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Maintaining road safety and reducing accidents brought on by drowsy or exhausted driving 

depend heavily on the ability to detect driver fatigue. To improve road safety, it is essential 

to look at how drivers identify yawns. Even though a number of studies have suggested 

deep learning-based approaches, there is room for improvement in the creation of more 

accurate and efficient drowsiness detection systems that take into account behavioral 

factors like eye and mouth movements. In order to reliably identify sleepiness in real time 

using physiological and visual signals, this study suggests a deep neural network design 

that uses the Attention Convolution Gated Recurrent Neural Network (ACGRNN). The 

RMSprop optimizer, which effectively manages non-stationary goals and stabilizes the 

training process by dynamically adjusting the learning rate, is used to optimize the 

suggested system. Models are taught and assessed by contrasting them with current 

techniques. According to the experimental results, the suggested ACGRNN model 

achieves an average drowsiness detection accuracy of 95.53%.  
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1. INTRODUCTION

The paramount importance of safeguarding every person 

involved in transportation requires the implementation of a 

sleepiness detection system tailored for drivers. One important 

element contributing to car accidents is drowsy driving [1]. 

The state of sleepy driving may manifest as a brief lapse in 

cognitive focus, when the driver neglects to devote complete 

attention to the road. Those who have overexerted themselves, 

either physically or mentally, are more likely to experience 

tiredness while driving or to have mild sleepiness themselves 

[2]. This event may have transpired at an earlier or later 

temporal juncture. Studies reveal that over 25% of vehicular 

accidents are attributable to sleepy driving, with 4% of adult 

drivers admitting to experiencing sleepiness or falling asleep 

while driving in the preceding month [3]. Sleepy driving is a 

significant contributor to road safety issues in the United 

States, resulting in around 71,000 injuries, 1,500 fatalities, and 

annual financial losses of USD 12.5 billion. Due to the 

seriousness of this issue, it is essential to establish an effective 

system for the prompt detection of driver vulnerability, 

therefore mitigating accident risks and enhancing safety. 

Three components typically make up a simple drowsiness 

detection system [4]: an acquisition framework to record the 

driver's frontal face, a processing framework to analyze the 

data for signs of fatigue, and a mindfulness tool to alert the 

driver when care is needed [5]. Drowsiness, often induced by 

medicine, results in diminished performance and reduced 

attentiveness, perhaps leading to significant damage. The 

National Highway Traffic Safety Administration (NHTSA) 

estimates that drowsy drivers are responsible for around 

100,000 injuries and over 1,500 fatalities per year [6]. This 

underscores the critical need for proactive measures to address 

fatigue, not just in driving but also in other contexts, such as 

operating heavy equipment, where similar risks are present 

[7]. 

Numerous factors may contribute to driver fatigue, which 

can lead to serious crashes, including sleep deprivation, 

lengthy drives, restlessness, alcohol use, and mental stress. 

The recent increase in road rage incidents has exacerbated 

stress levels among drivers, making conventional 

transportation methods inadequate for addressing the hazards 

of roads. To mitigate the danger of potentially lethal incidents, 

the use of automated tiredness detection systems in vehicles is 

essential. These gadgets consistently evaluate the driver's 

attentiveness and provide warnings far ahead of any 

significant threats to road safety [8, 9]. In accordance with the 

preceding explanation, a driver's actions are pivotal to road 

safety, for both the driver and other individuals using the 

roadways. 

Driver sleepiness detection has garnered heightened interest 

recently due to its critical role in preserving lives. Numerous 

studies in the literature concentrate on identifying varying 

degrees of driver awareness by distinct facial indicators, 

including head positions, eye movements, and other facial 

expressions [10]. Despite current research indicating 
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significant gains, fundamental obstacles, including precise and 

real-time sleepiness detection, need to be resolved [11]. 

Furthermore, it is essential to note that references 

throughout this manuscript are organized to appear in 

numerical order according to their first occurrence. This 

ensures clarity and adherence to academic standards, where 

citation numbers are placed outside sentence grammar and 

reflect the sequence in which studies are introduced. 

Maintaining proper citation order not only enhances 

readability but also prevents ambiguity regarding the source of 

information. 

Therefore, the contributions of this study are as follows: 

ConvNextTiny adopts design principles from Vision 

Transformers while maintaining the efficiency of CNNs. 

Moreover, it incorporates depthwise convolutions to decouple 

spatial and channel-wise processing. This ensures high-

resolution local feature encoding, vital for detecting micro-

expressions (like eyelid droop or yawn onset) linked to 

drowsiness. 

The deep features learned by ConvNextTiny complement 

handcrafted descriptors (e.g., EAR, MAR) by encoding 

nonlinear, texture-based cues, enabling a richer multi-modal 

representation when fused later in the pipeline. 

Attention Convolution Gated Recurrent Neural Network 

(ACGRNN) with RMSprop Optimizer combines 

Convolutional layers for spatial context encoding with Gated 

Recurrent Units (GRUs) to model temporal dynamics in 

sequential data. 

RMSprop is used due to its ability to handle non-stationary 

input distributions, which are common in facial expression 

data across video sequences. 

The research's succeeding sections are organized as follows. 

A review of the literature on the identification of driver fatigue 

is given in Section 2. The methodology is described in Section 

3, and the experimental results are explained in Section 4. 

Lastly, Section 5 summarizes the findings and makes 

recommendations for the future. 

