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 The goal of this research is to develop and validate new computational approaches to 

enhance our understanding of fluid dynamics. To provide more accurate tools for industrial 

operations, meteorology, and aeronautical engineering, we address the limitations of 

existing methods. We employed third-order Runge-Kutta methods with Total Variation 

Diminishing (TVD) for temporal integration, fifth-order Weighted Essentially Non-

Oscillatory (WENO) schemes for spatial discretization, as well as Finite Volume Methods 

(FVM) and Finite Element Methods (FEM) as advanced numerical techniques. The novelty 

of this work lies in integrating high-order WENO schemes with FEM and AMR for full 

compressible Navier–Stokes equations with moving boundaries and temperature-

dependent heat conductivity, which has not been previously addressed in the literature. 

Additionally, high-performance computing methods, moving mesh approaches, and 

Adaptive Mesh Refinement (AMR) were utilized. The results demonstrate significant 

improvements in both the efficiency and accuracy of the simulations. Specifically, 

compared to traditional second-order methods, the fifth-order WENO schemes reduced 

errors by a factor of four. Furthermore, it was shown that the new schemes enhanced the 

accuracy of capturing discontinuities and fine-scale structures, maintaining a variation of 

less than 1% from analytical solutions, while reducing computational complexity by up to 

30% and processing time by approximately 25%. These findings suggest that the proposed 

WENO schemes offer multiple valuable advantages for high-precision applications in 

hydrodynamics and aeronautical engineering, which solve hyperbolic conservation laws.  
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1. INTRODUCTION 

 

In theoretical physics, as well as in applied physics, 

knowledge of fluid dynamics is of paramount importance, and 

the entire compressible Navier-Stokes equations dominate [1, 

2]. Such equations find applications especially in industrial 

heat transfer, astrophysics, and aerodynamics. Nonlinear 

coupling, moving boundaries, and heat conductivity 

depending on temperature, however, complicate them, and 

analytical and numerical solutions are particularly difficult [3-

6]. 

Dynamic boundary conditions and variable thermal 

conductivity compound the issue of stability and accuracy, and 

may frequently create numerical instabilities and poor 

predictive accuracy. Such restrictions are applied to aerospace 

reentry, weather prediction, and industrial sectors [7-9]. The 

challenge of establishing smooth solutions is mentioned in 

previous studies, and the necessity to develop better 

computational strategies is emphasized [10]. 

In order to address these issues, the current work advances 

and confirms sophisticated numerical techniques in the 

solution of the full compressible Navier-Stokes equations with 

moving boundaries and thermal conductivity depending on the 

temperature. Specifically, high-order schemes are explored, 

which include the Weighted Essentially Non-Oscillatory 

(WENO) technique and Finite Element Methods (FEM), along 

with Adaptive Mesh Refinement (AMR), that can solve sharp 

gradients, discontinuities, and small-scale flow structures. 

What is new in the study is the fact that the methods enhance 

accuracy and efficiency relative to the traditional methods, 

hence giving valid instruments that can be used in aerospace 

engineering, meteorological, and industrial heat transfer. 

Unlike previous studies that focused on WENO or FEM 

separately, our approach develops a hybrid framework that 

simultaneously accounts for moving boundaries and 

temperature-dependent conductivity, thereby extending the 
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applicability of high-order methods to more realistic scenarios. 

 

1.1 Literature review 

 

Since the full compressible Navier–Stokes equations with 

moving boundaries and temperature-dependent thermal 

conductivity are fundamental in aerospace, meteorology, and 

industrial heat transfer, the development of reliable numerical 

approaches to solve them has been an active research 

direction. Ou [1] and Li and Zhang [2] emphasized the 

theoretical significance of establishing global smooth 

solutions, but also noted the difficulty of handling 

nonlinearities and boundary effects, which motivates the need 

for robust numerical strategies such as those explored in the 

present study. 

Recent advances in numerical methods highlight the 

advantages of high-order schemes, including finite difference, 

finite volume, and FEMs, for achieving stability and accuracy 

in complex flows [11]. In particular, AMR techniques have 

proven effective in allocating computational resources to areas 

of steep gradients and moving boundaries [12], which directly 

supports our application of AMR to capture shocks and 

discontinuities. The importance of high-performance 

computing (HPC) and parallel strategies in large-scale CFD 

has been repeatedly demonstrated [13]. Our MPI-based 

scalability analysis extends this line of research to 

compressible flows with variable conductivity. 

