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Maintaining road safety and reducing accidents brought on by drowsy or exhausted driving
depend heavily on the ability to detect driver fatigue. To improve road safety, it is essential
to look at how drivers identify yawns. Even though a number of studies have suggested
deep learning-based approaches, there is room for improvement in the creation of more
accurate and efficient drowsiness detection systems that take into account behavioral
factors like eye and mouth movements. In order to reliably identify sleepiness in real time
using physiological and visual signals, this study suggests a deep neural network design
that uses the Attention Convolution Gated Recurrent Neural Network (ACGRNN). The
RMSprop optimizer, which effectively manages non-stationary goals and stabilizes the
training process by dynamically adjusting the learning rate, is used to optimize the
suggested system. Models are taught and assessed by contrasting them with current
techniques. According to the experimental results, the suggested ACGRNN model

achieves an average drowsiness detection accuracy of 95.53%.

1. INTRODUCTION

The paramount importance of safeguarding every person
involved in transportation requires the implementation of a
sleepiness detection system tailored for drivers. One important
element contributing to car accidents is drowsy driving [1].
The state of sleepy driving may manifest as a brief lapse in
cognitive focus, when the driver neglects to devote complete
attention to the road. Those who have overexerted themselves,
either physically or mentally, are more likely to experience
tiredness while driving or to have mild sleepiness themselves
[2]. This event may have transpired at an earlier or later
temporal juncture. Studies reveal that over 25% of vehicular
accidents are attributable to sleepy driving, with 4% of adult
drivers admitting to experiencing sleepiness or falling asleep
while driving in the preceding month [3]. Sleepy driving is a
significant contributor to road safety issues in the United
States, resulting in around 71,000 injuries, 1,500 fatalities, and
annual financial losses of USD 12.5 billion. Due to the
seriousness of this issue, it is essential to establish an effective
system for the prompt detection of driver vulnerability,
therefore mitigating accident risks and enhancing safety.

Three components typically make up a simple drowsiness
detection system [4]: an acquisition framework to record the
driver's frontal face, a processing framework to analyze the
data for signs of fatigue, and a mindfulness tool to alert the
driver when care is needed [5]. Drowsiness, often induced by
medicine, results in diminished performance and reduced
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attentiveness, perhaps leading to significant damage. The
National Highway Traffic Safety Administration (NHTSA)
estimates that drowsy drivers are responsible for around
100,000 injuries and over 1,500 fatalities per year [6]. This
underscores the critical need for proactive measures to address
fatigue, not just in driving but also in other contexts, such as
operating heavy equipment, where similar risks are present
[7].

Numerous factors may contribute to driver fatigue, which
can lead to serious crashes, including sleep deprivation,
lengthy drives, restlessness, alcohol use, and mental stress.
The recent increase in road rage incidents has exacerbated
stress levels among drivers, making conventional
transportation methods inadequate for addressing the hazards
of roads. To mitigate the danger of potentially lethal incidents,
the use of automated tiredness detection systems in vehicles is
essential. These gadgets consistently evaluate the driver's
attentiveness and provide warnings far ahead of any
significant threats to road safety [8, 9]. In accordance with the
preceding explanation, a driver's actions are pivotal to road
safety, for both the driver and other individuals using the
roadways.

Driver sleepiness detection has garnered heightened interest
recently due to its critical role in preserving lives. Numerous
studies in the literature concentrate on identifying varying
degrees of driver awareness by distinct facial indicators,
including head positions, eye movements, and other facial
expressions [10]. Despite current research indicating


https://orcid.org/0009-0008-1942-8775
https://orcid.org/0000-0002-9953-5480
https://orcid.org/0000-0002-7754-9718/
https://orcid.org/0000-0002-5258-6109
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.581209&domain=pdf

significant gains, fundamental obstacles, including precise and
real-time sleepiness detection, need to be resolved [11].

Furthermore, it is essential to note that references
throughout this manuscript are organized to appear in
numerical order according to their first occurrence. This
ensures clarity and adherence to academic standards, where
citation numbers are placed outside sentence grammar and
reflect the sequence in which studies are introduced.
Maintaining proper citation order not only enhances
readability but also prevents ambiguity regarding the source of
information.

Therefore, the contributions of this study are as follows:

ConvNextTiny adopts design principles from Vision
Transformers while maintaining the efficiency of CNNs.
Moreover, it incorporates depthwise convolutions to decouple
spatial and channel-wise processing. This ensures high-
resolution local feature encoding, vital for detecting micro-
expressions (like eyelid droop or yawn onset) linked to
drowsiness.

