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Industrial furnace temperature control is critical to product quality, energy efficiency, and
equipment longevity, yet remains challenging due to strong system nonlinearity and model
uncertainty. Conventional Proportional-Integral-Derivative (PID) control and single
offline optimization methods are therefore inadequate for achieving optimal performance
over full operating regimes. To address these limitations, a thermal-aware genetic
algorithm—optimized PID (GA—PID) control framework with dynamic strategy switching
was proposed. A closed-loop architecture integrating thermal perception, mode decision-
making, GA optimization, and knowledge accumulation was developed to enable precise,
efficient, and robust temperature regulation in industrial furnaces. A nonlinear time-delay
model was first established based on furnace heat transfer mechanisms to quantify key
thermal parameters. A multi-source thermal perception module was then designed to
extract related feature indicators. A fuzzy inference mechanism was then employed to
achieve adaptive decision-making among three modes, with mode-specific GA strategies
tailored to distinct thermal optimization objectives. Finally, an online self-evolving
industrial furnace knowledge base was constructed to accumulate optimal GA-PID
parameters and control experience under diverse thermal operating conditions. Simulation
and industrial experiments demonstrated that the proposed dynamic GA-PID control
strategy consistently outperformed conventional offline GA—PID, classical PID, and
Particle Swarm Optimization (PSO)-PID methods across all operating modes.
Specifically, setpoint tracking overshoot was reduced to 2.3%—2.8% with rise times of 48—
55 s; steady-state temperature fluctuations were constrained within +0.18-0.20°C,
achieving thermal efficiencies of 85.3%-86.7%; and disturbance recovery times were
shortened to 9.5-11.5 s. The proposed framework provides a novel and systematic solution
for high-precision, low-energy-consumption control of complex thermal systems and
offers substantial theoretical significance and engineering application potential.

1. INTRODUCTION

time constants across different temperature ranges and
material loading conditions, leading to strong nonlinearity [7].

Industrial furnaces represent core thermal equipment in
industries such as metallurgy, mechanical manufacturing, and
chemical processing [1, 2]. The accuracy of temperature
regulation and the stability of thermal processes are directly
linked to product microstructure, mechanical properties, and
overall production energy consumption. Notably, energy
consumption associated with industrial furnaces accounts for
approximately 30-40% of total industrial energy usage [3].
With the increasing demand for product quality consistency in
high-end manufacturing and the growing emphasis on energy
conservation and emission reduction under carbon neutrality
objectives, industrial furnace thermal control systems are
required to achieve coordinated optimization of high-precision
temperature regulation, elevated energy efficiency, and strong
disturbance rejection capability [4-6]. Nevertheless, industrial
furnace thermal processes exhibit pronounced complexity.
The coupled effects of heat conduction, thermal radiation, and
convection result in dynamic variations in system gain and
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In addition, heat storage effects of furnace materials and
spatial arrangements of temperature sensors introduce
significant temperature response delays, typically ranging
from 10 to 60 s, giving rise to pronounced thermal inertia and
time-delay characteristics [8]. Fluctuations in fuel combustion
efficiency and degradation of furnace insulation performance
further induce parameter drift in thermal models, resulting in
substantial model uncertainty [9].

Moreover, multiple disturbance sources—including
variations in fuel pressure and flow rate, changes in initial
material temperature and charging quantity, and ambient
temperature  fluctuations—can readily disrupt thermal
equilibrium within the furnace [10]. As a consequence of these
characteristics, conventional fixed-parameter PID control
tuned through empirical methods struggles to simultaneously
balance dynamic response speed and steady-state accuracy
under varying operating conditions. Furthermore, PID control
optimized using single offline optimization algorithms lacks
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adaptability to dynamically changing thermal regimes, often
exhibiting weak disturbance rejection capability and elevated
energy consumption [11-13]. Therefore, the development of a
dynamic, self-adaptive GA—PID control strategy tailored to
industrial furnace thermal characteristics is of significant
practical engineering importance for enhancing thermal
control performance and reducing energy consumption. Such
an approach also provides valuable theoretical insights for the
intelligent control of complex thermal systems.

Research on industrial furnace temperature regulation has
been conducted for several decades, with traditional
approaches predominantly based on PID control and its
variants. These methods are characterized by simple structures
and ease of industrial implementation; however, they rely
heavily on accurate system models and empirical parameter
tuning, rendering them inadequate for addressing the complex
thermal characteristics inherent in industrial furnaces. In
recent years, intelligent control strategies—including fuzzy
PID, neural network—based PID, and model predictive control
(MPC)—have attracted increasing attention in industrial
furnace applications. By leveraging the nonlinear
approximation capabilities of intelligent algorithms, fuzzy
PID and neural network—based PID approaches have
demonstrated improved adaptability to system nonlinearity.
Nevertheless, fuzzy PID control suffers from strong
dependence on expert-defined fuzzy rules, while neural
network—based PID control requires large volumes of high-
quality training data, limiting their practical deployment [14-
16]. MPC achieves high control accuracy through rolling
optimization based on system models; however, its high
computational complexity imposes stringent requirements on
controller hardware, and control performance deteriorates
markedly under model mismatch conditions [17, 18]. To
address the long-standing challenge of PID parameter tuning,
heuristic optimization algorithms such as GA and PSO have
been widely employed for PID parameter optimization.
Among these methods, GA has emerged as one of the most
extensively adopted techniques owing to its strong global
search capability, robustness, and independence from explicit
system models.

Existing studies have demonstrated that PID parameters
optimized by GA can enhance steady-state temperature
regulation accuracy in industrial furnaces or reduce
optimization time through algorithmic improvements.
However, most GA—PID approaches reported in the literature
adopt an offline optimization paradigm, in which optimized
parameters remain fixed and are unable to accommodate
dynamic variations in furnace thermal operating conditions.
Although several studies have explored online GA
optimization, thermal system characteristics have not been
explicitly incorporated into the optimization strategy design,
resulting in low optimization efficiency and unstable control
performance [19]. Overall, critical gaps remain in existing
research.  Insufficient perception and  quantitative
characterization of thermal characteristics have led to poor
alignment between optimization strategies and thermal
operating conditions. Furthermore, GA optimization
objectives have primarily focused on dynamic response and
steady-state accuracy, while core thermal system requirements
such as energy consumption optimization have not been
adequately considered. In addition, dynamic matching
mechanisms between thermal operating modes and GA
optimization strategies have not been established, making it
difficult to achieve optimal control performance across the full
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operating range [20, 21]. To address these limitations, a GA—
PID control framework integrating thermal-aware perception
and dynamic mode switching was proposed, enabling precise
temperature regulation and coordinated energy optimization in
industrial furnace thermal processes.

