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This article proposes a flatness-based control for a renewable hybrid microgrid comprising
a photovoltaic (PV), wind turbine (WT), and battery storage systems. The flatness
approach generates reference trajectories for DC-link energy voltage regulation and
coordinated power sharing. To increase robustness under renewable intermittency and
improve reference-trajectory tracking, the proposed control law is augmented by
incorporating a predictive neural network (PNN). In addition, a Fuzzy-PI controller is used
in the inner converter loops, where fuzzy logic adaptively tunes the Pl parameters in real-
time based on the error and its variation. A maximum power point tracking (MPPT)
technique based on a perturb and observe (PO) was used to maximize the PV’s power. The
proposed system was tested in a simulation environment based on MATLAB/Simulink.
The obtained results show that the proposed strategy ensures efficient energy management
in hybrid microgrids, decreases perturbations in the regulated DC bus, and improves
robustness against load variation uncertainties.
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1. INTRODUCTION

The global energy transition to renewable energy
resources has risen significantly in the last few years,
propelled by the pressing need to reduce greenhouse gas
emissions and reliance on fossil fuels, which have limited
reserves and cause pollution. Photovoltaic (PV), wind turbine
(WT) and water turbine systems are the most deployed
renewable technologies, due to their ecological
sustainability, economic effectiveness, and modularity.
However, their intermittent nature and dependence on
meteorological conditions present significant challenges to
ensure stability, reliability, and efficient energy utilization in
power systems. To address these issues, hybrid renewable
energy systems (HRES) are an attractive solution, as they
integrate several power sources managed using power
electronics converters [1]. A combination of PV, WT, and
battery energy storage systems (BESS) have garnered
increasing attention as a good solution for the two operational
modes of microgrid: isolated mode and grid-connected. In
these systems, the battery is essential for balancing
generation and demand, mitigating renewable variability and
regulating the DC-link voltage [2, 3].

Despite their advantages, the operation and management
of hybrid microgrids remain challenging. Advanced control
strategies are essential due to the nonlinear dynamics of
power converters, the fast fluctuations in renewable energy
sources, and the uncertain changes in load. Traditionally,
proportional-integral (PI) controllers have been frequently
used in the regulation of microgrid converters because of
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their simplicity and ease of installation [4]. Nevertheless,
their limitations have been emphasized in numerous studies
when operating in dynamic conditions. For example, Ali et
al. [5] found that PI controllers have longer settling periods
and undershoot compared to Model Predictive Control
(MPC). In general, PI regulators have a fixed-gain structure
that renders them susceptible to parameter variations and
external disturbances, which can restrict their robustness in
microgrids with significant renewable integration [6]. To
overcome these shortcomings, several studies have
investigated intelligent control strategies. Among them,
fuzzy logic controllers (FLCs), which were initially proposed
in 1975 [7], are appealing because of their capacity and
ability to manage uncertainties while avoiding the need for
precise system modeling. In particular, fuzzy-PI schemes
combine a traditional PI regulator with the flexibility of fuzzy
inference, enabling real-time adjustment of gains [8]. Recent
research demonstrates that fuzzy-PI regulators enhance the
robustness and convergence of renewable energy systems [9,
10].

In addition to local regulation, predictive control
approaches have become more significant for the supervisory
control of nonlinear systems. In particular, MPC is
extensively utilized in microgrids, providing optimization
and improved performance over a finite horizon compared to
traditional strategies [11]. However, the computational
complexity of MPC frequently restricts its application in real-
time scenarios [12]. Another option is predictive neural
networks (PNNs), which use the approximation abilities of a
multilayer perceptron to predict future trajectories and learn
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system dynamics. PNN functions as an anticipatory indicator
of DC-link energy, offering real-time adjustments for
deviations, thereby improving the robustness of supervisory
control strategies [13, 14].

