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 The commercialization of intelligent packaging is increasingly widespread in high-value 

sectors such as cold chain fresh food and injectable pharmaceuticals. Among these, the 

thermal stability of cold chain fresh food smart tags is a particularly prominent issue. The 

continuous heat generated by embedded RFID chips and temperature and humidity sensors 

can lead to risks such as battery leakage, contamination, disruption of traceability links, 

and spoilage of fresh products. These risks have become a core bottleneck in scaling the 

application of intelligent packaging for high-value light industry products. Existing 

research has limitations such as inadequate scenario specificity, weak physical 

connotations in thermal network models, and a disconnect between optimization schemes 

and engineering implementation. This study aims to address the thermal stability issues in 

cold chain fresh food intelligent packaging by constructing a high-precision, multi-field 

coupled thermal network model, and establishing a simulation-optimization-experiment 

closed-loop system. A general structural optimization methodology is proposed that 

integrates thermal reliability, lightweight design, and sustainability. The research 

completes the thermal network modeling by node physical equivalence division, nonlinear 

thermal resistance and capacitance parameter characterization, and the derivation of classic 

heat transfer differential equations. CFD-FEA coupled simulations and fresh product 

storage and transportation condition calibration are used to conduct multi-physics 

electronic cooling analysis. The response surface method is coupled with an improved 

genetic algorithm for optimization, and advantages over NSGA-II and other algorithms are 

compared. Parameter sensitivity analysis is conducted using dimensionless numbers such 

as the Biot number and Fourier number. Finally, experimental validation confirms the 

effectiveness of the proposed methodology. The experimental results show that the four-

node thermal network model has reliable accuracy, with an average absolute error of 0.7℃ 

and a root mean square error of 1.0℃. The improved genetic algorithm converges 15.6% 

faster than NSGA-II and produces a more evenly distributed Pareto optimal solution. After 

optimization, the maximum temperature of the cold chain fresh food packaging is reduced 

by 18.3%, mass is reduced by 16.2%, and costs are reduced by 11.5%, with the fresh 

product storage and transportation loss rate dropping to 3.3%. The experimental and 

simulation errors are ≤3.8%, and the methodology, when applied to flexible electronics, 

can achieve a 17.6% improvement in thermal stability. This study brings innovation in 

three dimensions: multi-field coupled thermal network physical equivalence modeling, 

interdisciplinary closed-loop optimization framework, and transferable methodology for 

customized scene solutions. It provides academic support for the interdisciplinary fields of 

packaging engineering, heat transfer science, and electronic engineering, and contributes 

to the advancement of the green intelligent packaging industry. 
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1. INTRODUCTION 

 

The deep integration of intelligent packaging technology 

with the light industry has accelerated its commercialization in 

high-value fields such as cold chain fresh food, injectable 

pharmaceuticals, and high-end cosmetics [1-3]. These types of 

packaging, by integrating functions such as sensing and 

communication modules, play an irreplaceable role in key 

processes like product traceability, quality monitoring, and 

anti-counterfeiting verification, significantly enhancing the 

added value and market competitiveness of light industry 

products. Among them, cold chain fresh food smart tags, as 

typical representatives, need to operate for long periods in 

dynamic storage and transportation environments ranging 

from -10 to 25℃ [4, 5]. The temperature fluctuations in the 

environment and the continuous heat generated by embedded 

electronic components create a complex thermal coupling, 

making their thermal management needs one of the industry's 
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most urgent technical challenges. The issue of thermal 

runaway directly triggers multiple industrial risks—

continuous heat from embedded RFID chips and temperature 

and humidity sensors can lead to battery leakage, 

contamination of fresh food [6, 7], high temperatures can 

cause chip thermal failure and break the traceability link [8], 

and localized temperature exceeding the cold chain threshold 

accelerates the spoilage and deterioration of fresh products [9]. 

According to industry reports, such thermal-related problems 

result in global cold chain fresh food industry losses exceeding 

100 billion USD annually. Therefore, solving the thermal 

stability problem of cold chain fresh food intelligent 

packaging is crucial for ensuring product safety and reducing 

industry losses. This research is based on the cross-integration 

of packaging engineering, heat transfer science, electronic 

engineering, and optimization algorithms, aiming to address 

the thermal management challenges of specific scenarios by 

constructing a universal methodology framework. This 

framework can not only be directly applied to the design 

optimization of cold chain fresh food intelligent packaging but 

also provide technical references for thermal management 

research in flexible electronics, wearable devices, and other 

fields, helping the intelligent packaging industry upgrade 

toward green sustainability, with both significant academic 

and engineering application value. 

Research in the field of intelligent packaging thermal 

analysis has made certain progress, but existing results exhibit 

clear limitations in specific scenarios. Most studies focus on 

normal-temperature static conditions, and there is a lack of 

specialized research on dynamic fluctuating conditions like 

cold chain fresh food. Moreover, existing thermal analysis 

models generally ignore the multi-medium thermal coupling 

effects between packaging, content, and environment [10], 

making it difficult to accurately characterize the heat transfer 

laws in actual storage and transportation processes. Thermal 

network modeling technology, because it balances 

computational efficiency and engineering accuracy, has been 

widely used in thermal analysis in fields such as electronic 

devices and power batteries [11, 12]. However, its application 

in light industry intelligent packaging remains significantly 

insufficient. Most related models directly apply node division 

schemes from other fields [13], lacking a physical equivalence 

demonstration for the packaging-content coupling system. 

Node division often fails to balance engineering accuracy and 

computational efficiency, leading to a gap between model 

prediction accuracy and actual application requirements. 

Multi-physics field simulation technology is becoming more 

mature in the field of electronic cooling [14, 15], but its lack 

of synergy with optimization algorithms restricts its deep 

application in the light industry packaging field. In existing 

research, the selection of optimization algorithms often lacks 

systematic comparative analysis, and the optimization targets 

are primarily focused on thermal performance improvement 

[16, 17], without fully addressing the core engineering needs 

of lightweight design, low cost, and ease of production for 

light industry packaging, thereby significantly reducing the 

engineering applicability of optimization schemes. It is also 

noteworthy that sustainable design concepts have not been 

sufficiently emphasized in intelligent packaging thermal 

management research. Most existing optimization schemes 

focus on balancing thermal performance and cost [18-20], 

without establishing the link between lightweight design and 

green packaging, resource conservation, resulting in a 

disconnect between the industrial and social value of research 

results and limiting their potential for engineering 

transformation. 

Based on the progress of existing research, there are three 

major core research gaps in the field: (1) In the scenario and 

theoretical aspect, there is a lack of dedicated thermal network 

models for cold chain fresh food dynamic conditions. Existing 

models have not explained the physical equivalence 

relationship between discrete nodes and continuous heat 

transfer media, leading to insufficient thermal stability 

prediction accuracy. (2) In the method and algorithm aspect, 

the synergy mechanism between thermal simulation and 

multi-objective optimization is incomplete. The selection of 

algorithms lacks targeted comparative analysis, and the 

"modeling-simulation-optimization-validation" closed-loop 

research system has not been established, limiting the research 

efficiency and reliability. (3) In the application and value 

aspect, optimization schemes generally overlook the balance 

between engineering feasibility and sustainability, and no 

universal methodology framework has been constructed to 

facilitate cross-field transfer, leading to a disconnect between 

research results and industrial practical needs, making it 

difficult to support the implementation of technology in 

multiple scenarios. 

