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A self-contained guidance system is required in robotics and automation laboratories for
autonomous navigation purposes. In laboratory conditions where conditions are constantly
changing, regular fixed-path solutions will not work. In this paper, a comprehensive
framework for a tour guide robot is developed. An Al-driven visual navigation system is
used to guide the robot. Simultaneous localization and mapping (SLAM) is implemented
instead of the traditional line following approach. Deep learning-based obstacle detection
is optimized for robot path planning. ORB-SLAM?2 (monocular version) is considered for
real-time localization and mapping. A specific data set is taken from the laboratory for
fine-tuning of YOLOvS5s for dynamic obstacle detection. The algorithm is extended for
real-time path planning to avoid obstacles in the robot’s path. Raspberry Pi 4 and Arduino
Uno are used for the development of the embedded system so that it compares both for
practical deployment feasibility. In this research, a 40% reduction in tour completion time
and a 95% obstacle avoidance success rate are achieved. This investigation has achieved
an average path deviation accuracy of 1.1 cm. A sensor fusion architecture is used to
combine visual SLAM feature with deep learning detection for robust navigation. This
research considers and impacts the architecture contrasts on hardware. Extensive
performance characteristics are studied under different environmental conditions. This
proposed Al-driven robot navigation in lab operations has set a new benchmark for
intelligent robotics in academia and the public sector.

1. INTRODUCTION

recognition, and adaptive path planning for intelligent
navigation decisions.

While robotics and automation lab technologies provide a
learning platform, the frequent human involvement in guided
lab tours highlights technological inefficiencies [1].
Traditionally, line-following robots have been used to guide
people. However, these types of robots are resilient to
environmental changes. Line-following robots use predefined
paths and are not flexible to adapt to environmental changes
[2]. These contradictions are a major obstacle to their use in
real laboratories. It is difficult to use line-following robots in
places where equipment positions change and tourist traffic
patterns change frequently [3]. To overcome these challenges,
this research uses an Al-driven visual navigation system. The
aim of this research is to develop a navigation system for
laboratory environments without predefined paths [4]. The
architecture is developed by three technologies: visual
simultaneous localization and mapping (SLAM) for spatial
awareness, deep learning-based object detection for obstacle
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ORB-SLAM? has real-time localization and mapping in its
monocular configuration [5]. It provides metric scale
environmental perception. In this research, dynamic obstacle
detection is performed by YOLOvSs [6]. This YOLOVS
architecture is specifically fine-tuned for laboratory
environments. An A* algorithm integrates real-time obstacle
information with global path planning in the navigation system
[7]. It enables dynamic rerouting in response to environmental
changes [8]. This research contributes to a novel sensor fusion
framework that combines visual SLAM features with deep
learning-based object detection. It creates a unified
representation for navigation decision making. The hardware
is Raspberry Pi 4 for optimized implementation of
computationally intensive algorithms. The Raspberry Pi 4 has
achieved real-time implementation through careful system
design and optimization. This research provides experimental
validation in realistic laboratory settings. Several metrics
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include navigation performance to characterize system
performance. Computational requirements and environmental
robustness should be considered in developing the framework.

Section 2 reviews relevant literature on visual SLAM, deep
learning for robotics, and path planning algorithms. Section 3
details our system architecture and mathematical framework.
Section 4 describes the implementation methodology. Section
5 presents experimental results and analysis. Section 6
concludes with future research directions.

