
AI-Driven Visual Navigation for Smart Lab Tour Guide Robot

Vinod Chandrakant Todkari1 , Avinash P. Kaldate2 , Shrikrishna Kolhar3* , Arvind Jagtap4 , Nilesh P. Sable5

1 Department of Mechanical Engineering, Vidya Pratishthan’s Kamalnayan Bajaj Institute of Engineering and Technology,

Baramati, Savitribai Phule Pune University, Pune 413133, India
2 Department of Mechanical Engineering, Sinhgad College of Engineering, Savitribai Phule Pune University, Pune 411041,

India
3 Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 412115, India
4 Computer Engineering Department, Vidya Pratishthan’s Kamalnayan Bajaj Institute of Engineering and Technology, Pune

413133, India
5 Department of Computer Science and Engineering (Artificial Intelligence), Vishwakarma Institute of Technology, Pune

411037, India

Corresponding Author Email: shrikrishna.kolhar@sitpune.edu.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.581214 ABSTRACT

Received: 15 November 2025

Revised: 23 December 2025

Accepted: 27 December 2025

Available online: 31 December 2025

A self-contained guidance system is required in robotics and automation laboratories for

autonomous navigation purposes. In laboratory conditions where conditions are constantly

changing, regular fixed-path solutions will not work. In this paper, a comprehensive

framework for a tour guide robot is developed. An AI-driven visual navigation system is

used to guide the robot. Simultaneous localization and mapping (SLAM) is implemented

instead of the traditional line following approach. Deep learning-based obstacle detection

is optimized for robot path planning. ORB-SLAM2 (monocular version) is considered for

real-time localization and mapping. A specific data set is taken from the laboratory for

fine-tuning of YOLOv5s for dynamic obstacle detection. The algorithm is extended for

real-time path planning to avoid obstacles in the robot’s path. Raspberry Pi 4 and Arduino

Uno are used for the development of the embedded system so that it compares both for

practical deployment feasibility. In this research, a 40% reduction in tour completion time

and a 95% obstacle avoidance success rate are achieved. This investigation has achieved

an average path deviation accuracy of 1.1 cm. A sensor fusion architecture is used to

combine visual SLAM feature with deep learning detection for robust navigation. This

research considers and impacts the architecture contrasts on hardware. Extensive

performance characteristics are studied under different environmental conditions. This

proposed AI-driven robot navigation in lab operations has set a new benchmark for

intelligent robotics in academia and the public sector.

Keywords:

Artificial Intelligence, computer vision,

Convolutional Neural Networks, deep

learning, dynamic path planning, robotics,

visual SLAM

1. INTRODUCTION

While robotics and automation lab technologies provide a

learning platform, the frequent human involvement in guided

lab tours highlights technological inefficiencies [1].

Traditionally, line-following robots have been used to guide

people. However, these types of robots are resilient to

environmental changes. Line-following robots use predefined

paths and are not flexible to adapt to environmental changes

[2]. These contradictions are a major obstacle to their use in

real laboratories. It is difficult to use line-following robots in

places where equipment positions change and tourist traffic

patterns change frequently [3]. To overcome these challenges,

this research uses an AI-driven visual navigation system. The

aim of this research is to develop a navigation system for

laboratory environments without predefined paths [4]. The

architecture is developed by three technologies: visual

simultaneous localization and mapping (SLAM) for spatial

awareness, deep learning-based object detection for obstacle

recognition, and adaptive path planning for intelligent

navigation decisions.

ORB-SLAM2 has real-time localization and mapping in its

monocular configuration [5]. It provides metric scale

environmental perception. In this research, dynamic obstacle

detection is performed by YOLOv5s [6]. This YOLOv5

architecture is specifically fine-tuned for laboratory

environments. An A* algorithm integrates real-time obstacle

information with global path planning in the navigation system

[7]. It enables dynamic rerouting in response to environmental

changes [8]. This research contributes to a novel sensor fusion

framework that combines visual SLAM features with deep

learning-based object detection. It creates a unified

representation for navigation decision making. The hardware

is Raspberry Pi 4 for optimized implementation of

computationally intensive algorithms. The Raspberry Pi 4 has

achieved real-time implementation through careful system

design and optimization. This research provides experimental

validation in realistic laboratory settings. Several metrics

Journal Européen des Systèmes Automatisés
Vol. 58, No. 12, December, 2025, pp. 2609-2616