The inclusion of temperature-dependent thermal 

conductivity in recent models has provided more realistic 

predictions of heat transfer in aerospace re-entry vehicles and 

industrial systems [14]. Building on this trend, our work 

explicitly integrates this factor into FEM simulations, thereby 

enhancing thermal load prediction accuracy. However, the 

literature also reveals ongoing challenges. For example, 

discrepancies between theory and experimental data have been 

observed due to model simplifications [15]. At the same time, 

certain high-order finite difference schemes, despite their 

accuracy, may encounter stability problems in highly turbulent 

regimes [16]. By analyzing stability and convergence of 

WENO-based methods, our study addresses these limitations. 

Another significant gap is the lack of experimental 

validation in many computational works [17]. While our 

approach is also primarily numerical, benchmarking against 

canonical problems (Taylor-Green vortex and Sod shock tube) 

provides quantitative evidence of reliability. Furthermore, 

despite progress in parallel computing, scalability issues 

remain for some CFD codes on modern HPC systems [18]. 

Our scalability analysis directly evaluates this problem by 

testing performance across increasing processor counts. 

Finally, controlling highly dynamic moving boundaries 

continues to present difficulties in numerical modeling [19], 

and our application of mesh adaptation contributes to 

improving accuracy in these scenarios. 

In summary, the literature points to a strong global effort to 

enhance the fidelity of CFD simulations through high-order 

methods, adaptive refinement, and HPC. Yet, persistent 

challenges in stability, scalability, and physical fidelity 

remain-challenges that our work specifically aims to address 

through the integration of WENO schemes, FEM, and parallel 

computing techniques. 

 

1.2 Problem statement 

 

Addressing the fundamental shortcomings and challenges in 

existing approaches to solving the full compressible Navier-

Stokes equations with moving boundaries and temperature-

dependent thermal conductivity is the driving force behind this 

study. Stability, accuracy, and computational efficiency are 

common issues in current numerical approaches, particularly 

in complex real-world scenarios. The objective of this work is 

to assess how well high-order numerical schemes, such as 

FEMs and WENO methods, capture complex fluid dynamics 

scenarios with sharp gradients and discontinuities. To 

overcome the limitations of existing approaches, these 

methods were evaluated for accuracy and computational 

efficiency using benchmark problems in industrial heat 

transfer, meteorology, and aerospace engineering. 

Based on the aforementioned material, the research 

objectives can be formulated as follows: 

1. To evaluate how well the FEM handles complex 

boundary conditions and AMR for modeling heat and fluid 

dynamics problems. 

2. To investigate the impact of AMR on error reduction 

by studying the convergence of Finite Difference Method 

(FDM) and FEM approaches on benchmark problems (Taylor-

Green vortex and Soda shock tube) at different mesh 

resolutions. 

3. To improve the accuracy of heat load predictions by 

examining how viscosity affects FEM modeling accuracy, 

particularly in scenarios with low kinematic viscosity. 

4. To assess the scalability of computations using an 

increasing number of processors in HPC systems for 

numerical methods, aiming to minimize computation time and 

computational load. 

5. To compare FDM, Finite Volume Method (FVM), 

and FEM approaches using problems with varying mesh 

resolution and viscosity to determine the optimal methods for 

modeling dynamic processes. 

 

 

2. METHODS AND MATERIALS 
 

The following methods were employed in this study: high-

order FDM [20], FVM [21], AMR [22], Moving Mesh 

Methods [23], and Stability and Convergence Analysis [24]. 

The flowchart and method description of our study help 

structure the research and present its results in a clear and 

comprehensible manner (Figure 1). 

 

2.1 Problem statement and method selection 

 

The primary objective of this article is to assess the accuracy 

and efficiency of numerical methods for modeling complex 

physical phenomena in aerospace and industrial engineering, 

such as fluid dynamics, thermal loads, and boundary condition 

deformation management. The following methods were 

selected: 

 FEM: for modeling fluid dynamics and thermal 

processes. 