The deep features learned by ConvNextTiny complement
handcrafted descriptors (e.g., EAR, MAR) by encoding
nonlinear, texture-based cues, enabling a richer multi-modal
representation when fused later in the pipeline.

Attention Convolution Gated Recurrent Neural Network
(ACGRNN) with  RMSprop  Optimizer = combines
Convolutional layers for spatial context encoding with Gated
Recurrent Units (GRUs) to model temporal dynamics in
sequential data.

RMSprop is used due to its ability to handle non-stationary
input distributions, which are common in facial expression
data across video sequences.

The research's succeeding sections are organized as follows.
A review of the literature on the identification of driver fatigue
is given in Section 2. The methodology is described in Section
3, and the experimental results are explained in Section 4.
Lastly, Section 5 summarizes the findings and makes
recommendations for the future.

2. RELATED WORKS

Over the past ten years, research on driver sleepiness
detection has advanced dramatically, utilizing both deep
learning and physiological signal-based methods. Numerous
techniques have been put forth, from multimodal strategies
that include EEG or other biosignals to solely visual cues like
yawning and eye closure.

In an early attempt at deep learning, Wei et al. [12] created
a multi-granularity CNN + LSTM framework that achieved
good accuracy on the NTHU-DDD dataset by capturing spatial
features from numerous face patches and long-term temporal
relationships over video sessions. Lyu et al. [13] demonstrated
the efficacy of integrated spatial and temporal modeling by
proposing a hybrid CNN-RNN model for real-time tiredness
detection.

Convolutional architectures adapted to eye and mouth
behavior are the subject of another type of studies. Zhao et al.
[14] presented EM-CNN, which identifies eye and mouth
states after using MTCNN to identify face features. They
showed good sensitivity and accuracy for yawning and eyelid
closure detection. EfficientNet-KNN was presented in a
different work by Shen et al [15], in which EfficientNet is
utilized for feature extraction over consecutive frames to
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identify tiredness in real-time via head movement and eye
closure length.

Tiifekci et al. [16] created an interpretable CNN for
physiologically based detection of driver drowsiness utilizing
EEG signals from several participants; by examining spatial-
temporal EEG patterns, their model obtained strong cross-
subject accuracy. In order to identify exhaustion, Chowdhury
et al. [17] also used CNN architectures and EEG
characteristics (such as theta and delta bands), emphasizing the
trade-off between detection accuracy and intrusiveness.
Additionally, hybrid models that combine physiological and
visual characteristics have been investigated.

In order to achieve dependable detection under various
circumstances, Kielty et al. [18] suggested a fusion framework
that combines CNN-extracted facial landmarks with fuzzy
logic to assess parameters like mouth opening and PERCLOS
(% of eye closure over time). Particularly important are real-
time systems. A DCNN + OpenCV pipeline for live video-
based sleepiness detection was recently created by Majeed et
al. [19], who reported extremely high classification accuracy
on public datasets. In a similar vein, Florez et al. [20] presented
VigilEye, an Al-based real-time driver monitoring system that
instantly detects tiredness using CNNs and facial landmarks.

Other noteworthy contributions include: A 4-layer CNN
was created by Makhmudov et al. [21] to process eye blinking
and yawning behavior from video frames. Depending on the
circumstances, the detection accuracy ranges from 80% to
98%. In order to determine blink rate for fatigue monitoring,
Majeed et al. [22] suggested a visual approach with up to 86%
accuracy utilizing symmetric eye characteristics. In order to
identify tiredness, Sedik et al. [23] employed a CNN trained
on picture sequences; their architecture caught latent spatial
information and obtained 78% accuracy on a bespoke dataset.
By evaluating mouth openness using facial cues and
incorporating this into an alert system, Cui et al. [24]
concentrated on yawning detection. Zhou et al. [25] fused
visual and cognitive signs of weariness by using fuzzy logic
with CNN outputs and eyelid closure characteristics. A real-
time fatigue system utilizing ECG and EOG characteristics in
conjunction with a lightweight neural network was proposed
by Hashemi et al. [26].

In order to manage different environmental circumstances
and driver behaviors, Soman et al. [27] employed an ensemble
of models (AlexNet, VGG, ResNet); their multiclass system
handled head position, yawning, and eye blinking. With an
emphasis on subject-agnostic modeling, Ahmed et al. [28]
expanded EEG-based detection to actual in-car environments.
In order to identify extended eyelid closure and initiate driver
alerts, Salman et al. [29] used eye-tracking and CNNs. Park et
al. [30] achieved extremely high accuracy in yawning and
blink recognition by using transfer learning with MobileNet-
V2 and ResNet50V2 in conjunction with facial landmark-
based thresholds.