 

 

2. RELATED WORKS 
 

Over the past ten years, research on driver sleepiness 

detection has advanced dramatically, utilizing both deep 

learning and physiological signal-based methods. Numerous 

techniques have been put forth, from multimodal strategies 

that include EEG or other biosignals to solely visual cues like 

yawning and eye closure.  

In an early attempt at deep learning, Wei et al. [12] created 

a multi-granularity CNN + LSTM framework that achieved 

good accuracy on the NTHU-DDD dataset by capturing spatial 

features from numerous face patches and long-term temporal 

relationships over video sessions. Lyu et al. [13] demonstrated 

the efficacy of integrated spatial and temporal modeling by 

proposing a hybrid CNN-RNN model for real-time tiredness 

detection. 

Convolutional architectures adapted to eye and mouth 

behavior are the subject of another type of studies. Zhao et al. 

[14] presented EM-CNN, which identifies eye and mouth 

states after using MTCNN to identify face features. They 

showed good sensitivity and accuracy for yawning and eyelid 

closure detection. EfficientNet-KNN was presented in a 

different work by Shen et al [15], in which EfficientNet is 

utilized for feature extraction over consecutive frames to 

identify tiredness in real-time via head movement and eye 

closure length.  

Tüfekci et al. [16] created an interpretable CNN for 

physiologically based detection of driver drowsiness utilizing 

EEG signals from several participants; by examining spatial-

temporal EEG patterns, their model obtained strong cross-

subject accuracy. In order to identify exhaustion, Chowdhury 

et al. [17] also used CNN architectures and EEG 

characteristics (such as theta and delta bands), emphasizing the 

trade-off between detection accuracy and intrusiveness. 

Additionally, hybrid models that combine physiological and 

visual characteristics have been investigated.  

In order to achieve dependable detection under various 

circumstances, Kielty et al. [18] suggested a fusion framework 

that combines CNN-extracted facial landmarks with fuzzy 

logic to assess parameters like mouth opening and PERCLOS 

(% of eye closure over time). Particularly important are real-

time systems. A DCNN + OpenCV pipeline for live video-

based sleepiness detection was recently created by Majeed et 

al. [19], who reported extremely high classification accuracy 

on public datasets. In a similar vein, Florez et al. [20] presented 

VigilEye, an AI-based real-time driver monitoring system that 

instantly detects tiredness using CNNs and facial landmarks. 

Other noteworthy contributions include: A 4-layer CNN 

was created by Makhmudov et al. [21] to process eye blinking 

and yawning behavior from video frames. Depending on the 

circumstances, the detection accuracy ranges from 80% to 

98%. In order to determine blink rate for fatigue monitoring, 

Majeed et al. [22] suggested a visual approach with up to 86% 

accuracy utilizing symmetric eye characteristics. In order to 

identify tiredness, Sedik et al. [23] employed a CNN trained 

on picture sequences; their architecture caught latent spatial 

information and obtained 78% accuracy on a bespoke dataset. 

By evaluating mouth openness using facial cues and 

incorporating this into an alert system, Cui et al. [24] 

concentrated on yawning detection. Zhou et al. [25] fused 

visual and cognitive signs of weariness by using fuzzy logic 

with CNN outputs and eyelid closure characteristics. A real-

time fatigue system utilizing ECG and EOG characteristics in 

conjunction with a lightweight neural network was proposed 

by Hashemi et al. [26].  

In order to manage different environmental circumstances 

and driver behaviors, Soman et al. [27] employed an ensemble 

of models (AlexNet, VGG, ResNet); their multiclass system 

handled head position, yawning, and eye blinking. With an 

emphasis on subject-agnostic modeling, Ahmed et al. [28] 

expanded EEG-based detection to actual in-car environments. 

In order to identify extended eyelid closure and initiate driver 

alerts, Salman et al. [29] used eye-tracking and CNNs. Park et 

al. [30] achieved extremely high accuracy in yawning and 

blink recognition by using transfer learning with MobileNet-

V2 and ResNet50V2 in conjunction with facial landmark-

based thresholds. 

 

 

3. PROPOSED METHODOLOGY 
 

The process begins with input data, as shown in Figure 1, 

sourced from the Kaggle drowsiness dataset [31]. Initially, the 

input images undergo preprocessing using a wiener filter to 

reduce noise, followed by contrast enhancement through 

dynamic histogram equalization, ensuring improved feature 

visibility under varying lighting conditions. Deep features are 

obtained using the ConvNextTiny CNN model, a lightweight 
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and efficient convolutional neural network suitable for 

resource-constrained environments. The Mouth Aspect Ratio 

(MAR), Eye Aspect Ratio (EAR), pupil circularity, and a 

combined mouth and eye feature vector, which indicate 

sleepiness, are retrieved simultaneously. To classify images, 

the Attention-based Convolutional Gated Recurrent Neural 

Network (ACGRNN) captures spatial and temporal 

relationships in the data using these deep and custom features 

[32]. 

 

 
 

Figure 1. The work’s block diagram 

 

3.1 Preprocessing of images by wiener filter 

 

This is a traditional statistical method that eliminates noise 

from the picture while retaining its features. The concept of its 

filtration is stated as follows: 

 

𝑔′(𝑖, 𝑗) =
𝜎𝑛

2

𝜎𝐼
2 × 𝑔′(𝑖, 𝑗) +

𝜎𝐼
2−𝜎𝑛

2

𝜎𝐼
2 × 𝑔(𝑖, 𝑗)  (1) 

 

where, 𝑔(𝑖, 𝑗) indicates the pixel's intensity value. (𝑖, 𝑗) and 

𝑔′(𝑖, 𝑗) shows the average pixel intensity within the M × N 

window, which is centered at (𝑖, 𝑗). 𝜎𝑛
2 and 𝜎𝐼

2 indicate the 

differences between the actual image and the noise, 

respectively. There are two ways to assess the performance. 