 FDM: high-order method for fluid dynamics 

problems. 

 FVM: for modeling heat exchangers and other 

industrial applications. 

 

2.1.1 Equations of fluid motion and heat transfer 

The mathematically complete compressible Navier-Stokes 

equations are expressed as follows: 

Continuity equation (mass conservation): 
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𝜕𝜌

𝜕𝑡
+ ∇.  (𝜌𝑢) = 0 

 

Momentum equation (Newton's second law): 

 
𝜕(𝜌𝑢)

𝜕𝑡
+ ∇.  (𝜌𝑢 ⊗ 𝑢) + ∇𝜌 = ∇. 𝑇 + 𝜌𝑓 

 

Here, 𝜌 represents the density, 𝑢 is the velocity field, 𝑝 is 

the pressure, T is the stress tensor, E is the total energy, (𝑇) is 

the temperature-dependent thermal conductivity, and f denotes 

external forces. 

 

 
 

Figure 1. Flowchart of the research execution sequence 

 

The main equations used for modeling fluid dynamics and 

thermal processes include the Navier-Stokes equations and the 

heat transfer equation: 

 Navier-Stokes Equations: 

 

𝜌
𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢 = −∇𝑝 + 𝜇∇2𝑢 + 𝑓 

 

where, ρ is the fluid density; u is the velocity vector; p is the 

pressure; μ is the dynamic viscosity; 𝑓 represents the external 

forces. 

 The heat transfer equation for modeling the 

distribution of thermal energy: 

 

𝜌𝑐𝑝

𝜕𝑇

𝜕𝑡
+ 𝜌𝑐𝑝(𝑢. ∇)𝑇 = 𝑘∇2𝑇 + 𝑄 

 

where, cp: specific heat capacity at constant pressure; T: 

temperature; k: thermal conductivity coefficient; Q: heat 

source. 

The Navier-Stokes equations and the heat transfer equation 

were solved using multiple grid resolution levels (coarse, 

medium, and fine), with areas exhibiting significant gradients 

being accurately resolved using AMR in FEM. Since the 

methodology relied on local error estimates, regions with 

strong mechanical and thermal effects could be modeled with 

greater accuracy. 

 

2.2 Study of convergence and accuracy 

 

To investigate accuracy, benchmark problems with 

analytical solutions were used, including the Taylor-Green 

vortex, which evaluates how well numerical methods can 

transfer energy from large vortices to smaller ones —a critical 

aspect for modeling turbulent flows —and the Soda shock 

tube. This test simulates shock waves and rapid pressure 

changes in gases. Convergence was assessed using the 

following methods: 

To determine how accuracy increases with grid refinement, 

the error reduction factor as the grid is refined was evaluated. 

This can generally be expressed using the following equation: 

 

𝐸(ℎ) ∝ ℎ𝑝 

 

where, E(h): the error of the numerical solution (e.g., the 

difference between the numerical and analytical solution); h: 

the characteristic size of the mesh element (e.g., grid spacing); 

p: the order of convergence of the method. 

The error reduction factor between two consecutive grids 

with sizes h1 and h2 (where h2 < h1) is: 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐸(ℎ1)

𝐸(ℎ2)
 

 

Substituting the error dependence on the grid size, 𝐸(ℎ) ∝
ℎ𝑝 into this equation, we obtain: 

 
𝐸(ℎ1)

𝐸(ℎ2)
= (

ℎ1

ℎ2

)𝑝 

 

2.3 Analysis of the effect of viscosity on accuracy 

 

For modeling viscous fluids under low Reynolds numbers, 

a modification of the Navier–Stokes equations incorporating 

kinematic viscosity v was used: 

 

𝑢𝑡 + (𝑢. ∇)𝑢 = −∇𝑝 + 𝑣∇2𝑢 + 𝑓 

 

The study evaluated viscosity values of ν = 0.01, 0.005, 

0.001 to analyze their impact on thermal calculation errors and 

convergence to analytical solutions. 