Journal homepage: http://iieta.org/journals/jesa

2609

https://orcid.org/0000-0001-5080-3969
https://orcid.org/0000-0002-4836-5151
https://orcid.org/0000-0003-4170-0081
https://orcid.org/0000-0001-6855-3216
https://orcid.org/0000-0002-5855-4087
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.581214&domain=pdf

include navigation performance to characterize system

performance. Computational requirements and environmental

robustness should be considered in developing the framework.

Section 2 reviews relevant literature on visual SLAM, deep

learning for robotics, and path planning algorithms. Section 3

details our system architecture and mathematical framework.

Section 4 describes the implementation methodology. Section

5 presents experimental results and analysis. Section 6

concludes with future research directions.

2. LITERATURE SURVEY

The development of autonomous tour guide robots has

evolved significantly over the past decades. Thrun et al. [3]

demonstrated the feasibility of autonomous robot navigation

in public areas. It has various limitations such as computing

resources and sensor technology [9]. This developer system

mostly relies on laser range finders and pre-mapped

environments. It also has limitations such as limited

adaptability and increasing deployment costs. This research

considers modern approaches in computer vision and machine

learning systems [2]. It offers more flexibility and cost-

effective solutions. Visual SLAM as another alternative to

traditional sensor-based localization methods [10]. Redmon et

al. [6] incorporated the capabilities of the camera insect

localization method. ORB-SLAM is a feature-based method

that is used to significantly improve and increase

computational efficiency [11, 12]. Recent research focusing on

real-time performance and robustness in dynamic

environments [11]. ORB-SLAM2 has implemented embedded

hardware for practical deployment in the laboratory, which I

consider to be significantly cost-effective [3]. Recent

advancements in visual SLAM for dynamic environments

have shown promising results. Bescos et al. [13] introduced an

approach for tracking, mapping, and inpainting in dynamic

scenes, which is particularly relevant for tour guide robots

operating in environments with moving people and objects.

Similarly, Yu et al. [14] presented a semantic visual SLAM

system that integrates semantic segmentation to better handle

dynamic objects. More recently, Zhu et al. [15] proposed a

double-constrained visual SLAM approach for realistic map

reconstruction in dynamic scenes, offering improved

robustness. For navigation in dynamic environments, deep

reinforcement learning approaches have shown significant

potential [16], though they often require extensive

computational resources not suitable for embedded systems

like Raspberry Pi [17]. Deep learning has been used for robotic

perception. It gives importance to any objective question and

visual perception [18]. The evolution has been from traditional

computer vision methods to deep learning methods.

Architectures like R-CNN have enabled [10]. Redmon et al.

[6] has been used for real-time object detection with high

accuracy. YOLOv5 has used a balance of speed and accuracy,

YOLO is also suitable for real-time robotic applications in

which computing resources are limited. Using advanced

technologies, robots are able to understand and perceive the

environment more effectively.

This research has opened up new possibilities for

autonomous navigation in complex situations and dynamic

spaces. A grid-based approach has considered path planning

algorithms in robotic systems. The A* algorithm [7] contains

the fundamental principles for optimal path finding in robotic

systems [19]. The real-time dynamic window approach and

potential field methods are important aspects of the robot

navigation framework against obstacles. These can adapt to

changing environmental conditions while maintaining optimal

combinations.

3. SYSTEM ARCHITECTURE AND MATHEMATICAL

FRAMEWORK

3.1 System overview

In this research, SLAM and obstacle detection are

performed using a camera as the primary sensor. Raspberry Pi

is used as the main processing unit in this embedded system.

In the research, localization and mapping are performed with

the help of ORB-SLAM2. Planning and object detection are

performed using YOLOv5. Raspberry Pi handles the high-

level navigation commands and is implemented by Arduino

along with motor control. It has a hierarchical control structure

in which high-level decision making is implemented by the

low level activation system.