3. PROPOSED METHODOLOGY

The process begins with input data, as shown in Figure 1,
sourced from the Kaggle drowsiness dataset [31]. Initially, the
input images undergo preprocessing using a wiener filter to
reduce noise, followed by contrast enhancement through
dynamic histogram equalization, ensuring improved feature
visibility under varying lighting conditions. Deep features are
obtained using the ConvNextTiny CNN model, a lightweight



and efficient convolutional neural network suitable for
resource-constrained environments. The Mouth Aspect Ratio
(MAR), Eye Aspect Ratio (EAR), pupil circularity, and a
combined mouth and eye feature vector, which indicate
sleepiness, are retrieved simultaneously. To classify images,
the Attention-based Convolutional Gated Recurrent Neural
Network (ACGRNN) captures spatial and temporal
relationships in the data using these deep and custom features
[32].

Data mput Data preprossing
Drowsiness —kaggle

Preprocess uging
dataget p

Deep features by
ConvNextTmy CNN
model

1

Handcrafted features

weiner filter and
contrast enhancement
by dynamic
histogram
equalization

Drowsiness detection » Ear Aspect Ratio (EAR)

Attention convolution Gated
Recurrent Neural Network
(ACGRNN) with RMS prop
optimizer

* Month Aspect Ratio

(MAR)
Pupil circularity
Combined Mouth and

Eye feature vector

Figure 1. The work’s block diagram
3.1 Preprocessing of images by wiener filter

This is a traditional statistical method that eliminates noise
from the picture while retaining its features. The concept of its
filtration is stated as follows:
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where, g(i,j) indicates the pixel's intensity value. (i,j) and
g'(i,j) shows the average pixel intensity within the M x N
window, which is centered at (i,j). 62 and o7 indicate the
differences between the actual image and the noise,
respectively. There are two ways to assess the performance.
Case 1: "Designated area." The variance o_1"2 significantly
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filter transforms into an average filter to mitigate the image's
noise. Consequently, it can be inferred that the wiener filter is
an edge-preserving smoothing filter characterized by self-
adaptability and ease of implementation.

The filtered image undergoes histogram equalization,
whereby the gray level histogram of an image is represented
as a one-dimensional discrete function, describing the
frequency of each gray level in the image. It may be expressed
as:

~0; thus g'(i,j)~g(i,j). This indicates that the

h(k)=n, k=012..L—-1 (2)
Shows how many of the image's pixels have a gray level of
k. f(x,y), L is the total number of gray levels, and ny is the

height of each histogram bin. Every grey level in the original

2559

image is displayed in the grey level histogram. The normalized
histogram is, since the histogram displays the relative
frequency of grey level occurrences.

n

pr(k) =2 k=012,..L-1 (3)

Here, L represents the total count of gray levels, n;
indicates the pixel quantity at the k-th gray level, and N
signifies the overall pixel count in the original picture.
Thereafter, the cumulative distribution function of the

normalized histogram of the image is computed.

<
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Here, 1, = %, representing the normalized gray level,
whereas k signifies the gray level prior to normalization. The
transformation function T'(r,) maps the original gray level to
a new gray level, which then replaces the matching gray level

in the original picture to produce an equalized image.
3.2 ConvNeXtTiny CNN based deep feature extraction

ConvNeXt [33] rivals Transformers in precision and scale.
This convolutional model shown in Figure 2 was optimised
from ResNet using a Swin Transformer-like structure [34].
The diminutive version of ConvNeXt is used to optimize
detection accuracy and speed, as seen in Figure 2.
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Figure 2. Architecture of ConvNeXtTiny CNN

Stem: The Stem has convolutional and LN layers.
Assuming the input image dimensions are H x W x 3, where
H and W represent height and breadth. The input image is
downsampled by four using a 4 x 4 convolutional layer with
C kernels. Next, the output feature undergoes layer
normalisation.

