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 The increasing efficiency and miniaturization of electric motors have made thermo–

electromagnetic coupling a critical challenge in cooling system design. Conventional 

sequential simulation–optimization approaches suffer from high computational cost and 

difficulties in achieving high accuracy and efficiency. Moreover, existing particle swarm 

optimization (PSO) variants fail to adequately accommodate the physical characteristics of 

thermo–electromagnetic coupling. To address these limitations, an adaptive chaotic PSO 

framework integrating a dual-path surrogate model and thermal-state feedback was 

proposed, breaking the conventional serial paradigm and establishing a parallel, interactive 

simulation–optimization closed loop, thereby enabling a deep integration of the accuracy 

of physical simulation with the efficiency of intelligent optimization. The results 

demonstrated that the dual-path surrogate model achieved significantly higher predictive 

accuracy than a single model, with the average root mean square error (RMSE) reduced by 

50.8% and further decreased to 1.75% after calibration through the interactive validation 

closed loop. Compared with purely high-fidelity simulation-based optimization, the 

proposed method reduced computational time by 91.1% and decreased the number of 

convergence iterations by 47.1% relative to conventional PSO. It achieved reductions of 

17.9% in the maximum motor temperature, 33.9% in cooling pumping power, and 23.5% 

in cooling system volume, while maintaining a high-fidelity validation error of only 2.1%. 

Ablation studies further confirmed that the three core modules–namely, the dual-path 

surrogate model, thermal-state feedback, and the interactive validation closed loop–are all 

indispensable. This study establishes a new paradigm for the efficient collaborative design 

of electric motor cooling systems and provides significant implications for enhancing 

motor power density and operational reliability. 
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1. INTRODUCTION 

 

Driven by the rapid development of new energy vehicles 

and intelligent industrial manufacturing, electric motors have 

been advancing toward higher efficiency and increased 

compactness [1, 2], resulting in continuously rising power 

density and increasingly pronounced thermo–electromagnetic 

coupling effects. The elevation of winding temperature 

induces an increase in electrical resistivity [3], which in turn 

intensifies electromagnetic losses and forms a positive 

thermo–electromagnetic feedback loop [4, 5], substantially 

elevating the risk of thermal failure. Consequently, an efficient 

thermal management system has become a fundamental 

prerequisite for ensuring operational reliability and service life 

of electric motors [6]. As the primary carrier of thermal 

management, the design quality of the cooling system directly 

determines motor power density, operational efficiency, and 

durability [7, 8]. Conventional experience-based design 

approaches or optimization methods relying on a single 

physical field are unable to simultaneously satisfy multi-

objective requirements such as temperature regulation, energy 

efficiency, and structural compactness [9-11], and therefore no 

longer meet the demands of modern electric motor design. 

Thermo–electromagnetic co-simulation techniques provide 

an effective means for accurately characterizing coupling 

effects. High-fidelity simulations are capable of precisely 

resolving internal loss distributions and temperature field 

characteristics within electric motors; however, their 

prohibitive computational cost severely limits applicability in 

multi-parameter, multi-objective optimization scenarios 

requiring extensive iterations. Intelligent optimization 

algorithms—particularly PSO—have been widely adopted in 

motor design optimization due to their simple structure, rapid 

convergence, and ease of engineering implementation [12, 

13]. Nevertheless, existing PSO variants fail to sufficiently 

accommodate the complex physical characteristics inherent to 

thermo–electromagnetic coupling. As a result, optimization 

processes lack explicit physical guidance, are prone to 

convergence toward designs exhibiting local thermal 

concentration, and struggle to achieve a coordinated 

improvement in both accuracy and computational efficiency 

[14, 15]. Accordingly, the development of a synergistic design 

methodology that integrates the physical fidelity of simulation 

with the efficiency of intelligent optimization has emerged as 
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a critical pathway for addressing thermo–electromagnetic co-

optimization challenges in electric motor cooling systems. 

In the field of thermo–electromagnetic co-simulation of 

electric motors, extensive research efforts have been 

undertaken. With respect to high-fidelity simulation, 

multiphysics coupling techniques based on the finite element 

method (FEM) and finite volume method (FVM)—including 

electromagnetic–fluid–thermal coupled simulations—have 

become the mainstream technical approach for accurately 

analyzing thermo–electromagnetic coupling phenomena [16, 

17]. However, the inherent limitation of low computational 

efficiency has remained largely unresolved. To balance 

accuracy and efficiency, surrogate model–assisted simulation 

techniques have been rapidly developed. Models such as 

artificial neural networks (ANNs), Gaussian process 

regression (GPR), and response surface methods have been 

widely employed for fast prediction of motor losses or 

temperature fields [18, 19]. Nevertheless, most existing 

studies rely on a single surrogate model architecture, which is 

insufficient to simultaneously accommodate the dual-path 

coupling characteristics of electrical losses and thermal 

temperature fields. As a result, predictive accuracy and 

generalization capability are limited, rendering such 

approaches inadequate for high-precision optimization 

requirements. 

The application of PSO and its variants in electric motor 

design optimization has continued to expand. Conventional 

PSO has been successfully applied to single-objective 

optimization problems, such as winding parameters and 

cooling structure dimensions. To alleviate premature 

convergence, strategies including chaotic mapping and 

adaptive parameter regulation have been incorporated, leading 

to enhanced population diversity and improved convergence 

behavior [20]. However, most existing PSO variants primarily 

focus on mathematical or algorithmic enhancements [21, 22], 

while insufficient attention has been paid to the underlying 

physical mechanisms of thermo–electromagnetic coupling. 

Consequently, optimization processes lack sensitivity and 

responsiveness to temperature field states, often steering 

solutions toward designs with localized thermal concentration 

and failing to achieve a globally optimal balance between 

thermal and electromagnetic performance. 

Regarding simulation–optimization co-design, existing 

studies predominantly adopt a serial paradigm of “simulation 

followed by optimization,” in which simulation data are first 

generated to train surrogate models, and optimization is 

subsequently performed based on these models. Under this 

paradigm, surrogate model accuracy remains static and cannot 

adapt to the dynamically evolving design space during 

optimization, leading to accuracy degradation in later 

optimization stages. Moreover, the separation between 

simulation and optimization prevents simulation data from 

dynamically feeding back into model refinement, thereby 

hindering coordinated improvements in accuracy and 

efficiency. Although intermittent simulation-based calibration 

mechanisms have been explored in some studies, a dynamic 

interactive closed-loop framework has not yet been 

established. As a result, the fundamental imbalance between 

accuracy and efficiency remains unresolved, and the lack of a 

dynamic interaction–driven co-design framework constitutes 

a critical research gap. 

In response to the core limitations identified in existing 

studies—including insufficient surrogate model adaptability, 

the absence of physical guidance in optimization processes, 

and weak coordination between simulation and 

optimization—the primary objective of this study is to develop 

a thermo–electromagnetic co-design methodology for electric 

motor cooling systems that integrates physical simulation with 

intelligent optimization. Through this integration, 

simultaneous improvements in optimization efficiency, 

predictive accuracy, and engineering applicability are 

targeted. 

To achieve this objective, the principal innovations are 

summarized below. First, a dual-path surrogate model 

architecture is proposed, in which dedicated surrogate 

submodels are constructed for electrical loss prediction and 

thermal temperature field prediction, respectively. Coupled 

parameters are introduced to enable bidirectional data 

interaction between the two paths, allowing accurate 

representation of the dual-path characteristics inherent to 

thermo–electromagnetic coupling and significantly enhancing 

both predictive accuracy and generalization capability. 

Second, a thermal-state feedback–driven adaptive PSO 

strategy is developed, in which temperature field uniformity 

metrics are embedded into the parameter regulation 

mechanism. As a result, the optimization process is endowed 

with real-time awareness and responsiveness to physical field 

states, providing explicit physical guidance and effectively 

mitigating designs prone to localized thermal concentration. 

Third, a dynamic optimization–high-fidelity simulation 

interactive verification loop is established. Through periodic 

simulation–based calibration of optimal solutions during 

optimization, surrogate model bias is dynamically corrected, 

while newly generated high-fidelity simulation data are 

continuously incorporated into the training sample database, 

enabling the co-evolution of surrogate model accuracy and 

optimization reliability. 

The remainder of this study is organized below. Section 2 

presents the fundamental mechanisms of thermo–

electromagnetic coupling in electric motors, the basis of PSO, 

and the core theories of the surrogate model, followed by the 

mathematical modeling of the thermo–electromagnetic co-

optimization problem. Section 3 details the proposed adaptive 

chaotic PSO–based thermo–electromagnetic co-simulation 

framework, including dual-path surrogate model construction, 

adaptive optimizer design, and implementation of the dynamic 

interactive closed-loop process. Section 4 conducts 

comparative experimental validation using a 200 kW 

permanent magnet synchronous drive motor with a liquid-

cooled system as the case study, with emphasis on 

optimization efficiency, accuracy, and engineering feasibility. 

