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Artificial Neural Networks (ANNs) excel across vision, language, and decision-making, 

yet their performance hinges on well-chosen weights, hyperparameters, and architecture 

settings where classical gradient methods can stall or overfit. This survey consolidates a 

decade of work (2015–2025) on metaheuristic assistance for ANN optimization, covering 

evolutionary, swarm-intelligence, physics-inspired, and hybrid paradigms. We propose a 

unified taxonomy that cross-classifies optimization targets (weights, structure, 

hyperparameters) with hybridization depth (sequential, embedded, post-training), and we 

synthesize quantitative trends from recent mappings alongside a curated dataset. The 

evidence indicates a sharp post-2019 acceleration, with swarm methods remaining the 

largest family and hybrids the fastest-growing, particularly in energy, industrial, 

healthcare, and cybersecurity applications. We analyze methodological gaps statistical 

rigor, compute/energy reporting, and reproducibility and outline a research agenda 

centered on self-adaptive controllers, multi-objective and constraint-aware formulations, 

and quantum-inspired diversity mechanisms. By integrating taxonomy, original visuals, 

and critical appraisal, this article clarifies how metaheuristics act as adaptive schedulers 

for modern ANN training and provides practical guidance for designing robust, resource-

aware optimization pipelines. 
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1. INTRODUCTION

Artificial Neural Networks (ANNs) have become central in 

many areas of modern AI. They appear in vision, speech, 

prediction, control, and a long list of other tasks. Despite this 

progress, training them efficiently is still not straightforward. 

The large number of parameters, and the way these parameters 

interact, make the optimization landscape difficult to navigate. 

Performance also depends strongly on how the network is 

initialized and how its parameters are updated during training. 

Most practical systems still rely on gradient-based 

optimizers such as SGD and its variants Adam and RMSProp. 

These methods are widely used, but their limitations are well 

documented: they depend on local gradients and may stall in 

poor regions of the loss surface. Their behaviour is sensitive 

to learning-rate choices and initialization strategies [1], and 

deep networks often introduce additional difficulties such as 

vanishing gradients or unstable updates [2]. 

Because of these issues, researchers have looked toward 

metaheuristic algorithms as an alternative. These methods 

work with populations of candidate solutions and do not rely 

on gradients, which gives them more freedom to explore the 

search space. Classic examples include Genetic Algorithms 

(GA) [3], Particle Swarm Optimization (PSO) [4], Grey Wolf 

Optimizer (GWO) [5], and the Sine–Cosine Algorithm (SCA) 

[6]. Their appeal lies in flexibility: the same algorithmic idea 

can be used to tune weights, propose new architectures, or 

adjust hyperparameters. 

In recent years, a growing number of studies have combined 

metaheuristics with gradient-based learning. Early work 

suggested that this type of cooperation could help with 

difficult optimization landscapes [7]. Later experiments 

reported gains in convergence speed or accuracy when both 

approaches are used together [8, 9]. Broader reviews also 

noted that metaheuristics tend to perform better when they 

incorporate adaptive or learning-based components [10]. 

Another line of discussion points out that ideas from machine 

learning increasingly influence how newer metaheuristics are 

designed [11]. Several application-driven studies confirm this 

general direction. For example, hybrid metaheuristic–ANN 

models have been applied to geophysical prediction tasks, 

where they showed more stable generalization than purely 

gradient-based models [12]. Still, the literature is fragmented: 

different authors work with different datasets, different 

objectives, and different evaluation setups. Even the term 

“hybrid” is used in inconsistent ways, ranging from simple 

initialization schemes to full training or post-training 

refinement. 

This survey proposes a way to organize these contributions. 

We classify metaheuristic-assisted ANN optimization along 

two dimensions: the objective being optimized (weights, 

architecture, or hyperparameters) and the depth of interaction 
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with gradient-based training. We also review research 

published between 2015 and 2025, with attention to popular 

algorithms, application domains, and dataset characteristics. 

The paper concludes with unresolved questions, including 

issues of scalability, interpretability, computational cost, and 

some emerging directions such as quantum-inspired operators, 

meta-learning controllers, and forms of neuroevolution. 
 

 

2. BACKGROUND AND TAXONOMY OF 

METAHEURISTIC-BASED ANN OPTIMIZATION 
 

2.1 Conceptual background 
 

Training ANNs involves minimizing a highly non-convex 

loss landscape that contains many local minima. Conventional 

gradient-based methods such as stochastic gradient descent 

(SGD) and its adaptive variants Adam and RMSProp often 

converge prematurely and require careful hyperparameter 

tuning, especially in deep or noisy architectures [13].  

Metaheuristic algorithms overcome these limitations by 

performing global, derivative-free searches inspired by 

biological, physical, or social systems [14]. Each individual in 

a population represents a candidate set of network parameters, 

evaluated by the ANN’s prediction error, while stochastic 

operators update the population to balance exploration and 

exploitation [15]. Their ability to explore discontinuous or 

multimodal spaces explains the broad adoption of 

metaheuristics for optimizing ANN weights, topologies, and 

learning hyperparameters [16]. 
 

