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Artificial Neural Networks (ANNSs) excel across vision, language, and decision-making,
yet their performance hinges on well-chosen weights, hyperparameters, and architecture
settings where classical gradient methods can stall or overfit. This survey consolidates a
decade of work (2015-2025) on metaheuristic assistance for ANN optimization, covering
evolutionary, swarm-intelligence, physics-inspired, and hybrid paradigms. We propose a
unified taxonomy that cross-classifies optimization targets (weights, structure,
hyperparameters) with hybridization depth (sequential, embedded, post-training), and we
synthesize quantitative trends from recent mappings alongside a curated dataset. The
evidence indicates a sharp post-2019 acceleration, with swarm methods remaining the
largest family and hybrids the fastest-growing, particularly in energy, industrial,
healthcare, and cybersecurity applications. We analyze methodological gaps statistical
rigor, compute/energy reporting, and reproducibility and outline a research agenda
centered on self-adaptive controllers, multi-objective and constraint-aware formulations,
and quantum-inspired diversity mechanisms. By integrating taxonomy, original visuals,
and critical appraisal, this article clarifies how metaheuristics act as adaptive schedulers
for modern ANN training and provides practical guidance for designing robust, resource-

aware optimization pipelines.

1. INTRODUCTION

Artificial Neural Networks (ANNs) have become central in
many areas of modern Al. They appear in vision, speech,
prediction, control, and a long list of other tasks. Despite this
progress, training them efficiently is still not straightforward.
The large number of parameters, and the way these parameters
interact, make the optimization landscape difficult to navigate.
Performance also depends strongly on how the network is
initialized and how its parameters are updated during training.

Most practical systems still rely on gradient-based
optimizers such as SGD and its variants Adam and RMSProp.
These methods are widely used, but their limitations are well
documented: they depend on local gradients and may stall in
poor regions of the loss surface. Their behaviour is sensitive
to learning-rate choices and initialization strategies [1], and
deep networks often introduce additional difficulties such as
vanishing gradients or unstable updates [2].

Because of these issues, researchers have looked toward
metaheuristic algorithms as an alternative. These methods
work with populations of candidate solutions and do not rely
on gradients, which gives them more freedom to explore the
search space. Classic examples include Genetic Algorithms
(GA) [3], Particle Swarm Optimization (PSO) [4], Grey Wolf
Optimizer (GWO) [5], and the Sine—Cosine Algorithm (SCA)
[6]. Their appeal lies in flexibility: the same algorithmic idea
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can be used to tune weights, propose new architectures, or
adjust hyperparameters.

In recent years, a growing number of studies have combined
metaheuristics with gradient-based learning. Early work
suggested that this type of cooperation could help with
difficult optimization landscapes [7]. Later experiments
reported gains in convergence speed or accuracy when both
approaches are used together [8, 9]. Broader reviews also
noted that metaheuristics tend to perform better when they
incorporate adaptive or learning-based components [10].
Another line of discussion points out that ideas from machine
learning increasingly influence how newer metaheuristics are
designed [11]. Several application-driven studies confirm this
general direction. For example, hybrid metaheuristic—-ANN
models have been applied to geophysical prediction tasks,
where they showed more stable generalization than purely
gradient-based models [12]. Still, the literature is fragmented:
different authors work with different datasets, different
objectives, and different evaluation setups. Even the term
“hybrid” is used in inconsistent ways, ranging from simple
initialization schemes to full training or post-training
refinement.

This survey proposes a way to organize these contributions.
We classify metaheuristic-assisted ANN optimization along
two dimensions: the objective being optimized (weights,
architecture, or hyperparameters) and the depth of interaction
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with gradient-based training. We also review research
published between 2015 and 2025, with attention to popular
algorithms, application domains, and dataset characteristics.
The paper concludes with unresolved questions, including
issues of scalability, interpretability, computational cost, and
some emerging directions such as quantum-inspired operators,
meta-learning controllers, and forms of neuroevolution.

2. BACKGROUND AND TAXONOMY
METAHEURISTIC-BASED ANN OPTIMIZATION

OF

2.1 Conceptual background

Training ANNs involves minimizing a highly non-convex
loss landscape that contains many local minima. Conventional
gradient-based methods such as stochastic gradient descent
(SGD) and its adaptive variants Adam and RMSProp often
converge prematurely and require careful hyperparameter
tuning, especially in deep or noisy architectures [13].

Metaheuristic algorithms overcome these limitations by
performing global, derivative-free searches inspired by
biological, physical, or social systems [14]. Each individual in
a population represents a candidate set of network parameters,
evaluated by the ANN’s prediction error, while stochastic
operators update the population to balance exploration and
exploitation [15]. Their ability to explore discontinuous or
multimodal spaces explains the broad adoption of
metaheuristics for optimizing ANN weights, topologies, and
learning hyperparameters [16].

