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The goal of this research is to develop and validate new computational approaches to
enhance our understanding of fluid dynamics. To provide more accurate tools for industrial
operations, meteorology, and aeronautical engineering, we address the limitations of
existing methods. We employed third-order Runge-Kutta methods with Total Variation
Diminishing (TVD) for temporal integration, fifth-order Weighted Essentially Non-
Oscillatory (WENO) schemes for spatial discretization, as well as Finite Volume Methods
(FVM) and Finite Element Methods (FEM) as advanced numerical techniques. The novelty
of this work lies in integrating high-order WENO schemes with FEM and AMR for full
compressible Navier—Stokes equations with moving boundaries and temperature-
dependent heat conductivity, which has not been previously addressed in the literature.
Additionally, high-performance computing methods, moving mesh approaches, and
Adaptive Mesh Refinement (AMR) were utilized. The results demonstrate significant
improvements in both the efficiency and accuracy of the simulations. Specifically,
compared to traditional second-order methods, the fifth-order WENO schemes reduced
errors by a factor of four. Furthermore, it was shown that the new schemes enhanced the
accuracy of capturing discontinuities and fine-scale structures, maintaining a variation of
less than 1% from analytical solutions, while reducing computational complexity by up to
30% and processing time by approximately 25%. These findings suggest that the proposed
WENO schemes offer multiple valuable advantages for high-precision applications in
hydrodynamics and aeronautical engineering, which solve hyperbolic conservation laws.

1. INTRODUCTION

computational strategies is emphasized [10].
In order to address these issues, the current work advances

In theoretical physics, as well as in applied physics,
knowledge of fluid dynamics is of paramount importance, and
the entire compressible Navier-Stokes equations dominate [1,
2]. Such equations find applications especially in industrial
heat transfer, astrophysics, and aerodynamics. Nonlinear
coupling, moving boundaries, and heat conductivity
depending on temperature, however, complicate them, and
analytical and numerical solutions are particularly difficult [3-
6].

Dynamic boundary conditions and variable thermal
conductivity compound the issue of stability and accuracy, and
may frequently create numerical instabilities and poor
predictive accuracy. Such restrictions are applied to aerospace
reentry, weather prediction, and industrial sectors [7-9]. The
challenge of establishing smooth solutions is mentioned in
previous studies, and the necessity to develop better

1997

and confirms sophisticated numerical techniques in the
solution of the full compressible Navier-Stokes equations with
moving boundaries and thermal conductivity depending on the
temperature. Specifically, high-order schemes are explored,
which include the Weighted Essentially Non-Oscillatory
(WENO) technique and Finite Element Methods (FEM), along
with Adaptive Mesh Refinement (AMR), that can solve sharp
gradients, discontinuities, and small-scale flow structures.
What is new in the study is the fact that the methods enhance
accuracy and efficiency relative to the traditional methods,
hence giving valid instruments that can be used in aerospace
engineering, meteorological, and industrial heat transfer.
Unlike previous studies that focused on WENO or FEM
separately, our approach develops a hybrid framework that
simultaneously accounts for moving boundaries and
temperature-dependent conductivity, thereby extending the
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applicability of high-order methods to more realistic scenarios.
1.1 Literature review

Since the full compressible Navier—Stokes equations with
moving boundaries and temperature-dependent thermal
conductivity are fundamental in aerospace, meteorology, and
industrial heat transfer, the development of reliable numerical
approaches to solve them has been an active research
direction. Ou [1] and Li and Zhang [2] emphasized the
theoretical significance of establishing global smooth
solutions, but also noted the difficulty of handling
nonlinearities and boundary effects, which motivates the need
for robust numerical strategies such as those explored in the
present study.

Recent advances in numerical methods highlight the
advantages of high-order schemes, including finite difference,
finite volume, and FEMs, for achieving stability and accuracy
in complex flows [11]. In particular, AMR techniques have
proven effective in allocating computational resources to areas
of steep gradients and moving boundaries [12], which directly
supports our application of AMR to capture shocks and
discontinuities. The importance of high-performance
computing (HPC) and parallel strategies in large-scale CFD
has been repeatedly demonstrated [13]. Our MPI-based

scalability analysis extends this line of research to
compressible flows with variable conductivity.
The inclusion of temperature-dependent thermal

conductivity in recent models has provided more realistic
predictions of heat transfer in acrospace re-entry vehicles and
industrial systems [14]. Building on this trend, our work
explicitly integrates this factor into FEM simulations, thereby
enhancing thermal load prediction accuracy. However, the
literature also reveals ongoing challenges. For example,
discrepancies between theory and experimental data have been
observed due to model simplifications [15]. At the same time,
certain high-order finite difference schemes, despite their
accuracy, may encounter stability problems in highly turbulent
regimes [16]. By analyzing stability and convergence of
WENO-based methods, our study addresses these limitations.

