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The increasing efficiency and miniaturization of electric motors have made thermo—
electromagnetic coupling a critical challenge in cooling system design. Conventional
sequential simulation—optimization approaches suffer from high computational cost and
difficulties in achieving high accuracy and efficiency. Moreover, existing particle swarm
optimization (PSO) variants fail to adequately accommodate the physical characteristics of
thermo—electromagnetic coupling. To address these limitations, an adaptive chaotic PSO
framework integrating a dual-path surrogate model and thermal-state feedback was
proposed, breaking the conventional serial paradigm and establishing a parallel, interactive
simulation—optimization closed loop, thereby enabling a deep integration of the accuracy
of physical simulation with the efficiency of intelligent optimization. The results
demonstrated that the dual-path surrogate model achieved significantly higher predictive
accuracy than a single model, with the average root mean square error (RMSE) reduced by
50.8% and further decreased to 1.75% after calibration through the interactive validation
closed loop. Compared with purely high-fidelity simulation-based optimization, the
proposed method reduced computational time by 91.1% and decreased the number of
convergence iterations by 47.1% relative to conventional PSO. It achieved reductions of
17.9% in the maximum motor temperature, 33.9% in cooling pumping power, and 23.5%
in cooling system volume, while maintaining a high-fidelity validation error of only 2.1%.
Ablation studies further confirmed that the three core modules—namely, the dual-path
surrogate model, thermal-state feedback, and the interactive validation closed loop—are all
indispensable. This study establishes a new paradigm for the efficient collaborative design
of electric motor cooling systems and provides significant implications for enhancing
motor power density and operational reliability.

1. INTRODUCTION

longer meet the demands of modern electric motor design.
Thermo—electromagnetic co-simulation techniques provide

Driven by the rapid development of new energy vehicles
and intelligent industrial manufacturing, electric motors have
been advancing toward higher efficiency and increased
compactness [1, 2], resulting in continuously rising power
density and increasingly pronounced thermo—electromagnetic
coupling effects. The elevation of winding temperature
induces an increase in electrical resistivity [3], which in turn
intensifies electromagnetic losses and forms a positive
thermo—electromagnetic feedback loop [4, 5], substantially
elevating the risk of thermal failure. Consequently, an efficient
thermal management system has become a fundamental
prerequisite for ensuring operational reliability and service life
of electric motors [6]. As the primary carrier of thermal
management, the design quality of the cooling system directly
determines motor power density, operational efficiency, and
durability [7, 8]. Conventional experience-based design
approaches or optimization methods relying on a single
physical field are unable to simultaneously satisfy multi-
objective requirements such as temperature regulation, energy
efficiency, and structural compactness [9-11], and therefore no
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an effective means for accurately characterizing coupling
effects. High-fidelity simulations are capable of precisely
resolving internal loss distributions and temperature field
characteristics within electric motors; however, their
prohibitive computational cost severely limits applicability in
multi-parameter, multi-objective optimization scenarios
requiring extensive iterations. Intelligent optimization
algorithms—particularly PSO—have been widely adopted in
motor design optimization due to their simple structure, rapid
convergence, and ease of engineering implementation [12,
13]. Nevertheless, existing PSO variants fail to sufficiently
accommodate the complex physical characteristics inherent to
thermo—electromagnetic coupling. As a result, optimization
processes lack explicit physical guidance, are prone to
convergence toward designs exhibiting local thermal
concentration, and struggle to achieve a coordinated
improvement in both accuracy and computational efficiency
[14, 15]. Accordingly, the development of a synergistic design
methodology that integrates the physical fidelity of simulation
with the efficiency of intelligent optimization has emerged as
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a critical pathway for addressing thermo—electromagnetic co-
optimization challenges in electric motor cooling systems.

In the field of thermo—electromagnetic co-simulation of
electric motors, extensive research efforts have been
undertaken. With respect to high-fidelity simulation,
multiphysics coupling techniques based on the finite element
method (FEM) and finite volume method (FVM)—including
electromagnetic—fluid—thermal coupled simulations—have
become the mainstream technical approach for accurately
analyzing thermo—electromagnetic coupling phenomena [16,
17]. However, the inherent limitation of low computational
efficiency has remained largely unresolved. To balance
accuracy and efficiency, surrogate model—assisted simulation
techniques have been rapidly developed. Models such as
artificial neural networks (ANNs), Gaussian process
regression (GPR), and response surface methods have been
widely employed for fast prediction of motor losses or
temperature fields [18, 19]. Nevertheless, most existing
studies rely on a single surrogate model architecture, which is
insufficient to simultaneously accommodate the dual-path
coupling characteristics of electrical losses and thermal
temperature fields. As a result, predictive accuracy and

generalization capability are limited, rendering such
approaches inadequate for high-precision optimization
requirements.

The application of PSO and its variants in electric motor
design optimization has continued to expand. Conventional
PSO has been successfully applied to single-objective
optimization problems, such as winding parameters and
cooling structure dimensions. To alleviate premature
convergence, strategies including chaotic mapping and
adaptive parameter regulation have been incorporated, leading
to enhanced population diversity and improved convergence
behavior [20]. However, most existing PSO variants primarily
focus on mathematical or algorithmic enhancements [21, 22],
while insufficient attention has been paid to the underlying
physical mechanisms of thermo—electromagnetic coupling.
Consequently, optimization processes lack sensitivity and
responsiveness to temperature field states, often steering
solutions toward designs with localized thermal concentration
and failing to achieve a globally optimal balance between
thermal and electromagnetic performance.

Regarding simulation—optimization co-design, existing
studies predominantly adopt a serial paradigm of “simulation
followed by optimization,” in which simulation data are first
generated to train surrogate models, and optimization is
subsequently performed based on these models. Under this
paradigm, surrogate model accuracy remains static and cannot
adapt to the dynamically evolving design space during
optimization, leading to accuracy degradation in later
optimization stages. Moreover, the separation between
simulation and optimization prevents simulation data from
dynamically feeding back into model refinement, thereby
hindering coordinated improvements in accuracy and
efficiency. Although intermittent simulation-based calibration
mechanisms have been explored in some studies, a dynamic
interactive closed-loop framework has not yet been
established. As a result, the fundamental imbalance between
accuracy and efficiency remains unresolved, and the lack of a
dynamic interaction—driven co-design framework constitutes
a critical research gap.

In response to the core limitations identified in existing
studies—including insufficient surrogate model adaptability,
the absence of physical guidance in optimization processes,
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and weak coordination between simulation and
optimization—the primary objective of this study is to develop
a thermo—electromagnetic co-design methodology for electric
motor cooling systems that integrates physical simulation with

intelligent ~ optimization. =~ Through this integration,
simultaneous improvements in optimization efficiency,
predictive accuracy, and engineering applicability are
targeted.

To achieve this objective, the principal innovations are
summarized below. First, a dual-path surrogate model
architecture is proposed, in which dedicated surrogate
submodels are constructed for electrical loss prediction and
thermal temperature field prediction, respectively. Coupled
parameters are introduced to enable bidirectional data
interaction between the two paths, allowing accurate
representation of the dual-path characteristics inherent to
thermo—electromagnetic coupling and significantly enhancing
both predictive accuracy and generalization capability.
Second, a thermal-state feedback—driven adaptive PSO
strategy is developed, in which temperature field uniformity
metrics are embedded into the parameter regulation
mechanism. As a result, the optimization process is endowed
with real-time awareness and responsiveness to physical field
states, providing explicit physical guidance and effectively
mitigating designs prone to localized thermal concentration.
Third, a dynamic optimization—high-fidelity simulation
interactive verification loop is established. Through periodic
simulation—based calibration of optimal solutions during
optimization, surrogate model bias is dynamically corrected,
while newly generated high-fidelity simulation data are
continuously incorporated into the training sample database,
enabling the co-evolution of surrogate model accuracy and
optimization reliability.

