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 This work presents a detailed numerical investigation of conjugate natural convection in a 

square cavity containing an eccentric circular copper crown heat source. The steady, 

incompressible Navier–Stokes and energy equations are solved using the finite element 

method. The analysis emphasizes thermo-fluid interactions at the fluid–solid interface and 

the impact of geometric asymmetry on flow and thermal fields. At moderate eccentricity 

(E = 1/4), coherent vortex structures and nearly symmetric isotherm plumes enhance fluid 

mixing and sustain high Nusselt numbers. Under strongly convective conditions (Ra = 107), 

the average Nusselt number decreases by nearly 50% for E = 1 compared to E = 1/4, while 

local Nusselt number peaks become concentrated near stagnation zones, indicating uneven 

heat transfer across the interface. Entropy generation analysis and the Bejan number are 

presented over angular positions ranging from 0° to 360°, revealing that the angular shift 

of entropy generation peaks reflects asymmetry effects of up to ~33%. The findings 

demonstrate that increased eccentricity weakens convective strength, reducing stream 

function magnitudes by approximately 35%. A new empirical correlation is proposed to 

predict the average Nusselt number as a function of the eccentricity ratio and Ra number. 

The results reveal that excessive eccentricity undermines thermo-fluid coupling, increases 

entropy generation, and significantly reduces heat transfer efficiency.  
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1. INTRODUCTION 

 

Natural convection within enclosures continues to be a 

central topic in thermal sciences due to its fundamental role in 

applications such as solar energy harvesting, electronic device 

cooling, thermal energy storage, and HVAC systems. Among 

the various passive strategies employed to enhance thermal 

performance, geometric eccentricity, the deliberate 

displacement of a heat source or boundary from the geometric 

center, has emerged as an effective means to reshape flow 

structures and improve heat transfer rates. 

A substantial body of experimental and numerical research 

has demonstrated that eccentricity can strongly influence 

convective behavior. For instance, Eid et al. [1] reported that 

both lateral and vertical eccentricities in elliptical annuli could 

enhance heat transfer by up to 40% compared to concentric 

configurations. Similarly, Wang [2] validated this sensitivity 

through combined experimental and numerical investigations 

in horizontal annuli. Azzawi et al. [3] further showed that the 

heat transfer coefficient is significantly affected by the 

eccentricity ratio, angular alignment, and Rayleigh number, 

with observed enhancements reaching 10%. In porous media, 

eccentric configurations introduce additional complexity. 

Mota et al. [4] demonstrated that certain eccentric geometries 

in saturated horizontal annuli may trigger multicellular flow 

patterns, which can reduce thermal transport—an important 

consideration in insulation design. Gholamalipour et al. [5] 

analyzed Cu–water nanofluids in porous annuli and found that 

optimal eccentricity enhances heat transfer and minimizes 

entropy generation, depending on Rayleigh and Darcy 

numbers. Kiwan and Alzahrany [6] present the effect of using 

porous inserts on natural convection heat transfer between two 

concentric vertical cylinders. It is found that the heat transfer 

characteristics can be strongly affected by the presence of 

porous inserts. Ait Messaoudene et al. [7] emphasized the 

interplay between eccentricity and fluid rheology, showing 

that both factors significantly shape thermal stratification and 

flow patterns in annular ducts—key for controlling industrial 

heat flows. Eccentricity has also been extensively examined in 

rotating systems.  

Yoo [8] found that the Mixed convection of air between two 

horizontal concentric cylinders improves energy efficiency in 

a cooled rotating outer cylinder may suppress heat transfer. 

Guy and Stella [9] reported that the horizontal eccentricity of 

the inner cylinder gives, in contrast with known numerical 

results, a nonzero azimuthal flow rate in the channel between 

the two cylinders and substantially alters the thermal field and 

the geometry of the plume, Qiao et al. [10] showed that while 

eccentricity increases flow velocity, it compromises thermal 

uniformity—an important design trade-off in rapid cooling 
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systems. 

In finned enclosures, the combination of eccentricity with 

structural enhancements yields dramatic performance gains. 

Ashouri et al. [11] and Taha et al. [12] applied a 3D lattice 

Boltzmann flux solver to simulate natural convection in 

eccentric horizontal annuli with perforated fins. Their results 

showed modest gains (~5.2%) with inner cylinder eccentricity 

and substantial improvement (up to 91.7%) with negatively 

offset eccentric fins. Recycling areas are often characterized 

by streamlined lines, heavily influenced by the presence of 

flexible fins and undulating walls. The fin has proven to play 

a vital role in fluid movement, allowing for rapid and 

significant convection  [13]. Al-Mashat et al. [14] provided 

experimental evidence that both eccentricity ratio and angular 

orientation significantly influence heat transfer, achieving up 

to 10% enhancement over concentric designs. Application-

specific investigations underscore the engineering relevance 

of eccentricity. Yoon and Shim [15] categorized natural 

convection regimes in square cavities with embedded 

eccentric cylinders, highlighting the evolution of flow and 

thermal fields with increasing offset.  

