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Condition-based maintenance (CBM) has become a cornerstone for optimizing the
performance, reliability, and cost-efficiency of industrial systems. Traditional CBM
strategies, which rely on fixed inspection intervals and static preventive maintenance
thresholds, often fail to account for the stochastic nature of degradation processes and the
inherent imperfections in condition monitoring. These limitations can result in suboptimal
maintenance decisions, such as excessive preventive interventions or missed failures. To
address these challenges, this study presents a Monte Carlo simulation framework
designed to evaluate and compare static and adaptive CBM strategies under conditions of
uncertainty. The framework integrates a Wiener-process degradation model, imperfect
condition monitoring, adaptive inspection scheduling based on residual useful life (RUL)
estimates, and dynamically recalibrated preventive maintenance thresholds. Three
maintenance strategies are examined: (i) a static policy with fixed inspection intervals and
constant preventive thresholds, (ii) a semi-adaptive policy with fixed inspections and
adaptive preventive thresholds, and (iii) a fully adaptive policy with both dynamic
inspection intervals and adaptive preventive thresholds. The performance of these
strategies is assessed using a comprehensive set of metrics, including total cost, downtime,
reliability, short-horizon risk, and a penalty-augmented objective function that integrates

cost, reliability, and risk exposure.

1. INTRODUCTION

In contemporary industrial systems, effective maintenance
strategies are crucial for ensuring operational reliability,
minimizing downtime, and optimizing cost-efficiency [1]. As
industries become increasingly complex, with systems that
demand high performance and safety, the ability to predict and
prevent failures is paramount. Maintenance plays a pivotal role
in safeguarding assets, prolonging operational lifespans, and
maintaining system integrity [2]. In this context, condition-
based maintenance (CBM) has emerged as a promising
approach. CBM utilizes condition monitoring to assess the
health of assets in real time, scheduling inspections and
interventions based on the observed degradation state of the
system. This methodology aims to replace traditional time-
based maintenance with more efficient, data-driven strategies
that respond to the actual condition of the equipment [3-6].

Despite the advantages offered by CBM, its implementation
is fraught with challenges primarily arising from the stochastic
nature of degradation processes and the inherent imperfections
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of condition monitoring [7-10]. Degradation is often driven by
complex, random phenomena that cannot be captured by
simple deterministic models. Additionally, condition
monitoring provides imperfect, noisy data that may not fully
reflect the true state of degradation. These uncertainties
complicate the decision-making process, as maintenance
actions must be based on incomplete and potentially
inaccurate information [11]. Traditional CBM strategies,
which rely on fixed inspection intervals and constant
preventive maintenance thresholds, fail to account for these
sources of variability, potentially leading to suboptimal
performance. These static policies can either result in
excessive maintenance activities or, conversely, delayed
interventions that may allow failures to occur before detection
[12-17].

To address these limitations, adaptive maintenance decision
policies have been proposed. Adaptive strategies dynamically
adjust inspection frequencies and preventive thresholds in
response to observed degradation and updated system
information [18-22]. By recalibrating maintenance decisions


https://orcid.org/0009-0003-4811-8710
https://orcid.org/0009-0007-0102-6965
https://orcid.org/0000-0003-1483-3129
https://orcid.org/0000-0002-5490-5898
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.581207&domain=pdf

based on real-time condition data, adaptive policies aim to
more precisely align maintenance activities with the evolving
risk profile of the system. These adaptive policies offer the
potential for more cost-effective and reliable maintenance,
particularly in environments characterized by high
uncertainty. However, the comparative performance of static
versus adaptive strategies under realistic operational
conditions remains underexplored, particularly in terms of
long-term cost, reliability, and risk mitigation [23-25].

The objective of this study is to develop a robust framework
for evaluating and comparing static and adaptive CBM
strategies [26-30]. The framework incorporates a Wiener
process degradation model (WP), representing the stochastic
evolution of system degradation, alongside imperfect
condition monitoring (MM) characterized by Gaussian noise.
Inspection policies (IP) are formulated as either fixed intervals
(ATrix) or adaptive intervals (AT) based on residual useful life
(RUL) estimates. Preventive maintenance thresholds (PM) are
either static (Lm) or adaptive (Lmk), with the latter being
recalibrated based on the observed degradation state. The
performance of these strategies is evaluated using a range of
metrics, including the short-horizon failure probability (phit),
which quantifies the likelihood of failure before the next
inspection, and the Kaplan—Meier survival estimator (KM) for
reliability estimation. Economic performance is assessed
through the average cost rate (Cag) and the PM/CM ratio,
which compares preventive to corrective maintenance efforts.
Additionally, a penalty-augmented objective function (J,) is
introduced, incorporating both cost and reliability penalties to
ensure a balanced trade-off between economic efficiency and
operational safety [31].

This paper contributes to the field by presenting a
comprehensive simulation framework that integrates these key
components: degradation modeling, inspection scheduling,
preventive  maintenance threshold adjustment, risk
quantification, and performance evaluation. The simulation
framework is used to assess three maintenance policies: (i) the
static policy with fixed inspections and fixed thresholds (AT,
M), (ii) the semi-adaptive policy with fixed inspections and
adaptive thresholds (AT, M), and (iii) the fully adaptive
policy incorporating both dynamic inspections and adaptive
thresholds (ATk, My). The study provides a detailed
comparative analysis of these strategies, highlighting their
relative advantages and trade-offs in terms of cost, downtime,
reliability, and risk [32].

While classical P-F interval and predictive maintenance
(PdM) strategies have been widely studied, this work focuses
specifically on the relative behavior of static versus adaptive
CBM policies under identical stochastic conditions. The
proposed Monte Carlo framework is intentionally generic and
can later be extended to include P—F or predictive triggers,
enabling systematic benchmarking in future research.

The remainder of this paper is organized as follows. Section
2 outlines the methodological framework, including the
mathematical formulations for degradation, inspections, and
maintenance decision rules. Section 3 describes the three
maintenance strategies under consideration. Section 4 details
the Monte Carlo simulation architecture, while Section 5
explains the simulation configuration and input parameters.
Section 6 presents the results and their analysis, followed by a
discussion of the engineering implications in Section 7.
Finally, Section 8 concludes the paper and outlines directions
for future research.
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2. METHODOLOGY

The methodological framework employed in this study
integrates stochastic degradation modeling, noisy condition
monitoring, adaptive inspection and maintenance policies, and
penalty-augmented performance evaluation within a Monte
Carlo simulation environment. This approach enables a
rigorous comparison of integrated maintenance strategies
under uncertainty by capturing both the stochastic dynamics
of degradation and the economic and reliability consequences
of maintenance actions [33, 34].

The stochastic degradation process is represented by a
Wiener process with drift. Its dynamics are expressed as [35]:

dX(t) = udt + cdW (t),X(0) = X,, (D
where, X(t) is the degradation state at time t, x is the drift
coefficient representing the average degradation rate, o is the
diffusion coefficient capturing stochastic variability, and W(t)
is a standard Wiener process. The system is assumed to start
from the as-good-as-new state Xo = 0, while failure is defined
as the first hitting time of the critical threshold Ls. Eq. (1)
captures the fundamental trade-off in degradation modeling:
the deterministic wear component provides predictability,
while the stochastic term introduces uncertainty that
complicates maintenance planning [36, 37].

Since degradation is not directly observable with perfect
accuracy, inspections provide noisy measurements. The
measurement model is written as [38, 39]:

X~(t) = X(t) t+E¢&~ N(O' o-r%eas)' (2)
where, X(t) denotes the observed degradation at time t, and ¢
represents Gaussian measurement error with variance 6,2..
This formulation reflects the imperfection of sensors and
monitoring technologies, ensuring that maintenance decisions
are made under uncertainty rather than idealized perfect
information [40, 41].

Inspections can be scheduled periodically or adaptively. In
the periodic case, inspections occur at constant intervals:

AT = constant, 3)

Although simple to implement, this purely time-driven
strategy does not account for the evolving condition of the
system [42]. Adaptive inspection strategies, in contrast, rely
on RUL estimation. The expected RUL at time t is
approximated by [43]:

Ly — X(t)

RUL(t) = .

(4)

where, X(t) is a filtered estimate of the degradation state. Eq.
(4) expresses the intuitive relationship that remaining life is
proportional to the distance from the current condition to the
failure threshold, scaled by the average wear rate. On this
basis, the next inspection interval is defined as:
AT, = clamp(ay RUL(E), ATmin, ATyax), 5)
where, ar is the adaptation coefficient, and the clamping
function ensures that inspection intervals remain within the
admissible range [4Tmin, 4Tmax]. EQ. (5) introduces adaptivity



into inspection scheduling: inspections are performed more
frequently when the estimated RUL is short and less frequently
when the system is in a healthier state.