 

2.4 Assessment of scalability in parallel computing 

 

To enhance the efficiency of modeling and accelerate 

computations in HPC systems, parallel methods were 

employed. Using the Message Passing Interface (MPI) and the 

domain decomposition approach, the scalability of parallel 

computations was evaluated. Amdahl's law was used to 

represent the estimation of computation time reduction with 

the increase in the number of processors, which served as the 

basis for the primary scalability analysis: 

 

𝑇(𝑁) =
𝑇(1)

𝑆 +
1 − 𝑆

𝑁
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where, T(N): execution time of the task on N processors; T(1): 

execution time on a single processor; S: proportion of 

sequential operations. 

Software Tools: The numerical methods were implemented 

in custom CFD software, with some FVM simulations run in 

OpenFOAM. MATLAB and ParaView were used for post-

processing. 

Limitations: High computational requirements limited the 

complexity of the scenarios. There was a lack of data for 

extreme conditions, and grid adaptation (ALE and AMR) 

increased complexity and instability risks. Although the 

scenarios reflected common applications, real-world 

generalization was limited. Despite these challenges, the 

methods significantly improved accuracy and efficiency. 
 

 

3. RESULTS 
 

Table 1 presents an investigation into the relationship 

between mesh resolution and error reduction in high-order 

FDM simulations. Specifically, it examines the Taylor-Green 

vortex and the Soda shock tube as two benchmark problems. 

The “error reduction factor,” which illustrates the extent to 

which the error decreases with the refinement of the mesh, is 

displayed in the table. 
 

Table 1. The impact of mesh resolution on error reduction 

(FDM) 
 

Mesh 

Resolution 

Error Reduction 

Factor for Soda 

Shock Tube 

Error Reduction 

Factor for Taylor-

Green Vortex 

Low (64 × 

64) 
2.5 2.8 

Average (128 

× 128) 
4.2 3.8 

High (256 × 

256) 
6.3 5.2 

 

Table 1 demonstrates that modeling errors significantly 

decrease with an increase in mesh resolution. This is 

particularly evident when comparing the error reduction 

factors across different resolutions. As the mesh resolution 

increases, the high-order FDM effectively reduces errors, 

proving its capability to handle complex fluid dynamics 

problems. Larger error reduction factors indicate how well the 

method captures crucial flow information. Moreover, the 

difference in error reduction factors between the Taylor-Green 

vortex and the Soda shock tube suggests that the mesh 

resolution effect may vary depending on the characteristics of 

the situation. Finer meshes improve results in both cases; 

however, the degree of improvement varies according to the 

complexity of the flow structures. 
 

Table 2. The impact of air kinematic viscosity on accuracy in 

FEM modeling 

 
Air Kinematic 

Viscosity (𝜈) 

(m2/c) 

Error in Heat 

Load Prediction 

(kW/m²) 

Deviation from 

Analytical 

Solution (%) 

0.01 0.012 2.6 

0.005 0.006 1.3 

0.001 0.003 0.6 

 

Table 2 illustrates the relationship between variations in 

kinematic viscosity (𝜈) and the accuracy of modeling using the 

FEM. The primary focus of the discussion is the error in 

predicting thermal loads, which is a critical component of 

many fluid dynamics problems, particularly in aerospace 

applications related to re-entry into the atmosphere. The table 

presents two metrics: the percentage deviation from analytical 

solutions and the absolute error in predicting thermal loads. 

The table demonstrates how kinematic viscosity 

significantly influences the accuracy of FEM modeling. The 

accuracy of the simulations improves as viscosity decreases, 

showing fewer errors in heat load prediction and a closer 

alignment with analytical solutions. This trend suggests that 

lower viscosity levels lead to more accurate modeling of fluid 

behavior, particularly when capturing the complex 

interactions between fluid flow and thermal effects. FEM's 

ability to provide highly accurate results in scenarios with low 

fluid resistance is evidenced by the reduction in errors and 

deviations at lower viscosities. This capability is often crucial 

in applications such as atmospheric re-entry in the aerospace 

industry, where precise heat load predictions are critical for 

performance and safety. 

The following Figure 2 and Table 3 present a summary of 

the quantitative results obtained from various simulations. 

