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A self-contained guidance system is required in robotics and automation laboratories for 

autonomous navigation purposes. In laboratory conditions where conditions are constantly 

changing, regular fixed-path solutions will not work. In this paper, a comprehensive 

framework for a tour guide robot is developed. An AI-driven visual navigation system is 

used to guide the robot. Simultaneous localization and mapping (SLAM) is implemented 

instead of the traditional line following approach. Deep learning-based obstacle detection 

is optimized for robot path planning. ORB-SLAM2 (monocular version) is considered for 

real-time localization and mapping. A specific data set is taken from the laboratory for 

fine-tuning of YOLOv5s for dynamic obstacle detection. The algorithm is extended for 

real-time path planning to avoid obstacles in the robot’s path. Raspberry Pi 4 and Arduino 

Uno are used for the development of the embedded system so that it compares both for 

practical deployment feasibility. In this research, a 40% reduction in tour completion time 

and a 95% obstacle avoidance success rate are achieved. This investigation has achieved 

an average path deviation accuracy of 1.1 cm. A sensor fusion architecture is used to 

combine visual SLAM feature with deep learning detection for robust navigation. This 

research considers and impacts the architecture contrasts on hardware. Extensive 

performance characteristics are studied under different environmental conditions. This 

proposed AI-driven robot navigation in lab operations has set a new benchmark for 

intelligent robotics in academia and the public sector.  
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1. INTRODUCTION

While robotics and automation lab technologies provide a 

learning platform, the frequent human involvement in guided 

lab tours highlights technological inefficiencies [1]. 

Traditionally, line-following robots have been used to guide 

people. However, these types of robots are resilient to 

environmental changes. Line-following robots use predefined 

paths and are not flexible to adapt to environmental changes 

[2]. These contradictions are a major obstacle to their use in 

real laboratories. It is difficult to use line-following robots in 

places where equipment positions change and tourist traffic 

patterns change frequently [3]. To overcome these challenges, 

this research uses an AI-driven visual navigation system. The 

aim of this research is to develop a navigation system for 

laboratory environments without predefined paths [4]. The 

architecture is developed by three technologies: visual 

simultaneous localization and mapping (SLAM) for spatial 

awareness, deep learning-based object detection for obstacle 

recognition, and adaptive path planning for intelligent 

navigation decisions. 

ORB-SLAM2 has real-time localization and mapping in its 

monocular configuration [5]. It provides metric scale 

environmental perception. In this research, dynamic obstacle 

detection is performed by YOLOv5s [6]. This YOLOv5 

architecture is specifically fine-tuned for laboratory 

environments. An A* algorithm integrates real-time obstacle 

information with global path planning in the navigation system 

[7]. It enables dynamic rerouting in response to environmental 

changes [8]. This research contributes to a novel sensor fusion 

framework that combines visual SLAM features with deep 

learning-based object detection. It creates a unified 

representation for navigation decision making. The hardware 

is Raspberry Pi 4 for optimized implementation of 

computationally intensive algorithms. The Raspberry Pi 4 has 

achieved real-time implementation through careful system 

design and optimization. This research provides experimental 

validation in realistic laboratory settings. Several metrics 
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include navigation performance to characterize system 

performance. Computational requirements and environmental 

robustness should be considered in developing the framework. 

Section 2 reviews relevant literature on visual SLAM, deep 

learning for robotics, and path planning algorithms. Section 3 

details our system architecture and mathematical framework. 

Section 4 describes the implementation methodology. Section 

5 presents experimental results and analysis. Section 6 

concludes with future research directions. 