2.2 Taxonomy of Integration 
 

Integration of metaheuristics into ANN training can be 

understood along two complementary dimensions. The first 

concerns the optimization target, whether the algorithm tunes 

the network’s weights, explores alternative architectures, or 

adjusts key hyperparameters. The second dimension reflects 

the way the metaheuristic interacts with gradient-based 

learning, ranging from simple sequential cooperation to more 

tightly embedded or post-training refinements. 

At the weight level, population-based optimizers such as 

GA [14] and Differential Evolution (DE) [15] directly 

minimize prediction error by searching the continuous 

parameter space. Architecture-level search, by contrast, relies 

on discrete or mixed encodings; methods like ACO [16, 17] or 

the GWO [18] have been used to propose compact or better-

structured topologies. Hyperparameter optimization often 

employs continuous metaheuristics such as Artificial Bee 

Colony (ABC) [19, 20], the Whale Optimization Algorithm 

(WOA) [21], or the SCA [22], which regulate learning rates, 

momentum values, regularization terms, or batch sizes. 

Representative studies illustrate the three main 

hybridization patterns. Sequential hybridization appears in 

work where a metaheuristic provides initial weights or 

configurations before standard backpropagation refines the 

network, as seen in GA-initialized neural models [14]. 

Embedded hybridization occurs when the metaheuristic 

operates inside the training loop for example, PSO updating 

architectures or parameters in tandem with gradient descent, 

as reported by Junior and Yen [13]. Post-training hybridization 

is typically used for pruning or secondary refinement, such as 

Firefly-based re-tuning [23] or GWO-driven adjustment after 

an initial gradient-based phase [16]. 

Table 1 summarizes these interactions by aligning 

optimization targets with the corresponding hybridization 

strategies and provides the conceptual structure used 

throughout the remainder of this survey. 

 

Table 1. Taxonomy of metaheuristic–ANN integration 

 
Optimization Target 

Hybridization Depth 
Sequential Embedded Post-training 

Weights 
Initialization via MH then 

BP/SGD 

Alternating MH + GD within 

epochs 

Pruning / Refinement / 

Re-tuning after GD 

Architecture NAS via MH then fine-tune 
Co-evolving topology with 

training 

Post-hoc structure 

compression 

Hyperparameters 
MH-tuned learning rate, batch 

size, regularization, schedulers 

Adaptive controllers (meta-

controllers) 

Post-hoc schedule 

retuning 

 

2.3 Families of metaheuristics applied to ANN 

optimization 

 

Evolutionary Algorithms 

Evolutionary algorithms maintain population diversity 

through recombination and mutation, allowing robust 

exploration of non-convex search spaces. In one study, a GA-

enhanced Extreme Learning Machine was applied to COVID-

19 diagnosis and showed higher detection accuracy than 

standard back-propagation [14]. Another investigation used a 

centroid-based DE approach for neural-network training, 

reporting faster convergence on benchmark and industrial 

datasets [15]. 

Swarm-Intelligence Algorithms 

Swarm methods emulate collective animal behaviors to 

coordinate distributed search. Work evaluating PSO-guided 

architectures showed that PSO-optimized deep networks can 

improve image-classification accuracy while reducing 

parameter counts [13]. The GWO has also been integrated 

with fuzzy neural networks, yielding superior generalization 

on nonlinear-regression problems [16]. ABC variants have 

demonstrated similar benefits. For example, ABC-based 

training methods produced faster convergence on regression 

tasks [19], and further extensions have been proposed for 

nonlinear-system identification [20]. Ant-based optimizers 

have likewise been adapted for structure search. One 

continuous ACO variant was designed to construct ANN 

architectures automatically [17], while another hybrid ACO–

ANN model achieved strong predictive performance in 

groundwater-quality assessment [18]. 

Physics and Nature-Inspired Algorithms 

Physical-process-based optimizers model oscillation, 

attraction, or diffusion mechanisms to balance exploration and 

exploitation. Studies using the Sine–Cosine Algorithm (SCA) 

to train recurrent networks for ocean-wave prediction reported 

lower RMSE than GA- or PSO-based models [22]. A modified 

2666



WOA has been integrated with ANN for desalination-

performance prediction, confirming improved exploration 

capability [21]. Firefly-based optimization has also been used 

to tune ensemble neural networks for COVID-19 forecasting, 

improving predictive stability compared to gradient descent 

[23]. 

Emerging Physics-Inspired Optimizer: The Gazelle 

Algorithm 

A new physics-inspired method, the Gazelle Optimization 

Algorithm (GO), was proposed to model predator-evasion 

dynamics and maintain a strong exploration–exploitation 

balance [24]. Later work combining GO with ANN for 

mechanical-design problems reported faster convergence and 

higher accuracy than PSO and GWO [25]. 

Hybrid and Ensemble Frameworks 

Hybrid strategies increasingly combine multiple 

metaheuristics to exploit complementary strengths. One 

example integrates PSO and GWO for deep-network 

optimization in cybersecurity, reducing training time and 

enhancing detection accuracy [26]. Such multi-strategy 

designs represent the current frontier of metaheuristic research, 

emphasizing cooperative search and dynamic adaptation 

across optimization stages [27, 28]. 

2.4 Comparative overview 

To illustrate how recent studies distribute across 

optimization targets, hybridization strategies, and application 

domains, Table 2 summarizes representative metaheuristic–

ANN combinations reported in the literature. The table 

provides a quick overview of the algorithm families used, the 

type of ANN tasks they address, and the evaluation settings 

adopted in each study. 