The objectives of this study are defined below. First, a
realistic nonlinear thermal model of the industrial furnace is to
be established, enabling accurate characterization of thermal
inertia, time-delay behavior, and disturbance dynamics.
Second, a dynamic mode decision mechanism based on
thermal-aware perception is to be designed, allowing adaptive
matching between GA optimization strategies and varying
thermal operating conditions. Third, customized GA
optimization schemes are to be developed for different thermal
regimes, achieving a balanced trade-off among control
accuracy, response speed, and energy efficiency. Finally, the
effectiveness and engineering applicability of the proposed
approach are to be validated through numerical simulations
and industrial field experiments. The main contributions are
summarized below. A closed-loop control framework
integrating thermal-aware perception, mode decision-making,
GA optimization, and knowledge accumulation is proposed.
Within this framework, quantified thermal characteristic
indicators of industrial furnaces are dynamically bound to GA
optimization strategies for the first time, overcoming the
inherent limitations of conventional offline optimization.
Dedicated thermal feature indicators tailored to industrial
furnaces are further designed, providing precise inputs for
mode decision-making and GA optimization. For three
representative thermal operating modes—setpoint tracking,
steady-state holding, and disturbance recovery—differentiated
GA optimization strategies are developed to realize multi-
objective coordinated optimization of response speed, steady-
state accuracy, and energy consumption. In addition, an
online, self-evolving knowledge base specific to industrial
furnace thermal operating conditions is constructed,
accelerating optimization under disturbance scenarios and
enabling continuous improvement of control performance.

The remainder of this study is organized below. Section 2
presents the modeling and characteristic analysis of the
industrial furnace thermal system. Section 3 details the design
principles of the proposed GA-PID control framework.
Section 4 reports simulation studies and corresponding result
analyses and describes industrial field experiments for
experimental validation. Section 5 discusses robustness,
sensitivity, and thermodynamic performance advantages of
the proposed approach. Section 6 concludes the study and
outlines directions for future research.

2. MODELING AND CHARACTERISTIC ANALYSIS
OF THE INDUSTRIAL FURNACE THERMAL
SYSTEMS

2.1 Mechanism analysis of industrial furnace thermal
processes

The core thermal processes of an industrial furnace are
governed by the coupled interaction between heat generation
from fuel combustion and multipath heat transfer. Heat
produced by fuel combustion is transferred to the processed
material through heat conduction, thermal radiation, and
convection, while heat losses occur simultaneously through
furnace wall dissipation and heat carried away by flue gas. The



overall process is subject to the principle of energy
conservation. Accordingly, the thermal energy balance of an
industrial furnace can be expressed as:

Qin (t):Qmaterial(t)—i_Qloss (t)+Q_ﬂue(t) ( 1 )
where, Qix(f) denotes the thermal energy input from fuel
combustion, which is directly related to fuel flow rate and
combustion efficiency; QOmaeriat(f) represents the thermal
energy absorbed by the material and is determined by material
mass, specific heat capacity, and temperature variation; Qos(?)
corresponds to heat dissipation from the furnace body,
influenced by insulation performance and ambient
temperature; and Opm.(f) denotes the thermal energy carried
away by flue gas, which is closely associated with flue gas
flow rate and temperature. Based on the above thermal balance
relationship, the industrial furnace temperature regulation
system exhibits pronounced dynamic characteristics. Thermal
inertia arises from the heat storage effects of the furnace
structure and processed material, causing temperature
variations to lag behind changes in thermal input. Time-delay
characteristics permeate the entire process, including fuel
combustion, heat transfer, and temperature sensing.
Nonlinearity is manifested through temperature- and load-
dependent variations in combustion efficiency and heat
transfer coefficients. Disturbance sensitivity is reflected in the
susceptibility of the thermal balance to external factors such as
fluctuations in fuel flow rate and variations in material loading
conditions.

2.2 Development of a nonlinear thermal model

A nonlinear time-delay model of the industrial furnace
temperature regulation system is developed by integrating
mechanism-based analysis with data-driven modeling,
enabling accurate representation of system dynamics. In the
proposed model, fuel flow rate or electric heating power is
defined as the control input u(¢), the temperature of the furnace
core region is taken as the system output 7(¢), and external
disturbances—including fuel pressure fluctuations and
variations in material charging—are represented by d(?).
Based on thermal energy balance principles and dynamic
characteristic analysis, the governing equation for the
temperature variation rate and the measurement equation are
expressed, respectively, as:

(- K- o 2
C,rG TR @)
Tmeus(t):T(t'T)Jré(t) (3)

where, C, denotes the thermal capacity of the processed
material and Crrepresents the thermal capacity of the furnace
structure; together, these parameters determine the system’s
thermal inertia. The term K(u(?)) is a nonlinear system gain.
To capture its input-dependent variation, linear fitting is
adopted as K(u(t)) = Ko + Ki-u(t), where Ky and K; are
parameters to be identified. The term R denotes the thermal
resistance of the furnace body and reflects insulation
performance, while 7y represents ambient temperature. The
term T is the time-delay constant characterizing system
response lag, and &(¢) denotes measurement noise following a
Gaussian distribution, accounting for the sensor error. By
incorporating both nonlinear gain and time-delay effects, the
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proposed model is capable of accurately capturing the
dominant dynamic characteristics of industrial furnace thermal
systems.

2.3 Model parameter identification and characteristic
validation

A hybrid parameter identification approach combining the
least squares method and PSO is employed to determine model
parameters, thereby ensuring both estimation accuracy and
physical plausibility. The identification procedure is
conducted as follows. A step-input experiment is designed in
which the fuel flow rate is increased from 50% to 80% of its
rated value, while the corresponding furnace temperature
response is synchronously recorded. An identification
objective function is then formulated by minimizing the sum
of squared temperature response errors. PSO is subsequently
applied to solve the objective function, yielding estimates of
the key parameters Cy,, Cy, Ko, K1, R, and 1. Model accuracy is
validated using a goodness-of-fit criterion of R? > 0.95, with
model outputs compared against experimental measurements
to confirm validity. Based on the identified model, quantitative
analysis of industrial furnace thermal characteristics is
performed. Thermal inertia is quantified by C, + C; where
larger values indicate slower temperature variation. Time-
delay behavior is characterized by t, enabling analysis of delay
evolution across different temperature ranges and material
loading conditions. The degree of nonlinearity is reflected by
K, which reveals the influence of fuel flow rate on system
gain. Disturbance rejection capability is evaluated by
simulating temperature response trajectories under varying
disturbance intensities. The resulting characteristic analysis
provides a rigorous theoretical foundation for the targeted
design of subsequent control strategies.

