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This article proposes a flatness-based control for a renewable hybrid microgrid comprising 

a photovoltaic (PV), wind turbine (WT), and battery storage systems. The flatness 

approach generates reference trajectories for DC-link energy voltage regulation and 

coordinated power sharing. To increase robustness under renewable intermittency and 

improve reference-trajectory tracking, the proposed control law is augmented by 

incorporating a predictive neural network (PNN). In addition, a Fuzzy-PI controller is used 

in the inner converter loops, where fuzzy logic adaptively tunes the PI parameters in real-

time based on the error and its variation. A maximum power point tracking (MPPT) 

technique based on a perturb and observe (PO) was used to maximize the PV’s power. The 

proposed system was tested in a simulation environment based on MATLAB/Simulink. 

The obtained results show that the proposed strategy ensures efficient energy management 

in hybrid microgrids, decreases perturbations in the regulated DC bus, and improves 

robustness against load variation uncertainties.  
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1. INTRODUCTION

The global energy transition to renewable energy 

resources has risen significantly in the last few years, 

propelled by the pressing need to reduce greenhouse gas 

emissions and reliance on fossil fuels, which have limited 

reserves and cause pollution. Photovoltaic (PV), wind turbine 

(WT) and water turbine systems are the most deployed 

renewable technologies, due to their ecological 

sustainability, economic effectiveness, and modularity. 

However, their intermittent nature and dependence on 

meteorological conditions present significant challenges to 

ensure stability, reliability, and efficient energy utilization in 

power systems. To address these issues, hybrid renewable 

energy systems (HRES) are an attractive solution, as they 

integrate several power sources managed using power 

electronics converters [1]. A combination of PV, WT, and 

battery energy storage systems (BESS) have garnered 

increasing attention as a good solution for the two operational 

modes of microgrid: isolated mode and grid-connected. In 

these systems, the battery is essential for balancing 

generation and demand, mitigating renewable variability and 

regulating the DC-link voltage [2, 3]. 

Despite their advantages, the operation and management 

of hybrid microgrids remain challenging. Advanced control 

strategies are essential due to the nonlinear dynamics of 

power converters, the fast fluctuations in renewable energy 

sources, and the uncertain changes in load. Traditionally, 

proportional-integral (PI) controllers have been frequently 

used in the regulation of microgrid converters because of 

their simplicity and ease of installation [4]. Nevertheless, 

their limitations have been emphasized in numerous studies 

when operating in dynamic conditions. For example, Ali et 

al. [5] found that PI controllers have longer settling periods 

and undershoot compared to Model Predictive Control 

(MPC). In general, PI regulators have a fixed-gain structure 

that renders them susceptible to parameter variations and 

external disturbances, which can restrict their robustness in 

microgrids with significant renewable integration [6]. To 

overcome these shortcomings, several studies have 

investigated intelligent control strategies. Among them, 

fuzzy logic controllers (FLCs), which were initially proposed 

in 1975 [7], are appealing because of their capacity and 

ability to manage uncertainties while avoiding the need for 

precise system modeling. In particular, fuzzy-PI schemes 

combine a traditional PI regulator with the flexibility of fuzzy 

inference, enabling real-time adjustment of gains [8]. Recent 

research demonstrates that fuzzy-PI regulators enhance the 

robustness and convergence of renewable energy systems [9, 

10]. 

In addition to local regulation, predictive control 

approaches have become more significant for the supervisory 

control of nonlinear systems. In particular, MPC is 

extensively utilized in microgrids, providing optimization 

and improved performance over a finite horizon compared to 

traditional strategies [11]. However, the computational 

complexity of MPC frequently restricts its application in real-

time scenarios [12]. Another option is predictive neural 

networks (PNNs), which use the approximation abilities of a 

multilayer perceptron to predict future trajectories and learn 
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system dynamics. PNN functions as an anticipatory indicator 

of DC-link energy, offering real-time adjustments for 

deviations, thereby improving the robustness of supervisory 

control strategies [13, 14]. 