The remainder of this study is organized below. Section 2
presents the fundamental mechanisms of thermo—
electromagnetic coupling in electric motors, the basis of PSO,
and the core theories of the surrogate model, followed by the
mathematical modeling of the thermo—electromagnetic co-
optimization problem. Section 3 details the proposed adaptive
chaotic PSO-based thermo—electromagnetic co-simulation
framework, including dual-path surrogate model construction,
adaptive optimizer design, and implementation of the dynamic
interactive closed-loop process. Section 4 conducts
comparative experimental validation using a 200 kW
permanent magnet synchronous drive motor with a liquid-
cooled system as the case study, with emphasis on
optimization efficiency, accuracy, and engineering feasibility.
Section 5 provides an in-depth discussion of the physical
implications of the results, the engineering applicability and
limitations of the proposed method, and potential directions
for future research. Section 6 concludes with a summary of the
main findings and clarifies the academic contributions and
engineering significance of the study.

2. THEORETICAL BACKGROUND AND PROBLEM
FORMULATION

2.1 Thermo—eclectromagnetic coupling mechanism of
electric motors

The essence of thermo—electromagnetic coupling in electric
motors lies in the mutual interaction between electrical losses
and the temperature field. Electrical losses constitute the



primary heat sources driving the evolution of the temperature
field, while the resulting temperature rise, in turn, alters the
electrical properties of motor materials, thereby modifying the
spatial distribution of losses and forming a closed-loop
coupled effect. Electrical losses mainly consist of copper
losses and iron losses, both of which exhibit pronounced
temperature dependence. Copper losses are governed by
Joule’s law, with consideration of the temperature dependence
of winding resistivity. The copper loss can be expressed as
P.=[ J p(T)dV, where J denotes the stator current density,
p(T) represents the temperature-dependent electrical
resistivity, and V is the winding volume. In addition,
p(T)=p,[1+a(T-Tj)], where po is the resistivity at the reference
temperature 7o, and a is the temperature coefficient of
resistance. [ron losses are composed of hysteresis losses, eddy
current losses, and additional losses, and are commonly
evaluated wusing a modified Steinmetz formulation
Pfe:kth”+ke/gBz+ka/‘1'5 B'3, where ki, ke, and k, denote the
hysteresis, eddy current, and additional loss coefficients,
respectively; f is the magnetic field frequency; and B is the
magnetic flux density amplitude. Temperature alters magnetic
permeability, which subsequently affects the effective values
of these loss coefficients.

Heat transfer within the motor is realized through
conduction, convection, and radiation, among which the
design of the cooling system directly governs convective heat
transfer efficiency and thus represents the core of thermal
management. Heat conduction in solid domains follows
Fourier’s law, and the corresponding governing equation is
expressed as:

aT
chcE =V (kVT) + qy (1)

where, p., ¢, and k. denote the density, specific heat capacity,
and thermal conductivity of the solid material, respectively,
while ¢, represents the volumetric heat generation rate. Fluid
flow and convective heat transfer within the cooling channels
are governed by the continuity equation, the Navier—Stokes
equations, and the energy equation. The energy equation is
expressed as:

oTy
prcy (6_tf +U- |7Tf> =V - (keVTy) ()

where, py, ¢, and krare the density, specific heat capacity, and
thermal conductivity of the coolant, respectively, and u
denotes the fluid velocity vector. The coupling between
convective heat transfer and solid heat conduction is realized
through thermal flux continuity conditions at the solid—fluid
interfaces.

The core of the thermo—electromagnetic coupling feedback
loop lies in the loss—temperature positive feedback induced by
the temperature dependence of electrical resistivity. As
winding temperature increases, electrical resistivity rises,
leading to increased copper losses; the additional heat
generation further elevates temperature. If the heat dissipation
capacity of the cooling system is insufficient, thermal
accumulation may occur, potentially resulting in thermal
failure. This coupled feedback mechanism can be
mathematically described through the temperature-dependent
loss relationship:
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B (1) =R, (T)+P,(T) 3)

where, k.ny denotes the convective heat transfer coefficient,
which is determined by the structural parameters of the cooling
system and the properties of the fluid. The temperature
coefficient of resistance a and the convective heat transfer
coefficient kcony serve as key parameters characterizing
coupling intensity. The former determines the sensitivity of
electrical losses to temperature variations, whereas the latter
governs the effectiveness with which generated heat can be
dissipated through the cooling system. Together, these
parameters dictate the steady-state behavior and transient
response characteristics of the thermo—electromagnetic
coupled system.

2.2 Fundamentals of PSO

PSO performs optimization searches by emulating the
collective foraging behavior of bird flocks. The fundamental
mechanism lies in the iterative updating of particle positions
and velocities, through which the swarm progressively
converges toward regions containing optimal solutions. In the
classical PSO framework, each particle represents a candidate
solution within the design space, and its velocity and position
are updated according to the following formulation:

Sttl -t - —l >t Sl ot St+l
Via =WVt X a) YDy Xia) Xia XiaVid

4)
where, 7, and ¥ ; denote the velocity and position of the i-th
particle in the d-th dimension at iteration ¢, respectively. The
inertia weight w controls the degree to which historical
velocity information is retained, thereby balancing global
exploration and local exploitation. The parameters ¢; and c;
represent the individual and social learning factors,
respectively, governing particle attraction toward its personal

best position ﬁf , and the global best position 1_5; ;- The

variables r; and r; are uniformly distributed random numbers
in the interval [0,1], introduced to enhance search diversity.

In multi-objective particle swarm optimization (MOPSO),
the primary objective is the identification of a Pareto-optimal
solution set. The central concept underpinning this process is
Pareto dominance: a solution X, is said to dominate another
solution X, if X, is no worse than X, with respect to all
objective functions and is strictly better in at least one
objective. A Pareto-optimal solution is defined as a solution
that is not dominated by any other solution, and the collection
of all such solutions forms the Pareto front. The solution
strategy in MOPSO relies on maintaining an external archive
to store non-dominated solutions. This archive is continuously
updated during the iterative process, enabling the eventual
extraction of a well-distributed Pareto front. The construction
of the fitness function is critical to multi-objective
optimization performance. Common approaches include the
weighted-sum method and the e-dominance method. The
weighted-sum method transforms a multi-objective problem
into a single-objective formulation by assigning predefined
weights to each objective, making it suitable for scenarios with
clearly defined preference structures. In contrast, the e-
dominance method relaxes strict dominance conditions by
introducing an e-threshold, effectively preserving diversity
along the Pareto front and mitigating solution clustering,
which is particularly advantageous for complex multi-
objective optimization problems.



2.3 Core theory of the surrogate model

The surrogate model is constructed by fitting data obtained
from high-fidelity simulations or experiments to establish
simplified mappings between inputs and outputs, thereby
enabling rapid prediction of complex physical processes. The
fundamental objective is to achieve a balance between
accuracy and computational efficiency. In this study, neural
networks and GPR are adopted as the primary surrogate
model, as each exhibits distinct and complementary
advantages. Neural networks are well suited for capturing
highly nonlinear and complex mapping relationships, whereas
GPR provides explicit quantification of predictive uncertainty,
which is advantageous for accuracy assessment. Deep neural
networks (DNNs) consist of input, hidden, and output layers,
and training is performed by minimizing the discrepancy
between predicted and reference values through
backpropagation. Nonlinear mapping capability is introduced
through activation functions, enabling adaptation to the
prediction of high-dimensional and nonlinear problems, such
as electrical losses. Convolutional neural networks (CNNs)
extract spatial features of input data via convolutional and
pooling layers, making them particularly effective for
predicting outputs with spatial distribution characteristics,
such as temperature fields.

GPR is formulated as a probabilistic model based on
Gaussian processes, in which similarity between samples is
defined through kernel functions, thereby constructing a
probabilistic distribution of the outputs. Commonly used
kernels include the squared exponential kernel, the Matérn
kernel, and the rational quadratic kernel. Among these, the
Matérn kernel exhibits superior robustness to noisy data and is
therefore more suitable for fitting engineering simulation data.
Training of GPR is performed by maximizing the marginal
likelihood to determine optimal kernel function parameters.
During prediction, both the mean and variance are obtained,
with the variance serving as a direct quantitative measure of
predictive uncertainty and providing an intuitive basis for
surrogate model accuracy evaluation. Regardless of whether
neural networks or GPR are employed, training performance
is inherently dependent on the availability of sufficiently
representative sample data. The distribution characteristics of
the samples directly determine model generalization
capability. Consequently, appropriate design of experiments
(DoE) strategies are required to ensure adequate coverage of
the design space.