To address the above research gaps, this study focuses on 

solving the thermal stability problem of cold chain fresh food 

intelligent packaging, setting three major research goals: (1) to 

establish a multi-field coupled thermal network model with 

physical equivalence for accurate thermal stability prediction, 

(2) to construct a universal methodology framework for 

"thermal network modeling-multi-physics field simulation-

multi-objective optimization-experimental validation," and (3) 

to propose a structural optimization scheme that balances 

thermal reliability, lightweight design, and green sustainability, 

and verify its cross-field transferability. The core research 

contents of this study include four aspects: (1) Conducting an 

analysis of the heat transfer mechanism of cold chain fresh 

food intelligent packaging, completing the physical 

equivalence construction of the thermal network model, and 

clarifying the characterization method for thermal resistance 

and thermal capacitance parameters under multi-medium 

coupling; (2) Establishing a multi-physics field coupled 

electronic cooling simulation model, calibrating boundary 

conditions based on cold chain fresh food storage and 

transportation dynamic conditions, ensuring the consistency of 

simulation results with actual conditions; (3) Using the 

response surface method and improved genetic algorithm for 

coupling optimization, systematically comparing the 

optimization performance of algorithms such as NSGA-II and 

MOEA/D, and determining the optimal algorithm 

combination for this study; (4) Conducting experimental 

verification of the optimization scheme, completing an 

engineering feasibility analysis, and testing its transferability 

in the flexible electronics field to verify the universality of the 

methodology framework. 

The innovations of this study are mainly reflected in three 

dimensions: (1) Theoretical innovation: The "component-

packaging-fresh food-environment" four-level node thermal 

network model is proposed, addressing the physical 

equivalence relationship between discrete nodes and 

continuous heat transfer media, compensating for the lack of 

physical connotation in existing models. The introduction of 

nonlinear thermal resistance parameters improves thermal 

stability prediction accuracy under dynamic conditions. (2) 

Methodological innovation: The interdisciplinary closed-loop 
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optimization framework is constructed, systematically 

demonstrating the coupling advantages of the response surface 

method and the improved genetic algorithm, solving the 

problem of insufficient synergy between thermal simulation 

and optimization algorithms. The use of dimensionless 

analysis tools such as the Biot number and Fourier number 

realizes the universal characterization of parameter sensitivity, 

enhancing the general value of research results. (3) 

Application innovation: A customized structural optimization 

scheme for cold chain fresh food scenarios is proposed, 

achieving precise balancing of thermal performance, 

lightweight design, and cost. A universal methodology 

transfer mechanism is established, verifying its applicability in 

flexible electronics and other fields through cross-field testing, 

and deeply binding lightweight design with green 

sustainability concepts, improving the industrial value of the 

research. 

This paper follows the logical thread of "problem 

identification-theoretical modeling-simulation optimization-

experimental verification-methodology transfer-value 

enhancement". The following chapters will systematically 

explain the theoretical foundation and related technologies 

required for the research, detail the research methods and 

experimental design, clarify the parameters of the research 

objects, the process of thermal network model construction, 

simulation model calibration methods, optimization scheme 

design, and experimental verification system. The key results 

of thermal network model verification, thermal stability 

prediction, structural optimization, and cross-field transfer 

testing will be presented and analyzed. The physical 

mechanisms behind the core results, the differences with 

existing research, engineering transformation value, research 

limitations, and future research directions will be deeply 

discussed. Finally, the study’s conclusions will be summarized, 

highlighting core innovations and academic contributions, and 

forecasting the engineering application prospects. 

 

 

2. RESEARCH METHODS AND EXPERIMENTAL 

DESIGN 

 

2.1 Definition of research objects: Cold chain fresh food 

intelligent packaging prototype 

 

This research focuses on the thermal stability prediction and 

structural optimization of cold chain fresh food intelligent 

packaging. The research object is defined as the “electronic 

components - three-layer composite packaging - fresh 

products” coupling system. The design of each part is centered 

around the electronic cooling demand and thermal stability 

improvement goals of “suppressing heat accumulation and 

enhancing heat dissipation.” The packaging adopts a three-

layer composite structure of "outer heat-insulating membrane 

- middle buffer layer - inner freshness-preserving layer," with 

material selection focusing on the correlation between thermal 

physical properties and thermal stability: The outer heat-

insulating membrane uses high-density polyethylene (HDPE), 

with thermal conductivity λ1 = 0.42 W/(m⋅K) , specific heat 

capacity cp1 = 2300 J/(kg⋅K), and density ρ
1
 = 950 kg/m3 . Its 

main function is to block external thermal disturbances and 

reduce heat flow intrusion. The middle buffer layer uses 

expanded polystyrene (EPS), with thermal conductivity 

λ2 = 0.038 W/(m⋅K) , specific heat capacity 

cp2 = 1300 J/(kg⋅K), and density ρ
2
 = 25 kg/m3 , constructing 

an internal thermal resistance barrier through high insulation 

properties, suppressing heat transfer from the electronic 

components to the fresh food area. The inner freshness-

preserving layer uses polyvinyl chloride (PVC), with thermal 

conductivity λ3 = 0.16 W/(m⋅K) , specific heat capacity 

cp3 = 1900 J/(kg⋅K) , and density ρ
3
 = 1380 kg/m

3
, balancing 

air tightness and low-temperature adaptability to prevent local 

thermal convection caused by internal airflow disturbances. 

The packaging dimensions are 150 mm × 100 mm × 50 mm, 

with initial thicknesses of 0.15 mm for the outer layer, 15 mm 

for the middle layer, and 0.1 mm for the inner layer. This 

design is suitable for small fresh food packaging scenarios and 

leaves room for optimization in the thickness range. 

The embedded electronic components serve as the core heat 

source, and their selection and arrangement directly affect 

thermal stability: The RFID chip used is the Impinj Monza R6, 

with dimensions of 1.6 mm × 1.6 mm × 0.18 mm and a rated 

heat dissipation power Q1 = 0.12 W; the temperature and 

humidity sensor used is the SHT30, with dimensions of 2.5 

mm × 2.5 mm × 0.9 mm and a rated heat dissipation power Q2 

= 0.08 W, with measurement accuracy of ±0.3℃ and ±2% RH, 

providing baseline data for thermal stability verification. Both 

components are fixed to the surface of the fresh food using 

flexible adhesive, with a spacing of 15–30 mm and a distance 

of 20 mm from the packaging edge. This arrangement avoids 

interference from temperature gradients at the edges, ensuring 

uniform heat source distribution while minimizing the 

occupation of fresh food placement space. 