In modern control theory, differential flatness, first 

introduced by Fliess et al. [15], is another efficient and robust 

framework that provides explicit reference generation for 

nonlinear systems. It has been successfully applied across 

various engineering disciplines, including electric vehicle, 

robotic control, power electronic systems, etc. [16, 17]. 

Differential flatness is used in hybrid microgrids to generate 

clear reference trajectories and facilitate coordinated 

operation, especially for energy balancing and hierarchical 

control [18]. In practical applications, inner converter loops 

are frequently regulated using PI controllers, while the 

integration of predictive and intelligent controllers within the 

flatness framework can further enhance robustness and 

dynamic performance under uncertainties.  

In this study, an efficient energy management system is 

proposed based on flatness non-linear control theory 

hybridized with a PNN control for a microgrid comprising 

photovoltaic, WT, and battery systems. To enhance 

robustness and dynamic adaptability, fuzzy-PI controllers are 

used in the inner loops. This combination of strategies 

provides a resilient architecture that improves transient 

response, reduces overshoot, and enhances power sharing 

between the load, renewable energy sources, and energy 

storage systems. 

The remainder of the paper is structured as follows: 

Section 2 describes the structure of the hybrid system 

considered in this study. Section 3 highlights the suggested 

efficient energy management strategy. Section 4 provides the 

simulation results and their discussion. Finally, Section 5 

presents the conclusion of the paper. 

 

 

2. HYBRID ENERGY SYSTEM STRUCTURE 

 

The studied DC microgrid consists of three renewable 

energy sources: a photovoltaic array, a WT, and a battery 

energy storage system, as illustrated in Figure 1. Each source 

is connected in parallel to the common DC bus through 

dedicated power converters: a DC/DC boost converter for the 

PV array, a rectifier and DC/DC stage for the WT, and a buck 

boost DC/DC converter for the battery. The output inverter is 

linked to the user load through an AC bus (if required for 

grid-tied systems or to supply AC applications). New 

techniques are employed in certain papers to minimize the 

total harmonic distortion of various converters [19-22]. 

The photovoltaic source and WT provide the necessary 

power to satisfy the load demand: it stores surplus energy 

when renewable generation exceeds consumption, and 

supplies power during renewable intermittency, thereby 

maintaining the energy balance of the microgrid [23]. All the 

sources inject their power into a common DC link that 

provides the load. 

The converters interfacing the renewable generation units 

and the battery energy storage system are primarily 

controlled by inner current regulation loops, which are 

classically employed to guarantee safe operation and fast 

dynamic response. It is generally assumed that the inner 

current loop dynamics are significantly faster than those of 

the outer control layers [24]. 

 
 

Figure 1. The suggested hybrid system configuration 

 

 

3. THE PROPOSED CONTROL STRATEGY 

 

3.1 Principle of flatness control approach 

 

The differential flatness can be used to control nonlinear 

dynamic systems. A system is defined to be flat if there exists 

a flat output that can be employed to express all the system 

states and control variables as functions of this output and its 

derivatives [25, 26]. Mathematically, for a nonlinear system 

described by Eq. (1): 

 

𝑥̇ = 𝑓(𝑥, 𝑢)  (1) 

 

The flatness theory reduces the order model and can be 

expressed as follows: 

 

𝑦 =  (𝑥, 𝑢, 𝑢̇ , … , 𝑢(𝛼)) (2) 

 

{
𝑥 = 𝜑(𝑦, 𝑦̇, … , 𝑦(𝛽))

𝑢 = 𝜓(𝑦, 𝑦̇, … , 𝑦(𝛽+1))
 (3) 

 

where, x denotes the state variables, y is the flat output, and 

u is the control input variable. With the functions of the 

smooth mappings , 𝜑 and 𝜓. The term y(β+1) represents the 

derivative of the output (β+1)th, α is a finite number of the 

derivative, and rank () = m, rank (𝜑) = n, and rank (𝜓) = m 

[27]. The main advantage of this method is that the system 

trajectories can be determined and estimated by the flat 

output and its derivatives. This characteristic makes the 

flatness approach attractive for nonlinear and hybrid systems 

[28, 29]. 