Another significant gap is the lack of experimental
validation in many computational works [17]. While our
approach is also primarily numerical, benchmarking against
canonical problems (Taylor-Green vortex and Sod shock tube)
provides quantitative evidence of reliability. Furthermore,
despite progress in parallel computing, scalability issues
remain for some CFD codes on modern HPC systems [18].
Our scalability analysis directly evaluates this problem by
testing performance across increasing processor counts.
Finally, controlling highly dynamic moving boundaries
continues to present difficulties in numerical modeling [19],
and our application of mesh adaptation contributes to
improving accuracy in these scenarios.

In summary, the literature points to a strong global effort to
enhance the fidelity of CFD simulations through high-order
methods, adaptive refinement, and HPC. Yet, persistent
challenges in stability, scalability, and physical fidelity
remain-challenges that our work specifically aims to address
through the integration of WENO schemes, FEM, and parallel
computing techniques.

1.2 Problem statement

Addressing the fundamental shortcomings and challenges in
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existing approaches to solving the full compressible Navier-
Stokes equations with moving boundaries and temperature-
dependent thermal conductivity is the driving force behind this
study. Stability, accuracy, and computational efficiency are
common issues in current numerical approaches, particularly
in complex real-world scenarios. The objective of this work is
to assess how well high-order numerical schemes, such as
FEMs and WENO methods, capture complex fluid dynamics
scenarios with sharp gradients and discontinuities. To
overcome the limitations of existing approaches, these
methods were evaluated for accuracy and computational
efficiency using benchmark problems in industrial heat
transfer, meteorology, and aerospace engineering.

Based on the aforementioned material, the research
objectives can be formulated as follows:

1. To evaluate how well the FEM handles complex
boundary conditions and AMR for modeling heat and fluid
dynamics problems.

2. To investigate the impact of AMR on error reduction
by studying the convergence of Finite Difference Method
(FDM) and FEM approaches on benchmark problems (Taylor-
Green vortex and Soda shock tube) at different mesh
resolutions.

3. To improve the accuracy of heat load predictions by
examining how viscosity affects FEM modeling accuracy,
particularly in scenarios with low kinematic viscosity.

4, To assess the scalability of computations using an
increasing number of processors in HPC systems for
numerical methods, aiming to minimize computation time and
computational load.

5. To compare FDM, Finite Volume Method (FVM),
and FEM approaches using problems with varying mesh
resolution and viscosity to determine the optimal methods for
modeling dynamic processes.

2. METHODS AND MATERIALS

The following methods were employed in this study: high-
order FDM [20], FVM [21], AMR [22], Moving Mesh
Methods [23], and Stability and Convergence Analysis [24].

The flowchart and method description of our study help
structure the research and present its results in a clear and
comprehensible manner (Figure 1).

2.1 Problem statement and method selection

The primary objective of this article is to assess the accuracy
and efficiency of numerical methods for modeling complex
physical phenomena in aerospace and industrial engineering,
such as fluid dynamics, thermal loads, and boundary condition
deformation management. The following methods were
selected:

. FEM: for modeling fluid dynamics and thermal
processes.

FDM: high-order
problems.

FVM: for modeling heat exchangers and other
industrial applications.

method for fluid dynamics

2.1.1 Equations of fluid motion and heat transfer

The mathematically complete compressible Navier-Stokes
equations are expressed as follows:

Continuity equation (mass conservation):
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Momentum equation (Newton's second law):

a(pu)
at

+V.(pu®u)+Vp=V.T + pf

Here, p represents the density, u is the velocity field, p is
the pressure, T is the stress tensor, £ is the total energy, (T) is
the temperature-dependent thermal conductivity, and f denotes
external forces.

Definition of Tasks and Methods

Stage 1 - Problem Formulation and Method Selection:
- FEM
- FDM
- FVM

Stage 2 - Study of Convergence and Accuracy - Error
Reduction Factor

Stage 3 - Analysis of the Impact of Viscosity on Accuracy

Stage 4 - Evaluation of Scalability in Parallel Computing

Stage 5 - Assessment of Stability and Accuracy in Vanous
Applications

Figure 1. Flowchart of the research execution sequence

The main equations used for modeling fluid dynamics and
thermal processes include the Navier-Stokes equations and the
heat transfer equation:

e  Navier-Stokes Equations:

ou 5
pa+ (w.V)u=-Vp+puVeu+f
where, p is the fluid density; u is the velocity vector; p is the
pressure; u is the dynamic viscosity; f represents the external
forces.