Table 2. Representative metaheuristic algorithms applied to ANN optimization 

Algorithm 
Optimization 

Target 
Main Advantages Reported Limitations 

Application 

Domain 

Genetic Algorithm (GA) 

[14] 

Weights + 

Hyperparameters 

Powerful global search; suitable 

for nonlinear problems 

Slow convergence on deep 

networks 
Medical diagnosis 

Differential Evolution (DE) 

[15] 
Weights 

Maintains population diversity; 

fast and robust convergence 

Computationally expensive 

for large datasets 
Industrial regression 

Particle Swarm 

Optimization (PSO) [13] 

Architecture + 

Weights 

Simple implementation; 

effective global exploration 

Premature convergence; 

requires parameter tuning 
Image classification 

Grey Wolf Optimizer 

(GWO) [16] 

Weights + Fuzzy 

Rules 

Balanced exploration/ 

exploitation; few control 

parameters 

Reduced scalability in very 

high-dimensional spaces 
Fuzzy regression 

Artificial Bee Colony 

(ABC) [19, 20] 
Weights + Biases 

Easy implementation; fast 

convergence 

Sensitivity to colony size; 

early stagnation 

Regression / System 

identification 

Ant Colony Optimization 

(ACO) [17] 

Architecture + 

Weights 

Effective discrete-structure 

search; builds compact 

topologies 

Slow adaptation to 

continuous domains 

Neural architecture / 

Environmental 

modeling 

Whale Optimization 

Algorithm (WOA) [18] 

Weights + 

Hyperparameters 

Adaptive spiral exploration; 

strong global search 
May oscillate near optima 

Desalination 

forecasting 

Sine–Cosine Algorithm 

(SCA) [22] 

Recurrent 

Weights 

Escapes local minima; 

maintains population diversity 

Sensitive to control 

coefficients 

Ocean-wave 

prediction 

Firefly Algorithm (FA) [23] Weights 
Stable convergence; good for 

ensemble models 

May stagnate under noise or 

imbalanced data 

Time-series 

forecasting 

Gazelle Optimization 

Algorithm (GO) [24, 25] 

Weights + Design 

Parameters 

Fast adaptive convergence; low 

parameter count 

Limited benchmark 

validation so far 

Mechanical design 

optimization 

Hybrid PSO + GWO 

Framework [26] 

Architecture + 

Hyperparameters 

Combines global and local 

search; reduces training time 

Additional computational 

overhead 

Cybersecurity 

detection 

2.5 Discussion 

The surveyed evidence demonstrates the maturation of 

metaheuristic-based neural optimization from early 

evolutionary designs to modern hybrid and physics-inspired 

frameworks. Evolutionary (GA, DE) and swarm-intelligence 

(PSO, GWO, ABC, ACO, WOA) methods remain the most 

widely adopted owing to their simplicity and proven reliability, 

while recent algorithms such as SCA, FA, and GO introduce 

adaptive dynamics that enhance global search efficiency. 

Architecture-level exploration, historically dominated by GA 

and ACO, is now largely achieved through hybrid or multi-

population approaches. Despite significant progress, 

reproducibility and computational overhead remain key 

obstacles [27, 28]. The next research phase is expected to 

emphasize self-adaptive, parameter-free hybrids and quantum-

enhanced schemes that jointly optimize ANN architecture, 

hyperparameters, and weights within unified frameworks. 

3. COMPARATIVE TRENDS AND QUANTITATIVE

ANALYSIS (2015–2025)

Trends reported for 2025 refer to forward projections 

derived from existing bibliometric analyses covering up to 

2023–2024. 

3.1 Overview of publication growth 

This section synthesizes quantitative trends as reported by 

prior bibliometric and survey studies, rather than reproducing 

a new database-wide census. Publication counts and family 

shares are therefore cited verbatim or in careful paraphrase 

from existing mappings; where multiple sources converge, 

approximate magnitudes are reported to avoid overstating 

precision. The large-scale analysis of 1,676 metaheuristics 

papers from 1994–2023 refers to the dataset examined by Li 

et al. [29] in Expert Systems with Applications and is 

attributed accordingly. Complementary patterns concerning 

learning-guided and hybrid designs are drawn from recent 
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comprehensive reviews and surveys [30-33], with domain-

focused corroboration in energy and industrial/IoT pipelines 

[34-39]. 

Across the last decade, work coupling metaheuristics with 

neural models exhibits a pronounced upward trajectory. One 

large-scale analysis reports a time series that steepens after 

2019, indicating several-fold growth over mid-2010s baselines 

and extending through 2023 [29]. Independent mappings 

converge on the same narrative: a review of machine-learning-

aided metaheuristics identifies an early-2020s broadening 

from single-algorithm demonstrations to adaptive, learning-

guided mechanisms that increasingly interface with deep 

models [30], while another synthesis of recently developed 

metaheuristics documents a parallel move toward hybrid and 

physics-inspired variants in applied pipelines [32]. Read 

together, these sources support a conservative interpretation 

for 2015–2025: output does not merely rise linearly but 

accelerates during 2020–2023 and continues to expand in 

hybrid, application-driven studies [29-32]. 