 

3.2 Mathematical modeling of the hybrid system 

 

For the hybrid power system under study, the PV, WT, and 

battery currents are assumed to follow their respective 

reference signals with negligible error. Accordingly, the 

reference currents are given by the following Eqs. (4), (5), 

and (6): 

 

𝐼𝑃𝑉 = 𝐼𝑃𝑉𝑟𝑒𝑓 =
𝑃𝑃𝑉

𝑉𝑃𝑉

=
𝑃𝑃𝑉𝑟𝑒𝑓

𝑉𝑃𝑉

 (4) 

 

𝐼𝑊𝑇 = 𝐼𝑊𝑇𝑟𝑒𝑓 =
𝑃𝑊𝑇

𝑉𝑊𝑇

=
𝑃𝑊𝑇𝑟𝑒𝑓

𝑉𝑊𝑇

 (5) 

 

𝐼𝐵𝑎𝑡𝑡 = 𝐼𝐵𝑎𝑡𝑡𝑟𝑒𝑓 =
𝑃𝐵𝑎𝑡𝑡

𝑉𝐵𝑎𝑡𝑡

=
𝑃𝐵𝑎𝑡𝑡𝑟𝑒𝑓

𝑉𝐵𝑎𝑡𝑡

 (6) 
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where, PPV, and PWT represent the PV and wind generated 

power, respectively, while PBatt denotes the battery power. 

VPV, VWT, VBatt and IPV, IWT, IBatt are the voltage and current 

of the hybrid system respectively. In this study, only static 

losses are considered in converter models, where rpv, rwt, and 

rbatt correspond to the static loss parameters of the PV, WT, 

and battery converters, respectively. 

The capacitive energy for both the DC bus and the battery 

bank can be expressed, according to the study by Thounthong 

et al. [30], by: 

 

𝑌𝐵𝑢𝑠 =
1

2
 𝐶𝐵𝑢𝑠 × 𝑉𝐵𝑢𝑠

2  (7) 

 

𝑌𝐵𝑎𝑡𝑡 =
1

2
 𝐶𝐵𝑎𝑡𝑡 × 𝑉𝐵𝑎𝑡𝑡

2  (8) 

 

where, CBus is the capacitance of the DC bus, CBatt the battery 

capacitance, VBus is the DC bus voltage and VBatt is the 

instantaneous voltage of the battery.  

The total electrostatic energy YTot stored in the DC-link 

capacitor CBus and in the battery CBatt can also be written as 

below: 

The capacitive energy for both the DC bus and the battery 

bank can be expressed by: 

 

𝑌𝑇𝑜𝑡  =
1

2
 𝐶𝐵𝑢𝑠 ×  𝑉𝐵𝑢𝑠

2  +  
1

2
 𝐶𝐵𝑎𝑡𝑡  ×  𝑉𝐵𝑎𝑡𝑡

2  (9) 

 

As portrayed in Figure 1, the derivative of DC-bus 

capacitive energy is defined using PPVo, PWTo, PBatto, and Pload 

by the following differential Eq. (10): 

 

Ẏ𝐵𝑢𝑠  = 𝑃𝑃𝑣𝑜  +  𝑃𝑊𝑇𝑜  + 𝑃𝐵𝑎𝑡𝑡𝑜 − 𝑃𝑙𝑜𝑎𝑑 (10) 

 

where, 

 

𝑃𝑃𝑣𝑜 =  𝑃𝑃𝑉  −  𝑟𝑝𝑣  ×  (
𝑃𝑃𝑉

𝑉𝑃𝑉

)
2

 (11) 

 

