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 High-density urban development has induced pronounced non-equilibrium thermodynamic 

characteristics in block-scale microclimates. During the cross-scale coupling between 

urban wind fields and indoor luminous–thermal environments of buildings, fundamental 

challenges persist, including spatiotemporal heterogeneity of multiscale processes, 

discontinuities in energy transfer, and the lack of thermodynamic consistency. These issues 

significantly constrain the synergistic optimization of indoor thermal comfort and building 

energy efficiency. To accurately characterize this cross-scale coupling mechanism, this 

study proposes a thermodynamically consistent cross-scale dynamic coupling simulation 

framework, termed DA-PG-CSDC. The framework integrates data assimilation with 

physics-guided generative models, embedding non-equilibrium thermodynamic 

constraints and entropy flow–entropy production analysis. Through the coordinated design 

of dynamic correction, physical downscaling, and bidirectional coupling, the framework 

enables full-process quantification of cross-scale energy transfer and dissipation. 

Experimental validation demonstrates that the DA-PG-CSDC framework achieves 

excellent thermodynamic consistency and predictive accuracy, with an energy balance 

error of no more than 2.3% and a mean absolute temperature prediction error within 0.8℃. 

In scaled experiments, deviations in temperature and heat flux density simulations are 

limited to 1.1℃ and 5.0%, respectively. Application results indicate that optimized wind 

fields can reduce the indoor average temperature by 1.8℃, decrease the total system 

entropy production rate by 20.7%, and lower building air-conditioning energy 

consumption by 17.5%. Uncertainty analysis further identifies computational fluid 

dynamics (CFD) turbulence model constants as key influencing factors. The proposed 

coupling framework provides a novel methodological paradigm for cross-scale non-

equilibrium thermodynamic analysis and offers strong theoretical support and engineering 

applicability for optimizing indoor luminous–thermal environments and advancing low-

carbon building design. 
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1. INTRODUCTION 

 

The changes in underlying surfaces induced by high-density 

urban development have led to pronounced non-equilibrium 

thermodynamic characteristics in block-scale microclimates 

[1-3]. The processes of energy transfer and transformation 

directly regulate the indoor luminous–thermal environment of 

buildings [4], thereby affecting human thermal comfort and 

building energy consumption efficiency [5, 6]. This cross-

scale interaction phenomenon has become a research hotspot 

at the intersection of non-equilibrium thermodynamics and 

building environmental science. Existing studies have 

confirmed that the urban block wind field, as a core carrier of 

energy and mass transfer, plays a decisive role in indoor 

thermal environment regulation and energy-saving potential. 

At present, cross-scale coupling simulation is the 

mainstream technical approach for revealing the interaction 

mechanisms between block wind fields and indoor luminous–

thermal environments. Existing studies have attempted to 

construct multiscale simulation systems through serial 

coupling and parameterized downscaling methods, achieving 

certain progress in wind field distribution prediction and 

indoor thermal environment response analysis. However, 

current methods still exhibit obvious limitations. At the level 

of non-equilibrium thermodynamic mechanism 

characterization, most studies focus on energy balance 

analysis at a single scale and lack systematic investigation of 

cross-scale entropy production evolution laws [7, 8]. In terms 

of coupling accuracy assurance, it remains difficult to 

effectively resolve thermodynamic inconsistency caused by 

spatiotemporal differences among multiscale processes [9]. 

Regarding uncertainty analysis, the sources and transmission 

pathways of simulation errors are insufficiently quantified, 

which constrains the reliability and interpretability of the 

results [10, 11]. These limitations make it difficult for existing 

methods to accurately reveal the cross-scale energy transfer 
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mechanisms mediated by block wind fields and to provide 

reliable thermodynamic theoretical support for indoor 

luminous–thermal environment optimization. 

In response to the above research status, the core scientific 

questions of this study focus on two aspects. First, how to 

accurately characterize cross-scale convective–radiative 

coupled energy transfer and entropy production processes 

mediated by block wind fields based on non-equilibrium 

thermodynamic theory. Second, how to construct a 

thermodynamically consistent cross-scale dynamic coupling 

mechanism to address numerical instability and physical 

distortion caused by spatiotemporal differences among 

multiscale processes. Existing studies show clear gaps in the 

clarity of cross-scale thermodynamic definitions, the depth of 

non-equilibrium process characterization, and the precision of 

uncertainty source quantification, highlighting the urgent need 

to develop a new method that combines thermodynamic rigor 

with dynamic coupling capability. 

The objective of this study is to propose a 

thermodynamically consistent cross-scale dynamic coupling 

simulation framework, DA-PG-CSDC, suitable for non-

equilibrium cross-scale thermodynamic coupling analysis, to 

achieve accurate quantification and entropy production 

optimization of the impacts of block wind fields on indoor 

luminous–thermal environments of buildings. The core 

research content includes three aspects. First, to complete the 

thermodynamic consistency design of the framework and 

clarify the technical details and collaborative logic of dynamic 

data assimilation, physics-guided generative downscaling, and 

bidirectional coupling engines. Second, to verify the reliability 

of the framework through benchmark cases and scaled 

experiments and to quantify the prediction accuracy of 

thermodynamic parameters. Third, to conduct application 

validation based on actual high-density urban block cases, 

revealing the influence patterns of wind fields on indoor 

luminous–thermal environments and proposing optimization 

strategies. The core scientific hypothesis of this study is that 

real-time correction of macroscopic flow field representation 

errors through data assimilation, combined with 

thermodynamically consistent downscaling enabled by 

physics-constrained generative models, can significantly 

reduce systematic biases in cross-scale coupling simulations, 

thereby accurately revealing the transformation mechanism of 

block-scale turbulent kinetic energy into indoor thermal 

disturbances and the evolution law of entropy production. 

Based on the above objectives and hypotheses, the 

academic innovations of this study are reflected in three 

aspects. First, a physics-guided generative downscaling model 

incorporating non-equilibrium thermodynamic constraints is 

proposed, which clarifies the nonlinear mapping pathway 

between macroscopic and microscopic thermodynamic 

parameters and addresses the problem of physical information 

loss during the downscaling process. Second, a data 

assimilation-driven dynamic correction and bidirectional 

coupling collaborative mechanism is constructed, establishing 

a multiscale time-step coordination strategy to ensure 

thermodynamic consistency during cross-scale coupling. 

Third, cross-scale entropy production quantification and 

uncertainty decomposition methods are developed to clarify 

error transmission pathways and key influencing factors, 

thereby enhancing the reliability and interpretability of 

simulation results. 

The subsequent sections of this paper are organized as 

follows. First, the overall architecture of the DA-PG-CSDC 

framework and the technical details of each core module are 

described in detail. Second, benchmark case validation and 

scaled experimental validation are conducted to systematically 

evaluate the thermodynamic accuracy and practical 

applicability of the framework. Subsequently, application 

studies based on actual urban block cases are carried out to 

quantify the influence patterns and optimization potential of 

wind fields on indoor luminous–thermal environments. 

Finally, the thermodynamic significance of the core results, 

differences from existing studies, as well as research 

limitations and future extension directions are discussed, 

forming a complete research loop. 