3.2 Robot kinematics

Different configurations are commonly used in mobile

robotics. This given kinematic model provides a robust

underlying mathematical model for motion control and path

following. The robot’s pose in the world coordinate system is

represented by 𝑞 = [𝑥, 𝑦, 𝜃]𝑇, where x and y denote position

coordinates and 𝜃 represents orientation. The kinematic

equations are:

𝑞̇ = [

𝑥̇
𝑦̇

𝜃̇

] = [
𝑣 cos 𝜃
𝑣 sin 𝜃

𝜔
] (1)

For a differential drive robot with wheel radius r and wheel

separation L, the linear velocity v and angular velocity ω relate

to wheel angular velocities 𝜔𝑟 and 𝜔𝑙 as:

() (),
2

r l r l

r r
v

L
    = + = − (2)

These equations form the basis for our motor control system

implemented on the Arduino microcontroller, converting

high-level velocity commands into precise wheel movements.

3.3 Visual SLAM implementation

We implement ORB-SLAM2 in its monocular

configuration, optimized for embedded systems. The SLAM

problem is formulated as maximum a posteriori (MAP)

estimation:

𝑥𝑜,𝑡
∗ , 𝑚∗ = arg max

𝑥𝑜:𝑡,𝑚
𝑝(𝑥0:𝑡,𝑚| 𝑧1:𝑡 , 𝑢1:𝑡) (3)

Applying Bayes’ rule and Markov assumption:

0: , 1: 1:

1

1

(| ,)

() () (| ,) (| ,)

t t t

t

o k k k k k

k

p x m z u

p x p m p z x m p x x u−

=




(4)

Known parameters from laboratory equipment are taken for

2610

monocular SLAM. The G2O framework and ORB-SLAM2

are combined for loop closure detection and pose graph

optimization. This is useful for correcting accumulated drift

over time and maintaining global consistency in the system.

The system runs on a Raspberry Pi 4 at 30 Hz and tracks

approximately 1000 ORB features per frame.

3.4 YOLOv5 object detection integration

In this research, YOLOv5s was used as an optimizer for

embedded deployment. To find the tuned model, more than

500 images of a laboratory with various obstacles such as

chairs, equipment cards, and some human figures were taken.

The bounding box and confidence score were found to find the

output for each frame:

() truth

predConfidence P Object IOU=  (5)

Detected obstacles are converted into a local occupancy grid

with resolution 0.1 m using the following transformation: for

each detection with bounding box (𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ) and confidence

c, we compute the corresponding occupancy probability

𝑝𝑜𝑐𝑐 = 𝑐. e
−

𝑑2

2𝜎2, where d is the distance from grid cell center

to detection center and σ = 0.3 m. The detection system

operates at 15 Hz on the Raspberry Pi 4.

3.5 Enhanced A* path planning

The path planner operates on a 2D grid map generated by

SLAM with resolution 0.05 m. The A* algorithm minimizes:

f(n) = g(n) + h(n) (6)

where, g(n) is the actual cost from start to node n, and h(n) is

the heuristic estimate to goal. We employ Euclidean distance

as heuristic:

() 2 2() ()n g n gh n x x y y= − + − (7)

A real-time cost map is used to enhance the algorithm to

avoid moving obstacles. A safety radius of 0.5 meters is

maintained around obstacles. It is determined as optimal

through experimental validation to balance safety and

navigation efficiency. The algorithm attempts to plan a new

route at 5 Hz when new obstacles are detected within a range

of 2 meters.

4. METHODOLOGY

The robot platform is assembled with properly selected

components. The performance of this project has to balance

cost and reliability. Raspberry Pi 4 with 4 GB RAM is a main

processing unit in this system. It provides enough computing

power for SLAM at the same time. It is helping in object

detection and path planning. Arduino Uno is capable of

handling motor controls according to high level decisions.

Webcam Logitech C920 HD Pro Webcam is used as the

primary visual sensor.