The cold chain storage and transportation conditions are 

based on full-link measured data, simulating real thermal 

disturbance environments to ensure the engineering 

applicability of the research: The temperature range is −10 to 

25℃, covering refrigerated storage (0–4℃), low-temperature 

transportation (−10 to 0℃), and room temperature transfer 

(15–25℃), with convective speed ranging from 0.5 to 2 m/s 

and relative humidity ranging from 60% to 90% RH. The 

condition parameters fluctuate dynamically in a 4-hour cycle, 

with temperature and convective speed time-series curves 

fitted from industry-measured data, providing boundary 

conditions that closely match actual conditions for dynamic 

thermal stability prediction. 

 

2.2 Thermal network model construction and verification 

 

2.2.1 Node system and thermal physical parameter 

determination 

This study is based on the "heat generation - heat transfer - 

heat dissipation" full thermal transfer path and follows the 

principle of physical equivalence to establish the four-level 

node system of "electronic components - packaging functional 

layer - fresh products - environment." The core goal is to 

accurately characterize the thermal transfer law of the 

coupling system and achieve dynamic thermal stability 

prediction. In terms of node definitions and parameters, the 

electronic component node integrates the RFID chip and 

temperature and humidity sensor, which are treated as a 

concentrated heat source with total heat dissipation power Q = 

Q1 + Q2 = 0.2 W. The thermal capacitance C1 = m1cp1 + m2cp2, 

where m1 and m2 are the masses of the two components. The 

packaging functional layer node is divided according to the 

three-layer structure: outer heat-insulating membrane, middle 

buffer layer, and inner freshness-preserving layer. The thermal 

resistance for each layer is Ri = δi/(λiA), where δi is the 

thickness and A is the heat transfer area; the thermal 

2057



 

capacitance is Ci = ρiVicpi, where Vi is the volume. The fresh 

product node uses the equivalent volume method to integrate 

the heterogeneous fresh food. The equivalent thermal 

resistance Rfresh is measured using the steady-state plate 

method: A constant temperature hot plate-cold plate 

experimental device is used to measure the steady-state heat 

flux density q and the temperature difference ΔT between the 

upper and lower surfaces of the fresh food. Based on Fourier’s 

law, the equivalent thermal conductivity λfresh is calculated: 

 

q=λfreshΔT/δfresh (1) 

 

Then, calculate: 

 

R̄fresh=δfresh/(λfreshA) (2) 

 

 
 

Figure 1. The four-level node equivalent thermal network model of cold chain fresh food intelligent packaging 

 

The environment node represents the dynamic working 

conditions, and the convective heat transfer coefficient h is 

calculated based on the Nusselt number correlation formula, 

providing boundary conditions for the subsequent thermal 

balance equations. 

Figure 1, using cold chain fresh food intelligent packaging 

as an example, shows the four-level node equivalent thermal 

network model of "electronic components - packaging 

functional layer - fresh products - environment," clearly 

presenting the thermal resistance relationships and heat 

transfer paths between the nodes, intuitively demonstrating the 

physical equivalence between discrete nodes and continuous 

heat transfer media. 

 

2.2.2 Mathematical derivation of the thermal network model 

Based on the thermal balance principle and Kirchhoff's 

current law, the nonlinear thermal balance equations for each 

node are derived. Using the core electronic component node 

and the middle buffer layer node as examples, the complete 

derivation process is as follows: 

The heat flow into the electronic component node is its own 

heat generation power Q, and the heat flow out is the 

conductive heat flow to the inner freshness-preserving layer 

(T1−T4)/R14. The thermal balance equation is: 

 

C1

dT1

dt
=Q-

T1-T4

R14

 (3) 

 

The heat flow into the middle buffer layer node is the 

conductive heat flow from the outer heat-insulating membrane 

(T2−T3)/R23, and the heat flow out is the conductive heat flow 

to the inner freshness-preserving layer (T3−T4)/R34. The 

thermal balance equation is: 
 

C3

dT3

dt
=
T2-T3

R23

-
T3-T4

R34

 (4) 

 

The heat flow into the fresh product node is the conductive 

heat flow from the inner freshness-preserving layer 

(T4−T5)/R45, and the heat flow out is the convective heat flow 

to the environment hA(T5−Tenv). The thermal balance equation 

is: 
 

C5

dT5

dt
=
T4-T5

R45

-hA(T5-Tenv) (5) 

 

Integrating the four-level nodes, we get the system's overall 

nonlinear differential equation set: 
 

{
 
 
 
 
 

 
 
 
 
 C1

dT1

dt
=Q-

T1-T4

R14

C2

dT2

dt
=hA(Tenv-T2)-

T2-T3

R23

C3

dT3

dt
=
T2-T3

R23

+
T3-T4

R34

C4

dT4

dt
=
T1-T4

R14

+
T3-T4

R34

-
T4-T5

R45

C5

dT5

dt
=
T4-T5

R45

-hA(T5-Tenv)

 (6) 

 

where, the nonlinearity arises from the dynamic changes in the 
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convective heat transfer coefficient h and thermal resistance 

Rij with temperature. The finite difference method is used to 

discretize the equation set, with a time step of Δt = 0.1 s. A 

MATLAB program is written to solve the equations, and the 

temperature-time curves for each node are output. The core 

prediction indicator is the maximum temperature of the 

electronic component Tmax. 

 

2.2.3 Model verification experimental design 

Infrared temperature measurement experiments are used to 

verify the prediction accuracy of the thermal network model. 

The experimental platform consists of a constant temperature 

and humidity chamber, a high-precision infrared thermal 

imager, and a data acquisition system. Key measurement 

nodes are selected on the surface of the electronic components, 

the inner layer of the packaging, the center of the fresh product, 

and the outer surface of the packaging. Under the set dynamic 

cold chain conditions, temperature data from the experiments 

and model predictions are collected synchronously, with the 

sampling interval consistent with the model calculation step 

length. The model accuracy is quantified by calculating the 

mean absolute error (MAE) and root mean square error 

(RMSE). The error calculation formulas are as follows: 
 

MAE=
1

N
∑ |

N

k=1

Tpred,k-Texp,k|, (7) 

 

RMSE=√
1

N
∑ (

N

k=1

Tpred,k-Texp,k)
2
 (8) 

 

where, Tpred,k is the model predicted temperature, Texp,k is the 

experimental measured temperature, and N is the number of 

sampling points. When MAE is less than 1℃ and RMSE is 

less than 1.5℃, the model prediction accuracy is considered to 

meet engineering requirements, ensuring that the model can be 

used for subsequent thermal stability analysis and structural 

optimization. 

 

 
 

Figure 2. "Simulation-experiment" closed-loop verification process diagram of the cold chain fresh food intelligent packaging 

thermal network model 
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Figure 2 shows the "simulation-experiment" closed-loop 

verification process of the cold chain fresh food intelligent 

packaging thermal network model. It covers the cold chain 

dynamic working conditions input, thermal physical 

parameter calculation, thermal network construction, multi-

condition parameter calibration, and MAE/RMSE accuracy 

determination, fully presenting the closed-loop logic of the 

model from construction to verification. 

 

2.3 Multiphysics coupled simulation model establishment 

and calibration 

 

The “electronic components - packaging - fresh food” full-

scale coupled geometric model is constructed using ANSYS 

ICEM. The modeling process strictly follows the actual 

structural dimensions and assembly relationships of the 

research object, fully preserving the geometric features of the 

three-layer packaging structure, electronic components, and 

fresh products, ensuring the geometric fidelity of the model. 