 

 

2. DA-PG-CSDC FRAMEWORK DESIGN 

 

2.1 Overall non-equilibrium thermodynamic architecture 

of the framework 

 

The DA-PG-CSDC framework takes thermodynamic 

consistency as the core design criterion and constructs a 

closed-loop cross-scale coupling system to achieve full-

process accurate quantification of energy transfer and loss 

between urban block wind fields and indoor luminous–thermal 

environments of buildings. The system follows the core logic 

of “macroscopic block wind field simulation–data assimilation 

correction–physics-guided generative downscaling–indoor 

luminous–thermal simulation–bidirectional feedback”, and 

resolves physical distortion problems in multiscale coupling 

through coordinated operation of each module. An entropy 

flow–entropy production monitoring module is specifically 

embedded, integrating non-equilibrium thermodynamic 

analysis throughout the entire coupling process. This module 

not only quantifies cross-scale energy transfer efficiency, but 

also accurately captures the spatiotemporal evolution 

characteristics of irreversible energy loss, providing a core 

basis for thermodynamic optimization of the coupled system. 

Figure 1 shows the schematic diagram of the overall non-

equilibrium thermodynamic architecture of the DA-PG-CSDC 

framework. 

Scientific coordination of multiscale parameters and time 

steps is a key prerequisite for ensuring thermodynamic 

consistency [12]. In terms of spatial scale, the block scale 

adopts unstructured grid discretization, with grid sizes ranging 

from 0.5 to 2 m to accommodate wind field simulation 

requirements at the hundred-meter spatial scale. The indoor 

scale adopts structured grids, and grid sizes of 0.1 to 0.3 m can 

accurately capture luminous–thermal distribution details 

within meter-scale spaces. Grid matching between the two 

scales is achieved through the physics-guided generative 

downscaler. In terms of temporal scale, differentiated time 

steps are set based on the characteristic response speeds of 

different physical processes. Wind field fluctuation simulation 

adopts a time step of 0.01 s to fully capture turbulent motion 

characteristics. The time step for building envelope thermal 

response simulation is set to 1 s to match its thermal inertia-

dominated response behavior. Indoor thermal environment 

simulation adopts a time step of 60 s to balance computational 

efficiency and simulation accuracy. To achieve multiscale 

time synchronization, the framework adopts a coordination 

mechanism combining relaxation iteration and event 

triggering, with a coordination coefficient of 0.8 and a 

triggering threshold of 0.05, ensuring coordinated evolution of 

physical processes and thermodynamic balance across 
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different time scales. 

Unified data interaction specifications provide support for 

efficient coordination among framework modules. The 

framework adopts the HDF5 data format [13, 14] to achieve 

standardized data storage and transmission across all modules, 

and defines thermodynamic parameter metadata standards, 

specifying core attributes such as parameter names, units, 

spatiotemporal coordinates, and error ranges, to ensure 

accuracy and traceability of data interaction. All modules 

achieve real-time communication through a central data bus, 

with data transmission latency controlled within 10 ms, 

ensuring timeliness of dynamic correction and bidirectional 

feedback. This data interaction mechanism not only enables 

efficient circulation of thermodynamic parameters across 

modules, but also constructs a complete data chain for the 

coupling process, providing comprehensive data support for 

subsequent uncertainty analysis and result validation. 

 

 

 
 

Figure 1. Schematic diagram of the overall non-equilibrium thermodynamic architecture of the DA-PG-CSDC framework 

 

2.2 Dynamic data assimilation interface 
 

The core function of the dynamic data assimilation interface 

is to provide thermodynamically consistent macroscopic block 

wind field and thermal environment baseline data for cross-

scale coupling through high-precision observations and model 

correction. Its performance directly determines the upper limit 

of accuracy of subsequent coupling simulations. The 

configuration of the observation system focuses on precise 

capture of thermodynamic parameters in key heat exchange 

regions. Sensor arrays are deployed on building windward 

surfaces, leeward surfaces, and rooftops, which are regions 

with intense energy exchange, and include four types of core 

sensors. Wind pressure sensors have a measurement range of 

0–10 kPa with an accuracy of ± 0.5% FS. Contact temperature 

sensors cover a measurement range of −20 to 60℃ with an 

accuracy of ± 0.1℃. Heat flux meters can monitor heat flux 

density from 0 to 1000 W/m² with an accuracy of ± 2% FS. 

Radiative flux sensors have a measurement range of 0–2000 

W/m² with an accuracy of ± 3% FS. This deployment scheme 

ensures comprehensive capture of key thermodynamic 

parameters such as pressure, temperature, heat flux, and 

radiation driven by wind fields, providing a reliable 

observational basis for model correction. 

The preprocessing workflow of observational data focuses 

on data quality improvement. A high-frequency acquisition 

rate of 10 Hz is adopted to capture dynamic evolution 

characteristics of wind fields and thermal environments. Core 

preprocessing steps apply Kalman filtering for data denoising 

[15, 16], with the core equations including the state prediction 

equation and the observation update equation. The state 

prediction equation is: 

 

x̂k|k-1=Ax̂k-1|k-1+Buk (1) 

 

The observation update equation is: 

 

x̂k|k=x̂k|k-1+Kk(zk-Hx̂k|k-1) (2) 

 

where, 𝑥̂𝑘∣𝑘−1is the prior state estimate at time step 𝑘, 𝐴 is the 

state transition matrix, 𝑥̂𝑘−1∣𝑘−1is the posterior state estimate 

at time step 𝑘 − 1, 𝐵 is the input matrix, and 𝑢𝑘 is the input 

vector at time step 𝑘. 𝑥̂𝑘∣𝑘 is the posterior state estimate at time 

step 𝑘, 𝐾𝑘 is the Kalman gain, 𝑧𝑘 is the observation vector at 

time step 𝑘, and 𝐻 is the observation matrix. To match noise 

characteristics of different sensors, the process noise 

covariance matrix is set as: Q=diag([10-6,10-4,10-3,10-3]) , 

where the diagonal elements correspond to the process noise 

variances of wind pressure, temperature, heat flux density, and 

radiative flux, respectively. Subsequent preprocessing steps 

adopt a high-precision time synchronization mechanism, 

controlling synchronization errors of multisource sensor data 

within 1 ms, and apply the 3σ criterion to remove outliers. A 

standardized observation dataset is finally generated to ensure 

reliability and consistency of observational data, providing 

support for stable operation of subsequent assimilation 

algorithms. 
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This study adopts an improved ensemble Kalman filter 

algorithm to achieve dynamic correction of model parameters 

and states, with algorithm design focusing on addressing 

observation interference and insufficient correction accuracy 

in traditional methods. The ensemble size is set to 50, and 

Latin hypercube sampling is used to initialize key parameters 

of the computational fluid dynamics model, ensuring sample 

diversity and spatial coverage of the initial ensemble. To avoid 

interference from long-distance observation data, the 

algorithm introduces a distance-dependent Gaussian 

localization function, expressed as: 

 

L(r)= exp (-
r2

2R2
) (3) 

 

where, 𝑟 is the spatial distance between model grid points and 

observation points, and 𝑅 = 5 m is the localization influence 

radius. When 𝑟 > 3𝑅, 𝐿(𝑟) = 0, ensuring that the correction 

process is constrained only by local observation information. 

An adaptive observation error covariance matrix is also 

adopted, expressed as: 

 

Robs=diag([σp
2,σT

2 ,σq
2,σr

2]) (4) 

 

where, 𝜎𝑝 , 𝜎𝑇 , 𝜎𝑞 , and 𝜎𝑟  are the standard deviations of 

observational parameters for wind pressure, temperature, heat 

flux density, and radiative flux, respectively. These are 

dynamically updated through real-time computation of 

statistical characteristics of observational data to improve 

correction adaptability and accuracy. 