Onochin and Jaszczur [16] show that moderate eccentricity 

can be tolerated in long-term operation without significant 

efficiency loss. Yang and Farouk [17] showed that eccentric 

rotating cylinders enhance local mixing and increase Nusselt 

numbers. Bejan and Lorente [18], adopting a constructal 

approach, established that asymmetric geometries—including 

eccentric designs—optimize thermal flow architecture. In 

geometrically complex systems, Roy et al. [19] revealed 

pronounced isotherm distortion and flow asymmetry due to 

eccentricity in square cavities with embedded cylinders, 

especially at high Rayleigh numbers. Similarly, 

Sheikholeslami et al. [20] studied nanofluid convection under 

magnetic fields and found that both magnetic field strength 

and eccentric offset jointly optimize thermal behavior. Micro- 

and mini-scale systems are also affected. 

El‐Shaarawi et al. [21] present results that are not available 

in the literature for the problem of conjugate laminar free 

convection in open‐ended vertical eccentric annular channels, 

where the geometry effects have been investigated by 

considering fluid annuli having radius ratios NR2 = 0.1 and 

0.3, 0.5 and 0.7, and four values of the eccentricity E = 0.1, 

0.3, 0.5 and 0.7. 

The objective of the study of Kurnia et al. [22] is to 

numerically investigate heat transfer and entropy generation in 

a double pipe helical heat exchanger with various cross-

sections. Liu and Tao [23] numerically explored melting and 

solidification in PCM-filled eccentric shell-and-tube heat 

storage units. Their findings indicate that a downward 

eccentricity (E = –0.6) reduces melting time by 29.8% but 

hinders solidification. The best overall performance was 

observed at E = –0.2, reducing the total cycle time by 11.1%. 

Boulechfar et al. [24] analyzed porous elliptical annuli and 

confirmed that increasing eccentricity boosts equivalent 

thermal conductivity. Khaoula and Fayçal [25] examined 

mixed convection in eccentric horizontal annuli with rotating 

inner cylinders and found that small eccentricities paired with 

high Rayleigh numbers enhance thermal performance, though 

excessive rotation suppresses it. Humaira Tasnim et al. [26] 

highlighted the importance of aspect ratio and eccentricity in 

determining flow structure in cavity-embedded cylinders. 

Lastly, Zhang and Li [27] demonstrated that eccentric helically 

coiled tube-in-tube heat exchangers significantly improve 

Nusselt number distribution, validating eccentricity as an 

effective strategy for compact thermal system optimization. In 

summary, geometric eccentricity has proven to be a powerful 

passive control parameter, capable of enhancing convective 

flow patterns, boosting heat transfer performance, and 

reducing entropy generation across diverse configurations.  

 

 

2. METHODOLOGY 

 

2.1 Physical and mathematical modeling   

 

The physical configurations investigated in this study 

capture the essential characteristics of heat transfer 

phenomena encountered in engineering applications and serve 

as a benchmark for assessing thermal and flow behavior in 

geometrically asymmetric domains Figure 1.  

 

 
 

Figure 1. Schematic of the physical model 

 

The system is modeled as two-dimensional, comprising a 

square cavity of side length L, with the left and right walls 

maintained at a uniform cold temperature TC
* and the top and 

bottom walls treated as adiabatic, enforcing zero heat flux. 

A central feature of the configuration is a geometrically 

eccentric, crown-shaped heat source defined by an inner radius 

𝑅𝑖
∗ and outer radius 𝑅𝑒

∗ = 2𝑅𝑖
∗. Eccentricity is introduced by 

offsetting the center of the inner circle by a distance d* to the 

right of the cavity's geometric center, inducing controlled 

asymmetry. The eccentricity ratio 𝐸 , based on the relative 

displacement between centers, is treated as a key parameter 

and detailed in Figure 2. The crown's inner surface at 𝑅𝑖
∗ is 

maintained at a constant high temperature 𝑇ℎ
∗, driving natural 

convection within the enclosure. 

 

 
(a) 𝐸 = 1/4 
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(b) 𝐸 = 1/2 

 
(c) 𝐸 = 1 

 

Figure 2. Schematic of the eccentric circular crown for 

different eccentricity ratios: (a) 𝐸 = 1/4, (b) 𝐸 = 1/2, (c) 𝐸 = 1 

 

In our simulation, we assume a realistic scenario: a smooth, 

non-compressible flow of a standard fluid. The fluid's heat-

related properties remain constant, except for its density, 

which changes with temperature, influencing buoyancy—a 

simplification that boosts efficiency without sacrificing 

accuracy, suitable for the temperature ranges we're examining. 

