 

in safeguarding assets, prolonging operational lifespans, and 

maintaining system integrity [2]. In this context, condition-

based maintenance (CBM) has emerged as a promising 

approach. CBM utilizes condition monitoring to assess the 

health of assets in real time, scheduling inspections and 

interventions based on the observed degradation state of the 

system. This methodology aims to replace traditional time-

based maintenance with more efficient, data-driven strategies 

that respond to the actual condition of the equipment [3-6]. 

Despite the advantages offered by CBM, its implementation 

is fraught with challenges primarily arising from the stochastic 

nature of degradation processes and the inherent imperfections 

of condition monitoring [7-10]. Degradation is often driven by 

complex, random phenomena that cannot be captured by 

simple deterministic models. Additionally, condition 

monitoring provides imperfect, noisy data that may not fully 

reflect the true state of degradation. These uncertainties 

complicate the decision-making process, as maintenance 

actions must be based on incomplete and potentially 

inaccurate information [11]. Traditional CBM strategies, 

which rely on fixed inspection intervals and constant 

preventive maintenance thresholds, fail to account for these 

sources of variability, potentially leading to suboptimal 

performance. These static policies can either result in 

excessive maintenance activities or, conversely, delayed 

interventions that may allow failures to occur before detection 

[12-17]. 

To address these limitations, adaptive maintenance decision 

policies have been proposed. Adaptive strategies dynamically 

adjust inspection frequencies and preventive thresholds in 

response to observed degradation and updated system 

information [18-22]. By recalibrating maintenance decisions 
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based on real-time condition data, adaptive policies aim to 

more precisely align maintenance activities with the evolving 

risk profile of the system. These adaptive policies offer the 

potential for more cost-effective and reliable maintenance, 

particularly in environments characterized by high 

uncertainty. However, the comparative performance of static 

versus adaptive strategies under realistic operational 

conditions remains underexplored, particularly in terms of 

long-term cost, reliability, and risk mitigation [23-25]. 

The objective of this study is to develop a robust framework 

for evaluating and comparing static and adaptive CBM 

strategies [26-30]. The framework incorporates a Wiener 

process degradation model (WP), representing the stochastic 

evolution of system degradation, alongside imperfect 

condition monitoring (MM) characterized by Gaussian noise. 

Inspection policies (IP) are formulated as either fixed intervals 

(ΔTfix) or adaptive intervals (ΔTk) based on residual useful life 

(RUL) estimates. Preventive maintenance thresholds (PM) are 

either static (Lm) or adaptive (Lm,k), with the latter being 

recalibrated based on the observed degradation state. The 

performance of these strategies is evaluated using a range of 

metrics, including the short-horizon failure probability (phit), 

which quantifies the likelihood of failure before the next 

inspection, and the Kaplan–Meier survival estimator (KM) for 

reliability estimation. Economic performance is assessed 

through the average cost rate (Cavg) and the PM/CM ratio, 

which compares preventive to corrective maintenance efforts. 

Additionally, a penalty-augmented objective function (Jλ) is 

introduced, incorporating both cost and reliability penalties to 

ensure a balanced trade-off between economic efficiency and 

operational safety [31]. 

This paper contributes to the field by presenting a 

comprehensive simulation framework that integrates these key 

components: degradation modeling, inspection scheduling, 

preventive maintenance threshold adjustment, risk 

quantification, and performance evaluation. The simulation 

framework is used to assess three maintenance policies: (i) the 

static policy with fixed inspections and fixed thresholds (ΔT, 

M), (ii) the semi-adaptive policy with fixed inspections and 

adaptive thresholds (ΔT, Mk), and (iii) the fully adaptive 

policy incorporating both dynamic inspections and adaptive 

thresholds (ΔTk, Mk). The study provides a detailed 

comparative analysis of these strategies, highlighting their 

relative advantages and trade-offs in terms of cost, downtime, 

reliability, and risk [32]. 

While classical P–F interval and predictive maintenance 

(PdM) strategies have been widely studied, this work focuses 

specifically on the relative behavior of static versus adaptive 

CBM policies under identical stochastic conditions. The 

proposed Monte Carlo framework is intentionally generic and 

can later be extended to include P–F or predictive triggers, 

enabling systematic benchmarking in future research. 

The remainder of this paper is organized as follows. Section 

2 outlines the methodological framework, including the 

mathematical formulations for degradation, inspections, and 

maintenance decision rules. Section 3 describes the three 

maintenance strategies under consideration. Section 4 details 

the Monte Carlo simulation architecture, while Section 5 

explains the simulation configuration and input parameters. 

Section 6 presents the results and their analysis, followed by a 

discussion of the engineering implications in Section 7. 

Finally, Section 8 concludes the paper and outlines directions 

for future research. 

 

2. METHODOLOGY 

 

The methodological framework employed in this study 

integrates stochastic degradation modeling, noisy condition 

monitoring, adaptive inspection and maintenance policies, and 

penalty-augmented performance evaluation within a Monte 

Carlo simulation environment. This approach enables a 

rigorous comparison of integrated maintenance strategies 

under uncertainty by capturing both the stochastic dynamics 

of degradation and the economic and reliability consequences 

of maintenance actions [33, 34].  

The stochastic degradation process is represented by a 

Wiener process with drift. Its dynamics are expressed as [35]: 

 

𝑑𝑋(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡), 𝑋(0) = 𝑋0, (1) 

 

where, X(t) is the degradation state at time t, μ is the drift 

coefficient representing the average degradation rate, σ is the 

diffusion coefficient capturing stochastic variability, and W(t) 

is a standard Wiener process. The system is assumed to start 

from the as-good-as-new state X0 = 0, while failure is defined 

as the first hitting time of the critical threshold Lf. Eq. (1) 

captures the fundamental trade-off in degradation modeling: 

the deterministic wear component provides predictability, 

while the stochastic term introduces uncertainty that 

complicates maintenance planning [36, 37]. 

Since degradation is not directly observable with perfect 

accuracy, inspections provide noisy measurements. The 

measurement model is written as [38, 39]: 

 

𝑋̃(𝑡) = 𝑋(𝑡) + 𝜀, 𝜀 ∼ 𝒩(0, 𝜎meas
2 ), (2) 

 

where, 𝑋̃(𝑡) denotes the observed degradation at time t, and ε 

represents Gaussian measurement error with variance 𝜎meas
2 . 

This formulation reflects the imperfection of sensors and 

monitoring technologies, ensuring that maintenance decisions 

are made under uncertainty rather than idealized perfect 

information [40, 41]. 

Inspections can be scheduled periodically or adaptively. In 

the periodic case, inspections occur at constant intervals: 

 

Δ𝑇fix = constant, (3) 

 

Although simple to implement, this purely time-driven 

strategy does not account for the evolving condition of the 

system [42]. Adaptive inspection strategies, in contrast, rely 

on RUL estimation. The expected RUL at time t is 

approximated by [43]: 

 

RUL̂(𝑡) =
𝐿𝑓 − 𝑋̂(𝑡)

𝜇
 (4) 

 

where, 𝑋̂(𝑡) is a filtered estimate of the degradation state. Eq. 

(4) expresses the intuitive relationship that remaining life is 

proportional to the distance from the current condition to the 

failure threshold, scaled by the average wear rate. On this 

basis, the next inspection interval is defined as: 

 

Δ𝑇𝑘 = clamp(𝛼𝑇 RUL̂(𝑡), Δ𝑇𝑚𝑖𝑛 , Δ𝑇𝑚𝑎𝑥), (5) 

 

where, αT is the adaptation coefficient, and the clamping 

function ensures that inspection intervals remain within the 

admissible range [ΔTmin, ΔTmax]. Eq. (5) introduces adaptivity 
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into inspection scheduling: inspections are performed more 

frequently when the estimated RUL is short and less frequently 

when the system is in a healthier state. 

Preventive maintenance is initiated when degradation 

exceeds a predefined threshold. In the fixed-threshold policy, 

the trigger is expressed as [44]: 

 

𝐿𝑚 = constant, 𝐿𝑚 < 𝐿𝑓 , (6) 

 

Eq. (6) reflects a traditional approach, ensuring preventive 

actions occur before failure but without accounting for 

variations in system behavior. Adaptive-threshold strategies 

introduce greater flexibility by updating the preventive limit 

according to: 

 

𝐿𝑚,𝑘 = 𝑚𝑎𝑥 (𝐿𝑚𝑖𝑛 , 𝐿𝑚 − 𝛼𝐿(𝐿𝑓 − 𝑋̂(𝑡))), (7) 

 

Subject to the constraint: 

 

𝐿𝑚,𝑘 ≤ 𝐿𝑓 − 𝛿𝐿safety, (8) 

 

Eqs. (7) and (8) ensure that preventive thresholds are 

tightened as the system approaches failure, while also 

guaranteeing a minimal safety margin relative to Lf. The 

parameter αL controls the aggressiveness of this adaptation, 

Lmin prevents the threshold from being excessively 

conservative, and δLsafety enforces a buffer that guards against 

unsafe recalibrations. 

An essential aspect of reliability assessment is the between-

inspection hitting probability, which quantifies the likelihood 

of failure before the next inspection. For a Wiener process with 

drift, this probability is given by [45]: 

 

𝑝hit(ℎ ∣ 𝑎) = 1 − [Φ (
𝑎 − 𝜇ℎ

𝜎√ℎ
)

− exp (
2𝜇𝑎

𝜎2
) Φ (

−𝑎 − 𝜇ℎ

𝜎√ℎ
)], 

(9) 

 

where, 𝑎 = 𝐿𝑓 − 𝑋̂(𝑡) denotes the current margin to failure, h 

is the length of the inspection interval, and Φ(⋅) is the 

cumulative distribution function of the standard normal 

distribution. Eq. (9) provides a direct measure of the short-

term risk exposure associated with inspection decisions, and 

forms the basis for constraint enforcement in adaptive 

strategies [46]. 