Section 5 provides an in-depth discussion of the physical 

implications of the results, the engineering applicability and 

limitations of the proposed method, and potential directions 

for future research. Section 6 concludes with a summary of the 

main findings and clarifies the academic contributions and 

engineering significance of the study. 

 

 

2. THEORETICAL BACKGROUND AND PROBLEM 

FORMULATION 

 

2.1 Thermo–electromagnetic coupling mechanism of 

electric motors 

 

The essence of thermo–electromagnetic coupling in electric 

motors lies in the mutual interaction between electrical losses 

and the temperature field. Electrical losses constitute the 
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primary heat sources driving the evolution of the temperature 

field, while the resulting temperature rise, in turn, alters the 

electrical properties of motor materials, thereby modifying the 

spatial distribution of losses and forming a closed-loop 

coupled effect. Electrical losses mainly consist of copper 

losses and iron losses, both of which exhibit pronounced 

temperature dependence. Copper losses are governed by 

Joule’s law, with consideration of the temperature dependence 

of winding resistivity. The copper loss can be expressed as 

Pcu= ∫ J2 ρ(T)dV, where J denotes the stator current density, 

ρ(T) represents the temperature-dependent electrical 

resistivity, and V is the winding volume. In addition, 

ρ(T)=ρ
0
[1+α(T-T0)], where ρ0 is the resistivity at the reference 

temperature T0, and α is the temperature coefficient of 

resistance. Iron losses are composed of hysteresis losses, eddy 

current losses, and additional losses, and are commonly 

evaluated using a modified Steinmetz formulation 

Pfe=khfB
n+kef

2
B2+kaf

1.5
B1.5 , where kh, ke, and ka denote the 

hysteresis, eddy current, and additional loss coefficients, 

respectively; f is the magnetic field frequency; and B is the 

magnetic flux density amplitude. Temperature alters magnetic 

permeability, which subsequently affects the effective values 

of these loss coefficients. 

Heat transfer within the motor is realized through 

conduction, convection, and radiation, among which the 

design of the cooling system directly governs convective heat 

transfer efficiency and thus represents the core of thermal 

management. Heat conduction in solid domains follows 

Fourier’s law, and the corresponding governing equation is 

expressed as: 

 

𝜌𝑐𝑐𝑐

𝜕𝑇

𝜕𝑡
= 𝛻 ⋅ (𝑘𝑐𝛻𝑇) + 𝑞𝑣 (1) 

 

where, ρc, cc, and kc denote the density, specific heat capacity, 

and thermal conductivity of the solid material, respectively, 

while qv represents the volumetric heat generation rate. Fluid 

flow and convective heat transfer within the cooling channels 

are governed by the continuity equation, the Navier–Stokes 

equations, and the energy equation. The energy equation is 

expressed as: 

 

𝜌𝑓𝑐𝑓 (
𝜕𝑇𝑓

𝜕𝑡
+ 𝑢⃗ ⋅ 𝛻𝑇𝑓) = 𝛻 ⋅ (𝑘𝑓𝛻𝑇𝑓) (2) 

 

where, ρf, cf, and kf are the density, specific heat capacity, and 

thermal conductivity of the coolant, respectively, and u 

denotes the fluid velocity vector. The coupling between 

convective heat transfer and solid heat conduction is realized 

through thermal flux continuity conditions at the solid–fluid 

interfaces. 

The core of the thermo–electromagnetic coupling feedback 

loop lies in the loss–temperature positive feedback induced by 

the temperature dependence of electrical resistivity. As 

winding temperature increases, electrical resistivity rises, 

leading to increased copper losses; the additional heat 

generation further elevates temperature. If the heat dissipation 

capacity of the cooling system is insufficient, thermal 

accumulation may occur, potentially resulting in thermal 

failure. This coupled feedback mechanism can be 

mathematically described through the temperature-dependent 

loss relationship: 

 

loss c( ) ( ) ( )u feP T P T P T= +  (3) 

 

where, kconv denotes the convective heat transfer coefficient, 

which is determined by the structural parameters of the cooling 

system and the properties of the fluid. The temperature 

coefficient of resistance α and the convective heat transfer 

coefficient kconv serve as key parameters characterizing 

coupling intensity. The former determines the sensitivity of 

electrical losses to temperature variations, whereas the latter 

governs the effectiveness with which generated heat can be 

dissipated through the cooling system. Together, these 

parameters dictate the steady-state behavior and transient 

response characteristics of the thermo–electromagnetic 

coupled system. 

 

2.2 Fundamentals of PSO 

 

PSO performs optimization searches by emulating the 

collective foraging behavior of bird flocks. The fundamental 

mechanism lies in the iterative updating of particle positions 

and velocities, through which the swarm progressively 

converges toward regions containing optimal solutions. In the 

classical PSO framework, each particle represents a candidate 

solution within the design space, and its velocity and position 

are updated according to the following formulation: 

 

v i,d
t+1

=wv i,d
t

+c1r1(p⃗ 
i,d

t
-x i,d

t
)+c2r2(p⃗ 

g,d

t
-x i,d

t
),x i,d

t+1
=x i,d

t
+v i,d

t+1
 (4) 

 

where, v i,d
t

 and x i,d
t

 denote the velocity and position of the i-th 

particle in the d-th dimension at iteration t, respectively. The 

inertia weight w controls the degree to which historical 

velocity information is retained, thereby balancing global 

exploration and local exploitation. The parameters c1 and c2 

represent the individual and social learning factors, 

respectively, governing particle attraction toward its personal 

best position p⃗ 
i,d

t
 and the global best position p⃗ 

g,d

t
. The 

variables r1 and r2 are uniformly distributed random numbers 

in the interval [0,1], introduced to enhance search diversity. 

In multi-objective particle swarm optimization (MOPSO), 

the primary objective is the identification of a Pareto-optimal 

solution set. The central concept underpinning this process is 

Pareto dominance: a solution x a is said to dominate another 

solution x b  if x a  is no worse than x b  with respect to all 

objective functions and is strictly better in at least one 

objective. A Pareto-optimal solution is defined as a solution 

that is not dominated by any other solution, and the collection 

of all such solutions forms the Pareto front. The solution 

strategy in MOPSO relies on maintaining an external archive 

to store non-dominated solutions. This archive is continuously 

updated during the iterative process, enabling the eventual 

extraction of a well-distributed Pareto front. The construction 

of the fitness function is critical to multi-objective 

optimization performance. Common approaches include the 

weighted-sum method and the ε-dominance method. The 

weighted-sum method transforms a multi-objective problem 

into a single-objective formulation by assigning predefined 

weights to each objective, making it suitable for scenarios with 

clearly defined preference structures. In contrast, the ε-

dominance method relaxes strict dominance conditions by 

introducing an ε-threshold, effectively preserving diversity 

along the Pareto front and mitigating solution clustering, 

which is particularly advantageous for complex multi-

objective optimization problems. 
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2.3 Core theory of the surrogate model 

 

The surrogate model is constructed by fitting data obtained 

from high-fidelity simulations or experiments to establish 

simplified mappings between inputs and outputs, thereby 

enabling rapid prediction of complex physical processes. The 

fundamental objective is to achieve a balance between 

accuracy and computational efficiency. In this study, neural 

networks and GPR are adopted as the primary surrogate 

model, as each exhibits distinct and complementary 

advantages. Neural networks are well suited for capturing 

highly nonlinear and complex mapping relationships, whereas 

GPR provides explicit quantification of predictive uncertainty, 

which is advantageous for accuracy assessment. Deep neural 

networks (DNNs) consist of input, hidden, and output layers, 

and training is performed by minimizing the discrepancy 

between predicted and reference values through 

backpropagation. Nonlinear mapping capability is introduced 

through activation functions, enabling adaptation to the 

prediction of high-dimensional and nonlinear problems, such 

as electrical losses. Convolutional neural networks (CNNs) 

extract spatial features of input data via convolutional and 

pooling layers, making them particularly effective for 

predicting outputs with spatial distribution characteristics, 

such as temperature fields. 

GPR is formulated as a probabilistic model based on 

Gaussian processes, in which similarity between samples is 

defined through kernel functions, thereby constructing a 

probabilistic distribution of the outputs. Commonly used 

kernels include the squared exponential kernel, the Matérn 

kernel, and the rational quadratic kernel. Among these, the 

Matérn kernel exhibits superior robustness to noisy data and is 

therefore more suitable for fitting engineering simulation data. 

Training of GPR is performed by maximizing the marginal 

likelihood to determine optimal kernel function parameters. 