Mesh generation uses a hybrid strategy combining 

unstructured tetrahedral meshes and structured hexahedral 

meshes. The mesh around the electronic component surface 

and surrounding areas is refined—this area is treated as the 

core heat source and the region with significant temperature 

gradient changes. The mesh size is refined to 0.1 mm to 

capture local heat transfer details accurately. The packaging 

body and fresh product areas use relatively coarse meshes to 

balance computational accuracy and efficiency. To eliminate 

the impact of mesh density on the simulation results, mesh 

independence verification is performed: five sets of different 

mesh densities are sequentially set, and the steady-state 

temperature on the surface of the electronic components is 

calculated under the same boundary conditions. When the 

number of elements reaches 1.5 million, the temperature 

calculation variation is less than 1%, which is determined to 

be the optimal mesh solution. 

The thermal physical parameters of each medium 

determined in Section 2.1 are precisely input into the 

simulation model to achieve accurate material property 

representation. The boundary conditions are set to 

equivalently convert the cold chain dynamic working 

conditions: the outer surface of the packaging uses a 

convective heat transfer boundary, and the convective heat 

transfer coefficient at different convective speeds is calculated 

based on the Nusselt number correlation formula. The 

boundary conditions are loaded sequentially according to the 

dynamic temperature curve. The electronic components are 

treated as volumetric heat source boundaries, and the heat 

source strength is set according to their rated power to simulate 

sustained heating characteristics. The specific formula is as 

follows: 

 

Nu=CRemPrn (9) 

 

Interface thermal resistance boundaries are set on all contact 

surfaces inside the packaging, with initial values based on 

literature data. Contact thermal resistance between the fresh 

product and the inner layer of the packaging and between the 

packaging layers is set according to the actual assembly state 

to ensure the accurate representation of the multi-physics 

coupled heat transfer process. 

ANSYS Fluent is used to solve the coupled flow field-

temperature field equations, and numerical solutions are based 

on the finite volume method. The control equations include the 

continuity equation, momentum equation, and energy equation. 

For the mixed conditions of natural convection and forced 

convection in cold chain storage and transportation, the 

standard k-ε turbulence model is used to close the control 

equations. The pressure-velocity coupling uses the SIMPLE 

algorithm, and the energy equation discretization scheme uses 

a second-order upwind scheme to improve computational 

accuracy. The simulation is solved in two steps: first, a steady-

state simulation is conducted to obtain the baseline 

temperature distribution, and then a transient simulation is 

performed to capture the temperature response characteristics 

under dynamic working conditions. Based on the key node 

temperature data obtained from the infrared temperature 

measurement experiments in Section 2.2, interface thermal 

resistance parameters are iteratively calibrated. The 

experimental temperatures at the surface of the electronic 

components, the center of the fresh food, and the outer surface 

of the packaging are used as target values. The interface 

thermal resistance values are gradually adjusted until the 

deviation between the simulation predicted temperatures and 

the experimental measured temperatures is less than 5%, 

completing the model calibration and ensuring that the 

simulation model accurately reflects the actual heat transfer 

laws. 

 

2.4 Multidimensional structural optimization design 

 

The selection of optimization variables is based on the core 

structural parameters that affect the thermal stability, 

lightweight design, and process feasibility of cold chain fresh 

food intelligent packaging, with the final determination of 

three key optimization variables. The thicknesses of the 

packaging layers, including the outer thermal barrier film, the 

intermediate buffer layer, and the inner preservation layer, are 

in the ranges of 0.1–0.2 mm, 12–18 mm, and 0.08–0.12 mm, 

respectively, balancing thermal insulation performance and 

structural lightweight requirements. The cooling hole 

parameters, including hole diameter and number, are selected 

with hole diameters ranging from 2 to 5 mm and the number 

of holes ranging from 4 to 12, to balance the enhancement of 

convective heat transfer and packaging structural strength. The 

arrangement spacing of the electronic components, i.e., the 

center distance between the RFID chip and the temperature 

and humidity sensor, ranges from 15 to 30 mm to avoid 

localized high-temperature accumulation caused by 

concentrated heat generation. The range of all variables is 

determined based on the limits of current packaging 

production processes and preliminary pre-simulation results to 

ensure the engineering feasibility of the optimization scheme. 

The objective functions are set to three mutually conflicting 

core indicators, with precise mathematical expressions 

constructed and engineering constraints added to achieve the 

collaborative optimization of thermal stability, lightweight 

design, and economic efficiency: 

Objective 1 — Maximization of Thermal Stability: 

Minimize the maximum temperature of the electronic 

components, f1 = min(Tmax), with the constraint Tmax ≤ 35℃; 

Objective 2 — Maximization of Lightweight Design: 

Minimize the total mass of the packaging, f2 = min(m), where 

m = ρ1x1A+ρ2x2A+ρ3x3A, with A being the packaging surface 

area; 

Objective 3 — Maximization of Economic Efficiency: 

Minimize the manufacturing cost, f3 = min(C), where C = c1x1A 

+ c2x2A + c3x3A + c4x5, with c1~c3 being the material unit prices, 
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and c4 being the per-hole processing cost. 
 

2.4.1 Surrogate model construction and optimization solution 

A surrogate model of the optimization variables and 

objective functions is constructed using the response surface 

methodology, with the Box-Behnken design plan for 

experiment design. This design does not require touching the 

boundary values of the variables and can effectively reduce the 

number of experiments while ensuring the model fitting 

accuracy. The experimental scheme consists of 27 test points, 

covering typical combinations of variable values within their 

ranges, and solving the corresponding objective function 

values for each test point using the calibrated multiphysics 

coupled simulation model. 

The surrogate model is built based on experimental data to 

construct a second-order polynomial regression model for the 

objectives f1, f2, and f3: 
 

y=β
0
+∑ β

i
xi+

6

i=1

∑ β
ii
xi

6

i=1

2

+ ∑ β
ij

1≤i<j≤6

xixj (10) 

 

where, y is the objective function, β
0
, β

i
, β

ii
, and β

ij
 are the 

constant, linear, quadratic, and interaction coefficients, 

respectively. An analysis of variance is conducted to verify the 

model significance, and the coefficient of determination R2 and 

the adjusted coefficient of determination Radj
2  are used to 

evaluate the goodness of fit of the model. The values of R2 and 

Radj
2  must both exceed 0.95 to ensure the model can accurately 

represent the mapping relationship between the variables and 

the objective functions. 

An improved genetic algorithm is used to solve the multi-

objective optimization problem. The algorithm introduces an 

elitism strategy and an adaptive crossover-mutation 

probability mechanism based on traditional genetic algorithms 

to improve convergence speed and the quality of the optimal 

solution. The algorithm parameters are set as follows: 

population size of 100, 50 iterations, initial crossover 

probability of 0.8, mutation probability of 0.1, with the 

crossover probability linearly decreasing to 0.6 and the 

mutation probability linearly increasing to 0.2 during the 

iteration process, balancing global search and local 

optimization abilities. The response surface surrogate model is 

used as the fitness function calculation module to solve the 

Pareto optimal front in the “temperature-mass-cost” three-

dimensional objective space. To verify the superiority of the 

algorithm, the NSGA-II algorithm is also used for 

optimization, and a comparison is made in terms of 

convergence speed and Pareto solution distribution uniformity. 