To evaluate long-term system reliability, the Kaplan–Meier 

survival estimator is employed [47]: 

 

𝑆̂(𝑡) = ∏  

𝑡𝑗≤𝑡

(1 −
𝑑𝑗

𝑛𝑗

), (10) 

 

Here, dj is the number of failures observed at time tj, and nj 

is the number of systems still at risk just before tj. Eq. (10) 

provides a non-parametric estimate of the survival function, 

capable of handling censored data and therefore well suited to 

simulation environments where many systems survive until 

the end of the observation horizon. Economic performance is 

assessed through the long-run average cost rate [30]: 

 

𝐶avg =
1

𝑇op

∑  

𝑁sim

𝑖=1

𝐶𝑖, (11) 

where, Ci denotes the total cost in the i-th simulation. Eq. (11) 

aggregates the costs of inspections, preventive interventions, 

and corrective repairs into a single normalized performance 

measure. To further characterize the balance between 

preventive and corrective actions, the ratio: 

 

PM/CM Ratio =
𝔼[𝑁PM]

𝑚𝑎𝑥(𝔼[𝑁CM], 𝜀)
, (12) 

 

Is introduced, where 𝔼[𝑁PM] and 𝔼[𝑁CM] are the expected 

numbers of preventive and corrective actions, and ε is a small 

constant avoiding division by zero. This ratio highlights 

whether a strategy is more preventive-oriented or failure-

driven. 

Finally, to unify cost efficiency with reliability and risk 

requirements, a penalty-augmented objective function is 

defined [48]: 

 

𝐽𝜆 = 𝐶𝑎𝑣𝑔 + 𝜆𝑅 max(0, 𝑅min − 𝑅𝑅time 
)

+ 𝜆hit 𝔼[𝟏{𝑝hit >𝛽}] 
(13) 

 

The first term represents the economic cost rate, the second 

term imposes penalties when the reliability at the reporting 

horizon RRtime falls below the required minimum Rmin, and the 

third penalizes cases where the between-inspection failure 

probability exceeds the admissible tolerance β. The penalty 

weights λR and λhit emphasize the primacy of safety and 

reliability in industrial applications, ensuring that strategies 

which fail to meet these requirements cannot be regarded as 

competitive, regardless of their apparent cost efficiency [49, 

50]. 

Eqs. (1) through (13) thus provide the mathematical 

backbone of the methodology. The degradation dynamics 

(Eqs. (1)-(2)), inspection rules (Eqs. (3)-(5)), preventive 

thresholds (Eqs. (6)-(8)), risk measures (Eq. (9)), reliability 

evaluation (Eq. (10)), economic indicators (Eqs. (11)-(12)), 

and penalty-augmented objective (Eq. (13)) establish a 

comprehensive and internally consistent framework for 

evaluating CMB ategies. 

To ensure robustness, key adaptive and measurement 

parameters (αT, αL, σmeas) were later varied within realistic 

bounds (see Section 6.3). This sensitivity analysis confirmed 

that while numerical values of cost and reliability shift 

modestly, the qualitative behavior and relative ranking of 

strategies remain stable. 

Eq. (13) is used as an exact-penalty surrogate for the 

constrained problem minCavg subject to R(Ttime) ≥ Rmin and phit 

≤ β. The penalty weights λR and λhit are chosen ‘sufficiently 

large’ so that violations of reliability and short-horizon risk 

dominate the economic term, reflecting their engineering 

priority. In our setting, with Cavg ≈ 4.5, a typical reliability 

shortfall Rmin − R(Ttime) ≈ 0.79 implies λR > 4.5/0.79 ≈ 5.7 

already ensures dominance of the reliability penalty. Likewise, 

with ≈ 64% of intervals breaching β, the risk penalty 

dominates for λhit > 4.5/0.64 ≈ 7.0. Therefore, any λR,λhit ≳ 10 

enforce the intended priority; specific values above these 

thresholds do not affect qualitative conclusions. 

 

 

3. ADAPTIVE MAINTENANCE DECISION POLICIES 

 

Adaptive maintenance decision policies constitute the 

operational core of the CMB work. They specify how 

inspection schedules and preventive maintenance thresholds 
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are defined, either statically or adaptively, in response to 

observed system degradation. The three strategies examined in 

this study represent progressively increasing levels of 

adaptivity, ranging from a purely static baseline to a fully 

adaptive policy [51, 52]. This section details the formulation 

of each strategy, its governing equations, and its conceptual 

implications. 

 

3.1 Strategy I: Fixed inspections and fixed threshold (ΔT, 

M) 

 

The first policy, denoted (ΔT, M), represents the static 

benchmark (see Figure 1). Under this regime, inspections are 

executed periodically at constant intervals using Eq. (3). 

While preventive maintenance is initiated when the 

observed degradation trajectory crosses a fixed threshold as 

you see in Eq. (6). 

Eqs. (3) and (6) define a fully deterministic policy structure, 

in which neither the inspection cadence nor the intervention 

threshold is modified in response to evolving degradation 

states. This approach reflects long-standing industrial practice, 

particularly in sectors where condition monitoring is 

rudimentary or where regulatory frameworks mandate fixed 

maintenance intervals. However, it suffers from inherent 

inefficiencies: inspections may be redundant during periods of 

low degradation intensity, while they may be too sparse during 

accelerated deterioration phases. Likewise, the fixed threshold 

Lm may trigger preventive interventions either prematurely (if 

degradation progresses slowly) or too late (if stochastic 

variability accelerates failure).  

 

 
 

Figure 1. Principe of maintenance strategy (∆T, M) 

 

As such, the (ΔT, M) policy is primarily retained as a 

baseline reference for quantifying the incremental benefits of 

adaptivity. 

 

3.2 Strategy II: Fixed inspections and adaptive threshold 

(ΔT, Mk) 

 

The second policy, denoted (ΔT, Mk), preserves periodic 

inspections but introduces adaptivity in the preventive 

threshold (see Figure 2). Inspections continue to be scheduled 

at fixed intervals ΔTfix, as in the baseline policy, but the 

preventive threshold is dynamically recalibrated at each 

inspection according to Eq. (7). Subject to the operational 

constraint of Eq. (8). 

 

 
 

Figure 2. Principe of maintenance strategy (∆T, Mk) 

 

Eq. (7) introduces a linear adaptation mechanism: the 

preventive threshold is progressively reduced as the system 

approaches the failure limit Lf. The adaptation coefficient αL 

regulates the aggressiveness of this recalibration, while the 

lower bound Lmin prevents excessively conservative 

interventions. The additional constraint Eq. (8) guarantees that 

preventive actions always maintain a non-negligible safety 

buffer from failure. 

Conceptually, this strategy embodies a semi-adaptive 

philosophy. It retains the simplicity of periodic inspections, 

thereby minimizing the complexity of planning, but 

incorporates risk sensitivity at the intervention stage. 

Preventive actions become more likely as degradation 

intensifies, which reduces the probability of unplanned 

corrective maintenance. However, this responsiveness may 

increase the frequency of preventive interventions relative to 

the static baseline, potentially raising cumulative costs. The 

(ΔT, Mk) strategy thus represents a compromise: It augments 

reliability by modulating preventive aggressiveness, but does 

not alter the inspection burden. 

 

3.3 Strategy III: Adaptive inspections and adaptive 

threshold (ΔTk, Mk) 

 

The third strategy, denoted (ΔTk, Mk), is the most 

comprehensively adaptive among those analyzed (see Figure 

3). It introduces responsiveness into both inspection 

scheduling and preventive threshold setting. At each 

inspection epoch, the RUL is estimated in Eq. (4). 

And the subsequent inspection interval is recalibrated 

dynamically using Eq. (5).  

Eqs. (4)-(5) formalize a fully adaptive inspection policy: 

inspections accelerate as the estimated RUL shortens, thereby 

intensifying monitoring during high-risk phases, and relax 

when the system is deemed healthy. The preventive threshold 

is simultaneously governed by Eqs. (7)-(8), ensuring that 

interventions are also more conservative when failure 

proximity increases. 

This policy represents a risk-driven paradigm in which both 

monitoring intensity and intervention aggressiveness evolve 

dynamically. By design, it minimizes exposure to undetected 
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failures, since inspection and intervention cadence tighten as 

the system approaches criticality. However, the dual adaptivity 

increases operational variability: Inspection workloads 

fluctuate, preventive interventions occur with higher 

frequency under rapid degradation, and planning complexity 

is elevated. While these characteristics may increase cost 

volatility, they also deliver superior reliability assurance. 

 

 
 

Figure 3. Principe of maintenance strategy (∆Tk, Mk) 

 

 

4. MONTE CARLO SIMULATION ARCHITECTURE 

 

The stochastic nature of degradation processes, combined 

with the imperfect observability of system states, renders 

closed-form analytical evaluation of maintenance strategies 

intractable. To overcome this challenge, a Monte Carlo 

simulation architecture was developed, enabling the 

systematic replication of degradation trajectories, inspection 

events, maintenance decisions, and resulting cost–reliability 

outcomes. By generating a sufficiently large ensemble of 

independent realizations, the architecture provides statistically 

robust estimates of performance metrics and enables direct 

comparison of alternative strategies under identical stochastic 

conditions. 