It provides high-quality images at 30 FPS. L298N motor

driver is used to control motor decisions. DC gear motor is

connected to encoder for closed loop control. 12 V 7 mAh

battery pack is used to power the system. Additional

emergency obstacle detection is provided with the help of

ultrasonic sensor as an additional safety layer. It operates at 20

Hz to ensure reliable operation even when visual perception is

compromised. The complete hardware architecture is shown

in Figure 1. Raspberry Pi is capable of processing visual data

and generates navigation commands accordingly. The

commands are transmitted to Arduino via UART. PID control

is applied by Arduino at 100 Hz to get accurate speed.

Figure 1. System hardware architecture showing component

interconnections

Figure 2. Raspberry Pi software architecture and data flow

2611

The software system employs a multi-threaded architecture

on the Raspberry Pi to maximize computational efficiency and

real-time performance. As shown in Figure 2, separate threads

handle different aspects of the navigation pipeline:

1. SLAM Thread: Runs ORB-SLAM2 at 30 Hz for

continuous localization and mapping.

2. Perception Thread: Executes YOLOv5 at 15 Hz for

obstacle detection.

3. Planning Thread: Runs enhanced A* algorithm at 5

Hz for path planning.

4. Control Thread: Communicates with Arduino at 20

Hz for motor control.

Figure 3. Arduino motor control system architecture

Inter-thread communication uses shared memory buffers

with mutex protection to ensure data consistency. As shown in

Figure 3, the Arduino runs a real-time control loop at 100 Hz,

implementing PID control for precise motor actuation.

The size of the robotic library is 10 meters by 8 meters in

which all the obstacles are available and they are used for the

experiment in this research. Two types of obstacles are used

one is the static obstacle and the other is the dynamic. The

static obstacles are tables, equipment, and racks available.

Figure 4 presents experimental laboratory layout showing

navigation path. The dynamic obstacle moving people are

temporarily placed objects. Several environmental factors are

considered which include normal lighting 500 lux, low

lighting 100 lux and different obstacle densities.

The system has undergone 100 navigation tests and 200

obstacle avoidance tests for systematic testing. Various

performance characteristics are considered for the testing.

These include accuracy, efficiency, obstacle awareness,

success rate, computing resource usage, and user experience

rating for 50 participants.

Figure 4. Experimental laboratory layout showing navigation

path and obstacle locations

5. RESULTS AND DISCUSSIONS

5.1 Navigation performance analysis

Table 1 gives a comparison of AI based SLAM system and

traditional line following system. This AI based SLAM system

is better in all parameters except computational load. It

reduces the time by 40% in two times and it shows that this

system is more efficient than traditional system. The

developed system reduces the deviation by 65.6% i.e. from 3.2

cm to 1.1 cm. It shows that SLAM provides excellent

localization accuracy. This SLAM tracking provides

localization success rate of 98.2%. In this system, primary

failures occur at 15% turns and 72% in low texture areas.

Illumination changes are causing 13% failure results.

Regression analysis is used to find the correlation between

path deviation and SLAM tracking stability. A strong negative

correlation R² = 0.83 was found between SLAM feature

number and path segmentation. If ORB feature tracking is

reduced to less than 300 features per frame, the path deviation

increases by an average of 2.7 cm. This shows that sufficient

feature density is important for navigation accuracy.

Table 1. Navigation performance comparison (100 trials)

Metric LF System AI SLAM System Improvement P-Value

Average Tour Time (min) 8.5 ± 0.4 5.1 ± 0.2 40.0% < 0.001

Path Deviation (cm) 3.2 ± 0.8 1.1 ± 0.3 65.6% < 0.001

Average Speed (m/s) 0.5 ± 0.1 0.8 ± 0.05 60.0% < 0.001

Localization Success Rate (%) 100 (Fixed) 98.2 ± 1.2 -1.8% 0.023

Computational Load (CPU%) 15 ± 3 78 ± 8 +420% < 0.001

2612

5.2 Obstacle avoidance performance

Table 2 shows obstacle awareness performance is

demonstrated after 200 trials. The system maintains a high

success rate in challenging situations. The computational load

is increasing due to the crowded environment, thus reducing

the system performance. This is due to the more frequent path

lab planning requirements. A success rate of 91.8% has been

achieved in this situation. The ultrasonic sensor is providing

emergency stop functionality. It provides 100% liability for

immediate collision prevention. Parameter sensitivity analysis

is performed to understand the relationship between YOLO

confidence threshold and avoidance performance.