3. DYNAMIC GA-PID OPTIMIZATION CONTROL
FRAMEWORK BASED ON THERMAL-AWARE
PERCEPTION

3.1 Overall framework architecture

A dynamic GA-PID optimization control framework is
developed with the objective of accommodating industrial
furnace thermal characteristics and achieving optimal
performance across all operating conditions. A four-level
collaborative closed-loop architecture is constructed,
comprising multi-source thermal information perception and
feature extraction, online mode decision-making based on
fuzzy inference, a three-mode GA—PID optimization engine,
and an online self-evolving thermal knowledge base. The core
logic of the framework is founded on full-process dynamic
adaptation through a “perception—decision—optimization—
memory” paradigm, thereby overcoming the limitations of
conventional fixed-parameter control and offline optimization.
Specifically, the multi-source thermal information perception
and feature extraction module functions as the information
input layer, responsible for capturing and quantifying the
thermal state of the system. The fuzzy inference—based online
mode decision module serves as the decision center, where
operating conditions are identified according to extracted
thermal features. The three-mode GA-PID optimization
engine acts as the execution core, in which customized GA
strategies are invoked to tune PID parameters for different



operating modes. The online self-evolving thermal knowledge
base constitutes the experience repository, where optimal
parameters and control knowledge are accumulated and
subsequently fed back to enhance the optimization process.
Real-time data exchange among all modules is achieved
through industrial communication buses and controllers,
enabling millisecond-level dynamic matching between control
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precision and low-energy-consumption thermal control
performance is maintained throughout all operational stages of
the industrial furnace, including start-up heating, steady-state
holding, and disturbance recovery. The overall dynamic GA—
PID optimization control framework based on thermal-aware
perception is illustrated in Figure 1.
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Figure 1. Thermal-aware dynamic GA—PID optimization control framework for industrial furnaces
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Figure 2. Dual-zone temperature dynamic GA—PID decoupled control architecture for an industrial furnace

Figure 2 illustrates the core structure of the proposed control
framework, in which dual-zone (core zone and peripheral
zone) temperature regulation is achieved through dynamic
GA-PID decoupled control. The architecture integrates zone-
specific  temperature  setpoints, thermal-feature—driven
dynamic GA-PID controllers, a dual-zone thermal coupling
compensator, and the controlled industrial furnace system,
thereby enabling decoupled and adaptive temperature control
across multiple zones.

3.2 Multi-source thermal information perception and
feature extraction module

The multi-source thermal information perception and
feature extraction module constitutes the foundation of precise
control within the proposed framework and is responsible for
three core functions: thermal state acquisition, data
preprocessing, and feature quantification. At the data
perception level, a distributed sensing network is constructed
based on the on-site layout of the industrial furnace.
Temperature sensors with an accuracy of £0.1°C are deployed
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in both the core zone and peripheral zone to acquire spatial
temperature distribution data. Fuel flow rate and pressure
sensors (accuracy +£1% full scale) are used to measure fuel
input conditions. Heat flux density sensors (accuracy £2% full
scale) are employed to capture heat transfer intensity within
the furnace. Material weighing sensors (accuracy +0.5% full
scale) record material charging quantities, while ambient
temperature  sensors monitor external environmental
conditions. All sensing data are transmitted to the controller in
real time via an industrial communication bus, with a sampling
frequency of 10 Hz selected to ensure temporal
responsiveness. At the feature extraction level, raw data are
subjected to preprocessing procedures, including noise

filtering, data synchronization, and outlier removal.
Subsequently, three categories of core thermal feature
indicators are extracted to achieve quantitative

characterization of the system state. The first indicator is the
transient thermal response intensity, denoted as /t7, which is
used to characterize the temperature response rate and thermal
inertia during start-up or setpoint change stages. It is defined
as:



_ max| 7()|

Tset' Tinitial

“4)

r

where, max | 7(7)| represents the maximum temperature rate of
change, T denotes the temperature setpoint, and Tinias 1S the
initial temperature. Larger values of /. indicate faster thermal
response and lower thermal inertia. The second indicator is the
steady-state temperature uniformity index, denoted as I,
which is used to evaluate temperature distribution uniformity
during steady-state holding. It is expressed as:

e LD

T

ISll: (5)

where, n is the number of temperature sensors, 7; represents
the temperature measured by the i-th sensor, and 7 denotes the
average furnace temperature. Smaller values of I, correspond
to more uniform temperature distributions. The third indicator
is the disturbance-induced thermal shock coefficient, denoted
as I, which quantifies the impact intensity of external
disturbances on the thermal system. It is defined as:
AT,

max

] =
dAL

(6)

where, AT,q represents the maximum temperature deviation
observed within 10 s after disturbance onset, and At denotes
the disturbance duration. Larger values of I indicate more
severe disturbance effects. Together, these three indicators
form a comprehensive quantitative representation of the
thermal state, providing reliable data support for subsequent
mode decision-making and precise adaptation of GA
optimization strategies.

3.3 Fuzzy inference—based online mode decision module

To enable accurate identification of thermal operating
conditions, a fuzzy inference system with three inputs and one
output is designed. The input variables are directly linked to
the core feature indicators generated by the multi-source
thermal perception module, namely the transient thermal
response intensity /., the steady-state temperature uniformity
index Iy, and the disturbance-induced thermal shock
coefficient 1. To balance classification accuracy and
computational complexity, each input variable is described
using three fuzzy linguistic terms—Ilow, medium, and high.
The output variable represents the thermal operating mode,
corresponding to three fundamental conditions: setpoint
tracking, steady-state holding, and disturbance recovery, with
fuzzy linguistic values mapped to these modes. Triangular
membership functions are adopted for all variables, as this
form provides high computational efficiency and clear
classification boundaries. The universes of discourse for each
variable are calibrated based on multiple sets of industrial
furnace experimental data. Specifically, the range of 7, is
defined as [0, 0.05] °C/s, the range of I, as [0, 0.01], and the
range of Iy as [0, 0.5] °C/s. These ranges are selected to fully
cover the variation of feature indicators under all operating
conditions of the industrial furnace.

The fuzzy rule base is constructed on the basis of industrial
furnace thermal process mechanisms and long-term
accumulated expert knowledge, forming a complete rule set
comprising 27 rules that cover all possible combinations of
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fuzzy linguistic values for the three input variables. The core
rule logic is designed around the intrinsic relationships
between thermal features and operating conditions. For
example, a high transient thermal response intensity, medium
steady-state temperature uniformity index, and low
disturbance-induced thermal shock coefficient correspond to
the setpoint tracking mode, reflecting an active thermal
response with minimal disturbance influence. A low transient
thermal response intensity, low steady-state temperature
uniformity index, and low disturbance-induced thermal shock
coefficient correspond to the steady-state holding mode, which
is consistent with the characteristics of slow temperature
variation and uniform distribution during constant-
temperature operation. A medium transient thermal response
intensity, medium steady-state temperature uniformity index,
and high disturbance-induced thermal shock coefficient
correspond to the disturbance recovery mode, indicating
pronounced temperature fluctuations and disruption of thermal
equilibrium following disturbance onset. The Mamdani
inference method is employed, and the inference process
consists of four stages: fuzzification, rule matching, inference
aggregation, and defuzzification. A crisp mode decision result
is generated at the output. The total decision latency is
controlled within 50 ms, fully satisfying the real-time
requirements of industrial furnace temperature regulation and
providing a reliable basis for precise switching of subsequent
optimization strategies.