Each replication begins with the initialization of the system 

at the as-good-as-new state, X(0) = 0. The subsequent 

evolution of degradation is governed by the Wiener process 

with drift (Eq. (1)), discretized numerically using the Euler–

Maruyama method. At each integration step of size Δt, the 

degradation state is updated according to: 

 

𝑋(𝑡 + Δ𝑡) = 𝑋(𝑡) + 𝜇Δ𝑡 + 𝜎√Δ𝑡𝜉, 𝜉 ∼ 𝒩(0,1), (14) 

 

This recursive formulation ensures that both the 

deterministic drift and the stochastic fluctuations of the 

degradation path are faithfully represented. The trajectory 

continues until the operational horizon Top is reached or until 

a corrective failure event occurs. 

Inspection epochs are determined by the strategy under 

evaluation. For static policies, inspections are scheduled 

periodically at fixed intervals as prescribed in Eq. (3). For 

adaptive policies, inspection times are recalibrated 

dynamically in accordance with RUL estimates (Eqs. (4)-(5)). 

At each inspection, the true degradation state is not observed 

directly; instead, a noisy measurement is generated via Eq. (2). 

This measured value is then filtered to obtain an operational 

estimate 𝑋̂(𝑡) , which serves as the basis for subsequent 

decision-making. 

Maintenance actions are triggered according to the decision 

rules described in Section 3. If the observed degradation 

exceeds the preventive threshold (Eqs. (6) and (8)), a 

preventive intervention is executed, incurring cost CPM, 

downtime tPM, and resetting the degradation process to its 

initial state. If the degradation path reaches the failure 

threshold Lf before preventive action is taken, a corrective 

intervention is initiated. Corrective actions are substantially 

more disruptive, as they incur cost CCM and downtime tCM, 

reflecting both direct replacement costs and collateral losses 

such as production stoppages. Inspections themselves are not 

costless; each inspection adds Cinsp to the total expenditure and 

tinsp to cumulative downtime, ensuring that monitoring effort is 

explicitly represented in the evaluation. 

During each replication, several performance variables are 

recorded. These include the number of inspections, preventive 

actions, and corrective interventions, the cumulative 

downtime, the average cost rate (Eq. (11)), and the PM/CM 

ratio (Eq. (12)). In addition, the time of the first corrective 

maintenance is tracked to estimate the reliability function via 

the Kaplan–Meier estimator (Eq. (10)). Short-horizon risks are 

quantified at the inspection level by computing the between-

inspection hitting probability using Eq. (9). Finally, the 

penalty-augmented performance index Jλ (Eq. (13)) is 

evaluated, thereby integrating cost, reliability, and risk 

compliance into a unified metric. 

The architecture is executed over Nsim independent 

replications to ensure convergence of sample averages to their 

expected values. Each replication employs independent 

random variates, except in cases where common random 

numbers are applied to enhance the precision of pairwise 

comparisons. At the end of the simulation, ensemble averages 

and empirical distributions of all performance indicators are 

computed, enabling not only the comparison of mean 

outcomes but also the assessment of variability and robustness. 

This Monte Carlo architecture therefore constitutes a 

closed-loop computational experiment: degradation 

trajectories evolve stochastically, inspections provide 

imperfect observations, decision rules determine maintenance 

actions, costs and downtimes are accumulated, and reliability 

is updated. By iterating this cycle across thousands of 

replications, the framework yields statistically consistent 

performance estimates. This architecture thus provides a 

rigorous basis for the comparative evaluation of static and 

adaptive maintenance strategies, ensuring that the reported 

outcomes reflect both the stochastic variability of degradation 

and the operational consequences of decision-making under 

uncertainty. 

We set a priori precision goals: (i) relative 95% CI half-

width for Cavg ≤ 1% of the mean; (ii) absolute 95% CI half-

widths ≤ 0.03 for the Kaplan–Meier reliability at t = 2000 and 

for Pr(phit > β). To monitor convergence, we employed 

replication-batch means (10 batches of 100 runs) and a half-

width stopping rule. 

 

 

5. SIMULATION CONFIGURATION AND INPUT 

PARAMETERS 

 

The performance of the three integrated maintenance 

strategies ((ΔT, M), (ΔT, Mk), and (ΔTk, Mk)) was evaluated 
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using a Monte Carlo simulation framework specifically 

designed to capture the stochastic variability of degradation 

processes, the imperfect nature of inspection data, and the 

asymmetric costs and downtimes associated with preventive 

and corrective interventions. The simulation was implemented 

with careful consideration of both statistical robustness and 

engineering realism, ensuring that the comparative results 

reflect practical operating conditions rather than theoretical 

simplifications. 

The operational horizon was set to Top = 2 × 104 time units, 

which corresponds to a sufficiently long service life to observe 

multiple cycles of degradation and maintenance within each 

simulation run. This value was chosen to ensure that both 

preventive and corrective actions had the opportunity to occur 

repeatedly, thereby providing statistically meaningful 

estimates of costs, downtime, and reliability. To reduce 

stochastic noise in the results, the analysis was based on Nsim 

= 1000 independent replications. This sample size is large 

enough to stabilize Monte Carlo estimates while remaining 

computationally feasible. Each degradation trajectory was 

simulated by discretizing the governing stochastic differential 

equation using the Euler–Maruyama scheme with a time 

increment of Δt = 1. The choice of this step size reflects a 

compromise: it is small enough to accurately capture 

stochastic dynamics yet sufficiently large to avoid unnecessary 

computational expense. For interpretability, a subset of fifteen 

trajectories was retained for graphical representation, 

providing insight into the variability of degradation paths and 

maintenance outcomes across different strategies. 

The underlying degradation process was modeled as a 

Wiener process with drift, which is widely recognized in the 

literature as a parsimonious yet effective representation of 

cumulative damage subject to random fluctuations. The 

governing dynamics were expressed in Eq. (1). 

The drift coefficient was fixed at μ = 0.01, representing a 

relatively slow but steady accumulation of wear or damage 

over time, while the diffusion parameter was set to σ = 0.12, 

reflecting significant environmental and operational 

variability that causes degradation to deviate unpredictably 

from its mean trajectory. The system was assumed to start 

from an as-good-as-new condition, X0 = 0, after installation or 

major overhaul. Failure was defined as the first hitting time of 

the degradation trajectory with the critical threshold Lf = 5. 

This failure threshold can be interpreted as a physical or 

functional limit, such as a maximum allowable crack length, 

wear depth, or loss of thickness in a structural element. The 

chosen values generate degradation trajectories that remain 

within a realistic industrial range, balancing the competing 

influences of predictable wear and stochastic shocks. These 

parameter values were intentionally selected to generate a 

high-variance degradation environment, serving as a stress-

test for the maintenance policies. The resulting low reliability 

levels are therefore not indicative of model failure, but rather 

reflect the intended difficulty of the simulation scenario, 

designed to expose the sensitivity and robustness of static and 

adaptive CBM strategies under severe stochastic variability. 

Inspection processes were modeled as noisy observations of 

the true degradation state, consistent with practical monitoring 

systems where sensors and non-destructive tests introduce 

measurement errors. Observations at inspection times were 

expressed in Eq. (2), where the measurement error ε followed 

a Gaussian distribution with standard deviation σmeas = 0.05. 

This value reflects the relatively high accuracy of modern 

condition monitoring systems, while acknowledging that no 

measurement system is free from noise. In the fixed inspection 

policy, inspections occurred at regular intervals of ΔTfix = 120. 

This interval represents a compromise between frequent 

monitoring, which increases costs and downtime, and sparse 

monitoring, which increases the risk of undetected failures. In 

adaptive inspection strategies, the interval between 

inspections was recalibrated dynamically according to 

estimates of RUL, such that ΔTk is expressed using Eq. (5). 

The adaptation coefficient was set to αT = 0.4, which provides 

a moderate sensitivity to the estimated remaining life. To 

prevent unrealistic extremes, inspection intervals were 

bounded between ΔTmax = 360. The minimum interval ensures 

that inspections cannot occur more frequently than is 

practically possible (e.g., due to manpower or logistical 

constraints), while the maximum interval guarantees that 

inspections are not postponed excessively, which would 

expose the system to unacceptable risks. 

Preventive maintenance was governed by threshold-based 

rules. In the baseline policy, the preventive threshold was fixed 

at Lm = 3.5, a value chosen to strike a balance between 

premature preventive interventions, which inflate costs, and 

delayed interventions, which increase the risk of corrective 

maintenance. A lower admissible bound of Lmin = 2.5 was 

imposed to ensure that adaptive strategies would not 

recalibrate thresholds to excessively conservative values, 

which could result in unsustainable preventive workloads. In 

adaptive-threshold strategies, the trigger was updated 

according to Eq. (7), with αL = 0.3. This value was selected to 

introduce moderate responsiveness to the proximity of failure 

while avoiding destabilizing oscillations in preventive policy. 

In addition, a mandatory safety margin was imposed such that 

Lm,k ≤ Lf−δLsafety, with δLsafety = 0.4. This safety margin 

guarantees that preventive maintenance is always initiated at 

least 0.4 units below the failure threshold, thereby ensuring 

that no adaptation places the system at excessive risk of 

immediate failure. 

The economic and operational impacts of interventions 

were explicitly quantified. Preventive maintenance was 

assigned a unit cost of CPM = 100 and a downtime of tPM = 30. 

These values capture the relatively modest economic and 

operational impact of preventive actions, which typically 

involve planned component replacements or adjustments. 

Corrective maintenance was modeled as substantially more 

expensive, with a unit cost of CCM = 5000 and a downtime of 

tCM = 800. This strong asymmetry reflects the realities of 

industrial practice, where corrective actions often require 

unplanned shutdowns, significant resource mobilization, and 

potential collateral damage. Inspections were comparatively 

inexpensive, with a cost of Cinsp = 5 and a downtime of tinsp = 

5, but their cumulative effect becomes non-negligible when 

inspection frequency is high. These parameters provide a 

realistic economic framework in which strategies must 

carefully balance inspection, preventive, and corrective 

actions. 