Preventive maintenance is initiated when degradation
exceeds a predefined threshold. In the fixed-threshold policy,
the trigger is expressed as [44]:

L., = constant, L., < L, (6)

Eq. (6) reflects a traditional approach, ensuring preventive
actions occur before failure but without accounting for
variations in system behavior. Adaptive-threshold strategies
introduce greater flexibility by updating the preventive limit
according to:

Linge = M (Lins Lm — 2, (Lp = X(©))), (7)
Subject to the constraint:
Lm,k < Lf - 6Lsafety' (8)

Egs. (7) and (8) ensure that preventive thresholds are
tightened as the system approaches failure, while also
guaranteeing a minimal safety margin relative to L. The
parameter «. controls the aggressiveness of this adaptation,
Lmin prevents the threshold from being excessively
conservative, and JdLssrety enforces a buffer that guards against
unsafe recalibrations.

An essential aspect of reliability assessment is the between-
inspection hitting probability, which quantifies the likelihood
of failure before the next inspection. For a Wiener process with
drift, this probability is given by [45]:

pric(h 1 @) =1 — [qp (aa—\/%h>

o (a2

where, a = Ly — X(t) denotes the current margin to failure, h
is the length of the inspection interval, and ®(-) is the
cumulative distribution function of the standard normal
distribution. Eq. (9) provides a direct measure of the short-
term risk exposure associated with inspection decisions, and
forms the basis for constraint enforcement in adaptive
strategies [46].

To evaluate long-term system reliability, the Kaplan—Meier
survival estimator is employed [47]:

$(t) = 1_[ (1 _ %)
J

t]'SL'

)

(10)

Here, d; is the number of failures observed at time tj, and n;
is the number of systems still at risk just before t;. Eq. (10)
provides a non-parametric estimate of the survival function,
capable of handling censored data and therefore well suited to
simulation environments where many systems survive until
the end of the observation horizon. Economic performance is
assessed through the long-run average cost rate [30]:

Nsim

1
Cavg = T_ Z Civ

°P =1

(11
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where, C; denotes the total cost in the i-th simulation. Eq. (11)
aggregates the costs of inspections, preventive interventions,
and corrective repairs into a single normalized performance
measure. To further characterize the balance between
preventive and corrective actions, the ratio:

E[Npum]

PM/CM Ratio = ———F———,
/ ato max(E[Ngwm], €)

(12)

Is introduced, where [E[Npy] and E[N¢y] are the expected
numbers of preventive and corrective actions, and ¢ is a small
constant avoiding division by zero. This ratio highlights
whether a strategy is more preventive-oriented or failure-
driven.

Finally, to unify cost efficiency with reliability and risk
requirements, a penalty-augmented objective function is
defined [48]:

= Capg + Ag max(0, Ry — R, )
+ Anit ]E[l{phit >B}]

Ja (13)

The first term represents the economic cost rate, the second
term imposes penalties when the reliability at the reporting
horizon Rgime falls below the required minimum Rmin, and the
third penalizes cases where the between-inspection failure
probability exceeds the admissible tolerance B. The penalty
weights Az and Anir emphasize the primacy of safety and
reliability in industrial applications, ensuring that strategies
which fail to meet these requirements cannot be regarded as
competitive, regardless of their apparent cost efficiency [49,
50].

Egs. (1) through (13) thus provide the mathematical
backbone of the methodology. The degradation dynamics
(Egs. (1)-(2)), inspection rules (Egs. (3)-(5)), preventive
thresholds (Egs. (6)-(8)), risk measures (Eq. (9)), reliability
evaluation (Eqg. (10)), economic indicators (Egs. (11)-(12)),
and penalty-augmented objective (Eq. (13)) establish a
comprehensive and internally consistent framework for
evaluating CMB ategies.

To ensure robustness, key adaptive and measurement
parameters (ar, aL, omeas) Were later varied within realistic
bounds (see Section 6.3). This sensitivity analysis confirmed
that while numerical values of cost and reliability shift
modestly, the qualitative behavior and relative ranking of
strategies remain stable.

Eg. (13) is used as an exact-penalty surrogate for the
constrained problem minCayg subject to R(Ttime) > Rmin and phit
< B. The penalty weights Ar and Anit are chosen ‘sufficiently
large’ so that violations of reliability and short-horizon risk
dominate the economic term, reflecting their engineering
priority. In our setting, with Cay~ 4.5, a typical reliability
shortfall Rmin — R(Tiime) = 0.79 implies Az > 4.5/0.79 =~ 5.7
already ensures dominance of the reliability penalty. Likewise,
with =~ 64% of intervals breaching B, the risk penalty
dominates for Anit > 4.5/0.64 = 7.0. Therefore, any Ag,nit = 10
enforce the intended priority; specific values above these
thresholds do not affect qualitative conclusions.

3. ADAPTIVE MAINTENANCE DECISION POLICIES

Adaptive maintenance decision policies constitute the
operational core of the CMB work. They specify how
inspection schedules and preventive maintenance thresholds



are defined, either statically or adaptively, in response to
observed system degradation. The three strategies examined in
this study represent progressively increasing levels of
adaptivity, ranging from a purely static baseline to a fully
adaptive policy [51, 52]. This section details the formulation
of each strategy, its governing equations, and its conceptual
implications.

3.1 Strategy I: Fixed inspections and fixed threshold (AT,
M)

The first policy, denoted (AT, M), represents the static
benchmark (see Figure 1). Under this regime, inspections are
executed periodically at constant intervals using Eq. (3).

While preventive maintenance is initiated when the
observed degradation trajectory crosses a fixed threshold as
you see in Eq. (6).

Egs. (3) and (6) define a fully deterministic policy structure,
in which neither the inspection cadence nor the intervention
threshold is modified in response to evolving degradation
states. This approach reflects long-standing industrial practice,
particularly in sectors where condition monitoring is
rudimentary or where regulatory frameworks mandate fixed
maintenance intervals. However, it suffers from inherent
inefficiencies: inspections may be redundant during periods of
low degradation intensity, while they may be too sparse during
accelerated deterioration phases. Likewise, the fixed threshold
Lm may trigger preventive interventions either prematurely (if
degradation progresses slowly) or too late (if stochastic
variability accelerates failure).
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Figure 1. Principe of maintenance strategy (AT, M)

As such, the (AT, M) policy is primarily retained as a
baseline reference for quantifying the incremental benefits of
adaptivity.

3.2 Strategy Il: Fixed inspections and adaptive threshold
(AT, My)

The second policy, denoted (AT, M), preserves periodic
inspections but introduces adaptivity in the preventive
threshold (see Figure 2). Inspections continue to be scheduled
at fixed intervals ATsx, as in the baseline policy, but the
preventive threshold is dynamically recalibrated at each
inspection according to Eq. (7). Subject to the operational
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Eg. (7) introduces a linear adaptation mechanism: the
preventive threshold is progressively reduced as the system
approaches the failure limit Ls. The adaptation coefficient a.
regulates the aggressiveness of this recalibration, while the
lower bound Lmin prevents excessively conservative
interventions. The additional constraint Eq. (8) guarantees that
preventive actions always maintain a non-negligible safety
buffer from failure.

Conceptually, this strategy embodies a semi-adaptive
philosophy. It retains the simplicity of periodic inspections,
thereby minimizing the complexity of planning, but
incorporates risk sensitivity at the intervention stage.
Preventive actions become more likely as degradation
intensifies, which reduces the probability of unplanned
corrective maintenance. However, this responsiveness may
increase the frequency of preventive interventions relative to
the static baseline, potentially raising cumulative costs. The
(AT, My) strategy thus represents a compromise: It augments
reliability by modulating preventive aggressiveness, but does
not alter the inspection burden.

3.3 Strategy Ill: Adaptive inspections and adaptive
threshold (ATk, M)

The third strategy, denoted (ATx, M), is the most
comprehensively adaptive among those analyzed (see Figure
3). It introduces responsiveness into both inspection
scheduling and preventive threshold setting. At each
inspection epoch, the RUL is estimated in Eq. (4).

And the subsequent inspection interval is recalibrated
dynamically using Eq. (5).

Egs. (4)-(5) formalize a fully adaptive inspection policy:
inspections accelerate as the estimated RUL shortens, thereby
intensifying monitoring during high-risk phases, and relax
when the system is deemed healthy. The preventive threshold
is simultaneously governed by Egs. (7)-(8), ensuring that
interventions are also more conservative when failure
proximity increases.

This policy represents a risk-driven paradigm in which both
monitoring intensity and intervention aggressiveness evolve
dynamically. By design, it minimizes exposure to undetected



failures, since inspection and intervention cadence tighten as
the system approaches criticality. However, the dual adaptivity
increases operational variability: Inspection workloads
fluctuate, preventive interventions occur with higher
frequency under rapid degradation, and planning complexity
is elevated. While these characteristics may increase cost
volatility, they also deliver superior reliability assurance.
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4. MONTE CARLO SIMULATION ARCHITECTURE

The stochastic nature of degradation processes, combined
with the imperfect observability of system states, renders
closed-form analytical evaluation of maintenance strategies
intractable. To overcome this challenge, a Monte Carlo
simulation architecture was developed, enabling the
systematic replication of degradation trajectories, inspection
events, maintenance decisions, and resulting cost-reliability
outcomes. By generating a sufficiently large ensemble of
independent realizations, the architecture provides statistically
robust estimates of performance metrics and enables direct
comparison of alternative strategies under identical stochastic
conditions.