Accuracy assessment of the surrogate model is critical to
ensuring their reliability. Commonly adopted evaluation
metrics include the coefficient of determination R?, RMSE,
and mean absolute error (MAE). R? is used to quantify the
goodness of fit between predicted and reference data and is
defined as:

A~AN2
i (v9)

R*=1 o~
1 (v)

©)

where, y: denotes the reference (true) value, 3, represents the
predicted value, and y is the mean of the reference values. A
value of R? closer to unity indicates superior model fitting
performance. The RMSE characterizes the square root of the
mean squared prediction error and is sensitive to outliers,
whereas the MAE reflects the average magnitude of prediction
errors and exhibits greater robustness to outliers. Joint
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utilization of these three metrics enables a comprehensive
evaluation of surrogate model accuracy, satisfying the
precision requirements of iterative optimization. The RMSE
and MAE are computed as:

RMSE = (6)

n
1
MAE == Iy, = 91 ™
i=1

2.4 Thermo—electromagnetic co-optimization modeling of
the electric motor cooling system

The core of the thermo—electromagnetic co-optimization
problem for electric motor cooling systems lies in the
coordinated optimization of electrical and thermal design
parameters  under  thermo-—electromagnetic  coupling
constraints, with the objective of achieving an optimal balance
among multiple performance criteria. The design variables are
required to span the entire thermo—electromagnetic interaction
chain and are classified, according to physical attributes, into
electrical path variables, thermal path variables, and coupling
interface variables. Electrical path variables include the stator
current density J, winding turn number N, and air-gap
magnetic flux density B,. These parameters directly determine
the intensity of electromagnetic loss generation and are
constrained by rated motor power and torque requirements.
For example, J € [2.5, 5.0] A/mm? and N € [80, 120], ensuring
a balance between loss mitigation and power performance.
Thermal path variables encompass the cooling channel
diameter d, coolant flow velocity v, fin spacing s, and fin
height 4, which directly govern convective heat transfer
efficiency. The admissible ranges of these variables are
constrained by manufacturing feasibility and installation space
limitations, e.g., d € [8,15] mm and s € [5,12] mm, avoiding
excessive fabrication difficulty and sharp increases in flow
resistance associated with overly small dimensions. The
coupling interface variables are centered on the real-time
winding temperature 7,, which serves as the critical
intermediary linking electrical losses to the temperature field.
Its dynamic evolution constitutes the fundamental feedback
mechanism underlying thermo—electromagnetic coupling.

The optimization objectives focus on thermal management
performance, energy efficiency, and structural compactness of
the cooling system, resulting in three mutually constrained
objective functions. The first objective aims to minimize the
maximum motor temperature T, to ensure operational
reliability, expressed as minfi(x) = Tna(x), subject to the
temperature safety constraint 7. < 155°C. The second
objective seeks to minimize the cooling system pumping
power Ppump, thereby reducing auxiliary energy consumption.
The pumping power is quantified based on the relationship
between channel pressure drop and volumetric flow rate, given
by:

min f) (X)=P pymp(X)=AP(x)-Q(x)/n

pump (8)
where, AP denotes the total pressure drop across the cooling
channels, Q represents the coolant volumetric flow rate, and
Hpump 1S the pump efficiency. The third objective aims to



minimize the cooling system volume V... in order to enhance
motor power density. This objective is evaluated based on the
integrated geometric parameters of the cooling channels and
fins, expressed as:

min f; (X)=Vcoo(x)=A(d,s,h,L) )

where, L denotes the cooling channel length. The constraint
set is further refined into physical constraints, engineering
constraints, and mathematical constraints. Physical constraints
include an upper limit on cooling channel pressure drop
(AP<200 kPa) and torque compliance under rated operating
conditions. Engineering constraints account for manufacturing
process limitations and geometric boundaries imposed by
installation space. Mathematical constraints explicitly define
the admissible ranges of all design variables, thereby
establishing a well-bounded design space.

Based on the aforementioned design variables, objective
functions, and constraints, the problem can be formulated as a
standard multi-objective optimization model, expressed in a
general form as:

min £ (0)=[f, (x).f, (x).f,()]"
s.t. g,(x)<0 (k=1,2,...,m) (10)

hl(x):O ([:1 !2)' .. ,I’l) xEX:[xelecrxtherm]T

where, x denotes the design variable vector, composed of
electrical path variables xeec = [J, N, Bg]” and thermal path
variables Xperm = [d, v, s, h]". The functions gi(x) represent
inequality constraints, encompassing temperature limits,
pressure drop restrictions, and manufacturing constraints,
while  A(x) denote equality constraints, primarily
corresponding to electromagnetic performance matching
requirements under rated operating conditions. X defines the
feasible design domain. This formulation provides a
comprehensive description of the multi-objective optimization
problem under thermo—electromagnetic coupling, thereby
establishing a rigorous mathematical foundation for the
subsequent design and solution of the adaptive chaotic PSO
algorithm.
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3. THERMO-ELECTROMAGNETIC CO-
SIMULATION FRAMEWORK BASED ON ADAPTIVE
CHAOTIC PSO

3.1 Overall framework architecture

The proposed thermo—electromagnetic co-simulation
framework based on adaptive chaotic PSO is designed to
overcome the efficiency bottleneck inherent in traditional
serial “simulation—optimization” workflows by establishing a
parallel, interactive, and mutually driven system that deeply
integrates the physical fidelity of simulation with the
efficiency of intelligent optimization. Through the coordinated
operation of five core modules, the framework achieves
thermo—electromagnetic co-optimization. These modules
follow a hierarchical and closed-loop logic of problem
formulation — efficient prediction — intelligent optimization
— accuracy calibration — decision output, progressing
sequentially while forming a closed loop. First, coupled
problem definition and solution space mapping provide the
foundational boundaries of the framework by explicitly
specifying the mathematical representations of design
variables, objective functions, and constraints, as well as the
admissible solution space. Second, the dual-path surrogate
model, serving as the core intermediate layer, enables rapid
and accurate prediction of electrical losses and thermal
temperature fields, thereby providing efficient evaluation
support for iterative optimization. Third, the adaptive chaotic
particle swarm optimizer performs multi-objective search
based on surrogate model outputs, while a thermal-state
feedback mechanism ensures explicit physical guidance
throughout the optimization process. Fourth, the optimization—
simulation interactive verification closed loop dynamically
calibrates surrogate model accuracy by feeding high-fidelity
simulation results back into model updates, thereby enhancing
predictive reliability. Finally, a multi-criteria decision-making
(MCDM) system selects engineering-preferred solutions from
the Pareto-optimal set. An overview of the thermo—
electromagnetic co-simulation framework based on adaptive
chaotic PSO is illustrated in Figure 1.

Electrical loss Thermal stendy-stase
peediction field prediction e

Elecm:'i{ loss Th eady-state
prediction field predicrion

|
| 83 _-O 2 (44 High-fidelity thermo-electromagnetic co-
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3 Dataflow — — — o

Pareto front Optimal design outpot

Figure 1. Thermo—electromagnetic co-simulation framework based on adaptive chaotic PSO



The data flow and control flow within the framework jointly
constitute a mutually driven closed-loop chain. Design
variable boundaries and objective function representations
generated by the coupled problem definition module are used
to guide sample acquisition and training of the dual-path
surrogate model. The surrogate-predicted electrical losses and
temperature fields are then supplied to the optimizer as fitness
evaluation inputs, driving iterative position updates of the
particle swarm. During optimization, selected candidate
optimal solutions are fed into the high-fidelity thermo—
electromagnetic  co-simulation module for accuracy
calibration. The resulting high-precision data are subsequently
utilized to update surrogate model parameters and, in parallel,
to enrich the training sample database, thereby enhancing
model generalization capability. The updated surrogate model
is then fed back to the optimizer, enabling the coordinated
improvement of optimization accuracy and efficiency. Upon
completion of the optimization iterations, the generated
Pareto-optimal solution set is passed to the MCDM system,
from which an engineering-feasible optimal design is selected.
The decision outcome may further be used to retrospectively
assess the rationality of the coupled problem definition,
thereby establishing a full-process closed-loop regulation
mechanism.