2.2 Taxonomy of Integration

Integration of metaheuristics into ANN training can be

understood along two complementary dimensions. The first
concerns the optimization target, whether the algorithm tunes
the network’s weights, explores alternative architectures, or
adjusts key hyperparameters. The second dimension reflects
the way the metaheuristic interacts with gradient-based
learning, ranging from simple sequential cooperation to more
tightly embedded or post-training refinements.

At the weight level, population-based optimizers such as
GA [14] and Differential Evolution (DE) [15] directly
minimize prediction error by searching the continuous
parameter space. Architecture-level search, by contrast, relies
on discrete or mixed encodings; methods like ACO [16, 17] or
the GWO [18] have been used to propose compact or better-
structured topologies. Hyperparameter optimization often
employs continuous metaheuristics such as Artificial Bee
Colony (ABC) [19, 20], the Whale Optimization Algorithm
(WOA) [21], or the SCA [22], which regulate learning rates,
momentum values, regularization terms, or batch sizes.

Representative  studies illustrate the three main
hybridization patterns. Sequential hybridization appears in
work where a metaheuristic provides initial weights or
configurations before standard backpropagation refines the
network, as seen in GA-initialized neural models [14].
Embedded hybridization occurs when the metaheuristic
operates inside the training loop for example, PSO updating
architectures or parameters in tandem with gradient descent,
as reported by Junior and Yen [13]. Post-training hybridization
is typically used for pruning or secondary refinement, such as
Firefly-based re-tuning [23] or GWO-driven adjustment after
an initial gradient-based phase [16].

Table 1 summarizes these interactions by aligning
optimization targets with the corresponding hybridization
strategies and provides the conceptual structure used
throughout the remainder of this survey.

Table 1. Taxonomy of metaheuristic—ANN integration

Optimization Target

S tial Embedded Post-traini
Hybridization Depth equentia mbedde ost-training
Weight Initialization via MH then Alternating MH + GD within ~ Pruning / Refinement /
eights .
g BP/SGD epochs Re-tuning after GD
. . Co-evolving topol ith Post-hoc structu
Architecture NAS via MH then fine-tune oevo Vmg. (?po OBy Wi ost-hocs n,lc e
training compression
MH-tuned learning rate, batch Adaptive controllers (meta- Post-hoc schedule
Hyperparameters . o -
size, regularization, schedulers controllers) retuning

2.3 Families
optimization

of metaheuristics applied to ANN

Evolutionary Algorithms

Evolutionary algorithms maintain population diversity
through recombination and mutation, allowing robust
exploration of non-convex search spaces. In one study, a GA-
enhanced Extreme Learning Machine was applied to COVID-
19 diagnosis and showed higher detection accuracy than
standard back-propagation [14]. Another investigation used a
centroid-based DE approach for neural-network training,
reporting faster convergence on benchmark and industrial
datasets [15].

Swarm-Intelligence Algorithms

Swarm methods emulate collective animal behaviors to
coordinate distributed search. Work evaluating PSO-guided
architectures showed that PSO-optimized deep networks can
improve image-classification accuracy while reducing
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parameter counts [13]. The GWO has also been integrated
with fuzzy neural networks, yielding superior generalization
on nonlinear-regression problems [16]. ABC variants have
demonstrated similar benefits. For example, ABC-based
training methods produced faster convergence on regression
tasks [19], and further extensions have been proposed for
nonlinear-system identification [20]. Ant-based optimizers
have likewise been adapted for structure search. One
continuous ACO variant was designed to construct ANN
architectures automatically [17], while another hybrid ACO—
ANN model achieved strong predictive performance in
groundwater-quality assessment [18].

Physics and Nature-Inspired Algorithms

Physical-process-based optimizers model oscillation,
attraction, or diffusion mechanisms to balance exploration and
exploitation. Studies using the Sine—Cosine Algorithm (SCA)
to train recurrent networks for ocean-wave prediction reported
lower RMSE than GA- or PSO-based models [22]. A modified



WOA has been integrated with ANN for desalination-
performance prediction, confirming improved exploration
capability [21]. Firefly-based optimization has also been used
to tune ensemble neural networks for COVID-19 forecasting,
improving predictive stability compared to gradient descent
[23].

Emerging Physics-Inspired Optimizer: The Gazelle
Algorithm

A new physics-inspired method, the Gazelle Optimization
Algorithm (GO), was proposed to model predator-evasion
dynamics and maintain a strong exploration—exploitation
balance [24]. Later work combining GO with ANN for
mechanical-design problems reported faster convergence and
higher accuracy than PSO and GWO [25].

Hybrid and Ensemble Frameworks

Hybrid  strategies increasingly combine multiple
metaheuristics to exploit complementary strengths. One

example integrates PSO and GWO for deep-network
optimization in cybersecurity, reducing training time and
enhancing detection accuracy [26]. Such multi-strategy
designs represent the current frontier of metaheuristic research,
emphasizing cooperative search and dynamic adaptation
across optimization stages [27, 28].

2.4 Comparative overview

To illustrate how recent studies distribute across
optimization targets, hybridization strategies, and application
domains, Table 2 summarizes representative metaheuristic—
ANN combinations reported in the literature. The table
provides a quick overview of the algorithm families used, the
type of ANN tasks they address, and the evaluation settings
adopted in each study.