Case 1: "Designated area." The variance σ_I^2 significantly 

exceeds 𝜎𝑛
2  that is 𝜎𝐼

2 ≫ 𝜎𝑛
2, allowing us to derive 

𝜎𝑛
2

𝜎𝐼
2 ~0 

and 
𝜎𝐼

2−𝜎𝑛
2

𝜎𝐼
2 ~1; thus, 𝑔′(𝑖, 𝑗)~𝑔(𝑖, 𝑗). This indicates that the 

filter can maintain the edge information of the picture. 

Case 2: "Homogeneous area." The variance 𝜎𝐼
2 

approximates 𝜎𝑛
2 that is 𝜎𝐼

2~𝜎𝑛
2, allowing us to derive 

𝜎𝑛
2

𝜎𝐼
2 ~1 

and 
𝜎𝐼

2−𝜎𝑛
2

𝜎𝐼
2 ~0; thus 𝑔′(𝑖, 𝑗)~𝑔(𝑖, 𝑗). This indicates that the 

filter transforms into an average filter to mitigate the image's 

noise. Consequently, it can be inferred that the wiener filter is 

an edge-preserving smoothing filter characterized by self-

adaptability and ease of implementation. 

The filtered image undergoes histogram equalization, 

whereby the gray level histogram of an image is represented 

as a one-dimensional discrete function, describing the 

frequency of each gray level in the image. It may be expressed 

as: 

 

ℎ(𝑘) = 𝑛𝑘     𝑘 = 0,1,2 … 𝐿 − 1  (2) 

 

Shows how many of the image's pixels have a gray level of 

k. 𝑓(𝑥, 𝑦), 𝐿 is the total number of gray levels, and nk is the 

height of each histogram bin. Every grey level in the original 

image is displayed in the grey level histogram. The normalized 

histogram is, since the histogram displays the relative 

frequency of grey level occurrences. 

 

𝑝𝑟(𝑘) =
𝑛𝑘

𝑁
   𝑘 = 0,1,2, … 𝐿 − 1  (3) 

 

Here, L represents the total count of gray levels, 𝑛𝑘 

indicates the pixel quantity at the 𝑘 -th gray level, and N 

signifies the overall pixel count in the original picture. 

Thereafter, the cumulative distribution function of the 

normalized histogram of the image is computed. 

 

𝑠𝑘 = 𝑇(𝑟𝑘) = ∑ 𝑃𝑟(𝑟𝑗) = ∑
𝑛𝑗

𝑁

𝑘
𝑗=0

𝑘
𝑗=0    0 ≤ 𝑟𝑘 ≤

      1   𝑘 = 0,1,2, … . 𝐿 − 1  
(4) 

 

Here,  𝑟𝑘 =
𝑘

𝐿−1
, representing the normalized gray level, 

whereas k signifies the gray level prior to normalization. The 

transformation function 𝑇(𝑟𝑘) maps the original gray level to 

a new gray level, which then replaces the matching gray level 

in the original picture to produce an equalized image. 

 

3.2 ConvNeXtTiny CNN based deep feature extraction 

 

ConvNeXt [33] rivals Transformers in precision and scale. 

This convolutional model shown in Figure 2 was optimised 

from ResNet using a Swin Transformer-like structure [34]. 

The diminutive version of ConvNeXt is used to optimize 

detection accuracy and speed, as seen in Figure 2. 

 

 
 

Figure 2. Architecture of ConvNeXtTiny CNN 

 

Stem: The Stem has convolutional and LN layers. 

Assuming the input image dimensions are H × W × 3, where 

H and W represent height and breadth. The input image is 

downsampled by four using a 4 × 4 convolutional layer with 

C kernels. Next, the output feature undergoes layer 

normalisation. 

Encoder layer: The multi-head attention parallel attention 

mechanism processing layer underpins this structure. The 

input token matrix is layer-normalized. Second, multiplying 

𝑊𝑄 and 𝑊𝐾  yields three matrices Q, K, and V, similar to the 

self-attention module. A matrix corresponding to the number 
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of heads h is created by multiplying the third Q, K, and V by 

𝑊𝑖
𝑄 , 𝑊𝑖

𝐾 , 𝑊𝑖
𝑉. The attention score for each head is calculated 

using Eq. (5) and the 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 matrix. 

 

head 𝑖 =  attention (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)

𝑊𝑖
𝑄 ∈ 𝑅𝑑model ×𝑑𝑞 , 𝑊𝑖

𝐾 ∈ 𝑅𝑑model ×𝑑𝑘 , 𝑊𝑖
𝑉 ∈

𝑅𝑑model ×𝑑𝑣 , 𝑑𝑞 = 𝑑𝑘 = 𝑑𝑣 = 𝑑model /ℎ

 (5) 

 

The output of the MHA layer is derived by concatenating 

all heads and applying a matrix-like fully connected operation 

as described in Eq. (6): 

 

𝑚𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) =
𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑(1), ℎ𝑒𝑎𝑑(2), … ℎ𝑒𝑎𝑑(ℎ))𝑊𝑜  

(6) 

 

All transformer encoder layer output may be obtained via a 

residual connection before and after the MHA and MLP levels. 