In modern control theory, differential flatness, first
introduced by Fliess et al. [15], is another efficient and robust
framework that provides explicit reference generation for
nonlinear systems. It has been successfully applied across
various engineering disciplines, including electric vehicle,
robotic control, power electronic systems, etc. [16, 17].
Differential flatness is used in hybrid microgrids to generate
clear reference trajectories and facilitate coordinated
operation, especially for energy balancing and hierarchical
control [18]. In practical applications, inner converter loops
are frequently regulated using PI controllers, while the
integration of predictive and intelligent controllers within the
flatness framework can further enhance robustness and
dynamic performance under uncertainties.

In this study, an efficient energy management system is
proposed based on flatness non-linear control theory
hybridized with a PNN control for a microgrid comprising
photovoltaic, WT, and battery systems. To enhance
robustness and dynamic adaptability, fuzzy-PI controllers are
used in the inner loops. This combination of strategies
provides a resilient architecture that improves transient
response, reduces overshoot, and enhances power sharing
between the load, renewable energy sources, and energy
storage systems.

The remainder of the paper is structured as follows:
Section 2 describes the structure of the hybrid system
considered in this study. Section 3 highlights the suggested
efficient energy management strategy. Section 4 provides the
simulation results and their discussion. Finally, Section 5
presents the conclusion of the paper.

2. HYBRID ENERGY SYSTEM STRUCTURE

The studied DC microgrid consists of three renewable
energy sources: a photovoltaic array, a WT, and a battery
energy storage system, as illustrated in Figure 1. Each source
is connected in parallel to the common DC bus through
dedicated power converters: a DC/DC boost converter for the
PV array, a rectifier and DC/DC stage for the WT, and a buck
boost DC/DC converter for the battery. The output inverter is
linked to the user load through an AC bus (if required for
grid-tied systems or to supply AC applications). New
techniques are employed in certain papers to minimize the
total harmonic distortion of various converters [19-22].

The photovoltaic source and WT provide the necessary
power to satisfy the load demand: it stores surplus energy
when renewable generation exceeds consumption, and
supplies power during renewable intermittency, thereby
maintaining the energy balance of the microgrid [23]. All the
sources inject their power into a common DC link that
provides the load.

The converters interfacing the renewable generation units
and the battery energy storage system are primarily
controlled by inner current regulation loops, which are
classically employed to guarantee safe operation and fast
dynamic response. It is generally assumed that the inner
current loop dynamics are significantly faster than those of
the outer control layers [24].
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Figure 1. The suggested hybrid system configuration

3. THE PROPOSED CONTROL STRATEGY
3.1 Principle of flatness control approach

The differential flatness can be used to control nonlinear
dynamic systems. A system is defined to be flat if there exists
a flat output that can be employed to express all the system
states and control variables as functions of this output and its
derivatives [25, 26]. Mathematically, for a nonlinear system
described by Eq. (1):

X =f(xu (D

The flatness theory reduces the order model and can be
expressed as follows:

y= ¢(x, u,u, ...,u(“)) )
{ x=¢1y,...y?) G)
u=9(,y,..,y¢"D)

where, x denotes the state variables, y is the flat output, and
u is the control input variable. With the functions of the
smooth mappings ¢, ¢ and 1. The term y®*D represents the
derivative of the output (B+1)™, a is a finite number of the
derivative, and rank (@) = m, rank (¢) = n, and rank () = m
[27]. The main advantage of this method is that the system
trajectories can be determined and estimated by the flat
output and its derivatives. This characteristic makes the
flatness approach attractive for nonlinear and hybrid systems
[28,29].

3.2 Mathematical modeling of the hybrid system

For the hybrid power system under study, the PV, WT, and
battery currents are assumed to follow their respective
reference signals with negligible error. Accordingly, the
reference currents are given by the following Egs. (4), (5),
and (6):

ﬂ _ PPVref

PV — {PVref —
Iy =1 = v V 4)
PV PV
Pyr  Pyr f
Iyt = IWTref = _V = —V = %)
wT wT
Pgate  Ppart f
Ipase = IBattref == (6)

VBatt VBatt



where, Ppy, and Pwr represent the PV and wind generated
power, respectively, while Pga denotes the battery power.
Voev, Vwr, Vear and Ipy, Iwr, Iax are the voltage and current
of the hybrid system respectively. In this study, only static
losses are considered in converter models, where rpy, rwi, and
pate correspond to the static loss parameters of the PV, WT,
and battery converters, respectively.