The algorithm adopts heat flux density error minimization 

and entropy production rate deviation minimization as dual 

correction objectives, constructing the objective function as 

follows: 

 

J=ω1⋅
1

Nobs
∑ (

q
sim,i

-q
obs,i

q
obs,i

)

Nobs

i=1

2

+ω2⋅ (
Ŝgen,sim-Ŝgen,obs

Ŝgen,obs

)

2

 (5) 

 

where, 𝜔1 = 0.6  and 𝜔2 = 0.4  are objective weight 

coefficients satisfying 𝜔1 + 𝜔2 = 1, 𝑁obs  is the number of 

observation points, 𝑞sim,𝑖 and 𝑞obs,𝑖  are the simulated and 

observed heat flux density values at the 𝑖-th observation point, 

respectively, and 𝑆̂gen,sim and 𝑆̂gen,obs are the simulated and 

observed entropy production rates, respectively. The dual-

objective design not only ensures simulation accuracy of the 

energy transfer process, but also strengthens non-equilibrium 

thermodynamic consistency of simulation results through 

entropy production rate deviation constraints. After correction, 

the output includes key thermodynamic parameters of the 

block wind field, such as velocity field 𝑢, temperature field 𝑇, 

turbulent kinetic energy 𝑘 , turbulent dissipation rate 𝜀 , and 

convective heat transfer coefficient ℎ. Verification shows that 

the prediction error of heat flux density can be controlled 

within 3%. These corrected results provide high-precision, 

thermodynamically consistent macroscopic boundary 

conditions for the subsequent physics-guided generative 

downscaling module, effectively reducing systematic bias in 

cross-scale coupling. 
 

2.3 Physics-guided generative downscaler 
 

The core function of the physics-guided generative 

downscaler is to achieve accurate mapping between 

macroscopic urban block wind field characteristics and 

microscopic indoor luminous–thermal simulation boundary 

conditions. By constructing a thermodynamically consistent 

pathway for cross-scale parameter transfer through a physics-

constrained generative adversarial network, it addresses the 

problems of physical information loss and scale mismatch in 

traditional downscaling methods. This module takes the low-

resolution features of the assimilated block wind field as input 

and outputs high-resolution boundary conditions for indoor 

luminous–thermal simulation, providing key support for 

thermodynamic consistency in cross-scale coupling. 

The downscaler adopts a physics-constrained generative 

adversarial network architecture, whose core consists of a 

collaboratively trained generator and discriminator. The 

generator adopts a U-Net architecture [17, 18], with the 

assimilated block wind field feature tensor as input, with 

dimensions of 12 × 64 × 64. The 12 feature channels cover 

core thermodynamic and fluid dynamic parameters, including 

wind field velocity components, temperature, turbulent kinetic 

energy, turbulent dissipation rate, and solar position vectors. 

The output consists of high-resolution boundary conditions 

required for indoor luminous–thermal simulation, including 

convective heat transfer coefficients, surface radiative fluxes, 

and wind-driven rain intensity. The output resolution is 

increased to 256 × 256 to match the refined simulation 

requirements at the indoor scale. The generator contains 6 

encoding layers and 6 decoding layers. The encoding layers 

adopt 3 × 3 convolution kernels with stride 2 for 

downsampling, while the decoding layers adopt 3 × 3 

transposed convolution kernels with stride 2 for upsampling. 

The activation functions adopt a combination of LeakyReLU 

and Tanh, where the negative slope of LeakyReLU is set to 0.2 

to enhance the network’s ability to extract weak features. The 

discriminator adopts a PatchGAN structure, taking paired 

samples of “generated boundary conditions–high-fidelity 

reference data” as input and outputting a 32 × 32 pixel-wise 

authenticity discrimination matrix. The activation function 

also adopts LeakyReLU, enabling accurate discrimination of 

local feature realism in generated results through local feature 

matching. 

Deep embedding of physical constraints is the core design 

for ensuring thermodynamic consistency of the downscaling 

results. By introducing energy conservation and non-negative 

entropy production constraints into the loss function, the 

generated results are forced to satisfy basic thermodynamic 

laws. The energy conservation constraint is constructed based 

on the convection–diffusion equation, with the governing 

equation expressed as: 

 

∇⋅(ρcpvT)=∇⋅(k∇T)+ST (6) 

 

where, 𝜌  is air density, 𝑐𝑝  is the specific heat capacity at 

constant pressure, v is the wind velocity vector, 𝑇  is 

temperature, 𝑘 is the thermal conductivity of air, and 𝑆𝑇 is the 

volumetric heat source term. The residual of this equation is 

defined as the physical constraint loss 𝐿phys , namely 

Lphys = ‖∇⋅(ρcpvT) - ∇⋅(k∇T) - ST‖2
2
. The non-negative entropy 

production constraint is based on non-equilibrium 

thermodynamic principles, requiring that the entropy 

production rate Ṡgen≥0  corresponding to the generated 

thermodynamic parameters. The entropy production constraint 

loss is constructed as Lentropy = max ( 0, -Ṡgen)  to penalize 
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negative entropy production results. Combining the above 

constraints, the total network loss function is defined as: 
 

Ltotal=LGAN+λ1Lphys+λ2Lentropy (7) 

 

where, 𝐿GAN is the adversarial loss of the generative 

adversarial network, and 𝜆1 = 10 and 𝜆2 = 5  are the 

weighting coefficients for the physical constraint and entropy 

production constraint, respectively. Weight allocation 

strengthens the dominant role of thermodynamic consistency 

in the generated results. Figure 2 shows the complete 

architecture of the physics-guided generative downscaler and 

its physical constraint mechanism. 

 

 
 

Figure 2. Architecture of the physics-guided generative downscaler and its physical constraint mechanism 

 

The model training and validation process focuses on data 

reliability and training stability to ensure the accuracy and 

generalization capability of the downscaler. The training 

dataset is jointly constructed using high-resolution direct 

numerical simulation data and scaled experimental data. The 

direct numerical simulation data include 300 sets of different 

wind field and radiation conditions, while the scaled 

experimental data supplement 50 sets of measured conditions. 

After merging the two types of data, the dataset is divided into 

training, validation, and test sets with a ratio of 7:2:1, ensuring 

representativeness and diversity of the data distribution. The 

training strategy adopts the Adam optimizer, with a learning 

rate set to 10−4 , momentum parameters 𝛽1 = 0.5 and 𝛽2 =
0.999, a batch size of 8, and a total of 20,000 training iterations. 

To avoid overfitting, an early stopping strategy is adopted, 

terminating training when the validation loss does not decrease 

for 500 consecutive iterations. 

Model accuracy validation focuses on the prediction 

performance of core thermodynamic parameters. Test set 

results show that the mean absolute error of convective heat 

transfer coefficient prediction is 0.8 W/(m²·K), and the root 

mean square error is 1.2 W/(m²·K), meeting the accuracy 

requirements of indoor luminous–thermal simulation. 

Meanwhile, the residual of the energy conservation constraint 

term is ≤0.02, and the entropy production rates of all generated 

samples satisfy the non-negative condition, verifying the 

effectiveness of physical constraint embedding. The 

downscaler achieves thermodynamically consistent transfer 

from macroscopic wind field characteristics to microscopic 

boundary conditions, providing key technical support for the 

accuracy of cross-scale coupling. 

2.4 Bidirectional dynamic coupling engine 

 

The bidirectional dynamic coupling engine is the core hub 

ensuring cross-scale coordinated operation of the DA-PG-

CSDC framework. Its core function is to construct a dynamic 

interaction linkage between macroscopic urban block wind 

fields and microscopic indoor luminous–thermal 

environments. Through a refined coupling advancement 

mechanism and thermodynamic consistency verification, it 

resolves numerical instability and physical distortion caused 

by spatiotemporal differences among multiscale processes. 

Through a closed-loop design of “forward transfer–reverse 

feedback”, the engine achieves precise synchronization of 

cross-scale energy transfer and thermodynamic state evolution, 

providing fundamental support for the accuracy and reliability 

of the entire coupled system. 