𝑃𝑊𝑡𝑜  =   𝑃𝑊𝑇 − 𝑟𝑤𝑡  ×  (
𝑃𝑊𝑇

𝑉𝑊𝑇

)
2

 (12) 

 

𝑃𝐵𝑎𝑡𝑡𝑜 =   𝑃𝐵𝑎𝑡𝑡 − 𝑟𝑏𝑎𝑡𝑡 ×  (
𝑃𝐵𝑎𝑡𝑡

𝑉𝐵𝑎𝑡𝑡

)
2

 (13) 

 

The power demanded by the load is defined as: 

 

𝑃𝑙𝑜𝑎𝑑  =  𝑉𝐵𝑢𝑠 ×  𝐼𝑙𝑜𝑎𝑑 = √
2𝑌𝐵𝑢𝑠

𝐶𝐵𝑢𝑠

. 𝐼𝑙𝑜𝑎𝑑  (14) 

 

3.3 Flatness of the power system model 

 

To verify the flatness property [31], the system introduced 

above is analyzed. According to the flatness theory, the flat 

outputs Y, the control input variables u, and the state 

variables x are expressed as follows: 

 

𝑌 = [
 𝑌𝐵𝑢𝑠

 𝑌𝑇𝑜𝑡
] = [

 𝑌1

 𝑌2
] (15) 

 

𝑢 = [
 𝑃𝐵𝑎𝑡𝑡

 𝑃𝑃𝑉𝑑𝑒𝑚𝑑
] = [

 𝑢1

 𝑢2
] (16) 

 

𝑥 = [
 𝑉𝐵𝑢𝑠

 𝑉𝐵𝑎𝑡𝑡
] = [

 𝑥1

 𝑥2
] (17) 

 

where, we assume that the photovoltaic (PV) is the principal 

and the first primary source for the hybrid proposed PV-WT-

Battery power system, and PPVdemd is the required power of 

the differential flatness control algorithm. 

The electrostatic energy YBus of the DC bus of the system 

is assumed constant and defined as a flat output Y1, and can 

be written as: 

 

Ẏ𝐵𝑢𝑠  =  0 = 𝑃𝑃𝑣𝑜  +  𝑃𝑊𝑇𝑜  + 𝑃𝐵𝑎𝑡𝑡𝑜 − 𝑃𝑙𝑜𝑎𝑑  (18) 

 

Also, the electrostatic energy YBus is constant and 

represented as a flat output Y2. Therefore: 

 

Ẏ2  =  0 = 𝑃𝑃𝑣𝑜  +  𝑃𝑊𝑇𝑜 − 𝑃𝑙𝑜𝑎𝑑  (19) 

 

It is stocked in the DC bus capacitor CBus and in the battery 

bank. 

 

The stat variables (x1, x2) of DC link voltage and the 

battery voltage respectively, can be written as: 

 

𝑥1  =  𝑉𝐵𝑢𝑠  =  √
2×𝑌𝐵𝑢𝑠

𝐶𝐵𝑢𝑠
 =  𝜑1 (𝑌1)  (20) 

 

𝑥2  =  𝑉𝐵𝑎𝑡𝑡  =  √
2(𝑌𝑡𝑜𝑡−𝑌𝐵𝑢𝑠)

𝐶𝐵𝑎𝑡𝑡
 = 𝜑2 (𝑌1, 𝑌2)  (21) 

 

From (10) to (14), the input control variables u can be 

calculated from the flat outputs Y and their time derivatives: 

 

𝑢1  =  2𝑃𝐵𝑎𝑡𝑡𝐿𝑖𝑚 

. [1

− √1 − (
𝑌1̇  + 𝐼𝑙𝑜𝑎𝑑  ×  𝜑1(𝑌1) − 𝑃𝑃𝑣𝑜 −  𝑃𝑊𝑇𝑜

𝑃𝐵𝑎𝑡𝑡𝐿𝑖𝑚

)] 

(22) 

 