3.4 Three-mode GA-PID optimization engine

The setpoint tracking mode is applicable to industrial
furnace start-up heating and step changes in temperature
setpoints. The primary requirement in this mode is rapid
response to temperature commands while strictly suppressing
overshoot, thereby preventing thermal stress damage to
furnace materials caused by abrupt temperature increases. To
meet these requirements, a GA-based global exploration
strategy is adopted for tuning the PID parameters K, K;, and
Ky Real-valued encoding is employed for parameter
representation. The ranges of K}, K;, and K, are defined as [0.1,
10], [0.01, 1], and [0, 5]. These ranges have been validated
through industrial furnace control parameter calibration
experiments and are sufficient to cover practical thermal
control demands. A multi-objective weighted fitness function
is formulated as:

J=ootwy ttwst, 7
where, o denotes overshoot, #. represents rise time, and ¢,
indicates peak time. The weighting factors are set to ®; = 0.4,
2 0.3, and 3 0.3, thereby prioritizing overshoot
suppression. Adaptive genetic operators are employed, with
the crossover probability dynamically adjusted within the
range [0.7, 0.9] and the mutation probability adaptively varied
within [0.01, 0.05]. Higher crossover and mutation rates are
applied during early iterations to expand the search space,
followed by gradual reduction to accelerate convergence in
later stages. In addition, a niching technique based on fitness
clustering is introduced to prevent premature convergence.
The population size is set to 50, and the maximum number of
generations is set to 30. Extensive experimental evaluation has
demonstrated that this parameter configuration achieves an
optimal balance between optimization accuracy and real-time
requirements.



The steady-state holding mode corresponds to the constant-
temperature processing stage after the furnace reaches the
desired setpoint. The core requirements in this mode are
extremely high steady-state temperature regulation accuracy
and reduced energy consumption, thereby avoiding product
quality degradation due to temperature fluctuations and
excessive fuel usage. To address these objectives, a hybrid
GA-PSO fine optimization strategy is developed. Random
initialization is avoided in generating the initial population.
Instead, the population is constructed around the optimal PID
parameters corresponding to the current operating condition,
with a local search radius defined as 10% of the current
parameter values. This approach effectively prevents large
parameter variations associated with global search that could
disrupt steady-state performance. A staged cooperative
optimization mechanism is adopted. First, 15 iterations of
local fine search are performed using PSO, leveraging its rapid
convergence characteristics to approach a local optimum
efficiently. Subsequently, a low-probability GA mutation
operator with a mutation rate in the range [0.005, 0.01] is
introduced to refine the PSO-optimized solution and escape
potential local optima, thereby enabling coordinated

optimization of temperature precision and energy
consumption. The fitness function is defined as:
J=0 | ISET0) Uy ®)

where, ISE is used to quantify steady-state temperature
regulation accuracy, while the average control input ua, is
employed to represent energy consumption. The weighting
factors are set to @; = 0.8 and > = 0.2, thereby prioritizing
temperature stability. The total number of iterations is limited
to 25, significantly shortening the optimization cycle and
minimizing interference with steady-state operation.

The disturbance recovery mode targets operating scenarios
in which the industrial furnace is subjected to external

Thermal data preprocessing of the
industnal furnace / GA population
imnitialization

l k=1 (k denotes the GA genertion counter) ]

|

disturbances, such as fuel pressure fluctuations or sudden
changes in material charging. The primary objective in this
mode is rapid restoration of thermal equilibrium, preventing
amplification of temperature deviations and secondary
oscillations, and avoiding further degradation of thermal
balance. To meet these requirements, a GA optimization
strategy incorporating directional mutation and historical
knowledge integration is designed. A hybrid initialization
scheme is adopted for the initial population. Specifically, 60%
of the population individuals are retrieved from the online self-
evolving thermal knowledge base by selecting optimal GA—
PID parameter sets associated with similar disturbance
scenarios. Parameter relevance is ensured through dual
matching based on /ds and disturbance type. The remaining
40% of the population is generated randomly to preserve
global search capability, thereby substantially shortening the
optimization search path. Directional mutation operators are
designed based on heuristic rules derived from common
industrial furnace disturbance characteristics. For example, an
increase in K, is encouraged when fuel pressure decreases to
enhance proportional compensation capability, whereas an
increase in K; is promoted when material charging increases to
accelerate elimination of steady-state error. Through such
guided mutation, GA is steered toward parameter regions that
enable rapid disturbance compensation, avoiding blind
exploration. The fitness function is defined as:

J=01 Lo T30 T3 AT )

where, t.. denotes recovery time, o, represents overshoot
during the recovery process, and ATy is the steady-state
temperature error after recovery. The weighting coefficients
are assigned as ®; = 0.5, ®> = 0.3, and w3 = 0.2, emphasizing
rapid recovery performance. The maximum number of
iterations is set to 20, which fully satisfies the real-time
response requirements under disturbance conditions.

L 2
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Figure 3. Thermal-feature—driven GA—PID parameter optimization workflow for an industrial furnace



Figure 3 illustrates the thermal-feature—driven GA-PID
parameter optimization workflow for the industrial furnace,
presenting the complete optimization process, including
thermal data preprocessing, GA population initialization,
evaluation of individual control performance, population
update through genetic operations, and output of optimal
parameters. The workflow is designed to accommodate
parameter tuning requirements across diverse industrial
furnace thermal operating conditions.

3.5 Online self-evolving thermal knowledge base module

The online self-evolving thermal knowledge base module
functions as the memory core of the system. Its primary role is
to store optimization knowledge covering all operating
conditions of industrial furnace temperature regulation,
thereby providing accurate prior experience for the
disturbance recovery mode while enabling continuous
evolution of control performance through dynamic knowledge
updating. By means of structured storage and intelligent
retrieval mechanisms, a strong association between control
experience and operating-condition features is established,
significantly enhancing the response efficiency and adaptation
accuracy of optimization strategies.

The knowledge base is implemented using an SQLite
database and adopts a three-dimensional structured storage
architecture ~ comprising  operating-condition  features,
optimization parameters, and thermal performance. This
design ensures logical data organization and efficient retrieval.
The operating-condition feature dimension includes mode
type, setpoint temperature range (low temperature: 200—
400°C; medium temperature: 400—-600°C; high temperature:
600-1000°C), disturbance type (fuel disturbance, material
disturbance, and environmental disturbance), and core thermal
feature indicators, forming a comprehensive quantitative
description of operating conditions. The optimization-
parameter dimension stores the optimal PID parameters and
GA operator parameters corresponding to each condition. The
PID parameters include proportional, integral, and derivative
gains, while the GA operator parameters comprise crossover
probability, mutation probability, and population size,
providing direct reference values for subsequent optimization.
The thermal-performance dimension records control
performance metrics and thermodynamic indicators. Control
performance metrics include overshoot, rise time, steady-state
error, and recovery time, whereas thermodynamic indicators
cover thermal efficiency, energy consumption density, and
heat loss rate, supplying quantitative criteria for evaluating
knowledge quality. Through precise mapping among
operating-condition features, optimization parameters, and
thermal performance, rapid knowledge localization and
invocation are achieved.