Figure 5 shows three confidence shots reduced from 0.7 to

0.5. It shows an 18% increase in detection rate but at the same

time a 7% decrease in avoidance success rate. This is due to

increased false positives. The analysis gives an optimal

threshold of 0.65. I will discuss the balance accuracy of 92.3%

and recall of 89.7%. The abstract avoidance success rate

strongly suggests that R2 is equal to 0.76 with the time

available for replanning. When comparing obstacles

encountered within a 1.5 m range of the robot to obstacles

encountered beyond 2.5 m, the avoidance success rate is 15%

lower.

The optimal threshold of 0.65 balances detection rate, precision, and

avoidance success

Figure 5. Parameter sensitivity analysis showing trade-offs

in YOLO confidence threshold selection

Table 2. Obstacle avoidance performance (200 trials)

Scenario Success Rate (%) Detour Time (s) Path Increase (%)

Single static obstacle 100 2.1 ± 0.5 8.2 ± 2.1

Multiple static obstacles 98.5 4.3 ± 1.2 15.7 ± 3.8

Dynamic obstacle (Moving) 95.2 3.8 ± 1.1 12.3 ± 2.9

Crowded environment 91.8 6.2 ± 1.8 22.5 ± 5.1

Emergency stop 100 0.5 ± 0.1 0

Overall average 97.1 3.4 ± 1.3 11.7 ± 3.5

5.3 Computational performance and system reliability

Figure 6 presents a comparison of computational resource

utilization between AI SLAM and LF systems. Four parameter

values namely CPU usage, memory usage, inference time and

power consumption are reported. AISLAM inference time

includes both SLAM and YOLO processing time. The CPU

load utilization shows 78% utilization during navigation. It

starts from 92% during simultaneous SLAM mapping and

obstacle detection. Some important consequences of this high

utilization are given below.

1. Thermal Management: The Raspberry Pi 4 reached 85°C

after 25 minutes of operation without active cooling. Due to

this, it reduces the CPU frequency from 1.8 GHz to 1.4 GHz.

This frequency reduction increases the SLAM processing

time. It increases the processing time by 35% and, therefore,

causes frame drops in 2.1%.

2. Real-time Performance Impact: Simultaneous loop

closure and solid obstacle detection in SLAM occur during

peak load periods. The total processing latency for 15Hz

operation is sometimes more than 66ms per frame. SLAM

tracking loss recovers to 0.8% of frames in 100ms processing.

YOLO frame dropping is 1.3% in dense obstacle conditions.

This causes a 120ms delay between path planning re-planning

events.

3. Reliability Concerns: Memory fragmentation increases

SLAM initialization time by 45% in long-term testing over 10

hours. Periodic memory cleanup routines are required to

maintain system stability.

4. Frame Drop Analysis: When SLAM and YOLO are under

heavy load conditions, it shows 67% frame drop in the

analysis. ORB-SLAM 2 has given 33 events during loop

closure optimization. It sometimes monopolizes CPU

resources for 150 to 200ms.

AISLAM inference time includes both SLAM and YOLO processing

Figure 6. Computational resource utilization comparison

between systems

5.4 Environmental adaptability

The system works as shown in Table 3 of different

environmental conditions available. The degradation of

performers in low light conditions highlights the limitations of

visual perception. This maintains good performance in high-

traffic conditions with a success rate of 91.8%. This shows

how effectively the system handles complex environments. It

detects 70% localization failures in areas with low texture.

This happens when reduces the ORB feature count to less than

200 features per frame. In low light conditions, there is noise

in the camera which reduces the feature mapping accuracy by

40%. Five pixel tracking loss in ORB SLAM2 is due to faster

motion blur. The key relationships have been identified as

follows:

1. SLAM features vs. localization error: Exponential

2613

decrease in error with increasing feature count (error

e−0.002features)

2. Detection distance vs. avoidance success: Linear

decrease in success rate as detection distance

decreased (success rate = 0.95 - 0.08 × distance, for

distance in meters)

3. CPU load vs. response time: Quadratic increase in

planning latency with CPU utilization (latency 0.02 ×

CPU2)

5.5 User experience evaluation

Table 4 considers 50 of the participants for the user

evaluation results. It is found that users consistently rated the

AI-SLAM system for smooth navigation and obstacle

avoidance. The time ratings obtained show that the increased

computational complexity does not negatively affect the

participants. The correlation between usability satisfaction and

navigation smoothness is R = 0.78.