During prediction, both the mean and variance are obtained, 

with the variance serving as a direct quantitative measure of 

predictive uncertainty and providing an intuitive basis for 

surrogate model accuracy evaluation. Regardless of whether 

neural networks or GPR are employed, training performance 

is inherently dependent on the availability of sufficiently 

representative sample data. The distribution characteristics of 

the samples directly determine model generalization 

capability. Consequently, appropriate design of experiments 

(DoE) strategies are required to ensure adequate coverage of 

the design space. 

Accuracy assessment of the surrogate model is critical to 

ensuring their reliability. Commonly adopted evaluation 

metrics include the coefficient of determination R2, RMSE, 

and mean absolute error (MAE). R2 is used to quantify the 

goodness of fit between predicted and reference data and is 

defined as: 

 

R2=1-
∑ (n

i=1 y
i
-ŷ

i
)
2

∑ (n
i=1 y

i
-ȳ)

2
 (5) 

 

where, yi denotes the reference (true) value, ŷ
i
 represents the 

predicted value, and ȳ is the mean of the reference values. A 

value of R2 closer to unity indicates superior model fitting 

performance. The RMSE characterizes the square root of the 

mean squared prediction error and is sensitive to outliers, 

whereas the MAE reflects the average magnitude of prediction 

errors and exhibits greater robustness to outliers. Joint 

utilization of these three metrics enables a comprehensive 

evaluation of surrogate model accuracy, satisfying the 

precision requirements of iterative optimization. The RMSE 

and MAE are computed as: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (6) 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 (7) 

 

2.4 Thermo–electromagnetic co-optimization modeling of 

the electric motor cooling system 

 

The core of the thermo–electromagnetic co-optimization 

problem for electric motor cooling systems lies in the 

coordinated optimization of electrical and thermal design 

parameters under thermo–electromagnetic coupling 

constraints, with the objective of achieving an optimal balance 

among multiple performance criteria. The design variables are 

required to span the entire thermo–electromagnetic interaction 

chain and are classified, according to physical attributes, into 

electrical path variables, thermal path variables, and coupling 

interface variables. Electrical path variables include the stator 

current density J, winding turn number N, and air-gap 

magnetic flux density Bg. These parameters directly determine 

the intensity of electromagnetic loss generation and are 

constrained by rated motor power and torque requirements. 

For example, J ∈ [2.5, 5.0] A/mm2 and N ∈ [80, 120], ensuring 

a balance between loss mitigation and power performance. 

Thermal path variables encompass the cooling channel 

diameter d, coolant flow velocity v, fin spacing s, and fin 

height h, which directly govern convective heat transfer 

efficiency. The admissible ranges of these variables are 

constrained by manufacturing feasibility and installation space 

limitations, e.g., d ∈ [8,15] mm and s ∈ [5,12] mm, avoiding 

excessive fabrication difficulty and sharp increases in flow 

resistance associated with overly small dimensions. The 

coupling interface variables are centered on the real-time 

winding temperature Tw, which serves as the critical 

intermediary linking electrical losses to the temperature field. 

Its dynamic evolution constitutes the fundamental feedback 

mechanism underlying thermo–electromagnetic coupling. 

The optimization objectives focus on thermal management 

performance, energy efficiency, and structural compactness of 

the cooling system, resulting in three mutually constrained 

objective functions. The first objective aims to minimize the 

maximum motor temperature Tmax to ensure operational 

reliability, expressed as minf1(x) = Tmax(x), subject to the 

temperature safety constraint Tmax ≤ 155℃. The second 

objective seeks to minimize the cooling system pumping 

power Ppump, thereby reducing auxiliary energy consumption. 

The pumping power is quantified based on the relationship 

between channel pressure drop and volumetric flow rate, given 

by: 

 

min f
2

(x)=Ppump(x)=ΔP(x)⋅Q(x)/η
pump

 (8) 

 

where, ΔP denotes the total pressure drop across the cooling 

channels, Q represents the coolant volumetric flow rate, and 

ηpump is the pump efficiency. The third objective aims to 
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minimize the cooling system volume Vcool in order to enhance 

motor power density. This objective is evaluated based on the 

integrated geometric parameters of the cooling channels and 

fins, expressed as: 

 

min f
3

(x)=Vcool(x)=f(d,s,h,L) (9) 

 

where, L denotes the cooling channel length. The constraint 

set is further refined into physical constraints, engineering 

constraints, and mathematical constraints. Physical constraints 

include an upper limit on cooling channel pressure drop 

(ΔP≤200 kPa) and torque compliance under rated operating 

conditions. Engineering constraints account for manufacturing 

process limitations and geometric boundaries imposed by 

installation space. Mathematical constraints explicitly define 

the admissible ranges of all design variables, thereby 

establishing a well-bounded design space. 

Based on the aforementioned design variables, objective 

functions, and constraints, the problem can be formulated as a 

standard multi-objective optimization model, expressed in a 

general form as: 

 

min f (x)=[f
1
(x),f

2
(x),f

3
(x)]T 

s.t. g
k
(x)≤0 (k=1,2,…,m) 

hl(x)=0 (l=1,2,…,n) x∈X=[xelec,xtherm]T 

(10) 

 

where, x denotes the design variable vector, composed of 

electrical path variables xelec = [J, N, Bg]T and thermal path 

variables xtherm = [d, v, s, h]T. The functions gk(x) represent 

inequality constraints, encompassing temperature limits, 

pressure drop restrictions, and manufacturing constraints, 

while hl(x) denote equality constraints, primarily 

corresponding to electromagnetic performance matching 

requirements under rated operating conditions. X defines the 

feasible design domain. This formulation provides a 

comprehensive description of the multi-objective optimization 

problem under thermo–electromagnetic coupling, thereby 

establishing a rigorous mathematical foundation for the 

subsequent design and solution of the adaptive chaotic PSO 

algorithm. 

3. THERMO–ELECTROMAGNETIC CO-

SIMULATION FRAMEWORK BASED ON ADAPTIVE 

CHAOTIC PSO 

 

3.1 Overall framework architecture 

 

The proposed thermo–electromagnetic co-simulation 

framework based on adaptive chaotic PSO is designed to 

overcome the efficiency bottleneck inherent in traditional 

serial “simulation–optimization” workflows by establishing a 

parallel, interactive, and mutually driven system that deeply 

integrates the physical fidelity of simulation with the 

efficiency of intelligent optimization. Through the coordinated 

operation of five core modules, the framework achieves 

thermo–electromagnetic co-optimization. These modules 

follow a hierarchical and closed-loop logic of problem 

formulation → efficient prediction → intelligent optimization 

→ accuracy calibration → decision output, progressing 

sequentially while forming a closed loop. First, coupled 

problem definition and solution space mapping provide the 

foundational boundaries of the framework by explicitly 

specifying the mathematical representations of design 

variables, objective functions, and constraints, as well as the 

admissible solution space. Second, the dual-path surrogate 

model, serving as the core intermediate layer, enables rapid 

and accurate prediction of electrical losses and thermal 

temperature fields, thereby providing efficient evaluation 

support for iterative optimization. Third, the adaptive chaotic 

particle swarm optimizer performs multi-objective search 

based on surrogate model outputs, while a thermal-state 

feedback mechanism ensures explicit physical guidance 

throughout the optimization process. Fourth, the optimization–

simulation interactive verification closed loop dynamically 

calibrates surrogate model accuracy by feeding high-fidelity 

simulation results back into model updates, thereby enhancing 

predictive reliability. Finally, a multi-criteria decision-making 

(MCDM) system selects engineering-preferred solutions from 

the Pareto-optimal set. An overview of the thermo–

electromagnetic co-simulation framework based on adaptive 

chaotic PSO is illustrated in Figure 1. 

 

 

 
 

Figure 1. Thermo–electromagnetic co-simulation framework based on adaptive chaotic PSO 
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The data flow and control flow within the framework jointly 

constitute a mutually driven closed-loop chain. Design 

variable boundaries and objective function representations 

generated by the coupled problem definition module are used 

to guide sample acquisition and training of the dual-path 

surrogate model. The surrogate-predicted electrical losses and 

temperature fields are then supplied to the optimizer as fitness 

evaluation inputs, driving iterative position updates of the 

particle swarm. During optimization, selected candidate 

optimal solutions are fed into the high-fidelity thermo–

electromagnetic co-simulation module for accuracy 

calibration. The resulting high-precision data are subsequently 

utilized to update surrogate model parameters and, in parallel, 

to enrich the training sample database, thereby enhancing 

model generalization capability. The updated surrogate model 

is then fed back to the optimizer, enabling the coordinated 

improvement of optimization accuracy and efficiency. Upon 

completion of the optimization iterations, the generated 

Pareto-optimal solution set is passed to the MCDM system, 

from which an engineering-feasible optimal design is selected. 

The decision outcome may further be used to retrospectively 

assess the rationality of the coupled problem definition, 

thereby establishing a full-process closed-loop regulation 

mechanism. 