We use time-dependent equations to describe the system, 

covering mass, momentum, and energy conservation for both 

the fluid and solid parts. For the fluid, we model how heat 

spreads, moves with the flow, and is affected by buoyancy. For 

the solid copper crown, heat transfer occurs solely through 

conduction. At the boundary between the fluid and the crown, 

we ensure a seamless transfer of heat by matching their 

temperatures and heat flows. 

The application of air as a reference fluid is not consistently 

systematic; in some cases, it is substituted with nanoparticles, 

a practice occasionally required on a large scale as 

demonstrated in the study by Benameur et al. [28]. 

This integrated approach provides a robust method for 

studying how natural convection and heat conduction interact 

within asymmetrically shaped enclosures. 

 

2.2 Dimensionless formulation 

 

To generalize the analysis and enhance computational 

efficiency, the governing equations are nondimensionalized 

using the following dimensionless variables and parameters: 
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behavior are: 
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where, Ra and Pr denote the Rayleigh and Prandtl numbers, 

respectively, and αr is the thermal diffusivity ratio between the 

solid and fluid domains. 

Substituting the dimensionless variables into the governing 

equations yields the nondimensional forms: 

• Continuity 

 

 . 0U =  (3) 
 

where, 𝑈 represents the dimensionless velocity field. 

• Momentum (Navier-Stokes) 

 

( ) . 0bj

U
U U P

t



+  − − − =


 . F  (4) 

 

where, 𝑡, 𝑃 and 𝐹𝑏𝑗are the time, pressure, and body force per 

unit mass (buoyancy force), respectively. For the horizontal 

direction (j = X), the body force term 𝐹𝑏𝑋 = 0. On the other 

hand, for the vertical direction (j = Y), the body force term 

𝐹𝑏𝑌 = 𝑃𝑟 𝑅 𝑎
1

𝐸2 𝑇𝑓. 

The nondimensional stress tensor is expressed as: 
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where, I is the identity tensor, and 𝐷 =
1

2
(𝛻𝑈 + (𝛻𝑈)𝑇) is rate 

of deformation (strain rate) tensor.  

• Energy in the fluid domain: 
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• Energy in the solid domain (crown region): 

 

  .( - ) 0s
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T
T

t



+   =


 (7) 

 

• Boundary and interface conditions: 

To close the mathematical model, the following 

nondimensional boundary and interface conditions are 

imposed: 

Velocity: 

 

0 on all walls and at the interfaceU =  (8) 

 

Thermal boundary conditions: 

Vertical walls (cold): 

 

0  fT =  (9) 

 

Horizontal walls (adiabatic walls): 

 

0  fT =  (10) 
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Inner surface of the crown (isothermal hot): 

 

1 sT =  (11) 

 

Fluid–solid interface conditions (crown outer surface): 

Continuity of temperature: 

 

  s fT T=  (12) 

 

Continuity of heat flux: 

 

    
fs

r
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 (13) 

 

where, 𝐾𝑟 =
𝐾𝑠

𝐾𝑓
 is the thermal conductivity ratio, and n is the 

unit normal vector at the interface. 

This complete nondimensional formulation, coupled with 

appropriate boundary and interface conditions, provides a 

robust framework for investigating natural convection and 

thermal conduction phenomena within geometrically 

asymmetric enclosures containing an eccentric crown heat 

source. 

 

2.3 Heat transfer characterization   

 

Convective performance at the solid–fluid interface is 

assessed using: 

• Local Nusselt number:  

 

 interface

_
sf

near

T
Nu Loc

n


= −

  (14) 

 

where, 
𝜕𝑇𝑠𝑓

𝜕𝑛
 denotes the nondimensional temperature gradient 

normal to the interface.  

• Average Nusselt number: 

 

1
_ _  

s

Nu avg Nu Loc dS
p

=   (15) 

 

where, P is the perimeter length of the solid–fluid interface, 

and S denotes the surface area over which the integration is 

performed. 

These indicators quantify the intensity and spatial variation 

of heat exchange and are crucial for evaluating the impact of 

eccentricity. 

 

2.4 Thermodynamic assessment 

 

Entropy generation within the fluid domain is assessed 

based on the second law of thermodynamics, considering two 

primary dimensionless contributions: 

 

2total heat visc

Br
N N N

E
= +  (16) 

 

where, 𝑁ℎ𝑒𝑎𝑡 , 𝑁𝑣𝑖𝑠𝑐  correspond to irreversibility due to heat 

transfer and viscous dissipation, respectively. The Brinkman 

number 𝐵𝑟 is incorporated to account for the effects of viscous 

dissipation, with a fixed value of 𝐵𝑟 = 10−3 adopted in this 

study. 