To ensure timeliness and efficiency of the knowledge base,
a dynamic update strategy based on rolling elimination and
performance priority is employed. The update triggering
mechanism is governed by a weighted comprehensive thermal
performance score, defined as:

§=0.30+0.24,+0.3AT,+0.2u (10)

avg
where, ¢ denotes overshoot, #- represents rise time, AT
indicates steady-state temperature error, and u,, denotes the
average control input. When the comprehensive performance
score associated with a newly optimized GA result under a
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given operating condition exceeds the corresponding historical
record stored in the knowledge base by more than 10%, the
historical data are automatically replaced to ensure that only
optimal experience is retained. For operating conditions
associated with multiple historical records, clustering analysis
is employed to retain the top five data sets with the best
performance, while redundant and low-efficiency data are
eliminated. In addition, a periodic maintenance mechanism is
implemented, = whereby the knowledge base is
comprehensively reviewed every 72 h, and low-performance
data with fewer than three retrieval instances are removed,
further streamlining the knowledge base structure and
improving retrieval efficiency.

Knowledge base invocation primarily serves the
disturbance recovery mode, with a dual-matching retrieval
logic based on disturbance type and thermal feature similarity
to achieve accurate adaptation of prior knowledge. The
retrieval process is executed in three steps. First, the current
disturbance type is identified, and its matching degree with
historical disturbance types stored in the knowledge base is
computed, with matching scores ranging from 0 to 1. Second,
Euclidean distance is employed to evaluate the similarity
between current thermal feature indicators and historical data,
thereby quantifying feature correspondence. Finally, the top
three historical data sets with a disturbance-type matching
degree not less than 0.8 and the highest feature similarity are
selected, and their associated optimal PID parameters and GA
operator parameters are extracted as the initial population for
GA optimization in the disturbance recovery mode. Through
effective reuse of prior knowledge, this retrieval mechanism
significantly shortens the GA optimization search path.
Experimental validation has demonstrated that the
optimization time can be reduced by approximately 40%—
60%, substantially enhancing control response speed under
disturbance scenarios.

4. SIMULATION
ANALYSIS

EXPERIMENTS AND RESULTS

4.1 Simulation design

To validate the effectiveness of the proposed thermal-aware
dynamic GA—-PID optimization control method, a simulation
platform for the industrial furnace temperature regulation
system was developed in MATLAB/Simulink. Model
parameters were adopted from the identification results
presented in Section 2 and are specified as follows: material
thermal capacity of 1.2 x 10° J/°C, furnace thermal capacity of
8.5 x 10* J/°C, base gain of 0.8, gain coefficient of 0.02,
furnace thermal resistance of 5.2°C-s/J, and a time-delay
constant of 25 s. The simulation platform integrates five core
modules. The industrial furnace thermal model module is
constructed based on the nonlinear time-delay equations
established previously, enabling accurate reproduction of
thermal inertia, time-delay behavior, and nonlinearity. A
multi-source disturbance generation module is incorporated to
simulate typical disturbances, including fuel pressure
fluctuations, variations in material charging, and ambient
temperature disturbances. The proposed control framework
module is implemented using customized Simulink blocks,
fully integrating thermal-aware perception, online mode
decision-making, three-mode GA—PID optimization, and the
online self-evolving thermal knowledge base. A comparative



control module embeds three benchmark methods—
conventional PID, offline GA-PID, and PSO-PID—for
horizontal performance comparison. In addition, a data
acquisition and analysis module is employed to record
temperature response trajectories, control input variations, and
thermal performance indicators in real time, providing
comprehensive data support for subsequent analysis.

To comprehensively cover the principal operating scenarios
of industrial furnaces, three representative simulation
conditions were designed. The setpoint tracking condition
focuses on start-up heating and stepwise temperature
adjustment, with the setpoint increased from 200°C to 600°C
and subsequently to 800°C, in the absence of external
disturbances. The steady-state holding condition targets
constant-temperature operation at 800°C, superimposed with a
periodic fuel pressure disturbance of £5% and a period of 60
s. The sudden disturbance condition maintains an 800°C
setpoint, while a step increase of 50% in material charging is
introduced at 100 s and a step decrease of 10% in fuel pressure
is applied at 300 s, with particular emphasis placed on
evaluating disturbance rejection capability.

To systematically assess the comprehensive performance of
the control methods, a scientific evaluation framework is
established from two complementary dimensions: control
performance and thermodynamic performance, in line with the
core concerns of thermal-engineering journals. Control
performance metrics include overshoot, rise time, steady-state
error, and recovery time. Overshoot characterizes dynamic
response smoothness, rise time reflects response rapidity,
steady-state error quantifies steady-state regulation accuracy,
and recovery time evaluates the system’s ability to restore
performance following disturbances. Thermodynamic
performance metrics encompass thermal efficiency, energy
consumption density, and temperature uniformity. Thermal
efficiency is defined as the ratio of heat absorbed by the
material to the heat input from fuel, directly indicating energy
utilization efficiency. Energy consumption density is
quantified by the average control input per unit time, providing
an intuitive measure of energy usage during control.
Temperature uniformity is represented by the steady-state

temperature uniformity index, reflecting the balance of
thermal distribution within the furnace. The coordinated use of
these two categories of metrics enables a comprehensive and
objective comparison of different control strategies in terms of
dynamic response, steady-state regulation, and energy
utilization, thereby providing an objective basis for validating
the effectiveness of the proposed approach.

4.2 Simulation results and analysis

4.2.1 Operating condition 1: Setpoint tracking performance

The primary objective of the setpoint tracking condition is
to evaluate the dynamic response performance of different
control strategies during start-up heating and temperature step
changes. Key performance indicators, including overshoot,
rise time, and peak time, are emphasized. A detailed
comparison of performance metrics is presented in Table 1.

As indicated by the data in Table 1, the proposed method
exhibits pronounced performance advantages during both
temperature step transitions. For the 200°C — 600°C step, the
overshoot is limited to 2.5%, corresponding to reductions of
67.9%, 79.7%, and 55.4% compared with conventional offline
GA-PID, conventional PID, and PSO-PID methods,
respectively. The rise time is reduced to 48 s, representing
decreases of 22.6%, 36.0%, and 12.7% relative to the three
benchmark methods. The peak time is also significantly
shortened to 72 s. Consistent performance superiority is
maintained during the 600°C — 800°C step, where the
overshoot is further reduced to 2.3% and the rise time is
shortened to 51 s. These results demonstrate that the GA-based
global exploration optimization strategy designed for the
setpoint tracking mode effectively accommodates the
pronounced thermal inertia of industrial furnaces. Through
adaptive crossover and mutation rates combined with niching
mechanisms, global optimal tuning of PID parameters is
achieved. As a result, rapid dynamic response is ensured while
overshoot is precisely suppressed, thereby mitigating the risk
of thermal stress damage to furnace structures caused by
abrupt temperature increases.

Table 1. Performance comparison under setpoint tracking conditions

200°C—600°C Step

600°C—800°C Step

Control Method Overshoot ¢ Rise Time#  Peak Time ¢, Overshoot o (%) Rise Time ¢ Peak Time #,
(%) ) (O] (O] ()
Proposed method 2.5 48 72 23 51 76
Conventional offline GA-PID 7.8 62 95 7.5 65 98
Conventional PID 12.3 75 118 11.9 78 122
PSO-PID 5.6 55 83 5.3 58 86

4.2.2 Operating condition 2: Steady-state holding performance

The steady-state holding condition is designed to evaluate
control performance during constant-temperature operation,
with particular emphasis on steady-state regulation accuracy
and energy utilization efficiency. Core evaluation metrics
include steady-state temperature fluctuation, temperature
uniformity index, thermal efficiency, and energy consumption
density. The corresponding quantitative performance
indicators are summarized in Table 2.