2. LITERATURE SURVEY

The development of autonomous tour guide robots has
evolved significantly over the past decades. Thrun et al. [3]
demonstrated the feasibility of autonomous robot navigation
in public areas. It has various limitations such as computing
resources and sensor technology [9]. This developer system
mostly relies on laser range finders and pre-mapped
environments. It also has limitations such as limited
adaptability and increasing deployment costs. This research
considers modern approaches in computer vision and machine
learning systems [2]. It offers more flexibility and cost-
effective solutions. Visual SLAM as another alternative to
traditional sensor-based localization methods [10]. Redmon et
al. [6] incorporated the capabilities of the camera insect
localization method. ORB-SLAM is a feature-based method
that is wused to significantly improve and increase
computational efficiency [11, 12]. Recent research focusing on
real-time performance and robustness in dynamic
environments [11]. ORB-SLAM?2 has implemented embedded
hardware for practical deployment in the laboratory, which I
consider to be significantly cost-effective [3]. Recent
advancements in visual SLAM for dynamic environments
have shown promising results. Bescos et al. [13] introduced an
approach for tracking, mapping, and inpainting in dynamic
scenes, which is particularly relevant for tour guide robots
operating in environments with moving people and objects.
Similarly, Yu et al. [14] presented a semantic visual SLAM
system that integrates semantic segmentation to better handle
dynamic objects. More recently, Zhu et al. [15] proposed a
double-constrained visual SLAM approach for realistic map
reconstruction in dynamic scenes, offering improved
robustness. For navigation in dynamic environments, deep
reinforcement learning approaches have shown significant
potential [16], though they often require extensive
computational resources not suitable for embedded systems
like Raspberry Pi[17]. Deep learning has been used for robotic
perception. It gives importance to any objective question and
visual perception [18]. The evolution has been from traditional
computer vision methods to deep learning methods.
Architectures like R-CNN have enabled [10]. Redmon et al.
[6] has been used for real-time object detection with high
accuracy. YOLOVS has used a balance of speed and accuracy,
YOLO is also suitable for real-time robotic applications in
which computing resources are limited. Using advanced
technologies, robots are able to understand and perceive the
environment more effectively.

This research has opened up new possibilities for
autonomous navigation in complex situations and dynamic
spaces. A grid-based approach has considered path planning
algorithms in robotic systems. The A* algorithm [7] contains
the fundamental principles for optimal path finding in robotic
systems [19]. The real-time dynamic window approach and
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potential field methods are important aspects of the robot
navigation framework against obstacles. These can adapt to
changing environmental conditions while maintaining optimal
combinations.

3. SYSTEM ARCHITECTURE AND MATHEMATICAL
FRAMEWORK

3.1 System overview

In this research, SLAM and obstacle detection are
performed using a camera as the primary sensor. Raspberry Pi
is used as the main processing unit in this embedded system.
In the research, localization and mapping are performed with
the help of ORB-SLAM2. Planning and object detection are
performed using YOLOVS. Raspberry Pi handles the high-
level navigation commands and is implemented by Arduino
along with motor control. It has a hierarchical control structure
in which high-level decision making is implemented by the
low level activation system.

3.2 Robot kinematics

Different configurations are commonly used in mobile
robotics. This given kinematic model provides a robust
underlying mathematical model for motion control and path
following. The robot’s pose in the world coordinate system is
represented by g = [x,y, 6], where x and y denote position
coordinates and 6 represents orientation. The kinematic

equations are:
x vcos 6
qg=|y|=|vsind
2] W

For a differential drive robot with wheel radius » and wheel
separation L, the linear velocity v and angular velocity w relate
to wheel angular velocities w, and w; as:

(1)

v:%(a), +a),),a):%(a),,—a),)

2)

These equations form the basis for our motor control system
implemented on the Arduino microcontroller, converting
high-level velocity commands into precise wheel movements.

3.3 Visual SLAM implementation

We implement ORB-SLAM2 in its monocular
configuration, optimized for embedded systems. The SLAM
problem is formulated as maximum a posteriori (MAP)
estimation:

*

Xot,M" = arg max p(Xo.m| zy.¢, Us.) 3)
xo:t,m
Applying Bayes’ rule and Markov assumption:
p(XO:t,m | Zl:t’ ul:t) o«
(4)

p('xu)p(m)Hp(Zk | x,m) p(x [ X, _y,14;)

k=1

Known parameters from laboratory equipment are taken for



monocular SLAM. The G20 framework and ORB-SLAM?2
are combined for loop closure detection and pose graph
optimization. This is useful for correcting accumulated drift
over time and maintaining global consistency in the system.
The system runs on a Raspberry Pi 4 at 30 Hz and tracks
approximately 1000 ORB features per frame.

3.4 YOLOVS object detection integration

In this research, YOLOvVSs was used as an optimizer for
embedded deployment. To find the tuned model, more than
500 images of a laboratory with various obstacles such as
chairs, equipment cards, and some human figures were taken.
The bounding box and confidence score were found to find the
output for each frame:

Conﬁdence = P(Ob]ect) X IOUtruth

pred (5 )

Detected obstacles are converted into a local occupancy grid
with resolution 0.1 m using the following transformation: for
each detection with bounding box (x., y., w, h) and confidence

¢, we compute the corresponding occupancy probability
dZ

Pocec = C.€ 202, where d is the distance from grid cell center

to detection center and ¢ = 0.3 m. The detection system

operates at 15 Hz on the Raspberry Pi 4.