The heat transfer equation for modeling the
distribution of thermal energy:

oT 5
Py 50 +pc,(W.V)T = kV°T +Q

where, ¢,: specific heat capacity at constant pressure; T:
temperature; k: thermal conductivity coefficient; Q: heat
source.

The Navier-Stokes equations and the heat transfer equation
were solved using multiple grid resolution levels (coarse,
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medium, and fine), with areas exhibiting significant gradients
being accurately resolved using AMR in FEM. Since the
methodology relied on local error estimates, regions with
strong mechanical and thermal effects could be modeled with
greater accuracy.

2.2 Study of convergence and accuracy

To investigate accuracy, benchmark problems with
analytical solutions were used, including the Taylor-Green
vortex, which evaluates how well numerical methods can
transfer energy from large vortices to smaller ones —a critical
aspect for modeling turbulent flows —and the Soda shock
tube. This test simulates shock waves and rapid pressure
changes in gases. Convergence was assessed using the
following methods:

To determine how accuracy increases with grid refinement,
the error reduction factor as the grid is refined was evaluated.
This can generally be expressed using the following equation:

E(h) « hP

where, E(h): the error of the numerical solution (e.g., the
difference between the numerical and analytical solution); h:
the characteristic size of the mesh element (e.g., grid spacing);
p: the order of convergence of the method.

The error reduction factor between two consecutive grids
with sizes & and A, (where Ay < hy) is:

E(h)
E(hy)

Error reduction factor =

Substituting the error dependence on the grid size, E (h) &
h? into this equation, we obtain:

E(hy) _
E(hy)

P

h,

2.3 Analysis of the effect of viscosity on accuracy

For modeling viscous fluids under low Reynolds numbers,
a modification of the Navier—Stokes equations incorporating
kinematic viscosity v was used:

u + WVu=-V, +vViu+f

The study evaluated viscosity values of v = 0.01, 0.005,
0.001 to analyze their impact on thermal calculation errors and
convergence to analytical solutions.

2.4 Assessment of scalability in parallel computing

To enhance the efficiency of modeling and accelerate
computations in HPC systems, parallel methods were
employed. Using the Message Passing Interface (MPI) and the
domain decomposition approach, the scalability of parallel
computations was evaluated. Amdahl's law was used to
represent the estimation of computation time reduction with
the increase in the number of processors, which served as the
basis for the primary scalability analysis:

)
1-5
S+~

T(N) =



where, T(N): execution time of the task on N processors; 7(1):
execution time on a single processor; S: proportion of
sequential operations.

Software Tools: The numerical methods were implemented
in custom CFD software, with some FVM simulations run in
OpenFOAM. MATLAB and ParaView were used for post-
processing.

Limitations: High computational requirements limited the
complexity of the scenarios. There was a lack of data for
extreme conditions, and grid adaptation (ALE and AMR)
increased complexity and instability risks. Although the
scenarios reflected common applications, real-world
generalization was limited. Despite these challenges, the
methods significantly improved accuracy and efficiency.

3. RESULTS

Table 1 presents an investigation into the relationship
between mesh resolution and error reduction in high-order
FDM simulations. Specifically, it examines the Taylor-Green
vortex and the Soda shock tube as two benchmark problems.
The “error reduction factor,” which illustrates the extent to
which the error decreases with the refinement of the mesh, is
displayed in the table.

Table 1. The impact of mesh resolution on error reduction
(FDM)

Error Reduction Error Reduction

Rels\gﬁfili on Factor for Soda Factor for Taylor-
Shock Tube Green Vortex
LOV&? ’ 25 2.8
Avexralgzeg() 128 42 .
e 63 5.2

Table 1 demonstrates that modeling errors significantly
decrease with an increase in mesh resolution. This is
particularly evident when comparing the error reduction
factors across different resolutions. As the mesh resolution
increases, the high-order FDM effectively reduces errors,
proving its capability to handle complex fluid dynamics
problems. Larger error reduction factors indicate how well the
method captures crucial flow information. Moreover, the
difference in error reduction factors between the Taylor-Green
vortex and the Soda shock tube suggests that the mesh
resolution effect may vary depending on the characteristics of
the situation. Finer meshes improve results in both cases;
however, the degree of improvement varies according to the
complexity of the flow structures.