The capacitive energy for both the DC bus and the battery
bank can be expressed, according to the study by Thounthong
et al. [30], by:

1
Ypus = E Cpus X VE?us (7)

Yeate = 5 Cratt X Viare (®)
where, Cgys is the capacitance of the DC bus, Cgay the battery
capacitance, Vgys is the DC bus voltage and Vga is the
instantaneous voltage of the battery.

The total electrostatic energy Yo stored in the DC-link
capacitor Cpys and in the battery Cgay can also be written as
below:

The capacitive energy for both the DC bus and the battery
bank can be expressed by:

Yror = > Cous X Vigus + 5 Cate X Viare )

As portrayed in Figure 1, the derivative of DC-bus
capacitive energy is defined using Ppvo, Pwto, PBatto, and Pioad
by the following differential Eq. (10):

YBus = Ppyo + Pwro + Ppatto — Pioaa (10)
where,
P \2
Ppyo = Ppy — Ty X (ﬂ) (11)
Vpy
Po\2
Pyro = Pwr —Twe X (ﬂ) (12)
Vwr
Pgate\’
Ppatto = Prace — Tpate X (V_a) 13)
Batt
The power demanded by the load is defined as:
Pioaa = Veus X lipaa = C_us-lload (14)
Bus

3.3 Flatness of the power system model

To verify the flatness property [31], the system introduced
above is analyzed. According to the flatness theory, the flat
outputs Y, the control input variables u, and the state
variables x are expressed as follows:

=[ve]=1y] 13
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where, we assume that the photovoltaic (PV) is the principal
and the first primary source for the hybrid proposed PV-WT-
Battery power system, and Ppvdemd is the required power of
the differential flatness control algorithm.

The electrostatic energy Yays of the DC bus of the system
is assumed constant and defined as a flat output Y, and can
be written as:

YBus = 0= Ppyo + Pwro + Ppatto = Pioaa (18)

Also, the eclectrostatic energy Ygys is constant and
represented as a flat output Y». Therefore:

Y2 = 0 = Ppyo + Pwro — Proaa (19)

It is stocked in the DC bus capacitor Cgys and in the battery
bank.

The stat variables (xi, x2) of DC link voltage and the
battery voltage respectively, can be written as:

2XY
5= Vo =[S = g, (1) (20)
fz(yo YBus)
Xy = Vpase = tc;a:us =@, (11, 12) (21)

From (10) to (14), the input control variables u can be
calculated from the flat outputs Y and their time derivatives:

Uy = 2Ppaitrim

.1
(22)
. (Y1 + Lipaa X @1(Y1) — Ppyo — PWTO)
PBattLim
u = 1/’(Y1:Y1) = PBattref (23)
Uy = 2Potrim
Y, + 1 x (Y, .
11— \/1_ ( 2 ;)ad o( 1)) = (YY) (24)
totLim
where,
Vs,
Practtim = - (25)
Piotrim = Ppyrim + Pwrrim (26)

PgatiLim 1S the limited maximum power from the battery buck-
boost converter.
Therefore, and according to the preceding design, the



proposed reduced order-model can be considered as a flat
system [32].

3.4 The control law

The control loop of the battery energy depends on the
regulation of the total electromagnetic energy. The control
law of the battery used in this work can be written as [33]:

(Yz - YZref) + K21(Y2 - YZref) =0 (27)

This gives:

Y, = YZref + K31 (Yorer — Y2) (28)
where, Yot is the reference of total electrostatic energy (see
Eq. (9)), and K5, represents the control parameter.