 

3.2 Dual-path surrogate model construction 

 

The core design principle of the dual-path surrogate model 

is to accommodate the intrinsic dual-path characteristics of 

thermo–electromagnetic coupling. This is achieved by 

independently constructing an electrical surrogate model and 

a thermal surrogate model, while enabling bidirectional data 

interaction through coupling parameters. In this manner, the 

nonlinear mapping relationships between electrical losses and 

thermal temperature fields are accurately captured, while high 

predictive efficiency is maintained. A schematic illustration of 

the proposed architecture is provided in Figure 2. Sample 

acquisition constitutes the foundation of surrogate model 

construction. Latin hypercube sampling (LHS) is employed to 

achieve uniform coverage of the full design variable space, 

thereby ensuring sample representativeness and diversity and 

preventing degradation of model generalization caused by 

insufficient local-space information. All sample data are 

generated through high-fidelity thermo–electromagnetic co-

simulation, with the full-dimensional design variables serving 

as inputs. The corresponding outputs include loss distributions 

of motor components, temperature fields of critical 

components, and pressure drop across the cooling system. 

Data preprocessing is conducted sequentially, including 

normalization, outlier elimination, and correlation analysis. 

Normalization is applied to eliminate dimensional 

discrepancies among variables and to enhance training 

efficiency. Outlier removal is performed using the three-sigma 

(3σ) criterion to ensure data quality. Correlation analysis is 

subsequently employed to identify input variables exhibiting 

strong relevance to the output responses, thereby effectively 

reducing model complexity and improving generalization 

capability. 

 

 
 

Figure 2. Schematic diagram of the dual-path surrogate model 

 

The electrical surrogate model is implemented using a DNN 

architecture to accommodate the strong nonlinear 

relationships between electrical losses and electrical path 

variables. The model inputs consist of electrical path variables, 

while the outputs correspond to the distributions of copper 

losses and iron losses within the motor. The network 

architecture is designed such that the number of input-layer 

neurons matches the dimensionality of the electrical variables, 
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three fully connected hidden layers are employed, and the 

number of output-layer neurons corresponds to the loss 

categories. The rectified linear unit (ReLU) activation function 

is adopted to enhance nonlinear fitting capability. Model 

training is performed using the Adam optimizer to minimize 

the mean squared error (MSE) loss function. The dataset is 

partitioned into training, validation, and test subsets with a 

ratio of 7:2:1, which are used for parameter learning, 

hyperparameter tuning, and generalization assessment, 

respectively. The thermal surrogate model adopts a hybrid 

architecture combining a CNN and a gradient boosting tree 

(GBT). The inputs include thermal path variables and the loss 

distributions predicted by the electrical surrogate model, while 

the outputs comprise the maximum temperature, average 

temperature, temperature difference of key components, and 

the cooling system pressure drop. Within this hybrid structure, 

the CNN is responsible for capturing the spatial distribution 

characteristics of the temperature field, whereas the GBT is 

employed to accommodate the predominantly linear 

relationships between pressure drop and the input variables. 

The training strategy remains consistent with that of the 

electrical surrogate model, with particular emphasis placed on 

validating the predictive accuracy of temperature field 

distributions to ensure reliable thermal state assessment. 

The dual-path surrogate model achieves close alignment 

with the thermo–electromagnetic coupling mechanism 

through a bidirectional coupling mechanism. The loss 

distributions predicted by the electrical surrogate model are 

provided as thermal source inputs to the thermal surrogate 

model, serving as the primary driving factors for temperature 

field prediction. Conversely, the winding temperature 

feedback coefficients predicted by the thermal surrogate 

model are fed back into the electrical surrogate model to 

correct the temperature-dependent resistivity calculation, 

thereby accurately representing the coupled feedback loop of 

“temperature–resistivity–loss.” Overall model accuracy is 

evaluated using R2, RMSE, and MAE. It is required that the 

RMSE of key output parameters does not exceed 3%, ensuring 

that the surrogate model provides both efficient and accurate 

performance evaluation for subsequent optimization iterations 

and achieves a balanced trade-off between optimization 

efficiency and precision. 

 

3.3 Adaptive chaotic PSO optimizer driven by thermal 

state feedback 

 

Parameter self-adaptation is achieved through thermal-state 

feedback, enabling a balanced enhancement of global 

exploration and local exploitation capabilities. Particle 

encoding is implemented using a real-valued representation, 

whereby the position vector of each particle directly 

corresponds to a complete cooling system design scheme, 

expressed as xi = [xi,elec,xi,therm]T, where xi,elec denotes the subset 

of electrical path variables and xi,therm represents the subset of 

thermal path variables. The particle dimensionality is 

consistent with the total number of design variables. 

Population initialization is performed using a Tent chaotic 

mapping to generate a uniformly distributed initial swarm, 

thereby mitigating premature convergence caused by uneven 

initial distributions. The Tent map is defined as: 
 

zk+1= {
2zk 0≤zk<0.5

2(1-zk) 0.5≤zk≤1
 (11) 

 

where, zk denotes the chaotic variable at the k-th iteration. The 

initialization procedure consists of first generating the chaotic 

sequence zk, followed by a linear mapping into the feasible 

domain of the design variables [xmin,xmax], given by x = xmin + 

zk(xmax−xmin). 

A chaotic perturbation mechanism is introduced to balance 

global exploration and local exploitation during the iterative 

process. The perturbation is triggered either at later stages of 

iteration or when population diversity falls below a predefined 

threshold. Population diversity is quantified using the standard 

deviation of fitness values, defined as: 

 

𝐷 = √
1

𝑁
∑(𝑓𝑖 − 𝑓̄)

2
𝑁

𝑖=1

 (12) 

 

where, N is the population size, fi denotes the fitness value of 

the i-th particle, and f̄  represents the mean fitness of the 

population. When it drops below the diversity threshold Dth, 

the perturbation mechanism is activated. The perturbation 

strategy applies a small-amplitude chaotic disturbance to the 

particle’s best positions, expressed as: 

 

p
i,new

=p
i,old

+δ(zk-0.5)(xmax-xmin) (13) 

 

where, pi,old denotes the historical best position of the particle, 

and δ=0.08 is the perturbation coefficient, selected to balance 

disturbance intensity and convergence stability. The principal 

innovation lies in the thermal-state–feedback–driven adaptive 

parameter adjustment mechanism, in which the thermal state 

is quantified using a temperature field uniformity index, 

defined as: 

 

θ=
Tmax-Tavg

Tavg
 (14) 

 

where, Tmax is the maximum motor temperature, and Tavg is the 

average temperature. A larger value of θ indicates a more non-

uniform temperature field and a higher risk of thermal 

concentration.  

Adaptive parameter regulation is driven by θ, through which 

the inertia weight w, cognitive learning factor c1, and social 

learning factor c2 are dynamically updated according to: 

 

w=wmax-
wmax-wmin

1+ exp ( -k(θ-θth)
, 

c1=c1,base+k1θ,c2=c2,base-k2θ 
(15) 

 

where, wmax = 0.9 and wmin = 0.4 define the upper and lower 

bounds of the inertia weight, respectively; θth = 0.15 is the 

thermal-state threshold; k = 5 is the decay coefficient; c1,base = 

1.5 and c2,base = 1.5 are the baseline learning factors; and k1 = 

0.8 and k2 = 0.8 are adaptive coefficients. When θ > θth, both 

w and c1 are increased while c2 is reduced, thereby 

encouraging global exploration to escape regions associated 

with thermal concentration. Conversely, when θ ≤ θth, w and 

c1 are decreased and c2 is increased, promoting refined local 

exploitation. The multi-objective optimization procedure is 

conducted using an ε-dominance strategy to identify Pareto-

front solutions. An external archive is employed to store non-

dominated solutions, while crowding-distance sorting is 

applied to preserve solution diversity. Through this 

mechanism, convergence toward a uniformly distributed 

Pareto front is ensured. 
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3.4 Optimization–high-fidelity simulation interactive 

verification closed loop 

 

The core design logic of the optimization–high-fidelity 

simulation interactive verification closed loop is to 

dynamically calibrate surrogate model accuracy, thereby 

establishing a virtuous cycle in which optimization drives 

model learning, and improved models enhance optimization 

accuracy. This mechanism addresses the degradation of 

predictive accuracy that may occur during long-term iterative 

optimization and enables coordinated improvements in both 

optimization efficiency and precision. A schematic illustration 

is provided in Figure 3. Although the surrogate model 

substantially reduces computational cost, prediction bias may 

increase when optimization iterations concentrate on regions 

near optimal solutions, where sample information is often 

sparse. In contrast, high-fidelity simulation is capable of 

accurately resolving the underlying thermo–electromagnetic 

coupling physics. Dynamic interaction between these two 

components effectively compensates for the surrogate model’s 

accuracy deficiencies. The triggering mechanism of the closed 

loop adopts a dual-criterion strategy, combining periodic 

triggering and accuracy-based triggering, to ensure both 

timeliness and necessity of calibration. Periodic triggering is 

configured to execute once every five optimization iterations, 

thereby balancing calibration frequency against computational 

overhead. Accuracy-based triggering is determined by the 

surrogate model prediction error evaluated on solutions stored 

in the external archive, quantified using the RMSE: 

 

RMSEval=√
1

M
∑ (

M

j=1

y
j,sim

-y
j,pre

)
2
 (16) 

 

where, M denotes the number of archive solutions selected for 

validation, yj,sim represents the reference values obtained from 

high-fidelity simulation, and yj,pre denotes the corresponding 

surrogate model predictions. When RMSEval > 5%, calibration 

is forcibly triggered to prevent accuracy deterioration from 

adversely influencing the optimization trajectory. 