𝑢1  =  𝜓(𝑌1, Ẏ1)  =  𝑃𝐵𝑎𝑡𝑡𝑟𝑒𝑓  (23) 

 

𝑢2  =  2𝑃𝑡𝑜𝑡𝐿𝑖𝑚 

. [1 −  √1 − (
𝑌2̇  +  𝐼𝑙𝑜𝑎𝑑  ×  𝜑(𝑌1)

𝑃𝑡𝑜𝑡𝐿𝑖𝑚

)] =  𝜓2(𝑌1, Ẏ2) 
(24) 

 

where, 

 

𝑃𝐵𝑎𝑡𝑡𝐿𝑖𝑚  =  
𝑉𝐵𝑎𝑡𝑡

2

4𝑟𝑏𝑎𝑡𝑡

 (25) 

 

 

𝑃𝑡𝑜𝑡𝐿𝑖𝑚 = 𝑃𝑃𝑉𝐿𝑖𝑚 + 𝑃𝑊𝑇𝐿𝑖𝑚 (26) 

 

PBattLim is the limited maximum power from the battery buck-

boost converter. 

Therefore, and according to the preceding design, the 
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proposed reduced order-model can be considered as a flat 

system [32]. 

 

3.4 The control law 

 

The control loop of the battery energy depends on the 

regulation of the total electromagnetic energy. The control 

law of the battery used in this work can be written as [33]: 

 

(𝑌̇2 − 𝑌̇2𝑟𝑒𝑓) + 𝐾21(𝑌2 − 𝑌2𝑟𝑒𝑓) = 0 (27) 

 

This gives: 

 

𝑌̇2 = 𝑌̇2𝑟𝑒𝑓 + 𝐾21(𝑌2𝑟𝑒𝑓 − 𝑌2)  (28) 

 

where, Y2ref is the reference of total electrostatic energy (see 

Eq. (9)), and K21 represents the control parameter. 

 

3.5 PNN law for DC-Bus energy stabilization 

 

The neural predictor is designed to allow the user some 

freedom in selecting the inputs/states/outputs variables and 

adopting a fully connected MLP (Multi-Layer Perceptron) 

with tanh hidden activations and a linear output. The number 

of hidden neurons is determined iteratively until the 

validation error ceases to improve. 

Training is based on time-aligned sequences generated 

from the MATLAB/Simulink: the control inputs used for the 

plant and the associated measured outputs. The network is 

thus identified as a forward predictor, trained by minimizing 

the prediction error so that its output closely matches the 

plant’s measured response over time. 

During operation, the trained neural network is used within 

a predictive control framework to capture the short-term 

evolution of the DC-link over a finite prediction horizon. 

Based on the reference trajectory (for example, from the DC-

bus energy set-point), the proposed PNN directly generates 

the control action at each sampling instant to ensure accurate 

tracking while limiting excessive control variations. In this 

way, the predictive objective is preserved without solving an 

explicit receding-horizon optimization problem, since the 

control law is obtained through a single forward evaluation 

of the trained MLP.  

In this work, the neural network model uses the DC-link 

energy as input (along with optional past values and 

additional signals) to predict the next step output, which 

corresponds to the power supplied by the DC bus. This 

predicted power is the representation of the plant’s dynamic 

response. The training dataset contains this input value and 

the output target, and was generated from 

MATLAB/Simulink simulations. The network is trained 

offline using the Levenberg-Marquardt algorithm (LM), and 

the performance was evaluated using the mean square error 

MSE.  