Table 2. Representative metaheuristic algorithms applied to ANN optimization

Algorithm Optimization Main Advantages Reported Limitations Appllca?lon
Target Domain
Genetic Algorithm (GA) Weights + Powerful global search; suitable ~ Slow convergence on deep . . .
. Medical diagnosis
[14] Hyperparameters for nonlinear problems networks
Differential Evolution (DE) Weights Maintains population diversity; ~ Computationally expensive Industrial regression
[15] fast and robust convergence for large datasets
Particle Swarm Architecture + Simple implementation; Premature convergence; Imace classification
Optimization (PSO) [13] Weights effective global exploration requires parameter tuning &
Grey Wolf Optimizer Weights + Fuzzy Bala‘nce.d exploration/ Reduced scalability in very .
exploitation; few control . . . Fuzzy regression
(GWO) [16] Rules high-dimensional spaces
parameters
Artificial Bee Colony Weights + Biases Easy implementation; fast Sensitivity to colqny size; Regress19n / System
(ABC) [19, 20] convergence early stagnation identification
Ant Colony Optimization Architecture + Effecnve? dls_crete-structure Slow adaptation to Neural .archltecture /
. search; builds compact . . Environmental
(ACO) [17] Weights . continuous domains .
topologies modeling
Whale Optimization Weights + Adaptive spiral exploration; Mav oscillate near optima Desalination
Algorithm (WOA) [18] Hyperparameters strong global search Y p forecasting
Sine—Cosine Algorithm Recurrent Escapes local minima; Sensitive to control Ocean-wave
(SCA) [22] Weights maintains population diversity coefficients prediction
. . . Stable convergence; good for May stagnate under noise or Time-series
Firefly Algorithm (FA) [23] Weights ensemble models imbalanced data forecasting
Gazelle Optimization Weights + Design  Fast adaptive convergence; low Limited benchmark Mechanical design
Algorithm (GO) [24, 25] Parameters parameter count validation so far optimization
Hybrid PSO + GWO Architecture + Combines global and local Additional computational Cybersecurity
Framework [26 Hyperparameters search; reduces training time overhead detection

2.5 Discussion

The surveyed evidence demonstrates the maturation of
metaheuristic-based neural optimization from early
evolutionary designs to modern hybrid and physics-inspired
frameworks. Evolutionary (GA, DE) and swarm-intelligence
(PSO, GWO, ABC, ACO, WOA) methods remain the most
widely adopted owing to their simplicity and proven reliability,
while recent algorithms such as SCA, FA, and GO introduce
adaptive dynamics that enhance global search efficiency.
Architecture-level exploration, historically dominated by GA
and ACO, is now largely achieved through hybrid or multi-
population approaches. Despite significant progress,
reproducibility and computational overhead remain key
obstacles [27, 28]. The next research phase is expected to
emphasize self-adaptive, parameter-free hybrids and quantum-
enhanced schemes that jointly optimize ANN architecture,
hyperparameters, and weights within unified frameworks.
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3. COMPARATIVE TRENDS AND QUANTITATIVE
ANALYSIS (2015-2025)

Trends reported for 2025 refer to forward projections
derived from existing bibliometric analyses covering up to
2023-2024.

3.1 Overview of publication growth

This section synthesizes quantitative trends as reported by
prior bibliometric and survey studies, rather than reproducing
a new database-wide census. Publication counts and family
shares are therefore cited verbatim or in careful paraphrase
from existing mappings; where multiple sources converge,
approximate magnitudes are reported to avoid overstating
precision. The large-scale analysis of 1,676 metaheuristics
papers from 1994-2023 refers to the dataset examined by Li
et al. [29] in Expert Systems with Applications and is
attributed accordingly. Complementary patterns concerning
learning-guided and hybrid designs are drawn from recent



comprehensive reviews and surveys [30-33], with domain-
focused corroboration in energy and industrial/IoT pipelines
[34-39].

Across the last decade, work coupling metaheuristics with
neural models exhibits a pronounced upward trajectory. One
large-scale analysis reports a time series that steepens after
2019, indicating several-fold growth over mid-2010s baselines
and extending through 2023 [29]. Independent mappings
converge on the same narrative: a review of machine-learning-
aided metaheuristics identifies an early-2020s broadening
from single-algorithm demonstrations to adaptive, learning-
guided mechanisms that increasingly interface with deep
models [30], while another synthesis of recently developed
metaheuristics documents a parallel move toward hybrid and
physics-inspired variants in applied pipelines [32]. Read
together, these sources support a conservative interpretation
for 2015-2025: output does not merely rise linearly but
accelerates during 2020-2023 and continues to expand in
hybrid, application-driven studies [29-32].

As shown in Figure 1, the number of publications on
metaheuristic-driven neural optimization has risen sharply
after 2019, reflecting accelerating academic and industrial
engagement.