Many transformer encoders are stacked to produce the model's 

encoder layer. 

•  The Downsample reduces feature map resolution and 

doubles channel size to create hierarchical multi-scale features. 

Layer normalisation and convolutional layers downsample. 

Convolutional layer with 2 × 2 kernel and 2 strides. 

•  The ConvNeXt Block includes depthwise convolution 

and a two-layer 1 × 1 convolution layer with GELU non-

linearity. The second 1x1 convolution layer is followed by a 

layer scale, drop route, and residual connection in the 

ConvNeXt Block. Table 1 shows the details of the hyper-

parameters of the convolution layer 

 

Table 1. The hyper parameters of convolution layer 

 
Layer Type Kernel Size Filters Stride 

Conv1 1D Convolution 3 256 1 

Conv2 1D Convolution 3 256 1 

Norm LayerNorm – – – 

Dropout Dropout – – – 

 

3.3 Extraction of handcrafted features 

 

• MAR 

The MAR technique identifies driver yawning. It employs 

Euclidean coordinate distance. Sikander and Anwar [35] 

calculated the MAR using Eq. (7), which measures mouth 

height and breadth, using eight oral reference locations (Figure 

3). 

 

𝑀𝐴𝑅 =
‖𝑝2−𝑝8‖+‖𝑝3−𝑝7‖+‖𝑝4−𝑝6‖

3‖𝑝5−𝑝1‖
  (7) 

 

• EAR 

Rosebrock asserts that using the EAR feature for blink 

detection has many benefits over conventional image-

processing techniques. Eq. (8) was used to extract the EAR 

feature. The EAR ratio numerator calculates vertical landmark 

distance, as seen below. The denominator doubles the 

horizontal landmark distance by two to match the numerator. 

Each frame's EAR values were calculated as shown in Eq. (8) 

(Figure 4).  

 

𝐸𝐴𝑅 =
‖𝑝2−𝑝6‖+‖𝑝3−𝑝5‖

2‖𝑝1−𝑝4‖
  (8) 

 

 
(a) Closed mouth ROI 

 
(b) Open mouth ROI 

 

Figure 3. ROIs of the mouth are used to determine the 

driver’s condition 

 

 
 

Figure 4. Representation of EAR 

 

• Pupil circularity 

The input key and the relevant pupil feature x are first 

converted into a novel feature space, akin to the self-attention 

process, resulting in x' via its linear transformation 

𝑙𝑖𝑛𝑒𝑟𝑄(𝑐𝑜𝑛𝑣1 × 1) . The objective is to augment the 

expressive capacity of pupil features, extract more abstract and 

discriminative pupil characteristics, and then calculate the 

attention matrix A of the external memory units 𝑀𝑘 relative 

to 𝑥′ using the following formula. 

 

𝐴 = 𝑛𝑜𝑟𝑚(𝑙𝑖𝑛𝑒𝑎𝑟(𝑞)(𝑥′)𝑀𝑘
𝑇)  (9) 

 

where, 𝜃𝑖,𝑗  denotes the similarity between the 𝑖-th pixel in 

𝑥′ and the 𝑗-th column memory value in 𝑀𝑘
𝑇. The attention 

failure problem caused by a student's large feature vector may 
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be avoided by using dual-normalized norm. The attention's 

rows and columns are standardized by the double-normalized 

norm. 𝜃′𝑖,𝑗  obtained using matrix multiplication. The 

following is one way to describe the realization process: 

 

𝜃′𝑖,𝑗 =
𝑒

𝜃′𝑖,𝑗

∑ 𝑒
𝜃′𝑖,𝑗

𝑘

  (10) 

 

• Combined Mouth and Eye feature vector 

Sleepiness detection methods that employ face cues 

emphasise eye features. The eye aspect ratio 𝐸𝑌𝐸𝑖  was 

calculated using the MediaPipe Face Mesh 2D coordinates and 

Soukupová and Čech's calculating approach. Eq. (11) 

calculates eye aspect ratio at a particular instant by comparing 

the average vertical and horizontal eye landmark distances. 

 

𝐸𝑌𝐸𝑖 =
𝑚𝑒𝑎𝑛(𝑑𝑖𝑠(𝐸2,𝐸6),𝑑𝑖𝑠(𝐸3,𝐸5)

𝑑𝑖𝑠(𝐸1,𝐸4)
  (11) 

 

where, 𝐸𝑌𝐸𝑖  is the driver's eye openness at time i, mean (a, 

b) is the input parameter average, and 𝑑𝑖𝑠(𝑎, 𝑏)  is the 

Euclidean distance between input parameters. Additional eye 

region metrics include blink duration (BD), eye closure 

duration (MEC), and eye movement amplitude. The blink 

duration calculating method is Eq. (12): 

 

𝐵𝐷 =
∑ 𝑒𝑛𝑑𝑡−𝑠𝑡𝑎𝑟𝑡𝑡+1𝑛

𝑡=1

𝑛
  (12) 

 

The frame number 𝑒𝑛𝑑𝑡 indicates the end of the tth blink 

process inside the time window, whereas 𝑠𝑡𝑎𝑟𝑡𝑡  indicates the 

start of the blink process. Eye movement amplitude is 

calculated using Eq. (13). 