This suggests that reducing the startle moment during

obstacle avoidance. Users are sometimes tolerant of poses due

to sudden changes in direction. This indicates that the high

response time ratings sometimes result in computational

delays.

Table 3. Performance under varying environmental conditions with failure mode analysis

Environmental Condition Success Rate (%) Localization Accuracy (cm) Obstacle Detection Rate (%) Primary Failure Mode

Normal lighting 98.2 1.1 ± 0.3 96.5 ± 2.1 None

Low lighting 85.3 3.8 ± 1.2 78.2 ± 5.3 Feature extraction (72%)

High crowding 91.8 2.3 ± 0.8 92.7 ± 3.1 Computational overload (65%)

Dynamic changes 87.5 4.1 ± 1.5 85.4 ± 4.2 Tracking loss (58%)

Mixed conditions 82.6 5.2 ± 1.8 81.9 ± 4.7 Multiple factors

Table 4. User experience evaluation (N = 50)

Metric (1-5 Scale) LF System AI SLAM System Significance

Overall satisfaction 3.8 ± 0.6 4.5 ± 0.4 p < 0.001

Navigation smoothness 3.2 ± 0.7 4.3 ± 0.5 p < 0.001

Obstacle avoidance 3.5 ± 0.8 4.6 ± 0.3 p < 0.001

Information delivery 4.1 ± 0.5 4.4 ± 0.4 p = 0.012

Response time 4.2 ± 0.4 4.1 ± 0.5 p = 0.345

Ease of interaction 4.3 ± 0.3 4.7 ± 0.2 p = 0.008

5.6 Technical contributions

This research demonstrates several important technical

benefits. This research successfully implements the

integration of embedded hardware with real-time visual

SLAM, deep learning and path planning. A novel sensor

fusion framework is integrated with YOLO detection in

dynamic devices along with ORB features. The

implementation of this model provides adaptive navigation

without predefined paths. It is providing a fundamental change

from the traditional approach to system modification. This

capability of the system provides deployment of the system in

various environmental conditions without expensive

infrastructure. This research has achieved a balance between

computational requirements and practical performance. The

cost-effective hardware demonstrates that it can be easily

implemented in the real world.

5.7 Limitations and challenges

This research found some limitations. The first important

limitation is that excessive lighting provides low performance.

The CPU utilization is 78% indicating that the computational

intensity can limit the deployment. This indicates that the

system requires a more resource-constrained platform. Scale

in the monocular SLAM presents challenge for metric

navigation. The limited ability to predict obstacle motion

patterns offers another area for improvement. This research

found that purely reactive obstacle avoidance is insufficient in

highly dynamic environments. Recent approaches like

DynaSLAM [13] and DS-SLAM [14] have shown promise in

handling dynamic scenes through semantic segmentation and

inpainting techniques. However, these methods are

computationally intensive and may not be suitable for

embedded systems like Raspberry Pi 4 without significant

optimization.

5.8 Comparison with alternative approaches

Similar approaches are available for many cameras,

including cost-effective solutions suitable for academic and

laboratory applications. The performance between

computational cost and the navigation capabilities of the

system provides a strategic balance for real-world

applications. In most situations, absolute performance is less

important than reliability and affordability.

If we compare this system to more complex systems like

DyGS-SLAM [15] which offers double-constrained

optimization for better map reconstruction in dynamic scenes,

or deep reinforcement learning approaches [16] that provide

more adaptive navigation policies, this approach shows that

autonomous navigation capabilities are achieved with simple

hardware for advanced robotics technologies. The trade-off is

between computational complexity and practical deployment

feasibility.

6. CONCLUSION AND FUTURE WORK

This paper presents an AI-based visual navigation system.