Growth of Hybrid & Learning-Guided Metaheuristics
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Figure 1. Indicative annual growth of studies on
metaheuristic-assisted neural-network optimization (2015—
2025)

3.2 Distribution by algorithm family

The mix of algorithm families has also evolved. Historical
dominance by GA and PSO is clear in earlier windows, yet the
relative share of Grey Wolf, Whale, and ABC
implementations grows substantially in the 2019-2022
interval, especially in regression and forecasting contexts
where global exploration complements problem-specific
priors [32]. In the same period, physics-inspired approaches
oscillatory search akin to sine—cosine, attraction-based firefly
variants, and emerging predator—prey or quantum-inspired
designs gain visibility, and hybrid ensembles become
materially more common [30-32]. A broad bibliometric lens
underscores this structural shift: one recent mapping shows co-
citation communities reorganizing around ensemble and
hybrid strategies rather than single-method novelty, with
keyword co-occurrence maps reflecting sustained attention to
integration with deep architectures [29]. The net distribution
remains anchored in the prominence of swarm-based methods,
but it is dynamic in that physics-inspired and hybrid categories
constitute the fastest-growing segments after 2020 [29-32].
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As illustrated in Figure 2, swarm-based algorithms remain
dominant across the decade, while physics-inspired and hybrid
paradigms show the fastest relative growth after 2020.
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Figure 2. Evolution of algorithm-family composition across
three time windows in metaheuristic-assisted ANN

optimization
3.3 Application domains and dataset patterns

The geography of applications explains much of this
rebalancing. A focused review of meta-heuristics for deep-
learning energy systems documents strong activity in load and
generation forecasting, desalination, and power-quality
estimation; crucially, the same review notes a migration from
shallow to deep architectures and from static tuning to hybrid,
bi-level parameterization during 2020-2023 [34]. Concurrent
surveys in intrusion detection and IoT analytics identify
similar pressures high dimensionality, class imbalance, and
real-time constraints that favor global search for feature
selection or architectural pruning coupled with deep classifiers
or sequence models [38, 39]. In parallel, macro-scale Al
bibliometrics covering 2013-2023 report expansion in
optimization-aware studies across industry-facing domains, a
trend consistent with the growing use of metaheuristics as
controllers for compute- and data-efficient learning [40-42].
The combined picture is a demand-pull dynamic: as
deployments move from laboratory benchmarks to operational
settings, metaheuristic modules increasingly serve as
resource-aware controllers for deep models, rather than as one-
off “outer loop” optimizers [34, 38, 39].

Domain Landscape for MH-Assisted Neural Modeling
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Figure 3. Indicative distribution of application domains for
metaheuristic-based neural-network optimization (2015—
2025)

As depicted in Figure 3, energy and biomedical domains
dominate current applications, followed by industrial and
vision tasks, with IoT and cybersecurity emerging as
secondary yet expanding areas.



3.4 Evolution of hybrid, learning-guided, and automated
designs

A defining feature of the 2020s is the transition from single-
method global search to hybrid frameworks in which
metaheuristics orchestrate, or co-evolve with, learning.
Application-driven architectures adopt bi-level designs,
wrapping deep models with global search layers for structure
and parameter selection; reported outcomes emphasize
improved convergence and robustness relative to monolithic
setups [35]. Beyond these exemplars, the methodology itself
is becoming more self-configuring. Surveys of machine-
learning-aided metaheuristics describe learned surrogates,
adaptive operators, and meta-controllers that improve sample
efficiency and stabilization under limited budgets [30], while
an AutoML-focused synthesis details population-based search
for hyperparameters and neural architectures, positioning
metaheuristics as first-class citizens in automated design
pipelines [31]. Two additional strands amplify this evolution.
First, quantum-inspired operators probabilistic encodings and
rotation-gate-like updates have been systematized and piloted
for ANN-related optimization, with the appeal of richer
exploratory dynamics well-suited to hybridization [36, 37].
Second, surveys on automated design of metaheuristics
themselves formalize algorithm components as design
variables, enabling learning-guided search over operator sets
and control policies; this closes the loop between optimizer
design and problem-specific performance and further blurs the
line between “optimizer” and “learner” [31, 40]. The
convergence of these strands supports a working thesis for
2023-2025: adaptivity either by importing quantum-inspired
diversity or by learning operators is central to competitive
MH-ANN optimization [30, 31, 36, 37].

Figure 4 highlights the rapid surge of hybrid and learning-
guided metaheuristics after 2020, emphasizing the field’s shift
toward adaptive, self-tuning, and data-aware optimization
mechanisms.