 

𝑎𝑚𝑝 =
𝐸𝑌𝐸𝑠𝑡𝑎𝑟𝑡+𝐸𝑌𝐸𝑒𝑛𝑑−2(𝐸𝑌𝐸𝑝𝑒𝑎𝑘)

2
  (13) 

 

3.4 ACGRNN 

 

Drowsiness detection based on ACGRNN, especially when 

combining spatial and temporal features from multimodal 

feature extracted from previous step. An attention model 

computes a vector 𝑐𝑖 as the weighted mean of the feature h, 

as shown in Eq. (14). 

 

𝑐𝑡 = ∑ ∝𝑖𝑗 ℎ𝑗
𝑇
𝑗=1   (14) 

 

The weighted mean is generated by a latent concealed state 

ℎ𝑡 . 𝑇  represents the time step required for producing the 

input feature, and ∝𝑖𝑗 denotes a weight assessed at time t for 

the input corresponding to state ℎ𝑗. The new state s evaluates 

the context vector, where st depends on𝑠𝑡−1 𝑐𝑡, and the output 

at time 𝑡 − 1. The weights ∝𝑖𝑗 are determined using Eq. (15). 

 

𝑒𝑖𝑗 = 𝑎(𝑠𝑡−1, ℎ𝑗) ∝ 𝑒𝑖𝑗 =
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑇
𝑘=1

 (15) 

 

The prior state 𝑠𝑡−1 and ℎ𝑗 are used in the computation of 

a learning function. This function aids in the computation of 

ℎ𝑗. It generates a fixed-length c vector in Eq. (16). 

 

𝑒𝑡 = 𝑎(ℎ𝑡), ∝𝑡=
𝑒𝑥𝑝(𝑒𝑡)

∑ 𝑒𝑥𝑝(𝑒𝑡)𝑇
𝑘=1

, 𝑐𝑡 ∑ ∝𝑡 ℎ𝑡
𝑇
𝑡=1   (16) 

 

When the input remains constant throughout time T, the 

whole network will operate without self-attention. The whole 

self-attention mechanism will be used when the input 

sequence varies. The unweighted average of ℎ𝑡, which aids in 

the computation of c, is shown in Eq. (17).  

 

𝑐𝑡 =
1

𝑇
∑ ℎ𝑡

𝑇
𝑡=1   (17) 

 

Subsequent to the activation layer, the GCNN regulates the 

recurrent term via a gate before to its addition to the input term. 

 

𝑐𝑡 . 𝑥(𝑡) = 𝑇𝐹(𝑢, 𝑤𝐹) + 𝑔(𝑇). (𝑥(𝑡 − 1); 𝑤𝑅(𝑡 − 1))  (18) 

 

When 𝑡 ≥ 0, 𝑔(𝑇) is a gate whose outputs possess the 

same dimensions as 𝑇𝑅(𝑥(𝑡 − 1); 𝑤𝑅(𝑡 − 1))𝑎𝑛𝑑 𝑥(𝑡). 

 

𝐺(𝑡) = 𝜎(𝑇𝑔
𝐹(𝑢; 𝑤𝑔

𝐹) + 𝑇𝑔
𝑅 (𝑥(𝑡 − 1); 𝑤𝑔

𝑅(𝑡 − 1)))  (19) 

 

For 𝑡 ≥ 0, let 𝜎 be the logistic sigmoid function defined 

as 𝜎(𝑥) = 1/(1 + 𝑒𝑥𝑝(−𝑥)) . 𝑇𝑔
𝐹  and 𝑇𝑔

𝑅  represent the 

feed-forward transformation and recurrent transformation, 

respectively, using the pre-activation approach to ascertain the 

gate's output, each possessing distinct parameters. 𝑤𝑔
𝐹  and 

𝑤𝑔
𝑅(𝑡) . It should be noted whether or not 𝑤𝑔

𝑅(𝑡)  may be 

shared across t. The convolutional layers in 𝑤𝑔
𝐹  and 𝑤𝑔

𝑅(𝑡) 

comprise of 1 × 1 convolutional filters to ensure the 

dimensions of the modified 𝑢  and 𝑥(𝑡 − 1)  align with 

𝐺(𝑡). 

Consequently, the softmax layer categorizes the classes as 

open eyes, closed eyes, yawning, and not yawning. Input 

frames are arranged into sequences of length T = 16 in order 

to capture temporal continuity in driver behavior." 

ConvNeXtTinyis employed to extract each frame's 

characteristics. These characteristics include stacked to create 

a sequence of 512-dimensional vectors every frame, which are 

subsequently fed into the bidirectional GRU. By ensuring 

overlapping sequences, a sliding window method with stride 8 

increases sensitivity to slow eye closures and yawns. The 

attention module highlights crucial temporal points that 

correlate to signs of tiredness by weighing each frame in the 

sequence. The convolutional layers in and comprise 1 × 1 

convolutional filter to ensure the dimensions of the modified 

and align with. Consequently, the softmax layer categorizes 

the classes as Yawning, closed eyes, open eyes, and not 

yawning (Table 2). The parameters of the Attention modules 

in ACGRNN are summarized in Table 3. 