3.2 Dual-path surrogate model construction

The core design principle of the dual-path surrogate model
is to accommodate the intrinsic dual-path characteristics of

J

Sample acquisttion and data

preprocessing LHS

P

thermo—electromagnetic coupling. This is achieved by
independently constructing an electrical surrogate model and
a thermal surrogate model, while enabling bidirectional data
interaction through coupling parameters. In this manner, the
nonlinear mapping relationships between electrical losses and
thermal temperature fields are accurately captured, while high
predictive efficiency is maintained. A schematic illustration of
the proposed architecture is provided in Figure 2. Sample
acquisition constitutes the foundation of surrogate model
construction. Latin hypercube sampling (LHS) is employed to
achieve uniform coverage of the full design variable space,
thereby ensuring sample representativeness and diversity and
preventing degradation of model generalization caused by
insufficient local-space information. All sample data are
generated through high-fidelity thermo—electromagnetic co-
simulation, with the full-dimensional design variables serving
as inputs. The corresponding outputs include loss distributions
of motor components, temperature fields of critical
components, and pressure drop across the cooling system.
Data preprocessing is conducted sequentially, including
normalization, outlier elimination, and correlation analysis.
Normalization is applied to eliminate dimensional
discrepancies among variables and to enhance training
efficiency. Outlier removal is performed using the three-sigma
(30) criterion to ensure data quality. Correlation analysis is
subsequently employed to identify input variables exhibiting
strong relevance to the output responses, thereby effectively
reducing model complexity and improving generalization
capability.
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Figure 2. Schematic diagram of the dual-path surrogate model

The electrical surrogate model is implemented using a DNN
architecture to accommodate the strong nonlinear
relationships between electrical losses and electrical path
variables. The model inputs consist of electrical path variables,
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while the outputs correspond to the distributions of copper
losses and iron losses within the motor. The network
architecture is designed such that the number of input-layer
neurons matches the dimensionality of the electrical variables,



three fully connected hidden layers are employed, and the
number of output-layer neurons corresponds to the loss
categories. The rectified linear unit (ReLU) activation function
is adopted to enhance nonlinear fitting capability. Model
training is performed using the Adam optimizer to minimize
the mean squared error (MSE) loss function. The dataset is
partitioned into training, validation, and test subsets with a
ratio of 7:2:1, which are used for parameter learning,
hyperparameter tuning, and generalization assessment,
respectively. The thermal surrogate model adopts a hybrid
architecture combining a CNN and a gradient boosting tree
(GBT). The inputs include thermal path variables and the loss
distributions predicted by the electrical surrogate model, while
the outputs comprise the maximum temperature, average
temperature, temperature difference of key components, and
the cooling system pressure drop. Within this hybrid structure,
the CNN is responsible for capturing the spatial distribution
characteristics of the temperature field, whereas the GBT is
employed to accommodate the predominantly linear
relationships between pressure drop and the input variables.
The training strategy remains consistent with that of the
electrical surrogate model, with particular emphasis placed on
validating the predictive accuracy of temperature field
distributions to ensure reliable thermal state assessment.

The dual-path surrogate model achieves close alignment
with the thermo—electromagnetic coupling mechanism
through a bidirectional coupling mechanism. The loss
distributions predicted by the electrical surrogate model are
provided as thermal source inputs to the thermal surrogate
model, serving as the primary driving factors for temperature
field prediction. Conversely, the winding temperature
feedback coefficients predicted by the thermal surrogate
model are fed back into the electrical surrogate model to
correct the temperature-dependent resistivity calculation,
thereby accurately representing the coupled feedback loop of
“temperature—resistivity—loss.” Overall model accuracy is
evaluated using R?, RMSE, and MAE. It is required that the
RMSE of key output parameters does not exceed 3%, ensuring
that the surrogate model provides both efficient and accurate
performance evaluation for subsequent optimization iterations
and achieves a balanced trade-off between optimization
efficiency and precision.

3.3 Adaptive chaotic PSO optimizer driven by thermal
state feedback

Parameter self-adaptation is achieved through thermal-state
feedback, enabling a balanced enhancement of global
exploration and local exploitation capabilities. Particle
encoding is implemented using a real-valued representation,
whereby the position vector of each particle directly
corresponds to a complete cooling system design scheme,
expressed as x; = [XiclecXitherm]T> Where X; eiec denotes the subset
of electrical path variables and x; e represents the subset of
thermal path variables. The particle dimensionality is
consistent with the total number of design variables.
Population initialization is performed using a Tent chaotic
mapping to generate a uniformly distributed initial swarm,
thereby mitigating premature convergence caused by uneven
initial distributions. The Tent map is defined as:

{sz 0<2,<0.5
Zi+1—

2lz) 0.5<z<I an

where, z; denotes the chaotic variable at the k-th iteration. The
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initialization procedure consists of first generating the chaotic
sequence z, followed by a linear mapping into the feasible
domain of the design variables [Xmin,Xmax], glVen by x = Xpmin +
Zk(xmax_xmin)~

A chaotic perturbation mechanism is introduced to balance
global exploration and local exploitation during the iterative
process. The perturbation is triggered either at later stages of
iteration or when population diversity falls below a predefined
threshold. Population diversity is quantified using the standard
deviation of fitness values, defined as:

(12)

where, N is the population size, f; denotes the fitness value of
the i-th particle, and f represents the mean fitness of the
population. When it drops below the diversity threshold Dy,
the perturbation mechanism is activated. The perturbation
strategy applies a small-amplitude chaotic disturbance to the
particle’s best positions, expressed as:

pi’neW:pLO/dJré(Zk'O'5)(xmax'xmin) (13)
where, p; ..z denotes the historical best position of the particle,
and 6=0.08 is the perturbation coefficient, selected to balance
disturbance intensity and convergence stability. The principal
innovation lies in the thermal-state—feedback—driven adaptive
parameter adjustment mechanism, in which the thermal state
is quantified using a temperature field uniformity index,
defined as:

0_Tmax'
T

avg

T,

avg

(14)

where, Tnqx is the maximum motor temperature, and 7, is the
average temperature. A larger value of 4 indicates a more non-
uniform temperature field and a higher risk of thermal
concentration.

Adaptive parameter regulation is driven by 6, through which
the inertia weight w, cognitive learning factor ci, and social
learning factor ¢, are dynamically updated according to:

W= Wmax™Wmin
" T oxp (K(0-Op)°
C17C1 paseTh10,627C paseka 0

(15)

where, Wpax = 0.9 and wyin = 0.4 define the upper and lower
bounds of the inertia weight, respectively; 6, = 0.15 is the
thermal-state threshold; k£ = 5 is the decay coefficient; ¢1 pase =
1.5 and c¢2,pa5e = 1.5 are the baseline learning factors; and & =
0.8 and &, = 0.8 are adaptive coefficients. When 0 > 0, both
w and c¢; are increased while ¢, is reduced, thereby
encouraging global exploration to escape regions associated
with thermal concentration. Conversely, when 6 < 6, w and
c1 are decreased and c¢; is increased, promoting refined local
exploitation. The multi-objective optimization procedure is
conducted using an e-dominance strategy to identify Pareto-
front solutions. An external archive is employed to store non-
dominated solutions, while crowding-distance sorting is
applied to preserve solution diversity. Through this
mechanism, convergence toward a uniformly distributed
Pareto front is ensured.