2. LITERATURE SURVEY

The development of autonomous tour guide robots has 

evolved significantly over the past decades. Thrun et al. [3] 

demonstrated the feasibility of autonomous robot navigation 

in public areas. It has various limitations such as computing 

resources and sensor technology [9]. This developer system 

mostly relies on laser range finders and pre-mapped 

environments. It also has limitations such as limited 

adaptability and increasing deployment costs. This research 

considers modern approaches in computer vision and machine 

learning systems [2]. It offers more flexibility and cost-

effective solutions. Visual SLAM as another alternative to 

traditional sensor-based localization methods [10]. Redmon et 

al. [6] incorporated the capabilities of the camera insect 

localization method. ORB-SLAM is a feature-based method 

that is used to significantly improve and increase 

computational efficiency [11, 12]. Recent research focusing on 

real-time performance and robustness in dynamic 

environments [11]. ORB-SLAM2 has implemented embedded 

hardware for practical deployment in the laboratory, which I 

consider to be significantly cost-effective [3]. Recent 

advancements in visual SLAM for dynamic environments 

have shown promising results. Bescos et al. [13] introduced an 

approach for tracking, mapping, and inpainting in dynamic 

scenes, which is particularly relevant for tour guide robots 

operating in environments with moving people and objects. 

Similarly, Yu et al. [14] presented a semantic visual SLAM 

system that integrates semantic segmentation to better handle 

dynamic objects. More recently, Zhu et al. [15] proposed a 

double-constrained visual SLAM approach for realistic map 

reconstruction in dynamic scenes, offering improved 

robustness. For navigation in dynamic environments, deep 

reinforcement learning approaches have shown significant 

potential [16], though they often require extensive 

computational resources not suitable for embedded systems 

like Raspberry Pi [17]. Deep learning has been used for robotic 

perception. It gives importance to any objective question and 

visual perception [18]. The evolution has been from traditional 

computer vision methods to deep learning methods. 

Architectures like R-CNN have enabled [10]. Redmon et al. 

[6] has been used for real-time object detection with high

accuracy. YOLOv5 has used a balance of speed and accuracy,

YOLO is also suitable for real-time robotic applications in

which computing resources are limited. Using advanced

technologies, robots are able to understand and perceive the

environment more effectively.

This research has opened up new possibilities for 

autonomous navigation in complex situations and dynamic 

spaces. A grid-based approach has considered path planning 

algorithms in robotic systems. The A* algorithm [7] contains 

the fundamental principles for optimal path finding in robotic 

systems [19]. The real-time dynamic window approach and 

potential field methods are important aspects of the robot 

navigation framework against obstacles. These can adapt to 

changing environmental conditions while maintaining optimal 

combinations. 

3. SYSTEM ARCHITECTURE AND MATHEMATICAL

FRAMEWORK

3.1 System overview 

In this research, SLAM and obstacle detection are 

performed using a camera as the primary sensor. Raspberry Pi 

is used as the main processing unit in this embedded system. 

In the research, localization and mapping are performed with 

the help of ORB-SLAM2. Planning and object detection are 

performed using YOLOv5. Raspberry Pi handles the high-

level navigation commands and is implemented by Arduino 

along with motor control. It has a hierarchical control structure 

in which high-level decision making is implemented by the 

low level activation system. 

3.2 Robot kinematics 

Different configurations are commonly used in mobile 

robotics. This given kinematic model provides a robust 

underlying mathematical model for motion control and path 

following. The robot’s pose in the world coordinate system is 

represented by 𝑞 = [𝑥, 𝑦, 𝜃]𝑇, where x and y denote position

coordinates and 𝜃  represents orientation. The kinematic 

equations are: 

𝑞̇ = [

𝑥̇
𝑦̇

𝜃̇

] = [
𝑣 cos 𝜃
𝑣 sin 𝜃

𝜔
] (1) 

For a differential drive robot with wheel radius r and wheel 

separation L, the linear velocity v and angular velocity ω relate 

to wheel angular velocities 𝜔𝑟 and 𝜔𝑙 as:

( ) ( ),
2

r l r l

r r
v

L
    = + = − (2) 

These equations form the basis for our motor control system 

implemented on the Arduino microcontroller, converting 

high-level velocity commands into precise wheel movements. 