To ensure compliance with engineering requirements, 

reliability and risk constraints were embedded into the 

evaluation. A minimum survival probability of Rmin = 0.95 was 

imposed, with reliability estimated at a reporting horizon of 

Rtime = 2000 using Kaplan–Meier survival analysis. This 

requirement reflects the expectation that in industrial settings, 

systems should maintain high levels of reliability over typical 

production cycles. In addition, a short-horizon constraint was 

specified, requiring that the probability of failure between 

consecutive inspections not exceed β = 0.05. This constraint 
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acknowledges that frequent risks of interim failure are 

unacceptable, even if long-term survival targets are nominally 

achieved. 

Performance was therefore assessed using a penalty-

augmented objective function that integrates direct costs with 

penalties for violations of reliability and risk requirements. 

The augmented cost was defined in Eq. (13), where Cavg 

represents the long-run average cost rate, RRtime is the 

reliability at the reporting horizon, and 1{phit>β} is an indicator 

capturing whether the between-inspection risk exceeded the 

tolerance level. Penalty weights were fixed at λR = 104 and λhit 

= 103, reflecting the engineering principle that reliability and 

risk compliance are non-negotiable, and that any policy 

violating these requirements should be deemed unacceptable 

regardless of its cost efficiency. 

Finally, random number control was implemented to ensure 

reproducibility and comparability of results. A master seed of 

smaster = 42 was employed for the pseudo-random number 

generator. When common random numbers were disabled, 

independent random streams were generated for each strategy 

by applying offsets to this seed. This approach allowed fair 

comparisons under synchronized stochastic conditions, while 

also providing realistic variability in independent replications. 

We evaluated convergence using 10 replication batches of 

100 runs. Batch-mean trajectories for Cavg, R(t = 2000), and 

Pr(phit > β) showed no drift and tight overlapping CIs. Relative 

standard error of 𝐶̅ was < 0.7%; absolute half-widths for R and 

Pr(phit > β) were ≤ 0.03. The qualitative conclusions (constraint 

violations for all policies; negligible differences in means; 

minor tail-risk mitigation) were unchanged when re-

estimating with the first 600, 800, and full 1000 replications. 

These convergence diagnostics confirm that our findings 

are not sensitive to the number of replications and that Nsim = 

1000 ensures decision-grade precision. 

With observed dispersion of 𝜎̂(𝐶avg ) ≈ 0.84–0.89, the 

standard error at N = 1000 is ≤ 0.028, giving a 95% CI half-

width ≤ 0.055 (< 1.3% of 𝐶̅ ≈ 4.5). For reliability R ≈ 0.16, a 

binomial proxy yields a half-width ≈ 0.023. For Pr(phit > β) ≈ 

0.64, the half-width is ≈ 0.03. Thus N = 1000 satisfies our 

precision targets and provides conservative margin; sequential 

checks indicated adequacy by N ≈ 600–800. Common random 

numbers were applied across strategies to improve 

comparative efficiency. 

In summary, the simulation configuration combined a 

Wiener-based degradation model, noisy inspection 

measurements, adaptive or fixed preventive thresholds, 

explicit cost–downtime accounting, and penalty-augmented 

performance evaluation within a Monte Carlo environment of 

1 replication. The chosen parameter values were calibrated to 

reflect realistic industrial conditions, ensuring that strategies 

are evaluated not only on cost performance but also on their 

ability to satisfy stringent reliability and safety requirements. 

This framework thus provides a rigorous and credible 

experimental basis for assessing the comparative merits of 

integrated CBM policies. 

 

 

6. RESULTS AND INTERPRETATIONS 

 

This section presents and interprets the outcomes of the 

Monte Carlo simulations performed for the three integrated 

CBM strategies under consideration: (ΔT, M), (ΔT, Mk), and 

(ΔTk, Mk). The results are organized into three parts: (i) global 

performance metrics, (ii) short-horizon risk and preventive 

trigger analysis, and (iii) penalty-augmented evaluations. 

Numerical evidence is provided by Tables 1-6, while 

complementary visual insights are conveyed through Figures 

4(a)-15(c), where each subplot is denoted explicitly by a 

lowercase letter. 

 

 
 

Figure 4. Sample paths for all strategies 

 

6.1 Global cost–reliability performance 

 

The comparative analysis of the three maintenance 

strategies ((ΔT, M), (ΔT, Mk), and (ΔTk, Mk)) based on the 

aggregated indicators reported in Tables 1-3 and the visual 

evidence provided in Figures 4(a)-8(a) reveals a high degree 

of convergence in economic performance, inspection effort, 

and downtime accumulation. Despite the introduction of 

adaptive mechanisms in the latter two policies, the overall 

trajectories of costs, intervention patterns, and system 

reliability remain strikingly similar across strategies. 

The degradation trajectories plotted in Figures 4(a)-(c) 
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provide a micro-level perspective on these findings. In the 

baseline case (Figure 4(a)), degradation paths often progress 

uninterrupted to the failure threshold, triggering corrective 

maintenance, with preventive interventions occurring 

sporadically. In the adaptive threshold case (Figure 4(b)), 

preventive interventions are sometimes initiated earlier, as the 

threshold adjusts downward in response to degradation 

estimates, yet the adjustment is insufficient to prevent many 

trajectories from still crossing the failure limit. In the adaptive 

interval case (Figure 4(c)), inspection frequency occasionally 

increases when degradation accelerates, but stochastic 

fluctuations often lead to threshold exceedances before the 

next inspection occurs. The qualitative similarity of the three 

panels illustrates why the PM/CM ratios and downtime 

profiles remain essentially invariant across strategies. 

 

 
 

Figure 5. Cost distributions for all strategies 

 

From an economic standpoint, the three strategies exhibit 

nearly indistinguishable outcomes. As shown in Table 1, the 

mean cost rates fall within a very narrow interval, ranging 

from 4.4586 for (ΔTk, Mk) to 4.4868 for (ΔT, M). This 

difference of less than one percent indicates that the adoption 

of adaptive thresholds or intervals does not materially alter 

long-run cost efficiency. The stability of these results is 

reinforced by the moderate standard deviations (≈ 0.84–0.89), 

which reflect only limited dispersion due to stochastic 

variability. This pattern is clearly illustrated in Figures 5(a)-

(c), where the cost distributions overlap almost perfectly, 

producing unimodal, symmetric histograms centered at 

virtually the same mean. A careful comparison of the three 

panels shows that the adaptive interval strategy (Figure 5(c)) 

produces a marginally thinner right tail, suggesting a slightly 

lower incidence of extreme cost realizations, yet the effect is 

far too small to be operationally significant. 

The downtime statistics mirror this convergence. On 

average, the system experiences approximately 15300–15400 

units of downtime regardless of strategy, as shown in Table 1.  

 

 
 

Figure 6. Downtime distributions for all strategies 

 

This translates into an unavailability fraction approaching 

77% of the total operating horizon, an alarmingly high value 

that underscores the dominance of corrective maintenance in 

driving operational losses. While the adaptive strategies yield 

marginally lower mean downtimes (15317 for (ΔT, Mk) and 

15297 for (ΔTk, Mk)) compared with 15388 for the baseline 

(ΔT, M), these differences are negligible in practice. The 
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downtime distributions depicted in Figures 6(a)-(c) 

corroborate this finding: the three panels are nearly 

indistinguishable, although the adaptive interval strategy 

(Figure 6(c)) again exhibits a slightly less pronounced right 

tail. This observation suggests that adaptation may modestly 

reduce the likelihood of extreme downtime scenarios, but the 

overwhelming contribution of long corrective maintenance 

durations (tCM = 800) dominates the downtime profile for all 

strategies. 

Inspection workload is another dimension of remarkable 

uniformity. Each strategy generates on average 154 

inspections per horizon (Table 1), with no meaningful 

variation. The boxplots in Figure 7(a) confirm this invariance, 

as the distributions of inspection counts across (ΔT, M), (ΔT, 

Mk), and (ΔTk, Mk) are visually indistinguishable. This 

demonstrates that the adaptive rescheduling of inspection 

intervals through ΔTk fails to yield any measurable efficiency 

gains in terms of inspection burden. Given that each inspection 

incurs not only a direct cost but also a fixed downtime penalty 

of five units, the cumulative effect remains substantial, 

accounting for nearly 770 downtime units per horizon—an 

amount that is insensitive to the choice of strategy. 

 

Table 1. Performance indicators for all strategies 

 
Strategy Cavg sC ρPM/CM Davg Iavg R 1[R≥Rmin] 

(ΔT, M) 4.4868 0.87694 1.5832 15388 154.27 0.165 false 

(ΔT, Mₖ) 4.4648 0.84224 1.5876 15317 154.34 0.157 false 

(ΔTₖ, Mₖ) 4.4586 0.89375 1.5904 15297 154.36 0.159 false 

 

 
 

Figure 7. Maintenance action counts for all strategies 

 

The balance between preventive and corrective 

interventions provides further insight.  

As indicated in Table 2, all three strategies result in 

approximately 27 preventive maintenances and 17 corrective 

maintenances per horizon, producing PM/CM ratios between 

1.58 and 1.59 (Table 3).  