As shown in Figure 1, the number of publications on 

metaheuristic-driven neural optimization has risen sharply 

after 2019, reflecting accelerating academic and industrial 

engagement. 

 

 
 

Figure 1. Indicative annual growth of studies on 

metaheuristic-assisted neural-network optimization (2015–

2025) 

 

3.2 Distribution by algorithm family 

 

The mix of algorithm families has also evolved. Historical 

dominance by GA and PSO is clear in earlier windows, yet the 

relative share of Grey Wolf, Whale, and ABC 

implementations grows substantially in the 2019–2022 

interval, especially in regression and forecasting contexts 

where global exploration complements problem-specific 

priors [32]. In the same period, physics-inspired approaches 

oscillatory search akin to sine–cosine, attraction-based firefly 

variants, and emerging predator–prey or quantum-inspired 

designs gain visibility, and hybrid ensembles become 

materially more common [30-32]. A broad bibliometric lens 

underscores this structural shift: one recent mapping shows co-

citation communities reorganizing around ensemble and 

hybrid strategies rather than single-method novelty, with 

keyword co-occurrence maps reflecting sustained attention to 

integration with deep architectures [29]. The net distribution 

remains anchored in the prominence of swarm-based methods, 

but it is dynamic in that physics-inspired and hybrid categories 

constitute the fastest-growing segments after 2020 [29-32]. 

As illustrated in Figure 2, swarm-based algorithms remain 

dominant across the decade, while physics-inspired and hybrid 

paradigms show the fastest relative growth after 2020. 

 

 
 

Figure 2. Evolution of algorithm-family composition across 

three time windows in metaheuristic-assisted ANN 

optimization 
 

3.3 Application domains and dataset patterns 

 

The geography of applications explains much of this 

rebalancing. A focused review of meta-heuristics for deep-

learning energy systems documents strong activity in load and 

generation forecasting, desalination, and power-quality 

estimation; crucially, the same review notes a migration from 

shallow to deep architectures and from static tuning to hybrid, 

bi-level parameterization during 2020–2023 [34]. Concurrent 

surveys in intrusion detection and IoT analytics identify 

similar pressures high dimensionality, class imbalance, and 

real-time constraints that favor global search for feature 

selection or architectural pruning coupled with deep classifiers 

or sequence models [38, 39]. In parallel, macro-scale AI 

bibliometrics covering 2013–2023 report expansion in 

optimization-aware studies across industry-facing domains, a 

trend consistent with the growing use of metaheuristics as 

controllers for compute- and data-efficient learning [40-42]. 

The combined picture is a demand-pull dynamic: as 

deployments move from laboratory benchmarks to operational 

settings, metaheuristic modules increasingly serve as 

resource-aware controllers for deep models, rather than as one-

off “outer loop” optimizers [34, 38, 39].  
 

 
 

Figure 3. Indicative distribution of application domains for 

metaheuristic-based neural-network optimization (2015–

2025) 

 

As depicted in Figure 3, energy and biomedical domains 

dominate current applications, followed by industrial and 

vision tasks, with IoT and cybersecurity emerging as 

secondary yet expanding areas. 
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3.4 Evolution of hybrid, learning-guided, and automated 

designs 
 

A defining feature of the 2020s is the transition from single-

method global search to hybrid frameworks in which 

metaheuristics orchestrate, or co-evolve with, learning. 

Application-driven architectures adopt bi-level designs, 

wrapping deep models with global search layers for structure 

and parameter selection; reported outcomes emphasize 

improved convergence and robustness relative to monolithic 

setups [35]. Beyond these exemplars, the methodology itself 

is becoming more self-configuring. Surveys of machine-

learning-aided metaheuristics describe learned surrogates, 

adaptive operators, and meta-controllers that improve sample 

efficiency and stabilization under limited budgets [30], while 

an AutoML-focused synthesis details population-based search 

for hyperparameters and neural architectures, positioning 

metaheuristics as first-class citizens in automated design 

pipelines [31]. Two additional strands amplify this evolution. 

First, quantum-inspired operators probabilistic encodings and 

rotation-gate-like updates have been systematized and piloted 

for ANN-related optimization, with the appeal of richer 

exploratory dynamics well-suited to hybridization [36, 37]. 

Second, surveys on automated design of metaheuristics 

themselves formalize algorithm components as design 

variables, enabling learning-guided search over operator sets 

and control policies; this closes the loop between optimizer 

design and problem-specific performance and further blurs the 

line between “optimizer” and “learner” [31, 40]. The 

convergence of these strands supports a working thesis for 

2023–2025: adaptivity either by importing quantum-inspired 

diversity or by learning operators is central to competitive 

MH-ANN optimization [30, 31, 36, 37]. 

Figure 4 highlights the rapid surge of hybrid and learning-

guided metaheuristics after 2020, emphasizing the field’s shift 

toward adaptive, self-tuning, and data-aware optimization 

mechanisms. 
 

 
 

Figure 4. Growth trend of hybrid and learning-guided 

metaheuristic frameworks in ANN optimization over time 

 

3.5 Quantitative synthesis and phase characterization 

 

Although precise percentages necessarily depend on 

database scope and query syntax, multiple mappings allow a 

cautious synthesis for 2015–2025. Time-series profiles 

anchored by the ESWA bibliometric indicate several-fold 

growth from mid-2010s to mid-2020s, with the steepest 

increase after 2019 [29]. Within that expansion, family 

composition skews toward swarm-based methods as the 

largest block, while physics-inspired and hybrid categories 

register the highest relative growth post-2020, consistent 

across ML-aided and “recent metaheuristics” reviews [30-32]. 