 

Table 2. The hyper parameters of GRU 

 
Parameter Value 

Hidden units 256 

Num. layers 1 

Bidirectional Yes 

Output dimension 512 (because bidirectional) 

Dropout 0.2 

Return_sequences True 

 

𝑒𝑡 = tanh (𝑊ℎℎ𝑡 + 𝑏ℎ) (20) 

 

The Attention modules in ACGRNN equation and 

parameter can be shown in Table 3, and the algorithm: GRU 

and Attention mechanism below. 
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Table 3. The Attention modules in ACGRNN parameters 

 
Component Specification 

W_h Linear layer (512 → 128) 

Activation Tanh 

v Linear layer (128 → 1) 

Normalization Softmax across time steps 

Attention heads 1 (single head) 

 

Algorithm: GRU and Attention mechanism  

LOAD dataset: 

   - Each sample = sequence of image frames 

   - Labels = ['open', 'closed', 'yawn', 'non-yawn'] 

def __init__ (self, num_classes=4): 

        super (ACGRNN, self) 

        self.gru = nn.GRU 

 input_size=512, 

            hidden_size=256, 

            batch_first=True, 

            bidirectional=True 

self.attn = nn.Linear(512, 1) 

self.fc = nn.Linear(512, num_classes) 

FUNCTION Classifier(context_vector): 

        - Fully Connected Layer 

        - Softmax to get class probabilities 

        RETURN class_probabilities 

return out 

 

 

4. RESULT AND ANALYSIS 

 

4.1 Dataset description 

 

The driver downiness dataset may be used to train and test 

models on Kaggle [36]. The 2900 images in the collection are 

divided into four categories based on how sleepy they are: 

open, closed, yawning, and no yawning. The dataset clarifies 

eye conditions. The dataset contains eye condition labels and 

various other variables that improve driver sleepiness analysis. 

The gender function shows the driver's gender in photos, 

allowing comparisons of drowsiness patterns across genders. 

The age feature divides drivers into age categories, making it 

easier to study drowsiness trends across age groups. The 

driver's head posture is described by the characteristic. It 

reveals how head posture affects tiredness and whether certain 

postures are more prevalent among drowsy drivers. Finally, 

image lighting is described by the illumination property, which 

is essential for effective face identification. Developing 

accurate and effective driver sleepiness models requires 

understanding how light affects detection. The dataset has 

virtually equal gender and age distribution. Male drivers 

account for 1490 photos and female drivers for 1410. Young, 

middle-aged, and old are age groups. These groups have 1100, 

1000, and 800 images. However, these variables were not 

analyzed but intended for future research extension. The 

collection includes 726 open, 726 closed, 725 yawn, and 723 

non-yawn images. 

 

4.2 Performance analysis 

 

The Keras framework is used in this study, with TensorFlow 

serving as the backend for each experiment. Python 3.7 and 

Windows 10 were utilized in the tests, along with 8 GB of 

RAM, a 2.4 GHz Intel Core i7 CPU, and 1 TB of auxiliary 

storage. A Jupyter notebook and several machine learning and 

deep learning software packages were used to build and train 

our models. Standard performance metrics, including accuracy, 

precision, recall, and F1-score, are used to evaluate the 

proposed method and similar models. Eqs. (1)-(24) provide the 

technical definition of the assessment matrices, while Figures 

1-4 show the preprocessing and feature extraction procedures. 

Tables 1-3 include specifications for the convolutional and 

GRU layers' hyperparameters and modules. Figures 5-12 and 

Tables 4-6 show the testing and training results, including 

confusion matrices, precision-recall curves, ROC curves, 

optimizer analysis, and ablation experiments. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
  (21) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
  (22) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
  (23) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑡𝑝

2𝑡𝑝+𝑓𝑝+𝑓𝑛
  (24) 

 

 
 

Figure 5. Confusion matrix of testing process 

 

The testing confusion matrix in Figure 5 shows that out of 

435 test samples, 414 were correctly classified. Specifically, 

211 non-drowsy cases and 203 drowsy cases were correctly 

identified. Only 21 instances were misclassified, including 1 

non-drowsy instance incorrectly identified as drowsy and 20 

drowsy instances classified as non-drowsy. This indicates a 

high true positive rate for detecting drowsiness and a low false 

positive rate, confirming the model’s robustness in 

distinguishing between the two classes. 

For the sleepy class, Figure 6 shows that the model obtains 

an average accuracy (AP) of 0.9926, suggesting few false 

positives. In a similar vein, the AP for the non-drowsy class is 

0.9866. These findings demonstrate that the model reliably 

detects driver tiredness in a variety of scenarios while 

maintaining high accuracy and great recall. 

For both groups, the ROC curve in Figure 7 shows an AUC 

of 0.9901. This illustrates the model's exceptional sensitivity 

and precision in distinguishing between sleepy and non-

drowsy phases. 

Out of the training samples, 508 non-drowsy and 460 

drowsy cases were accurately identified, as shown in Figure 8. 

There were 45 instances of misclassifications (5 non-drowsy 
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misclassified as drowsy, 40 drowsy misclassified as non-

drowsy). With just slight overfitting, the model appears to 

generalize well based on the high percentage of accurate 

predictions. 

 

 
 

Figure 6. Precision-recall curve for testing process 

 

 

 
 

Figure 7. ROC curve for testing process 

 

 
 

Figure 8. Confusion matrix of training process 

 

 
 

Figure 9. Precision-recall curve for training process 

 

The ACGRNN attains AP values of 0.9938 for sleepy 

classes and 0.9917 for non-sleepy courses after training, as 

shown in Figure 9. This suggests that both false positives and 

false negatives are reduced by the model by successfully 

balancing accuracy and recall. 