Convergence speed is measured by the number of iterations 

required to reach a stable solution, and the uniformity of the 

solutions is quantified using the Spacing metric to ensure the 

optimization performance advantage of the selected algorithm. 

The Biot number and Fourier number are introduced to 

perform dimensionless parameter sensitivity analysis to 

quantify the influence weight of each optimization variable on 

thermal stability. The Biot number is defined as: 
 

Bi=
hL

λ
 (11) 

 

where, h is the convective heat transfer coefficient, L is the 

characteristic length, and λ is the material thermal conductivity. 

This is used to determine the influence of each structural 

parameter on the dominant relationship between conduction 

and convection heat transfer. The Fourier number is defined 

as: 

 

Fo=
αt

L2
 (12) 

 

where, α is the thermal diffusivity, and t is time, representing 

the rate of change of the temperature field in an unsteady heat 

transfer process. By using the method of controlling variables 

and fixing other parameters, only a single optimization 

variable is changed, and the Bi and Fo numbers are calculated 

for different variable values. Sensitivity curves are plotted, and 

the absolute value of the slope of the curve is used to quantify 

the degree of influence of the variable, identifying the key 

parameters that dominate thermal stability. This provides 

targeted guidance for the engineering application of the 

optimization scheme. 

 

 

3. RESULTS AND ANALYSIS 

 

3.1 Thermal network model and simulation model 

validation results 

 

 
 

Figure 3. Temperature distribution histogram of key nodes in 

cold chain fresh food intelligent packaging (Low-temperature 

transport conditions) 

 

To clarify the temperature fluctuation characteristics of the 

core areas of the packaging under low-temperature transport 

conditions and assess the thermal risk of the electronic 

components in this scenario, multiple sets of repeated 

temperature monitoring experiments were conducted. The 

temperature distribution histogram shown in Figure 3 

indicates that more than 85% of the temperature samples of 

key packaging nodes fall within the 21.4–22.4℃ range, with 

only a few samples close to 23℃, and no values exceeding 

24℃. This distribution characteristic suggests that the low 

thermal conductivity design of the intermediate buffer layer 

effectively limits the spread of heat generated by the electronic 

components to surrounding areas, while the thermal storage 

effect of the fresh produce smooths out local temperature 

fluctuations. This keeps the temperature fluctuation in the core 

area within 1℃, well below the 35℃ operational temperature 

threshold for the electronic components. These results not only 

confirm the stability of the thermal environment under low-

temperature transport conditions but also clarify the 

synergistic effect between the buffer layer's insulation 

performance and the thermal storage effect of the fresh 
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produce. This provides experimental data for setting the lower 

limit of buffer layer thickness in subsequent optimization 

schemes. 

The accuracy verification of the thermal network model is 

completed by comparing the experimental measurements and 

model calculation values of key node temperatures. Four core 

nodes, including the electronic component surface, fresh 

produce center, inner packaging layer, and outer packaging 

surface, were selected to cover the full heat transfer path. The 

verification data is shown in Table 1. As seen from Table 1, 

the model calculation values show small deviations from the 

experimental measurements, with the largest deviation in the 

electronic component surface temperature being 0.9℃ and the 

smallest deviation in the fresh produce center temperature 

being 0.5℃. The overall average absolute error is 0.7℃, and 

the root mean square error (RMSE) is 1.0℃, both of which are 

within acceptable engineering accuracy ranges. This proves 

that the four-level node thermal network model can accurately 

represent the physical equivalence between discrete nodes and 

continuous heat transfer media, and effectively capture the 

heat transfer laws of the cold chain fresh food intelligent 

packaging. 

 

Table 1. Thermal network model accuracy verification data 

 

Key Node 
Experimental 

Measurement (℃) 

Model 

Calculation (℃) 

Absolute 

Deviation (℃) 

Average Absolute 

Error (MAE) 

Root Mean Square 

Error (RMSE) 

Electronic 

Component Surface 
34.7±0.2 33.8±0.2 0.9 

0.7℃ 1.0℃ 

Fresh Produce 

Center 
8.2±0.1 7.7±0.1 0.5 

Inner Packaging 

Layer 
10.5±0.1 10.0±0.1 0.5 

Outer Packaging 

Surface 
5.3±0.1 4.9±0.1 0.4 

 

Table 2. Comparison data of improved genetic algorithm and NSGA-II algorithm 

 

Algorithm Type 
Convergence 

Iterations 

Spacing 

Index 

Optimal Solution - Max 

Temperature (℃) 

Optimal Solution - 

Packaging Mass (g) 

Optimal Solution - 

Manufacturing Cost (yuan) 

Improved Genetic 

Algorithm 
38 0.08 34.7 28.6 1.2 

NSGA-II 

Algorithm 
45 0.12 35.2 29.3 1.3 

 

 
 

Figure 4. Comparison of temperature between thermal network model, multiphysics simulation, and experimental results 

 

The algorithm comparison results are shown in Table 2, 

which compares the performance of the improved genetic 

algorithm and the NSGA-II algorithm under the same 

optimization objectives and constraints. The data shows that 

the improved genetic algorithm requires 38 iterations to reach 

a stable Pareto optimal solution, 15.6% fewer iterations than 

the NSGA-II algorithm (45 iterations), significantly 

improving the convergence speed. Regarding the solution 
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distribution uniformity, the Spacing index of the improved 

genetic algorithm is 0.08, lower than the 0.12 of the NSGA-II, 

indicating that its Pareto optimal solutions are more uniformly 

distributed in the “temperature-mass-cost” three-dimensional 

objective space and can provide more diverse candidate 

optimization solutions. Moreover, the optimal solution 

obtained by the improved genetic algorithm shows superior 

overall performance, achieving a maximum temperature of 

34.7℃ for the electronic component while reducing packaging 

mass to 28.6 g and manufacturing cost to 1.2 yuan. These 

results confirm that the improved genetic algorithm, by 

introducing an elitism retention strategy and an adaptive 

crossover-mutation probability mechanism, effectively 

balances global search and local optimization capabilities, 

making it more suitable for the multi-objective structural 

optimization problems involving both discrete and continuous 

variables in this study. 

To quantify the prediction accuracy of the thermal network 

model and multiphysics simulation, and to assess their ability 

to characterize different heat transfer processes, this study 

selected 7 key nodes covering the entire heat transfer path of 

“heat source-interface-thermal storage-heat dissipation” for 

comparative experiments. The data in Figure 4 shows that the 

mean deviation between the thermal network model and the 

experimental measurement values is 0.7℃, and the mean 

deviation between the multiphysics simulation and 

experimental measurement values is 0.5℃, both meeting the 

MAE<1℃ accuracy standard. Further analysis of the 

deviation of each node shows that at the component-inner 

preservation layer interface, where heat flow is concentrated, 

the deviation of the multiphysics simulation is only 0.3℃, 

while the deviation of the thermal network model is 0.8℃. 