 

 
 

Figure 3. Schematic of the optimization–high-fidelity simulation interactive verification closed loop 

 

The calibration procedure strictly follows a progressive 

sequence of sample selection → high-fidelity simulation → 

model update, thereby ensuring both calibration efficiency and 

effectiveness. During sample selection, the top 10% of non-

dominated solutions from the external archive are chosen as 

calibration samples. These solutions represent the current 

optimal design region; calibrating against them enables 

targeted improvement of model accuracy in critical regions. 

High-fidelity simulation is performed using electromagnetic–

fluid–thermal coupled simulations. The selected samples are 

supplied to the high-fidelity models to compute accurate 

benchmark data for model calibration, including motor loss 

distributions, temperature fields of key components, and 

cooling system pressure drop. Model updating is conducted 

using an incremental training strategy, whereby complete 

retraining of the surrogate model is avoided. Instead, newly 

acquired high-fidelity samples are appended to the training 

dataset, and model parameters are fine-tuned to achieve 

accuracy correction. The loss function for incremental training 

is defined as: 

 

Lossincr=α⋅MSEnew+(1-α)⋅MSEold (17) 

 

where, MSEnew denotes the MSE associated with newly added 

samples, MSEold represents the MSE over the original training 

dataset, and α = 0.6 is a weighting coefficient selected to 

balance calibration toward new samples while preserving the 

existing generalization capability of the model. 

Termination of the closed loop is required to satisfy the dual 

criteria of model accuracy and optimization convergence, 

thereby ensuring the completeness and reliability of the 

optimization process. The model accuracy criterion requires 

that the validation error of the surrogate model remain below 

3% for two consecutive calibration cycles, indicating that 
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predictive accuracy in the vicinity of the optimal solution 

region has stabilized and meets the required precision. The 

optimization convergence criterion is determined based on the 

variation of solutions stored in the external archive. The 

variation is defined as the mean Euclidean distance between 

non-dominated solutions in the archive across two consecutive 

generations and is expressed as: 
 

ΔF=
1

M
∑√∑ (

D

d=1

f
j,d

t+1
-f
j,d

t
)
2

M

j=1

 (18) 

 

where, D denotes the dimensionality of the objective function 

space, and fj,dt represents the value of the d-th objective for the 

j-th archived solution at iteration t. When fj,dt < 10-3, the 

optimization process is considered to have converged. Once 

both criteria are satisfied, the interactive verification closed 

loop is terminated, and the optimizer proceeds to complete the 

remaining iterations based on the updated high-accuracy 

surrogate model. A stable Pareto-optimal solution set is then 

obtained as the final output. Through the dynamic 

complementarity between high-fidelity simulation and the 

surrogate model, the closed-loop framework preserves the 

efficiency of the surrogate model while ensuring the reliability 

of the optimization results, thereby providing essential support 

for achieving a balanced trade-off between accuracy and 

efficiency in thermo–electromagnetic co-optimization. 

 

3.5 MCDM system 

 

The primary objective of the MCDM system is to integrate 

practical engineering requirements and to select a unique, 

feasible optimal design from the Pareto-optimal solution set 

produced by the optimization process, thereby ensuring 

effective linkage between multi-objective optimization 

outcomes and engineering application. Because solutions on 

the Pareto front are mutually non-dominated, optimality 

cannot be determined based on any single objective alone; 

consequently, a decision mechanism incorporating 

engineering preferences is required. In this study, the 

Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS) is adopted to construct the decision model. This 

method ranks candidate solutions by evaluating their relative 

closeness to the ideal solution, offering advantages of 

conceptual simplicity, computational efficiency, and 

suitability for multi-objective, multi-attribute decision 

scenarios. As a result, the influence of engineering preferences 

on decision outcomes can be objectively reflected. 

Reasonable allocation of decision weights is critical to 

ensuring the scientific validity of the decision process. The 

Analytic Hierarchy Process (AHP) is employed to determine 

the weights of individual objective functions, enabling 

quantitative representation of engineering preferences. Within 

AHP, a hierarchical structure is constructed, and pairwise 

comparisons of objective importance are performed based on 

expert judgment, forming a judgment matrix A = (aij)n×n, where 

n denotes the number of objective functions and aij represents 

the relative importance of the i-th objective with respect to the 

j-th objective. The maximum eigenvalue λmax of the judgment 

matrix and its corresponding eigenvector are computed, and 

the normalized eigenvector yields the weight vector w = [w1, 

w2, w3]T. To ensure consistency of the weight assignment, a 

consistency check is performed using the consistency ratio CR 

= CI/RI, where CI = (λmax−n) / (n−1) is the consistency index 

and RI is the random consistency index. When CR < 0.1, the 

judgment matrix is considered to satisfy the consistency 

requirement. For different application scenarios, decision 

weights can be dynamically adjusted to reflect specific 

engineering priorities. For example, in new energy vehicle 

drive motor applications, higher weights are typically assigned 

to cooling power consumption and maximum motor 

temperature, whereas in industrial motor applications, greater 

emphasis is placed on cooling system volume and reliability. 

The TOPSIS decision-making procedure strictly follows a 

progressive sequence of normalization → weighting → ideal-

solution determination → closeness-based ranking. The first 

step involves standardization of objective functions. Since all 

objectives considered in this study are of the minimization 

type, range normalization is employed to eliminate 

dimensional inconsistencies, expressed as: 

 

zij=
xj,max-xij

xj,max-xj,min
 (19) 

 

where, xij denotes the value of the j-th objective function for 

the i-th Pareto solution, xj,max and xj,min represent the maximum 

and minimum values of the j-th objective, respectively, and zij 

is the normalized objective value. In the second step, a 

weighted decision matrix is constructed by combining the 

normalized matrix with the weight vector, i.e., Z = zij⋅wj, 

thereby explicitly reflecting the relative importance of each 

objective. The third step involves computation of the positive 

and negative ideal solutions. The positive ideal solution is 

defined as Z+ = [max ( zi1w1),max ( zi2w2),max ( zi3w3)] , 

representing the optimal weighted values of each objective, 

whereas the negative ideal solution is defined as 

Z- = [min ( z1w1),min ( z2w2),min ( z3w3], corresponding to the 

least favorable weighted values. In the fourth step, the 

Euclidean distances between each solution and the ideal 

solutions, as well as the corresponding closeness coefficients, 

are computed. The distance metric is defined as: 

 

di
+
=√∑ (

3

j=1

Zij-Zj
+)

2
,di

-
=√∑ (

3

j=1

Zij-Zj
-)

2
 (20) 

 

The closeness coefficient is defined as Ci = di
+ / (di

+
+di

-
) , 

with Ci in the range of [0, 1]. A larger value of Ci indicates that 

the corresponding solution is closer to the positive ideal 

solution. Finally, all Pareto-optimal solutions are ranked 

according to Ci, and the solution with the highest closeness 

coefficient is selected as the recommended optimal design. 

The corresponding design parameters and predicted 

performance indicators are then reported, providing a direct 

basis for engineering decision-making and validation. 

 

 

4. EXPERIMENTAL VALIDATION AND RESULTS 

ANALYSIS 

 

4.1 Experimental setup 

 

The experimental study was conducted on a 200 kW 

permanent magnet synchronous drive motor for new energy 

vehicle applications. The principal specifications are as 

follows: a rated power of 200 kW, a rated speed of 10,000 

r/min, windings fabricated using Class F insulated copper 
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conductors, a stator core composed of 50W470 silicon steel 

laminations, and a rated voltage of 350 V. The cooling system 

adopts a liquid-cooled jacket configuration, with initial design 

parameters specified as a cooling channel diameter of 10 mm, 

12 cooling channels, a fin spacing of 8 mm, a fin height of 15 

mm, and a coolant consisting of a 50% ethylene glycol–water 

solution operating at an initial flow velocity of 2 m/s. The 

simulation platform is composed of three main components: a 

high-fidelity co-simulation module, a surrogate model and 

optimization algorithm module, and a hardware support 

module. High-fidelity co-simulation was implemented 

through coupled simulations using ANSYS Maxwell and 

ANSYS Fluent, with data exchange across electromagnetic–

fluid–thermal interfaces realized via ANSYS Workbench, 

enabling accurate computation of electrical losses and 

temperature fields. The surrogate model and optimization 

algorithm were implemented in Python, with neural networks 

constructed using the TensorFlow framework and GPR 

realized through the Scikit-learn library. The adaptive chaotic 

PSO algorithm was developed using customized code. 