3.4 Optimization-high-fidelity simulation interactive

verification closed loop

The core design logic of the optimization—high-fidelity
simulation interactive verification closed loop is to
dynamically calibrate surrogate model accuracy, thereby
establishing a virtuous cycle in which optimization drives
model learning, and improved models enhance optimization
accuracy. This mechanism addresses the degradation of
predictive accuracy that may occur during long-term iterative
optimization and enables coordinated improvements in both
optimization efficiency and precision. A schematic illustration
is provided in Figure 3. Although the surrogate model
substantially reduces computational cost, prediction bias may
increase when optimization iterations concentrate on regions
near optimal solutions, where sample information is often
sparse. In contrast, high-fidelity simulation is capable of
accurately resolving the underlying thermo—electromagnetic
coupling physics. Dynamic interaction between these two
components effectively compensates for the surrogate model’s
accuracy deficiencies. The triggering mechanism of the closed

loop adopts a dual-criterion strategy, combining periodic
triggering and accuracy-based triggering, to ensure both
timeliness and necessity of calibration. Periodic triggering is
configured to execute once every five optimization iterations,
thereby balancing calibration frequency against computational
overhead. Accuracy-based triggering is determined by the
surrogate model prediction error evaluated on solutions stored
in the external archive, quantified using the RMSE:

M
1
RMSE, = |22 (3,5, (16)

=1

where, M denotes the number of archive solutions selected for
validation, y;n represents the reference values obtained from
high-fidelity simulation, and y;,.. denotes the corresponding
surrogate model predictions. When RMSE,.;> 5%, calibration
is forcibly triggered to prevent accuracy deterioration from
adversely influencing the optimization trajectory.

~
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Figure 3. Schematic of the optimization—high-fidelity simulation interactive verification closed loop

The calibration procedure strictly follows a progressive
sequence of sample selection — high-fidelity simulation —
model update, thereby ensuring both calibration efficiency and
effectiveness. During sample selection, the top 10% of non-
dominated solutions from the external archive are chosen as
calibration samples. These solutions represent the current
optimal design region; calibrating against them enables
targeted improvement of model accuracy in critical regions.
High-fidelity simulation is performed using electromagnetic—
fluid—thermal coupled simulations. The selected samples are
supplied to the high-fidelity models to compute accurate
benchmark data for model calibration, including motor loss
distributions, temperature fields of key components, and
cooling system pressure drop. Model updating is conducted
using an incremental training strategy, whereby complete
retraining of the surrogate model is avoided. Instead, newly
acquired high-fidelity samples are appended to the training

dataset, and model parameters are fine-tuned to achieve
accuracy correction. The loss function for incremental training
is defined as:

Loss;,e,=0-MSE,, ., +(1-a)-MSE,,;; 17
where, MSE,.., denotes the MSE associated with newly added
samples, MSE, s represents the MSE over the original training
dataset, and o = 0.6 is a weighting coefficient selected to
balance calibration toward new samples while preserving the
existing generalization capability of the model.

Termination of the closed loop is required to satisfy the dual
criteria of model accuracy and optimization convergence,
thereby ensuring the completeness and reliability of the
optimization process. The model accuracy criterion requires
that the validation error of the surrogate model remain below
3% for two consecutive calibration cycles, indicating that
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predictive accuracy in the vicinity of the optimal solution
region has stabilized and meets the required precision. The
optimization convergence criterion is determined based on the
variation of solutions stored in the external archive. The
variation is defined as the mean Euclidean distance between
non-dominated solutions in the archive across two consecutive
generations and is expressed as:

(18)

where, D denotes the dimensionality of the objective function
space, and f; 4 represents the value of the d-th objective for the
Jj-th archived solution at iteration £ When fs < 1073, the
optimization process is considered to have converged. Once
both criteria are satisfied, the interactive verification closed
loop is terminated, and the optimizer proceeds to complete the
remaining iterations based on the updated high-accuracy
surrogate model. A stable Pareto-optimal solution set is then
obtained as the final output. Through the dynamic
complementarity between high-fidelity simulation and the
surrogate model, the closed-loop framework preserves the
efficiency of the surrogate model while ensuring the reliability
of the optimization results, thereby providing essential support
for achieving a balanced trade-off between accuracy and
efficiency in thermo—electromagnetic co-optimization.

3.5 MCDM system

The primary objective of the MCDM system is to integrate
practical engineering requirements and to select a unique,
feasible optimal design from the Pareto-optimal solution set
produced by the optimization process, thereby ensuring
effective linkage between multi-objective optimization
outcomes and engineering application. Because solutions on
the Pareto front are mutually non-dominated, optimality
cannot be determined based on any single objective alone;
consequently, a decision mechanism incorporating
engineering preferences is required. In this study, the
Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) is adopted to construct the decision model. This
method ranks candidate solutions by evaluating their relative
closeness to the ideal solution, offering advantages of
conceptual simplicity, computational efficiency, and
suitability for multi-objective, multi-attribute decision
scenarios. As a result, the influence of engineering preferences
on decision outcomes can be objectively reflected.

Reasonable allocation of decision weights is critical to
ensuring the scientific validity of the decision process. The
Analytic Hierarchy Process (AHP) is employed to determine
the weights of individual objective functions, enabling
quantitative representation of engineering preferences. Within
AHP, a hierarchical structure is constructed, and pairwise
comparisons of objective importance are performed based on
expert judgment, forming a judgment matrix 4 = (@;;)nxs, Where
n denotes the number of objective functions and a; represents
the relative importance of the i-th objective with respect to the
Jj-th objective. The maximum eigenvalue Ayqy of the judgment
matrix and its corresponding eigenvector are computed, and
the normalized eigenvector yields the weight vector w = [wy,
wa, ws]”. To ensure consistency of the weight assignment, a
consistency check is performed using the consistency ratio CR
= CI/RI, where CI = (Anax—n) / (n—1) is the consistency index
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and R/ is the random consistency index. When CR < 0.1, the
judgment matrix is considered to satisfy the consistency
requirement. For different application scenarios, decision
weights can be dynamically adjusted to reflect specific
engineering priorities. For example, in new energy vehicle
drive motor applications, higher weights are typically assigned
to cooling power consumption and maximum motor
temperature, whereas in industrial motor applications, greater
emphasis is placed on cooling system volume and reliability.
The TOPSIS decision-making procedure strictly follows a
progressive sequence of normalization — weighting — ideal-
solution determination — closeness-based ranking. The first
step involves standardization of objective functions. Since all
objectives considered in this study are of the minimization

type, range normalization is employed to eliminate
dimensional inconsistencies, expressed as:
_ _NjmaxXij
zy= (19)
XjumaxXjmin

where, x; denotes the value of the j-th objective function for
the i-th Pareto solution, X;jue and x; mi» represent the maximum
and minimum values of the j-th objective, respectively, and z;;
is the normalized objective value. In the second step, a
weighted decision matrix is constructed by combining the
normalized matrix with the weight vector, i.e., Z = z;wj,
thereby explicitly reflecting the relative importance of each
objective. The third step involves computation of the positive
and negative ideal solutions. The positive ideal solution is
defined as Z' =[max(z;yw,), max (zpw,), max(zzw;)] ,
representing the optimal weighted values of each objective,
whereas the negative ideal solution is defined as
Z =[ min(zywy), min (z,w,), min (z3ws ], corresponding to the
least favorable weighted values. In the fourth step, the
Euclidean distances between each solution and the ideal
solutions, as well as the corresponding closeness coefficients,
are computed. The distance metric is defined as:

3 3
dj= Z(ZU--Z])Z,JF Z(th'zj)z 20)
J=1 J=1

The closeness coefficient is defined as C;=d; / (d; +d;),
with C; in the range of [0, 1]. A larger value of C; indicates that
the corresponding solution is closer to the positive ideal
solution. Finally, all Pareto-optimal solutions are ranked
according to C;, and the solution with the highest closeness
coefficient is selected as the recommended optimal design.
The corresponding design parameters and predicted
performance indicators are then reported, providing a direct
basis for engineering decision-making and validation.

4. EXPERIMENTAL VALIDATION AND RESULTS
ANALYSIS

4.1 Experimental setup

The experimental study was conducted on a 200 kW
permanent magnet synchronous drive motor for new energy
vehicle applications. The principal specifications are as
follows: a rated power of 200 kW, a rated speed of 10,000
r/min, windings fabricated using Class F insulated copper



conductors, a stator core composed of SO0W470 silicon steel
laminations, and a rated voltage of 350 V. The cooling system
adopts a liquid-cooled jacket configuration, with initial design
parameters specified as a cooling channel diameter of 10 mm,
12 cooling channels, a fin spacing of 8 mm, a fin height of 15
mm, and a coolant consisting of a 50% ethylene glycol-water
solution operating at an initial flow velocity of 2 m/s. The
simulation platform is composed of three main components: a
high-fidelity co-simulation module, a surrogate model and
optimization algorithm module, and a hardware support
module. High-fidelity co-simulation was implemented
through coupled simulations using ANSYS Maxwell and
ANSYS Fluent, with data exchange across electromagnetic—
fluid—thermal interfaces realized via ANSYS Workbench,
enabling accurate computation of electrical losses and
temperature fields. The surrogate model and optimization
algorithm were implemented in Python, with neural networks
constructed using the TensorFlow framework and GPR
realized through the Scikit-learn library. The adaptive chaotic
PSO algorithm was developed using customized code.
Hardware support was provided by an Intel Xeon Gold 6330
CPU (28 cores, 56 threads) and an NVIDIA A100 GPU (80
GB memory), ensuring efficient execution of large-scale
simulation and optimization tasks.