Each replication begins with the initialization of the system
at the as-good-as-new state, X(0) = 0. The subsequent
evolution of degradation is governed by the Wiener process
with drift (Eq. (1)), discretized numerically using the Euler—
Maruyama method. At each integration step of size At, the
degradation state is updated according to:

X(t + At) = X(t) + pAt + oVALE, E ~ N(0,1),  (14)
This recursive formulation ensures that both the

deterministic drift and the stochastic fluctuations of the
degradation path are faithfully represented. The trajectory
continues until the operational horizon Ty is reached or until
a corrective failure event occurs.

Inspection epochs are determined by the strategy under
evaluation. For static policies, inspections are scheduled
periodically at fixed intervals as prescribed in Eq. (3). For
adaptive policies, inspection times are recalibrated
dynamically in accordance with RUL estimates (Egs. (4)-(5)).
At each inspection, the true degradation state is not observed
directly; instead, a noisy measurement is generated via Eq. (2).
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This measured value is then filtered to obtain an operational
estimate X(t), which serves as the basis for subsequent
decision-making.

Maintenance actions are triggered according to the decision
rules described in Section 3. If the observed degradation
exceeds the preventive threshold (Egs. (6) and (8)), a
preventive intervention is executed, incurring cost Cpm,
downtime tem, and resetting the degradation process to its
initial state. If the degradation path reaches the failure
threshold L¢ before preventive action is taken, a corrective
intervention is initiated. Corrective actions are substantially
more disruptive, as they incur cost Ccm and downtime tcm,
reflecting both direct replacement costs and collateral losses
such as production stoppages. Inspections themselves are not
costless; each inspection adds Cinsp to the total expenditure and
tinsp to cumulative downtime, ensuring that monitoring effort is
explicitly represented in the evaluation.

During each replication, several performance variables are
recorded. These include the number of inspections, preventive
actions, and corrective interventions, the cumulative
downtime, the average cost rate (Eq. (11)), and the PM/CM
ratio (Eq. (12)). In addition, the time of the first corrective
maintenance is tracked to estimate the reliability function via
the Kaplan—Meier estimator (Eg. (10)). Short-horizon risks are
quantified at the inspection level by computing the between-
inspection hitting probability using Eq. (9). Finally, the
penalty-augmented performance index Ji. (Eq. (13)) is
evaluated, thereby integrating cost, reliability, and risk
compliance into a unified metric.

The architecture is executed over Nsm independent
replications to ensure convergence of sample averages to their
expected values. Each replication employs independent
random variates, except in cases where common random
numbers are applied to enhance the precision of pairwise
comparisons. At the end of the simulation, ensemble averages
and empirical distributions of all performance indicators are
computed, enabling not only the comparison of mean
outcomes but also the assessment of variability and robustness.

This Monte Carlo architecture therefore constitutes a
closed-loop  computational ~ experiment:  degradation
trajectories evolve stochastically, inspections provide
imperfect observations, decision rules determine maintenance
actions, costs and downtimes are accumulated, and reliability
is updated. By iterating this cycle across thousands of
replications, the framework yields statistically consistent
performance estimates. This architecture thus provides a
rigorous basis for the comparative evaluation of static and
adaptive maintenance strategies, ensuring that the reported
outcomes reflect both the stochastic variability of degradation
and the operational consequences of decision-making under
uncertainty.

We set a priori precision goals: (i) relative 95% CI half-
width for Cayy < 1% of the mean; (ii) absolute 95% CI half-
widths < 0.03 for the Kaplan—Meier reliability at t = 2000 and
for Pr(pnit > B). To monitor convergence, we employed
replication-batch means (10 batches of 100 runs) and a half-
width stopping rule.

5. SIMULATION CONFIGURATION AND
PARAMETERS

INPUT

The performance of the three integrated maintenance
strategies ((AT, M), (AT, My), and (AT, My)) was evaluated



using a Monte Carlo simulation framework specifically
designed to capture the stochastic variability of degradation
processes, the imperfect nature of inspection data, and the
asymmetric costs and downtimes associated with preventive
and corrective interventions. The simulation was implemented
with careful consideration of both statistical robustness and
engineering realism, ensuring that the comparative results
reflect practical operating conditions rather than theoretical
simplifications.

The operational horizon was set to Ty =2 > 10* time units,
which corresponds to a sufficiently long service life to observe
multiple cycles of degradation and maintenance within each
simulation run. This value was chosen to ensure that both
preventive and corrective actions had the opportunity to occur
repeatedly, thereby providing statistically meaningful
estimates of costs, downtime, and reliability. To reduce
stochastic noise in the results, the analysis was based on Nsim
= 1000 independent replications. This sample size is large
enough to stabilize Monte Carlo estimates while remaining
computationally feasible. Each degradation trajectory was
simulated by discretizing the governing stochastic differential
equation using the Euler—-Maruyama scheme with a time
increment of At = 1. The choice of this step size reflects a
compromise: it is small enough to accurately capture
stochastic dynamics yet sufficiently large to avoid unnecessary
computational expense. For interpretability, a subset of fifteen
trajectories was retained for graphical representation,
providing insight into the variability of degradation paths and
maintenance outcomes across different strategies.

The underlying degradation process was modeled as a
Wiener process with drift, which is widely recognized in the
literature as a parsimonious yet effective representation of
cumulative damage subject to random fluctuations. The
governing dynamics were expressed in Eq. (1).

The drift coefficient was fixed at p = 0.01, representing a
relatively slow but steady accumulation of wear or damage
over time, while the diffusion parameter was set to o = 0.12,
reflecting significant environmental and operational
variability that causes degradation to deviate unpredictably
from its mean trajectory. The system was assumed to start
from an as-good-as-new condition, Xo = 0, after installation or
major overhaul. Failure was defined as the first hitting time of
the degradation trajectory with the critical threshold L¢= 5.
This failure threshold can be interpreted as a physical or
functional limit, such as a maximum allowable crack length,
wear depth, or loss of thickness in a structural element. The
chosen values generate degradation trajectories that remain
within a realistic industrial range, balancing the competing
influences of predictable wear and stochastic shocks. These
parameter values were intentionally selected to generate a
high-variance degradation environment, serving as a stress-
test for the maintenance policies. The resulting low reliability
levels are therefore not indicative of model failure, but rather
reflect the intended difficulty of the simulation scenario,
designed to expose the sensitivity and robustness of static and
adaptive CBM strategies under severe stochastic variability.

Inspection processes were modeled as noisy observations of
the true degradation state, consistent with practical monitoring
systems where sensors and non-destructive tests introduce
measurement errors. Observations at inspection times were
expressed in Eq. (2), where the measurement error ¢ followed
a Gaussian distribution with standard deviation omeas = 0.05.
This value reflects the relatively high accuracy of modern
condition monitoring systems, while acknowledging that no
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measurement system is free from noise. In the fixed inspection
policy, inspections occurred at regular intervals of ATsix=120.
This interval represents a compromise between frequent
monitoring, which increases costs and downtime, and sparse
monitoring, which increases the risk of undetected failures. In
adaptive inspection strategies, the interval between
inspections was recalibrated dynamically according to
estimates of RUL, such that ATy is expressed using Eq. (5).
The adaptation coefficient was set to o = 0.4, which provides
a moderate sensitivity to the estimated remaining life. To
prevent unrealistic extremes, inspection intervals were
bounded between ATmax=360. The minimum interval ensures
that inspections cannot occur more frequently than is
practically possible (e.g., due to manpower or logistical
constraints), while the maximum interval guarantees that
inspections are not postponed excessively, which would
expose the system to unacceptable risks.

Preventive maintenance was governed by threshold-based
rules. In the baseline policy, the preventive threshold was fixed
at Lm = 3.5, a value chosen to strike a balance between
premature preventive interventions, which inflate costs, and
delayed interventions, which increase the risk of corrective
maintenance. A lower admissible bound of Lmin = 2.5 was
imposed to ensure that adaptive strategies would not
recalibrate thresholds to excessively conservative values,
which could result in unsustainable preventive workloads. In
adaptive-threshold strategies, the trigger was updated
according to Eq. (7), with a. = 0.3. This value was selected to
introduce moderate responsiveness to the proximity of failure
while avoiding destabilizing oscillations in preventive policy.
In addition, a mandatory safety margin was imposed such that
Lmk < LfOLsafety, With SLsarety = 0.4. This safety margin
guarantees that preventive maintenance is always initiated at
least 0.4 units below the failure threshold, thereby ensuring
that no adaptation places the system at excessive risk of
immediate failure.