Designed for autonomous tour guide robots for academic

laboratory environments. This research integrates

ORBSLAM2 for real-time localization, YOLOv5 for obstacle

detection, and A* algorithm for forward path planning. This

research develops an assistant capable of navigating in a

dynamic environment without predefined paths. Experimental

2614

results show improvements of 40% in two-time deduction,

65.6% in path deviation, and 95% in dynamic obstacle

avoidance success rate. This is a system that strikes a practical

balance between technical capabilities and implementation

feasibility. This investigation shows that advanced

autonomous navigation is achieved on cost-effective

hardware. It has been proven by user evaluation that this

system has improved experiments compared to the traditional

method. Future work can focus on key areas. It will be possible

to provide infrared and depth sensors as fusion sensors in this

multimodal. It will be provided more robustness under

different lighting conditions. The computational load will be

reduced with quantization and pruning techniques. Predictive

navigation that includes obstacle motion estimation will

provide more intelligent path planning. Collaborative

navigation with multi-robot coordination is possible. Also, it

is possible to implement lifelong learning in the system with

continuous environmental adaptation.

Future research directions could include incorporating

semantic SLAM approaches like those in DS-SLAM for better

handling of dynamic objects, or exploring lightweight

implementations of dynamic scene handling techniques

similar to DynaSLAM optimized for embedded systems.

Additionally, hybrid approaches combining traditional path

planning with reinforcement learning elements could provide

more adaptive navigation policies for complex dynamic

environments.

REFERENCES

[1] Cadena, C., Carlone, L., Carrillo, H., Latif, Y.,

Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J. (2016).

Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE

Transactions on Robotics, 32(6): 1309-1332.

https://doi.org/10.1109/TRO.2016.2624754

[2] Thrun, S., Beetz, M., Bennewitz, M., Burgard, W.,

Cremers, A.B., Dellaert, F., Fox, D., Hähnel, D.,

Rosenberg, C., Roy, N., Schulte, J., Schulz, D. (2000).

Probabilistic algorithms and the interactive museum

tour-guide robot Minerva. The International Journal of

Robotics Research, 19(11): 972-999.

https://doi.org/10.1177/02783640022067922

[3] Thrun, S., Bennewitz, M., Burgard, W., Cremers, A.B.,

Dellaert, F., Fox, D., Hähnel, D., Rosenberg, C., Roy, N.,

Schulte, J., Schulz, D. (1999). Minerva: A second-

generation museum tour-guide robot. In Proceedings of

the IEEE International Conference on Robotics and

Automation (ICRA), Detroit, MI, USA, pp. 1999-2005.

https://doi.org/10.1109/ROBOT.1999.770401

[4] Dissanayake, M., Newman, P., Clark, S., Durrant-

Whyte, H.F., Csorba, M. (2001). A solution to the

simultaneous localization and map building (SLAM)

problem. IEEE Transactions on Robotics and

Automation, 17(3): 229-241.

https://doi.org/10.1109/70.938381

[5] Alvarado Vasquez, B.P.E., Gonzalez, R., Matia, F., De la

Puente, P. (2018). Sensor fusion for tour-guide robot

localization. IEEE Access, 6: 78947-78964.

https://doi.org/10.1109/ACCESS.2018.2885648

[6] Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016).

You Only Look Once: Unified, real-time object

detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las

Vegas, NV, USA, pp. 779-788.

https://doi.org/10.1109/CVPR.2016.91

[7] Hart, P.E., Nilsson, N.J., Raphael, B. (1968). A formal

basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and

Cybernetics, 4(2): 100-107.

https://doi.org/10.1109/TSSC.1968.300136

[8] LeCun, Y., Bengio, Y., Hinton, G. (2015). Deep learning.

Nature, 521(7553): 436-444.

https://doi.org/10.1038/nature14539

[9] Bailey, T., Durrant-Whyte, H. (2006). Simultaneous

localization and mapping (SLAM): Part II—State of the

art. IEEE Robotics & Automation Magazine, 13(3): 108-

117. https://doi.org/10.1109/MRA.2006.1678144

[10] Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014).

Rich feature hierarchies for accurate object detection and

semantic segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), USA, pp. 580-587.

https://doi.org/10.1109/CVPR.2014.81

[11] Kazerouni, I.A., Fitzgerald, L., Dooly, G., Toal, D.