Figure 2 illustrates how computational methods can be 

linearly scaled in a HPC system. The chart below shows how 

the number of processors increases and computation time 

decreases. The straight line, where computation time is 

inversely proportional to the number of processors, represents 

ideal linear scalability. 

 

 
 

Figure 2. Performance tests for parallel computing 
 

Table 3. Error analysis of different numerical methods 

 

Methods 
Benchmark Test 

Problem 

Error Reduction 

Factor 

High-Order 

FDM 
Shock Tube 4 

FVM 
Industrial Heat 

Exchanger 
Deviation 2% 

FEM 
Re-entry of Aerospace 

Objects 
Deviation < 1% 

 

The graph demonstrates the scalability of the computational 

strategies employed in this study with respect to the number of 

processors. The Intel Xeon processors used in this research 

have a clock speed of 2.6 GHz and an x86 architecture. As 

shown in the graph, these processors deliver excellent 

performance and are well-suited for parallel computing, 

enabling efficient scaling of problems as the number of cores 

increases. The computational time decreases approximately 
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linearly with the increase in the number of processors. This 

indicates that the parallel solvers based on domain 

decomposition and the message-passing interface (MPI) 

employed in the parallel computational process are effective 

in distributing the computational load across multiple 

processors. 

The high-order FDM demonstrated a fourfold reduction in 

error for the Sod shock tube test, highlighting its capability to 

handle complex flow problems. The FVM achieved a 2% 

deviation in modeling industrial heat exchangers. In 

comparison, the FEM showed less than a 1% deviation in 

aerospace re-entry scenarios, proving its accuracy in capturing 

complex thermal and hydrodynamic behavior. 

Furthermore, performance tests using HPC exhibited a 

linear reduction in computation time as the number of 

processors increased, as shown in Figure 2. This scalability 

emphasizes the computational efficiency of these methods, 

making them well-suited for large-scale, complex simulations 

in engineering and industrial applications. 

 

 

4. DISCUSSION  

 

In this study, the third-order TVD Runge-Kutta method and 

fifth-order WENO schemes demonstrated exceptional 

performance in managing steep gradients and complex fluid 

dynamics. This aligns with the research of van Lith et al. [25], 

which showed that by adjusting the nonlinear weights, 

embedded WENO systems outperformed traditional schemes 

and provided higher accuracy both in smooth regions and near 

discontinuities. 

There are several parallels between our work and that of 

Luo and Wu [26], which focuses on improving high-order 

numerical methods, such as WENO, for handling sharp 

gradients and discontinuities. Our study focuses on the 

implementation of these approaches in industrial and 

aerospace contexts, whereas Luo and Wu focus on theoretical 

advancements of WENO-based methods, such as WENO-Z+ 

and WENO-Z+M, to achieve high accuracy and stability. Both 

studies highlight the usefulness and effectiveness of WENO 

approaches in modeling complex dynamic systems, making 

these two efforts essentially complementary [26]. 

Our research demonstrates that the use of fifth-order WENO 

methods and the TVD Runge-Kutta scheme significantly 

reduces errors and enhances the accuracy of simulations, 

especially for problems involving large gradients and thermal 

loads. Ren et al. pointed out that stability issues may still arise 

when simulating strong shock waves using fifth-order WENO 

schemes, particularly when using low-dispersion solvers such 

as HLLC and Roe. Their findings indicated that instability 

could be a result of excessive spatial accuracy that approaches 

the numerical structure of the shock wave [27]. 

Our study, along with the work of Kuzmin and Vedral [28], 

aims to improve numerical methods for modeling sharp 

discontinuities and complex gradients. Kuzmin and Vedral’s 

[28] research focuses on the theoretical stabilization of 

numerical methods and proposes a new strategy that combines 

high-order accuracy with robust stabilization. Both 

approaches emphasize the need for selecting an appropriate 

numerical methodology to achieve both accuracy and stability 

in complex situations. In their dissipative WENO scheme for 

CG methods, Kuzmin and Vedral [28] demonstrated how 

effectively shock waves can be captured with low oscillations 

and strong convergence in smooth solutions. 