The experimental parameters were configured below. For
optimization, the population size is set to 50, the maximum
number of iterations to 100, the chaotic perturbation threshold
to 0.05, the thermal-state evaluation threshold to 0.15, and the
interactive verification interval to K = 5 iterations. For
surrogate modeling, the electrical surrogate model employs a
DNN with three hidden layers, a learning rate of 0.001, and
500 training epochs. In the thermal surrogate model, the CNN
consists of two convolutional layers and two pooling layers,
while the GBT is configured with 100 decision trees; training
parameters are consistent with those of the DNN. The
evaluation metric system encompasses three categories of core
indicators. Optimization efficiency is assessed using the
number of convergence iterations and the total computational
time. Optimization accuracy is evaluated based on
improvements in objective function values, the RMSE of
surrogate model predictions, and high-fidelity validation error.
Solution diversity is quantified using the crowding distance of
the Pareto front, calculated as the mean Euclidean distance
between adjacent solutions along the front, where larger values
indicate a more uniformly distributed Pareto front.

4.2 Comparative experimental design
To systematically verify the superiority of the proposed

approach, four categories of comparative experiments were
designed. The comparison dimensions encompass surrogate

model architecture, optimization algorithm enhancement
strategies, and simulation—optimization coordination modes,
while pure high-fidelity simulation-based optimization is
adopted as the accuracy benchmark to ensure comprehensive
and targeted validation. Comparative Method 1 employs
conventional PSO combined with a single DNN surrogate
model under a serial simulation—optimization paradigm. The
principal distinctions lie in the replacement of the dual-path
architecture with a single surrogate model, the absence of a
thermal-state feedback mechanism, and the decoupled serial
execution of optimization and simulation. This configuration
is used to evaluate the contributions of the dual-path surrogate
model and the interactive verification closed loop to
optimization performance. Comparative Method 2 adopts
chaotic PSO with a dual-path surrogate model under a serial
paradigm. While the dual-path surrogate architecture is
retained, the thermal-state—feedback—driven adaptive
parameter regulation mechanism is omitted. This setup is
designed to assess the impact of thermal-state feedback on
optimization guidance and convergence behavior.
Comparative Method 3 corresponds to the proposed method,
integrating adaptive chaotic PSO, the dual-path surrogate
model, and the interactive verification closed loop, thereby
incorporating all core innovations. The baseline comparison
group consists of pure high-fidelity simulation—based
optimization, in which multi-objective optimization is
performed directly using coupled ANSYS Maxwell-Fluent
simulations without surrogate model acceleration. This
benchmark is employed to quantify surrogate-induced
accuracy loss and to evaluate the accuracy recovery capability
of the proposed framework. All comparative experiments are
conducted using the same research object, identical initial
design parameters, and optimization objectives, ensuring
uniform experimental conditions. The comparative analysis
focuses on three key dimensions: optimization efficiency,
optimization accuracy, and Pareto front distribution
characteristics, thereby enabling a systematic evaluation of the
comprehensive advantages of the proposed approach.

4.3 Experimental results and analysis

4.3.1 Surrogate model accuracy validation

Surrogate model accuracy constitutes the foundation for
reliable optimization. In this subsection, the predictive
performance of the dual-path surrogate model is evaluated
through comparison with a single DNN surrogate model, while
the dynamic error evolution under the interactive verification
closed loop is further analyzed to validate the effectiveness of
both the model architecture and the closed-loop mechanism.
The experimental results are summarized in Table 1.

Table 1. Comparison of surrogate model prediction accuracy

. Copper Loss Temperature Pressure Drop
Model Type Metric Prediction Field Prediction Prediction Average RMSE

. R? 0.921 0.896 0.903 -
Single DNN surrogate model RMSE (%) 482 6.35 517 5.45

Dual-path surrogate model (without R 0.968 0.957 0.962 -
the interactive loop) RMSE (%) 2.35 3.12 2.58 2.68

Dual-path surrogate model (with the Rz 0.983 0.976 0.979 -
interactive loop) RMSE (%) 1.52 2.03 1.71 1.75
Accuracy improvement via the RMSE 353 35.0 337 347

interactive loop (%) reduction




As indicated in Table 1, the dual-path surrogate model
demonstrates substantially higher predictive accuracy than the
single DNN surrogate model. The average RMSE is reduced
by 50.8% relative to the single-model approach, with the
temperature field prediction achieving an R? value of 0.957
and an RMSE of 3.12%. This improvement is attributed to the
strong adaptability of the dual-path architecture to the intrinsic
dual-path characteristics of thermo—electromagnetic coupling:
the electrical surrogate model is dedicated to capturing the
nonlinear relationships between losses and electrical variables,
while the thermal surrogate model, based on a hybrid
architecture, accurately resolves spatial temperature field
distributions and the predominantly linear relationship
associated with pressure drop. In contrast, a single surrogate
model struggles to simultaneously accommodate these
heterogeneous mapping characteristics. Further enhancement
is achieved through the interactive verification closed loop,
which reduces the average RMSE to 1.75%, corresponding to

an additional reduction of 34.7%. It is observed that surrogate
model errors consistently decrease upon closed-loop
activation, particularly during later optimization stages when
the search concentrates on the optimal solution region.
Incremental training with newly generated high-fidelity
simulation samples effectively compensates for prediction
bias caused by sparse sample coverage in this region, thereby
ensuring robust accuracy support for optimization iterations.

4.3.2 Optimization efficiency analysis

Optimization efficiency was quantified in terms of
computational time and iteration count to convergence, with
performance differences among the three comparative
methods and the baseline group evaluated. The experimental
results are summarized in Table 2. The convergence criterion
is defined as a change in the Pareto front smaller than 1073 for
five consecutive generations.

Table 2. Comparison of optimization efficiency

Method Computational Convergence Time Reduction vs.  Iteration Reduction
Time (min) Iterations Baseline (%) vs. Method 1 (%)
Baseline: pure h%gh.-ﬁd.ehty simulation 1480 9 ) )
optimization
Method 1: conventional PSO + single surrogate 320 85 78.4 )
model + serial mode
Method 2: chaotic PSO + dual-path surrogate 215 68 854 20.0
model + serial mode
Proposed method: adaptive chaotic PSO + dual- 132 45 91.1 471

path surrogate model + interactive closed loop

As shown in Table 2, the proposed method exhibits the
highest optimization efficiency. The total computational time
is reduced to 132 min, corresponding to a 91.1% reduction
relative to the baseline group, and reductions of 58.8% and
38.6% relative to Methods 1 and 2, respectively. The number
of iterations to convergence is reduced to 45, representing
decreases of 47.1% and 33.8% compared with Methods 1 and
2, respectively. The efficiency gains are primarily attributed to
the synergistic effects of chaotic perturbation and thermal-
state feedback. Chaotic initialization enhances population
diversity and mitigates ineffective searches during early
iterations, while chaotic perturbations introduced in later
stages balance global exploration and local exploitation,
thereby reducing iteration waste associated with premature
convergence. The thermal-state feedback mechanism, driven
by a temperature-field uniformity index, dynamically adjusts
optimization parameters: when thermal concentration is
detected, the inertia weight and cognitive learning factor are
increased, thereby guiding particles to rapidly escape regions
of thermal concentration and preventing repeated iterations
within unfavorable areas of the design space; when the
temperature field becomes more uniform, parameter settings
shift toward intensified local exploitation, accelerating
convergence to the optimal region. In addition, the high-
efficiency predictions of the dual-path surrogate model,
together with the precise calibration provided by the
interactive closed loop, further achieve a balance between
efficiency and accuracy by preventing ineffective iterations
caused by insufficient surrogate accuracy.