Coupling advancement adopts a basic workflow of “stage-

wise progression + time synchronization”. Within a complete 

coupling cycle, the process strictly follows a predefined 

logical sequence. First, urban block wind field simulation is 

conducted using a time step of 0.01 s to capture turbulent 

fluctuation characteristics. Next, model correction is 

completed through the dynamic data assimilation interface, 

outputting thermodynamically consistent macroscopic 

parameters. Then, the physics-guided generative downscaler 

generates high-resolution indoor boundary conditions. Based 

on these boundary conditions, indoor luminous–thermal 

simulation is executed using a time step of 60s to balance 

computational efficiency and simulation accuracy. Finally, 

entropy production rate calculation of the cross-scale system 

is completed, forming a complete forward transfer chain. This 
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process design achieves orderly connection of multiscale 

physical processes by clearly defining the temporal sequence 

of each module. At the same time, relying on the previously 

defined HDF5 data interaction specifications and central data 

bus, it ensures timeliness and accuracy of parameter transfer 

at each stage. 

The event-triggered feedback mechanism is a key design for 

realizing dynamic coupling. It aims to accurately capture the 

reverse impact of abrupt changes in the indoor luminous–

thermal environment on urban block wind fields, avoiding 

dynamic response lag caused by traditional one-way coupling. 

Feedback triggering is based on abrupt variation 

characteristics of three types of core thermodynamic and fluid 

dynamic indicators. The specific triggering conditions are 

defined as: 

 
|ΔP|

P0

>10%,
|ΔQ|

Q
0

>15%,|ΔT|>0.5℃ (8) 

 

where, Δ𝑃  is the variation in air-conditioning exhaust heat 

power and 𝑃0  is the baseline exhaust heat power; Δ𝑄 is the 

variation in natural ventilation flow rate and 𝑄0 is the baseline 

ventilation flow rate; and Δ𝑇 is the fluctuation of indoor 

average temperature. When any one of the conditions is 

satisfied, the feedback process is immediately triggered. 

Indoor heat flux and natural ventilation mass flow rate are 

injected as source terms into the urban block CFD model, and 

wind field simulation and subsequent forward linkage of the 

current coupling cycle are restarted. To avoid computational 

redundancy caused by excessive iteration, the number of 

feedback iterations is limited to no more than three. The 

convergence criterion is set as a deviation of the total system 

entropy production rate between two consecutive iterations of 

no more than 1%, ensuring efficiency and stability of the 

feedback process. 

Thermodynamic consistency assurance measures run 

throughout the entire coupling process. Through the combined 

effect of energy balance verification and non-negative entropy 

production constraints, the coupled system is forced to satisfy 

basic thermodynamic laws. Energy balance verification is 

performed at fixed intervals. After every ten coupling cycles, 

the total energy input and total energy output of the cross-scale 

system are calculated. The core balance equations are: 

 

Ein=Esolar+Ewind (9) 
 

Eout=Eindoor+Eenvelope (10) 

 

δE= |
Ein-Eout

Ein
| ×100% (11) 

 

where, 𝐸in is the total energy input, including solar radiation 

energy 𝐸solar and wind field kinetic energy 𝐸wind; 𝐸out is the 

total energy output, including indoor heat dissipation 

𝐸indoorand envelope heat dissipation 𝐸envelope; and δE is the 

energy balance deviation. When δE > 5%, thermodynamic 

consistency of the system is judged to be invalid, and the 

secondary correction process of the dynamic data assimilation 

interface is immediately activated to re-optimize macroscopic 

wind field and thermal environment parameters until the 

deviation meets the requirement. 

The non-negative entropy production constraint is designed 

based on the second law of non-equilibrium thermodynamics. 

The total entropy production rate evolution of the coupled 

system is monitored in real time. The total entropy production 

rate is composed of the sum of convective entropy production, 

radiative entropy production, and conductive entropy 

production, expressed as: 
 

Ṡgen=Ṡconv+Ṡrad+Ṡcond (12) 
 

where, 𝑆̇conv is the entropy production rate of convective heat 

transfer processes, 𝑆̇rad  is the entropy production rate of 

radiative heat transfer processes, and 𝑆̇cond  is the entropy 

production rate of heat conduction processes in the building 

envelope. When a non-physical phenomenon of 𝑆̇gen < 0 is 

detected, it indicates thermodynamic distortion in the 

boundary conditions generated by downscaling. In this case, 

the physical constraint weights of the physics-guided 

generative downscaler are automatically adjusted, boundary 

conditions are regenerated, and the current coupling cycle is 

restarted. 

The coordinated design of the above coupling advancement 

mechanism and thermodynamic assurance measures ensures 

that the DA-PG-CSDC framework can both accurately capture 

interactions between wind fields and indoor luminous–thermal 

environments during dynamic cross-scale coupling and strictly 

adhere to basic thermodynamic laws, providing core assurance 

for the reliability and interpretability of subsequent simulation 

results. 
 

2.5 Cross-scale entropy production quantification module 
 

The core function of the cross-scale entropy production 

quantification module is to accurately quantify irreversible 

energy losses during the coupling process between the district 

wind field and the indoor light–thermal environment, 

providing core quantitative indicators for thermodynamic 

consistency verification and optimization of the coupled 

system. Non-equilibrium thermodynamics indicates that the 

entropy production rate is the fundamental parameter 

characterizing energy losses in irreversible processes. This 

module systematically constructs entropy production 

calculation models for three core thermal processes—

convection, radiation, and conduction—thereby enabling 

dynamic monitoring of entropy production throughout the 

entire cross-scale coupling process, and providing direct 

evidence for evaluating the thermodynamic performance of 

the framework and optimizing wind-field-mediated energy 

transfer pathways. Figure 3 intuitively shows the schematic 

diagram of the cross-scale entropy production quantification 

module. 

The entropy production calculation model adopts a 

component-wise modeling and superposition summation 

strategy, comprehensively covering the main irreversible 

thermal processes in cross-scale coupling. The calculation of 

each entropy production term strictly follows the basic 

principles of non-equilibrium thermodynamics. Convective 

entropy production originates from the synergistic effect of 

viscous dissipation and temperature gradients in fluid flow, 

and its volumetric integral expression is given by: 
 

Ṡconv= ∫
μ

TV
(

∂ui

∂xj
+

∂uj

∂xi
-

2

3
δij

∂uk

∂xk
)

2

dV (13) 

 

where, μ is the air dynamic viscosity, T is the local temperature, 

𝑢𝑖(i, j, k = 1, 2, 3) are the velocity components, 𝑥𝑗  denotes 

spatial coordinates, and 𝛿𝑖𝑗 is the Kronecker delta, equal to 1 
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when i = j and 0 otherwise. This expression precisely 

characterizes the irreversible energy loss caused by the 

interaction between viscous shear and the temperature field in 

turbulent motion. Radiative entropy production arises from the 

non-equilibrium distribution between radiative heat flux and 

temperature gradients, and its calculation expression is: 

 

Ṡrad= ∫
q
rad
⋅∇T

T2
V

dV (14) 

 

where, qrad is the radiative heat flux density vector and ∇𝑇 is 

the temperature gradient. This expression reflects the 

irreversible losses caused by non-uniform temperature 

distributions during radiative energy transfer. Conductive 

entropy production focuses on irreversible heat conduction 

processes in the building envelope and fluid media, and is 

expressed as: 

 

Ṡcond= ∫
k(∇T)

2

T2
V

dV (15) 

 

where, k is the thermal conductivity of the medium. This 

expression quantifies irreversible energy dissipation driven by 

temperature gradients during heat conduction. The total 

system entropy production rate is obtained by the volumetric 

integral summation of the three entropy production terms, 

namely Ṡgen = Ṡconv + Ṡrad + Ṡcond. 