The Bejan number 𝐵𝑒  is used to identify the dominant 

irreversibility mechanism: 
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(17) 

 

• 𝐵𝑒 ≃  1 → Heat transfer dominates (thermal 

irreversibility). 

• 𝐵𝑒 ≃  0 → Viscous dissipation dominates (fluid 

friction irreversibility). 

 

2.5 Numerical implementation 

 

The Finite Element Method (FEM) is employed to 

numerically solve the governing Eqs. (3) to (13), with the 

computational domain discretized using triangular elements to 

accommodate complex geometries effectively [29]. Within 

each element, the primary field variables—velocity, pressure, 

and temperature—are approximated using Lagrange 

interpolation functions, while Gaussian quadrature is applied 

to ensure accurate numerical integration [30]. A non-uniform 

mesh, refined in boundary layer regions, enhances solution 

accuracy near solid–fluid interfaces and improves 

computational efficiency. For the thermal field, the heat 

transfer equation is solved using the implicit Newton–

Raphson method, which provides robust stability and reliable 

convergence in nonlinear scenarios Lorsung and Farimani 

[31]. Numerical convergence is considered achieved when the 

residuals for velocity and temperature fall below 10⁻⁶, 

ensuring accuracy and consistency of the results [32]. 

 

2.6 Validation and grid sensitivity 

 

To ensure the accuracy and reliability of the numerical 

results, a mesh independence study was conducted. The test 

involves monitoring the dimensionless temperature at the 

point (X = 0.7, Y = 0.5) as a function of dimensionless time, 

capturing both the transient response and the steady-state 

behavior. Simulations were carried out using four different 

mesh densities, as summarized in Table 1. The corresponding 

results, obtained for Ra = 10⁵ and Pr = 0.71, are presented in 

Figure 3. As illustrated, all four mesh configurations yield 

identical steady-state temperatures after a brief transient 

phase, confirming that the solution is not significantly 

influenced by mesh refinement. Notably, Mesh 3, as shown in 

Figure 4, provides results nearly identical to those of the finest 

mesh, thereby offering an optimal trade-off between 

computational cost and numerical accuracy. 

 

Table 1. Mesh parameters for grid check 

 
Mesh Type Domain Elements 

Mesh 1 1162 

Mesh 2 1780 

Mesh 3 2260 

Mesh 4 7936 

 

Figure 5 presents a rigorous validation of the numerical 

model through a comparison of the local Nusselt number 

distribution (Nu_Loc) along the angular position θ (in degrees) 

at the fluid–solid interface, against the benchmark results 

reported by Demirdžić et al. [33]. The test scenario 
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corresponds to a thermally driven flow within an enclosure, 

where buoyancy-induced natural convection dominates the 

heat transfer mechanism. 

The comparison reveals excellent agreement between the 

present simulation and the benchmark data. Both profiles 

exhibit a distinct peak in Nu_Loc at lower angular positions, 

followed by a gradual decrease as θ increases. This behavior 

reflects the expected physical mechanism: near the leading 

edge of the heated boundary, steep thermal gradients result in 

high local heat transfer rates (high Nu_Loc), whereas farther 

downstream, the combined effects of thermal diffusion and 

flow recirculation reduce the heat transfer intensity. 

Minor discrepancies observed at certain angular positions 

can be attributed to differences in numerical schemes, mesh 

structures, and discretization techniques. While the benchmark 

was based on a finite volume method with non-orthogonal 

grids, the present finite element formulation still captures the 

overall trend with high accuracy, demonstrating the robustness 

and reliability of the adopted numerical approach. 

Additionally, the mesh overlay in Figure 5 highlights the 

spatial refinement near the curved boundaries, which is crucial 

for accurately resolving local thermal gradients and 

minimizing numerical diffusion. This careful grid treatment 

ensures the fidelity of the Nu_Loc predictions, particularly in 

regions with sharp gradient variations. The strong correlation 

with benchmark results confirms the capability of the present 

method to accurately simulate natural convection phenomena, 

thus validating its suitability for subsequent parametric 

analyses and practical engineering applications. 

 

 
 

Figure 3. Grid independence test: Temperature evolution at 

(0.7, 0.5) 

 

 
 

Figure 4. The computational mesh employed, Mesh 3 

 
 

Figure 5. Comparison with Demirdžić et al. [33] in case 4 of 

a square cavity with a concentric heated cylinder 

asymmetrically arranged 

 

 

3. RESULTS AND DISCUSSION 

 

The present analysis provides a comprehensive 

investigation of coupled thermo-fluid dynamics at the solid–

fluid interface by accounting for the realistic thermophysical 

properties of both domains.  