Domain distributions emphasize energy and 

industrial/mechanical analytics as sustained demand centers, 

with healthcare/biomed and cybersecurity as additional high-

growth areas where global search mitigates nonconvexity, 

constraints, or imbalance [34, 38, 39, 41, 42]. It is therefore 

reasonable, for the purposes of this survey, to characterize 

three overlapping phases: a foundation phase (2015–2018) led 

by GA/PSO exemplars; an expansion phase (2019–2022) in 

which GWO, WOA, and ABC rise alongside early structured 

hybrids; and a consolidation phase (2023–2025) defined by 

learning-guided hybrids, physics-inspired growth, and the first 

wave of quantum-inspired integrations [29-37]. 

 

3.6 Discussion: implications for methodology and 

benchmarking 

 

Methodological implications follow directly from these 

trajectories. As the field has moved toward problem-driven 

hybrids, metaheuristics function less as static outer-loop 

optimizers and more as adaptive scaffolds for deep learning, 

coordinating architecture search, hyperparameter schedules, 

and weight initialization within resource constraints [30, 31, 

35]. Recent reviews repeatedly call for stronger 

standardization of evaluation: reproducible data splits, 

statistically grounded comparisons beyond single-run bests, 

compute-aware reporting, and ablations that illuminate 

operator and controller contributions [30, 31, 40]. Quantum-

inspired surveys add a parallel caution: when diversity 

mechanisms change, baselines must be controlled to separate 

genuine algorithmic value from parameterization effects [36, 

37]. For practitioners and authors, the practical takeaway is 

that claims of superiority should be framed against multiple 

family baselines and hybrid references, with resource-

normalized metrics whenever possible. The comparative study 

that follows in this paper adopts that stance, using multi-family 

anchors and reporting where prior mappings already provide 

defensible aggregate evidence. 

 

 

4. CHALLENGES, OPEN ISSUES, AND FUTURE 

DIRECTIONS 

 

4.1 Benchmarking, data regimes, and external validity 

 

Despite rapid methodological progress, the empirical basis 

of metaheuristic-assisted neural optimization remains uneven. 

Many studies still rely on bespoke or small datasets with 

limited shift diversity, reporting single-run best scores under 

fixed seeds; such practices inflate apparent gains and 

complicate cross-paper comparison. Stronger norms are 

moving in from machine learning more broadly pre-registered 

protocols, artifact checklists, and open benchmarks which we 

argue should be mirrored for metaheuristics-in-ANNs as well 

[43-45]. Domain-specific suites in energy, industrial 

prognostics, cybersecurity and clinical time series would 

further support external validity by testing metaheuristics as 

adaptive controllers rather than one-off outer-loop optimizers 

[42]. A practical route to standardization is to separate 

“benchmark-style” reporting from “system-style” reporting 

within the same paper. The former should target fixed budgets 

and fixed splits, expose distributions across seeds, and log 

2669



 

optimizer states; the latter should demonstrate transfer to a 

realistic pipeline where data shift, class imbalance, and 

nonstationary objectives are present. When authors reuse 

public task families time-series forecasting, fault diagnosis, 

medical screening they should also reuse prevailing 

train/validation/test protocols so that improvements are 

traceable rather than artifacts of alternative splits. Public 

leaderboards can help, but only when they publish logs, 

variance measures, and resource usage alongside point scores; 

otherwise they encourage hyper-specialization that does not 

survive contact with new data. These design choices align with 

artifact and benchmarking norms that have already improved 

reproducibility in adjacent areas [43, 44]. 

 

4.2 Evaluation methodology and statistical rigor 
 

Stochastic optimizers demand statistical treatment 

commensurate with their variability. Distributions over many 

independent runs, nested cross-validation when model 

selection entangles training, and family-wise error control are 

necessary to avoid optimizer overfitting to particular seeds or 

splits [45-54]. Compute-normalized reporting is equally 

important: two methods with comparable accuracy but 

radically different wall-clock or GPU budgets should be 

compared on a normalized Pareto frontier rather than at a 

single operating point [46, 50]. Ablations in hybrid 

frameworks should decompose gains into contributions from 

search operators, parameter controllers, and gradient 

components, with sensitivity analyses to population size, 

perturbation schedules, early-stop criteria, and scheduler 

design [31, 47]. When optimization is coupled to model 

selection, nested cross-validation is the default safeguard 

against double dipping; for large deep models, stratified 

repeated holdouts with matched seeds can approximate similar 

protection at lower cost. Effect sizes and confidence intervals 

should accompany hypothesis tests, and rank-based multiple-

comparison procedures are preferable when accuracy 

distributions are non-Gaussian. Reporting should include not 

only final-score distributions but also learning curves and 

anytime profiles under fixed compute budgets, because many 

hybrids deliver gains early and then plateau ; for practitioners, 

these curves are more actionable than single terminal points 

and reduce the temptation to overspend compute for marginal 

last-percent improvements [45-54]. 
 