 

 
 

Figure 3. Schematic diagram of the cross-scale entropy production quantification module 

 

To ensure the accuracy of entropy production calculations, 

the module employs an adaptive numerical integration method, 

in which the integration step size is dynamically adjusted 

according to physical quantity gradients. In regions with large 

velocity or temperature gradients, the base integration step size 

is reduced by 50% to accurately capture local high-entropy-

production features, while in regions with smooth gradients, 

the base step size is maintained to balance computational 

accuracy and efficiency. Verification results show that the 

calculation error of this numerical method can be controlled 

within 2%, ensuring the reliability of entropy production 

quantification results. 

The entropy production visualization and monitoring 

mechanism achieves real-time data interaction and output 

through the framework’s unified central data bus. The module 

uploads spatiotemporal distribution data of entropy production 

rates at different scales and regions to the data bus in real time, 

storing them in standardized HDF5 format to support 

subsequent multidimensional visualization analysis. 

Visualization outputs include two core result types: first, 

spatial contour maps of entropy production rates, which 

intuitively present entropy production distribution 

characteristics across district–building–indoor scales and 

accurately identify entropy-concentrated regions such as 

building corners, door and window openings, and airflow 

stagnation zones; second, entropy production rate time-series 

curves, which dynamically reflect the evolution of entropy 

production during the coupling process and capture the 

instantaneous impacts of dynamic factors such as wind-field 

fluctuations and radiation intensity variations on irreversible 

energy losses. These visualization results not only provide 

direct evidence for thermodynamic consistency verification of 

the coupled system, but also offer targeted guidance for 

formulating wind-field optimization strategies, enabling 

minimization of irreversible energy losses by regulating 

airflow and heat transfer processes in high-entropy-production 

regions. 
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3. EXPERIMENTAL DESIGN AND VALIDATION 

 

3.1 Baseline case validation 

 

To verify the thermodynamic consistency and numerical 

accuracy of the core algorithms of the DA-PG-CSDC 

framework, the classical problem of “natural convection in a 

cubic enclosed cavity with forced convection” is selected as 

the baseline case. This case has a simple geometric and 

physical model and provides high-accuracy direct numerical 

simulation (DNS) reference solutions, which can strip away 

engineering complexity and purely verify the mathematical 

reliability and thermodynamic conservation of the algorithm. 

The baseline cubic cavity has dimensions of 1 m × 1 m × 1 m, 

with wall surfaces maintained at a constant temperature of 

35℃, and an inflow wind speed ranging from 0.5 to 3 m/s. The 

reference solution is obtained through direct numerical 

simulation using a 100 × 100 × 100 structured grid and a time 

step of 0.001 s to ensure the capture of fine structures in both 

the flow field and temperature field. Validation indicators 

include thermodynamic consistency, accuracy metrics, and 

numerical stability. 

As shown in Table 1, under different inflow wind speed 

conditions, the mean absolute error of the convective heat 

transfer coefficient simulated by the DA-PG-CSDC 

framework is 0.6 W/(m²·K), and the root mean square error is 

0.9 W/(m²·K), which fully meet the preset accuracy indicators. 

The maximum deviation of temperature at key indoor 

locations is 0.8℃, reflecting the framework’s ability to 

accurately capture the temperature field. In terms of 

thermodynamic consistency, the energy balance error for all 

cases is ≤2.3%, and all entropy production rates are positive, 

strictly satisfying the second law of non-equilibrium 

thermodynamics, demonstrating that the framework has 

reliable thermodynamic conservation. Regarding numerical 

stability, the average convergence time of coupling iteration 

residuals is 38 s, which is 30% faster than traditional cross-

scale coupling methods, and no oscillation phenomena occur 

during the iteration process, verifying the effectiveness of the 

multi-scale time-step coordination mechanism. In summary, 

the baseline case validation demonstrates that the core 

algorithms of the DA-PG-CSDC framework exhibit excellent 

accuracy, thermodynamic consistency, and numerical stability. 

 

Table 1. Verification results of simulation accuracy and thermodynamic consistency under different inflow wind speed 

conditions for the baseline case 

 

Case No. 

Inflow 

Wind 

Speed 

(m/s) 

Convective Heat Transfer 

Coefficient (W/(m²·K)) 

Temperature at Key Locations 

(℃) 
Energy 

Balance 

Error (%) 

Entropy 

Production 

Rate Sign 

Coupling Iteration 

Residual 

Convergence Time 

(s) 
DNS 

reference 

Simulated 

value 

Deviation 

(MAE/RMSE) 

DNS 

reference 

Simulated 

value 

Maximum 

deviation 

1 0.5 12.3 12.6 0.4/0.5 30.2 30.7 0.5 1.2 Positive 42 

2 1.5 18.7 18.2 0.6/0.7 28.5 29.1 0.6 1.8 Positive 38 

3 2.2 23.5 24.0 0.7/1.0 27.8 28.6 0.8 2.3 Positive 35 

4 3.0 27.9 27.4 0.6/0.8 27.1 27.7 0.6 1.9 Positive 36 

Statistical 

values 
- - - 0.6/0.9 - - 0.8 ≤2.3 All positive Average 38 

 

3.2 Scaled experiment validation 

 

To further verify the applicability of the framework in 

practical engineering scenarios, a 1:20 scaled district–building 

experimental system is constructed, and multi-condition 

experiments are conducted in a low-speed wind tunnel. In the 

scaled model, the district dimensions are 2 m × 1 m × 0.5 m, 

and the target building model dimensions are 0.2 m × 0.15 m 

× 0.3 m. Plexiglass is used to simulate the thermal properties 

of real building envelope structures. The experimental system 

controls inflow wind speed and turbulence intensity through 

the wind tunnel, and a halogen lamp array is used to simulate 

solar radiation. The measurement system includes 24 sensor 

points covering the windward facade, leeward facade, roof, 

and key indoor areas. The data acquisition frequency is 10 Hz, 

and each condition is continuously recorded for 2 h to ensure 

data reliability. The validation consists of two parts: static 

condition comparison and dynamic response validation, 

focusing on deviations between simulated and experimental 

values and their dynamic consistency. 

The static condition validation results shown in Table 2 

indicate that under different combinations of wind speed and 

radiation intensity, the absolute deviation of simulated 

building surface temperature is ≤1.1℃ with a relative 

deviation ≤3.9%; the absolute deviation of simulated indoor 

average temperature is ≤1.1℃ with a relative deviation ≤4.3%; 

and the absolute deviation of simulated envelope heat flux 

density is ≤5.9 W/m² with a relative deviation ≤5.0%, all of 

which meet the accuracy requirements of engineering and 

academic research. The dynamic response validation shown in 

Table 3 focuses on sudden wind speed change conditions. In 

the experiment, the indoor temperature rises from 27.2℃ to a 

steady-state value of 28.7℃ with a response delay of 

approximately 7.5 s, while the framework simulation yields a 

response delay of approximately 8 s, showing good 

consistency. Throughout the dynamic process, the temperature 

deviation is ≤0.2℃, demonstrating that the framework can 

accurately capture the dynamic evolution characteristics of the 

indoor thermal environment induced by wind field 

fluctuations. The scaled experiment validation fully 

demonstrates that the DA-PG-CSDC framework has excellent 

adaptability to real-world scenarios and can reliably represent 

the cross-scale coupling relationship between real district wind 

fields and indoor light–thermal environments. 