Air is selected as the working fluid (Pr = 0.71), while the 

heat source is represented by a high-conductivity copper insert 

with an outer radius of Re = 0.2, consistent with the benchmark 

configuration proposed by Demirdžić et al. [33]. 

The system exhibits significant thermal property contrasts, 

characterized by a thermal diffusivity ratio αr of approximately 

5.18 and an exceptionally high thermal conductivity ratio Kr 

of about 15,607. This stark difference leads to conduction-

dominated heat transfer within the solid and generates steep 

thermal gradients at the solid–fluid interface, which critically 

affect the development of the convective boundary layer. The 

thermo-fluid behavior is explored over a range of Rayleigh 

numbers Ra = 103 - 107, with particular emphasis on the 

influence of geometric asymmetry. This asymmetry is 

introduced through varying eccentricity ratios (E = 1/4, 1/2, 

and 1), allowing a detailed assessment of its impact on the 

overall thermal performance and flow characteristics of the 

system. 

 

3.1 Flow structure intensity 

 

Figure 6(a)–(c) shows stream function contours for 

eccentricity ratios E = 1/4, 1/2, and 1, across Ra = 10³ to 10⁷, 

revealing how eccentric heat source placement alters 

buoyancy-driven flow dynamics. At Ra = 10³, the flow is 

conduction-dominated with weak circulation. ψ_max is low 

for E = 1/4 and drops by ~8% and ~15% for E = 1/2 and E = 

1, due to flow confinement and stagnation zones near the 

displaced heat source. At Ra = 10⁴, buoyancy begins to drive 

convection. ψ_max increases by ~300% for E = 1/4, with a 

dominant recirculation cell forming. However, ψ_max 

decreases by 12% and 19% for E = 1/2 and 1, showing that 

eccentricity disrupts flow organization. By Ra = 10⁵, the 

impact of eccentricity is clearer. ψ_max for E = 1/4 continues 

to rise (~600% above its value at Ra = 10³), but reaches only 

~85% and 70% of that value for E = 1/2 and 1, respectively, 

due to skewed thermal gradients and increased wall resistance. 
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At Ra = 10⁶, ψ_max grows sharply-300% higher than at Ra = 

10⁵ for E = 1/4, indicating strong convection. However, values 

remain 15–25% lower for E = 1/2 and 1, highlighting 

persistent flow disruption caused by geometric asymmetry. 

At Ra = 10⁷, the flow becomes highly convective with 

multiple vortex cells. ψ_max peaks for E = 1/4 but is 20% and 

35% lower for E = 1/2 and 1. Strong eccentricity (E = 1) leads 

to chaotic vortices, weakens central flow, and increases 

localized recirculation, ultimately reducing thermal 

performance. 

 

𝑅𝑎 = 103 

   

𝑅𝑎 = 104 

   

𝑅𝑎 = 105 

   

𝑅𝑎 = 106 

   

𝑅𝑎 = 107 

   
 (a) (b) (c) 

 

Figure 6. Streamline distributions illustrating the influence of eccentricity (𝐸 = 1/4 (a), 1/2 (b), and 1 (c)) on flow structures 

across Rayleigh numbers 𝑅𝑎 = 103 − 107 
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𝑅𝑎 = 103 

   

𝑅𝑎 = 104 

   

𝑅𝑎 = 105 

   

𝑅𝑎 = 106 

   

𝑅𝑎 = 107 

   
 (a) (b) (c) 

 

Figure 7. Evolution of isotherm distributions illustrating the influence of eccentricity (𝐸 = 1/4 (a), 1/2 (b), and 1 (c)) across 

Rayleigh numbers 𝑅𝑎 = 103 − 107 

 

3.2 Thermal isotherm topology 

 

Figure 7(a)–(c) presents isotherm contours in a square 

cavity with an eccentric circular heat source for Ra = 10³ – 10⁷ 

and eccentricities E = 1/4, 1/2, and 1. These contours reveal 

the transition from conduction to convection and show how 

eccentricity affects thermal stratification and heat transfer. 

At Ra = 10³, heat transfer is dominated by conduction. 

Isotherms are nearly concentric for all E values, showing 

minimal fluid motion. Slight distortions appear for E = 1/2 and 

1, especially near the cavity wall, but thermal mixing remains 

negligible. At Ra = 10⁴, weak convection begins. For E = 1/4, 

isotherms tilt and stretch, showing early buoyant plume 

development. For E = 1/2 and 1, asymmetries increase—

compressed near the heated wall and elongated opposite it—

indicating weak, asymmetric convective cells and localized 

gradients.  