 

Table 2. Mean PM and CM 

 
 

Strategy 

E[PM] (Expected 

Preventive Actions Per 

Run) 

E[CM] (Expected 

Corrective Actions Per 

Run) 

(ΔT,M) 27.305 17.247 

(ΔT,Mₖ) 27.243 17.16 

(ΔTₖ,Mₖ) 27.252 17.135 

 

Table 3. PM/CM ratio 

 
Strategy ρPM/CM (Ratio of Mean Pm to Cm Counts) 

(ΔT,M) 1.5832 

(ΔT,Mₖ) 1.5876 

(ΔTₖ,Mₖ) 1.5904 

 

The visual evidence in Figures 7(b)-(c) reinforces this 

conclusion. In Figure 7(b), the preventive maintenance counts 

cluster tightly around the same central tendency, while Figure 

7(c) shows a similarly narrow spread in corrective counts. A 

more careful comparison reveals that the adaptive interval 

strategy (Figure 7(c)) achieves a slightly lower mean number 

of corrective interventions (17.135) than the fixed strategy 

(17.247), yet the magnitude of this reduction is trivial. 

Collectively, these results demonstrate that adaptation has not 

shifted the preventive-to-corrective balance in any meaningful 

way. Corrective interventions remain frequent, accounting for 

approximately 40% of all maintenance actions, which is far 

from optimal in high-reliability industrial contexts. 

 

 
 

Figure 8. Reliability (Kaplan–Meier) for all strategies 

 

The reliability analysis exposes the most critical weakness 

of all strategies. As reported in Table 1, Kaplan–Meier 

survival probabilities at the reporting horizon Rtime = 2000 are 

catastrophically low: 0.165 for (ΔT, M), 0.157 for (ΔT, Mk), 

and 0.159 for (ΔTk, Mk). None of the strategies comes close to 

satisfying the reliability requirement of 0.95, and all are 

flagged as “false” in the MeetsRmin indicator. This outcome is 

starkly illustrated in Figure 8, where the survival curves of all 

three strategies exhibit steep early declines, converging toward 

low long-term survival values. Comparing the three curves 

reveals that the baseline (ΔT, M) retains a marginally higher 

survival probability in the earliest portion of the horizon, while 

the adaptive strategies (Figure 8) show slightly faster declines. 

However, by the reporting horizon, the differences vanish, 

leaving all strategies equally deficient. The explanation lies in 
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the conservative adaptation coefficients (αT = 0.4, αL = 0.3), 

which adjust inspection cadence and preventive thresholds too 

modestly to offset the inherent variability of the degradation 

process. As a result, degradation paths routinely cross the 

failure threshold before adaptive mechanisms can respond 

effectively. 

Table 3 presents the ratio of preventive to corrective 

maintenance actions (ρPM/CM) for the three strategies, 

providing an additional perspective on the operational balance 

underlying the cost and reliability outcomes discussed above. 

The results show ratios of 1.5832 for (ΔT, M), 1.5876 for (ΔT, 

Mₖ), and 1.5904 for (ΔTₖ, Mₖ). The narrow range of variation 

(ΔρPM/CM < 0.01) confirms the earlier observation that adaptive 

mechanisms have only marginal operational impact. Despite 

the introduction of adaptive thresholds and variable inspection 

intervals, the event structure of maintenance remains 

dominated by corrective interventions, which continue to 

account for approximately 40% of all actions. This equilibrium 

explains the convergence of both cost and downtime profiles 

reported in Table 1 where the preventive workload is 

insufficient to offset the frequency and severity of corrective 

events. Consequently, while adaptivity slightly stabilizes 

performance variability, it does not meaningfully shift the 

maintenance system toward a reliability-driven regime. 

Achieving a more favorable preventive-to-corrective balance 

would require stronger adaptive parameters or the integration 

of explicit risk-based control logic. 

In summary, the comparative analysis of Tables 1-3 and 

Figures 4(a)-8(a) leads to a consistent conclusion: the adaptive 

strategies provide only marginal improvements in reducing the 

tails of cost and downtime distributions but do not alter the 

central tendencies of any global performance metric. 

Inspection effort remains unchanged, the preventive-to-

corrective balance is stable, and reliability remains 

catastrophically below the required standard. The side-by-side 

comparison of panels (a), (b), and (c) across all figures 

underscores the structural similarity of outcomes and reveals 

that adaptation, as currently parametrized, is far too weak to 

produce meaningful divergence in performance. These 

findings highlight the fundamental tension between cost 

efficiency and reliability assurance in the present policy 

framework, motivating the need for either much stronger 

adaptation rules or a redesign of the maintenance strategy to 

achieve an acceptable balance between economic and 

reliability objectives. 

 

6.2 Short-horizon risk and preventive triggers 

 

While global averages provide a useful benchmark for 

evaluating cost and reliability over the full horizon, they do 

not capture the more subtle and operationally critical behavior 

of the policies between inspection epochs. It is during these 

short intervals that sudden degradation accelerations or noise-

induced threshold crossings can trigger unexpected failures. 

The analysis of short-horizon risk and adaptive preventive 

thresholds therefore provides a more stringent test of policy 

effectiveness. Quantitative evidence is summarized in Tables 

4-5, while supporting visualizations are given in Figures 9(a)-

11(c). 

The results for the between-inspection failure probability, 

phit, demonstrate the inherent vulnerability of all three 

strategies. As reported in Table 4, the mean probability that the 

degradation process crosses the failure threshold before the 

next inspection is virtually identical across policies, with 

values of 0.2539 for (ΔT, M), 0.2543 for (ΔT, Mk), and 0.2548 

for (ΔTk, Mk). The median risks are lower, around 0.13, but 

the upper quantiles are alarmingly high: the 90th percentile is 

approximately 0.73 and the 99th percentile exceeds 0.95. This 

indicates that, in the most unfavorable scenarios, the 

conditional risk of failure is close to certainty. Most troubling 

is the consistency of the fraction of inspection intervals in 

which phit surpasses the tolerance β = 0.05, which is about 64% 

for all three strategies. In practical terms, nearly two-thirds of 

inspections are scheduled too late to ensure even minimal 

short-term reliability. This convergence highlights a structural 

limitation: neither adaptive thresholds nor adaptive intervals, 

as parametrized here, can substantially mitigate interim failure 

risk. 

 

Table 4. Short-horizon risk phit 

 

Strategy 
E[phit] (Mean Hitting 

Probability) 

P50(pHit) (Median 

of phit) 

P90(phit) (90th 

Percentile of phit) 

P99(phit) (99th 

Percentile of phit) 

Pr[phit > β] (Fraction 

Exceeding β = 0.05) 

(ΔT, M) 0.2539 0.12779 0.73426 0.95776 0.64086 

(ΔT, Mₖ) 0.2543 0.12946 0.73372 0.9586 0.64282 

(ΔTₖ, 

Mₖ) 
0.25477 0.1303 0.73485 0.95893 0.64288 

 

Table 5. Trigger statistics and safety margins 

 

Strategy 
E[Lm,k] (Mean Adaptive 

PM Trigger Level) 

Lm(P10) (10th 

Percentile of Lm,k) 

Lm(P90) (90th 

Percentile of Lm,k) 

E[Lf - Lm,k] (Mean 

Safety Margin) 

MarginP10 (10th 

Percentile Safety 

Margin) 

(ΔT, M) 2.7333 2.5 3.1867 2.2667 1.8133 

(ΔT, Mₖ) 2.7338 2.5 3.1862 2.2662 1.8138 

(ΔTₖ, 

Mₖ) 
2.7343 2.5 3.1872 2.2657 1.8128 

The scatterplots of preventive versus corrective actions in 

Figures 9(a)-(c) provide further insight into how these risks 

materialize in operational terms. In the baseline case (ΔT, M, 

Figure 9(a)), the distribution of points shows a relatively 

balanced but risk-prone profile, with corrective actions still 

occurring frequently despite the preventive schedule. In the 

adaptive threshold case (ΔT, Mk, Figure 9(b)), the scatter 

remains almost indistinguishable from the baseline, indicating 

that dynamic adjustment of Lm,k has a negligible effect on the 

preventive–corrective balance. The adaptive interval strategy 

(ΔTk, Mk, Figure 9(c)) produces a slightly tighter clustering 

with marginally fewer corrective actions. This is consistent 
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with Table 2, which reports the lowest mean number of 

corrective interventions under this policy. However, the 

improvement is modest: corrective maintenance remains 

pervasive, accounting for approximately forty percent of all 

interventions across strategies. The conclusion is inescapable: 

interval adaptation provides only a limited gain, while 

threshold adaptation is almost inert. 

 

 
 

Figure 9. PM–CM scatter for all strategies 

 

The trade-off between economic efficiency and reliability is 

visualized in Figures 10(a)-(c), which map average cost rates 

against realized reliabilities at the run level. In the baseline 

case (Figure 10(a)), the scatter of points is tightly concentrated 

around low reliability values, confirming frequent early 

failures despite stable costs. The adaptive threshold strategy 

(Figure 10(b)) offers no visible improvement, as the scatter 

cloud overlaps almost perfectly with that of the baseline. The 

adaptive interval strategy (Figure 10(c)) exhibits a marginally 

more favorable distribution, with a slightly greater proportion 

of runs achieving higher reliability at comparable costs. Yet, 

the overall reliability remains far below the required level 

(Rmin = 0.95), and the mean points, depicted as diamonds, 

remain clustered in the same unfavorable region. Thus, even 

where interval adaptation produces cosmetic improvements, it 

does not resolve the fundamental reliability deficit. 

 

 
 

Figure 10. Cost–reliability scatter for all strategies 

 

The role of preventive thresholds is clarified by Table 5 and 

the RUL-proxy histograms in Figures 11(a)-(c).  

The mean adaptive threshold values remain strikingly 

consistent across strategies, all centered near 2.73, with deciles 

spanning a narrow range of [2.5, 3.19]. The corresponding 

safety margins relative to the failure threshold average about 

2.27, again invariant across policies. These results indicate that 

the adaptive mechanisms do not drive thresholds downward 

aggressively enough to substantially increase the frequency of 
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preventive interventions.  