Encoder layer: The multi-head attention parallel attention
mechanism processing layer underpins this structure. The
input token matrix is layer-normalized. Second, multiplying
W and WX yields three matrices Q, K, and V, similar to the
self-attention module. A matrix corresponding to the number



of heads h is created by multiplying the third Q, K, and V by
W2, WX, WY . The attention score for each head is calculated
using Eq. (5) and the Q;, K;, V; matrix.

head ; = attention (QWiQ,KWiK, vwy)
WiQ € Rfmotel Xdq YK € Ridmosel Xdic WV €
Rdmodel de’ d

)

q= dy=d, = dmodel /h

The output of the MHA layer is derived by concatenating
all heads and applying a matrix-like fully connected operation
as described in Eq. (6):

multihead(Q,K,V) = ©)
concat(head (1), head(2), ... head (h))W?°

All transformer encoder layer output may be obtained via a
residual connection before and after the MHA and MLP levels.
Many transformer encoders are stacked to produce the model's
encoder layer.

* The Downsample reduces feature map resolution and

doubles channel size to create hierarchical multi-scale features.

Layer normalisation and convolutional layers downsample.
Convolutional layer with 2 x 2 kernel and 2 strides.

* The ConvNeXt Block includes depthwise convolution
and a two-layer 1 x 1 convolution layer with GELU non-
linearity. The second 1x1 convolution layer is followed by a
layer scale, drop route, and residual connection in the
ConvNeXt Block. Table 1 shows the details of the hyper-
parameters of the convolution layer

Table 1. The hyper parameters of convolution layer

Layer Type Kernel Size  Filters  Stride
Convl 1D Convolution 3 256 1
Conv2 1D Convolution 3 256 1
Norm LayerNorm - - -
Dropout Dropout - - —

3.3 Extraction of handcrafted features

. MAR

The MAR technique identifies driver yawning. It employs
Euclidean coordinate distance. Sikander and Anwar [35]
calculated the MAR using Eq. (7), which measures mouth
height and breadth, using eight oral reference locations (Figure
3).

_ lIp2—psllitlipz—p7 I+ Ip4—D6ll
MAR = 3llps—pall 7

. EAR
Rosebrock asserts that using the EAR feature for blink
detection has many benefits over conventional image-
processing techniques. Eq. (8) was used to extract the EAR
feature. The EAR ratio numerator calculates vertical landmark
distance, as seen below. The denominator doubles the
horizontal landmark distance by two to match the numerator.
Each frame's EAR values were calculated as shown in Eq. (8)

(Figure 4).

(14l
EAR = lIp2—psll+lIps—psll
2[lp1—pall

®)
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(b) Open mouth ROI

Figure 3. ROIs of the mouth are used to determine the
driver’s condition

Figure 4. Representation of EAR

. Pupil circularity
The input key and the relevant pupil feature x are first
converted into a novel feature space, akin to the self-attention
process, resulting in X' via its linear transformation
linerQ(convl x 1) . The objective is to augment the
expressive capacity of pupil features, extract more abstract and
discriminative pupil characteristics, and then calculate the
attention matrix A of the external memory units M, relative
to x' using the following formula.
A = norm(linear(q)(x")MI) )
where, 6;; denotes the similarity between the i-th pixel in

x' and the j-th column memory value in My . The attention
failure problem caused by a student's large feature vector may



be avoided by using dual-normalized norm. The attention's
rows and columns are standardized by the double-normalized
norm. 6';; obtained using matrix multiplication. The
following is one way to describe the realization process:

6

yo
e9'ij

o' (10)

L] Zk geli.j

. Combined Mouth and Eye feature vector

Sleepiness detection methods that employ face cues
emphasise eye features. The eye aspect ratio EYE; was
calculated using the MediaPipe Face Mesh 2D coordinates and
Soukupova and Cech's calculating approach. Eq. (11)
calculates eye aspect ratio at a particular instant by comparing
the average vertical and horizontal eye landmark distances.

mean(dis(Ez,Eg),dis(E3,Es)

EYE, = dis(Eq,Es)

(11

where, EYE; is the driver's eye openness at time i, mean (a,
b) is the input parameter average, and dis(a,b) is the
Euclidean distance between input parameters. Additional eye
region metrics include blink duration (BD), eye closure
duration (MEC), and eye movement amplitude. The blink
duration calculating method is Eq. (12):

_ Z?:l end¢—startg+1

BD (12)

n
The frame number end, indicates the end of the tth blink
process inside the time window, whereas start; indicates the
start of the blink process. Eye movement amplitude is
calculated using Eq. (13).

EYEstart+EYEend_2(EYEpeak)
2

(13)

amp =
3.4 ACGRNN

Drowsiness detection based on ACGRNN, especially when
combining spatial and temporal features from multimodal
feature extracted from previous step. An attention model
computes a vector ¢; as the weighted mean of the feature h,
as shown in Eq. (14).