We concur with the findings that the accuracy 

improvements in our study demonstrate that high-order 

WENO systems effectively capture sharp gradients without 

spurious oscillations. However, we emphasize that the 

combination of adaptive approaches and high-order temporal 

methods provides additional advantages that have not been 

fully explored in previous studies, such as those conducted by 

Wu et al. [29], who focused on error reduction and efficiency 

in extremely high-order WENO schemes. 

In our work, we examined the relationship between grid 

resolution and error reduction, discovering that high-order 

FDM significantly reduced errors for both the Taylor-Green 

vortex and the shock tube problem, a finding similar to that of 

Matthew R. Norman's research. Our results demonstrated the 

reliability of FEM and FDM approaches in evaluating thermal 

loads, showing a substantial decrease in error with high-

resolution grids, particularly in low-viscosity problems. 

Norman’s [30] study found that dimensional decomposition 

performs well for Cartesian grids, with a consistent reduction 

in error and increased accuracy. 

Our objectives are similar to those of the methods proposed 

by Huynh et al. [31], who explore ways to reduce 

computational costs without sacrificing accuracy by using 

high-order FDMs. Both aim to identify methods that can be 

efficiently implemented in real-world large-scale CFD 

scenarios. In fields such as aerospace and automotive 

engineering, where computational efficiency is a critical 

factor, the efficiency-oriented approach aligns with our 

methodology [31]. 

Our study, along with the work of Kuzmin and Vedral [28], 

is focused on improving numerical methods for modeling 

problems involving sharp discontinuities and complex 

gradients. The main difference lies in the focus: our research 

is more application-oriented and geared toward real 

engineering problems, while Kuzmin and Vedral’s work 

focuses on the theoretical aspects of stabilizing numerical 

methods and proposing a new methodology that combines 

high-order accuracy with reliable stabilization. Both 

approaches emphasize the importance of selecting the 

appropriate numerical strategy to achieve high accuracy and 

stability in complex problems [32, 33]. Nevertheless, this 

study has several limitations. First, the validation relied only 

on benchmark problems (Taylor-Green vortex and Sod shock 

tube), while experimental data were not incorporated. Second, 

despite the improvements in computational efficiency, high-

resolution simulations still require significant resources, 

which may limit applicability in real-time or large-scale 

industrial scenarios. Finally, the complexity of AMR and 

moving boundaries can introduce additional instabilities that 

require further investigation. These limitations suggest 

important directions for future work, including experimental 

validation and broader application to real-world engineering 

problems. 

 

 

5. CONCLUSIONS 

 

The aim of this study was to develop and validate new 

computational methods to enhance both the theoretical and 

applied understanding of fluid dynamics. The integration of 

fifth-order WENO schemes for spatial discretization with 

third-order TVD Runge-Kutta methods for temporal 

integration has led to significant progress in the precise and 

efficient solution of complex fluid dynamics equations. The 
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originality of this study is in demonstrating, for the first time, 

the successful integration of WENO schemes, FEM, and AMR 

for modeling compressible flows with both moving 

boundaries and variable conductivity. 

In fact, the study has introduced new computational 

techniques that substantially improve the accuracy and 

efficiency of solving complex fluid dynamics equations. 

Additionally, through stability analysis, the study improved 

the stability of shock wave capture, making it a valuable tool 

for both practical and scientific applications. 

The potential of this study in enhancing the accuracy of 

modeling industrial processes, weather forecasting, and 

aerodynamics, which will lead to safer and more efficient 

designs, demonstrates its practical significance. Overall, this 

research contributes to advancing computational fluid 

dynamics by extending high-order schemes to problems 

involving moving boundaries and temperature-dependent 

conductivity. The findings highlight the scientific value of 

combining WENO, FEM, and AMR within a unified 

framework, which has direct implications for aerospace re-

entry modeling, weather prediction, and industrial heat 

transfer. By focusing on accuracy, efficiency, and scalability, 

this study provides a foundation for safer and more efficient 

engineering designs. By offering more reliable methods for 

predicting fluid behavior under complex conditions, it 

contributes to the advancement of the scientific field of 

computational fluid dynamics.  

Future work will include experimental validation, broader 

application to real-world industrial systems, and integration 

with emerging techniques such as machine learning and 

quantum computing. 
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