Hardware support was provided by an Intel Xeon Gold 6330 

CPU (28 cores, 56 threads) and an NVIDIA A100 GPU (80 

GB memory), ensuring efficient execution of large-scale 

simulation and optimization tasks. 

The experimental parameters were configured below. For 

optimization, the population size is set to 50, the maximum 

number of iterations to 100, the chaotic perturbation threshold 

to 0.05, the thermal-state evaluation threshold to 0.15, and the 

interactive verification interval to K = 5 iterations. For 

surrogate modeling, the electrical surrogate model employs a 

DNN with three hidden layers, a learning rate of 0.001, and 

500 training epochs. In the thermal surrogate model, the CNN 

consists of two convolutional layers and two pooling layers, 

while the GBT is configured with 100 decision trees; training 

parameters are consistent with those of the DNN. The 

evaluation metric system encompasses three categories of core 

indicators. Optimization efficiency is assessed using the 

number of convergence iterations and the total computational 

time. Optimization accuracy is evaluated based on 

improvements in objective function values, the RMSE of 

surrogate model predictions, and high-fidelity validation error. 

Solution diversity is quantified using the crowding distance of 

the Pareto front, calculated as the mean Euclidean distance 

between adjacent solutions along the front, where larger values 

indicate a more uniformly distributed Pareto front. 

 

4.2 Comparative experimental design 

 

To systematically verify the superiority of the proposed 

approach, four categories of comparative experiments were 

designed. The comparison dimensions encompass surrogate 

model architecture, optimization algorithm enhancement 

strategies, and simulation–optimization coordination modes, 

while pure high-fidelity simulation–based optimization is 

adopted as the accuracy benchmark to ensure comprehensive 

and targeted validation. Comparative Method 1 employs 

conventional PSO combined with a single DNN surrogate 

model under a serial simulation–optimization paradigm. The 

principal distinctions lie in the replacement of the dual-path 

architecture with a single surrogate model, the absence of a 

thermal-state feedback mechanism, and the decoupled serial 

execution of optimization and simulation. This configuration 

is used to evaluate the contributions of the dual-path surrogate 

model and the interactive verification closed loop to 

optimization performance. Comparative Method 2 adopts 

chaotic PSO with a dual-path surrogate model under a serial 

paradigm. While the dual-path surrogate architecture is 

retained, the thermal-state–feedback–driven adaptive 

parameter regulation mechanism is omitted. This setup is 

designed to assess the impact of thermal-state feedback on 

optimization guidance and convergence behavior. 

Comparative Method 3 corresponds to the proposed method, 

integrating adaptive chaotic PSO, the dual-path surrogate 

model, and the interactive verification closed loop, thereby 

incorporating all core innovations. The baseline comparison 

group consists of pure high-fidelity simulation–based 

optimization, in which multi-objective optimization is 

performed directly using coupled ANSYS Maxwell–Fluent 

simulations without surrogate model acceleration. This 

benchmark is employed to quantify surrogate-induced 

accuracy loss and to evaluate the accuracy recovery capability 

of the proposed framework. All comparative experiments are 

conducted using the same research object, identical initial 

design parameters, and optimization objectives, ensuring 

uniform experimental conditions. The comparative analysis 

focuses on three key dimensions: optimization efficiency, 

optimization accuracy, and Pareto front distribution 

characteristics, thereby enabling a systematic evaluation of the 

comprehensive advantages of the proposed approach. 

 

4.3 Experimental results and analysis 

 

4.3.1 Surrogate model accuracy validation 

Surrogate model accuracy constitutes the foundation for 

reliable optimization. In this subsection, the predictive 

performance of the dual-path surrogate model is evaluated 

through comparison with a single DNN surrogate model, while 

the dynamic error evolution under the interactive verification 

closed loop is further analyzed to validate the effectiveness of 

both the model architecture and the closed-loop mechanism. 

The experimental results are summarized in Table 1. 

 

Table 1. Comparison of surrogate model prediction accuracy 

 

Model Type Metric 
Copper Loss 

Prediction 

Temperature 

Field Prediction 

Pressure Drop 

Prediction 
Average RMSE 

Single DNN surrogate model 
R² 0.921 0.896 0.903 - 

RMSE (%) 4.82 6.35 5.17 5.45 

Dual-path surrogate model (without 

the interactive loop) 

R² 0.968 0.957 0.962 - 

RMSE (%) 2.35 3.12 2.58 2.68 

Dual-path surrogate model (with the 

interactive loop) 

R² 0.983 0.976 0.979 - 

RMSE (%) 1.52 2.03 1.71 1.75 

Accuracy improvement via the 

interactive loop (%) 

RMSE 

reduction 
35.3 35.0 33.7 34.7 

 

 

2332



As indicated in Table 1, the dual-path surrogate model 

demonstrates substantially higher predictive accuracy than the 

single DNN surrogate model. The average RMSE is reduced 

by 50.8% relative to the single-model approach, with the 

temperature field prediction achieving an R² value of 0.957 

and an RMSE of 3.12%. This improvement is attributed to the 

strong adaptability of the dual-path architecture to the intrinsic 

dual-path characteristics of thermo–electromagnetic coupling: 

the electrical surrogate model is dedicated to capturing the 

nonlinear relationships between losses and electrical variables, 

while the thermal surrogate model, based on a hybrid 

architecture, accurately resolves spatial temperature field 

distributions and the predominantly linear relationship 

associated with pressure drop. In contrast, a single surrogate 

model struggles to simultaneously accommodate these 

heterogeneous mapping characteristics. Further enhancement 

is achieved through the interactive verification closed loop, 

which reduces the average RMSE to 1.75%, corresponding to 

an additional reduction of 34.7%. It is observed that surrogate 

model errors consistently decrease upon closed-loop 

activation, particularly during later optimization stages when 

the search concentrates on the optimal solution region. 

Incremental training with newly generated high-fidelity 

simulation samples effectively compensates for prediction 

bias caused by sparse sample coverage in this region, thereby 

ensuring robust accuracy support for optimization iterations. 

 

4.3.2 Optimization efficiency analysis 

Optimization efficiency was quantified in terms of 

computational time and iteration count to convergence, with 

performance differences among the three comparative 

methods and the baseline group evaluated. The experimental 

results are summarized in Table 2. The convergence criterion 

is defined as a change in the Pareto front smaller than 10⁻³ for 

five consecutive generations. 

 

Table 2. Comparison of optimization efficiency 

 

Method 
Computational 

Time (min) 

Convergence 

Iterations 

Time Reduction vs. 

Baseline (%) 

Iteration Reduction 

vs. Method 1 (%) 

Baseline: pure high-fidelity simulation 

optimization 
1480 92 - - 

Method 1: conventional PSO + single surrogate 

model + serial mode 
320 85 78.4 - 

Method 2: chaotic PSO + dual-path surrogate 

model + serial mode 
215 68 85.4 20.0 

Proposed method: adaptive chaotic PSO + dual-

path surrogate model + interactive closed loop 
132 45 91.1 47.1 

 

As shown in Table 2, the proposed method exhibits the 

highest optimization efficiency. The total computational time 

is reduced to 132 min, corresponding to a 91.1% reduction 

relative to the baseline group, and reductions of 58.8% and 

38.6% relative to Methods 1 and 2, respectively. The number 

of iterations to convergence is reduced to 45, representing 

decreases of 47.1% and 33.8% compared with Methods 1 and 

2, respectively. The efficiency gains are primarily attributed to 

the synergistic effects of chaotic perturbation and thermal-

state feedback. Chaotic initialization enhances population 

diversity and mitigates ineffective searches during early 

iterations, while chaotic perturbations introduced in later 

stages balance global exploration and local exploitation, 

thereby reducing iteration waste associated with premature 

convergence. The thermal-state feedback mechanism, driven 

by a temperature-field uniformity index, dynamically adjusts 

optimization parameters: when thermal concentration is 

detected, the inertia weight and cognitive learning factor are 

increased, thereby guiding particles to rapidly escape regions 

of thermal concentration and preventing repeated iterations 

within unfavorable areas of the design space; when the 

temperature field becomes more uniform, parameter settings 

shift toward intensified local exploitation, accelerating 

convergence to the optimal region. In addition, the high-

efficiency predictions of the dual-path surrogate model, 

together with the precise calibration provided by the 

interactive closed loop, further achieve a balance between 

efficiency and accuracy by preventing ineffective iterations 

caused by insufficient surrogate accuracy. 