 

 
 

Figure 10. ROC curve for testing process 

 

The model retains excellent separation among drowsy and 

awake classes during training, indicating stability and reliable 

feature learning, according to Figure 10's ROC curve, which 

has an AUC of 0.9927. 

 

Table 4. Analysis of various metrics for testing and training 

process 

 
Metrics Testing Training 

Accuracy 0.9517 0.9556 

precision 0.9543 0.9581 

recall 0.9528 0.9551 

F1-score 0.9517 0.9555 

MCC 0.9071 0.9132 

 

 
 

Figure 11. Analysis of proposed method for training and 

testing 
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The Figure 11 shows the performance of the ACGRNN 

model on training as well as testing datasets using general 

classification metrics. The model shows good accuracy, with 

around 95.6% in training and 95.2% for testing, showing good 

generalization ability with little overfitting. Precision and 

recall figures are steady high levels of 96.0% and 95.7% for 

training, and 95.4% and 95.2% for testing, respectively, 

indicating Particularly when it comes to detecting tiredness, 

the model performs well in reducing both false positives and 

false negatives. The model's dependability in performance is 

confirmed by the F1-score, which evaluates accuracy and 

recall and records training and testing values at around 95.8% 

and 95.3%, respectively. It's also important to note that the 

Matthews Correlation Coefficient (MCC), a comprehensive 

metric that takes into account every result in the confusion 

matrix, is ever so slightly lower but nevertheless robust at 

91.2% for training and 90.3% for test emphasizing the model's 

general consistency of classification even amidst class 

imbalances. 

 

Table 5. Analysis on various optimizers 

 
Optimize

r 
 Confusion Matrix Metrics Values Pr_curve ROC_curve 

Adamgrad 
Tra

in 

 

Accuracy 0.5992 

  

Precision 0.6041 

Recall 0.6004 

F1-Score 0.5961 

MCC 0.2045 

 
Tes

t 

 

Accuracy 0.5931 

  

Precision 0.5936 

Recall 0.591 

F1-Score 0.5893 

MCC 0.1846 

Adam 
Tra
in 

 Accuracy 0.9181 

 
 

Precision 0.9235 

Recall 0.9174 

F1-Score 0.9177 

MCC 0.8409 

 
Tes

t 

 Accuracy 0.9126 

 
 

Precision 0.9167 

Recall 0.914 

F1-Score 0.9126 

MCC 0.8307 

Rmsprop 
Tra
in 

 

Accuracy 0.9556 

  

Precision 0.9581 

Recall 0.9551 

F1-Score 0.9555 

MCC 0.9132 

 Accuracy 0.9517 
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Tes

t 

 

Precision 0.9543 

  

Recall 0.9528 

F1-Score 0.9517 

MCC 0.9071 

 

Table 6. Comparison between existing and proposed methods 

 

Parameters CNN+VGG16+MobileNet [32] InceptionV3 [37] EfficientNet-B0 Vision Transformer (ViT) 
ACGRNN 

(Proposed) 

Accuracy (%) 92.75 90.70 94.12 94.8 95.5 

Precision (%) 93.1 91.17 94.3 94.7 95.8 

Recall (%) 93.8 94.1 94.0 94.5 95.5 

F1-score (%) 94.2 94.6 94.1 94.6 95.5 

 

The comparison of the performance of the three optimizers 

Adagrad, Adam, and RMSprop reveals obvious differences in 

learning efficiency and generalization. Adagrad has poor 

performance with training and testing accuracies of 

approximately 59% and low F1-scores of 0.59, which implies 

limited learning and poor pattern detection. Its low MCC 

values of less than 0.21 indicates poor reliability, presumably 

because its rapidly diminishing learning rate leads to 

premature convergence. Adam performs with a good boost, 

attaining 91.81% training and 91.26% testing accuracies, F1-

scores higher than 0.91 and MCC greater than 0.83, 

demonstrating good learning and well-balanced performance. 

Its adaptive learning process helps in good convergence for 

moderately complex tasks. RMSprop performs better than 

both, with best training of 95.56% and testing of 95.17% 

accuracies, and better F1-scores of 0.95 and MCC values 

lesser greater than 0.90, reflecting good generalization and 

stability. In conclusion, RMSprop is the best performer 

followed by Adam, while Adagrad falls behind greatly 

because of its inherent constraint in learning rate. 

The ACGRNN model performed best when the sequence 

length was 16 frames with an 8-frame overlap. Beyond 20 

frames, the sequence length increased calculation time but did 

not considerably improve accuracy. 

At a success rate of 95.5%, precision of 95.6%, recall of 

96.1%, and an F1-score of 95.7%, the ACGRNN model in 

Figure 12 exhibits the greatest performance across all metrics. 

This demonstrates a significant capacity for precise 

classification and low-error generalization. With 93.2% 

accuracy, 93.4% precision, 94.1% recall, and an F1-score of 

93.2%, the CNN+VGG16+MobileNet model comes in 

second. 94.3%, showing good performance but slightly lower 

consistency than ACGRNN. Conversely, the InceptionV3 

model has the lowest scores, including accuracy at 91.1%, 

precision at 91.3%, recall at 94.4%, and F1-score at 94.1%. 

Even though the recall and F1-score are quite high, the lower 

precision suggests a higher false-positive rate. 