3.3 Visual SLAM implementation 

We implement ORB-SLAM2 in its monocular 

configuration, optimized for embedded systems. The SLAM 

problem is formulated as maximum a posteriori (MAP) 

estimation: 

𝑥𝑜,𝑡
∗ , 𝑚∗  =  arg max

𝑥𝑜:𝑡,𝑚
𝑝(𝑥0:𝑡,𝑚| 𝑧1:𝑡 , 𝑢1:𝑡) (3) 

Applying Bayes’ rule and Markov assumption: 
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Known parameters from laboratory equipment are taken for 
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monocular SLAM. The G2O framework and ORB-SLAM2 

are combined for loop closure detection and pose graph 

optimization. This is useful for correcting accumulated drift 

over time and maintaining global consistency in the system. 

The system runs on a Raspberry Pi 4 at 30 Hz and tracks 

approximately 1000 ORB features per frame. 

3.4 YOLOv5 object detection integration 

In this research, YOLOv5s was used as an optimizer for 

embedded deployment. To find the tuned model, more than 

500 images of a laboratory with various obstacles such as 

chairs, equipment cards, and some human figures were taken. 

The bounding box and confidence score were found to find the 

output for each frame: 

( ) truth

predConfidence P Object IOU=  (5) 

Detected obstacles are converted into a local occupancy grid 

with resolution 0.1 m using the following transformation: for 

each detection with bounding box (𝑥𝑐 , 𝑦𝑐 , 𝑤, ℎ) and confidence

c, we compute the corresponding occupancy probability 

𝑝𝑜𝑐𝑐 = 𝑐. e
−

𝑑2

2𝜎2, where d is the distance from grid cell center 

to detection center and σ = 0.3 m. The detection system 

operates at 15 Hz on the Raspberry Pi 4. 

3.5 Enhanced A* path planning 

The path planner operates on a 2D grid map generated by 

SLAM with resolution 0.05 m. The A* algorithm minimizes: 

f(n)  =  g(n)  +  h(n) (6) 

where, g(n) is the actual cost from start to node n, and h(n) is 

the heuristic estimate to goal. We employ Euclidean distance 

as heuristic: 

( ) 2 2( ) ( )n g n gh n x x y y= − + − (7) 

A real-time cost map is used to enhance the algorithm to 

avoid moving obstacles. A safety radius of 0.5 meters is 

maintained around obstacles. It is determined as optimal 

through experimental validation to balance safety and 

navigation efficiency. The algorithm attempts to plan a new 

route at 5 Hz when new obstacles are detected within a range 

of 2 meters. 

4. METHODOLOGY

The robot platform is assembled with properly selected 

components. The performance of this project has to balance 

cost and reliability. Raspberry Pi 4 with 4 GB RAM is a main 

processing unit in this system. It provides enough computing 

power for SLAM at the same time. It is helping in object 

detection and path planning. Arduino Uno is capable of 

handling motor controls according to high level decisions. 

Webcam Logitech C920 HD Pro Webcam is used as the 

primary visual sensor.  

It provides high-quality images at 30 FPS. L298N motor 

driver is used to control motor decisions. DC gear motor is 

connected to encoder for closed loop control. 12 V 7 mAh 

battery pack is used to power the system. Additional 

emergency obstacle detection is provided with the help of 

ultrasonic sensor as an additional safety layer. It operates at 20 

Hz to ensure reliable operation even when visual perception is 

compromised. The complete hardware architecture is shown 

in Figure 1. Raspberry Pi is capable of processing visual data 

and generates navigation commands accordingly. The 

commands are transmitted to Arduino via UART. PID control 

is applied by Arduino at 100 Hz to get accurate speed. 