 

4.3.3 Optimization performance analysis 

Optimization performance was evaluated from four 

perspectives: Pareto front distribution, objective function 

improvement, flow field and temperature field characteristics, 

and high-fidelity validation accuracy. The experimental 

results are summarized in Table 3. Pareto uniformity was 

quantified using the crowding distance, where a larger value 

indicates a more uniform distribution. Objective improvement 

ratios were calculated relative to the initial design. 

As shown in Table 3, the crowding distance achieved by the 

proposed method reaches 0.61, which is close to that of the 

baseline group (0.63) and substantially higher than those 

obtained by Methods 1 and 2. This result indicates a more 

uniformly distributed Pareto front, thereby providing a richer 

set of candidate solutions for MCDM. In terms of objective 

improvement, the proposed method reduces Tmax by 17.9%, 

Ppump by 33.9%, and Vcool by 23.5% relative to the initial 

design. These improvements are slightly inferior to those of 

the baseline but significantly outperform both comparative 

methods. Method 1 exhibits limited Tmax reduction (9.5%) due 

to insufficient accuracy of the single surrogate model, which 

introduces bias in the optimization direction. Method 2 lacks 

thermal-state feedback and therefore fails to effectively avoid 

thermal concentration, resulting in a Tmax improvement that is 

4.2 percentage points lower than that of the proposed method. 

High-fidelity validation indicates that the optimal solution 

obtained by the proposed method exhibits a validation error of 

only 2.1%, satisfying the predefined 3% accuracy 

requirement. This outcome demonstrates that the interactive 

verification closed loop effectively compensates for surrogate-

induced accuracy loss and ensures the reliability of the 

optimization results. 

According to the analysis of the temperature and flow fields 

for the optimal design, pronounced thermal concentration is 

observed at the winding end regions in the initial design, with 

Tmax reaching 168℃. After optimization using the proposed 
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method, the cooling channel diameter is increased to 12 mm, 

fin spacing is reduced to 6 mm, and coolant velocity is 

optimized to 2.5 m/s, resulting in a more uniform flow 

distribution. Consequently, the convective heat transfer 

coefficient is increased by 28%, the winding end temperatures 

are significantly reduced, and Tmax decreases to 138℃. The 

temperature-field uniformity index θ is reduced from 0.21 to 

0.09, indicating effective mitigation of thermal concentration. 

 

4.3.4 Ablation study 

To verify the necessity of the three core modules—namely 

the dual-path surrogate model, thermal-state feedback, and the 

interactive verification closed loop—an ablation study was 

conducted by sequentially removing each module to construct 

three ablated variants. Performance differences between these 

variants and the complete proposed method were analyzed. 

The experimental results are summarized in Table 4. 

Table 3. Comparison of optimization performance 

 

Method 

Pareto 

Crowding 

Distance 

Maximum 

Motor 

Temperature 

Tmax (℃) 

Tmax 

Improvement 

(%) 

Pumping 

Power 

Ppump (W) 

Ppump 

Improvement 

(%) 

Cooling 

System 

Volume 

Vcool (L) 

Vcool 

Improvement 

(%) 

High-

Fidelity 

Validation 

Error (%) 

Initial 

design 
- 168 - 620 - 8.5 - - 

Method 1 0.32 152 9.5 510 17.7 7.8 8.2 6.8 

Method 2 0.45 145 13.7 465 25.0 7.2 15.3 4.2 

Proposed 

method 
0.61 138 17.9 410 33.9 6.5 23.5 2.1 

Baseline: 

pure high-

fidelity 

simulation 

optimization 

0.63 136 19.0 402 35.2 6.4 24.7 0.8 

 

Table 4. Results of the ablation study 

 

Experimental 

Group 

Core module 

Configuration 

Computational 

Time (min) 

Convergence 

Iterations 

Tmax 

Improvement 

(%) 

Ppump 

Improvement 

(%) 

High-

Fidelity 

Validation 

Error (%) 

Overall 

Performance 

Degradation 

(%)¹ 

Complete 

proposed 

method 

Dual-path + 

thermal-state 

feedback + 

interactive 

closed loop 

132 45 17.9 33.9 2.1 - 

Ablation 

Group 1 

Single surrogate 

model + thermal-

state feedback + 

interactive 

closed loop 

185 62 12.3 24.5 4.8 31.8 

Ablation 

Group 2 

Dual-path + 

without thermal-

state feedback + 

interactive 

closed loop 

163 75 13.1 26.8 2.3 25.1 

Ablation 

Group 3 

Dual-path + 

thermal-state 

feedback + 

without 

interactive 

closed loop 

128 51 14.5 29.2 5.3 19.0 

Note: ¹Overall performance degradation is calculated as the averaged percentage decrease across optimization effectiveness, efficiency, and accuracy, with equal 
weighting. 

 

As indicated in Table 4, all three core modules play essential 

roles in the overall performance of the proposed framework. 

When the dual-path surrogate model is removed (Ablation 

Group 1), the overall performance degradation reaches 31.8%, 

computational time increases by 40.2%, the Tmax improvement 

decreases by 31.8%, and the validation error rises to 4.8%, 

demonstrating that the dual-path architecture constitutes the 

foundation for both predictive accuracy and optimization 

efficiency. When the thermal-state feedback mechanism is 

removed (Ablation Group 2), the number of convergence 

iterations increases by 66.7%, and the Tmax improvement 

decreases by 26.8%, indicating that thermal-state feedback 

effectively guides the optimization trajectory, reduces 

ineffective iterations, and enhances both convergence 

efficiency and optimization effectiveness. When the 

interactive verification closed loop is removed (Ablation 

Group 3), the high-fidelity validation error increases to 5.3%, 

accompanied by a pronounced reduction in objective 

improvement, confirming that the closed-loop mechanism 

ensures optimization reliability through dynamic calibration of 

surrogate model accuracy. Overall, the synergistic integration 

of the three modules enables the proposed method to achieve 

simultaneous improvements in efficiency, accuracy, and 

optimization effectiveness. The ablation results demonstrate 

2334



 

that none of the modules can be omitted without incurring 

substantial performance degradation, thereby underscoring 

their collective indispensability. 

 

 
(a) Distribution of the proportion of Pareto solutions 

satisfying the constraint Tₘₐₓ ≤ 140℃ 

 
(b) Distribution of the proportion of Pareto solutions 

satisfying the constraint Pₚᵤₘₚ ≤ 450 W 

 
(c) Distribution of the proportion of Pareto solutions 

satisfying the constraint Vcool ≤ 7 L 

 

Figure 4. Three-dimensional distribution of the proportion of 

Pareto solutions satisfying multiple performance constraints 

as a function of key design variables of the motor cooling 

system 

 

To quantitatively characterize how cooling channel 

diameter, fin spacing, and coolant flow velocity influence the 

distribution of Pareto solutions that satisfy different thermo–

electromagnetic performance constraints in multi-objective 

optimization—and thereby to provide intuitive decision 

support for coordinated cooling system parameter design—

this analysis was conducted. In Figure 4(a), a high proportion 

of Pareto solutions approaching 100% is observed when the 

cooling channel diameter is relatively large and the fin spacing 

is relatively small, indicating that this parameter combination 

effectively satisfies the temperature control constraint. Figure 

4(b) shows that regions with moderate coolant flow velocity 

and appropriate fin spacing yield a higher proportion of Pareto 

solutions, confirming that parameter settings within this range 

can achieve a favorable balance between pumping power 

consumption and heat transfer efficiency. Figure 4(c) reveals 

a pronounced performance trade-off, where the proportion of 

Pareto solutions exceeds 30% only within localized parameter 

combinations, indicating a strong mutual constraint between 

cooling system compactness and thermo–electromagnetic 

performance. These results not only clarify the influence of 

key design variables on different performance constraints but 

also visually demonstrate the distribution characteristics of 

Pareto solutions in multi-objective optimization. Collectively, 

the findings substantiate that the proposed adaptive chaotic 

PSO framework can effectively explore high-quality 

parameter regions under multiple constraints in thermo–

electromagnetic co-optimization of motor cooling systems, 

thereby providing quantitative support for parameter trade-off 

decisions in engineering design. 

Overall, the experimental results demonstrate that the dual-

path surrogate model, by aligning with the intrinsic dual-path 

characteristics of thermo–electromagnetic coupling, 

significantly enhances prediction accuracy; the thermal-state–

feedback–driven adaptive chaotic PSO, through dynamic 

parameter regulation, strengthens the physical guidance of the 

optimization process and markedly improves convergence 

efficiency; and the optimization–high-fidelity simulation 

interactive verification closed loop effectively calibrates 

surrogate model accuracy, ensuring the reliability of 

optimization outcomes. While achieving a 91.1% reduction in 

computational time, the proposed method realizes coordinated 

optimization of maximum motor temperature, pumping 

power, and cooling system volume, with performance 

approaching that of pure high-fidelity simulation–based 

optimization. These results establish an efficient and reliable 

new solution for thermo–electromagnetic co-optimization of 

electric motor cooling systems. 