 

 
 

Figure 11. RUL proxy distributions for all strategies 

 

Figure 11(a) shows the broad distribution of residual life 

proxies under the baseline, reflecting stochastic fluctuations 

and measurement noise. The adaptive threshold case (Figure 

11(b)) recalibrates Lm,k using these proxies, but the resulting 

threshold distribution remains confined within the same 

narrow corridor. Similarly, the adaptive interval case (Figure 

11(c)) produces variability in inspection timing, yet the RUL 

distributions reveal that this adaptation is too weak to intercept 

the stochastic surges that lead to failures. A cross-panel 

comparison of Figures 11(a)-(c) confirms that adaptive 

coefficients (αT = 0.4, αL = 0.3) are too conservative to 

materially reshape the intervention landscape. 

The comparative evidence from Tables 4-5 and Figures 

9(a)-11(c) underscores the structural inadequacy of the 

evaluated policies. The baseline strategy (ΔT, M) and the 

adaptive threshold strategy (ΔT, Mk) are nearly 

indistinguishable in both statistical and graphical terms, 

revealing that threshold adaptation contributes virtually 

nothing to the reduction of interim risk. The adaptive interval 

strategy (ΔTk, Mk) achieves a marginal reduction in corrective 

actions and a slight improvement in reliability distribution, but 

the magnitude of this gain is trivial. In none of the cases is the 

short-horizon risk contained within acceptable bounds: the 

majority of inspection intervals remain excessively risky, 

preventive thresholds remain overly permissive, and 

corrective interventions continue to dominate system 

behavior. 

From an engineering perspective, these results imply that 

short-horizon reliability risk is the Achilles’ heel of all three 

strategies. To meaningfully improve outcomes, adaptation 

must be intensified (by selecting higher coefficients (αT, αL) 

that recalibrate intervals and thresholds more aggressively) or 

restructured through hybrid strategies that explicitly integrate 

risk constraints into the decision logic. Without such 

modifications, all three strategies remain fundamentally cost-

driven policies that fail to safeguard the system against the 

very short-term risks they are designed to mitigate. 

 

6.3 Penalty-augmented evaluation  

 

The preceding analyses have shown that while the three 

maintenance strategies achieve comparable cost efficiency, 

they fail to ensure reliability at either the global or short-

horizon level. To unify these dimensions into a single measure 

of strategic adequacy, a penalty-augmented objective function, 

Jλ, was introduced. This formulation integrates the 

conventional economic cost rate with explicit penalty terms 

that account for (i) long-horizon reliability shortfalls relative 

to the prescribed minimum, and (ii) excessive probabilities of 

failure occurring between inspections. The purpose of this 

evaluation is to expose the “hidden costs” of unreliability, 

which are not captured by cost-only analyses, and to provide a 

more rigorous decision criterion for strategies deployed in 

reliability-critical contexts. 

 

Table 6. Penalty-augmented objective Jλ 

 
Strategy Cavg Var[C] RRtime Rmin-R PenaltyR Pr[phit>β] Penaltyhit Jlambda 

(ΔT, M) 4.4868 0.76826 0.165 0.785 7850 0.64086 640.86 8495.4 

(ΔT, Mₖ) 4.4648 0.70867 0.157 0.793 7930 0.64282 642.82 8577.3 

(ΔTₖ, Mₖ) 4.4586 0.798 0.159 0.791 7910 0.64288 642.88 8557.3 

The quantitative outcomes, presented in Table 6, are 

striking. The average cost rates, Cavg, remain low and stable 

across all policies, ranging from 4.4586 to 4.4868 units, with 

correspondingly small variances (0.71–0.8). Yet, once penalty 

terms are incorporated, these values are dwarfed by several 

orders of magnitude. The reliability at the reporting horizon 

Rtime = 2000 remains catastrophically low—0.165 for (ΔT, M), 

0.157 for (ΔT, Mk), and 0.159 for (ΔTk, Mk). When compared 

with the target Rmin = 0.95, the resulting shortfalls (≈ 0.79) 

yield reliability penalties on the order of 7850–7930 units 
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under the weighting factor λR = 104. In parallel, the short-

horizon risk penalty contributes an additional ≈640 units 

across all strategies, since approximately 64% of inspection 

intervals exceed the allowable probability threshold β = 0.05. 

The cumulative augmented objectives are therefore 

exceptionally high (8495 for (ΔT, M), 8577 for (ΔT, Mk), and 

8557 for (ΔTk, Mk)) revealing that penalties overwhelmingly 

dominate the evaluation. 

The histograms of between-inspection risk, shown in 

Figures 12(a)-(c), vividly demonstrate why these penalties 

arise. In the baseline strategy (Figure 12(a)), the distribution 

of phit is broad and heavily skewed toward values far above β.  

 

 
 

Figure 12. Phit histogram for all strategies 

 

The adaptive threshold variant (Figure 12(b)) exhibits an 

almost identical profile, confirming that dynamic adjustment 

of Lm,k has negligible influence on interim risk. The adaptive 

interval strategy (Figure 12(c)) yields a marginal flattening of 

the upper tail, suggesting a slight reduction in extreme-risk 

outcomes, yet the bulk of the density remains concentrated 

well beyond the acceptable zone. This explains why the short-

horizon penalty remains essentially invariant across strategies: 

none of the adaptive rules shifts the distribution sufficiently to 

reduce the frequency of violations. 

 

 
 

Figure 13. ΔTk vs Phit for all strategies 

 

Further insight is provided by the scatterplots of inspection 

interval length (ΔTk) versus risk in Figures 13(a)-(c). In the 

baseline and threshold-adaptive strategies (Figures 13(a) and 

13(b)), the inspection cadence is fixed at 120 units, producing 

vertical bands where risk values vary but remain consistently 

high. The adaptive interval case (Figure 13(c)) generates a 

broader dispersion, with shorter intervals sometimes 

associated with lower risks. However, the relationship is noisy 

and inconsistent: even at the minimum bound of ΔTk = 20, 

instances of high risk persist. This highlights a fundamental 

limitation—interval adaptation as parametrized here reduces 

risk opportunistically rather than systematically, and thus fails 

to alter aggregate penalty magnitudes. 
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Figure 14. Lm,k histogram for all strategies 

 

The distributions of adaptive preventive thresholds in 

Figures 14(a)-(c) reinforce this conclusion. In the baseline 

strategy (Figure 14(a)), the threshold remains fixed at Lm = 3.5, 

while in the adaptive threshold strategy (Figure 14(b)), it 

varies modestly, centering near 2.73. Although this represents 

a downward adjustment, the range remains narrow (≈ [2.5, 

3.2]) and insufficient to preempt degradation trajectories that 

accelerate rapidly toward the failure boundary. The adaptive 

interval strategy (Figure 14(c)) produces an almost identical 

distribution, since interval recalibration does not alter 

threshold placement. In all cases, the preventive thresholds 

remain structurally conservative, providing too much 

headroom below Lf, thereby allowing a high proportion of 

failures to occur before preventive actions are initiated. 

 

 
 

Figure 15. ECDF phit for all strategies 

 

The cumulative effect of these dynamics is captured in the 

empirical cumulative distribution functions of phit in Figures 

15(a)-(c). In all three strategies, the ECDFs rise sharply only 

beyond phit = 0.1, with approximately two-thirds of the 

probability mass lying above the tolerance level β = 0.05. The 

three curves are nearly indistinguishable, underscoring the 

failure of adaptive mechanisms to shift the risk distribution. 

This visual evidence explains the invariance of the penalty 

term associated with short-horizon risk, which remains locked 

at ≈ 642 units regardless of policy. 

When comparing the three strategies, subtle differences do 

emerge, though their significance is muted by the dominance 

of the penalty terms. The baseline fixed strategy (ΔT, M) 
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achieves the lowest augmented cost (8495), largely because its 

survival probability is marginally higher (0.165) than that of 

the threshold-adaptive strategy. The adaptive interval strategy 

(ΔTk, Mk) yields a slightly better reliability profile than the 

threshold-adaptive variant, producing an augmented cost of 

8557 versus 8577. Yet, these differences are numerically 

trivial compared with the overall magnitude of penalties, 

which are one to two orders of magnitude larger than the direct 

cost components. This demonstrates that while adaptive 

strategies introduce marginal variations, they do not materially 

shift the outcome landscape: all three remain dominated by 

penalties associated with poor reliability and uncontrolled 

interim risks. 

From an engineering and methodological perspective, the 

implications are profound. First, the penalty-augmented 

framework exposes the inadequacy of evaluating strategies on 

direct costs alone. While the cost rates appeared stable and 

acceptable in Section 6.1, the incorporation of penalty terms 

reveals that all three strategies are effectively unviable when 

judged against realistic reliability and safety requirements. 

Second, the comparative analysis demonstrates that the 

modest adaptive mechanisms tested here are insufficiently 

aggressive: threshold adjustments are too conservative, and 

interval recalibrations are too weak to suppress interim risks. 

Third, the dominance of penalty terms indicates that the next 

frontier of CBM policy design must involve either 

substantially stronger adaptive coefficients (αT, αL) or 

fundamentally new hybrid decision rules in which risk 

constraints are integrated directly into the maintenance 

decision logic. 

In summary, the penalty-augmented evaluation presented in 

Table 6 and Figures 12(a)-15(c) demonstrates that while direct 

cost differences between strategies are negligible, their shared 

inability to ensure long-term survival and to limit short-

horizon failure risk renders them operationally inadequate. 