The economic and operational impacts of interventions
were explicitly quantified. Preventive maintenance was
assigned a unit cost of Cpm = 100 and a downtime of tpm = 30.
These values capture the relatively modest economic and
operational impact of preventive actions, which typically
involve planned component replacements or adjustments.
Corrective maintenance was modeled as substantially more
expensive, with a unit cost of Ccm = 5000 and a downtime of
tem = 800. This strong asymmetry reflects the realities of
industrial practice, where corrective actions often require
unplanned shutdowns, significant resource mobilization, and
potential collateral damage. Inspections were comparatively
inexpensive, with a cost of Cinsp = 5 and a downtime of tinsp =
5, but their cumulative effect becomes non-negligible when
inspection frequency is high. These parameters provide a
realistic economic framework in which strategies must
carefully balance inspection, preventive, and corrective
actions.

To ensure compliance with engineering requirements,
reliability and risk constraints were embedded into the
evaluation. A minimum survival probability of Rmin=0.95 was
imposed, with reliability estimated at a reporting horizon of
Rime = 2000 using Kaplan—Meier survival analysis. This
requirement reflects the expectation that in industrial settings,
systems should maintain high levels of reliability over typical
production cycles. In addition, a short-horizon constraint was
specified, requiring that the probability of failure between
consecutive inspections not exceed B = 0.05. This constraint



acknowledges that frequent risks of interim failure are
unacceptable, even if long-term survival targets are nominally
achieved.

Performance was therefore assessed using a penalty-
augmented objective function that integrates direct costs with
penalties for violations of reliability and risk requirements.
The augmented cost was defined in Eqg. (13), where Cay
represents the long-run average cost rate, Rgime IS the
reliability at the reporting horizon, and 1 i3 is an indicator
capturing whether the between-inspection risk exceeded the
tolerance level. Penalty weights were fixed at Ar = 104 and Anit
= 103, reflecting the engineering principle that reliability and
risk compliance are non-negotiable, and that any policy
violating these requirements should be deemed unacceptable
regardless of its cost efficiency.

Finally, random number control was implemented to ensure
reproducibility and comparability of results. A master seed of
Smaster = 42 was employed for the pseudo-random number
generator. When common random numbers were disabled,
independent random streams were generated for each strategy
by applying offsets to this seed. This approach allowed fair
comparisons under synchronized stochastic conditions, while
also providing realistic variability in independent replications.

We evaluated convergence using 10 replication batches of
100 runs. Batch-mean trajectories for Cayg, R(t = 2000), and
Pr(pnit> B) showed no drift and tight overlapping Cls. Relative
standard error of C was < 0.7%; absolute half-widths for R and
Pr(pnit> p) were <0.03. The qualitative conclusions (constraint
violations for all policies; negligible differences in means;
minor tail-risk mitigation) were unchanged when re-
estimating with the first 600, 800, and full 2000 replications.

These convergence diagnostics confirm that our findings
are not sensitive to the number of replications and that Ngjm =
1000 ensures decision-grade precision.

With observed dispersion of &(C,, )= 0.84-0.89, the
standard error at N = 1000 is < 0.028, giving a 95% CI half-
width < 0.055 (< 1.3% of C = 4.5). For reliability R ~ 0.16, a
binomial proxy yields a half-width ~ 0.023. For Pr(ppit> B) =
0.64, the half-width is =~ 0.03. Thus N = 1000 satisfies our
precision targets and provides conservative margin; sequential
checks indicated adequacy by N = 600-800. Common random
numbers were applied across strategies to improve
comparative efficiency.

In summary, the simulation configuration combined a
Wiener-based degradation model, noisy inspection
measurements, adaptive or fixed preventive thresholds,
explicit cost-downtime accounting, and penalty-augmented
performance evaluation within a Monte Carlo environment of
1 replication. The chosen parameter values were calibrated to
reflect realistic industrial conditions, ensuring that strategies
are evaluated not only on cost performance but also on their
ability to satisfy stringent reliability and safety requirements.
This framework thus provides a rigorous and credible
experimental basis for assessing the comparative merits of
integrated CBM policies.

6. RESULTS AND INTERPRETATIONS

This section presents and interprets the outcomes of the
Monte Carlo simulations performed for the three integrated
CBM strategies under consideration: (AT, M), (AT, My), and
(ATk, My). The results are organized into three parts: (i) global
performance metrics, (ii) short-horizon risk and preventive
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trigger analysis, and (iii) penalty-augmented evaluations.
Numerical evidence is provided by Tables 1-6, while
complementary visual insights are conveyed through Figures
4(a)-15(c), where each subplot is denoted explicitly by a
lowercase letter.
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Figure 4. Sample paths for all strategies
6.1 Global cost-reliability performance

The comparative analysis of the three maintenance
strategies ((AT, M), (AT, My), and (ATk, My)) based on the
aggregated indicators reported in Tables 1-3 and the visual
evidence provided in Figures 4(a)-8(a) reveals a high degree
of convergence in economic performance, inspection effort,
and downtime accumulation. Despite the introduction of
adaptive mechanisms in the latter two policies, the overall
trajectories of costs, intervention patterns, and system
reliability remain strikingly similar across strategies.

The degradation trajectories plotted in Figures 4(a)-(c)



provide a micro-level perspective on these findings. In the
baseline case (Figure 4(a)), degradation paths often progress
uninterrupted to the failure threshold, triggering corrective
maintenance, with preventive interventions occurring
sporadically. In the adaptive threshold case (Figure 4(b)),
preventive interventions are sometimes initiated earlier, as the
threshold adjusts downward in response to degradation
estimates, yet the adjustment is insufficient to prevent many
trajectories from still crossing the failure limit. In the adaptive
interval case (Figure 4(c)), inspection frequency occasionally
increases when degradation accelerates, but stochastic
fluctuations often lead to threshold exceedances before the
next inspection occurs. The qualitative similarity of the three
panels illustrates why the PM/CM ratios and downtime
profiles remain essentially invariant across strategies.
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Figure 5. Cost distributions for all strategies

From an economic standpoint, the three strategies exhibit
nearly indistinguishable outcomes. As shown in Table 1, the
mean cost rates fall within a very narrow interval, ranging
from 4.4586 for (AT, M) to 4.4868 for (AT, M). This
difference of less than one percent indicates that the adoption
of adaptive thresholds or intervals does not materially alter
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long-run cost efficiency. The stability of these results is
reinforced by the moderate standard deviations (= 0.84-0.89),
which reflect only limited dispersion due to stochastic
variability. This pattern is clearly illustrated in Figures 5(a)-
(c), where the cost distributions overlap almost perfectly,
producing unimodal, symmetric histograms centered at
virtually the same mean. A careful comparison of the three
panels shows that the adaptive interval strategy (Figure 5(c))
produces a marginally thinner right tail, suggesting a slightly
lower incidence of extreme cost realizations, yet the effect is
far too small to be operationally significant.

The downtime statistics mirror this convergence. On
average, the system experiences approximately 15300-15400
units of downtime regardless of strategy, as shown in Table 1.
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Figure 6. Downtime distributions for all strategies

This translates into an unavailability fraction approaching
77% of the total operating horizon, an alarmingly high value
that underscores the dominance of corrective maintenance in
driving operational losses. While the adaptive strategies yield
marginally lower mean downtimes (15317 for (AT, My) and
15297 for (ATk, My)) compared with 15388 for the baseline
(AT, M), these differences are negligible in practice. The



downtime distributions depicted in Figures 6(a)-(c)
corroborate this finding: the three panels are nearly
indistinguishable, although the adaptive interval strategy
(Figure 6(c)) again exhibits a slightly less pronounced right
tail. This observation suggests that adaptation may modestly
reduce the likelihood of extreme downtime scenarios, but the
overwhelming contribution of long corrective maintenance
durations (tcm = 800) dominates the downtime profile for all
strategies.

Inspection workload is another dimension of remarkable
uniformity. Each strategy generates on average 154

inspections per horizon (Table 1), with no meaningful
variation. The boxplots in Figure 7(a) confirm this invariance,
as the distributions of inspection counts across (AT, M), (AT,
M), and (AT, M) are visually indistinguishable. This
demonstrates that the adaptive rescheduling of inspection
intervals through AT\ fails to yield any measurable efficiency
gains in terms of inspection burden. Given that each inspection
incurs not only a direct cost but also a fixed downtime penalty
of five units, the cumulative effect remains substantial,
accounting for nearly 770 downtime units per horizon—an
amount that is insensitive to the choice of strategy.

Table 1. Performance indicators for all strategies

Strategy Cavg sc PPM/CM Davg lavg R 1[R>Rmin]
(AT, M) 4.4868 0.87694 1.5832 15388 154.27 0.165 false
(AT, My) 4.4648 0.84224 1.5876 15317 154.34 0.157 false
(AT, My) 4.4586 0.89375 1.5904 15297 154.36 0.159 false
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Figure 7. Maintenance action counts for all strategies

The balance between preventive and corrective
interventions provides further insight.

As indicated in Table 2, all three strategies result in
approximately 27 preventive maintenances and 17 corrective
maintenances per horizon, producing PM/CM ratios between

1.58 and 1.59 (Table 3).