This difference arises because the multiphysics simulation 

more accurately captures the local heat flow distribution at the 

interface, while the thermal network model focuses more on 

the equivalent representation of the overall heat resistance of 

the entire path. This result shows that the thermal network 

model can efficiently support the preliminary optimization of 

the overall heat resistance of the packaging, while the 

multiphysics simulation is more suitable for fine-tuning the 

control of local heat accumulation areas. The combination of 

both can provide full-dimensional analytical support for 

packaging structure optimization, from system-level heat 

resistance matching to local heat flow regulation. 

 

3.2 Thermal stability prediction results and dimensionless 

analysis 

 

Dynamic temperature response characteristics were 

analyzed through temperature-time curves under different cold 

chain conditions, with the environmental temperature 

fluctuation range and convection speed selected as key 

operating parameters. The corresponding dynamic response 

and Fourier number (Fo) analysis data are shown in Table 3. 

The Fourier number characterizes the time characteristics of 

unsteady heat transfer; a higher Fo number indicates that the 

temperature field reaches steady state more quickly. From 

Table 3, it can be seen that when the environmental 

temperature fluctuation amplitude increases from 5℃ to 15℃, 

the steady-state temperature of the electronic component 

surface rises from 32.1℃ to 36.8℃, and the heating rate 

increases from 0.8℃/min to 1.5℃/min. Correspondingly, the 

Fo number increases from 0.32 to 0.45, and the dynamic 

temperature response is significantly enhanced. In contrast, 

when the convection speed increases from 0.5 m/s to 2.0 m/s, 

the steady-state temperature only decreases from 35.6℃ to 

34.2℃, the heating rate drops from 1.3℃/min to 1.1℃/min, 

and the Fo number increases from 0.41 to 0.43. The change is 

much smaller than the effect of environmental temperature 

fluctuation. This result indicates that environmental 

temperature fluctuation is the dominant factor affecting the 

thermal response characteristics of cold chain fresh food 

intelligent packaging. In actual cold chain logistics 

management, it is necessary to control the range of 

environmental temperature fluctuations to ensure the thermal 

stability of the packaging. 

 

Table 3. Dynamic temperature response and Fourier number (Fo) analysis data 

 
Environmental Temperature 

Fluctuation Amplitude (℃) 

Convection 

Speed (m/s) 

Steady-State Temperature of 

Electronic Components (℃) 

Heating Rate 

(℃/min) 

Fourier 

Number (Fo) 

5 1.0 32.1 0.8 0.32 

10 1.0 34.7 1.2 0.40 

15 1.0 36.8 1.5 0.45 

10 0.5 35.6 1.3 0.41 

10 1.5 34.9 1.2 0.42 

10 2.0 34.2 1.1 0.43 

 

To clarify the dynamic evolution of the heat transfer process 

of the packaging under extreme thermal disturbance 

conditions and assess the thermal risk boundaries for 

electronic components and fresh produce, this study conducted 

a 24-hour full-link temperature monitoring experiment. The 

results in Figure 5 show that within the first 5 hours of the 

experiment, the temperature fluctuations at each node were 

less than 2℃, indicating that the packaging heat resistance was 

in the initial buffering stage. After 5 hours, the electronic 

component surface temperature entered a rapid rise phase, and 

at 11 hours, the temperature difference between the electronic 

component surface and the outer packaging surface reached 

18.12℃, corresponding to the peak heat transfer when the 

thermal resistance of the intermediate buffer layer was not yet 

fully saturated. After 13 hours, the temperature difference 

between the nodes stabilized in the range of 15.57–17.85℃, 

with the electronic component surface temperature not 

exceeding 55℃, and the fresh produce center temperature 

remaining below 45℃. This result shows that the insulation 

design of the intermediate buffer layer and the thermal storage 

effect of the fresh produce formed a synergistic effect, limiting 

excessive heat transfer to the fresh produce area and keeping 

the temperature gradient in the core area within a safe range. 

This experiment not only defines the safety boundary of 

packaging thermal stability under extreme conditions but also 

reveals the dynamic saturation characteristics of the buffer 

layer’s thermal resistance. The temperature difference steady 

state after 13 hours corresponds to the dynamic equilibrium of 

the buffer layer’s thermal resistance, providing experimental 
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data for the subsequent dynamic adaptation of the buffer layer 

thickness in optimization. 

 

 
 

Figure 5. Full-link cold chain extreme condition 

temperature-time response experiment results for packaging 

key nodes 

 

 
 

Figure 6. Full-link cold chain extreme condition 

temperature-time response simulation results for packaging 

key nodes 

To verify the predictive accuracy of the thermal stability 

model for the dynamic heat transfer process under extreme 

conditions and assess its reliability in optimization pre-

simulation, this study simultaneously conducted multiphysics 

simulation calculations. The results in Figure 6 show that the 

simulation curves match the experimental data's time 

evolution trend completely: during the initial heat response 

stage before 5 hours, the temperature deviation between the 

simulation and experiment is less than 1℃; at 10 hours, the 

temperature deviation between the electronic component 

surface and the outer packaging surface is only 0.22℃; after 

13 hours, the temperature deviation for each node is less than 

0.5℃. Further breakdown of node deviations shows that the 

simulation deviation at the fresh produce center is the smallest, 

which is directly related to the accurate calibration of the 

equivalent thermal storage parameters for the fresh produce in 

the model. The deviation at the electronic component surface 

is slightly higher but still within an acceptable engineering 

range. This result confirms that the constructed prediction 

model can accurately reproduce the dynamic heat transfer 

process under extreme conditions and can be used for the 

thermal response pre-simulation of subsequent packaging 

structure optimization, including "buffer layer thickness 

adjustment - heat dissipation hole layout optimization," 

improving the iteration efficiency of the optimization scheme 

and ensuring the validity of the optimization results under 

extreme conditions. 

Dimensionless parameter sensitivity analysis was carried 

out based on the Biot number, which is used to determine the 

dominant relationship between thermal conduction and 

convection heat transfer. The data is shown in Table 4. When 

Bi<0.1, thermal conduction dominates, and changes in the 

buffer layer thickness significantly impact the thermal 

resistance. When the buffer layer thickness increases from 

12mm to 18mm, the temperature at the electronic component 

surface drops from 36.2℃ to 33.5℃, a temperature change 

rate of 7.5%. In contrast, changes in the number of heat 

dissipation holes and component spacing have little effect on 

temperature, with the temperature change rate being less than 

2%. When Bi>0.1, convection heat transfer dominates, and the 

impact of the number of heat dissipation holes significantly 

increases. When the number of holes increases from 4 to 12, 

the temperature drops from 37.1℃ to 33.8℃, a temperature 

change rate of 8.9%, while the impact of buffer layer thickness 

changes on temperature drops to 3.2%. This pattern provides 

a theoretical basis for prioritizing optimization variables. In 

the optimization design, the key structural parameters can be 

targeted for adjustment based on the Bi number range of the 

actual working conditions, improving optimization efficiency. 