Metaheuristics in AI/ANN: Indicative Annual Output (2015-2025)
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Figure 4. Growth trend of hybrid and learning-guided
metaheuristic frameworks in ANN optimization over time

3.5 Quantitative synthesis and phase characterization

Although precise percentages necessarily depend on
database scope and query syntax, multiple mappings allow a
cautious synthesis for 2015-2025. Time-series profiles
anchored by the ESWA bibliometric indicate several-fold
growth from mid-2010s to mid-2020s, with the steepest
increase after 2019 [29]. Within that expansion, family
composition skews toward swarm-based methods as the
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largest block, while physics-inspired and hybrid categories
register the highest relative growth post-2020, consistent
across ML-aided and “recent metaheuristics” reviews [30-32].
Domain distributions emphasize energy and
industrial/mechanical analytics as sustained demand centers,
with healthcare/biomed and cybersecurity as additional high-
growth areas where global search mitigates nonconvexity,
constraints, or imbalance [34, 38, 39, 41, 42]. It is therefore
reasonable, for the purposes of this survey, to characterize
three overlapping phases: a foundation phase (2015-2018) led
by GA/PSO exemplars; an expansion phase (2019-2022) in
which GWO, WOA, and ABC rise alongside early structured
hybrids; and a consolidation phase (2023-2025) defined by
learning-guided hybrids, physics-inspired growth, and the first
wave of quantum-inspired integrations [29-37].

3.6 Discussion: for
benchmarking

implications methodology and

Methodological implications follow directly from these
trajectories. As the field has moved toward problem-driven
hybrids, metaheuristics function less as static outer-loop
optimizers and more as adaptive scaffolds for deep learning,
coordinating architecture search, hyperparameter schedules,
and weight initialization within resource constraints [30, 31,
35]. Recent reviews repeatedly call for stronger
standardization of evaluation: reproducible data splits,
statistically grounded comparisons beyond single-run bests,
compute-aware reporting, and ablations that illuminate
operator and controller contributions [30, 31, 40]. Quantum-
inspired surveys add a parallel caution: when diversity
mechanisms change, baselines must be controlled to separate
genuine algorithmic value from parameterization effects [36,
37]. For practitioners and authors, the practical takeaway is
that claims of superiority should be framed against multiple
family baselines and hybrid references, with resource-
normalized metrics whenever possible. The comparative study
that follows in this paper adopts that stance, using multi-family
anchors and reporting where prior mappings already provide
defensible aggregate evidence.

4. CHALLENGES,
DIRECTIONS

OPEN ISSUES, AND FUTURE

4.1 Benchmarking, data regimes, and external validity

Despite rapid methodological progress, the empirical basis
of metaheuristic-assisted neural optimization remains uneven.
Many studies still rely on bespoke or small datasets with
limited shift diversity, reporting single-run best scores under
fixed seeds; such practices inflate apparent gains and
complicate cross-paper comparison. Stronger norms are
moving in from machine learning more broadly pre-registered
protocols, artifact checklists, and open benchmarks which we
argue should be mirrored for metaheuristics-in-ANNs as well
[43-45]. Domain-specific suites in energy, industrial
prognostics, cybersecurity and clinical time series would
further support external validity by testing metaheuristics as
adaptive controllers rather than one-off outer-loop optimizers
[42]. A practical route to standardization is to separate
“benchmark-style” reporting from “system-style” reporting
within the same paper. The former should target fixed budgets
and fixed splits, expose distributions across seeds, and log



optimizer states; the latter should demonstrate transfer to a
realistic pipeline where data shift, class imbalance, and
nonstationary objectives are present. When authors reuse
public task families time-series forecasting, fault diagnosis,
medical screening they should also reuse prevailing
train/validation/test protocols so that improvements are
traceable rather than artifacts of alternative splits. Public
leaderboards can help, but only when they publish logs,
variance measures, and resource usage alongside point scores;
otherwise they encourage hyper-specialization that does not
survive contact with new data. These design choices align with
artifact and benchmarking norms that have already improved
reproducibility in adjacent areas [43, 44].

4.2 Evaluation methodology and statistical rigor

Stochastic  optimizers demand statistical treatment
commensurate with their variability. Distributions over many
independent runs, nested cross-validation when model
selection entangles training, and family-wise error control are
necessary to avoid optimizer overfitting to particular seeds or
splits [45-54]. Compute-normalized reporting is equally
important: two methods with comparable accuracy but
radically different wall-clock or GPU budgets should be
compared on a normalized Pareto frontier rather than at a
single operating point [46, 50]. Ablations in hybrid
frameworks should decompose gains into contributions from
search operators, parameter controllers, and gradient
components, with sensitivity analyses to population size,
perturbation schedules, early-stop criteria, and scheduler
design [31, 47]. When optimization is coupled to model
selection, nested cross-validation is the default safeguard
against double dipping; for large deep models, stratified
repeated holdouts with matched seeds can approximate similar
protection at lower cost. Effect sizes and confidence intervals
should accompany hypothesis tests, and rank-based multiple-
comparison procedures are preferable when accuracy
distributions are non-Gaussian. Reporting should include not
only final-score distributions but also learning curves and
anytime profiles under fixed compute budgets, because many
hybrids deliver gains early and then plateau ; for practitioners,
these curves are more actionable than single terminal points
and reduce the temptation to overspend compute for marginal
last-percent improvements [45-54].