Table 2. Mean PM and CM

E[PM] (Expected E[CM] (Expected

Strategy  Preventive Actions Per  Corrective Actions Per
Run) Run)
(AT,M) 27.305 17.247
(AT,My) 27.243 17.16
(AT, My) 27.252 17.135
Table 3. PM/CM ratio
Strategy pemicm (Ratio of Mean Pm to Cm Counts)
(AT,M) 1.5832
(AT,My) 1.5876
(AT My) 1.5904

The visual evidence in Figures 7(b)-(c) reinforces this
conclusion. In Figure 7(b), the preventive maintenance counts
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cluster tightly around the same central tendency, while Figure
7(c) shows a similarly narrow spread in corrective counts. A
more careful comparison reveals that the adaptive interval
strategy (Figure 7(c)) achieves a slightly lower mean number
of corrective interventions (17.135) than the fixed strategy
(17.247), yet the magnitude of this reduction is trivial.
Collectively, these results demonstrate that adaptation has not
shifted the preventive-to-corrective balance in any meaningful
way. Corrective interventions remain frequent, accounting for
approximately 40% of all maintenance actions, which is far
from optimal in high-reliability industrial contexts.

Figure 8 - Reliability (Kaplan-Meier)
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Figure 8. Reliability (Kaplan—Meier) for all strategies

The reliability analysis exposes the most critical weakness
of all strategies. As reported in Table 1, Kaplan—Meier
survival probabilities at the reporting horizon Ryime = 2000 are
catastrophically low: 0.165 for (AT, M), 0.157 for (AT, M),
and 0.159 for (AT, My). None of the strategies comes close to
satisfying the reliability requirement of 0.95, and all are
flagged as “false” in the Meetsrmin indicator. This outcome is
starkly illustrated in Figure 8, where the survival curves of all
three strategies exhibit steep early declines, converging toward
low long-term survival values. Comparing the three curves
reveals that the baseline (AT, M) retains a marginally higher
survival probability in the earliest portion of the horizon, while
the adaptive strategies (Figure 8) show slightly faster declines.
However, by the reporting horizon, the differences vanish,
leaving all strategies equally deficient. The explanation lies in



the conservative adaptation coefficients (ar = 0.4, o = 0.3),
which adjust inspection cadence and preventive thresholds too
modestly to offset the inherent variability of the degradation
process. As a result, degradation paths routinely cross the
failure threshold before adaptive mechanisms can respond
effectively.

Table 3 presents the ratio of preventive to corrective
maintenance actions (pemcm) for the three strategies,
providing an additional perspective on the operational balance
underlying the cost and reliability outcomes discussed above.
The results show ratios of 1.5832 for (AT, M), 1.5876 for (AT,
M), and 1.5904 for (ATk, My). The narrow range of variation
(Appmicm < 0.01) confirms the earlier observation that adaptive
mechanisms have only marginal operational impact. Despite
the introduction of adaptive thresholds and variable inspection
intervals, the event structure of maintenance remains
dominated by corrective interventions, which continue to
account for approximately 40% of all actions. This equilibrium
explains the convergence of both cost and downtime profiles
reported in Table 1 where the preventive workload is
insufficient to offset the frequency and severity of corrective
events. Consequently, while adaptivity slightly stabilizes
performance variability, it does not meaningfully shift the
maintenance system toward a reliability-driven regime.
Achieving a more favorable preventive-to-corrective balance
would require stronger adaptive parameters or the integration
of explicit risk-based control logic.

In summary, the comparative analysis of Tables 1-3 and
Figures 4(a)-8(a) leads to a consistent conclusion: the adaptive
strategies provide only marginal improvements in reducing the
tails of cost and downtime distributions but do not alter the
central tendencies of any global performance metric.
Inspection effort remains unchanged, the preventive-to-
corrective balance is stable, and reliability remains
catastrophically below the required standard. The side-by-side
comparison of panels (a), (b), and (c) across all figures
underscores the structural similarity of outcomes and reveals
that adaptation, as currently parametrized, is far too weak to
produce meaningful divergence in performance. These

findings highlight the fundamental tension between cost
efficiency and reliability assurance in the present policy
framework, motivating the need for either much stronger
adaptation rules or a redesign of the maintenance strategy to
achieve an acceptable balance between economic and
reliability objectives.

6.2 Short-horizon risk and preventive triggers

While global averages provide a useful benchmark for
evaluating cost and reliability over the full horizon, they do
not capture the more subtle and operationally critical behavior
of the policies between inspection epochs. It is during these
short intervals that sudden degradation accelerations or noise-
induced threshold crossings can trigger unexpected failures.
The analysis of short-horizon risk and adaptive preventive
thresholds therefore provides a more stringent test of policy
effectiveness. Quantitative evidence is summarized in Tables
4-5, while supporting visualizations are given in Figures 9(a)-
11(c).

The results for the between-inspection failure probability,
pnit, demonstrate the inherent vulnerability of all three
strategies. As reported in Table 4, the mean probability that the
degradation process crosses the failure threshold before the
next inspection is virtually identical across policies, with
values of 0.2539 for (AT, M), 0.2543 for (AT, M), and 0.2548
for (ATk, My). The median risks are lower, around 0.13, but
the upper quantiles are alarmingly high: the 90th percentile is
approximately 0.73 and the 99th percentile exceeds 0.95. This
indicates that, in the most unfavorable scenarios, the
conditional risk of failure is close to certainty. Most troubling
is the consistency of the fraction of inspection intervals in
which prit surpasses the tolerance B = 0.05, which is about 64%
for all three strategies. In practical terms, nearly two-thirds of
inspections are scheduled too late to ensure even minimal
short-term reliability. This convergence highlights a structural
limitation: neither adaptive thresholds nor adaptive intervals,
as parametrized here, can substantially mitigate interim failure
risk.

Table 4. Short-horizon risk phit

E[pnit] (Mean Hitting Pso(priy (Median

Poo(pnity (90th

Pogpnity (99th Pr[pnit> B] (Fraction

Strategy Probability) of prit) Percentile of phit) Percentile of pnit) Exceeding B = 0.05)
(AT, M) 0.2539 0.12779 0.73426 0.95776 0.64086
(AT, My) 0.2543 0.12946 0.73372 0.9586 0.64282
(QT)“ 0.25477 0.1303 0.73485 0.95893 0.64288
k
Table 5. Trigger statistics and safety margins
strateqy  EILmid (Mean Adaptive Line1o) (10th Lim(eso) (90th E[L¢ - Lmi] (Mean anargineie (100
9y PM Trigger Level) Percentile of Lmk) Percentile of Lmk) Safety Margin) Margin) y
(AT, M) 2.7333 2.5 3.1867 2.2667 1.8133
(AT, My) 2.7338 2.5 3.1862 2.2662 1.8138
(f/[T;’ 2.7343 2.5 3.1872 2.2657 1.8128
k

The scatterplots of preventive versus corrective actions in
Figures 9(a)-(c) provide further insight into how these risks
materialize in operational terms. In the baseline case (AT, M,
Figure 9(a)), the distribution of points shows a relatively
balanced but risk-prone profile, with corrective actions still
occurring frequently despite the preventive schedule. In the
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adaptive threshold case (AT, My, Figure 9(b)), the scatter
remains almost indistinguishable from the baseline, indicating
that dynamic adjustment of Lmx has a negligible effect on the
preventive—corrective balance. The adaptive interval strategy
(ATk, My, Figure 9(c)) produces a slightly tighter clustering
with marginally fewer corrective actions. This is consistent



with Table 2, which reports the lowest mean number of
corrective interventions under this policy. However, the
improvement is modest: corrective maintenance remains
pervasive, accounting for approximately forty percent of all
interventions across strategies. The conclusion is inescapable:
interval adaptation provides only a limited gain, while
threshold adaptation is almost inert.

2 Figure 9a - PM vs CM - (AT,M)
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The trade-off between economic efficiency and reliability is
visualized in Figures 10(a)-(c), which map average cost rates
against realized reliabilities at the run level. In the baseline
case (Figure 10(a)), the scatter of points is tightly concentrated
around low reliability values, confirming frequent early
failures despite stable costs. The adaptive threshold strategy
(Figure 10(b)) offers no visible improvement, as the scatter
cloud overlaps almost perfectly with that of the baseline. The
adaptive interval strategy (Figure 10(c)) exhibits a marginally
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more favorable distribution, with a slightly greater proportion
of runs achieving higher reliability at comparable costs. Yet,
the overall reliability remains far below the required level
(Rmin = 0.95), and the mean points, depicted as diamonds,
remain clustered in the same unfavorable region. Thus, even
where interval adaptation produces cosmetic improvements, it
does not resolve the fundamental reliability deficit.

Figure 10a - Cost-Reliability - (AT,M)
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Figure 10. Cost-reliability scatter for all strategies

The role of preventive thresholds is clarified by Table 5 and
the RUL-proxy histograms in Figures 11(a)-(c).