3.5 PNN law for DC-Bus energy stabilization

The neural predictor is designed to allow the user some
freedom in selecting the inputs/states/outputs variables and
adopting a fully connected MLP (Multi-Layer Perceptron)
with tanh hidden activations and a linear output. The number
of hidden neurons is determined iteratively until the
validation error ceases to improve.

Training is based on time-aligned sequences generated
from the MATLAB/Simulink: the control inputs used for the
plant and the associated measured outputs. The network is
thus identified as a forward predictor, trained by minimizing
the prediction error so that its output closely matches the
plant’s measured response over time.

During operation, the trained neural network is used within
a predictive control framework to capture the short-term
evolution of the DC-link over a finite prediction horizon.
Based on the reference trajectory (for example, from the DC-
bus energy set-point), the proposed PNN directly generates
the control action at each sampling instant to ensure accurate
tracking while limiting excessive control variations. In this
way, the predictive objective is preserved without solving an
explicit receding-horizon optimization problem, since the
control law is obtained through a single forward evaluation
of the trained MLP.

In this work, the neural network model uses the DC-link
energy as input (along with optional past values and
additional signals) to predict the next step output, which
corresponds to the power supplied by the DC bus. This
predicted power is the representation of the plant’s dynamic
response. The training dataset contains this input value and
the output target, and was generated from
MATLAB/Simulink simulations. The network is trained
offline using the Levenberg-Marquardt algorithm (LM), and
the performance was evaluated using the mean square error
MSE.

The model used to predict the output of the control law is
given by the following energy balance equation:

Yous = 0= Ppyo + Pwro + Pgatto = Proaa (29)

The neural network is trained to minimize a performance
criterion derived from classical predictive control, expressed
as:
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N3
J= Z (YBus(t +]) - Ym(t +j))2
J=N1
Ny

+pZu(t+j—1)—u(t+j
j=1

—2))°

(30)

where, Ni, N,, and N, are, respectively, the horizons over
which the tracking error and the control increments are
computed, Ygus is the desired output, Y, is the output
predicted by the neural model, and u is the tentative control
signal. The parameter p adjusts the influence of control
increments in the performance index and is selected through
a parametric sweep to achieve an appropriate trade-off
between tracking accuracy and control smoothness. This
function represents the performance objective that the NN
implicitly acquires during training. Thus, the suggested PNN
controller operates in a feedforward predictive manner,
immediately producing the control signal from the neural
outputs.

In online operation, the controller only evaluates a forward
pass of the trained MLP at each sampling instant (i.e., a
limited number of multiply-accumulate operations and
activation function evaluations). Therefore, no online
optimization is required, that make the proposed approach
compatible with real-time implementation on standard digital
control platforms.

The topology of the neural network used is presented in
Figure 2. A two-hidden-layer feedforward network MLP [5
2] neurons was trained. Where w is the weight and b
represents the biases of the neural network layers.

Hidden 1 Hidden2 Output

" mot] |20 20t

Figure 2. Topology of the proposed neural network model

3.6 Inner current control

In the proposed flatness-based control architecture, the
inner control loops of the converters are implemented
utilizing a fuzzy PI controller as a replacement for the
conventional PI regulator. This hybrid strategy combines the
simplicity of the PI controller with the intelligence and
adaptability of fuzzy logic to provide the capability of
adapting the control effort online (implicit gain scheduling)
[34]. Within this architecture, the flatness-based control
approach generates the reference trajectories, while fuzzy PI
regulator controls the converter output currents and
guarantees precise tracking in the inner loops [35]. The
objective is to enhance robustness and dynamic efficacy of
the internal regulation, especially under load changes,
renewable generation fluctuations, and system parameters
uncertainties [36].