Table 2. The impact of air kinematic viscosity on accuracy in

FEM modeling
Air Kinematic Error in Heat Deviation from
Viscosity (v) Load Prediction Analytical
(m?/c) (kW/m?) Solution (%)
0.01 0.012 2.6
0.005 0.006 1.3
0.001 0.003 0.6

Table 2 illustrates the relationship between variations in
kinematic viscosity (v) and the accuracy of modeling using the
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FEM. The primary focus of the discussion is the error in
predicting thermal loads, which is a critical component of
many fluid dynamics problems, particularly in aerospace
applications related to re-entry into the atmosphere. The table
presents two metrics: the percentage deviation from analytical
solutions and the absolute error in predicting thermal loads.

The table demonstrates how kinematic viscosity
significantly influences the accuracy of FEM modeling. The
accuracy of the simulations improves as viscosity decreases,
showing fewer errors in heat load prediction and a closer
alignment with analytical solutions. This trend suggests that
lower viscosity levels lead to more accurate modeling of fluid
behavior, particularly when capturing the complex
interactions between fluid flow and thermal effects. FEM's
ability to provide highly accurate results in scenarios with low
fluid resistance is evidenced by the reduction in errors and
deviations at lower viscosities. This capability is often crucial
in applications such as atmospheric re-entry in the aerospace
industry, where precise heat load predictions are critical for
performance and safety.

The following Figure 2 and Table 3 present a summary of
the quantitative results obtained from various simulations.

Figure 2 illustrates how computational methods can be
linearly scaled in a HPC system. The chart below shows how
the number of processors increases and computation time
decreases. The straight line, where computation time is
inversely proportional to the number of processors, represents
ideal linear scalability.

Computation Time (hours)

)

L] 10 16

Number af Processoes
Figure 2. Performance tests for parallel computing

Table 3. Error analysis of different numerical methods

Benchmark Test Error Reduction

Methods Problem Factor
High-Order
FDM Shock Tube 4
FVM Industrial Heat Deviation 2%
Exchanger
FEM Re-entry of Acrospace Deviation < 1%
Objects

The graph demonstrates the scalability of the computational
strategies employed in this study with respect to the number of
processors. The Intel Xeon processors used in this research
have a clock speed of 2.6 GHz and an x86 architecture. As
shown in the graph, these processors deliver excellent
performance and are well-suited for parallel computing,
enabling efficient scaling of problems as the number of cores
increases. The computational time decreases approximately



linearly with the increase in the number of processors. This
indicates that the parallel solvers based on domain
decomposition and the message-passing interface (MPI)
employed in the parallel computational process are effective
in distributing the computational load across multiple
processors.

The high-order FDM demonstrated a fourfold reduction in
error for the Sod shock tube test, highlighting its capability to
handle complex flow problems. The FVM achieved a 2%
deviation in modeling industrial heat exchangers. In
comparison, the FEM showed less than a 1% deviation in
aerospace re-entry scenarios, proving its accuracy in capturing
complex thermal and hydrodynamic behavior.

Furthermore, performance tests using HPC exhibited a
linear reduction in computation time as the number of
processors increased, as shown in Figure 2. This scalability
emphasizes the computational efficiency of these methods,
making them well-suited for large-scale, complex simulations
in engineering and industrial applications.

4. DISCUSSION

In this study, the third-order TVD Runge-Kutta method and
fifth-order WENO schemes demonstrated exceptional
performance in managing steep gradients and complex fluid
dynamics. This aligns with the research of van Lith et al. [25],
which showed that by adjusting the nonlinear weights,
embedded WENO systems outperformed traditional schemes
and provided higher accuracy both in smooth regions and near
discontinuities.

There are several parallels between our work and that of
Luo and Wu [26], which focuses on improving high-order
numerical methods, such as WENO, for handling sharp
gradients and discontinuities. Our study focuses on the
implementation of these approaches in industrial and
aerospace contexts, whereas Luo and Wu focus on theoretical
advancements of WENO-based methods, such as WENO-Z+
and WENO-Z+M, to achieve high accuracy and stability. Both
studies highlight the usefulness and effectiveness of WENO
approaches in modeling complex dynamic systems, making
these two efforts essentially complementary [26].

Our research demonstrates that the use of fifth-order WENO
methods and the TVD Runge-Kutta scheme significantly
reduces errors and enhances the accuracy of simulations,
especially for problems involving large gradients and thermal
loads. Ren et al. pointed out that stability issues may still arise
when simulating strong shock waves using fifth-order WENO
schemes, particularly when using low-dispersion solvers such
as HLLC and Roe. Their findings indicated that instability
could be a result of excessive spatial accuracy that approaches
the numerical structure of the shock wave [27].