As shown in Table 2, the proposed method achieves the best
overall performance during the steady-state holding stage. The
steady-state temperature fluctuation is constrained to +0.18°C,
corresponding to reductions of 60.0%, 80.4%, and 43.8%
relative to conventional offline GA—PID, conventional PID,
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and PSO-PID methods, respectively. The temperature
uniformity index is reduced to 0.0025, indicating a
substantially more uniform thermal distribution within the
furnace compared with the benchmark methods. In terms of
thermodynamic performance, the thermal efficiency attained
by the proposed method reaches 86.7%, representing
improvements of 8.3, 15.2, and 5.1 percentage points over
conventional offline GA—PID, conventional PID, and PSO—
PID methods, respectively. The energy consumption density is
reduced to 18.2 kW-h/m?, corresponding to decreases of
11.2%, 21.2%, and 5.7% compared with the benchmark
methods. These advantages are attributed to the hybrid GA—
PSO fine optimization strategy adopted for the steady-state
holding mode. Rapid convergence to locally optimal



parameters is first achieved through PSO, followed by low-
probability genetic mutation to escape local optima, thereby
enabling coordinated optimization of temperature regulation
accuracy and energy consumption. In addition, the
optimization objective is formulated around the integral of
squared steady-state error and the average control input,
ensuring that temperature stability is maintained while fuel
consumption and heat loss are minimized. This optimization

enhancement in industrial furnace operation.

4.2.3 Operating condition 3: Sudden disturbance performance

The sudden disturbance condition is designed to evaluate
the robustness of different control strategies under external
perturbations. Key performance metrics include recovery
time, overshoot during the recovery process, and steady-state
error after recovery. A quantitative comparison of disturbance

philosophy is well aligned with the core industrial rejection performance is provided in Table 3.
requirements for energy conservation and efficiency
Table 2. Performance comparison under steady-state holding conditions
Steady-State Temperature Temperature Thermal Energy Consumption Density
Control Method Fluctuation (°C) Uniformity Index Efficiency # (%) Uavo (KW-h/m?)
Proposed method 0.18 0.0025 86.7 18.2
PSO-PID 0.32 0.0046 81.6 19.3
Conventional offline
GA-PID 0.45 0.0068 78.4 20.5
Conventional PID 0.92 0.0123 71.5 23.1

Table 3. Performance comparison under sudden disturbance conditions

Recovery Time

Recovery Overshoot Post-Recovery Steady-State Error

Control Method Disturbance Scenario tuc (5) Ouec (%) AT, (°C)
Material charging +50% 10.8 1.2 0.21
Proposed method Fuel pressure —10% 9.5 1.0 0.19
Material charging +50% 17.3 3.1 0.38
PSO-PID Fuel pressure —10% 15.7 2.8 0.35
Conventional Material charging +50% 21.5 4.8 0.56
offline GA-PID Fuel pressure —10% 20.0 4.5 0.52
. Material charging +50% 32.6 8.3 1.12
Conventional PID Fuel pressure —10% 30.2 7.9 1.05

As indicated by the data in Table 3, the proposed method
demonstrates superior disturbance recovery performance
under both sudden disturbance scenarios. When a 50%
increase in material charging is introduced, the recovery time
is limited to 10.8 s, corresponding to reductions of 49.8%,
66.9%, and 37.6% relative to conventional offline GA—PID,
conventional PID, and PSO-PID methods, respectively. The
recovery overshoot is constrained to 1.2%, substantially lower
than the values observed for the benchmark methods (4.8%,
8.3%, and 3.1%). In addition, the post-recovery steady-state
error is reduced to 0.21°C, ensuring rapid restoration of
temperature to the vicinity of the setpoint. Under the fuel
pressure decrease of 10%, recovery performance is further
improved, with the recovery time shortened to 9.5 s. Relative
reductions of 52.2%, 68.4%, and 39.8% are achieved
compared with conventional offline GA-PID, conventional
PID, and PSO-PID methods, respectively, while recovery
overshoot and steady-state error remain at the lowest levels
among all methods. These results are attributed to the
synergistic effect of the directional mutation strategy and the
online self-evolving thermal knowledge base integrated into
the proposed method. The knowledge base rapidly retrieves
optimal parameter sets associated with similar disturbance
types and thermal feature patterns, providing high-quality
initial populations for GA optimization and significantly
shortening the search path. Meanwhile, the directional
mutation operator guides the optimization process toward
effective disturbance compensation through heuristic rules,
avoiding blind exploration. As a result, rapid and smooth
recovery following disturbances is achieved, effectively
preventing further degradation of thermal equilibrium.

To further verify the adaptability of the proposed dynamic
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GA-PID method to the pronounced thermal inertia of
industrial furnaces, as well as its control robustness under
thermal parameter perturbations, response tests were
conducted under scenarios involving core-zone temperature
step disturbances, setpoint adjustments, and fuel pressure
variations.

Core-zone temperature (°C)

-~ Proposed dynamic GA-PID method
PID

500 1000 1500

Tume (s)

Figure 4. Comparison of control response curves under a
core-zone temperature step disturbance in an industrial
furnace

Figure 4 illustrates the response characteristics under a core-
zone temperature step disturbance. Under a target temperature
step of 1.0°C, the rise time achieved by the proposed dynamic
GA-PID method is approximately 200 s, while the overshoot
is constrained to about 5%. In contrast, the conventional PID
method exhibits a prolonged rise time of approximately 250 s
and a substantially larger overshoot of 18%. This performance
disparity can be attributed to the directional optimization of



PID parameters enabled by GA. To compensate for the
delayed temperature response induced by the large thermal
inertia of the industrial furnace, the derivative action is
strengthened during GA-based tuning to enhance sensitivity to
temperature variation rates, while the initial accumulation rate
of the integral action is attenuated. Through this coordinated
adjustment, rapid tracking of temperature commands is
achieved while preventing overshoot accumulation caused by
thermal inertia—induced lag. As a result, temperature
regulation performance is improved in a manner that
effectively balances dynamic responsiveness and overshoot
suppression, thereby aligning with practical requirements for
mitigating thermal stress in furnace materials.