The fuzzy PI controller uses two inputs: the normalized
error e(k) and the change in error Ae(k). These crisp inputs
are fuzzified using a triangular membership functions with
linguistic variables: Negative Big (NB), Negative Medium
(NM), Negative Small (NS), Zero (ZE), Positive Small (PS),



Positive Medium (PM), and Positive Big (PB). The fuzzy
system outputs the incremental control signal Au(k) from the
inputs, which updates the PI control rule. Hence, the
controller operates as an adaptive mechanism that implicitly
adjusts the equivalent PI action online (implicit gain
scheduling). The schematic of the fuzzy PI controller
structure is shown in Figure 3.

( ) ( Inference
e(k), Ae(k) | ﬂ Fuzzification ‘ (Mamdani

J Rules)

» Defuzzification | J Au(k)

Figure 3. Fuzzy PI controller structure

The fuzzy rule base is developed by combining control
heuristics and expert knowledge, as illustrated in Table 1.
Large errors generate strong corrective actions, while small
errors near the steady state produce mild control efforts to
reduce oscillations. Defuzzification is achieved through the
application of the centroid method for enabling smooth
actuation.

This method enables faster settling, reduced overshoot,

Flatness control side

I Voltage to energy transformation

and enhanced rejection of disturbances compared to a fixed
PI controller, with better dynamic behavior of the inner loops
of the converters in the flatness-based energy management
technique.

Table 1. Rule base

e/de NB NM NS ZE PS PM PB
NB NB NB NB NM NS ZE ZE
NM NB NB NM NS ZE ZE PS
NS NB NM NS ZE PS PM PB
ZE NM NS ZE ZE ZE PS PM
PS NS ZE PS PM PB PB PB
PM ZE ZE PM PB PB PB PB
PB ZE_ PS PM PB PB PB PB

4. SIMULATION RESULTS AND DISCUSSION

The suggested control system regulates two main energy-
related variables utilizing the PNN control law: the DC bus
voltage of the hybrid system and the battery storage energy
YBatl-
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Figure 4. Structural design control of the proposed hybrid system

Figure 4 illustrates the suggested control strategy for the
hybrid microgrid. In this configuration, the DC bus energy
control law, implemented through the PNN, produces a
reference signal corresponding to the DC-link power to be
delivered. This reference power is then converted into the
battery current reference Igaurer by dividing it by the measured
battery-bank voltage, as given in Eq. (22).

The global energy management layer (total energy control)
provides the overall power reference Prower. This reference is
assigned to the PV power command Ppver, which is
constrained between the minimum value and the maximum
available PV power determined by the MPPT algorithm. The
remaining power, obtained from the difference between Progef
and Ppyrer, defines the WT power reference Pwrrr, thereby

ensuring a balanced power distribution among all renewable
sources within the hybrid microgrid. Nevertheless, the results
of the energy asymptotic control law using Eq. (32) are found
to be similar to those when the PNN is utilized.

(eref - Yl) + Kl(ylref - Yl) + KZ J-(eref - Yl) (31)
=0

Y, = Y1ref + Kl(eref - yl) + K f(ylref - yl) (32)

The asymptotic flatness feedback is parameterized by the
gains K, and K,, defined as: K| = 2{w, and K, = w2, with {



and o, denoting the desired dominant damping ratio and
natural frequency, respectively. These control parameters (K,
K,) are selected using a second-order dominant dynamics
specification.  Accordingly, the desired closed-loop
characteristic polynomial is chosen as:
p(s) = 5% + 20w,s + w,? (33)
In this work, the proposed energy management is evaluated
using MATLAB/Simulink. The parameters of the system and

of the control loop used in the simulation are summarized in
Table 2.

Table 2. Parameters of the system

Source Parameter Value  Unit
WT source Rated power 400 w
Battery Nominal voltage 48 v
Capacity 100 Ah
PV source Power rating 300 w
Panel rated voltage 36.9 \Y
Panel rated current 8.13 A
DC bus Rated voltage Vpcref 120 A%
Cpc 3000e® F

In order to assess and validate the performance of the
proposed control strategy, the load power profile shown in
Figure 5 is applied over a 5 second simulation interval.