The model used to predict the output of the control law is 

given by the following energy balance equation: 

 

Ẏ𝐵𝑢𝑠  =  0 = 𝑃𝑃𝑣𝑜  +  𝑃𝑊𝑇𝑜  + 𝑃𝐵𝑎𝑡𝑡𝑜 − 𝑃𝑙𝑜𝑎𝑑  (29) 

 

The neural network is trained to minimize a performance 

criterion derived from classical predictive control, expressed 

as: 

 

𝐽 = ∑ (𝑌𝐵𝑢𝑠(𝑡 + 𝑗) − Ẏ𝑚(𝑡 + 𝑗))2

𝑁2

𝑗=𝑁1

+ 𝜌 ∑ 𝑢(𝑡 + 𝑗 − 1) − 𝑢(𝑡 + 𝑗

𝑁2

𝑗=1

− 2))2 

(30) 

 

where, N1, N2, and Nu are, respectively, the horizons over 

which the tracking error and the control increments are 

computed, YBus is the desired output, Ym is the output 

predicted by the neural model, and u is the tentative control 

signal. The parameter ρ adjusts the influence of control 

increments in the performance index and is selected through 

a parametric sweep to achieve an appropriate trade-off 

between tracking accuracy and control smoothness. This 

function represents the performance objective that the NN 

implicitly acquires during training. Thus, the suggested PNN 

controller operates in a feedforward predictive manner, 

immediately producing the control signal from the neural 

outputs.  

In online operation, the controller only evaluates a forward 

pass of the trained MLP at each sampling instant (i.e., a 

limited number of multiply-accumulate operations and 

activation function evaluations). Therefore, no online 

optimization is required, that make the proposed approach 

compatible with real-time implementation on standard digital 

control platforms.  

The topology of the neural network used is presented in 

Figure 2. A two-hidden-layer feedforward network MLP [5 

2] neurons was trained. Where w is the weight and b 

represents the biases of the neural network layers. 

 

 
 

Figure 2. Topology of the proposed neural network model 

 

3.6 Inner current control 

 

In the proposed flatness-based control architecture, the 

inner control loops of the converters are implemented 

utilizing a fuzzy PI controller as a replacement for the 

conventional PI regulator. This hybrid strategy combines the 

simplicity of the PI controller with the intelligence and 

adaptability of fuzzy logic to provide the capability of 

adapting the control effort online (implicit gain scheduling) 

[34]. Within this architecture, the flatness-based control 

approach generates the reference trajectories, while fuzzy PI 

regulator controls the converter output currents and 

guarantees precise tracking in the inner loops [35]. The 

objective is to enhance robustness and dynamic efficacy of 

the internal regulation, especially under load changes, 

renewable generation fluctuations, and system parameters 

uncertainties [36].  

The fuzzy PI controller uses two inputs: the normalized 

error e(k) and the change in error Δe(k). These crisp inputs 

are fuzzified using a triangular membership functions with 

linguistic variables: Negative Big (NB), Negative Medium 

(NM), Negative Small (NS), Zero (ZE), Positive Small (PS), 
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Positive Medium (PM), and Positive Big (PB). The fuzzy 

system outputs the incremental control signal Δu(k) from the 

inputs, which updates the PI control rule. Hence, the 

controller operates as an adaptive mechanism that implicitly 

adjusts the equivalent PI action online (implicit gain 

scheduling). The schematic of the fuzzy PI controller 

structure is shown in Figure 3. 

 

 
 

Figure 3. Fuzzy PI controller structure 

 

The fuzzy rule base is developed by combining control 

heuristics and expert knowledge, as illustrated in Table 1. 

Large errors generate strong corrective actions, while small 

errors near the steady state produce mild control efforts to 

reduce oscillations. Defuzzification is achieved through the 

application of the centroid method for enabling smooth 

actuation. 

This method enables faster settling, reduced overshoot, 

and enhanced rejection of disturbances compared to a fixed 

PI controller, with better dynamic behavior of the inner loops 

of the converters in the flatness-based energy management 

technique. 

 

Table 1. Rule base 

 
e / de NB NM NS ZE PS PM PB 

NB NB NB NB NM NS ZE ZE 

NM NB NB NM NS ZE ZE PS 

NS NB NM NS ZE PS PM PB 

ZE NM NS ZE ZE ZE PS PM 

PS NS ZE PS PM PB PB PB 

PM ZE ZE PM PB PB PB PB 

PB ZE PS PM PB PB PB PB 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

 

The suggested control system regulates two main energy-

related variables utilizing the PNN control law: the DC bus 

voltage of the hybrid system and the battery storage energy 

YBatt. 