4.3.3 Optimization performance analysis
Optimization performance was evaluated from four
perspectives: Pareto front distribution, objective function

2333

improvement, flow field and temperature field characteristics,
and high-fidelity validation accuracy. The experimental
results are summarized in Table 3. Pareto uniformity was
quantified using the crowding distance, where a larger value
indicates a more uniform distribution. Objective improvement
ratios were calculated relative to the initial design.

As shown in Table 3, the crowding distance achieved by the
proposed method reaches 0.61, which is close to that of the
baseline group (0.63) and substantially higher than those
obtained by Methods 1 and 2. This result indicates a more
uniformly distributed Pareto front, thereby providing a richer
set of candidate solutions for MCDM. In terms of objective
improvement, the proposed method reduces 7). by 17.9%,
Poump by 33.9%, and Veoor by 23.5% relative to the initial
design. These improvements are slightly inferior to those of
the baseline but significantly outperform both comparative
methods. Method 1 exhibits limited 7.x reduction (9.5%) due
to insufficient accuracy of the single surrogate model, which
introduces bias in the optimization direction. Method 2 lacks
thermal-state feedback and therefore fails to effectively avoid
thermal concentration, resulting in a 7., improvement that is
4.2 percentage points lower than that of the proposed method.
High-fidelity validation indicates that the optimal solution
obtained by the proposed method exhibits a validation error of
only 2.1%, satisfying the predefined 3% accuracy
requirement. This outcome demonstrates that the interactive
verification closed loop effectively compensates for surrogate-
induced accuracy loss and ensures the reliability of the
optimization results.

According to the analysis of the temperature and flow fields
for the optimal design, pronounced thermal concentration is
observed at the winding end regions in the initial design, with
Tmax reaching 168°C. After optimization using the proposed



method, the cooling channel diameter is increased to 12 mm,
fin spacing is reduced to 6 mm, and coolant velocity is
optimized to 2.5 m/s, resulting in a more uniform flow
distribution. Consequently, the convective heat transfer
coefficient is increased by 28%, the winding end temperatures
are significantly reduced, and 7. decreases to 138°C. The
temperature-field uniformity index @ is reduced from 0.21 to
0.09, indicating effective mitigation of thermal concentration.

4.3.4 Ablation study

To verify the necessity of the three core modules—namely
the dual-path surrogate model, thermal-state feedback, and the
interactive verification closed loop—an ablation study was
conducted by sequentially removing each module to construct
three ablated variants. Performance differences between these
variants and the complete proposed method were analyzed.
The experimental results are summarized in Table 4.

Table 3. Comparison of optimization performance

Pareto Maximum Tmax Pumping Ppump Cooling Veoot I:Ilgl.l-
. Motor System Fidelity
Method Crowding Improvement Power Improvement Improvement N
Distance Temperature (%) Prump (W) (%) Volume (%) Validation
Tnax (OC) pump Veool (L) Error (OAJ)
Initial . 168 : 620 - 8.5 - -
design
Method 1 0.32 152 9.5 510 17.7 7.8 8.2 6.8
Method 2 0.45 145 13.7 465 25.0 7.2 153 4.2
Proposed 0.61 138 17.9 410 339 6.5 235 2.1
method
Baseline:
pure high-
fidelity 0.63 136 19.0 402 35.2 6.4 24.7 0.8
simulation
optimization
Table 4. Results of the ablation study
T P High- Overall
Experimental Core module Computational Convergence - pump Fidelity Performance
. . . : Improvement Improvement s .
Group Configuration Time (min) Iterations (%) (%) Validation Degradation
° ° Error (%) (%)!
Dual-path +
Complete thermal-state
proposed feedback + 132 45 17.9 339 2.1 -
method interactive
closed loop
Single surrogate
Ablation model + thermal-
state feedback + 185 62 12.3 24.5 4.8 31.8
Group 1 . :
interactive
closed loop
Dual-path +
Ablation without thermal-
state feedback + 163 75 13.1 26.8 2.3 25.1
Group 2 . :
interactive
closed loop
Dual-path +
thermal-state
Ablation feedback + 128 51 14.5 292 53 19.0
Group 3 without
interactive

closed loop

Note: 'Overall performance degradation is calculated as the averaged percentage decrease across optimization effectiveness, efficiency, and accuracy, with equal
weighting.

As indicated in Table 4, all three core modules play essential
roles in the overall performance of the proposed framework.
When the dual-path surrogate model is removed (Ablation
Group 1), the overall performance degradation reaches 31.8%,
computational time increases by 40.2%, the T}, improvement
decreases by 31.8%, and the validation error rises to 4.8%,
demonstrating that the dual-path architecture constitutes the
foundation for both predictive accuracy and optimization
efficiency. When the thermal-state feedback mechanism is
removed (Ablation Group 2), the number of convergence
iterations increases by 66.7%, and the T, improvement
decreases by 26.8%, indicating that thermal-state feedback
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effectively guides the optimization trajectory, reduces
ineffective iterations, and enhances both convergence
efficiency and optimization effectiveness. When the
interactive verification closed loop is removed (Ablation
Group 3), the high-fidelity validation error increases to 5.3%,
accompanied by a pronounced reduction in objective
improvement, confirming that the closed-loop mechanism
ensures optimization reliability through dynamic calibration of
surrogate model accuracy. Overall, the synergistic integration
of the three modules enables the proposed method to achieve
simultaneous improvements in efficiency, accuracy, and
optimization effectiveness. The ablation results demonstrate



that none of the modules can be omitted without incurring
substantial performance degradation, thereby underscoring
their collective indispensability.
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Figure 4. Three-dimensional distribution of the proportion of
Pareto solutions satisfying multiple performance constraints
as a function of key design variables of the motor cooling
system

To quantitatively characterize how cooling channel
diameter, fin spacing, and coolant flow velocity influence the
distribution of Pareto solutions that satisfy different thermo—
electromagnetic performance constraints in multi-objective
optimization—and thereby to provide intuitive decision
support for coordinated cooling system parameter design—
this analysis was conducted. In Figure 4(a), a high proportion
of Pareto solutions approaching 100% is observed when the
cooling channel diameter is relatively large and the fin spacing
is relatively small, indicating that this parameter combination
effectively satisfies the temperature control constraint. Figure
4(b) shows that regions with moderate coolant flow velocity
and appropriate fin spacing yield a higher proportion of Pareto
solutions, confirming that parameter settings within this range
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can achieve a favorable balance between pumping power
consumption and heat transfer efficiency. Figure 4(c) reveals
a pronounced performance trade-off, where the proportion of
Pareto solutions exceeds 30% only within localized parameter
combinations, indicating a strong mutual constraint between
cooling system compactness and thermo—electromagnetic
performance. These results not only clarify the influence of
key design variables on different performance constraints but
also visually demonstrate the distribution characteristics of
Pareto solutions in multi-objective optimization. Collectively,
the findings substantiate that the proposed adaptive chaotic
PSO framework can effectively explore high-quality
parameter regions under multiple constraints in thermo—
electromagnetic co-optimization of motor cooling systems,
thereby providing quantitative support for parameter trade-off
decisions in engineering design.

Overall, the experimental results demonstrate that the dual-
path surrogate model, by aligning with the intrinsic dual-path
characteristics  of  thermo—electromagnetic  coupling,
significantly enhances prediction accuracy; the thermal-state—
feedback—driven adaptive chaotic PSO, through dynamic
parameter regulation, strengthens the physical guidance of the
optimization process and markedly improves convergence
efficiency; and the optimization—high-fidelity simulation
interactive verification closed loop effectively calibrates
surrogate model accuracy, ensuring the reliability of
optimization outcomes. While achieving a 91.1% reduction in
computational time, the proposed method realizes coordinated
optimization of maximum motor temperature, pumping
power, and cooling system volume, with performance
approaching that of pure high-fidelity simulation—based
optimization. These results establish an efficient and reliable
new solution for thermo—electromagnetic co-optimization of
electric motor cooling systems.