4.3 Compute, complexity, and sustainability 
 

Global search wrapped around deep training multiplies 

compute demand; population size times model-evaluation cost 

often dominates end-to-end complexity. Recent work shows 

how careful datacenter scheduling, hardware utilization, and 

carbon-aware region selection can cut training footprint 

substantially, but also cautions that reporting must include 

energy and water usage to be meaningful beyond accuracy 

alone [46-50]. Practical deployments in industrial prognostics, 

grid forecasting, and intrusion detection benefit from explicit 

accuracy–latency trade-off knobs and lightweight carbon 

accounting (e.g., automated logging via widely used trackers), 

bringing sustainability into the optimization loop alongside 

accuracy [55, 56]. Two complementary ideas reduce footprint 

without sacrificing rigor. The first is multi-fidelity evaluation: 

early generations train on reduced epochs, subsets, or lower 

input resolution, with a principled promotion policy to high 

fidelity for promising candidates [49]. The second is weight 

inheritance and warm-starting across populations, which 

preserves exploration while amortizing training cost. Both 

require careful bias checks, especially when promotion rules 

correlate with noise in early evaluations. In parallel, green-AI 

practice suggests reporting energy and water usage for both 

training and inference, ideally with lightweight tooling that 

logs carbon intensity by cloud region and hardware class [46, 

50, 55, 56]. Publishing accuracy–cost Pareto frontiers then 

becomes routine and moves the conversation from “best 

accuracy” to “best accuracy at a given budget.” 

Practical reporting can rely on simple, reproducible metrics 

such as total FLOPs, wall-clock time per evaluation, 

cumulative GPU-hours, and peak memory footprint. When 

energy awareness is required, emission estimates based on 

tools such as CodeCarbon or hardware-level energy counters 

can provide lightweight carbon or energy reporting. Including 

these metrics alongside accuracy makes comparisons between 

metaheuristics and gradient-based baselines more transparent 

and compute-normalized. 

 

4.4 Parameter control and self-adaptation 

 

Static, hand-tuned control parameters are at odds with the 

nonstationary dynamics of deep training. Learning-guided 

operators, surrogate models, and meta-controllers have 

emerged as effective ways to adjust population size, 

exploration radii, and exploitation pressure online, reducing 

wasted evaluations and stabilizing convergence when 

objectives are noisy or multi-objective [47, 51]. The open issue 

is to make these controllers data-efficient, resistant to 

overfitting, and cleanly separated from evaluation data; 

contemporary AutoML perspectives argue for controller 

baselines and clear operator-level ablations to enable apples-

to-apples comparisons across families and domains [31, 49]. 

Self-adaptation works best when controllers react to signals 

that are cheap, stable, and predictive of downstream 

generalization. Gradient variance, curvature proxies on 

validation loss, and measures of flatness can regulate 

exploration amplitude and population size; surrogate models 

can provide low-fidelity votes on yet-unevaluated candidates; 

and learned restart policies can prevent long, unproductive 

exploitation phases. To avoid leakage, the controller’s training 

views must remain disjoint from the final evaluation views. 

Publishing controller ablations, what happens when it is 

disabled, slowed, or given noisy signals clarifies whether 

performance derives from the metaheuristic family, the 

learned controller, or their interaction [31, 47, 51]. 

 

4.5 Hybrid design principles and theoretical grounding 

 

Hybrids now dominate empirical reports, but principled 

design remains under-theorized. A defensible template treats 

hybridization as bias–variance management: one component 

ensures broad coverage, another concentrates samples near 

promising basins, and a third leverages gradient information 

for local refinement subject to trust regions. Formal guidance 

from black-box benchmarking frameworks such as 

COCO/BBOB is particularly useful in this context. These 

frameworks define standard noise models, fidelity levels, and 

evaluation-budget accounting, which help isolate true 

algorithmic progress from artifacts caused by inconsistent 

experimental conditions. In the setting of ANN optimization, 

where loss surfaces are noisy, nonconvex, and often evaluated 

under different data splitsthese principles offer a structured 

way to design fair, comparable experiments even when the 
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underlying tasks differ from classical continuous benchmarks. 

Stability analyses and bounded-noise regret perspectives 

from AutoML and hyperparameter optimization further 

encourage hybrids specified in terms of state, invariants, and 

update algebra, allowing failure modes to be reasoned about 

and components to be composed safely [31, 49]. A principled 

hybrid can therefore be described by three ingredients: an 

exploration kernel with explicit diversity guarantees, a local 

model-based or gradient-based refiner protected by a trust-

region safeguard, and a scheduler that allocates evaluation 

budgets between them according to measurable progress. 

While such a template cannot provide convergence guarantees 

on nonconvex, data-stochastic objectives, it provides a 

foundation for stability reasoning and ablation-friendly 

comparisons. Benchmarking guidance from COCO/BBOB 

particularly noise modeling, budget control, and instance-

family variationhelps ensure that algorithmic claims remain 

robust across scales rather than being finely tuned to a single 

fidelity, dataset, or seed configuration [40-44, 46]. 