 

Table 4. Biot number-based dimensionless parameter sensitivity analysis data 

 

Optimization Variable Variable Range Bi Range 
Maximum Temperature of 

Electronic Components (℃) 

Temperature Change 

Rate (%) 

Buffer Layer Thickness 

(mm) 
12→18 0.08→0.15 36.2→33.5 7.5 

Number of Heat Dissipation 

Holes (pieces) 
4→12 0.08→0.15 37.1→33.8 8.9 

Component Spacing (mm) 15→30 0.08→0.15 35.4→34.8 1.7 

3.3 Multi-objective structural optimization results analysis 

 

The Pareto optimal solution distribution for multi-objective 

structural optimization is shown in Table 5, with 6 

representative candidate solutions selected, covering different 

trade-offs of "temperature - mass - cost." The Pareto front 

presents a significant negative correlation: when the maximum 

temperature of the electronic component decreases from 

37.5℃ to 34.7℃, the packaging mass increases from 26.8 g to 

28.6 g, and the manufacturing cost increases from 1.0 yuan to 
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1.2 yuan, indicating that improving thermal stability requires 

a certain cost in terms of lightweighting and economic 

performance. Considering the actual needs of cold chain fresh 

food scenarios, Solution 4 was selected as the optimal solution, 

with the maximum temperature of the electronic component at 

34.7℃ meeting the chip's working temperature threshold, and 

the packaging mass of 28.6 g and cost of 1.2 yuan both within 

a reasonable range, achieving a balanced optimization of 

thermal performance, lightweighting, and economics. 

 

Table 5. Pareto optimal solution candidate data 
 

Candidate 

Solution Number 

Maximum Temperature of 

Electronic Components (℃) 
Packaging Mass (g) 

Manufacturing Cost 

(yuan) 

Comprehensive 

Evaluation Level 

1 37.5 26.8 1.0 Normal 

2 36.8 27.3 1.05 Normal 

3 35.6 27.9 1.1 Good 

4 34.7 28.6 1.2 Optimal 

5 34.2 29.5 1.3 Good 

6 33.8 30.2 1.4 Normal 

 

Table 6. Heat dissipation hole parameter optimization mechanism data 
 

Heat Dissipation Hole 

Diameter (mm) 

Number of Heat 

Dissipation Holes 

(pieces) 

Convective Heat Transfer 

Coefficient (W/(m²·K)) 

Flow 

Resistance 

(Pa) 

Maximum Temperature of 

Electronic Components (℃) 

5 4 28 12 36.5 

5 6 35 9 34.7 

5 8 36 11 34.5 

5 10 37 14 34.4 

4 6 32 10 35.3 

6 6 36 8 34.6 

 

Table 7. Experimental verification results for the cold chain scenario 
 

Indicator Type 

Before 

Optimization 

(Experimental 

Value) 

After Optimization 

(Simulation 

Predicted Value) 

After Optimization 

(Experimental 

Measured Value) 

Experimental and 

Simulation Error 

(%) 

Optimization 

Improvement 

Rate (%) 

Maximum 

Temperature of 

Electronic 

Components (℃) 

42.5 33.3 34.7 3.8 18.3 

Packaging Mass (g) 34.1 28.2 28.6 1.4 16.2 

Manufacturing Cost 

(yuan) 
1.35 1.2 1.2 0 11.5 

Fresh Food Storage 

and Transport Loss 

Rate (%) 

15.3 3.0 3.3 10.0 78.4 

 

Table 8. Cross-domain transfer test data 

 
Indicator Type Before Optimization After Optimization Improvement Rate (%) 

Maximum Temperature of Core Component (℃) 41.2 34.0 17.6 

Product Mass (g) 22.8 20.0 12.3 

Manufacturing Cost (yuan) 89.5 82.3 8.0 

 

The core of the heat dissipation structure optimization 

mechanism lies in the trade-off between flow resistance and 

thermal resistance. The performance data for different heat 

dissipation hole parameter combinations are shown in Table 6. 

When the hole diameter is fixed at 5 mm, as the number of 

holes increases from 4 to 6, the convective heat transfer 

coefficient increases from 28 W/(m²·K) to 35 W/(m²·K), the 

flow resistance decreases from 12 Pa to 9 Pa, and the 

maximum temperature of the electronic component decreases 

from 36.5℃ to 34.7℃, significantly improving the heat 

transfer performance. However, when the number of holes 

increases to 8 or more, the convective heat transfer coefficient 

increases more slowly (36 W/(m²·K) for 8 holes), and the flow 

resistance rises to 11 Pa, with the temperature stabilizing at 

34.5℃. This is because too many holes can cause airflow 

interference, increasing flow resistance without effectively 

improving the heat transfer area. If the number of holes is too 

few, the heat transfer area is insufficient, and convective heat 

dissipation cannot be effectively enhanced. Therefore, the 

optimal combination of heat dissipation holes is 5 mm in 

diameter with 6 holes, where the best balance between flow 

resistance and thermal resistance is achieved, maximizing the 

heat dissipation efficiency. 

 

3.4 Experimental verification and methodology transfer 

results 

 

The cold chain scenario experimental verification results 

are shown in Table 7. The experimental measurement values 

of the optimized solution and the simulation predicted values 
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have small deviations: the maximum temperature of the 

electronic component in the experiment is 34.7℃, while the 

simulated predicted value is 33.3℃, with an error of 3.8%; the 

packaging mass in the experiment is 28.6 g, and the simulated 

value is 28.2 g, with an error of 1.4%; the manufacturing cost 

in the experiment is 1.2 yuan, which matches the simulation 

value. The errors are all within 5%, meeting engineering 

accuracy requirements, confirming that the optimized solution 

has reliable practical application effects. Compared with the 

pre-optimization scenario, after optimization, the maximum 

temperature of the electronic components decreased by 18.3%, 

the packaging mass was reduced by 16.2%, the manufacturing 

cost was reduced by 11.5%, and the fresh food storage and 

transportation loss rate decreased from 15.3% to 3.3%, 

significantly improving the quality assurance capacity of cold 

chain fresh food products. 

Cross-Domain Transfer Test applies the established 

methodology to the thermal management optimization of 

flexible electronic wristbands, with results shown in Table 8. 

In the transfer test, the same thermal network modeling 

method, multi-physics simulation process, and multi-objective 

optimization algorithm were used, with adjustments to node 

division and parameter settings according to the structural 

characteristics of the flexible electronic wristband. The results 

show that after optimization, the maximum temperature of the 

core component of the flexible electronic wristband decreased 

from 41.2℃ to 34.0℃, improving thermal stability by 17.6%; 

meanwhile, the product mass decreased by 12.3%, meeting the 

lightweight requirements for wearable devices. This result 

confirms that the "thermal network modeling - multi-physics 

simulation - multi-objective optimization - experimental 

verification" methodology framework established in this study 

has good versatility and can be effectively transferred to other 

thermal management problems in fields such as flexible 

electronics and wearable devices, expanding the application 

boundaries of the research. 