Figure 1. System hardware architecture showing component 

interconnections 

Figure 2. Raspberry Pi software architecture and data flow 
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The software system employs a multi-threaded architecture 

on the Raspberry Pi to maximize computational efficiency and 

real-time performance. As shown in Figure 2, separate threads 

handle different aspects of the navigation pipeline: 

1. SLAM Thread: Runs ORB-SLAM2 at 30 Hz for

continuous localization and mapping.

2. Perception Thread: Executes YOLOv5 at 15 Hz for

obstacle detection.

3. Planning Thread: Runs enhanced A* algorithm at 5

Hz for path planning.

4. Control Thread: Communicates with Arduino at 20

Hz for motor control.

Figure 3. Arduino motor control system architecture 

Inter-thread communication uses shared memory buffers 

with mutex protection to ensure data consistency. As shown in 

Figure 3, the Arduino runs a real-time control loop at 100 Hz, 

implementing PID control for precise motor actuation.  

The size of the robotic library is 10 meters by 8 meters in 

which all the obstacles are available and they are used for the 

experiment in this research. Two types of obstacles are used 

one is the static obstacle and the other is the dynamic. The 

static obstacles are tables, equipment, and racks available. 

Figure 4 presents experimental laboratory layout showing 

navigation path. The dynamic obstacle moving people are 

temporarily placed objects. Several environmental factors are 

considered which include normal lighting 500 lux, low 

lighting 100 lux and different obstacle densities. 

The system has undergone 100 navigation tests and 200 

obstacle avoidance tests for systematic testing. Various 

performance characteristics are considered for the testing. 

These include accuracy, efficiency, obstacle awareness, 

success rate, computing resource usage, and user experience 

rating for 50 participants. 

Figure 4. Experimental laboratory layout showing navigation 

path and obstacle locations 

5. RESULTS AND DISCUSSIONS

5.1 Navigation performance analysis 

Table 1 gives a comparison of AI based SLAM system and 

traditional line following system. This AI based SLAM system 

is better in all parameters except computational load. It 

reduces the time by 40% in two times and it shows that this 

system is more efficient than traditional system. The 

developed system reduces the deviation by 65.6% i.e. from 3.2 

cm to 1.1 cm. It shows that SLAM provides excellent 

localization accuracy. This SLAM tracking provides 

localization success rate of 98.2%. In this system, primary 

failures occur at 15% turns and 72% in low texture areas. 

Illumination changes are causing 13% failure results. 

Regression analysis is used to find the correlation between 

path deviation and SLAM tracking stability. A strong negative 

correlation R² = 0.83 was found between SLAM feature 

number and path segmentation. If ORB feature tracking is 

reduced to less than 300 features per frame, the path deviation 

increases by an average of 2.7 cm. This shows that sufficient 

feature density is important for navigation accuracy. 

Table 1. Navigation performance comparison (100 trials) 

Metric LF System AI SLAM System Improvement P-Value

Average Tour Time (min) 8.5 ± 0.4 5.1 ± 0.2 40.0% < 0.001 

Path Deviation (cm) 3.2 ± 0.8 1.1 ± 0.3 65.6% < 0.001 

Average Speed (m/s) 0.5 ± 0.1 0.8 ± 0.05 60.0% < 0.001 

Localization Success Rate (%) 100 (Fixed) 98.2 ± 1.2 -1.8% 0.023 

Computational Load (CPU%) 15 ± 3 78 ± 8 +420% < 0.001 
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5.2 Obstacle avoidance performance 

 

Table 2 shows obstacle awareness performance is 

demonstrated after 200 trials. The system maintains a high 

success rate in challenging situations. The computational load 

is increasing due to the crowded environment, thus reducing 

the system performance. This is due to the more frequent path 

lab planning requirements. A success rate of 91.8% has been 

achieved in this situation. The ultrasonic sensor is providing 

emergency stop functionality. It provides 100% liability for 

immediate collision prevention. Parameter sensitivity analysis 

is performed to understand the relationship between YOLO 

confidence threshold and avoidance performance. 