Our study, along with the work of Kuzmin and Vedral [28],
aims to improve numerical methods for modeling sharp
discontinuities and complex gradients. Kuzmin and Vedral’s
[28] research focuses on the theoretical stabilization of
numerical methods and proposes a new strategy that combines
high-order accuracy with robust stabilization. Both
approaches emphasize the need for selecting an appropriate
numerical methodology to achieve both accuracy and stability
in complex situations. In their dissipative WENO scheme for
CG methods, Kuzmin and Vedral [28] demonstrated how
effectively shock waves can be captured with low oscillations
and strong convergence in smooth solutions.
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We concur with the findings that the accuracy
improvements in our study demonstrate that high-order
WENO systems effectively capture sharp gradients without
spurious oscillations. However, we emphasize that the
combination of adaptive approaches and high-order temporal
methods provides additional advantages that have not been
fully explored in previous studies, such as those conducted by
Wu et al. [29], who focused on error reduction and efficiency
in extremely high-order WENO schemes.

In our work, we examined the relationship between grid
resolution and error reduction, discovering that high-order
FDM significantly reduced errors for both the Taylor-Green
vortex and the shock tube problem, a finding similar to that of
Matthew R. Norman's research. Our results demonstrated the
reliability of FEM and FDM approaches in evaluating thermal
loads, showing a substantial decrease in error with high-
resolution grids, particularly in low-viscosity problems.
Norman’s [30] study found that dimensional decomposition
performs well for Cartesian grids, with a consistent reduction
in error and increased accuracy.

Our objectives are similar to those of the methods proposed
by Huynh et al. [31], who explore ways to reduce
computational costs without sacrificing accuracy by using
high-order FDMs. Both aim to identify methods that can be
efficiently implemented in real-world large-scale CFD
scenarios. In fields such as aerospace and automotive
engineering, where computational efficiency is a critical
factor, the efficiency-oriented approach aligns with our
methodology [31].

Our study, along with the work of Kuzmin and Vedral [28],
is focused on improving numerical methods for modeling
problems involving sharp discontinuities and complex
gradients. The main difference lies in the focus: our research
is more application-oriented and geared toward real
engineering problems, while Kuzmin and Vedral’s work
focuses on the theoretical aspects of stabilizing numerical
methods and proposing a new methodology that combines
high-order accuracy with reliable stabilization. Both
approaches emphasize the importance of selecting the
appropriate numerical strategy to achieve high accuracy and
stability in complex problems [32, 33]. Nevertheless, this
study has several limitations. First, the validation relied only
on benchmark problems (Taylor-Green vortex and Sod shock
tube), while experimental data were not incorporated. Second,
despite the improvements in computational efficiency, high-
resolution simulations still require significant resources,
which may limit applicability in real-time or large-scale
industrial scenarios. Finally, the complexity of AMR and
moving boundaries can introduce additional instabilities that
require further investigation. These limitations suggest
important directions for future work, including experimental
validation and broader application to real-world engineering
problems.

5. CONCLUSIONS

The aim of this study was to develop and validate new
computational methods to enhance both the theoretical and
applied understanding of fluid dynamics. The integration of
fifth-order WENO schemes for spatial discretization with
third-order TVD Runge-Kutta methods for temporal
integration has led to significant progress in the precise and
efficient solution of complex fluid dynamics equations. The



originality of this study is in demonstrating, for the first time,
the successful integration of WENO schemes, FEM, and AMR
for modeling compressible flows with both moving
boundaries and variable conductivity.

In fact, the study has introduced new computational
techniques that substantially improve the accuracy and
efficiency of solving complex fluid dynamics equations.
Additionally, through stability analysis, the study improved
the stability of shock wave capture, making it a valuable tool
for both practical and scientific applications.

The potential of this study in enhancing the accuracy of
modeling industrial processes, weather forecasting, and
aerodynamics, which will lead to safer and more efficient
designs, demonstrates its practical significance. Overall, this
research contributes to advancing computational fluid
dynamics by extending high-order schemes to problems
involving moving boundaries and temperature-dependent
conductivity. The findings highlight the scientific value of
combining WENO, FEM, and AMR within a unified
framework, which has direct implications for aerospace re-
entry modeling, weather prediction, and industrial heat
transfer. By focusing on accuracy, efficiency, and scalability,
this study provides a foundation for safer and more efficient
engineering designs. By offering more reliable methods for
predicting fluid behavior under complex conditions, it
contributes to the advancement of the scientific field of
computational fluid dynamics.

Future work will include experimental validation, broader
application to real-world industrial systems, and integration
with emerging techniques such as machine learning and
quantum computing.
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