4.3 Compute, complexity, and sustainability

Global search wrapped around deep training multiplies
compute demand; population size times model-evaluation cost
often dominates end-to-end complexity. Recent work shows
how careful datacenter scheduling, hardware utilization, and
carbon-aware region selection can cut training footprint
substantially, but also cautions that reporting must include
energy and water usage to be meaningful beyond accuracy
alone [46-50]. Practical deployments in industrial prognostics,
grid forecasting, and intrusion detection benefit from explicit
accuracy—latency trade-off knobs and lightweight carbon
accounting (e.g., automated logging via widely used trackers),
bringing sustainability into the optimization loop alongside
accuracy [55, 56]. Two complementary ideas reduce footprint
without sacrificing rigor. The first is multi-fidelity evaluation:
early generations train on reduced epochs, subsets, or lower
input resolution, with a principled promotion policy to high
fidelity for promising candidates [49]. The second is weight
inheritance and warm-starting across populations, which
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preserves exploration while amortizing training cost. Both
require careful bias checks, especially when promotion rules
correlate with noise in early evaluations. In parallel, green-Al
practice suggests reporting energy and water usage for both
training and inference, ideally with lightweight tooling that
logs carbon intensity by cloud region and hardware class [46,
50, 55, 56]. Publishing accuracy—cost Pareto frontiers then
becomes routine and moves the conversation from “best
accuracy” to “best accuracy at a given budget.”

Practical reporting can rely on simple, reproducible metrics
such as total FLOPs, wall-clock time per evaluation,
cumulative GPU-hours, and peak memory footprint. When
energy awareness is required, emission estimates based on
tools such as CodeCarbon or hardware-level energy counters
can provide lightweight carbon or energy reporting. Including
these metrics alongside accuracy makes comparisons between
metaheuristics and gradient-based baselines more transparent
and compute-normalized.

4.4 Parameter control and self-adaptation

Static, hand-tuned control parameters are at odds with the
nonstationary dynamics of deep training. Learning-guided
operators, surrogate models, and meta-controllers have
emerged as effective ways to adjust population size,
exploration radii, and exploitation pressure online, reducing
wasted evaluations and stabilizing convergence when
objectives are noisy or multi-objective [47, 51]. The open issue
is to make these controllers data-efficient, resistant to
overfitting, and cleanly separated from evaluation data;
contemporary AutoML perspectives argue for controller
baselines and clear operator-level ablations to enable apples-
to-apples comparisons across families and domains [31, 49].
Self-adaptation works best when controllers react to signals
that are cheap, stable, and predictive of downstream
generalization. Gradient variance, curvature proxies on
validation loss, and measures of flatness can regulate
exploration amplitude and population size; surrogate models
can provide low-fidelity votes on yet-unevaluated candidates;
and learned restart policies can prevent long, unproductive
exploitation phases. To avoid leakage, the controller’s training
views must remain disjoint from the final evaluation views.
Publishing controller ablations, what happens when it is
disabled, slowed, or given noisy signals clarifies whether
performance derives from the metaheuristic family, the
learned controller, or their interaction [31, 47, 51].

4.5 Hybrid design principles and theoretical grounding

Hybrids now dominate empirical reports, but principled
design remains under-theorized. A defensible template treats
hybridization as bias—variance management: one component
ensures broad coverage, another concentrates samples near
promising basins, and a third leverages gradient information
for local refinement subject to trust regions. Formal guidance
from black-box benchmarking frameworks such as
COCO/BBOB is particularly useful in this context. These
frameworks define standard noise models, fidelity levels, and
evaluation-budget accounting, which help isolate true
algorithmic progress from artifacts caused by inconsistent
experimental conditions. In the setting of ANN optimization,
where loss surfaces are noisy, nonconvex, and often evaluated
under different data splitsthese principles offer a structured
way to design fair, comparable experiments even when the



underlying tasks differ from classical continuous benchmarks.

Stability analyses and bounded-noise regret perspectives
from AutoML and hyperparameter optimization further
encourage hybrids specified in terms of state, invariants, and
update algebra, allowing failure modes to be reasoned about
and components to be composed safely [31, 49]. A principled
hybrid can therefore be described by three ingredients: an
exploration kernel with explicit diversity guarantees, a local
model-based or gradient-based refiner protected by a trust-
region safeguard, and a scheduler that allocates evaluation
budgets between them according to measurable progress.
While such a template cannot provide convergence guarantees
on nonconvex, data-stochastic objectives, it provides a
foundation for stability reasoning and ablation-friendly
comparisons. Benchmarking guidance from COCO/BBOB
particularly noise modeling, budget control, and instance-
family variationhelps ensure that algorithmic claims remain
robust across scales rather than being finely tuned to a single
fidelity, dataset, or seed configuration [40-44, 46].