Figure 5 shows three confidence shots reduced from 0.7 to 

0.5. It shows an 18% increase in detection rate but at the same 

time a 7% decrease in avoidance success rate. This is due to 

increased false positives. The analysis gives an optimal 

threshold of 0.65. I will discuss the balance accuracy of 92.3% 

and recall of 89.7%. The abstract avoidance success rate 

strongly suggests that R2 is equal to 0.76 with the time 

available for replanning. When comparing obstacles 

encountered within a 1.5 m range of the robot to obstacles 

encountered beyond 2.5 m, the avoidance success rate is 15% 

lower. 

 

 
The optimal threshold of 0.65 balances detection rate, precision, and 

avoidance success 

 

Figure 5. Parameter sensitivity analysis showing trade-offs 

in YOLO confidence threshold selection

 

Table 2. Obstacle avoidance performance (200 trials) 

 
Scenario Success Rate (%) Detour Time (s) Path Increase (%) 

Single static obstacle 100 2.1 ± 0.5 8.2 ± 2.1 

Multiple static obstacles 98.5 4.3 ± 1.2 15.7 ± 3.8 

Dynamic obstacle (Moving) 95.2 3.8 ± 1.1 12.3 ± 2.9 

Crowded environment 91.8 6.2 ± 1.8 22.5 ± 5.1 

Emergency stop 100 0.5 ± 0.1 0 

Overall average 97.1 3.4 ± 1.3 11.7 ± 3.5 

5.3 Computational performance and system reliability 

 

Figure 6 presents a comparison of computational resource 

utilization between AI SLAM and LF systems. Four parameter 

values namely CPU usage, memory usage, inference time and 

power consumption are reported. AISLAM inference time 

includes both SLAM and YOLO processing time. The CPU 

load utilization shows 78% utilization during navigation. It 

starts from 92% during simultaneous SLAM mapping and 

obstacle detection. Some important consequences of this high 

utilization are given below. 

1. Thermal Management: The Raspberry Pi 4 reached 85°C 

after 25 minutes of operation without active cooling. Due to 

this, it reduces the CPU frequency from 1.8 GHz to 1.4 GHz. 

This frequency reduction increases the SLAM processing 

time. It increases the processing time by 35% and, therefore, 

causes frame drops in 2.1%. 

2. Real-time Performance Impact: Simultaneous loop 

closure and solid obstacle detection in SLAM occur during 

peak load periods. The total processing latency for 15Hz 

operation is sometimes more than 66ms per frame. SLAM 

tracking loss recovers to 0.8% of frames in 100ms processing. 

YOLO frame dropping is 1.3% in dense obstacle conditions. 

This causes a 120ms delay between path planning re-planning 

events. 

3. Reliability Concerns: Memory fragmentation increases 

SLAM initialization time by 45% in long-term testing over 10 

hours. Periodic memory cleanup routines are required to 

maintain system stability. 

4. Frame Drop Analysis: When SLAM and YOLO are under 

heavy load conditions, it shows 67% frame drop in the 

analysis. ORB-SLAM 2 has given 33 events during loop 

closure optimization. It sometimes monopolizes CPU 

resources for 150 to 200ms. 

 
AISLAM inference time includes both SLAM and YOLO processing 

 

Figure 6. Computational resource utilization comparison 

between systems 

 

5.4 Environmental adaptability 

 

The system works as shown in Table 3 of different 

environmental conditions available. The degradation of 

performers in low light conditions highlights the limitations of 

visual perception. This maintains good performance in high-

traffic conditions with a success rate of 91.8%. This shows 

how effectively the system handles complex environments. It 

detects 70% localization failures in areas with low texture. 