 

3.3 Uncertainty analysis 

 

To evaluate the reliability of the DA-PG-CSDC framework 

simulation results and the sources of error, a global sensitivity 

analysis is conducted using the Sobol index method, 

systematically quantifying the impact of key parameter 

uncertainties on simulation results. The sources of uncertainty 

are explicitly defined as four core parameters: sensor 

observation errors, CFD turbulence model constants, physics-

constrained generative adversarial network (GAN) weights, 

and material thermophysical parameters. During the analysis, 
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1000 sets of uncertainty parameter samples are generated 

using Latin Hypercube Sampling, each sample input into the 

framework for simulation, with indoor temperature output as 

the core evaluation indicator. The Sobol indices of each 

uncertainty source and the 95% confidence interval of indoor 

temperature predictions are calculated. 

As shown in Table 4, CFD turbulence model constants are 

the most critical source of uncertainty affecting simulation 

results, with a Sobol index of 0.38 and a contribution of 39.6%, 

primarily due to the complexity of turbulent motion, which 

significantly influences the accuracy of wind field 

representation. Sensor observation errors are the second key 

factor, with a Sobol index of 0.25 and a contribution of 26.0%, 

reflecting the direct effect of observation data quality on 

assimilation correction. The Sobol indices for material 

thermophysical parameters and physics-constrained GAN 

weights are 0.21 and 0.13, respectively, with relatively lower 

contribution proportions. Global uncertainty analysis shows 

that the 95% confidence interval width of indoor temperature 

predictions is 1.5℃, meeting the accuracy requirements of 

engineering design and academic research, demonstrating that 

the DA-PG-CSDC framework retains stable and reliable 

predictive capability under parameter uncertainty. Based on 

these results, subsequent model optimization can prioritize 

adaptive calibration of turbulence model constants and 

improvement of observation system accuracy to further reduce 

uncertainty impact. 

 

Table 2. Comparison of simulated and experimental results under static conditions in the scaled experiment 

 

Case No. 

Inflow 

Wind 

Speed 

(m/s) 

Radiation 

Intensity 

(W/m²) 

Building Surface Temperature 

(℃) 

Indoor Average Temperature 

(℃) 

Envelope Heat Flux Density 

(W/m²) 

Experimental Simulated Deviation Experimental Simulated Deviation Experimental Simulated Deviation 

1 0.5 500 32.6 33.2 0.6/1.8 28.3 28.9 0.6/2.1 86.4 89.2 2.8/3.2 

2 0.5 800 38.7 39.5 0.8/2.1 33.5 34.2 0.7/2.1 156.2 161.5 5.3/3.4 

3 2.0 500 30.2 31.1 0.9/3.0 26.8 27.7 0.9/3.4 72.5 75.8 3.3/4.6 

4 2.0 800 35.9 36.7 0.8/2.2 31.2 32.0 0.8/2.6 138.6 144.5 5.9/4.3 

5 3.5 500 28.5 29.6 1.1/3.9 25.3 26.4 1.1/4.3 65.8 69.1 3.3/5.0 

6 3.5 800 33.8 34.9 1.1/3.2 29.5 30.6 1.1/3.7 124.3 129.6 5.3/4.3 

Statistical 

values 
- - - - ≤1.1/≤3.9 - - ≤1.1/≤4.3 - - ≤5.9/≤5.0 

 

Table 3. Comparison of simulated and experimental results for dynamic response in the scaled experiment (wind speed increases 

abruptly from 1 m/s to 3 m/s) 

 

Time 

(s) 

Experimental 

Indoor Temperature 

(℃) 

Simulated Indoor 

Temperature (℃) 

Temperature 

Deviation (℃) 
Time (s) 

Experimental 

Indoor Temperature 

(℃) 

Simulated Indoor 

Temperature (℃) 

Temperature 

Deviation (℃) 

0 27.2 27.3 0.1 12 28.5 28.6 0.1 

2 27.4 27.5 0.1 14 28.6 28.7 0.1 

4 27.7 27.9 0.2 16 28.7 28.8 0.1 

6 28.1 28.3 0.2 18 28.7 28.8 0.1 

8 28.4 28.5 0.1 20 28.7 28.8 0.1 

10 28.5 28.6 0.1 
Steady-state 

deviation 
- - ≤0.2 

 

Table 4. Quantitative analysis of uncertainty sources based on Sobol indices 
 

Uncertainty Source 
Sobol 

Index 
Contribution (%) 

Indoor Temperature 95% Confidence 

Interval Width (℃) 

CFD turbulence model constants 0.38 39.6 1.2 

Sensor observation errors 0.25 26.0 1.0 

Material thermophysical parameters 0.21 21.8 0.9 

Physics-constrained GAN weights 0.13 13.6 0.7 

Total uncertainty - 100.0 1.5 

 

 

4. APPLICATION CASE VALIDATION 

 

4.1 Case background 

 

To verify the application value of the DA-PG-CSDC 

framework in real high-density urban district scenarios, a 

typical high-density business district in eastern China is 

selected as the study case. The business district covers an area 

of 1 km × 1 km, containing 12 high-rise buildings with heights 

ranging from 50 to 100 m, a compact block layout, and 

hardened pavement as the underlying surface, consistent with 

the typical characteristics of the core business district of 

eastern Chinese cities. The target building is a 15-story typical 

office building within the area, with a building area of 3000 

m². The envelope structure uses a combination of ordinary 

glass curtain walls and aerated concrete blocks, and the air 

conditioning system is a centralized chilled water unit. The 

study selects a typical summer day for analysis, with outdoor 

temperatures of 28~36℃, prevailing southeast wind at 2~5 

m/s, and strong solar radiation. This period represents a key 

timeframe for indoor light–thermal environment control and 

building energy consumption, providing significant 

representativeness for the study. 

 

2181



 

4.2 Cross-scale coupled simulation implementation 

 

Based on the DA-PG-CSDC framework, a cross-scale 

coupled model of the case area is constructed, covering both 

district-scale and building interior-scale domains. The district 

scale uses an unstructured grid with approximately 2.8 million 

cells; the indoor scale uses a structured grid with 

approximately 1.2 million cells. A physics-based generative 

downscaler is used to match the scales of the two grids. Two 

comparative scenarios are simulated: Scenario 1 is the existing 

wind field condition, based on the current building layout and 

greenery distribution of the area; Scenario 2 is the optimized 

wind field condition, where the wind environment is improved 

by adjusting building spacing and greenery layout. Both 

scenarios simulate a continuous 24-hour typical day, with time 

steps set according to the framework’s multi-scale 

coordination strategy to ensure thermodynamic consistency 

and numerical stability (See Table 5). 

 

Table 5. Basic parameter settings for simulation scenarios in the application case 

 

Scenario 

No. 

Scenario 

Type 

Building 

Spacing (m) 
Greenery Layout 

Simulation 

Duration 

Prevailing 

Wind Direction 

Wind Speed 

Range (m/s) 

Outdoor 

Temperature Range 

(℃) 

1 
Existing wind 

field 
15 

Current scattered greenery 

(coverage 18%) 
24 h (July 20) Southeast 2~5 28~36 

2 
Optimized 

wind field 
20 

10 m-wide greenery isolation 

belt on building west side 

(coverage 29%) 

24 h (July 20) Southeast 2~5 28~36 

 

4.3 Core result 1: Influence of district wind field on indoor 

light–thermal environment 

 

Based on simulation results, the cross-scale influence of 

district wind field on the indoor environment is quantified 

from two dimensions: energy transfer and indoor light–

thermal environment response, as shown in Table 6. 