 

 
 

Figure 4. Structural design control of the proposed hybrid system 

 

Figure 4 illustrates the suggested control strategy for the 

hybrid microgrid. In this configuration, the DC bus energy 

control law, implemented through the PNN, produces a 

reference signal corresponding to the DC-link power to be 

delivered. This reference power is then converted into the 

battery current reference IBattref by dividing it by the measured 

battery-bank voltage, as given in Eq. (22).  

The global energy management layer (total energy control) 

provides the overall power reference PTotref. This reference is 

assigned to the PV power command PPVref, which is 

constrained between the minimum value and the maximum 

available PV power determined by the MPPT algorithm. The 

remaining power, obtained from the difference between PTotref 

and PPVref, defines the WT power reference PWTref, thereby 

ensuring a balanced power distribution among all renewable 

sources within the hybrid microgrid. Nevertheless, the results 

of the energy asymptotic control law using Eq. (32) are found 

to be similar to those when the PNN is utilized. 

 

(𝑌̇1𝑟𝑒𝑓 − 𝑌̇1) + 𝐾1(𝑌1𝑟𝑒𝑓 − 𝑌1) +  𝐾2 ∫(𝑌1𝑟𝑒𝑓 − 𝑌1)

= 0 

(31) 

 

𝑌̇1 = 𝑌̇1𝑟𝑒𝑓 + 𝐾1(𝑌1𝑟𝑒𝑓 − 𝑌1) +  𝐾2 ∫(𝑌1𝑟𝑒𝑓 − 𝑌1) (32) 

 

The asymptotic flatness feedback is parameterized by the 

gains K1 and K2, defined as: K1 = 2ζωn and K2 = ωn
2, with ζ 
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and ωn denoting the desired dominant damping ratio and 

natural frequency, respectively. These control parameters (K1, 

K2) are selected using a second-order dominant dynamics 

specification. Accordingly, the desired closed-loop 

characteristic polynomial is chosen as:  

 

𝑝(𝑠) = 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2 (33) 

 

In this work, the proposed energy management is evaluated 

using MATLAB/Simulink. The parameters of the system and 

of the control loop used in the simulation are summarized in 

Table 2. 

 

Table 2. Parameters of the system 

 
Source Parameter Value Unit 

WT source Rated power 400 W 

Battery Nominal voltage 48 V 

 Capacity 100 Ah 

PV source Power rating 300 W 

 Panel rated voltage 36.9 V 

 Panel rated current 8.13 A 

DC bus Rated voltage VDCref 120 V 

 CDC 3000e-6 F 

 

In order to assess and validate the performance of the 

proposed control strategy, the load power profile shown in 

Figure 5 is applied over a 5 second simulation interval. 

The power simulation generated from different sources of 

the hybrid system is shown in Figures 6 and 7. As observed, 

during the initial period from 0-0.3 s, the battery compensates 

for the power deficit by discharging. Subsequently, the PV 

system, that acts as the primary source, takes over and starts 

generating power, while the WT provides auxiliary support 

and serves as a secondary source. Both renewable sources 

complement each other to fulfill the load demand, whereas the 

battery oscillates between charging, when the generation 

surpasses load demand, and discharging, during transients, to 

regulate the DC-link power balance. The observed smooth 

dynamics are also facilitated by the inner loop controller, 

which ensures robust current regulation for each converter. 

Figures 8-10 demonstrate that the proposed control law 

utilizing the PNN achieves accurate reference tracking and 

maintains stable operation. In particular, Figure 8, the DC-bus 

voltage remains tightly regulated around its reference value of 

120 V, with a very small peak deviation 

(overshoot/undershoot) and a fast transient response (static 

error of 0.98V = 0.8167%). The steady-state error remains 

negligible, indicating accurate voltage regulation despite load 

and generation variations. 