Core-zone temperature (°C)
Fuel control mput (kW)

Time (10 8)

Figure 5. Control response under core-zone temperature
setpoint step adjustment in an industrial furnace
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Figure 6. Control response under a fuel pressure setpoint
step adjustment in an industrial furnace

Figures 5 and 6 present the response results under thermal-
parameter perturbation conditions. During step adjustments of
the core-zone temperature setpoint, temperature regulation is
completed within 8 s using the proposed method, while the
fluctuation amplitude of the fuel control input is constrained
to within 0.3 kW and persists for no longer than 2 s. Reduced
fuel input fluctuation is associated with an approximately 4%
decrease in localized heat loss within the furnace, thereby
directly improving thermal efficiency. Under fuel pressure
variation conditions, the maximum deviation of the core-zone
temperature is limited to 0.1°C, and steady state is restored
within 5 s, whereas conventional control approaches typically
exhibit temperature deviations exceeding 0.3°C in comparable
scenarios. This enhanced robustness is attributed to the
parameter self-adaptation mechanism of the dynamic GA-PID
method. When perturbations in thermal parameters alter
system characteristics, GA rapidly matches parameter
templates associated with similar operating conditions stored
in the knowledge base. Subsequently, PID parameters are fine-
tuned according to current thermal feature indicators,
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effectively compensating for control deviations induced by
perturbations and maintaining stable furnace temperature
regulation.

The experimental results presented above demonstrate that
the proposed dynamic GA-PID method achieves effective
adaptation to the pronounced thermal inertia of industrial
furnaces through global optimization of PID parameters
enabled by GA, thereby realizing a favorable balance between
rapid dynamic response and low overshoot. In addition, stable
control accuracy is maintained under thermal-parameter
perturbations through the incorporated parameter self-
adaptation mechanism. As a result, reliable temperature
regulation is ensured despite variations in fuel pressure and
other thermal parameters, providing robust technical support
for efficient, low-damage operation of industrial furnaces.

4.3 Industrial field experiment validation design

To verify the engineering applicability of the proposed
control method, industrial field experiments were conducted
on a 200 kW gas-fired industrial furnace at a mechanical
manufacturing facility. The furnace had a rated temperature of
1000°C and a chamber volume of 12 m? covering typical
thermal  processing  requirements in  mechanical
manufacturing. To ensure accurate data acquisition and stable
execution of control strategies, targeted modifications were
implemented on the experimental platform. Six temperature
sensors were distributed across the furnace core zone and
peripheral zone, while two heat flux density sensors and one
fuel flow sensor and one fuel pressure sensor were additionally
installed to construct a comprehensive thermal state perception
network. An edge computing controller with a processing
frequency of no less than 2.0 GHz and memory of no less than
4 GB was deployed to run the proposed dynamic GA-PID
optimization control framework and benchmark control
algorithms. A data acquisition system with a sampling
frequency of 10 Hz was established to record key operational
variables in real time, including furnace temperature, fuel flow
rate, and fuel pressure. In addition, a dedicated disturbance
simulation device was configured to accurately emulate
typical industrial disturbances, such as fuel pressure
fluctuations and variations in material charging, thereby
providing controllable conditions for disturbance rejection
evaluation.

The experimental protocol was designed in alignment with
the simulation scenarios and consisted of three progressive
stages to ensure consistency and comprehensive validation
across the full range of industrial furnace operating conditions.
Stage 1 corresponds to the setpoint tracking experiment, in
which the temperature setpoint is increased stepwise from
300°C to 500°C and subsequently to 700°C. Dynamic response
performance during heating and setpoint adjustment is
emphasized, with temperature response trajectories and
energy consumption data recorded simultaneously. Stage 11
corresponds to the steady-state holding experiment, where the
temperature is maintained at 700°C for a continuous duration
of 72 h. During this period, periodic fuel pressure disturbances
of +5% are superimposed, and steady-state control accuracy
and energy utilization efficiency under long-term constant-
temperature operation are evaluated through recorded
temperature fluctuation data and thermal efficiency metrics.
Stage III corresponds to the sudden disturbance experiment,
conducted under a constant temperature of 700°C, in which
abrupt disturbances are introduced by simulating a 40%



increase in material charging and a 15% decrease in fuel
pressure. Disturbance recovery capability is emphasized, and
full recovery process data are recorded. To reduce
experimental uncertainty, comparative tests were performed in
all stages using four control strategies: the proposed method,
conventional offline GA—PID, conventional PID, and PSO—
PID. Each experiment was repeated three times for each
control strategy, and the averaged results were reported,
ensuring the reliability of the validation results and their
statistical significance.

4.4 Industrial field experiment results and analysis

4.4.1 Stage I: Setpoint tracking experiment results

The setpoint tracking experiment was conducted to evaluate
the dynamic response performance of different control
strategies during actual industrial furnace heating and
temperature step adjustments. The primary evaluation metrics
include overshoot, rise time, and peak time. A detailed
comparison of performance indicators for the four control
methods is provided in Table 4.

As indicated by the data in Table 4, superior dynamic
response performance is consistently achieved by the proposed
method during both temperature step transitions. For the
300°C — 500°C step, the overshoot is limited to 2.8%,
representing reductions of 62.7%, 76.3%, and 47.2% relative

compared with the three benchmark methods. The peak time
is shortened to 78 s, which is substantially lower than the
values observed for the comparison methods (102 s, 120 s, and
86 s). Consistent performance advantages are maintained
during the 500°C — 700°C step, where the overshoot is further
reduced to 2.6%, and the rise time and peak time are shortened
to 55 s and 82 s, respectively. These experimental results
exhibit strong agreement with the simulation trends,
confirming that the GA-based global exploration optimization
strategy designed for setpoint tracking effectively
accommodates the actual thermal characteristics of industrial
furnaces. Through adaptive crossover and mutation rates
combined with niching techniques, precise tuning of PID
parameters is achieved, enabling rapid heating while
effectively suppressing overshoot. Consequently, thermal
stress induced by abrupt temperature increases is mitigated,
satisfying industrial requirements for stable heating processes.

4.4.2 Stage II: Steady-state holding experiment results

The steady-state holding experiment was conducted to
evaluate steady-state temperature regulation accuracy and
energy utilization efficiency during long-term constant-
temperature operation of the industrial furnace. The primary
evaluation metrics include average steady-state temperature
fluctuation, temperature uniformity index, average thermal
efficiency, and average energy consumption density. A

to conventional offline GA—PID, conventional PID, and PSO— quantitative comparison of performance indicators is
PID methods, respectively. The rise time is reduced to 52 s, presented in Table 5.
corresponding to decreases of 19.7%, 31.6%, and 10.3%
Table 4. Performance comparison of setpoint tracking experiments
300°C — 500°C Step 500°C — 700°C Step
Control Method Ovel(*i/h;)ot ¢ Rise ;ls“;me t Peak(z)lme ty Overshoot 6 (%) Rise Time#, (s) Peak Time £, (s)
0
Proposed method 2.8 52 78 2.6 55 82
PSO-PID 53 58 86 5.1 61 89
Conventional offline GA-PID 7.5 65 102 7.2 68 105
Conventional PID 11.8 76 120 11.5 79 124

Table 5. Performance comparison of steady-state holding experiments

Average Steady-State Temperature Temperature Uniformity Average Thermal

Control Method Fluctuation (x°C) Index I Efficiency n (%)
Proposed method 0.2 0.0028 85.3
PSO-PID 0.3 0.0043 80.5
Conventional offline GA-PID 0.42 0.0065 77.5
Conventional PID 0.88 0.0118 70.8