Regarding energy transfer, under the existing wind field, 

energy transferred to the building through convective heat 

transfer accounts for 28%~35% of total indoor heat at different 

times, with a daily average of 32%. After wind field 

optimization, this proportion significantly decreases to 

22%~28%, with a daily average of 25%, a reduction of 21.9%. 

This change is due to increased building spacing and the 

addition of a greenery isolation belt in the optimized wind field, 

which weakens convective heat transfer intensity on building 

surfaces, reducing energy input from the wind field to the 

interior. 

For indoor light–thermal environment response, the 

optimized wind field significantly regulates indoor 

temperature. Under the existing wind field, the daily average 

indoor temperature is 27.6℃, with the high-temperature 

period average reaching 29.8℃. After optimization, the daily 

average indoor temperature drops to 25.8℃, a reduction of 

1.8℃, and the high-temperature period average decreases to 

27.9℃, a reduction of 1.9℃. For thermal comfort indicators, 

under the existing wind field, the PMV index remains within 

the -0.5~0.5 comfort zone for 12.8 h, accounting for 53.3% of 

the day; the area with PPD ≤ 10% accounts for 62%. After 

optimization, the duration of PMV within the comfort zone 

increases to 15.7 h, accounting for 65.4%, an improvement of 

23%; the PPD comfortable area increases to 81%, an 

improvement of 31%. These results indicate that optimizing 

the district wind field can effectively weaken cross-scale 

energy transfer through convective heat, reduce indoor 

temperature, and significantly improve indoor thermal 

comfort. 

To explore the synergistic effect of district inflow wind 

direction angle and building envelope type on the cross-scale 

regulation of indoor daylight illuminance, this experimental 

analysis was conducted. As shown in Figure 4, as the district 

inflow wind direction angle increases from 10° to 60°, the 

indoor daylight illuminance distribution corresponding to 

different envelope types shows significant differences: for 

envelope type 1, the proportion of UDI  [100, 2000] remains 

above 70%, showing strong adaptability to wind field changes; 

for type 4, the proportion of UDI < 100 decreases from nearly 

10% to 0, while the proportion of UDI > 2000 gradually 

increases. This result indicates that the cross-scale coupling 

effect of district wind field parameters and building envelope 

types can directly change the effective coverage range of 

indoor daylight illuminance. Reasonable matching of 

envelope type and wind field characteristics can significantly 

optimize the effective illuminance level of the indoor light–

thermal environment. 

 

Table 6. Comparison of energy transfer and indoor light–thermal environment under different wind field conditions 

 
Scenario 

No. 
Time 

Convective Heat Transfer Energy as 

Proportion of Total Indoor Heat (%) 

Indoor Average 

Temperature (℃) 

PMV Comfort Zone 

Duration (h / proportion) 

PPD ≤ 10% Area 

Proportion (%) 

1 

8:00 28 26.1 - 65 

12:00 35 29.5 - 58 

16:00 34 30.1 - 56 

20:00 31 27.2 - 69 

Daily Average 32 27.6 12.8/53.3% 62 

2 

8:00 22 24.5 - 85 

12:00 28 27.8 - 78 

16:00 27 28.0 - 76 

20:00 23 25.9 - 85 

Daily Average 25 25.8 15.7/65.4% 81 

Change Daily Average -7 (decrease 21.9%) -1.8 +2.9 (+23%) +19 (+31%) 
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Figure 4. Changes in indoor UDI values under different envelope types and district inflow wind direction angles 

 

4.4 Core result 2: Cross-scale entropy production and 

energy efficiency optimization 

 

To clarify the cross-scale coupling regulation of district 

inflow wind direction angle and building envelope type on 

indoor light–thermal environment synergy, this experimental 

analysis was conducted. As shown in Figure 5, the indoor 

light–thermal environment synergy indicator D generally 

increases with increasing district inflow wind direction angle: 

for example, type 2 has a D value of 27.64 under wind angle 

5° Scenario 2, increasing to 71.04 under 60° Scenario 1; 

different envelope types show significant differences in 

response to the wind field. Type 4 maintains high D values 

across all wind angles and scenarios, reaching 156.68 at wind 

angle 60° Scenario 3, while type 1 has generally lower D 

values, only 1.37 at wind angle 10° Scenario 2. This indicates 

that the cross-scale coupling of district wind field parameters 

and building envelope types has a decisive regulatory effect on 

the synergy of indoor light–thermal environment, and 

reasonable matching can significantly improve synergy. 

 

 
 

Figure 5. Comparison of indoor light–thermal environment synergy indicators under different envelope types and district inflow 

wind direction angles 

 

The entropy production and energy efficiency analysis of 

the cross-scale coupled system are shown in Table 7. 

Regarding entropy production evolution, under the existing 

wind field, the daily average total entropy production rate of 

the district–indoor coupled system is 8.2 W/K, of which 

convective entropy production accounts for 68%, radiative 

entropy production 22%, and conductive entropy production 

10%. After wind field optimization, the system total entropy 

production daily average decreases to 6.5 W/K, a reduction of 

20.7%. Further decomposition shows that the reduction in 

building corner turbulence dissipation contributes 62%, 

envelope conductive entropy reduction contributes 23%, and 

radiative entropy reduction contributes 15%. This indicates 

that optimizing the wind field improves airflow organization 

around buildings, suppressing turbulence shear and energy 

dissipation at building corners, which is the core mechanism 

for reducing irreversible energy loss. 

Regarding energy efficiency, the optimized wind field 

significantly improves building energy utilization efficiency. 

Under the existing wind field, the target building’s typical 

daily air conditioning energy consumption is 286 kWh, with 

natural ventilation energy saving rate of 15%. After 
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optimization, air conditioning consumption decreases to 236 

kWh, a reduction of 17.5%, and natural ventilation energy 

saving rate increases to 22%, an increase of 46.7%. This 

improvement comes from two aspects: first, the reduction of 

indoor average temperature lowers the cooling load of the air 

conditioning system; second, the optimized wind field 

enhances natural ventilation conditions, increasing indoor–

outdoor heat exchange efficiency and further reducing air 

conditioning dependence. The negative correlation between 

entropy production rate and air conditioning energy 

consumption indicates that reducing irreversible energy loss 

through wind field optimization can effectively improve 

building energy utilization efficiency, achieving synergy 

between entropy minimization and energy saving goals. 

 

Table 7. Comparison of cross-scale entropy production and energy efficiency under different wind field conditions 

 

Scenario 

No. 

Daily Average Total 

Entropy Production 

Rate (W/K) 

Contribution of Entropy Reduction (%) 
Air Conditioning 

Energy Consumption 

(kWh) 

Natural Ventilation 

Energy Saving Rate 

(%) 

Building Corner 

Turbulence 

Dissipation Reduction 

Envelope 

Conductive Entropy 

Reduction 

Radiative 

Entropy 

Reduction 

1 8.2 - - - 286 15 

2 6.5 62 23 15 236 22 

Change -1.7 (decrease 20.7%) - - - -50 (decrease 17.5%) +7 (increase 46.7%) 

4.5 Engineering optimization suggestions 

 

Based on the above simulation results and the actual 

planning conditions of the case area, a targeted district wind 

field optimization scheme is proposed: increase the spacing 

between the target building and surrounding buildings from 15 

m to 20 m to expand airflow channels, reduce flow obstruction 

and turbulence dissipation; place a 10 m-wide greenery 

isolation belt on the west side of the building, using native 

broadleaf trees to provide shading and cooling effects, weaken 

summer west-facing solar radiation heating on building 

surfaces, and improve the local microclimate. 