Ce = Yioq %5 hy (14)

The weighted mean is generated by a latent concealed state
h;. T represents the time step required for producing the
input feature, and o;; denotes a weight assessed at time t for
the input corresponding to state h;. The new state s evaluates
the context vector, where s;depends ons;_; ¢;, and the output

attime t — 1. The weights o;; are determined using Eq. (15).

€xXp (eij)

e = o) <0 = 57 o e
=1 i

(15)

The prior state s,_; and h; are used in the computation of
a learning function. This function aids in the computation of
h;. It generates a fixed-length c vector in Eq. (16).

exp(er)
Yk=y exp(er)

e, = a(hy), <= ,Ce Dteg K¢ By

(16)
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When the input remains constant throughout time T, the
whole network will operate without self-attention. The whole
self-attention mechanism will be used when the input
sequence varies. The unweighted average of h;, which aids in
the computation of ¢, is shown in Eq. (17).

1
Ce = ;ZZ=1 hy (17)
Subsequent to the activation layer, the GCNN regulates the
recurrent term via a gate before to its addition to the input term.
ce.x(®) = TF(u,wh) + g(T). (x(t — 1); wR (@ —1)) (18)
When t >0, g(T) is a gate whose outputs possess the
same dimensions as TR (x(t — 1); wR(t — 1))and x(t).

G(t) = o(Tf (w;w)) + TR (x(t — 1 wh(t - 1))) (19)

For t = 0, let o be the logistic sigmoid function defined
as o(x) =1/(1+exp(—x)). T and TS represent the
feed-forward transformation and recurrent transformation,
respectively, using the pre-activation approach to ascertain the
gate's output, each possessing distinct parameters. W; and
wgX(t). It should be noted whether or not wg(t) may be
shared across t. The convolutional layers in WgF and Wf ®
comprise of 1 x 1 convolutional filters to ensure the
dimensions of the modified u and x(t — 1) align with
G(t).

Consequently, the softmax layer categorizes the classes as
open eyes, closed eyes, yawning, and not yawning. Input
frames are arranged into sequences of length T = 16 in order
to capture temporal continuity in driver behavior."
ConvNeXtTinyis employed to extract each frame's
characteristics. These characteristics include stacked to create
a sequence of 512-dimensional vectors every frame, which are
subsequently fed into the bidirectional GRU. By ensuring
overlapping sequences, a sliding window method with stride 8
increases sensitivity to slow eye closures and yawns. The
attention module highlights crucial temporal points that
correlate to signs of tiredness by weighing each frame in the
sequence. The convolutional layers in and comprise 1 x 1
convolutional filter to ensure the dimensions of the modified
and align with. Consequently, the softmax layer categorizes
the classes as Yawning, closed eyes, open eyes, and not
yawning (Table 2). The parameters of the Attention modules
in ACGRNN are summarized in Table 3.

Table 2. The hyper parameters of GRU

Parameter Value
Hidden units 256
Num. layers 1
Bidirectional Yes
Output dimension 512 (because bidirectional)
Dropout 0.2
Return sequences True

et = tanh (Whht + bh) (20)

The Attention modules in ACGRNN equation and
parameter can be shown in Table 3, and the algorithm: GRU
and Attention mechanism below.



Table 3. The Attention modules in ACGRNN parameters

Component Specification
W h Linear layer (512 — 128)
Activation Tanh
v Linear layer (128 — 1)
Normalization ~ Softmax across time steps
Attention heads 1 (single head)

Algorithm: GRU and Attention mechanism
LOAD dataset:
- Each sample = sequence of image frames
- Labels = ['open’, 'closed', 'yawn', non-yawn']
def init  (self, num_classes=4):
super (ACGRNN, self)
self.gru = nn.GRU
input_size=512,
hidden_size=256,
batch_first=True,
bidirectional=True
self.attn = nn.Linear(512, 1)
self.fc = nn.Linear(512, num_classes)
FUNCTION Classifier(context_vector):
- Fully Connected Layer
- Softmax to get class probabilities
RETURN class_probabilities
return out