This happens when reduces the ORB feature count to less than 

200 features per frame. In low light conditions, there is noise 

in the camera which reduces the feature mapping accuracy by 

40%. Five pixel tracking loss in ORB SLAM2 is due to faster 

motion blur. The key relationships have been identified as 

follows: 

1. SLAM features vs. localization error: Exponential 
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decrease in error with increasing feature count (error 

e−0.002features) 

2. Detection distance vs. avoidance success: Linear

decrease in success rate as detection distance

decreased (success rate = 0.95 - 0.08 × distance, for

distance in meters)

3. CPU load vs. response time: Quadratic increase in

planning latency with CPU utilization (latency 0.02 × 

CPU2)

5.5 User experience evaluation 

Table 4 considers 50 of the participants for the user 

evaluation results. It is found that users consistently rated the 

AI-SLAM system for smooth navigation and obstacle 

avoidance. The time ratings obtained show that the increased 

computational complexity does not negatively affect the 

participants. The correlation between usability satisfaction and 

navigation smoothness is R = 0.78. 

This suggests that reducing the startle moment during 

obstacle avoidance. Users are sometimes tolerant of poses due 

to sudden changes in direction. This indicates that the high 

response time ratings sometimes result in computational 

delays. 

Table 3. Performance under varying environmental conditions with failure mode analysis 

Environmental Condition Success Rate (%) Localization Accuracy (cm) Obstacle Detection Rate (%) Primary Failure Mode 

Normal lighting 98.2 1.1 ± 0.3 96.5 ± 2.1 None 

Low lighting 85.3 3.8 ± 1.2 78.2 ± 5.3 Feature extraction (72%) 

High crowding 91.8 2.3 ± 0.8 92.7 ± 3.1 Computational overload (65%) 

Dynamic changes 87.5 4.1 ± 1.5 85.4 ± 4.2 Tracking loss (58%) 

Mixed conditions 82.6 5.2 ± 1.8 81.9 ± 4.7 Multiple factors 

Table 4. User experience evaluation (N = 50) 

Metric (1-5 Scale) LF System AI SLAM System Significance 

Overall satisfaction 3.8 ± 0.6 4.5 ± 0.4 p < 0.001 

Navigation smoothness 3.2 ± 0.7 4.3 ± 0.5 p < 0.001 

Obstacle avoidance 3.5 ± 0.8 4.6 ± 0.3 p < 0.001 

Information delivery 4.1 ± 0.5 4.4 ± 0.4 p = 0.012 

Response time 4.2 ± 0.4 4.1 ± 0.5 p = 0.345 

Ease of interaction 4.3 ± 0.3 4.7 ± 0.2 p = 0.008 

5.6 Technical contributions 

This research demonstrates several important technical 

benefits. This research successfully implements the 

integration of embedded hardware with real-time visual 

SLAM, deep learning and path planning. A novel sensor 

fusion framework is integrated with YOLO detection in 

dynamic devices along with ORB features. The 

implementation of this model provides adaptive navigation 

without predefined paths. It is providing a fundamental change 

from the traditional approach to system modification. This 

capability of the system provides deployment of the system in 

various environmental conditions without expensive 

infrastructure. This research has achieved a balance between 

computational requirements and practical performance. The 

cost-effective hardware demonstrates that it can be easily 

implemented in the real world. 

5.7 Limitations and challenges 

This research found some limitations. The first important 

limitation is that excessive lighting provides low performance. 

The CPU utilization is 78% indicating that the computational 

intensity can limit the deployment. This indicates that the 

system requires a more resource-constrained platform. Scale 

in the monocular SLAM presents challenge for metric 

navigation. The limited ability to predict obstacle motion 

patterns offers another area for improvement. This research 

found that purely reactive obstacle avoidance is insufficient in 

highly dynamic environments. Recent approaches like 

DynaSLAM [13] and DS-SLAM [14] have shown promise in 

handling dynamic scenes through semantic segmentation and 

inpainting techniques. However, these methods are 

computationally intensive and may not be suitable for 

embedded systems like Raspberry Pi 4 without significant 

optimization. 