This optimization scheme does not require large-scale 

modifications of existing building structures and has high 

engineering feasibility. Simulation verification shows that 

after implementation, multiple thermodynamic benefits can be 

achieved: indoor average temperature decreases by 1.8℃, 

PMV comfort zone duration increases by 23%, PPD 

comfortable area proportion increases by 31%; the cross-scale 

coupled system’s total entropy production decreases by 20.7%, 

building air conditioning energy consumption decreases by 

17.5%, and natural ventilation energy saving rate increases to 

22%. The scheme provides a replicable engineering path for 

optimizing wind environment and improving indoor light–

thermal environment in high-density urban districts, 

combining thermal comfort improvement and low-carbon 

energy saving. 

 

 

5. DISCUSSION 

 

The essence of the core results of this study lies in revealing 

the optimization mechanism of district wind field regulation 

on the irreversible energy loss of the cross-scale coupled 

system, whose intrinsic logic aligns with the entropy 

minimization principle of non-equilibrium thermodynamics. 

From the perspective of non-equilibrium thermodynamics, the 

coupling process between district wind field and indoor light–

thermal environment is a typical open system energy transfer 

process. Entropy production rate is the core indicator 

representing the irreversibility of the system, and its 

magnitude directly depends on the intensity of non-

equilibrium features such as turbulence shear and thermal 

gradients. The application case results show that optimizing 

the wind field can reduce the system total entropy production 

rate by 20.7%. The physical mechanism of this phenomenon 

can be summarized in two points: first, increasing building 

spacing and arranging greenery isolation belts optimizes 

airflow organization, reduces flow separation and vortex 

formation in regions such as building corners, and decreases 

viscous dissipation entropy production caused by turbulence 

shear, contributing 62% of the total entropy reduction; second, 

the improved wind field distribution weakens local thermal 

flux concentration on building surfaces, reducing temperature 

gradients, thereby lowering entropy production in convective 

and conductive processes. These mechanisms indicate that 

wind field regulation can effectively mitigate non-equilibrium 

features of the cross-scale coupled system, reduce irreversible 

energy loss, and improve system thermodynamic efficiency, 

providing a clear thermodynamic theoretical basis for thermal 

environment optimization in high-density urban districts. 

Regarding thermodynamic consistency, using energy 

balance error as the evaluation metric, this study’s error is only 

2.3%, a 60.3% reduction compared with the first benchmark 

study at 5.8%, and a 45.2% reduction compared with the 

second benchmark study at 4.2%. This advantage is due to the 

framework embedding strict physical constraints such as 

energy conservation and non-negative entropy production in 

its design, ensuring the thermodynamic rigor of the cross-scale 

coupling process from the bottom layer and effectively 

avoiding the energy non-conservation problems common in 

traditional methods. Regarding prediction accuracy, using 

mean absolute temperature error as the core metric, this study 

achieves 0.8℃, a 46.7% reduction compared with the first 

benchmark study at 1.5℃, and a 33.3% reduction compared 

with the second benchmark study at 1.2℃. The main reason is 

the real-time correction of macro-scale wind field errors by the 

dynamic data assimilation interface, and the accurate 

characterization of macro–micro parameter mapping by the 

physics-based generative downscaler, significantly improving 

the accuracy of cross-scale parameter transfer. Regarding 

computational efficiency, for typical 24-hour daily simulation 

scenarios, this study requires only 4.2 hours, a 50.6% 

reduction compared with the first benchmark study at 8.5 

hours, and a 31.1% reduction compared with the second 

benchmark study at 6.1 hours. This improvement comes from 

the multi-scale time step coordination mechanism and 

adaptive numerical integration method adopted by the 

framework, which greatly reduces computational redundancy 

while ensuring accuracy, solving the bottleneck of traditional 

cross-scale simulations where accuracy and efficiency are 

difficult to balance. The above quantitative comparisons 

indicate that the DA-PG-CSDC framework comprehensively 

outperforms existing benchmark studies in core performance, 
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possessing stronger academic competitiveness and 

engineering application potential. 

Although the proposed DA-PG-CSDC framework achieves 

significant progress in both theoretical and application aspects, 

there are still certain limitations. First, the current model 

focuses on wind–heat–radiation coupling and does not 

consider humidity effects. In actual indoor light–thermal 

environment evolution, strong coupling exists among wind–

heat–humidity–radiation multi-physical fields. Humidity 

variations directly affect air thermophysical properties and 

human thermal comfort, which may reduce model prediction 

accuracy in high-humidity environments. Second, the model 

validation scenarios mainly cover conventional wind fields 

with wind speeds of 2–5 m/s. For extreme wind fields with 

speeds above 10 m/s, the adaptability of the framework’s 

multi-scale coordination mechanism and physical constraints 

has not been fully verified, and the numerical stability under 

extreme airflow impact still needs further assessment. 

To address the above limitations, future research can 

proceed in three directions. First, extend the model to a multi-

physical field coupling dimension, introduce humidity 

transport equations and phase-change models, and construct a 

wind–heat–humidity–radiation fully coupled cross-scale 

simulation system, improving model applicability under 

complex environmental conditions. Second, introduce 

lightweight machine learning algorithms to accelerate 

downscaling computation, and through neural network 

structure optimization and transfer learning, further improve 

computational efficiency while ensuring physical consistency, 

enabling real-time simulation of large-scale district clusters. 

Third, develop a digital twin-based real-time optimization 

system, integrating IoT monitoring data with the DA-PG-

CSDC framework to construct a “monitor–simulate–

optimize–feedback” closed-loop system, achieving dynamic 

and precise regulation of high-density urban district wind 

environment and building indoor light–thermal environment, 

providing more efficient technical support for urban low-

carbon development. 

 

 

6. CONCLUSION 

 

This study systematically investigated the cross-scale 

coupled influence of district wind fields on building indoor 

light–thermal environment and proposes a thermodynamically 

consistent cross-scale dynamic coupling simulation 

framework. Through theoretical construction, experimental 

validation, and application case analysis, the following core 

conclusions are drawn: 

First, the proposed DA-PG-CSDC framework realizes 

precise simulation of the cross-scale influence between district 

wind fields and indoor light–thermal environment through the 

collaborative design of dynamic data assimilation, physics-

based generative downscaling, and bidirectional coupling. The 

framework embeds strict non-equilibrium thermodynamic 

constraints, ensuring the thermodynamic consistency of the 

coupling process from the bottom layer. Experimental 

validation shows that the energy balance error does not exceed 

2.3%, the mean absolute temperature prediction error does not 

exceed 0.8℃, and the framework possesses excellent 

numerical stability and computational efficiency, effectively 

overcoming the bottlenecks of traditional cross-scale coupling 

methods in physical consistency and simulation accuracy. 

Second, district wind fields significantly influence indoor 

thermal comfort and system entropy production by regulating 

convective heat transfer intensity and radiation heat gain 

distribution. Application case validation indicates that 

optimizing the wind field can effectively weaken cross-scale 

energy transfer, reducing the indoor average temperature by 

1.8℃; simultaneously, it suppresses turbulence shear and local 

thermal flux concentration, reducing irreversible energy loss, 

and lowering the system total entropy production rate by 

20.7%; energy efficiency is synchronously improved, with the 

target building’s air-conditioning energy consumption 

reduced by 17.5%, achieving synergistic optimization of 

indoor thermal comfort and low-carbon energy saving. 

Third, global uncertainty analysis based on Sobol indices 

shows that the computational fluid dynamics turbulence model 

constants are the key factors affecting the reliability of 

simulation results, with a contribution ratio close to 40%. This 

finding clearly identifies the core direction for subsequent 

model optimization and provides a definite theoretical and 

technical basis for further improving simulation accuracy 

through adaptive calibration of turbulence model parameters. 
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