4.6 Multi-objective, constraint-aware, and safety-critical
settings

Many target domains impose coupled objectives accuracy,
sparsity, latency, energy and hard constraints that invalidate
ad-hoc penalties. Metaheuristics are naturally suited to Pareto-
front search and constraint handling, and recent surveys in safe
learning and constraint modeling provide reusable
formulations (e.g., CMDP-style or augmented Lagrangian
relaxations) that can be integrated into hybrid ANN training
[48]. On the architecture side, multi-objective NAS explicitly
trades accuracy with FLOPs, memory, and device latency;
recent overviews consolidate techniques and benchmarks
practitioners can adopt directly [52, 57]. In safety-critical
contexts, uncertainty and fallback behavior become first-class:
global search can be repurposed to stress-test models by
optimizing for worst-case slices or to tune cost-sensitive losses
that reflect operational risk [48, 33]. Constraint handling is
most persuasive when constraints are treated as first-class
citizens via projection, augmented Lagrangians, or CMDP-
style formulations for sequential tasks. In static prediction,
cost-sensitive and coverage-controlled losses align training
with deployment risk; in streaming or control, robust and
distributionally robust variants explicitly optimize for worst-
case or shifted distributions. Hardware-aware NAS
demonstrates that Pareto-optimal trade-offs between accuracy,
latency, and memory are achievable on real devices, and the
same multi-objective logic should guide weight and
hyperparameter search in constrained settings [48, 52, 57].

4.7 Reproducibility, openness, and lifecycle reporting

Minimal reproducibility packages should include seeds,
splits, YAML configurations for the optimizer and learner,
exact hardware footprints, and scripts that recreate all figures
and tables from raw logs. Artifact-evaluation checklists and
template appendices have proven practical in adjacent ML
communities and are directly applicable here [44, 53]. Where
licensing permits, releasing intermediate populations and
controller traces enables secondary analysis of search
dynamics; lifecycle reporting how models drift under data
shift and how controllers are re-tuned raises the practitioner
value of academic papers [31, 44]. Beyond releasing code and
seeds, mature studies disclose failure cases and negative
results (e.g., when a tuned baseline such as PSO or DE
matches a novel hybrid outside its home domain). For
industrial or clinical collaborations, authors can share
anonymized optimizer traces and controller logs even when
raw data cannot be published. Lifecycle reporting including
how models drift and how the optimizer or controller responds
bridges the gap between academic experiments and operations
and aligns with the artifact-evaluation culture gaining traction
across ML venues [44, 53].

4.8 Outlook

Progress is likely to concentrate on three converging threads.
First, self-adaptive hybrids will couple global exploration with
learned controllers that regulate intensity based on training
signals, making metaheuristics feel less like static wrappers
and more like intelligent schedulers [31, 47]. Second,
resource-aware optimization will treat compute and latency as
first-class objectives, producing results that hold under
realistic budgets and enabling deployment on edge and
industrial platforms [46, 50, 55]. Third, constraint- and risk-
aware formulations will align objective functions with
application stakes, integrating safety, fairness, and reliability
into the optimization loop [48, 52]. Anchored in standardized
benchmarks, transparent reporting, and careful statistics, these
directions can move metaheuristic-assisted neural learning
from promising case studies to dependable, scalable
methodology [43, 45, 53].

To make these distinctions operational for researchers and
practitioners, it is useful to indicate when each hybridization
strategy is most appropriate. Table 3 summarizes typical
conditions under which sequential, embedded, or post-training
schemes are preferred, together with the practical advantages
they generally offer. The table is not meant as a prescriptive
decision rule; rather, it serves as a concise guide for selecting
a hybridization approach within real optimization workflows.

Table 3. Practical guidance for selecting a hybridization strategy

Hybridization . Representative
Strategy Use When... Typical Advantages Examples
Sequential ‘ You need a gogd sta'rtmg point or want to gtablllze Low qverhead; easy tg 1mplement; GA — BP, DE — BP
early training without heavy computation. improves initialization.
The search needs to adapt during training (e.g., Strone exploration: reacts to trainin PSO-DNN co-training,
Embedded evolving architectures or tuning hyperparameters g eXp ’ g adaptive LR/architecture

on the fly).
The model is already trained and you want
refinement, pruning, or targeted improvement

Post-training
without retraining from scratch.

dynamics; suitable for unstable tasks.
updates

Reduces retraining cost; improves
accuracy or sparsity; useful in late-
stage optimization.

Firefly-based refinement,
GWO-FNN post-tuning
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5. SURVEY PROTOCOL AND REPRODUCIBILITY
5.1 Scope and research questions

This survey investigates how metaheuristics are used to
optimize ANNs across weights, architectures, and training
hyperparameters, with emphasis on hybrid and learning-
guided designs introduced during 2015-2025. The guiding
questions are to what extent metaheuristics improve training
stability and generalization under realistic budgets, how
algorithm-family usage has shifted over time, which domains
have driven adoption, and what methodological practices
enable reproducible, compute-aware comparisons.