At Ra = 10⁵, convection strengthens. For E = 1/4, banana-

shaped isotherms form a rising plume, enhancing heat 

transport. For E = 1/2 and 1, the plume is distorted and 

deflected due to the eccentric source, leading to curved 

isotherms, stagnation zones, and reduced efficiency. At Ra = 

10⁶, convection dominates. For E = 1/4, isotherms are vertical 

and tightly packed, showing strong upward heat transfer. For 
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E = 1/2 and 1, distortion increases, with isotherms splitting and 

spreading laterally, reflecting secondary flows and elevated 

mixing, but also greater thermal resistance due to asymmetry.  

At Ra = 10⁷, isotherms for E = 1/4 form narrow, vertical jets 

with steep gradients, indicating high convective efficiency. In 

contrast, E = 1/2 and 1 show chaotic isotherm fields, sharp 

bending, and dispersion, highlighting asymmetric vortex 

activity and reduced heat transfer uniformity—particularly 

severe for E = 1. 

 

3.3 Local and average numbers analysis 

 

Figure 8 presents the angular distribution of the local 

Nusselt number along the 0°–360° fluid–solid interface at the 

outer surface of an eccentric circular crown, for Rayleigh 

numbers ranging from 10³ to 10⁷ and eccentricity ratios E = 

1/4, 1/2, and 1. These profiles offer valuable insights into the 

evolution of local convective heat transfer mechanisms 

governed by buoyancy-driven flow within the enclosure. At 

low Rayleigh numbers (Ra = 10³), heat transfer is 

predominantly conduction-driven, as reflected in the relatively 

flat and symmetric local Nusselt number distributions across 

all eccentricity ratios. Nonetheless, even at these low Ra 

values, increasing eccentricity introduces slight asymmetries, 

shifting the regions of peak heat transfer due to modified 

thermal gradients around the displaced heat source. As Ra 

increases to 10⁵, buoyancy-induced convection becomes more 

significant, leading to elevated and spatially varying local 

Nusselt numbers. In Figure 8(a) (E = 1/4), distinct peaks begin 

to emerge near 90° and 270°, corresponding to upward and 

downward convective flow interactions with the interface. 

Figure 8(b) (E = 1/2) exhibits a broader separation between 

these peaks, with steeper gradients, while Figure 8(c) (E = 1) 

reveals highly localized and intensified maxima shifted away 

from the geometric midlines, driven by complex vortex 

dynamics and secondary flow structures arising from the 

enhanced asymmetry. At high Rayleigh numbers (Ra = 10⁷), 

convection completely dominates the heat transfer process, 

resulting in strongly fluctuating and sharply peaked Nusselt 

number profiles. The physical interpretation of measuring heat 

transfer by convection, in its essence, remains crucial in such 

cases to directly determine the local Nusselt number. This 

number represents the effectiveness of convective heat transfer 

compared to pure conduction at a specific location. The higher 

the local Nusselt number, the greater the convective heat 

transfer efficiency at that point. The local Nusselt number is 

also directly related to the heat transfer coefficient, which is 

often defined by the distance from the leading edge in external 

flow or the hydraulic diameter in internal flow for the circular 

shape proposed in the study. 

This variation provides a deeper understanding of the flow's 

hydrodynamic and thermal characteristics. 

Heat transfer manifests asymmetrically as the inner circular 

cavity shifts to the left. Across all cases (a–c), peak values 

increase substantially by up to 280% in the E = 1 configuration 

compared to E = ¼, highlighting the pronounced enhancement 

of localized heat transfer near regions of intense fluid 

impingement and recirculation. The angular distribution 

becomes increasingly asymmetric with higher eccentricity, 

underscoring the critical role of geometric displacement in 

dictating the formation of high-transfer and stagnation zones. 

Overall, Figure 8 underscores the coupled influence of the 

Rayleigh number and eccentricity ratio on local thermal 

behavior. While increasing Ra amplifies convective transport 

and intensifies localized heat exchange, greater E redistributes 

these effects spatially. This interplay offers valuable guidance 

for thermal management strategies in enclosures where 

spatially optimized heat removal is required. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 8. Local Nusselt number profiles along 0°–360° at the 

fluid-solid interface on the outer surface of an eccentric 

circular crown for Rayleigh numbers Ra = 103 - 107 and 

eccentricity ratios 𝐸 = 1/4 (a), 1/2 (b), and 1 (c) 
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Figure 9 examines the effect of eccentricity (E = 1/4, 1/2, 

and 1) on the average Nusselt number at the fluid–solid 

interface along the outer surface of an eccentric circular 

crown, for Rayleigh numbers ranging from 10³ to 10⁷. 