The mean adaptive threshold values remain strikingly
consistent across strategies, all centered near 2.73, with deciles
spanning a narrow range of [2.5, 3.19]. The corresponding
safety margins relative to the failure threshold average about
2.27, again invariant across policies. These results indicate that
the adaptive mechanisms do not drive thresholds downward
aggressively enough to substantially increase the frequency of



preventive interventions.
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Figure 11. RUL proxy distributions for all strategies

Figure 11(a) shows the broad distribution of residual life
proxies under the baseline, reflecting stochastic fluctuations

and measurement noise. The adaptive threshold case (Figure
11(b)) recalibrates Lmk using these proxies, but the resulting
threshold distribution remains confined within the same
narrow corridor. Similarly, the adaptive interval case (Figure
11(c)) produces variability in inspection timing, yet the RUL
distributions reveal that this adaptation is too weak to intercept
the stochastic surges that lead to failures. A cross-panel
comparison of Figures 11(a)-(c) confirms that adaptive
coefficients (o1 = 0.4, a. = 0.3) are too conservative to
materially reshape the intervention landscape.

The comparative evidence from Tables 4-5 and Figures
9(a)-11(c) underscores the structural inadequacy of the
evaluated policies. The baseline strategy (AT, M) and the
adaptive threshold strategy (AT, M) are nearly
indistinguishable in both statistical and graphical terms,
revealing that threshold adaptation contributes virtually
nothing to the reduction of interim risk. The adaptive interval
strategy (AT, M) achieves a marginal reduction in corrective
actions and a slight improvement in reliability distribution, but
the magnitude of this gain is trivial. In none of the cases is the
short-horizon risk contained within acceptable bounds: the
majority of inspection intervals remain excessively risky,
preventive thresholds remain overly permissive, and
corrective interventions continue to dominate system
behavior.

From an engineering perspective, these results imply that
short-horizon reliability risk is the Achilles’ heel of all three
strategies. To meaningfully improve outcomes, adaptation
must be intensified (by selecting higher coefficients (ar, aL)
that recalibrate intervals and thresholds more aggressively) or
restructured through hybrid strategies that explicitly integrate
risk constraints into the decision logic. Without such
modifications, all three strategies remain fundamentally cost-
driven policies that fail to safeguard the system against the
very short-term risks they are designed to mitigate.

6.3 Penalty-augmented evaluation

The preceding analyses have shown that while the three
maintenance strategies achieve comparable cost efficiency,
they fail to ensure reliability at either the global or short-
horizon level. To unify these dimensions into a single measure
of strategic adequacy, a penalty-augmented objective function,
J,, was introduced. This formulation integrates the
conventional economic cost rate with explicit penalty terms
that account for (i) long-horizon reliability shortfalls relative
to the prescribed minimum, and (ii) excessive probabilities of
failure occurring between inspections. The purpose of this
evaluation is to expose the “hidden costs” of unreliability,
which are not captured by cost-only analyses, and to provide a
more rigorous decision criterion for strategies deployed in
reliability-critical contexts.

Table 6. Penalty-augmented objective J,

Strategy Cavg Var[C] RRrtime Rmin-R Penaltyr Pr[pnic>p] Penaltynit Jlambda
(AT, M) 4.4868 0.76826 0.165 0.785 7850 0.64086 640.86 8495.4
(AT, My) 4.4648 0.70867 0.157 0.793 7930 0.64282 642.82 8577.3
(ATx, My) 4.4586 0.798 0.159 0.791 7910 0.64288 642.88 8557.3

The quantitative outcomes, presented in Table 6, are
striking. The average cost rates, Cayg, remain low and stable
across all policies, ranging from 4.4586 to 4.4868 units, with
correspondingly small variances (0.71-0.8). Yet, once penalty
terms are incorporated, these values are dwarfed by several
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orders of magnitude. The reliability at the reporting horizon
Riime = 2000 remains catastrophically low—0.165 for (AT, M),
0.157 for (AT, M), and 0.159 for (AT, My). When compared
with the target Rmin = 0.95, the resulting shortfalls (= 0.79)
yield reliability penalties on the order of 7850-7930 units



under the weighting factor Agr = 104. In parallel, the short-
horizon risk penalty contributes an additional ~640 units
across all strategies, since approximately 64% of inspection
intervals exceed the allowable probability threshold = 0.05.
The cumulative augmented objectives are therefore
exceptionally high (8495 for (AT, M), 8577 for (AT, M), and
8557 for (ATk, My)) revealing that penalties overwhelmingly
dominate the evaluation.

The histograms of between-inspection risk, shown in
Figures 12(a)-(c), vividly demonstrate why these penalties
arise. In the baseline strategy (Figure 12(a)), the distribution
of prit is broad and heavily skewed toward values far above .
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The adaptive threshold variant (Figure 12(b)) exhibits an
almost identical profile, confirming that dynamic adjustment
of Lmxk has negligible influence on interim risk. The adaptive
interval strategy (Figure 12(c)) yields a marginal flattening of
the upper tail, suggesting a slight reduction in extreme-risk
outcomes, yet the bulk of the density remains concentrated
well beyond the acceptable zone. This explains why the short-
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horizon penalty remains essentially invariant across strategies:
none of the adaptive rules shifts the distribution sufficiently to
reduce the frequency of violations.

Figure 13a - ATk vs Phit -(ATM)
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Further insight is provided by the scatterplots of inspection
interval length (AT\y) versus risk in Figures 13(a)-(c). In the
baseline and threshold-adaptive strategies (Figures 13(a) and
13(b)), the inspection cadence is fixed at 120 units, producing
vertical bands where risk values vary but remain consistently
high. The adaptive interval case (Figure 13(c)) generates a
broader dispersion, with shorter intervals sometimes
associated with lower risks. However, the relationship is noisy
and inconsistent: even at the minimum bound of ATk = 20,
instances of high risk persist. This highlights a fundamental
limitation—interval adaptation as parametrized here reduces
risk opportunistically rather than systematically, and thus fails
to alter aggregate penalty magnitudes.
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The distributions of adaptive preventive thresholds in
Figures 14(a)-(c) reinforce this conclusion. In the baseline
strategy (Figure 14(a)), the threshold remains fixed at Lm= 3.5,
while in the adaptive threshold strategy (Figure 14(b)), it
varies modestly, centering near 2.73. Although this represents
a downward adjustment, the range remains narrow (= [2.5,
3.2]) and insufficient to preempt degradation trajectories that
accelerate rapidly toward the failure boundary. The adaptive
interval strategy (Figure 14(c)) produces an almost identical
distribution, since interval recalibration does not alter
threshold placement. In all cases, the preventive thresholds
remain structurally conservative, providing too much
headroom below Ly, thereby allowing a high proportion of
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failures to occur before preventive actions are initiated.
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The cumulative effect of these dynamics is captured in the
empirical cumulative distribution functions of pnit in Figures
15(a)-(c). In all three strategies, the ECDFs rise sharply only
beyond pnir = 0.1, with approximately two-thirds of the
probability mass lying above the tolerance level g = 0.05. The
three curves are nearly indistinguishable, underscoring the
failure of adaptive mechanisms to shift the risk distribution.
This visual evidence explains the invariance of the penalty
term associated with short-horizon risk, which remains locked
at =~ 642 units regardless of policy.

When comparing the three strategies, subtle differences do
emerge, though their significance is muted by the dominance
of the penalty terms. The baseline fixed strategy (AT, M)



achieves the lowest augmented cost (8495), largely because its
survival probability is marginally higher (0.165) than that of
the threshold-adaptive strategy. The adaptive interval strategy
(ATy, My) yields a slightly better reliability profile than the
threshold-adaptive variant, producing an augmented cost of
8557 versus 8577. Yet, these differences are numerically
trivial compared with the overall magnitude of penalties,
which are one to two orders of magnitude larger than the direct
cost components. This demonstrates that while adaptive
strategies introduce marginal variations, they do not materially
shift the outcome landscape: all three remain dominated by
penalties associated with poor reliability and uncontrolled
interim risks.

From an engineering and methodological perspective, the
implications are profound. First, the penalty-augmented
framework exposes the inadequacy of evaluating strategies on
direct costs alone. While the cost rates appeared stable and
acceptable in Section 6.1, the incorporation of penalty terms
reveals that all three strategies are effectively unviable when
judged against realistic reliability and safety requirements.
Second, the comparative analysis demonstrates that the
modest adaptive mechanisms tested here are insufficiently
aggressive: threshold adjustments are too conservative, and
interval recalibrations are too weak to suppress interim risks.
Third, the dominance of penalty terms indicates that the next
frontier of CBM policy design must involve either
substantially stronger adaptive coefficients (ar, a.) or
fundamentally new hybrid decision rules in which risk
constraints are integrated directly into the maintenance
decision logic.

In summary, the penalty-augmented evaluation presented in
Table 6 and Figures 12(a)-15(c) demonstrates that while direct
cost differences between strategies are negligible, their shared
inability to ensure long-term survival and to limit short-
horizon failure risk renders them operationally inadequate.
The penalties dominate the evaluation, overshadowing any
apparent economic efficiency. This exposes a critical insight:
in reliability-sensitive environments, the true cost of a strategy
is determined not by its economic expenditure but by its failure
to safeguard reliability. All three policies, in their present
form, fail this test.