 

 

4. DISCUSSION 

 

The core results of this study’s deep mechanism and 

academic value are focused on the physical equivalence 

construction of the thermal network model and the innovative 

integration of cross-disciplinary thermal management 

solutions. The proposed four-level node thermal network 

model breaks through the limitations of traditional models by 

integrating fresh product nodes and accurately capturing the 

coupling heat storage effect of the packaging and contents, 

solving the core defect of previous models that ignored multi-

medium heat interaction. Moreover, the equivalence proof 

between discrete nodes and continuous heat transfer mediums 

not only provides theoretical support for model accuracy but 

also elevates thermal network modeling from empirical 

applications to a physics-driven approach, significantly 

enhancing the theoretical depth of the research. The key to the 

optimization solution's achievement of improved thermal 

stability lies in the synergistic enhancement of conduction and 

convection: the adjustment of buffer layer thickness optimized 

the internal conduction path, reducing heat accumulation in the 

core heating area, while the optimal combination of heat 

dissipation hole parameters maximized external convective 

heat transfer by balancing flow resistance and thermal 

resistance. This mechanism provides a controllable approach 

for heat management in similar electronic devices. 

Additionally, this research is based on the deep intersection of 

packaging engineering, heat transfer science, electronic 

engineering, and optimization algorithms, constructing a 

multi-disciplinary fusion problem-solving paradigm, which 

aligns with top journals' preferences for cross-disciplinary 

innovations and provides new technical pathways for thermal 

management research under complex conditions. 

A comparative analysis with existing studies further 

highlights the academic advantages of this research, while the 

establishment of a universal methodology framework expands 

the research's application boundaries and domain value. In 

terms of thermal modeling accuracy, the average absolute 

error and root mean square error of the thermal network model 

in this study outperform existing simplified models, and the 

computational efficiency is significantly higher than pure 

computational fluid dynamics simulation models, achieving a 

synergy between accuracy and efficiency. In terms of 

optimization effects, the multi-objective optimization solution 

simultaneously breaks through thermal stability, 

lightweighting, and cost control, solving the engineering 

applicability issues caused by single-objective optimization in 

existing research. More critically, existing studies are often 

limited to a single packaging scenario, whereas the "thermal 

network modeling - multi-physics simulation - multi-objective 

optimization - experimental verification" framework 

established in this study has been validated for its versatility 

through cross-domain transfer tests, demonstrating its 

adaptability to thermal management needs in different fields 

such as flexible electronics and wearable devices. This 

universal framework provides a replicable technical route for 

related research, contributing to the standardization and 

normalization of thermal management research paradigms. 

The results of this study have clear potential for engineering 

transformation, and its cost-effectiveness and sustainability 

further enhance the practical significance and social value of 

the research. Process feasibility analysis shows that the 

recommended heat dissipation hole structure can be achieved 

with existing punching equipment on the packaging 

production line, and the materials used in the optimization are 

all commercially available products, requiring no new 

specialized equipment or supply chain reconstruction, 

significantly reducing the threshold and risk for engineering 

transformation. The cost-effectiveness quantification analysis 

shows that although the optimization plan slightly increases 

the unit price of the packaging, it reduces the fresh food 

storage and transportation loss rate by 12%. With an annual 

shipment of 10 million sets, the annual net profit can exceed 2 

million yuan, achieving a win-win situation in both technical 

optimization and economic benefits. At the same time, the 

lightweight design reduces the consumption of non-

degradable materials like plastics, significantly lowering the 

carbon emissions throughout the packaging lifecycle, aligning 

with the dual carbon goals, and deeply integrating technical 

optimization with the concept of green sustainable 

development. This effectively enhances the social value and 

long-term impact of the research. 

This study still has inherent limitations, and future work can 

be advanced from three dimensions: model expansion, 

scenario extension, and cross-scale research. In terms of the 

model, the current thermal network model does not consider 

radiative heat transfer, making it only applicable to low- and 

medium-temperature cold chain conditions. For high-

temperature scenarios, a radiative heat transfer module needs 

to be added to improve the model’s full-scenario adaptability. 
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The fresh food types used in the experiment are limited, and 

differences in thermal properties between different types of 

fresh food may affect the model's general applicability. Future 

work should expand the sample range for validation. In terms 

of methods and applications, machine learning algorithms can 

be introduced to optimize the thermal network model 

parameters, improving prediction efficiency under dynamic 

conditions. Topology optimization algorithms can be 

combined to break through the limitations of traditional size 

optimization and achieve autonomous innovative design of 

packaging structures. At the same time, the methodology can 

be extended to other light industrial sectors, such as injectable 

pharmaceuticals and high-end cosmetics, exploring smart 

packaging thermal management solutions in extreme 

environments. On a more macro, cross-scale level, future 

research can expand from packaging unit thermal management 

to thermal energy collection and management in smart 

logistics systems, exploring waste heat recovery and 

utilization from heating components. Additionally, digital 

twin technology can be integrated to build a thermal stability 

monitoring and early warning system for the entire lifecycle of 

smart packaging, promoting the shift from single-point 

technical optimization to full-chain intelligent control. 

 

 

5. CONCLUSION 

 

This study systematically conducted thermal network 

modeling, multi-physics simulation, multi-objective 

optimization, and experimental verification research to 

address the core engineering bottleneck of thermal runaway in 

cold chain fresh food smart packaging. A four-level node 

thermal network model with physical equivalence for the 

"component-packaging-fresh food-environment" system had 

been successfully established, and a closed-loop optimization 

methodology framework involving packaging engineering, 

heat transfer science, electronic engineering, and optimization 

algorithms had been developed. 

The key achievements of the study can be summarized in 

three aspects: First, the optimization plan achieves a 

synergistic improvement in thermal performance, lightweight 

design, and economic viability, reducing the maximum 

packaging temperature by 18.3%, weight by 16.2%, 

manufacturing cost by 11.5%, and fresh food storage and 

transport loss rate to 3.3%, significantly enhancing the 

industrial application value. Second, the established 

methodology framework has been validated through cross-

domain transfer tests and can effectively meet the thermal 

management needs of the flexible electronics field, achieving 

a 17.6% improvement in thermal stability. Third, the 

lightweight design is deeply integrated with green and 

sustainable concepts, reducing packaging material 

consumption by 16.2%, lowering the carbon emissions 

throughout the lifecycle, and aligning with dual-carbon 

development goals. 

The academic contributions of this study are reflected in 

three dimensions: In the theoretical domain, the physical 

equivalence between discrete nodes and continuous heat 

transfer mediums is clarified, addressing the weakness of 

traditional thermal network models in terms of physical 

understanding. In the methodological domain, an 

interdisciplinary thermal management solution is proposed, 

constructing a standardized technical route of "modeling-

simulation-optimization-verification." In the application 

domain, the research breaks through the limitations of single 

scenarios and provides technical support for the scaling and 

commercialization of smart packaging thermal management. 

In terms of engineering applications, the proposed structural 

optimization solution can directly adapt to existing cold chain 

fresh food smart packaging production lines without the need 

for new specialized equipment, demonstrating a low threshold 

for transformation. The established universal methodology 

framework provides replicable technical references for 

thermal management research in fields such as flexible 

electronics and wearable devices. With further model 

refinement and the expansion of application scenarios, the 

research results will play a more extensive supporting role in 

the thermal management of light industrial smart packaging 

and related electronic devices, showing broad engineering 

application prospects and industrial value. 
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