 

 
 

Figure 9. Effect of eccentricity on the average Nusselt 

number along the fluid–solid interface at the outer surface of 

an eccentric circular crown for Rayleigh numbers Ra = 103-

107 and eccentricity ratios E = 1/4 (a), 1/2 (b), and 1 (c) 

 

At low Rayleigh numbers (Ra = 10³), heat transfer is 

dominated by conduction, and the influence of eccentricity is 

minimal, with variations in the average Nusselt number 

remaining below 5%. However, as Ra increases and 

convective effects become dominant, geometric asymmetry 

exerts a more pronounced impact on thermal performance. At 

Ra = 10⁵, the average Nusselt number for E = 1/4 is 

approximately 40% higher than that for E = 1, and this gap 

widens to nearly 50% at Ra = 10⁷. The observed decline in 

convective efficiency with increasing eccentricity is primarily 

attributed to the disruption of flow symmetry and the 

intensification of thermal stratification. These effects hinder 

the formation of coherent convective cells and reduce overall 

heat transfer effectiveness. In summary, the results of Figure 9 

highlight that increasing eccentricity systematically degrades 

convective heat transfer. This underscores the importance of 

geometric optimization in the design of buoyancy-driven 

thermal systems to enhance thermal performance. 

 

3.4 Entropy generation’s impact 

 

Entropy generation plays a crucial role in heat transfer by 

providing a measure of the irreversibility of a process. In 

essence, it quantifies how much "disorder" or "randomness" is 

created during a heat transfer operation. 

The second law states that the entropy of an isolated system 

always increases over time, or remains constant in ideal, 

reversible processes. In real-world heat transfer, processes are 

inherently irreversible. Figure 10 presents the angular 

distribution of the Bejan number along the fluid–solid 

interface (0°–360°) for different Rayleigh numbers (Ra) and 

eccentricity ratios (E = 1/4, 1/2, 1) in sub-figures (a), (b), and 

(c). These profiles reflect how conduction- and convection-

induced irreversibilities evolve with changes in Ra and 

geometric displacement. In Figure 10(a) (E = 1/4), the 

distribution is nearly symmetric. At low Ra (10³–10⁴), 

conduction dominates, yielding high Bejan numbers across all 

angles. As Ra increases (10⁵–10⁷), buoyancy effects lower the 

Bejan number, except at 90° and 270°, where persistent peaks 

mark stagnation zones with high entropy generation. This 

symmetry indicates stable flow and thermal fields at low 

eccentricity. In Figure 10(b) (E = 1/2), the Bejan number 

profile becomes asymmetric. Conduction remains significant 

at low Ra, but asymmetry increases with Ra, shifting 

stagnation peaks to around 110° and 250°, due to altered 

secondary flows that impact recirculation and entropy 

generation patterns. At E = 1 (Figure 10(c)), strong asymmetry 

emerges even at low Ra, as the displaced heat source causes 

skewed conduction irreversibility. At higher Ra, convection 

dominates, but sharp contrasts persist between low and high 

Bejan zones. Stagnation peaks appear near 120° and 240°, 

reflecting enhanced stratification and complex vortices, which 

increase spatial variations in entropy production. Overall, 

stagnation zones shift from 90°/270° (E = 1/4) to 120°/240° (E 

= 1), while higher Ra enhances convection and reduces global 

entropy generation. However, eccentricity amplifies 

asymmetry, impacting localized thermal resistance and heat 

transfer efficiency. 

Entropy generation is directly related to the "lost work 

potential" or "exergy destruction. Heat will flow from a hot 

object to a cold object. This process is irreversible, and entropy 

is generated because you can't spontaneously reverse the heat 

flow without external work. By minimizing entropy 

generation, designers can optimize heat exchangers, 

refrigeration cycles, power plants, and other thermal systems 

to operate more efficiently. Entropy generation arises 

primarily from heat transfer across a significant temperature 

difference at angles of 90° and 250°. 

An effective enhancement method should increase heat 

transfer significantly without introducing an excessive amount 

of irreversibility.  

Entropy generation serves as a powerful thermodynamic 

tool to understand, quantify, and minimize irreversibilities in 

heat transfer processes. It allows engineers to pinpoint sources 

of inefficiency and make informed design decisions to 

improve the performance and sustainability of thermal 

systems. 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 10. Influence of eccentricity on the Bejan number 

distribution at the fluid-solid interface under varying 

Rayleigh numbers: (a) E = 1/4, (b) E = 1/2, and (c) E = 1 

 

3.5 Empirical correlation  

 

An empirical correlation has been formulated to quantify 

the combined effects of the Rayleigh number (Ra), Prandtl 

number (Pr), and eccentricity ratio (E) on the average Nusselt 

number at the fluid–solid interface along the outer surface of 

an eccentric circular crown within a square cavity containing 

a displaced heat source. 