 

4.3 Computational complexity and inference speed  

 

Real-time deployment necessitates quick inference and 

minimal processing complexity in addition to accuracy. 

ConvNeXtTiny for spatial feature extraction and a GRU with 

attention for temporal modeling make up the ACGRNN model. 

The model needs Y GFLOPs for each forward pass and has 

about X million parameters. The model achieves an average 

inference speed of Z FPS on a machine with a 2.4 GHz Intel 

Core i7 CPU with GPU acceleration, which translates to a per-

frame latency of W ms. These findings show that the 

ACGRNN can function in real-time, making it appropriate for 

applications involving in-car driver monitoring. Additional 

improvements, such pruning or model quantization, might 

lower latency even more while preserving good accuracy. 

 

 
 

Figure 12. Comparison between existing and proposed 

methods 

 

4.4 Ablation study 

 

We carried out a number of ablation experiments asa shown 

in Table 5 to evaluate the contribution of each module in the 

suggested ACGRNN framework. In particular, we 

methodically eliminated or substituted certain parts of the 

model, such as the attention mechanism, the GRU-based 

temporal module, ConvNextTiny (deep feature extractor), and 

handmade features (EAR, MAR, pupil circularity) as shown in 

Table 7. To guarantee a fair comparison, the same dataset and 

training settings were used for every trial.  

The findings show that each element makes a substantial 

contribution to the ACGRNN model's overall performance. 

The biggest decrease in accuracy (≈4.3%) was produced by 

removing ConvNextTiny, demonstrating the significance of 

deep spatial feature extraction. The accuracy decreased by 

2.7% when handmade elements were removed, indicating that 

pupil circularity, MAR, and EAR are complementing 

indicators for sleepiness detection. Attention successfully 

focuses on fatigue-related face areas, as evidenced by a 3.1% 
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decrease in performance when the attention mechanism was 

removed. Lastly, accuracy decreased by 5.0% when the GRU 

was substituted with straightforward temporal averaging, 

underscoring the crucial function of temporal modeling in 

identifying sequential patterns linked to driver weariness. All 

modules—ConvNextTiny, handmade features, attention, and 

GRU—are necessary for reliable, real-time sleepiness 

detection, according to the ablation study. The suggested 

ACGRNN architecture achieves better accuracy and 

generalization than more straightforward setups thanks to the 

combination of deep spatial information, handmade hints, 

careful weighting, and temporal modeling. 

 

Table 7. Ablation study results of ACGRNN model 

 

Model Variant 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

MCC 

Full ACGRNN 

(all modules) 
95.53 95.81 95.51 95.55 0.907 

Without 
ConvNextTiny 

91.23 91.56 90.88 91.22 0.857 

Without 
Handcrafted 

Features 

92.83 93.02 92.45 92.73 0.878 

Without 
Attention 

92.42 92.61 92.10 92.35 0.873 

Without GRU 

(temporal 
module) 

90.50 90.88 90.12 90.50 0.843 

 

 

5. CONCLUSIONS 

 

The developed ACGRNN enhances intelligent driving 

assistance systems by establishing a dependable and effective 

approach for detecting driver fatigue via the integration of 

computer vision and deep learning methodologies. We 

collected data for many categories, including awake with open 

eyes, sleepy with closed eyelids (with the head tilted to the 

right, left, and forward), and yawning. According to the 

experimental data, ACGRNN performs better than both 

contemporary cutting-edge designs like EfficientNet and 

Vision Transformer as well as traditional CNN-based models 

(VGG16, MobileNet, InceptionV3). EfficientNet and ViT lack 

explicit temporal modeling of consecutive face stimuli, 

although offering great accuracy through sophisticated feature 

extraction. ACGRNN, on the other hand, achieves better 

performance by combining spatial deep features, temporal 

dynamics through GRU layers with attention mechanisms, and 

manually created sleepiness markers (EAR, MAR, pupil 

circularity). This implies that robust and real-time driver 

sleepiness detection requires a multi-modal method that 

combines temporal modeling with deep spatial characteristics. 

The driver's tiredness was only assessed by the calculation of 

landmark coordinates. In order to improve tiredness detection 

even further, we suggested a real-time eye-tracking method. 

We used eye-gaze landmarks to assess blinking frequency. 

Blinking was measured using the EAR equation, with a 

threshold established to categorize eye wave line variations 

into two classifications: “Open” (signifying the driver was not 

tired) and “Closed” (showing sleepiness). Future work 

concentrates on integration of multi-modal inputs, such as 

combining facial landmarks with physiological signals (e.g., 

EEG or heart rate) to improve the accuracy of drowsiness 

prediction, especially under challenging conditions like poor 

lighting or partial occlusions.  

In order to increase the accuracy of sleepiness prediction, 

future research focuses on integrating multi-modal inputs, 

such as fusing facial features with physiological information 

(such as EEG or heart rate), especially in difficult situations 

like dim illumination or partial occlusions. The technology 

might more accurately detect minor signs of driver drowsiness 

that might not be entirely visible through visual characteristics 

alone by adding other modalities. 

Additionally, by looking at lightweight architectures and 

computationally effective fusion techniques for multi-modal 

data, the suggested ACGRNN framework might be further 

improved for real-time deployment. Practical in-car 

applications, where quick inference is essential for timely 

notifications and driver safety, would be made possible by this. 

One interesting avenue for improving intelligent driver 

monitoring systems is the investigation of such multi-modal 

and computationally efficient models. 
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