3.5 Enhanced A* path planning

The path planner operates on a 2D grid map generated by
SLAM with resolution 0.05 m. The A* algorithm minimizes:
f(n) = g(n) + h(n) (6)

where, g(n) is the actual cost from start to node n, and h(n) is

the heuristic estimate to goal. We employ Euclidean distance
as heuristic:

h(n) =, -x,) +(,-,)’ (7)

A real-time cost map is used to enhance the algorithm to
avoid moving obstacles. A safety radius of 0.5 meters is
maintained around obstacles. It is determined as optimal
through experimental validation to balance safety and
navigation efficiency. The algorithm attempts to plan a new
route at 5 Hz when new obstacles are detected within a range
of 2 meters.

4. METHODOLOGY

The robot platform is assembled with properly selected
components. The performance of this project has to balance
cost and reliability. Raspberry Pi 4 with 4 GB RAM is a main
processing unit in this system. It provides enough computing
power for SLAM at the same time. It is helping in object
detection and path planning. Arduino Uno is capable of
handling motor controls according to high level decisions.
Webcam Logitech C920 HD Pro Webcam is used as the
primary visual sensor.

It provides high-quality images at 30 FPS. L298N motor
driver is used to control motor decisions. DC gear motor is
connected to encoder for closed loop control. 12 V 7 mAh
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battery pack is used to power the system. Additional
emergency obstacle detection is provided with the help of
ultrasonic sensor as an additional safety layer. It operates at 20
Hz to ensure reliable operation even when visual perception is
compromised. The complete hardware architecture is shown
in Figure 1. Raspberry Pi is capable of processing visual data
and generates navigation commands accordingly. The
commands are transmitted to Arduino via UART. PID control
is applied by Arduino at 100 Hz to get accurate speed.

Left Motor | Right Motor

Motor Driver L298N

Mg«ﬂ:mnml

Arduino Uno

Camera

Al Processing

Raspberry Pi 4 UART

IR Sensor % ﬁtrasonic

12V Battery

Figure 1. System hardware architecture showing component
interconnections

Initialize Raspberry Pi
System Boot

Load SLAM Module
ORB-SLAM2

Load YOLOv5 Model
Pre-trained Weights

Main Processing
Loop Active?

Capture Camera
Frame

Parallel| Processing

YOLO Object
Detection

SLAM Processing
Feature Tra

System Shutdown
and Cleanup

Figure 2. Raspberry Pi software architecture and data flow



The software system employs a multi-threaded architecture
on the Raspberry Pi to maximize computational efficiency and
real-time performance. As shown in Figure 2, separate threads
handle different aspects of the navigation pipeline:

1. SLAM Thread: Runs ORB-SLAM2 at 30 Hz for
continuous localization and mapping.

2. Perception Thread: Executes YOLOVS5 at 15 Hz for
obstacle detection.

3. Planning Thread: Runs enhanced A* algorithm at 5
Hz for path planning.

4. Control Thread: Communicates with Arduino at 20
Hz for motor control.

Arduino Boot

Initialize Pins

Initialize UART

Communication

Initialize Motor
Driver L298N
Initialize IR

and Ultrasonic

Loop Rate: 100Hz

Main Control
Loop

Active

Check UART for ;
RPi Commands /[

Parse Velocity
Commands

Read Local
Sensors

Safety Check
Passed?

Emergency Stop
Activate Brakes
Yes

Calculate PWM
Signals

Drive Motors
Differential Control

Figure 3. Arduino motor control system architecture

Inter-thread communication uses shared memory buffers
with mutex protection to ensure data consistency. As shown in
Figure 3, the Arduino runs a real-time control loop at 100 Hz,
implementing PID control for precise motor actuation.

The size of the robotic library is 10 meters by 8 meters in

which all the obstacles are available and they are used for the
experiment in this research. Two types of obstacles are used
one is the static obstacle and the other is the dynamic. The
static obstacles are tables, equipment, and racks available.
Figure 4 presents experimental laboratory layout showing
navigation path. The dynamic obstacle moving people are
temporarily placed objects. Several environmental factors are
considered which include normal lighting 500 lux, low
lighting 100 lux and different obstacle densities.

The system has undergone 100 navigation tests and 200
obstacle avoidance tests for systematic testing. Various
performance characteristics are considered for the testing.
These include accuracy, efficiency, obstacle awareness,
success rate, computing resource usage, and user experience
rating for 50 participants.