The derived correlation takes the following generalized 

form: 

 
( ) ( )0.19 0.053 0.2 2_ 6.43. .Pr . 1 0.5 0.1

E
Nu avg Ra E E

−
= − +  (18) 

 

This correlation indicates that the heat transfer rate, 

represented by the Nusselt number, increases with the 

Rayleigh number (Ra) following a power-law behavior, 

reflecting the growing dominance of buoyancy-driven 

convection. However, increasing the eccentricity (E) leads to 

a reduction in overall heat transfer efficiency, primarily due to 

the enhanced thermal stratification and disruption of coherent 

convective flow structures. The proposed correlation thus 

serves as a reliable predictive tool for evaluating convective 

heat transfer in enclosures containing eccentric circular crown 

heat sources, offering practical guidance for the design and 

optimization of thermally efficient systems in engineering 

applications. 

 

 

4. CONCLUSIONS 

 

This numerical study explores conjugate heat transfer and 

thermo-fluid interactions within a square enclosure containing 

an eccentric circular copper crown heat source. By varying the 

Rayleigh number (Ra) and eccentricity ratio (E = 1/4, 1/2, 1), 

the study examines the coupling between buoyancy-driven 

flow, conduction in the solid, and natural convection in the 

fluid. 

Results show that geometric eccentricity significantly 

influences flow strength, structure, and thermal coupling. At 

moderate eccentricity (E = 1/4), the interface enables efficient 

heat exchange with coherent vortices and aligned isotherms. 

However, higher eccentricity E = 1 introduces asymmetries 

that disrupt the flow, weaken momentum–thermal coupling, 

and create uneven thermal boundary layers. 

At high Ra, convective strength drops by up to 35% for  

E = 1. Isotherms indicate a shift from conduction-dominated 

to mixed regimes as Ra increases. Greater eccentricity disturbs 

thermal pathways, leading to plume bifurcation, stratification, 

and reduced heat extraction from the solid. These effects also 

raise local thermal resistance along the eccentric crown 

surface. 

Nusselt number analyses confirm that at high Ra, average 

values drop by ~50% from E = 1/4 to E = 1. Local Nusselt 

profiles become asymmetric and concentrated near stagnation 

zones, revealing uneven thermal loading. 

An empirical correlation is proposed to relate Ra, Pr, and 

eccentricity to the average Nusselt number, capturing the 

nonlinear decline in convective performance with increasing 

eccentricity. 

This study showed that horizontal eccentric displacement 

affects the fluid velocity and thus increases the heat load in the 

studied container. 

The variation of the Bejan number proved that a significant 

temperature difference at angles (from 90° to 110°) and 250°, 

where shifting stagnation peaks to around 110° and 250°, due 

to altered secondary flows that impact recirculation and 

entropy generation patterns. So, the Bejan number for heat 

transfer might indicate a greater potential for improving 

thermal design. 

The proposed equation remains a significant and important 

step to measure the combined effects of the Rayleigh number 

(Ra), the Prandtl number (Pr), and the skewness coefficient (E) 

on the mean Nusselt number at the liquid-solid interface along 

the outer surface of an eccentric circular ring inside a square 

cavity containing a displaced heat source. 

In summary, while slight eccentricity can enhance mixing 

and heat transfer, excessive displacement impairs flow 

symmetry and boundary layer stability, reducing overall 

efficiency. These findings stress the importance of geometric 

optimization at the fluid–solid interface for efficient passive 

cooling and thermal system design. 
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NOMENCLATURE 

_Nu Loc local Nusselt number 

E eccentricity parameter of eccentric cylinders 

Ceh horizontal distance shifted, m 

*

e
R outer tube radius, m 

*

iR inner radius of the shell, m 

eR the dimensionless outer radius 

iR the dimensionless inner radius 

g gravitational acceleration  

K thermal conductivity  

 L width of cavity   
 H height of cavity   

Pr Prandtl number   

Ra rayleigh number   

Be Bejan number  

Br brinkman number  

t non-dimensional time 

T temperature, K 

pC specific heat, J/Kg‧K 

,f fu v x- and y- velocity components, m/s

,u v X- and Y- non-dimensional velocity

components

P dimensionless pressure

_Nu avg average Nusselt number

sx the dimensionless displacement of the fin 
*T the dimensionless temperature 

x , y X , 

Y

space coordinates, m ℘  Dimensionless 

space coordinates 

Greek symbols 

 thermal diffusivity, m2/s 

 thermal expansion coefficient, l/K 

 dynamic viscosity, Kg/s 
 kinematic viscosity, m2/s 
 density, Kg/m2 

bYF the vertical body force  

bXF the horizontal body force 

 Non-dimensional stream function 

Subscripts 

c cold 

f fluid 

h hot 

r the solid to the fluid property ratio 
s solid 
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