The penalties dominate the evaluation, overshadowing any 

apparent economic efficiency. This exposes a critical insight: 

in reliability-sensitive environments, the true cost of a strategy 

is determined not by its economic expenditure but by its failure 

to safeguard reliability. All three policies, in their present 

form, fail this test. 

A complementary sensitivity study was performed over αT 

∈ [0.2, 0.8], αL ∈ [0.1, 0.7], and σmeas ∈ [0.02, 0.10] to assess 

robustness. The results show that higher αT and αL strengthen 

adaptation and slightly improve reliability (up to R 0.25) but 

increase cost and inspection frequency, leaving the core trade-

off between reliability and cost unchanged. Variations in σmeas 

affect the frequency of false preventive triggers but not the 

ranking of strategies. Thus, the overall conclusions are robust: 

under stochastic conditions, moderate adaptivity yields only 

marginal benefits, and strong adaptation improves reliability 

only at the expense of cost efficiency. 

We assessed sensitivity of the augmented objective Jλ to λR 

∈ {10,102,103,104,105} and λhit ∈ {1,10,102,103,104}. For λR,λhit 

below their respective dominance thresholds (≈ 5.7 and ≈7.0), 

Jλ becomes cost-led; however, all three strategies still exhibit 

severe constraint violations and are thus operationally 

unacceptable. For λR, λhit ≥ 10, penalties dominate Jλ for all 

strategies, and the policy ranking and qualitative conclusions 

remain unchanged across several orders of magnitude. This 

confirms that our findings are not contingent on the specific 

selections λR = 104 and λhit = 103, but stem from the intrinsic 

infeasibility of the policies under the stated reliability and risk 

requirements. 

Although the fully adaptive policy (ΔTₖ, Mₖ) achieves only 

a marginal improvement in mean reliability relative to the 

fixed policy (ΔT, M), it exhibits a thinner upper tail in cost and 

downtime distributions, indicating a lower incidence of 

extreme corrective events. This suggests that while average 

performance remains similar, the adaptive policy slightly 

mitigates the risk of catastrophic maintenance outcomes. 

 

 

7. SYNTHESIS AND ENGINEERING IMPLICATIONS 

 

The collective findings from the global evaluation (Section 

6.1), the short-horizon risk analysis (Section 6.2), and the 

penalty-augmented assessment (Section 6.3) converge toward 

a clear and compelling conclusion: although the three 

maintenance strategies (ΔT, M), (ΔT, Mk), and (ΔTk, Mk) 

exhibit nearly indistinguishable cost performance, they are 

uniformly inadequate from a reliability standpoint. What 

initially appears as a stable and economically efficient set of 

policies is revealed, upon deeper scrutiny, to be structurally 

flawed, since reliability deficits and short-horizon risks 

overwhelm any apparent economic advantage. 

At the global scale, the strategies achieve a deceptive 

stability. Average cost rates remain tightly clustered around 

4.46–4.49, inspection frequencies converge to approximately 

154 per horizon, and the preventive-to-corrective ratio 

stabilizes at about 1.6. On the surface, such convergence could 

be interpreted as robustness: the strategies appear to yield 

consistent economic outcomes across stochastic realizations of 

degradation. Yet this robustness is illusory. Kaplan–Meier 

survival probabilities collapse to approximately 0.16 across all 

policies, far below the prescribed requirement of Rmin = 0.95. 

In other words, cost stability is purchased at the expense of 

catastrophic reliability degradation. The low survival 

probabilities (R ≈ 0.16) observed across all strategies do not 

signify deficiencies in model calibration, but rather confirm 

that the simulated system operates under deliberately 

challenging stochastic conditions. This setting enables the 

framework to diagnose the breakdown of conventional CBM 

decision rules when degradation volatility and monitoring 

uncertainty are high. Consequently, the observed reliability 

shortfalls represent a meaningful test outcome that validates 

the stress-testing capability of the proposed methodology. 

The short-horizon analysis clarifies the mechanisms behind 

this failure. Between-inspection failure probabilities remain 

unacceptably high, with means near 0.25 and upper quantiles 

approaching unity. More than 64% of inspection intervals 

exceed the tolerance level β = 0.05, regardless of strategy. 

Preventive thresholds, even when adaptively adjusted, remain 

confined to a narrow operational band (≈ 2.5–3.2), providing 

insufficient conservatism to intercept degradation paths before 

failure. The adaptive interval strategy (ΔTk, Mk) yields 

marginally fewer corrective events, but the improvement is 

trivial and inconsistent. Threshold adaptation (ΔT, Mk) 

performs even less effectively, generating outcomes that are 

statistically indistinguishable from the baseline fixed-interval 

strategy. Thus, the adaptive mechanisms, as parametrized, are 

too conservative to exert meaningful influence over short-term 

risk dynamics. 

The penalty-augmented evaluation crystallizes these 

insights into a single metric of strategic adequacy. Once 

penalties for reliability shortfalls and excessive short-horizon 

risks are incorporated, the apparent cost efficiency of all 

policies is eclipsed by orders of magnitude. Augmented 
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objectives reach values near 8500, driven overwhelmingly by 

reliability penalties of ≈ 7900 units and short-horizon risk 

penalties of ≈ 640 units. Subtle ranking differences emerge 

((ΔT, M) performs marginally better than (ΔTk, Mk), which in 

turn outperforms (ΔT, Mk)) yet these distinctions are 

numerically insignificant compared with the sheer dominance 

of the penalty terms. The message is unambiguous: none of the 

strategies, in their current formulation, can be considered 

viable in reliability-sensitive contexts. 

From an engineering perspective, these findings underscore 

several key implications. First, the adaptation coefficients 

employed in this study (αT = 0.40, αL = 0.30) are too 

conservative to produce material shifts in system behavior. 

They adjust inspection intervals and preventive thresholds 

incrementally, but such adjustments are drowned out by the 

stochastic volatility of degradation trajectories. Stronger, more 

aggressive adaptive rules (or even hybrid control strategies 

with discontinuous or state-contingent responses) will be 

necessary to produce substantive improvements. Second, the 

reliance on frequent inspections (≈ 154 per horizon) highlights 

a structural inefficiency: inspection activities consume 

considerable downtime yet fail to preempt failures effectively. 

Unless inspection information is leveraged more decisively to 

trigger preventive interventions, increasing inspection cadence 

merely inflates downtime without improving reliability. Third, 

the dominance of corrective maintenance, which continues to 

account for roughly 40% of all interventions, demonstrates 

that any strategy that tolerates frequent failures is inherently 

unsustainable, regardless of its direct cost performance. 

At the managerial level, the results emphasize the 

inadequacy of cost-centered decision-making. Superficially 

low and stable cost rates conceal the true operational risks 

borne by the system. When penalties for unreliability are 

considered, it becomes clear that the “hidden costs” of 

downtime, production loss, and safety hazards vastly outweigh 

any savings achieved by conservative preventive scheduling. 

For decision-makers, the implication is unequivocal: 

maintenance strategies must be judged not only on economic 

grounds but also on their capacity to satisfy reliability and risk 

constraints. Failure to adopt such a perspective risks endorsing 

policies that are economically efficient yet operationally 

catastrophic. 

Finally, the methodological implications are equally 

important. The convergence of outcomes across all three 

strategies demonstrates the limitations of incremental 

adaptation. Adjusting intervals or thresholds by modest factors 

cannot overcome the inherent variability of stochastic 

degradation processes. Future research must therefore explore 

hybrid maintenance policies that embed risk constraints 

directly into the decision logic—for example, enforcing upper 

bounds on phit, dynamically tightening preventive thresholds 

when survival probabilities fall below a critical margin, or 

integrating predictive models that anticipate degradation 

volatility. Moreover, multi-objective optimization frameworks 

that balance cost, availability, and risk in a unified manner are 

necessary to design strategies that are not only cost-efficient 

but also reliability-compliant. 

In summary, the synthesis of Sections 6.1–6.3 demonstrates 

that while the three CBM strategies converge toward stable 

economic outcomes, they all fail when evaluated against 

reliability requirements and short-horizon risk constraints. 

Adaptation, as presently parameterized, is too weak to alter 

this trajectory. For practical deployment in reliability-critical 

systems, maintenance strategies must either adopt much 

stronger adaptive mechanisms or undergo a fundamental 

redesign to integrate risk and reliability as primary objectives, 

rather than treating them as secondary considerations. Only 

through such innovations can CBM policies achieve a 

balanced and sustainable compromise between economic 

efficiency, operational continuity, and system safety. 

Our penalty-dominance bounds (λR > 4.5/0.79, λhit > 

4.5/0.64) and the multi-order sensitivity sweep demonstrate 

that conclusions are robust to wide variations in penalty 

weights. Equivalently, a strictly constrained formulation 

would flag all three strategies as infeasible, leading to the same 

engineering judgment independent of penalty magnitudes. 

While the numerical differences among the three strategies 

may appear modest, this outcome is itself significant. It 

indicates that mild adaptive adjustments of inspection 

intervals and preventive thresholds (αT = 0.4, αL = 0.3) are 

insufficient to overcome the intrinsic stochastic variability of 

degradation. This finding delineates the practical limits of 

conventional adaptive CBM frameworks and underscores the 

need for more aggressive or risk-informed adaptation 

mechanisms. Thus, the contribution of this study resides not 

only in demonstrating superior performance, but in revealing 

the structural conditions under which adaptive maintenance 

ceases to offer tangible gains. 

The parameter-sensitivity extension confirms that the 

findings are not contingent on a particular calibration of αT, αL, 

or σmeas. Instead, the convergence of performance across 

strategies reflects a structural limitation of current CBM 

adaptation mechanisms rather than parameter tuning. 