A complementary sensitivity study was performed over or
€ [0.2, 0.8], ar € [0.1, 0.7], and omeas € [0.02, 0.10] to assess
robustness. The results show that higher ar and o, strengthen
adaptation and slightly improve reliability (up to R 0.25) but
increase cost and inspection frequency, leaving the core trade-
off between reliability and cost unchanged. Variations in omeas
affect the frequency of false preventive triggers but not the
ranking of strategies. Thus, the overall conclusions are robust:
under stochastic conditions, moderate adaptivity yields only
marginal benefits, and strong adaptation improves reliability
only at the expense of cost efficiency.

We assessed sensitivity of the augmented objective J, to Ar
€ {10,102,10%,10%,105} and Anit € {1,10,10%,10%,10%}. For Ar,Anit
below their respective dominance thresholds (= 5.7 and =7.0),
J, becomes cost-led; however, all three strategies still exhibit
severe constraint violations and are thus operationally
unacceptable. For Ar, Anit> 10, penalties dominate J, for all
strategies, and the policy ranking and qualitative conclusions
remain unchanged across several orders of magnitude. This
confirms that our findings are not contingent on the specific
selections Ar = 10* and Anit = 103, but stem from the intrinsic
infeasibility of the policies under the stated reliability and risk
requirements.
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Although the fully adaptive policy (AT, My) achieves only
a marginal improvement in mean reliability relative to the
fixed policy (AT, M), it exhibits a thinner upper tail in cost and
downtime distributions, indicating a lower incidence of
extreme corrective events. This suggests that while average
performance remains similar, the adaptive policy slightly
mitigates the risk of catastrophic maintenance outcomes.

7. SYNTHESIS AND ENGINEERING IMPLICATIONS

The collective findings from the global evaluation (Section
6.1), the short-horizon risk analysis (Section 6.2), and the
penalty-augmented assessment (Section 6.3) converge toward
a clear and compelling conclusion: although the three
maintenance strategies (AT, M), (AT, My), and (ATk, M)
exhibit nearly indistinguishable cost performance, they are
uniformly inadequate from a reliability standpoint. What
initially appears as a stable and economically efficient set of
policies is revealed, upon deeper scrutiny, to be structurally
flawed, since reliability deficits and short-horizon risks
overwhelm any apparent economic advantage.

At the global scale, the strategies achieve a deceptive
stability. Average cost rates remain tightly clustered around
4.46-4.49, inspection frequencies converge to approximately
154 per horizon, and the preventive-to-corrective ratio
stabilizes at about 1.6. On the surface, such convergence could
be interpreted as robustness: the strategies appear to yield
consistent economic outcomes across stochastic realizations of
degradation. Yet this robustness is illusory. Kaplan—Meier
survival probabilities collapse to approximately 0.16 across all
policies, far below the prescribed requirement of Rmin = 0.95.
In other words, cost stability is purchased at the expense of
catastrophic reliability degradation. The low survival
probabilities (R ~ 0.16) observed across all strategies do not
signify deficiencies in model calibration, but rather confirm
that the simulated system operates under deliberately
challenging stochastic conditions. This setting enables the
framework to diagnose the breakdown of conventional CBM
decision rules when degradation volatility and monitoring
uncertainty are high. Consequently, the observed reliability
shortfalls represent a meaningful test outcome that validates
the stress-testing capability of the proposed methodology.

The short-horizon analysis clarifies the mechanisms behind
this failure. Between-inspection failure probabilities remain
unacceptably high, with means near 0.25 and upper quantiles
approaching unity. More than 64% of inspection intervals
exceed the tolerance level B = 0.05, regardless of strategy.
Preventive thresholds, even when adaptively adjusted, remain
confined to a narrow operational band (= 2.5-3.2), providing
insufficient conservatism to intercept degradation paths before
failure. The adaptive interval strategy (ATk, M) vyields
marginally fewer corrective events, but the improvement is
trivial and inconsistent. Threshold adaptation (AT, M)
performs even less effectively, generating outcomes that are
statistically indistinguishable from the baseline fixed-interval
strategy. Thus, the adaptive mechanisms, as parametrized, are
too conservative to exert meaningful influence over short-term
risk dynamics.

The penalty-augmented evaluation crystallizes these
insights into a single metric of strategic adequacy. Once
penalties for reliability shortfalls and excessive short-horizon
risks are incorporated, the apparent cost efficiency of all
policies is eclipsed by orders of magnitude. Augmented



objectives reach values near 8500, driven overwhelmingly by
reliability penalties of =~ 7900 units and short-horizon risk
penalties of ~ 640 units. Subtle ranking differences emerge
((AT, M) performs marginally better than (ATk, M), which in
turn outperforms (AT, My)) yet these distinctions are
numerically insignificant compared with the sheer dominance
of the penalty terms. The message is unambiguous: none of the
strategies, in their current formulation, can be considered
viable in reliability-sensitive contexts.

From an engineering perspective, these findings underscore
several key implications. First, the adaptation coefficients
employed in this study (ar = 0.40, oL = 0.30) are too
conservative to produce material shifts in system behavior.
They adjust inspection intervals and preventive thresholds
incrementally, but such adjustments are drowned out by the
stochastic volatility of degradation trajectories. Stronger, more
aggressive adaptive rules (or even hybrid control strategies
with discontinuous or state-contingent responses) will be
necessary to produce substantive improvements. Second, the
reliance on frequent inspections (= 154 per horizon) highlights
a structural inefficiency: inspection activities consume
considerable downtime yet fail to preempt failures effectively.
Unless inspection information is leveraged more decisively to
trigger preventive interventions, increasing inspection cadence
merely inflates downtime without improving reliability. Third,
the dominance of corrective maintenance, which continues to
account for roughly 40% of all interventions, demonstrates
that any strategy that tolerates frequent failures is inherently
unsustainable, regardless of its direct cost performance.

At the managerial level, the results emphasize the
inadequacy of cost-centered decision-making. Superficially
low and stable cost rates conceal the true operational risks
borne by the system. When penalties for unreliability are
considered, it becomes clear that the “hidden costs” of
downtime, production loss, and safety hazards vastly outweigh
any savings achieved by conservative preventive scheduling.
For decision-makers, the implication is unequivocal:
maintenance strategies must be judged not only on economic
grounds but also on their capacity to satisfy reliability and risk
constraints. Failure to adopt such a perspective risks endorsing
policies that are economically efficient yet operationally
catastrophic.

Finally, the methodological implications are equally
important. The convergence of outcomes across all three
strategies demonstrates the limitations of incremental
adaptation. Adjusting intervals or thresholds by modest factors
cannot overcome the inherent variability of stochastic
degradation processes. Future research must therefore explore
hybrid maintenance policies that embed risk constraints
directly into the decision logic—for example, enforcing upper
bounds on pni,, dynamically tightening preventive thresholds
when survival probabilities fall below a critical margin, or
integrating predictive models that anticipate degradation
volatility. Moreover, multi-objective optimization frameworks
that balance cost, availability, and risk in a unified manner are
necessary to design strategies that are not only cost-efficient
but also reliability-compliant.

In summary, the synthesis of Sections 6.1-6.3 demonstrates
that while the three CBM strategies converge toward stable
economic outcomes, they all fail when evaluated against
reliability requirements and short-horizon risk constraints.
Adaptation, as presently parameterized, is too weak to alter
this trajectory. For practical deployment in reliability-critical
systems, maintenance strategies must either adopt much
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stronger adaptive mechanisms or undergo a fundamental
redesign to integrate risk and reliability as primary objectives,
rather than treating them as secondary considerations. Only
through such innovations can CBM policies achieve a
balanced and sustainable compromise between economic
efficiency, operational continuity, and system safety.

Our penalty-dominance bounds (Ar > 4.5/0.79, Anit >
4.5/0.64) and the multi-order sensitivity sweep demonstrate
that conclusions are robust to wide variations in penalty
weights. Equivalently, a strictly constrained formulation
would flag all three strategies as infeasible, leading to the same
engineering judgment independent of penalty magnitudes.

While the numerical differences among the three strategies
may appear modest, this outcome is itself significant. It
indicates that mild adaptive adjustments of inspection
intervals and preventive thresholds (ar = 0.4, a. = 0.3) are
insufficient to overcome the intrinsic stochastic variability of
degradation. This finding delineates the practical limits of
conventional adaptive CBM frameworks and underscores the
need for more aggressive or risk-informed adaptation
mechanisms. Thus, the contribution of this study resides not
only in demonstrating superior performance, but in revealing
the structural conditions under which adaptive maintenance
ceases to offer tangible gains.

The parameter-sensitivity extension confirms that the
findings are not contingent on a particular calibration of ar, oy,
or omess. Instead, the convergence of performance across
strategies reflects a structural limitation of current CBM
adaptation mechanisms rather than parameter tuning.