Figure 10 illustrates the dynamic variation of the DC bus 

(NN output). This signal demonstrates minimal oscillations 

that indicate a stable and well-damped control action. 

The results of the training performance of the PNN are 

shown in Figure 11. The mean squared error (MSE) decreases 

rapidly and reaches a minimum value of 0.00013585 at epoch 

242, indicating the model’s strong generalization capacity. 

The training, validation, and testing curves are close, which 

indicates that the neural network attained steady convergence 

without overfitting. 

The battery voltage is balanced within the interval of 47.8 

V to 48.2 V with a decrease at the time of starting, as depicted 

in Figure 12. The absence of high-frequency oscillations 

validates the reliable performance of the buck-boost converter, 

which is controlled by the fuzzy pi regulator and guarantees 

stable voltage regulation. 

According to Figures 13 and 14, both the currents of the 

battery and WT exhibit excellent reference tracking, with 

negligible steady-error and no noticeable oscillations (low 

overshoot), which confirms the effectiveness of the inner 

current regulation loops. 

 

 
 

Figure 5. Load profile 

 

 
 

Figure 6. Power produced from PV and WT sources 

 

 
 

Figure 7. Power produced from the battery bank 
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Figure 8. DC bus voltage response under the proposed PNN 

control law 

 

 
 

Figure 9. Variation of the DC bus link  

 

 
 

Figure 10. The DC bus energy and reference trajectory 

 

 
 

Figure 11. Training performance of the neural network 

 
 

Figure 12. Voltage of the battery 

 

 
 

Figure 13. The battery current and its reference 

 

 
 

Figure 14. The WT current and its reference 

 

 

5. CONCLUSIONS 

 

This paper presents a flatness-based control method for a 

hybrid photovoltaic/wind turbine/battery direct current 

microgrid using the PNN control law to improve trajectory 

tracking and address nonlinearities and model uncertainties. 

The PNN makes the system more resilient and responsive by 

comprehending the forward dynamics of the DC bus and 

ensuring more accurate reference tracking for diverse loads 

with a lower static error. A fuzzy-PI regulation method was 

employed at the converter level to replace the conventional PI 

controllers in the inner current loops. MATLAB/Simulink was 

used to design and simulate the proposed control strategy. The 

simulation results indicate that this technique ensures stable 
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DC bus regulation with minimized overshoot (0.05%) and 

seamless power distribution among sources. The research 

illustrates the capacity of integrating the differential flatness 

approach with intelligent control strategies for enhanced 

energy management in DC microgrids.  

For completeness and contextualize the proposed 

contribution relative to commonly adopted PI and MPC 

strategies, Table 3 summarizes a qualitative comparison 

relying on commonly reported characteristics in the literature 

and the behavior observed in the simulation results reported in 

this paper. 

Several directions are suggested for future research to 

extend this study: 1) include experimental validation; 2) the 

incorporation of supplementary optimization layers (such as 

economic dispatch); and 3) design and control of a hybrid 

DC/AC microgrid configurations. 

 

Table 3. Qualitative comparison with classical PI and MPC controllers 

 
Criterion Classical PI (literature) MPC (literature) Proposed Control 

Tracking 

under disturbance 
Medium High High (see Figures 8-10, 13-14) 

Overshoot/oscillations Medium Low-Medium Low (well-damped in results) 

Steady-state error Moderate Low Low/negligible (observed) 

Constraint handling Low-Moderate High Limited 
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NOMENCLATURE 

 

PV photovoltaic 

WT wind turbine 

PNN predictive neural network 

MPPT maximum power point tracking 

PO perturb and observe 

HRES hybrid renewable energy systems 

BESS battery energy storage systems 

PI proportional integral 

MPC model predictive control 

FLC fuzzy logic controllers 

MLP model predictive control 
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