Robotics and Automation Lab Layout

’@ Exhibit 2 (CNC)

Exhibit 5 (AGV Bay)

Figure 4. Experimental laboratory layout showing navigation
path and obstacle locations

5. RESULTS AND DISCUSSIONS
5.1 Navigation performance analysis

Table 1 gives a comparison of Al based SLAM system and
traditional line following system. This Al based SLAM system
is better in all parameters except computational load. It
reduces the time by 40% in two times and it shows that this
system is more efficient than traditional system. The
developed system reduces the deviation by 65.6% i.e. from 3.2
cm to 1.1 cm. It shows that SLAM provides excellent
localization accuracy. This SLAM tracking provides
localization success rate of 98.2%. In this system, primary
failures occur at 15% turns and 72% in low texture areas.
[Mlumination changes are causing 13% failure results.
Regression analysis is used to find the correlation between
path deviation and SLAM tracking stability. A strong negative
correlation R? = 0.83 was found between SLAM feature
number and path segmentation. If ORB feature tracking is
reduced to less than 300 features per frame, the path deviation
increases by an average of 2.7 cm. This shows that sufficient
feature density is important for navigation accuracy.

Table 1. Navigation performance comparison (100 trials)

Metric LF System Al SLAM System Improvement P-Value

Average Tour Time (min) 85+04 51+£02 40.0% <0.001
Path Deviation (cm) 32+0.8 1.1+0.3 65.6% <0.001
Average Speed (m/s) 0.5+0.1 0.8 +£0.05 60.0% <0.001
Localization Success Rate (%) 100 (Fixed) 982+1.2 -1.8% 0.023
Computational Load (CPU%) 15+3 78 £8 +420% <0.001




5.2 Obstacle avoidance performance

Table 2 shows obstacle awareness performance is
demonstrated after 200 trials. The system maintains a high
success rate in challenging situations. The computational load
is increasing due to the crowded environment, thus reducing
the system performance. This is due to the more frequent path
lab planning requirements. A success rate of 91.8% has been
achieved in this situation. The ultrasonic sensor is providing
emergency stop functionality. It provides 100% liability for
immediate collision prevention. Parameter sensitivity analysis
is performed to understand the relationship between YOLO
confidence threshold and avoidance performance.

Figure 5 shows three confidence shots reduced from 0.7 to
0.5. It shows an 18% increase in detection rate but at the same
time a 7% decrease in avoidance success rate. This is due to
increased false positives. The analysis gives an optimal
threshold of 0.65. I will discuss the balance accuracy of 92.3%
and recall of 89.7%. The abstract avoidance success rate
strongly suggests that R’ is equal to 0.76 with the time

encountered within a 1.5 m range of the robot to obstacles
encountered beyond 2.5 m, the avoidance success rate is 15%
lower.

Effect of YOLO Confidence Threshold on Detection Performance

.'.______'_ - - - . - - -
—~ 95 -_____‘_________ L | 1
— =
o ool e .
& - T
Bossf o= \\\ |
g
o ™S

20 \.\. m

1 1 1 1 1 1 1 1 1
0.4 0.45 0.5 (.55 0.6 0.65 0.7 0.7 0.8
Confidence Threshold
—-— Detection Rate —E—E’rec:isim;l

Avoidance Success Rate

The optimal threshold of 0.65 balances detection rate, precision, and
avoidance success

Figure 5. Parameter sensitivity analysis showing trade-offs
in YOLO confidence threshold selection

available for replanning. When comparing obstacles
Table 2. Obstacle avoidance performance (200 trials)
Scenario Success Rate (%) Detour Time (s) Path Increase (%)

Single static obstacle 100
Multiple static obstacles 98.5
Dynamic obstacle (Moving) 95.2
Crowded environment 91.8
Emergency stop 100
Overall average 97.1

2.1+0.5 82+2.1
43+12 15.7+3.8
38+1.1 123+£2.9
6.2+1.8 22.5+5.1
0.5+0.1 0

34+13 11.7£3.5

5.3 Computational performance and system reliability

Figure 6 presents a comparison of computational resource
utilization between Al SLAM and LF systems. Four parameter
values namely CPU usage, memory usage, inference time and
power consumption are reported. AISLAM inference time
includes both SLAM and YOLO processing time. The CPU
load utilization shows 78% utilization during navigation. It
starts from 92% during simultaneous SLAM mapping and
obstacle detection. Some important consequences of this high
utilization are given below.

1. Thermal Management: The Raspberry Pi 4 reached 85°C
after 25 minutes of operation without active cooling. Due to
this, it reduces the CPU frequency from 1.8 GHz to 1.4 GHz.
This frequency reduction increases the SLAM processing
time. It increases the processing time by 35% and, therefore,
causes frame drops in 2.1%.