5. DISCUSSION

The proposed method demonstrates pronounced advantages
in both efficiency and accuracy over comparative approaches,
primarily attributable to the precise alignment of three core
modules with the intrinsic characteristics of thermo—
electromagnetic coupled optimization. The thermal-state
feedback mechanism incorporates physical field information
into the optimization process via the temperature field
uniformity index 6. Therefore, parameter adaptation is no
longer governed solely by algorithmic heuristics but is
endowed with explicit thermal management guidance. This
design effectively mitigates the stagnation of solutions in
regions of thermal concentration that commonly arises from
indiscriminate search strategies in conventional optimization.
The experimentally observed reduction of 8 from 0.21 to 0.09
exhibits a strong correlation with the improvement in T,
thereby validating the rationality of employing this index as
the basis for adaptive regulation. The dual-path surrogate
model architecture accurately matches the dual-path nature of
thermo—electromagnetic coupling. The electrical surrogate
model leverages a DNN to accommodate the strong
nonlinearity inherent in loss prediction, while the thermal
surrogate model employs a CNN to capture the spatial
characteristics of temperature fields. Relative to a single DNN
surrogate, the average RMSE is reduced by 50.8%. Compared
with GPR, which incurs high computational cost, and support
vector machines, which often exhibit limited generalization



capability, the DNN + CNN dual-path configuration achieves
an effective balance between accuracy and efficiency, thereby
providing reliable and rapid performance evaluation for
iterative  optimization. The optimization—high-fidelity
simulation interactive verification closed loop further resolves
the degradation of surrogate accuracy caused by insufficient
sampling in the vicinity of optimal solutions through a
dynamic calibration mechanism. As a result, the final
validation error is controlled within 2.1%, enabling
coordinated attainment of computational efficiency and
predictive accuracy.

The proposed method exhibits substantial engineering
applicability. With a 91.1% reduction in computational time
relative to pure high-fidelity simulation-based optimization—
representing an improvement exceeding one order of
magnitude—the framework can be directly integrated into
engineering design workflows for motor cooling systems,
substantially shortening development cycles and reducing
research and development costs. In application scenarios with
stringent requirements on thermal management and power
density, such as new energy vehicle drive motors and high-
efficiency industrial motors, the method enables rapid
generation of multi-objective balanced optimal designs,
thereby providing direct support for engineering decision-
making. Nevertheless, several limitations remain. First, initial
sample acquisition relies on high-fidelity simulations;
although LHS maximizes sample representativeness,
constructing an initial dataset that adequately covers the full
design space still incurs non-negligible computational
expense. Second, the threshold value of the temperature-field
uniformity index @ is derived from sample statistics specific to
a given motor type; motors with different power ratings or
structural configurations require re-calibration of this
threshold, which weakens methodological generality. Third,
the present study focuses on steady-state thermo—
electromagnetic coupling, whereas real motor operation
involves transient conditions such as start-up and acceleration.
The dynamic coupling between losses and temperature under
transient regimes has not yet been addressed, thereby limiting
applicability under complex operating conditions.

Compared with existing studies, the proposed method
exhibits three principal advantages. First, relative to
conventional PSO variants, prior work has predominantly
relied on mathematical adjustments of inertia weights and
learning factors to improve convergence, with limited
consideration of the underlying thermo—electromagnetic
coupling physics. As a result, optimization trajectories may
deviate from engineering requirements. By introducing
thermal-state feedback, physical guidance is imparted into the
optimization process, effectively addressing this limitation;
experimentally, convergence efficiency is improved by 47.1%
relative to conventional PSO. Second, compared with existing
surrogate-assisted optimization approaches, most studies
adopt a single surrogate architecture and lack a dynamic
interaction mechanism between simulation and optimization,
making it difficult to balance accuracy and efficiency.
Through the coordinated design of a dual-path surrogate
model and an interactive verification closed loop, the average
prediction RMSE is reduced to 1.75%, while computational
efficiency is markedly enhanced. Third, in contrast to the serial
simulation—optimization paradigm, in which simulation and
optimization are decoupled and simulation data cannot
dynamically inform model refinement, the proposed parallel
interactive closed-loop framework establishes a virtuous cycle
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in which optimization drives model learning and improved
models, in turn, enhance optimization accuracy. This
mechanism substantially reduces computational cost and
yields a pronounced efficiency advantage.

Future research may extend the applicability and
comprehensiveness of the method along four directions. (i)
Extension to transient thermo—electromagnetic  co-
optimization, through the development of dynamic surrogate
models capable of capturing time-varying loss and
temperature characteristics, thereby accommodating transient
operating conditions. (ii) Incorporation of active learning
strategies, whereby samples with the highest information
gain—identified via uncertainty quantification—are selected
for high-fidelity simulation, optimizing the initial sample
acquisition process and further reducing the computational
cost of sample construction. (iii) Integration of thermo—
electromagnetic—structural ~— multiphysics  coupling, by
incorporating structural stress and vibration constraints into
the optimization objectives, thereby enhancing design
completeness and avoiding structural reliability issues arising
from purely thermo—electromagnetic optimization. (iv)
Establishment of a motor cooling system experimental test
bench, enabling experimental validation of optimized designs,
comparison between simulation predictions and measured
data, and further model calibration to strengthen engineering
credibility.

6. CONCLUSIONS

To address the fundamental challenges of imbalanced
accuracy and efficiency and the lack of physical guidance in
thermo—electromagnetic co-optimization of motor cooling
systems, an adaptive chaotic PSO-based thermo-
electromagnetic co-simulation optimization framework was
proposed in this study. A parallel simulation—optimization
interactive closed-loop paradigm was established. To
accommodate the dual-path characteristics inherent to
thermo—electromagnetic coupling, a dual-path surrogate
model architecture was devised, enabling efficient and
accurate prediction of electrical losses and thermal
temperature fields, respectively. A thermal-state—feedback—
driven adaptive PSO strategy was further proposed, in which
a temperature-field uniformity index is embedded into
dynamic parameter regulation, thereby imparting explicit
physical guidance to the optimization process and enhancing
both global exploration and local exploitation in complex
design spaces. Comprehensive experiments conducted on a
200 kW permanent magnet synchronous drive motor
systematically validated the proposed framework in terms of
optimization efficiency, predictive accuracy, and engineering
applicability.

The dual-path surrogate model demonstrates markedly
higher predictive accuracy than a single-surrogate counterpart,
with the average RMSE reduced by 50.8% relative to a single
DNN model. The optimization—high-fidelity simulation
interactive verification closed loop further calibrates surrogate
accuracy, constraining the average RMSE within 1.75% and
providing robust support for iterative optimization. The
synergistic effects of thermal-state feedback and chaotic
perturbation substantially enhance PSO performance, yielding
a 47.1% improvement in convergence efficiency relative to
conventional PSO while effectively avoiding unfavorable
designs associated with local thermal concentration;



correspondingly, the temperature-field uniformity index is
reduced from 0.21 to 0.09. Compared with traditional serial
simulation—optimization workflows, computational efficiency
is dramatically improved, with computational time reduced by
91.1%.  Simultaneously, coordinated  multi-objective
optimization is achieved, including a 17.9% reduction in
maximum motor temperature, a 33.9% reduction in cooling
system pumping power, and a 23.5% reduction in cooling
system volume, with overall performance approaching that of
pure high-fidelity simulation—based optimization.

From an academic perspective, a new paradigm of deep
synergy between physical simulation and intelligent
optimization is established. By leveraging a dual-path
surrogate model tailored to the characteristics of thermo—
electromagnetic coupling, introducing thermal-state feedback
to impart explicit physical guidance to the optimization
process, and employing an interactive closed loop to ensure
coordinated improvement of accuracy and efficiency, the
inherent limitations of traditional serial workflows are
effectively overcome. This framework provides both
theoretical support and a reusable methodological system for
the efficient optimization of thermo—electromagnetic coupled
systems. From an engineering perspective, substantial
practical value is demonstrated. The proposed approach can be
directly integrated into the engineering design workflow of
motor cooling systems, significantly shortening design cycles
and reducing development costs. Its efficient and coordinated
optimization capability facilitates the advancement of electric
motors toward higher efficiency and increased compactness,
thereby offering critical technical support for motor thermal
management design in application domains such as new
energy vehicles and industrial intelligent manufacturing.
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