 

 

5. DISCUSSION 

 

The proposed method demonstrates pronounced advantages 

in both efficiency and accuracy over comparative approaches, 

primarily attributable to the precise alignment of three core 

modules with the intrinsic characteristics of thermo–

electromagnetic coupled optimization. The thermal-state 

feedback mechanism incorporates physical field information 

into the optimization process via the temperature field 

uniformity index θ. Therefore, parameter adaptation is no 

longer governed solely by algorithmic heuristics but is 

endowed with explicit thermal management guidance. This 

design effectively mitigates the stagnation of solutions in 

regions of thermal concentration that commonly arises from 

indiscriminate search strategies in conventional optimization. 

The experimentally observed reduction of θ from 0.21 to 0.09 

exhibits a strong correlation with the improvement in Tmax, 

thereby validating the rationality of employing this index as 

the basis for adaptive regulation. The dual-path surrogate 

model architecture accurately matches the dual-path nature of 

thermo–electromagnetic coupling. The electrical surrogate 

model leverages a DNN to accommodate the strong 

nonlinearity inherent in loss prediction, while the thermal 

surrogate model employs a CNN to capture the spatial 

characteristics of temperature fields. Relative to a single DNN 

surrogate, the average RMSE is reduced by 50.8%. Compared 

with GPR, which incurs high computational cost, and support 

vector machines, which often exhibit limited generalization 
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capability, the DNN + CNN dual-path configuration achieves 

an effective balance between accuracy and efficiency, thereby 

providing reliable and rapid performance evaluation for 

iterative optimization. The optimization–high-fidelity 

simulation interactive verification closed loop further resolves 

the degradation of surrogate accuracy caused by insufficient 

sampling in the vicinity of optimal solutions through a 

dynamic calibration mechanism. As a result, the final 

validation error is controlled within 2.1%, enabling 

coordinated attainment of computational efficiency and 

predictive accuracy. 

The proposed method exhibits substantial engineering 

applicability. With a 91.1% reduction in computational time 

relative to pure high-fidelity simulation-based optimization—

representing an improvement exceeding one order of 

magnitude—the framework can be directly integrated into 

engineering design workflows for motor cooling systems, 

substantially shortening development cycles and reducing 

research and development costs. In application scenarios with 

stringent requirements on thermal management and power 

density, such as new energy vehicle drive motors and high-

efficiency industrial motors, the method enables rapid 

generation of multi-objective balanced optimal designs, 

thereby providing direct support for engineering decision-

making. Nevertheless, several limitations remain. First, initial 

sample acquisition relies on high-fidelity simulations; 

although LHS maximizes sample representativeness, 

constructing an initial dataset that adequately covers the full 

design space still incurs non-negligible computational 

expense. Second, the threshold value of the temperature-field 

uniformity index θ is derived from sample statistics specific to 

a given motor type; motors with different power ratings or 

structural configurations require re-calibration of this 

threshold, which weakens methodological generality. Third, 

the present study focuses on steady-state thermo–

electromagnetic coupling, whereas real motor operation 

involves transient conditions such as start-up and acceleration. 

The dynamic coupling between losses and temperature under 

transient regimes has not yet been addressed, thereby limiting 

applicability under complex operating conditions. 

Compared with existing studies, the proposed method 

exhibits three principal advantages. First, relative to 

conventional PSO variants, prior work has predominantly 

relied on mathematical adjustments of inertia weights and 

learning factors to improve convergence, with limited 

consideration of the underlying thermo–electromagnetic 

coupling physics. As a result, optimization trajectories may 

deviate from engineering requirements. By introducing 

thermal-state feedback, physical guidance is imparted into the 

optimization process, effectively addressing this limitation; 

experimentally, convergence efficiency is improved by 47.1% 

relative to conventional PSO. Second, compared with existing 

surrogate-assisted optimization approaches, most studies 

adopt a single surrogate architecture and lack a dynamic 

interaction mechanism between simulation and optimization, 

making it difficult to balance accuracy and efficiency. 

Through the coordinated design of a dual-path surrogate 

model and an interactive verification closed loop, the average 

prediction RMSE is reduced to 1.75%, while computational 

efficiency is markedly enhanced. Third, in contrast to the serial 

simulation–optimization paradigm, in which simulation and 

optimization are decoupled and simulation data cannot 

dynamically inform model refinement, the proposed parallel 

interactive closed-loop framework establishes a virtuous cycle 

in which optimization drives model learning and improved 

models, in turn, enhance optimization accuracy. This 

mechanism substantially reduces computational cost and 

yields a pronounced efficiency advantage. 

Future research may extend the applicability and 

comprehensiveness of the method along four directions. (i) 

Extension to transient thermo–electromagnetic co-

optimization, through the development of dynamic surrogate 

models capable of capturing time-varying loss and 

temperature characteristics, thereby accommodating transient 

operating conditions. (ii) Incorporation of active learning 

strategies, whereby samples with the highest information 

gain—identified via uncertainty quantification—are selected 

for high-fidelity simulation, optimizing the initial sample 

acquisition process and further reducing the computational 

cost of sample construction. (iii) Integration of thermo–

electromagnetic–structural multiphysics coupling, by 

incorporating structural stress and vibration constraints into 

the optimization objectives, thereby enhancing design 

completeness and avoiding structural reliability issues arising 

from purely thermo–electromagnetic optimization. (iv) 

Establishment of a motor cooling system experimental test 

bench, enabling experimental validation of optimized designs, 

comparison between simulation predictions and measured 

data, and further model calibration to strengthen engineering 

credibility. 

 

 

6. CONCLUSIONS 

 

To address the fundamental challenges of imbalanced 

accuracy and efficiency and the lack of physical guidance in 

thermo–electromagnetic co-optimization of motor cooling 

systems, an adaptive chaotic PSO–based thermo–

electromagnetic co-simulation optimization framework was 

proposed in this study. A parallel simulation–optimization 

interactive closed-loop paradigm was established. To 

accommodate the dual-path characteristics inherent to 

thermo–electromagnetic coupling, a dual-path surrogate 

model architecture was devised, enabling efficient and 

accurate prediction of electrical losses and thermal 

temperature fields, respectively. A thermal-state–feedback–

driven adaptive PSO strategy was further proposed, in which 

a temperature-field uniformity index is embedded into 

dynamic parameter regulation, thereby imparting explicit 

physical guidance to the optimization process and enhancing 

both global exploration and local exploitation in complex 

design spaces. Comprehensive experiments conducted on a 

200 kW permanent magnet synchronous drive motor 

systematically validated the proposed framework in terms of 

optimization efficiency, predictive accuracy, and engineering 

applicability. 

The dual-path surrogate model demonstrates markedly 

higher predictive accuracy than a single-surrogate counterpart, 

with the average RMSE reduced by 50.8% relative to a single 

DNN model. The optimization–high-fidelity simulation 

interactive verification closed loop further calibrates surrogate 

accuracy, constraining the average RMSE within 1.75% and 

providing robust support for iterative optimization. The 

synergistic effects of thermal-state feedback and chaotic 

perturbation substantially enhance PSO performance, yielding 

a 47.1% improvement in convergence efficiency relative to 

conventional PSO while effectively avoiding unfavorable 

designs associated with local thermal concentration; 
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correspondingly, the temperature-field uniformity index is 

reduced from 0.21 to 0.09. Compared with traditional serial 

simulation–optimization workflows, computational efficiency 

is dramatically improved, with computational time reduced by 

91.1%. Simultaneously, coordinated multi-objective 

optimization is achieved, including a 17.9% reduction in 

maximum motor temperature, a 33.9% reduction in cooling 

system pumping power, and a 23.5% reduction in cooling 

system volume, with overall performance approaching that of 

pure high-fidelity simulation–based optimization. 

From an academic perspective, a new paradigm of deep 

synergy between physical simulation and intelligent 

optimization is established. By leveraging a dual-path 

surrogate model tailored to the characteristics of thermo–

electromagnetic coupling, introducing thermal-state feedback 

to impart explicit physical guidance to the optimization 

process, and employing an interactive closed loop to ensure 

coordinated improvement of accuracy and efficiency, the 

inherent limitations of traditional serial workflows are 

effectively overcome. This framework provides both 

theoretical support and a reusable methodological system for 

the efficient optimization of thermo–electromagnetic coupled 

systems. From an engineering perspective, substantial 

practical value is demonstrated. The proposed approach can be 

directly integrated into the engineering design workflow of 

motor cooling systems, significantly shortening design cycles 

and reducing development costs. Its efficient and coordinated 

optimization capability facilitates the advancement of electric 

motors toward higher efficiency and increased compactness, 

thereby offering critical technical support for motor thermal 

management design in application domains such as new 

energy vehicles and industrial intelligent manufacturing. 
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