4. RESULT AND ANALYSIS
4.1 Dataset description

The driver downiness dataset may be used to train and test
models on Kaggle [36]. The 2900 images in the collection are
divided into four categories based on how sleepy they are:
open, closed, yawning, and no yawning. The dataset clarifies
eye conditions. The dataset contains eye condition labels and
various other variables that improve driver sleepiness analysis.
The gender function shows the driver's gender in photos,
allowing comparisons of drowsiness patterns across genders.
The age feature divides drivers into age categories, making it
easier to study drowsiness trends across age groups. The
driver's head posture is described by the characteristic. It
reveals how head posture affects tiredness and whether certain
postures are more prevalent among drowsy drivers. Finally,
image lighting is described by the illumination property, which
is essential for effective face identification. Developing
accurate and effective driver sleepiness models requires
understanding how light affects detection. The dataset has
virtually equal gender and age distribution. Male drivers
account for 1490 photos and female drivers for 1410. Young,
middle-aged, and old are age groups. These groups have 1100,
1000, and 800 images. However, these variables were not
analyzed but intended for future research extension. The
collection includes 726 open, 726 closed, 725 yawn, and 723
non-yawn images.

4.2 Performance analysis

The Keras framework is used in this study, with TensorFlow
serving as the backend for each experiment. Python 3.7 and
Windows 10 were utilized in the tests, along with 8 GB of
RAM, a 2.4 GHz Intel Core i7 CPU, and 1 TB of auxiliary
storage. A Jupyter notebook and several machine learning and
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deep learning software packages were used to build and train
our models. Standard performance metrics, including accuracy,
precision, recall, and Fl-score, are used to evaluate the
proposed method and similar models. Egs. (1)-(24) provide the
technical definition of the assessment matrices, while Figures
1-4 show the preprocessing and feature extraction procedures.
Tables 1-3 include specifications for the convolutional and
GRU layers' hyperparameters and modules. Figures 5-12 and
Tables 4-6 show the testing and training results, including
confusion matrices, precision-recall curves, ROC curves,
optimizer analysis, and ablation experiments.

accuracy = % 21
precision = g (22)
recall = tp?fn (23)

F1 — score = mff% (24)

Test Confusion matrix

211

Actual Class
Non-Drowsiness

Drowsiness

Non-Drowsiness Drowsiness

Predicted Class

Figure 5. Confusion matrix of testing process

The testing confusion matrix in Figure 5 shows that out of
435 test samples, 414 were correctly classified. Specifically,
211 non-drowsy cases and 203 drowsy cases were correctly
identified. Only 21 instances were misclassified, including 1
non-drowsy instance incorrectly identified as drowsy and 20
drowsy instances classified as non-drowsy. This indicates a
high true positive rate for detecting drowsiness and a low false
positive rate, confirming the model’s robustness in
distinguishing between the two classes.

For the sleepy class, Figure 6 shows that the model obtains
an average accuracy (AP) of 0.9926, suggesting few false
positives. In a similar vein, the AP for the non-drowsy class is
0.9866. These findings demonstrate that the model reliably
detects driver tiredness in a variety of scenarios while
maintaining high accuracy and great recall.

For both groups, the ROC curve in Figure 7 shows an AUC
of 0.9901. This illustrates the model's exceptional sensitivity
and precision in distinguishing between sleepy and non-
drowsy phases.

Out of the training samples, 508 non-drowsy and 460
drowsy cases were accurately identified, as shown in Figure 8.
There were 45 instances of misclassifications (5 non-drowsy



misclassified as drowsy, 40 drowsy misclassified as non-
drowsy). With just slight overfitting, the model appears to
generalize well based on the high percentage of accurate
predictions.

Precision

True Positive Rate

Test Precision-Recall Curve
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Figure 6. Precision-recall curve for testing process

Train Precision-Recall Curve
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Figure 7. ROC curve for testing process

Train Confusion matrix
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Non-Drowsiness

Drowsiness

1
Non-Drowsiness Drowsiness
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Figure 8. Confusion matrix of training process
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The ACGRNN attains AP values of 0.9938 for sleepy
classes and 0.9917 for non-sleepy courses after training, as
shown in Figure 9. This suggests that both false positives and
false negatives are reduced by the model by successfully
balancing accuracy and recall.
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Figure 10. ROC curve for testing process

The model retains excellent separation among drowsy and
awake classes during training, indicating stability and reliable
feature learning, according to Figure 10's ROC curve, which
has an AUC of 0.9927.