(2022). A survey of state-of-the-art on visual SLAM.

Expert Systems with Applications, 205: 117734.

https://doi.org/10.1016/j.eswa.2022.117734

[12] Khatib, O. (1986). Real-time obstacle avoidance for

manipulators and mobile robots. The International

Journal of Robotics Research, 5(1): 90-98.

https://doi.org/10.1177/027836498600500106

[13] Bescos, B., Fácil, J.M., Civera, J., Neira, J. (2018).

DynaSLAM: Tracking, mapping, and inpainting in

dynamic scenes. IEEE Robotics and Automation Letters,

3(4): 4076-4083.

https://doi.org/10.1109/LRA.2018.2860039

[14] Yu, C., Liu, Z., Liu, X. J., Xie, F., Yang, Y., Wei, Q., Fei,

Q. (2018). DS-SLAM: A semantic visual SLAM towards

dynamic environments. In 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS),

Madrid, Spain, pp. 1168-1174.

https://doi.org/10.1109/IROS.2018.8593691

[15] Zhu, F., Zhao, Y., Chen, Z., Jiang, C., Hui, Z., Hu, X.

(2025). DYGS-SLAM: Realistic map reconstruction in

dynamic scenes based on double-constrained visual

SLAM. Remote Sensing, 17(4): 625.

https://doi.org/10.3390/rs17040625

[16] Zhu, Y., Wan Hasan, W.Z., Harun Ramli, H.R.,

Norsahperi, N.M.H., Mohd Kassim, M.S., Yao, Y.

(2025). Deep reinforcement learning of mobile robot

navigation in dynamic environment: A review. Sensors,

25(11): 3394. https://doi.org/10.3390/s25113394

[17] Mur-Artal, R., Tardós, J.D. (2017). ORB-SLAM2: An

open-source SLAM system for monocular, stereo, and

RGB-D cameras. IEEE Transactions on Robotics, 33(5):

1255-1262. https://doi.org/10.1109/TRO.2017.2705103

[18] Xiao, L., Wang, J., Qiu, X., Rong, Z., Zou, X. (2019).

Dynamic-SLAM: Semantic monocular visual

localization and mapping based on deep learning in

dynamic environment. Robotics and Autonomous

Systems, 117: 1-16.

https://doi.org/10.1016/j.robot.2019.03.012

[19] Fox, D., Burgard, W., Thrun, S. (1997). The dynamic

window approach to collision avoidance. IEEE Robotics

& Automation Magazine, 4(1): 23-33.

https://doi.org/10.1109/100.580977

2615

NOMENCLATURE

Symbol Description

B
Bounding box confidence score –

(dimensionless)

C Number of object classes – (dimensionless)

f(n)
Total estimated cost in A* algorithm –

(dimensionless)

g(n)
Actual cost from start node to current node n –

(dimensionless)

h(n)
Heuristic estimate from node n to goal –

(dimensionless)

L Wheel spacing (m)

P(Object)
Probability of object presence –

(dimensionless)

r Wheel radius (m)

S Grid size in YOLO– (dimensionless)

v
Linear velocity (

m·s⁻¹)

x, y Robot position coordinates (m)

m Map landmarks vector

q Robot state vector [x,y,θ]T[x, y, θ]^T[x,y,θ]T

x Robot trajectory vector

z Camera observations vector

Greek symbols

θ Robot orientation angle (radians)

ω Angular velocity (rad·s⁻¹)

ωₗ, ωᵣ Left and right wheel angular velocities (rad·s⁻¹)

Subscripts / Superscripts

Notation Description

g Goal position

l Left wheel

r Right wheel

t Time step

* Optimal value

Abbreviations

Abbreviation Full Form

AI Artificial Intelligence

CNN Convolutional Neural Network

CPU Central Processing Unit

IOU Intersection over Union

LF Line Following

MAP Maximum A Posteriori

MTBF Mean Time Between Failures

PWM Pulse Width Modulation

ROI Return on Investment

SLAM Simultaneous Localization and Mapping

YOLO You Only Look Once

2616