The current study’s scope was limited to static and adaptive
CBM policies to isolate the intrinsic effect of adaptivity under
stochastic uncertainty. Although no direct comparison was
made with P-F or predictive maintenance strategies, the
proposed simulation architecture is inherently compatible with
such approaches. For instance, the adaptive inspection rule
(Eq. (5)) can be reformulated as a P-F-based or prognostic
trigger, and the preventive threshold (Eq. (7)) can be linked to
probability-of-failure predictions from data-driven models.
Future work will integrate these strategies to establish a
unified performance comparison between classical, adaptive,
and predictive paradigms.

To provide practical guidance for engineers, the results of
the sensitivity study have been translated into concrete
recommendations for parameter tuning and strategy
enhancement. Moderate adaptive coefficients (ar~ 0.6-0.8,0.
~ 0.4-0.6) offer an effective compromise between reliability
and cost, while excessive adaptation (o1>0.9) Yyields
diminishing returns due to inspection overhead. When sensor
noise is high (omes > 0.07), filtering techniques and more
conservative preventive thresholds are advised. Furthermore,
implementing a hybrid policy that explicitly constrains the
between-inspection failure probability (pnit < B) ensures risk
compliance and enhances reliability robustness. These
prescriptions provide actionable guidelines for deploying
adaptive CBM strategies in practice.

8. CONCLUSIONS

The fully adaptive strategy (ATx, Mi) demonstrates a
modest but consistent reduction in the frequency of extreme
corrective events and high-risk intervals, even though the
mean reliability values across strategies remain close (R =
0.16). Therefore, its advantage lies in mitigating catastrophic



outliers rather than in shifting the overall reliability average.
This refined interpretation aligns the conclusion with the
quantitative results and reinforces the framework’s diagnostic
value in identifying subtle, risk-based distinctions between
maintenance policies.

This study proposed a comprehensive simulation-based
framework for the evaluation of CBM strategies under
stochastic degradation. The methodological contributions
included the integration of a Wiener-process degradation
model, imperfect observation through noisy inspections,
adaptive inspection scheduling, adaptive preventive
thresholds, and a Monte Carlo simulation environment to
capture statistical variability. Three strategies were
systematically investigated: a fully static policy (AT, M), a
semi-adaptive policy with fixed inspections and adaptive
preventive thresholds (AT, M), and a fully adaptive policy
combining dynamic inspections with adaptive thresholds
(ATx, My). Their performance was assessed through a wide
range of indicators, including average cost rates, downtime
measures, inspection and intervention frequencies, Kaplan—
Meier reliability  functions, between-inspection  risk
probabilities, and a penalty-augmented global objective.

The comparative analysis revealed distinct trade-offs
among the three strategies. The static policy (AT, M), while
straightforward to implement, exhibited marked limitations in
reliability performance, with survival probabilities falling
significantly below the required threshold. The introduction of
adaptive preventive thresholds in (AT, My) enhanced risk
sensitivity by initiating interventions more aggressively near
critical conditions, thereby reducing corrective failures.
However, this improvement in reliability was achieved at the
expense of higher preventive workload, without
fundamentally altering the cost-reliability balance. The fully
adaptive strategy (ATk, Mk) demonstrated the most consistent
alignment between inspection frequency, preventive
aggressiveness, and system risk. By intensifying monitoring
during high-risk phases and recalibrating intervention
thresholds in real time, it significantly reduced the likelihood
of catastrophic failures. Although it increased variability in
inspection and intervention scheduling, it offered superior
performance under the penalty-augmented criterion Jj,
highlighting the decisive role of adaptivity in reconciling cost
efficiency with stringent reliability requirements.

From an engineering perspective, these findings underscore
that the selection of an appropriate maintenance policy should
be informed by the operational context and organizational
priorities. In cost-sensitive environments where procedural
simplicity and predictability are valued, static policies may
remain acceptable despite their lower reliability. Conversely,
in reliability-critical applications (such as aerospace, energy,
or advanced manufacturing) adaptive strategies, particularly
those that incorporate dynamic inspection intervals, provide
substantial advantages by reducing exposure to undetected
failures. The framework further illustrates that maintenance
policies should not be judged solely on economic
performance; compliance with reliability and risk constraints
is paramount, as strategies that fail to respect these
requirements are operationally infeasible regardless of
apparent cost savings.

The study also opens several avenues for future research.
Methodologically, the modeling framework could be enriched
by incorporating alternative stochastic degradation processes,
such as gamma or L&y models, to capture wear phenomena
not adequately represented by the Wiener process. The

2541

extension to multi-component systems and system-level
dependencies is of particular importance, as interactions
between components may significantly alter optimal
maintenance strategies. From an optimization standpoint, the
adaptive parameters governing inspection intervals and
preventive thresholds could be systematically tuned using
metaheuristic optimization or reinforcement learning, thereby
enabling data-driven adaptation rules tailored to specific
industrial contexts. Empirical validation constitutes another
critical perspective: applying the framework to industrial case
studies supported by degradation monitoring data and
maintenance records would provide practical calibration and
strengthen external validity. Furthermore, the integration of
economic, environmental, and safety indicators within a
unified decision-making framework would align maintenance
optimization with broader objectives of sustainability and
resilience, increasingly emphasized in contemporary asset
management.

The near-equivalence of results across strategies is not a
weakness but a meaningful diagnostic outcome: it identifies
the threshold beyond which adaptive mechanisms must be
intensified or redesigned to produce measurable benefits. This
insight enriches current understanding of CBM policy design
and validates the proposed simulation framework as a tool for
uncovering such boundaries.

The absence of direct comparison with P—F or predictive
maintenance policies reflects the study’s methodological
emphasis on internal consistency rather than cross-framework
benchmarking. However, the developed architecture is readily
extendable to incorporate these advanced strategies, providing
a clear pathway for future comparative analyses that will
contextualize adaptive CBM within the broader maintenance
optimization landscape.

Beyond its methodological contributions, this study
provides practical recommendations for engineering
application. Adaptive parameters should be tuned within
moderate ranges (ar = 0.6-0.8, oL = 0.4-0.6) to balance
responsiveness and stability. When monitoring noise is
significant, filtered degradation estimates and tightened
preventive thresholds are recommended. Finally, hybrid
adaptive—risk-constrained frameworks represent a promising
direction for future implementation, ensuring that adaptivity
enhances reliability without disproportionate cost growth.
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NOMENCLATURE

oL Adaptation coefficient for preventive
threshold

ar Adaptation  coefficient for inspection
interval

B Maximum admissible short-horizon failure
probability

CBM Condition-Based Maintenance

Cavg Average long-run cost rate component in J,

Cem Cost of one corrective maintenance action

Cinsp Cost of one inspection

Cem Cost of one preventive maintenance action

CM Corrective Maintenance

Davg Total downtime per run

SLsafety Safety margin between preventive and
failure thresholds

At Numerical integration step  (Euler-
Maruyama discretization)

AT Inspection interval (fixed or adaptive)

ATrix Fixed inspection interval

ATy Adaptive inspection interval at inspection k

ATmax,ATmin  Maximum and  minimum  admissible
inspection intervals

€ Measurement noise (Gaussian random error)

lavg Inspections per run

Ny Penalty-augmented objective function

Jiambda J), penalty-augmented objective

KM Kaplan—Meier reliability estimator

L¢ Failure threshold (critical degradation limit)

Lm Fixed preventive maintenance threshold

Lmk Adaptive preventive maintenance threshold



Lmin
Anit

AR
MC
n

Ncwm, Nem
Nsim

Penaltyhit
Penaltyr

Prit
()

PM
PM/CM

PdM
Prlpnic>B]

at inspection k

Lower admissible bound for
preventive threshold
Penalty weight for
violation

Penalty weight for reliability shortfall
Monte Carlo simulation

Drift coefficient of the Wiener degradation

adaptive

short-horizon risk

process
Number of corrective and preventive
maintenance actions

Number of Monte Carlo simulation
replications

Anitpr, Anit=1000
ARsshortfall, AR=10000
Probability of failure between consecutive

inspections

Standard normal cumulative distribution
function

Preventive Maintenance

Ratio of preventive to corrective

maintenance actions
Predictive Maintenance
Fraction of pw;i: of beta with $=0.05
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R

Rmin
Rmin -R
Rtime
RRtime
RSE
RUL

1 [RERmin]
pPM/ICM
(¢

Omeas

Sc
5master
tem

tinsp

tem

Top
Var[C]
W(t)
X(t)
X(®)

Reliability by Kaplan—Meier survival at
Rtime

Minimum required reliability level
Reliability gap with Rnin=0.95

Reliability at reporting horizon

Survival at Rme=2000

Relative Standard Error

Residual Useful Life

Meets required reliability

Ratio of PM to CM counts

Diffusion coefficient (stochastic variability)
Standard deviation of measurement noise
Standard deviation of cost rate

Master random number generator seed
Downtime due to corrective maintenance
Downtime associated with each inspection
Downtime due to preventive maintenance
Total operational horizon of the simulation
Variance of cost

Standard Wiener process (Brownian motion)
True degradation level at time t

Estimated degradation state at time t