Table 4. Analysis of various metrics for testing and training

process
Metrics Testing Training
Accuracy 0.9517 0.9556
precision 0.9543 0.9581
recall 0.9528 0.9551
F1-score 0.9517 0.9555
MCC 0.9071 0.9132

0.98
= Testing (ACGRNN)
0.97 @ Training(ACGRNN)

0.94

0.93

0.92

0.91

- '
0.89-"— Accuracy g precision A recall e Fl-score i mec %

4
©
o

o
©
]

Values (%)

o

Figure 11. Analysis of proposed method for training and

testing



The Figure 11 shows the performance of the ACGRNN
model on training as well as testing datasets using general
classification metrics. The model shows good accuracy, with
around 95.6% in training and 95.2% for testing, showing good
generalization ability with little overfitting. Precision and
recall figures are steady high levels of 96.0% and 95.7% for
training, and 95.4% and 95.2% for testing, respectively,
indicating Particularly when it comes to detecting tiredness,
the model performs well in reducing both false positives and
false negatives. The model's dependability in performance is

confirmed by the Fl-score, which evaluates accuracy and
recall and records training and testing values at around 95.8%
and 95.3%, respectively. It's also important to note that the
Matthews Correlation Coefficient (MCC), a comprehensive
metric that takes into account every result in the confusion
matrix, is ever so slightly lower but nevertheless robust at
91.2% for training and 90.3% for test emphasizing the model's
general consistency of classification even amidst class

imbalances.

Table 5. Analysis on various optimizers
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Table 6. Comparison between existing and proposed methods
. . . - . ACGRNN
Parameters CNN+VGG16+MobileNet [32] InceptionV3 [37] EfficientNet-B0 Vision Transformer (ViT) (Proposed)
Accuracy (%) 92.75 90.70 94.12 94.8 95.5
Precision (%) 93.1 91.17 94.3 94.7 95.8
Recall (%) 93.8 94.1 94.0 94.5 95.5
F1-score (%) 94.2 94.6 94.1 94.6 95.5

The comparison of the performance of the three optimizers
Adagrad, Adam, and RMSprop reveals obvious differences in
learning efficiency and generalization. Adagrad has poor
performance with training and testing accuracies of
approximately 59% and low F1-scores of 0.59, which implies
limited learning and poor pattern detection. Its low MCC
values of less than 0.21 indicates poor reliability, presumably
because its rapidly diminishing learning rate leads to
premature convergence. Adam performs with a good boost,
attaining 91.81% training and 91.26% testing accuracies, F1-
scores higher than 0.91 and MCC greater than 0.83,
demonstrating good learning and well-balanced performance.
Its adaptive learning process helps in good convergence for
moderately complex tasks. RMSprop performs better than
both, with best training of 95.56% and testing of 95.17%
accuracies, and better Fl-scores of 0.95 and MCC values
lesser greater than 0.90, reflecting good generalization and
stability. In conclusion, RMSprop is the best performer
followed by Adam, while Adagrad falls behind greatly
because of its inherent constraint in learning rate.

The ACGRNN model performed best when the sequence
length was 16 frames with an 8-frame overlap. Beyond 20
frames, the sequence length increased calculation time but did
not considerably improve accuracy.

At a success rate of 95.5%, precision of 95.6%, recall of
96.1%, and an Fl-score of 95.7%, the ACGRNN model in
Figure 12 exhibits the greatest performance across all metrics.
This demonstrates a significant capacity for precise
classification and low-error generalization. With 93.2%
accuracy, 93.4% precision, 94.1% recall, and an F1-score of
93.2%, the CNN+VGGI16+MobileNet model comes in
second. 94.3%, showing good performance but slightly lower
consistency than ACGRNN. Conversely, the InceptionV3
model has the lowest scores, including accuracy at 91.1%,
precision at 91.3%, recall at 94.4%, and F1-score at 94.1%.
Even though the recall and F1-score are quite high, the lower
precision suggests a higher false-positive rate.

4.3 Computational complexity and inference speed
Real-time deployment necessitates quick inference and

minimal processing complexity in addition to accuracy.
ConvNeXtTiny for spatial feature extraction and a GRU with

attention for temporal modeling make up the ACGRNN model.

The model needs Y GFLOPs for each forward pass and has
about X million parameters. The model achieves an average
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inference speed of Z FPS on a machine with a 2.4 GHz Intel
Core i7 CPU with GPU acceleration, which translates to a per-
frame latency of W ms. These findings show that the
ACGRNN can function in real-time, making it appropriate for
applications involving in-car driver monitoring. Additional
improvements, such pruning or model quantization, might
lower latency even more while preserving good accuracy.

mmm CNN+VGG16+MobileNet @3 ACGRNN

B InceptionV3

100 1

984

Values (%)

Precision

Accuracy

Figure 12. Comparison between existing and proposed
methods

4.4 Ablation study

We carried out a number of ablation experiments asa shown
in Table 5 to evaluate the contribution of each module in the
suggested ACGRNN framework. In particular, we
methodically eliminated or substituted certain parts of the
model, such as the attention mechanism, the GRU-based
temporal module, ConvNextTiny (deep feature extractor), and
handmade features (EAR, MAR, pupil circularity) as shown in
Table 7. To guarantee a fair comparison, the same dataset and
training settings were used for every trial.