 

4.6 Multi-objective, constraint-aware, and safety-critical 

settings 

 

Many target domains impose coupled objectives accuracy, 

sparsity, latency, energy and hard constraints that invalidate 

ad-hoc penalties. Metaheuristics are naturally suited to Pareto-

front search and constraint handling, and recent surveys in safe 

learning and constraint modeling provide reusable 

formulations (e.g., CMDP-style or augmented Lagrangian 

relaxations) that can be integrated into hybrid ANN training 

[48]. On the architecture side, multi-objective NAS explicitly 

trades accuracy with FLOPs, memory, and device latency; 

recent overviews consolidate techniques and benchmarks 

practitioners can adopt directly [52, 57]. In safety-critical 

contexts, uncertainty and fallback behavior become first-class: 

global search can be repurposed to stress-test models by 

optimizing for worst-case slices or to tune cost-sensitive losses 

that reflect operational risk [48, 33]. Constraint handling is 

most persuasive when constraints are treated as first-class 

citizens via projection, augmented Lagrangians, or CMDP-

style formulations for sequential tasks. In static prediction, 

cost-sensitive and coverage-controlled losses align training 

with deployment risk; in streaming or control, robust and 

distributionally robust variants explicitly optimize for worst-

case or shifted distributions. Hardware-aware NAS 

demonstrates that Pareto-optimal trade-offs between accuracy, 

latency, and memory are achievable on real devices, and the 

same multi-objective logic should guide weight and 

hyperparameter search in constrained settings [48, 52, 57]. 

 

4.7 Reproducibility, openness, and lifecycle reporting 

 

Minimal reproducibility packages should include seeds, 

splits, YAML configurations for the optimizer and learner, 

exact hardware footprints, and scripts that recreate all figures 

and tables from raw logs. Artifact-evaluation checklists and 

template appendices have proven practical in adjacent ML 

communities and are directly applicable here [44, 53]. Where 

licensing permits, releasing intermediate populations and 

controller traces enables secondary analysis of search 

dynamics; lifecycle reporting how models drift under data 

shift and how controllers are re-tuned raises the practitioner 

value of academic papers [31, 44]. Beyond releasing code and 

seeds, mature studies disclose failure cases and negative 

results (e.g., when a tuned baseline such as PSO or DE 

matches a novel hybrid outside its home domain). For 

industrial or clinical collaborations, authors can share 

anonymized optimizer traces and controller logs even when 

raw data cannot be published. Lifecycle reporting including 

how models drift and how the optimizer or controller responds 

bridges the gap between academic experiments and operations 

and aligns with the artifact-evaluation culture gaining traction 

across ML venues [44, 53]. 

 

4.8 Outlook 

 

Progress is likely to concentrate on three converging threads. 

First, self-adaptive hybrids will couple global exploration with 

learned controllers that regulate intensity based on training 

signals, making metaheuristics feel less like static wrappers 

and more like intelligent schedulers [31, 47]. Second, 

resource-aware optimization will treat compute and latency as 

first-class objectives, producing results that hold under 

realistic budgets and enabling deployment on edge and 

industrial platforms [46, 50, 55]. Third, constraint- and risk-

aware formulations will align objective functions with 

application stakes, integrating safety, fairness, and reliability 

into the optimization loop [48, 52]. Anchored in standardized 

benchmarks, transparent reporting, and careful statistics, these 

directions can move metaheuristic-assisted neural learning 

from promising case studies to dependable, scalable 

methodology [43, 45, 53]. 

To make these distinctions operational for researchers and 

practitioners, it is useful to indicate when each hybridization 

strategy is most appropriate. Table 3 summarizes typical 

conditions under which sequential, embedded, or post-training 

schemes are preferred, together with the practical advantages 

they generally offer. The table is not meant as a prescriptive 

decision rule; rather, it serves as a concise guide for selecting 

a hybridization approach within real optimization workflows. 

 

Table 3. Practical guidance for selecting a hybridization strategy 

 
Hybridization 

Strategy 
Use When… Typical Advantages 

Representative 

Examples 

Sequential 
You need a good starting point or want to stabilize 

early training without heavy computation. 

Low overhead; easy to implement; 

improves initialization. 
GA → BP, DE → BP 

Embedded 

The search needs to adapt during training (e.g., 

evolving architectures or tuning hyperparameters 

on the fly). 

Strong exploration; reacts to training 

dynamics; suitable for unstable tasks. 

PSO–DNN co-training, 

adaptive LR/architecture 

updates 

Post-training 

The model is already trained and you want 

refinement, pruning, or targeted improvement 

without retraining from scratch. 

Reduces retraining cost; improves 

accuracy or sparsity; useful in late-

stage optimization. 

Firefly-based refinement, 

GWO-FNN post-tuning 
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5. SURVEY PROTOCOL AND REPRODUCIBILITY 

 

5.1 Scope and research questions 

 

This survey investigates how metaheuristics are used to 

optimize ANNs across weights, architectures, and training 

hyperparameters, with emphasis on hybrid and learning-

guided designs introduced during 2015–2025. The guiding 

questions are to what extent metaheuristics improve training 

stability and generalization under realistic budgets, how 

algorithm-family usage has shifted over time, which domains 

have driven adoption, and what methodological practices 

enable reproducible, compute-aware comparisons. 