5.8 Comparison with alternative approaches 

Similar approaches are available for many cameras, 

including cost-effective solutions suitable for academic and 

laboratory applications. The performance between 

computational cost and the navigation capabilities of the 

system provides a strategic balance for real-world 

applications. In most situations, absolute performance is less 

important than reliability and affordability. 

If we compare this system to more complex systems like 

DyGS-SLAM [15] which offers double-constrained 

optimization for better map reconstruction in dynamic scenes, 

or deep reinforcement learning approaches [16] that provide 

more adaptive navigation policies, this approach shows that 

autonomous navigation capabilities are achieved with simple 

hardware for advanced robotics technologies. The trade-off is 

between computational complexity and practical deployment 

feasibility. 

6. CONCLUSION AND FUTURE WORK

This paper presents an AI-based visual navigation system. 

Designed for autonomous tour guide robots for academic 

laboratory environments. This research integrates 

ORBSLAM2 for real-time localization, YOLOv5 for obstacle 

detection, and A* algorithm for forward path planning. This 

research develops an assistant capable of navigating in a 

dynamic environment without predefined paths. Experimental 
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results show improvements of 40% in two-time deduction, 

65.6% in path deviation, and 95% in dynamic obstacle 

avoidance success rate. This is a system that strikes a practical 

balance between technical capabilities and implementation 

feasibility. This investigation shows that advanced 

autonomous navigation is achieved on cost-effective 

hardware. It has been proven by user evaluation that this 

system has improved experiments compared to the traditional 

method. Future work can focus on key areas. It will be possible 

to provide infrared and depth sensors as fusion sensors in this 

multimodal. It will be provided more robustness under 

different lighting conditions. The computational load will be 

reduced with quantization and pruning techniques. Predictive 

navigation that includes obstacle motion estimation will 

provide more intelligent path planning. Collaborative 

navigation with multi-robot coordination is possible. Also, it 

is possible to implement lifelong learning in the system with 

continuous environmental adaptation. 

Future research directions could include incorporating 

semantic SLAM approaches like those in DS-SLAM for better 

handling of dynamic objects, or exploring lightweight 

implementations of dynamic scene handling techniques 

similar to DynaSLAM optimized for embedded systems. 

Additionally, hybrid approaches combining traditional path 

planning with reinforcement learning elements could provide 

more adaptive navigation policies for complex dynamic 

environments.  
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NOMENCLATURE 

Symbol Description 

B 
Bounding box confidence score – 

(dimensionless) 

C Number of object classes – (dimensionless) 

f(n) 
Total estimated cost in A* algorithm – 

(dimensionless) 

g(n) 
Actual cost from start node to current node n – 

(dimensionless) 

h(n) 
Heuristic estimate from node n to goal – 

(dimensionless) 

L Wheel spacing (m) 

P(Object) 
Probability of object presence – 

(dimensionless) 

r Wheel radius (m) 

S Grid size in YOLO– (dimensionless) 

v 
Linear velocity ( 

m·s⁻¹) 

x, y Robot position coordinates (m) 

m Map landmarks vector 

q Robot state vector [x,y,θ]T[x, y, θ]^T[x,y,θ]T 

x Robot trajectory vector 

z Camera observations vector 

Greek symbols 

θ Robot orientation angle (radians) 

ω Angular velocity (rad·s⁻¹) 

ωₗ, ωᵣ Left and right wheel angular velocities (rad·s⁻¹) 

Subscripts / Superscripts 

Notation Description 

g Goal position 

l Left wheel

r Right wheel 

t Time step 

* Optimal value

Abbreviations 

Abbreviation Full Form 

AI Artificial Intelligence 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

IOU Intersection over Union 

LF Line Following 

MAP Maximum A Posteriori 

MTBF Mean Time Between Failures 

PWM Pulse Width Modulation 

ROI Return on Investment 

SLAM Simultaneous Localization and Mapping 

YOLO You Only Look Once 
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