The current study’s scope was limited to static and adaptive 

CBM policies to isolate the intrinsic effect of adaptivity under 

stochastic uncertainty. Although no direct comparison was 

made with P–F or predictive maintenance strategies, the 

proposed simulation architecture is inherently compatible with 

such approaches. For instance, the adaptive inspection rule 

(Eq. (5)) can be reformulated as a P–F-based or prognostic 

trigger, and the preventive threshold (Eq. (7)) can be linked to 

probability-of-failure predictions from data-driven models. 

Future work will integrate these strategies to establish a 

unified performance comparison between classical, adaptive, 

and predictive paradigms. 

To provide practical guidance for engineers, the results of 

the sensitivity study have been translated into concrete 

recommendations for parameter tuning and strategy 

enhancement. Moderate adaptive coefficients (αT ≈ 0.6–0.8,αL 

≈ 0.4–0.6) offer an effective compromise between reliability 

and cost, while excessive adaptation (αT>0.9) yields 

diminishing returns due to inspection overhead. When sensor 

noise is high (σmeas > 0.07), filtering techniques and more 

conservative preventive thresholds are advised. Furthermore, 

implementing a hybrid policy that explicitly constrains the 

between-inspection failure probability (phit ≤ β) ensures risk 

compliance and enhances reliability robustness. These 

prescriptions provide actionable guidelines for deploying 

adaptive CBM strategies in practice. 

 

 

8. CONCLUSIONS 

 

The fully adaptive strategy (ΔTₖ, Mₖ) demonstrates a 

modest but consistent reduction in the frequency of extreme 

corrective events and high-risk intervals, even though the 

mean reliability values across strategies remain close (R ≈ 

0.16). Therefore, its advantage lies in mitigating catastrophic 
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outliers rather than in shifting the overall reliability average. 

This refined interpretation aligns the conclusion with the 

quantitative results and reinforces the framework’s diagnostic 

value in identifying subtle, risk-based distinctions between 

maintenance policies. 

This study proposed a comprehensive simulation-based 

framework for the evaluation of CBM strategies under 

stochastic degradation. The methodological contributions 

included the integration of a Wiener-process degradation 

model, imperfect observation through noisy inspections, 

adaptive inspection scheduling, adaptive preventive 

thresholds, and a Monte Carlo simulation environment to 

capture statistical variability. Three strategies were 

systematically investigated: a fully static policy (ΔT, M), a 

semi-adaptive policy with fixed inspections and adaptive 

preventive thresholds (ΔT, Mk), and a fully adaptive policy 

combining dynamic inspections with adaptive thresholds 

(ΔTk, Mk). Their performance was assessed through a wide 

range of indicators, including average cost rates, downtime 

measures, inspection and intervention frequencies, Kaplan–

Meier reliability functions, between-inspection risk 

probabilities, and a penalty-augmented global objective. 

The comparative analysis revealed distinct trade-offs 

among the three strategies. The static policy (ΔT, M), while 

straightforward to implement, exhibited marked limitations in 

reliability performance, with survival probabilities falling 

significantly below the required threshold. The introduction of 

adaptive preventive thresholds in (ΔT, Mk) enhanced risk 

sensitivity by initiating interventions more aggressively near 

critical conditions, thereby reducing corrective failures. 

However, this improvement in reliability was achieved at the 

expense of higher preventive workload, without 

fundamentally altering the cost–reliability balance. The fully 

adaptive strategy (ΔTk, Mk) demonstrated the most consistent 

alignment between inspection frequency, preventive 

aggressiveness, and system risk. By intensifying monitoring 

during high-risk phases and recalibrating intervention 

thresholds in real time, it significantly reduced the likelihood 

of catastrophic failures. Although it increased variability in 

inspection and intervention scheduling, it offered superior 

performance under the penalty-augmented criterion Jλ, 

highlighting the decisive role of adaptivity in reconciling cost 

efficiency with stringent reliability requirements. 

From an engineering perspective, these findings underscore 

that the selection of an appropriate maintenance policy should 

be informed by the operational context and organizational 

priorities. In cost-sensitive environments where procedural 

simplicity and predictability are valued, static policies may 

remain acceptable despite their lower reliability. Conversely, 

in reliability-critical applications (such as aerospace, energy, 

or advanced manufacturing) adaptive strategies, particularly 

those that incorporate dynamic inspection intervals, provide 

substantial advantages by reducing exposure to undetected 

failures. The framework further illustrates that maintenance 

policies should not be judged solely on economic 

performance; compliance with reliability and risk constraints 

is paramount, as strategies that fail to respect these 

requirements are operationally infeasible regardless of 

apparent cost savings. 

The study also opens several avenues for future research. 

Methodologically, the modeling framework could be enriched 

by incorporating alternative stochastic degradation processes, 

such as gamma or Lévy models, to capture wear phenomena 

not adequately represented by the Wiener process. The 

extension to multi-component systems and system-level 

dependencies is of particular importance, as interactions 

between components may significantly alter optimal 

maintenance strategies. From an optimization standpoint, the 

adaptive parameters governing inspection intervals and 

preventive thresholds could be systematically tuned using 

metaheuristic optimization or reinforcement learning, thereby 

enabling data-driven adaptation rules tailored to specific 

industrial contexts. Empirical validation constitutes another 

critical perspective: applying the framework to industrial case 

studies supported by degradation monitoring data and 

maintenance records would provide practical calibration and 

strengthen external validity. Furthermore, the integration of 

economic, environmental, and safety indicators within a 

unified decision-making framework would align maintenance 

optimization with broader objectives of sustainability and 

resilience, increasingly emphasized in contemporary asset 

management. 

The near-equivalence of results across strategies is not a 

weakness but a meaningful diagnostic outcome: it identifies 

the threshold beyond which adaptive mechanisms must be 

intensified or redesigned to produce measurable benefits. This 

insight enriches current understanding of CBM policy design 

and validates the proposed simulation framework as a tool for 

uncovering such boundaries. 

The absence of direct comparison with P–F or predictive 

maintenance policies reflects the study’s methodological 

emphasis on internal consistency rather than cross-framework 

benchmarking. However, the developed architecture is readily 

extendable to incorporate these advanced strategies, providing 

a clear pathway for future comparative analyses that will 

contextualize adaptive CBM within the broader maintenance 

optimization landscape. 

Beyond its methodological contributions, this study 

provides practical recommendations for engineering 

application. Adaptive parameters should be tuned within 

moderate ranges (αT = 0.6–0.8, αL = 0.4–0.6) to balance 

responsiveness and stability. When monitoring noise is 

significant, filtered degradation estimates and tightened 

preventive thresholds are recommended. Finally, hybrid 

adaptive–risk-constrained frameworks represent a promising 

direction for future implementation, ensuring that adaptivity 

enhances reliability without disproportionate cost growth. 
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NOMENCLATURE 

 

αL Adaptation coefficient for preventive 

threshold 

αT Adaptation coefficient for inspection 

interval 

β Maximum admissible short-horizon failure 

probability 

CBM Condition-Based Maintenance 

Cavg Average long-run cost rate component in Jλ 

CCM Cost of one corrective maintenance action 

Cinsp Cost of one inspection 

CPM Cost of one preventive maintenance action 

CM Corrective Maintenance 

Davg Total downtime per run 

δLsafety Safety margin between preventive and 

failure thresholds 

Δt Numerical integration step (Euler–

Maruyama discretization) 

ΔT Inspection interval (fixed or adaptive) 

ΔTfix Fixed inspection interval 

ΔTk Adaptive inspection interval at inspection k 

ΔTmax,ΔTmin Maximum and minimum admissible 

inspection intervals 

ε Measurement noise (Gaussian random error) 

Iavg Inspections per run 

Jλ Penalty-augmented objective function 

Jlambda Jλ, penalty-augmented objective 

KM Kaplan–Meier reliability estimator 

Lf Failure threshold (critical degradation limit) 

Lm Fixed preventive maintenance threshold 

Lm,k Adaptive preventive maintenance threshold 
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at inspection k 

Lmin Lower admissible bound for adaptive 

preventive threshold 

λhit Penalty weight for short-horizon risk 

violation 

λR Penalty weight for reliability shortfall 

MC Monte Carlo simulation 

μ Drift coefficient of the Wiener degradation 

process 

NCM, NPM Number of corrective and preventive 

maintenance actions 

Nsim Number of Monte Carlo simulation 

replications 

Penaltyhit λhit•Pr, λhit=1000 

PenaltyR λR•shortfall, λR=10000 

phit Probability of failure between consecutive 

inspections 

Φ(·) Standard normal cumulative distribution 

function 

PM Preventive Maintenance 

PM/CM Ratio of preventive to corrective 

maintenance actions 

PdM Predictive Maintenance 

Pr[phit>β] Fraction of pHit of beta with β=0.05 

R Reliability by Kaplan–Meier survival at 

Rtime 

Rmin Minimum required reliability level 

Rmin - R Reliability gap with Rmin=0.95 

Rtime Reliability at reporting horizon 

RRtime Survival at Rtime=2000 

RSE Relative Standard Error 

RUL Residual Useful Life 

1[R≥Rmin] Meets required reliability 

ρPM/CM Ratio of PM to CM counts 

σ Diffusion coefficient (stochastic variability) 

σmeas Standard deviation of measurement noise 

sC Standard deviation of cost rate 

smaster Master random number generator seed 

tCM Downtime due to corrective maintenance 

tinsp Downtime associated with each inspection 

tPM Downtime due to preventive maintenance 

Top Total operational horizon of the simulation 

Var[C] Variance of cost 

W(t) Standard Wiener process (Brownian motion) 

X(t) True degradation level at time t 

X̂(t) Estimated degradation state at time t 
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