 

5.2 Sources and search strategy 

 

To identify primary studies, the search space comprises 

Scopus, Web of Science, IEEE Xplore, ACM Digital Library, 

and ScienceDirect, complemented by publisher portals for 

MDPI, SpringerLink, and Nature Portfolio. Queries combine 

controlled terms for metaheuristics and neural modeling, for 

example: “(metaheuristic OR swarm OR evolutionary OR 

physics-inspired OR hybrid) AND (neural network OR deep 

learning OR CNN OR RNN OR NAS) AND (training OR 

optimization OR hyperparameter OR architecture)”. Searches 

are restricted to English-language articles, journal papers, and 

full conference proceedings from 2015–2025. Reference 

chaining and author clustering are used to recover missing but 

influential items, and duplicates are resolved before screening. 

 

5.3 Eligibility criteria and screening 

 

Two screening passes are applied. The first assesses title 

and abstract to remove papers that only cite metaheuristics 

without using them to train or tune neural models, that 

optimize non-ANN learners exclusively, or that present 

editorials with no experiments. The second evaluates full texts 

against four conditions: the study must implement a 

metaheuristic to optimize at least one ANN component; it must 

specify datasets and metrics; it must provide enough 

procedural detail to permit reimplementation; and it must 

report baselines that allow effect sizes to be inferred. Grey 

literature, theses, and extended abstracts are excluded to 

maintain comparability. 

PRISMA-style flow description 

To align with established practices for systematic reviews, 

a PRISMA-style flow description was added to summarize the 

identification, screening, eligibility, and inclusion stages. The 

initial search retrieved a broad set of records across Scopus, 

Web of Science, IEEE Xplore, ACM Digital Library, and 

ScienceDirect. After duplicate removal, titles and abstracts 

were screened for relevance to metaheuristic–ANN 

optimization. Full-text eligibility assessment was then applied 

criteria based on methodological clarity, inclusion of baselines, 

dataset specification, and reproducibility. The final set of 

included studies reflects those that met all relevance and 

quality requirements. 

 

5.4 Data extraction and quality assessment 

 

For each included paper, the extraction schema records the 

optimizer family and variant, the optimized target (weights, 

architecture, hyperparameters, or mixed), the network type 

and task, the datasets and splits, the evaluation metrics, the 

compute budget and hardware, and the presence of ablations, 

sensitivity analyses, or multi-run statistics. Study quality is 

assessed along five axes: experimental transparency, strength 

of baselines, statistical treatment of stochasticity, compute-

normalized reporting, and reproducibility artifacts. Papers that 

lack essential information are retained for qualitative 

discussion but are not used in quantitative comparisons. 

 

5.5 Synthesis and limitations 

 

Evidence is synthesized in two layers. The first aggregates 

high-level trends reported by existing bibliometric mappings 

and domain surveys to contextualize growth and family 

composition; this layer underpins Section 3 and is explicitly 

attributed to prior sources. The second integrates the newly 

screened corpus to illustrate representative designs and to 

ground claims about hybridization, parameter control, and 

constraint-aware optimization. Threats to validity include 

indexing bias across databases, keyword drift that can miss 

emerging algorithm names, and reporting heterogeneity that 

complicates compute-normalized comparisons. These are 

mitigated by multi-database searches, reference chaining, 

explicit quality axes, and by presenting trends as approximate 

ranges when independent mappings diverge. 

 

 

6. CONCLUSION 

 

This survey examined ten years of work on using 

metaheuristic algorithms to improve neural-network 

optimization. Rather than treating each contribution in 

isolation, the goal was to understand how the field itself has 

changed. The two axes we relied on what is being optimized 

(weights, architectures, hyperparameters) and how deeply the 

metaheuristic interacts with gradient descent help show that 

the recent diversity of methods is less chaotic than it first 

appears. Many of the newer designs can be traced back to 

simple differences in where the metaheuristic intervenes 

during training. 

A second point that emerged throughout the review is the 

need for stronger methodological habits. Results reported in 

the literature do not always survive outside their original 

experimental setups. When authors rely on multi-run statistics, 

clear ablations, and compute-normalized comparisons, the 

advantages of metaheuristics become much more credible. In 

contrast, when evaluations depend on a single lucky seed or 

unrestricted compute, even modest baselines can match or 

surpass a proposed hybrid. A more disciplined evaluation 

culture would help separate genuinely strong ideas from those 

that only work under narrow or unreported conditions. 

Looking ahead, several directions appear both realistic and 

promising. One concerns self-adaptive hybrids. Instead of 

relying on hand-tuned schedules, it is increasingly feasible to 

attach small meta-learning controllers, such as simple neural 

or rule-based modules that adjust exploration strength or 

population size based on signals that are already available 

during training, such as gradient variance or early-epoch 

stability. Another direction involves quantum-inspired 

diversity mechanisms. These do not require full quantum 

hardware; even lightweight ideas such as rotation-gate-style 

perturbations or probabilistic amplitude encodings can inject 

useful variability into a population without adding many 

parameters. Alongside these developments, constraint-aware 

optimization deserves more attention, especially in domains 
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where accuracy must be balanced with safety, latency, or 

fairness. Finally, reproducible artifacts configuration files, 

seeds, logs, and even traces of how a controller behaves during 

training will be essential if the community wants its findings 

to accumulate rather than reset each time. 

If these efforts continue, metaheuristics will move from 

being treated as occasional add-ons to becoming integrated 

components of neural-network optimization. The result is not 

only better performance, but better evidence, clearer 

comparisons, and a smoother path toward practical, real-world 

deployment. 
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