2. Real-time Performance Impact: Simultaneous loop
closure and solid obstacle detection in SLAM occur during
peak load periods. The total processing latency for 15Hz
operation is sometimes more than 66ms per frame. SLAM
tracking loss recovers to 0.8% of frames in 100ms processing.
YOLO frame dropping is 1.3% in dense obstacle conditions.
This causes a 120ms delay between path planning re-planning
events.

3. Reliability Concerns: Memory fragmentation increases
SLAM initialization time by 45% in long-term testing over 10
hours. Periodic memory cleanup routines are required to
maintain system stability.

4. Frame Drop Analysis: When SLAM and YOLO are under
heavy load conditions, it shows 67% frame drop in the
analysis. ORB-SLAM 2 has given 33 events during loop
closure optimization. It sometimes monopolizes CPU
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resources for 150 to 200ms.

Computational Resource Utilization Comparison

50

78
72
63
45
35
25
15

CPU Usage Inference Time Power Consumption

=
=

.
=

[~
=]

Percentage,/Normalized Value

Memory Usage

[U ILF SystemIAI SLAM System ‘
AISLAM inference time includes both SLAM and YOLO processing

Figure 6. Computational resource utilization comparison
between systems

5.4 Environmental adaptability

The system works as shown in Table 3 of different
environmental conditions available. The degradation of
performers in low light conditions highlights the limitations of
visual perception. This maintains good performance in high-
traffic conditions with a success rate of 91.8%. This shows
how effectively the system handles complex environments. It
detects 70% localization failures in areas with low texture.
This happens when reduces the ORB feature count to less than
200 features per frame. In low light conditions, there is noise
in the camera which reduces the feature mapping accuracy by
40%. Five pixel tracking loss in ORB SLAM?2 is due to faster
motion blur. The key relationships have been identified as
follows:

1. SLAM features vs. localization error: Exponential



decrease in error with increasing feature count (error
e—0.002features)

2. Detection distance vs. avoidance success: Linear
decrease in success rate as detection distance
decreased (success rate = 0.95 - 0.08 x distance, for
distance in meters)

3. CPU load vs. response time: Quadratic increase in

planning latency with CPU utilization (latency 0.02 x
CPU?)

5.5 User experience evaluation

Table 4 considers 50 of the participants for the user
evaluation results. It is found that users consistently rated the
AI-SLAM system for smooth navigation and obstacle
avoidance. The time ratings obtained show that the increased
computational complexity does not negatively affect the
participants. The correlation between usability satisfaction and
navigation smoothness is R = 0.78.

This suggests that reducing the startle moment during
obstacle avoidance. Users are sometimes tolerant of poses due
to sudden changes in direction. This indicates that the high
response time ratings sometimes result in computational
delays.

Table 3. Performance under varying environmental conditions with failure mode analysis

Environmental Condition Success Rate (%) Localization Accuracy (cm) Obstacle Detection Rate (%)

Primary Failure Mode

Normal lighting 98.2 1.1+03
Low lighting 85.3 3.8+1.2
High crowding 91.8 23+0.8
Dynamic changes 87.5 41+£1.5
Mixed conditions 82.6 52+£1.8

96.5 £2.1 None

782+5.3 Feature extraction (72%)
92.7+3.1 Computational overload (65%)
854+42 Tracking loss (58%)
81.9+4.7 Multiple factors

Table 4. User experience evaluation (N = 50)

Metric (1-5 Scale) LF System Al SLAM System Significance
Overall satisfaction 3.8+£0.6 45+04 p<0.001
Navigation smoothness 32+0.7 43+0.5 p <0.001
Obstacle avoidance 35+£0.8 46+03 p <0.001
Information delivery 4.1+0.5 44+04 p=0.012
Response time 42+04 4.1+0.5 p=0.345
Ease of interaction 43+03 4.7+£0.2 p =0.008

5.6 Technical contributions

This research demonstrates several important technical
benefits. This research successfully implements the
integration of embedded hardware with real-time visual
SLAM, deep learning and path planning. A novel sensor
fusion framework is integrated with YOLO detection in
dynamic devices along with ORB features. The
implementation of this model provides adaptive navigation
without predefined paths. It is providing a fundamental change
from the traditional approach to system modification. This
capability of the system provides deployment of the system in
various environmental conditions without expensive
infrastructure. This research has achieved a balance between
computational requirements and practical performance. The
cost-effective hardware demonstrates that it can be easily
implemented in the real world.