5.2 Sources and search strategy

To identify primary studies, the search space comprises
Scopus, Web of Science, IEEE Xplore, ACM Digital Library,
and ScienceDirect, complemented by publisher portals for
MDPI, SpringerLink, and Nature Portfolio. Queries combine
controlled terms for metaheuristics and neural modeling, for
example: “(metaheuristic OR swarm OR evolutionary OR
physics-inspired OR hybrid) AND (neural network OR deep
learning OR CNN OR RNN OR NAS) AND (training OR
optimization OR hyperparameter OR architecture)”. Searches
are restricted to English-language articles, journal papers, and
full conference proceedings from 2015-2025. Reference
chaining and author clustering are used to recover missing but
influential items, and duplicates are resolved before screening.

5.3 Eligibility criteria and screening

Two screening passes are applied. The first assesses title
and abstract to remove papers that only cite metaheuristics
without using them to train or tune neural models, that
optimize non-ANN learners exclusively, or that present
editorials with no experiments. The second evaluates full texts
against four conditions: the study must implement a
metaheuristic to optimize at least one ANN component; it must
specify datasets and metrics; it must provide enough
procedural detail to permit reimplementation; and it must
report baselines that allow effect sizes to be inferred. Grey
literature, theses, and extended abstracts are excluded to
maintain comparability.

PRISMA-style flow description

To align with established practices for systematic reviews,
a PRISMA-style flow description was added to summarize the
identification, screening, eligibility, and inclusion stages. The
initial search retrieved a broad set of records across Scopus,
Web of Science, IEEE Xplore, ACM Digital Library, and
ScienceDirect. After duplicate removal, titles and abstracts
were screened for relevance to metaheuristic-ANN
optimization. Full-text eligibility assessment was then applied
criteria based on methodological clarity, inclusion of baselines,
dataset specification, and reproducibility. The final set of
included studies reflects those that met all relevance and
quality requirements.

5.4 Data extraction and quality assessment

For each included paper, the extraction schema records the
optimizer family and variant, the optimized target (weights,
architecture, hyperparameters, or mixed), the network type
and task, the datasets and splits, the evaluation metrics, the
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compute budget and hardware, and the presence of ablations,
sensitivity analyses, or multi-run statistics. Study quality is
assessed along five axes: experimental transparency, strength
of baselines, statistical treatment of stochasticity, compute-
normalized reporting, and reproducibility artifacts. Papers that
lack essential information are retained for qualitative
discussion but are not used in quantitative comparisons.

5.5 Synthesis and limitations

Evidence is synthesized in two layers. The first aggregates
high-level trends reported by existing bibliometric mappings
and domain surveys to contextualize growth and family
composition; this layer underpins Section 3 and is explicitly
attributed to prior sources. The second integrates the newly
screened corpus to illustrate representative designs and to
ground claims about hybridization, parameter control, and
constraint-aware optimization. Threats to validity include
indexing bias across databases, keyword drift that can miss
emerging algorithm names, and reporting heterogeneity that
complicates compute-normalized comparisons. These are
mitigated by multi-database searches, reference chaining,
explicit quality axes, and by presenting trends as approximate
ranges when independent mappings diverge.

6. CONCLUSION

This survey examined ten years of work on using
metaheuristic  algorithms to improve neural-network
optimization. Rather than treating each contribution in
isolation, the goal was to understand how the field itself has
changed. The two axes we relied on what is being optimized
(weights, architectures, hyperparameters) and how deeply the
metaheuristic interacts with gradient descent help show that
the recent diversity of methods is less chaotic than it first
appears. Many of the newer designs can be traced back to
simple differences in where the metaheuristic intervenes
during training.

A second point that emerged throughout the review is the
need for stronger methodological habits. Results reported in
the literature do not always survive outside their original
experimental setups. When authors rely on multi-run statistics,
clear ablations, and compute-normalized comparisons, the
advantages of metaheuristics become much more credible. In
contrast, when evaluations depend on a single lucky seed or
unrestricted compute, even modest baselines can match or
surpass a proposed hybrid. A more disciplined evaluation
culture would help separate genuinely strong ideas from those
that only work under narrow or unreported conditions.

Looking ahead, several directions appear both realistic and
promising. One concerns self-adaptive hybrids. Instead of
relying on hand-tuned schedules, it is increasingly feasible to
attach small meta-learning controllers, such as simple neural
or rule-based modules that adjust exploration strength or
population size based on signals that are already available
during training, such as gradient variance or early-epoch
stability. Another direction involves quantum-inspired
diversity mechanisms. These do not require full quantum
hardware; even lightweight ideas such as rotation-gate-style
perturbations or probabilistic amplitude encodings can inject
useful variability into a population without adding many
parameters. Alongside these developments, constraint-aware
optimization deserves more attention, especially in domains



where accuracy must be balanced with safety, latency, or
fairness. Finally, reproducible artifacts configuration files,
seeds, logs, and even traces of how a controller behaves during
training will be essential if the community wants its findings
to accumulate rather than reset each time.

If these efforts continue, metaheuristics will move from
being treated as occasional add-ons to becoming integrated
components of neural-network optimization. The result is not

only better performance,

but better evidence, clearer

comparisons, and a smoother path toward practical, real-world
deployment.
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