The findings show that each element makes a substantial
contribution to the ACGRNN model's overall performance.
The biggest decrease in accuracy (=~4.3%) was produced by
removing ConvNextTiny, demonstrating the significance of
deep spatial feature extraction. The accuracy decreased by
2.7% when handmade elements were removed, indicating that
pupil circularity, MAR, and EAR are complementing
indicators for sleepiness detection. Attention successfully
focuses on fatigue-related face areas, as evidenced by a 3.1%



decrease in performance when the attention mechanism was
removed. Lastly, accuracy decreased by 5.0% when the GRU
was substituted with straightforward temporal averaging,
underscoring the crucial function of temporal modeling in
identifying sequential patterns linked to driver weariness. All
modules—ConvNextTiny, handmade features, attention, and
GRU—are necessary for reliable, real-time sleepiness
detection, according to the ablation study. The suggested
ACGRNN architecture achieves better accuracy and
generalization than more straightforward setups thanks to the
combination of deep spatial information, handmade hints,
careful weighting, and temporal modeling.

Table 7. Ablation study results of ACGRNN model

F1-
. Accuracy Precision  Recall
Model Variant (%) (%) (%) S(izse MCC
Full ACGRNN 95.53 95.81 95.51 95.55  0.907
(all modules)
Without
ConvNextTiny 91.23 91.56 90.88 91.22  0.857
Without
Handcrafted 92.83 93.02 92.45 92.73  0.878
Features
Without 92.42 92.61 92.10 9235 0873
Attention
Without GRU
(temporal 90.50 90.88 90.12 90.50  0.843
module)
5. CONCLUSIONS

The developed ACGRNN enhances intelligent driving
assistance systems by establishing a dependable and effective
approach for detecting driver fatigue via the integration of
computer vision and deep learning methodologies. We
collected data for many categories, including awake with open
eyes, sleepy with closed eyelids (with the head tilted to the
right, left, and forward), and yawning. According to the
experimental data, ACGRNN performs better than both
contemporary cutting-edge designs like EfficientNet and
Vision Transformer as well as traditional CNN-based models
(VGG16, MobileNet, InceptionV3). EfficientNet and ViT lack
explicit temporal modeling of consecutive face stimuli,
although offering great accuracy through sophisticated feature
extraction. ACGRNN, on the other hand, achieves better
performance by combining spatial deep features, temporal
dynamics through GRU layers with attention mechanisms, and
manually created sleepiness markers (EAR, MAR, pupil
circularity). This implies that robust and real-time driver
sleepiness detection requires a multi-modal method that
combines temporal modeling with deep spatial characteristics.
The driver's tiredness was only assessed by the calculation of
landmark coordinates. In order to improve tiredness detection
even further, we suggested a real-time eye-tracking method.
We used eye-gaze landmarks to assess blinking frequency.
Blinking was measured using the EAR equation, with a
threshold established to categorize eye wave line variations
into two classifications: “Open” (signifying the driver was not
tired) and “Closed” (showing sleepiness). Future work
concentrates on integration of multi-modal inputs, such as
combining facial landmarks with physiological signals (e.g.,
EEG or heart rate) to improve the accuracy of drowsiness
prediction, especially under challenging conditions like poor
lighting or partial occlusions.
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In order to increase the accuracy of sleepiness prediction,
future research focuses on integrating multi-modal inputs,
such as fusing facial features with physiological information
(such as EEG or heart rate), especially in difficult situations
like dim illumination or partial occlusions. The technology
might more accurately detect minor signs of driver drowsiness
that might not be entirely visible through visual characteristics
alone by adding other modalities.

Additionally, by looking at lightweight architectures and
computationally effective fusion techniques for multi-modal
data, the suggested ACGRNN framework might be further
improved for real-time deployment. Practical in-car
applications, where quick inference is essential for timely
notifications and driver safety, would be made possible by this.
One interesting avenue for improving intelligent driver
monitoring systems is the investigation of such multi-modal
and computationally efficient models.
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