The power simulation generated from different sources of
the hybrid system is shown in Figures 6 and 7. As observed,
during the initial period from 0-0.3 s, the battery compensates
for the power deficit by discharging. Subsequently, the PV
system, that acts as the primary source, takes over and starts
generating power, while the WT provides auxiliary support
and serves as a secondary source. Both renewable sources
complement each other to fulfill the load demand, whereas the
battery oscillates between charging, when the generation
surpasses load demand, and discharging, during transients, to
regulate the DC-link power balance. The observed smooth
dynamics are also facilitated by the inner loop controller,
which ensures robust current regulation for each converter.

Figures 8-10 demonstrate that the proposed control law
utilizing the PNN achieves accurate reference tracking and
maintains stable operation. In particular, Figure 8, the DC-bus
voltage remains tightly regulated around its reference value of
120V, with a very small peak deviation
(overshoot/undershoot) and a fast transient response (static
error of 0.98V = 0.8167%). The steady-state error remains
negligible, indicating accurate voltage regulation despite load
and generation variations.

Figure 10 illustrates the dynamic variation of the DC bus
(NN output). This signal demonstrates minimal oscillations
that indicate a stable and well-damped control action.

The results of the training performance of the PNN are
shown in Figure 11. The mean squared error (MSE) decreases
rapidly and reaches a minimum value of 0.00013585 at epoch
242, indicating the model’s strong generalization capacity.
The training, validation, and testing curves are close, which
indicates that the neural network attained steady convergence
without overfitting.

The battery voltage is balanced within the interval of 47.8
V to 48.2 V with a decrease at the time of starting, as depicted
in Figure 12. The absence of high-frequency oscillations
validates the reliable performance of the buck-boost converter,
which is controlled by the fuzzy pi regulator and guarantees
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stable voltage regulation.

According to Figures 13 and 14, both the currents of the
battery and WT exhibit excellent reference tracking, with
negligible steady-error and no noticeable oscillations (low
overshoot), which confirms the effectiveness of the inner
current regulation loops.
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5. CONCLUSIONS

This paper presents a flatness-based control method for a
hybrid photovoltaic/wind turbine/battery direct current
microgrid using the PNN control law to improve trajectory
tracking and address nonlinearities and model uncertainties.
The PNN makes the system more resilient and responsive by
comprehending the forward dynamics of the DC bus and
ensuring more accurate reference tracking for diverse loads
with a lower static error. A fuzzy-PI regulation method was
employed at the converter level to replace the conventional PI
controllers in the inner current loops. MATLAB/Simulink was
used to design and simulate the proposed control strategy. The
simulation results indicate that this technique ensures stable



DC bus regulation with minimized overshoot (0.05%) and
seamless power distribution among sources. The research
illustrates the capacity of integrating the differential flatness
approach with intelligent control strategies for enhanced
energy management in DC microgrids.

For

completeness and contextualize the proposed

contribution relative to commonly adopted PI and MPC
strategies, Table 3 summarizes a qualitative comparison

relying on commonly reported characteristics in the literature
and the behavior observed in the simulation results reported in
this paper.

Several directions are suggested for future research to
extend this study: 1) include experimental validation; 2) the
incorporation of supplementary optimization layers (such as
economic dispatch); and 3) design and control of a hybrid
DC/AC microgrid configurations.

Table 3. Qualitative comparison with classical PI and MPC controllers

Criterion Classical PI (literature) MPC (literature) Proposed Control
Tracking . . . .
under disturbance Medium High High (see Figures 8-10, 13-14)
Overshoot/oscillations Medium Low-Medium Low (well-damped in results)
Steady-state error Moderate Low Low/negligible (observed)
Constraint handling Low-Moderate High Limited
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NOMENCLATURE
PV photovoltaic
WT wind turbine

PNN predictive neural network

MPPT maximum power point tracking
PO perturb and observe

HRES hybrid renewable energy systems
BESS battery energy storage systems

Pl proportional integral

MPC model predictive control

FLC fuzzy logic controllers

MLP model predictive control
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