5.7 Limitations and challenges

This research found some limitations. The first important
limitation is that excessive lighting provides low performance.
The CPU utilization is 78% indicating that the computational
intensity can limit the deployment. This indicates that the
system requires a more resource-constrained platform. Scale
in the monocular SLAM presents challenge for metric
navigation. The limited ability to predict obstacle motion
patterns offers another area for improvement. This research
found that purely reactive obstacle avoidance is insufficient in
highly dynamic environments. Recent approaches like
DynaSLAM [13] and DS-SLAM [14] have shown promise in
handling dynamic scenes through semantic segmentation and
inpainting techniques. However, these methods are
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computationally intensive and may not be suitable for
embedded systems like Raspberry Pi 4 without significant
optimization.

5.8 Comparison with alternative approaches

Similar approaches are available for many cameras,
including cost-effective solutions suitable for academic and
laboratory  applications. The performance between
computational cost and the navigation capabilities of the
system provides a strategic balance for real-world
applications. In most situations, absolute performance is less
important than reliability and affordability.

If we compare this system to more complex systems like
DyGS-SLAM [15] which offers double-constrained
optimization for better map reconstruction in dynamic scenes,
or deep reinforcement learning approaches [16] that provide
more adaptive navigation policies, this approach shows that
autonomous navigation capabilities are achieved with simple
hardware for advanced robotics technologies. The trade-off is
between computational complexity and practical deployment
feasibility.

6. CONCLUSION AND FUTURE WORK

This paper presents an Al-based visual navigation system.
Designed for autonomous tour guide robots for academic
laboratory  environments. This  research integrates
ORBSLAM?2 for real-time localization, YOLOVS5 for obstacle
detection, and A* algorithm for forward path planning. This
research develops an assistant capable of navigating in a
dynamic environment without predefined paths. Experimental



results show improvements of 40% in two-time deduction,
65.6% in path deviation, and 95% in dynamic obstacle
avoidance success rate. This is a system that strikes a practical
balance between technical capabilities and implementation
feasibility. This investigation shows that advanced
autonomous navigation is achieved on cost-effective
hardware. It has been proven by user evaluation that this
system has improved experiments compared to the traditional
method. Future work can focus on key areas. It will be possible
to provide infrared and depth sensors as fusion sensors in this
multimodal. It will be provided more robustness under
different lighting conditions. The computational load will be
reduced with quantization and pruning techniques. Predictive
navigation that includes obstacle motion estimation will
provide more intelligent path planning. Collaborative
navigation with multi-robot coordination is possible. Also, it
is possible to implement lifelong learning in the system with
continuous environmental adaptation.

Future research directions could include incorporating
semantic SLAM approaches like those in DS-SLAM for better
handling of dynamic objects, or exploring lightweight
implementations of dynamic scene handling techniques
similar to DynaSLAM optimized for embedded systems.
Additionally, hybrid approaches combining traditional path
planning with reinforcement learning elements could provide
more adaptive navigation policies for complex dynamic
environments.
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NOMENCLATURE ® Angular velocity (rad-s™)

1, O; Left and right wheel angular velocities (rad-s™")

Symbol  Description
B Bounding box confidence score — Subscripts / Superscripts

(dimensionless)
C Number of object classes — (dimensionless) Notation  Description
f(n) Total estimated cost in A* algorithm - g Goal position

(dimensionless) 1 Left wheel

Actual cost from start node to current node n — r Right wheel
g(n) (dimensionless) t Time step

Heuristic estimate from node n to goal — * Optimal value
h(n) : )

(dimensionless)
L Wheel spacing (m) Abbreviations

. Probability = of  object  presence —

P(Object) (dimensionless) Abbreviation Full Form
r Wheel radius (m) Al Artificial Intelligence
S Grid size in YOLO- (dimensionless) CNN Convolutional Neural Network
v Linear velocity ( CPU Central Processing Unit

m-s) 10U Intersection over Union
X,y Robot position coordinates (m) LF Line Following
m Map landmarks vector MAP Maximum A Posteriori
q Robot state vector [X,y,0]T[X, y, 0]*T[X,y,0]T MTBF Mean Time Between Failures
X Robot trajectory vector PWM Pulse Width Modulation
Z Camera observations vector ROI Return on Investment

SLAM Simultaneous Localization and Mapping

Greek symbols YOLO You Only Look Once
0 Robot orientation angle (radians)
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