As shown in Table 5, the proposed method exhibits a
pronounced overall performance advantage during long-term
steady-state holding operation. The average steady-state
temperature fluctuation is limited to £0.20°C, corresponding
to reductions of 52.4%, 77.3%, and 26.7% relative to
conventional offline GA—PID, conventional PID, and PSO—
PID methods, respectively. The temperature uniformity index
is reduced to 0.0028, indicating a highly uniform thermal
distribution within the furnace and effectively mitigating the
adverse impact of localized temperature deviations on product
quality. From a thermodynamic perspective, the average
thermal efficiency achieved by the proposed method reaches
85.3%, representing improvements of 7.8, 14.5, and 4.8
percentage points compared with conventional offline GA—
PID, conventional PID, and PSO-PID methods, respectively.
In addition, the average energy consumption density is
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reduced to 17.9 kW-h/m?, corresponding to decreases of
10.5%, 20.3%, and 5.3% relative to the benchmark methods.
These advantages are attributed to the hybrid GA—PSO fine
optimization strategy adopted for the steady-state holding
mode. PSO enables rapid convergence toward locally optimal
parameters, ensuring stable steady-state regulation, while low-
probability genetic mutation facilitates escape from local
optima, thereby achieving coordinated optimization of
temperature accuracy and energy consumption. Moreover,
continuous operation over 72 h confirms the long-term
stability of the proposed method, providing reliable support for
uninterrupted  industrial production and demonstrating
substantial engineering applicability.

4.4.3 Stage III: Sudden disturbance experiment results
The sudden disturbance experiment was conducted to



evaluate the robustness of different control strategies under
typical industrial disturbances. The primary evaluation metrics
include recovery time, overshoot during the recovery process,

and post-recovery steady-state error. A comparative summary
of performance indicators for the four control methods under
two sudden disturbance scenarios is presented in Table 6.

Table 6. Performance comparison of sudden disturbance experiments

Recovery Time t..c

Recovery Overshoot o..c Post-Recovery Steady-State

Control Method Disturbance Scenario ) (%) Error AT, (°C)
Material charging +40% 11.5 1.5 0.23
Proposed method Fuel pressure —15% 102 13 0.21
Material charging +40% 16.8 2.9 0.36
PSO-PID Fuel pressure —15% 155 2.6 0.33
Conventional offline Material charging +40% 20.8 4.2 0.53
GA-PID Fuel pressure —15% 19.3 3.9 0.49
. Material charging +40% 31.2 7.8 1.05
Conventional PID Fuel pressure —15% 29.5 7.5 1.01

As indicated by the data in Table 6, the proposed method
demonstrates outstanding disturbance recovery performance
under both sudden disturbance scenarios. When a 40%
increase in material charging is introduced, the recovery time
is limited to 11.5 s, corresponding to reductions of 44.7%,
63.1%, and 31.5% relative to conventional offline GA—PID,
conventional PID, and PSO-PID methods, respectively. The
recovery overshoot is constrained to 1.5%, which is
substantially lower than the wvalues observed for the
benchmark methods (4.2%, 7.8%, and 2.9%). In addition, the
post-recovery steady-state error is reduced to 0.23°C, ensuring
rapid restoration of temperature to the vicinity of the setpoint
without noticeable deviation. Under the fuel pressure decrease
of 15%, the recovery time is further shortened to 10.2 s,
representing reductions of 47.2%, 65.4%, and 34.2%
compared with conventional offline GA-PID, conventional
PID, and PSO-PID methods, respectively. Recovery
overshoot and post-recovery steady-state error are also
maintained at the lowest levels among all methods. These
results provide strong validation of the synergistic
effectiveness of the directional mutation strategy and the
online self-evolving thermal knowledge base integrated into
the proposed method. By rapidly retrieving optimal parameter
sets associated with similar disturbance types and real-time
thermal feature patterns, the knowledge base supplies high-
quality initial populations for GA optimization, thereby
significantly shortening the search path. Meanwhile, the
directional mutation operator guides the optimization process
toward effective disturbance compensation through heuristic
rules, avoiding blind exploration. Consequently, rapid and
smooth recovery following sudden disturbances is achieved,
effectively ensuring stable operation of the industrial furnace
thermal system and meeting the control requirements imposed
by complex disturbance environments in industrial practice.

5. DISCUSSION

The thermodynamic performance advantages of the
proposed method primarily originate from deep adaptation to
the intrinsic thermal characteristics of industrial furnaces and
from dynamic regulation aligned with fundamental energy
conservation principles. In the setpoint tracking mode, the
GA-based global exploration strategy explicitly accounts for
pronounced thermal inertia and time-delay effects, enabling
precise tuning of PID parameters to suppress temperature
overshoot and thereby prevent additional heat losses induced
by abrupt temperature increases. In the steady-state holding
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mode, the hybrid GA-PSO optimization strategy targets
coordinated improvement of temperature uniformity and
energy consumption, where fine adjustment of the control
input reduces temperature fluctuations and, consequently,
lowers fuel consumption and furnace heat loss. In the
disturbance recovery mode, the combination of directional
mutation and knowledge-base retrieval enables rapid
restoration of thermal equilibrium, effectively avoiding
reductions in thermal efficiency caused by external
disturbances. Through the coordinated action of these multi-
modal optimization strategies, the industrial furnace thermal
system is maintained near an optimal balance among energy
input, energy absorption, and energy dissipation, ultimately
achieving thermodynamic optimization characterized by
enhanced thermal efficiency and reduced energy consumption.

In addition, strong robustness is exhibited by the proposed
method in the presence of model parameter perturbations. To
evaluate robustness, representative perturbation scenarios are
introduced in simulation, including £20% variation in time
delay, £30% variation in system gain, and +15% variation in
thermal capacity. Comparative analysis of performance
variations among four control strategies indicates that the
relative change rates of key control performance indicators for
the proposed method remain within 8% under parameter
perturbations. By contrast, performance variation ranges of
15%-22%, 25%-35%, and 12%—-18% are observed for
conventional offline GA—PID, conventional PID, and PSO—
PID methods, respectively. This robustness advantage is
attributed to the integrated thermal-feature perception module,
which captures perturbation-induced variations in thermal
characteristics in real time. Through online mode decision-
making and dynamic adjustment of GA optimization
strategies, control deviations caused by parameter changes are
adaptively compensated, thereby ensuring stable system
performance.

A systematic sensitivity analysis is conducted using the
control-variable method to quantify the influence of key
parameters on control performance and to determine their
optimal ranges and selection rationale. For the GA population
size, a significant improvement in control performance is
observed as the population size increases from 30 to 50, with
overshoot reduced by approximately 30% and recovery time
shortened by about 25%. However, when the population size
exceeds 50, performance gains fall below 5%, while
computational cost increases markedly. Consequently, a
population size of 50 is identified as the optimal trade-off
between performance improvement and computational
efficiency. With respect to fuzzy inference thresholds,



excessively high thresholds result in mode misclassification
rates exceeding 8%, whereas overly low thresholds induce
frequent mode switching and control instability. Based on
experimental calibration, the optimal threshold ranges are
determined to be 0.01-0.03°C/s for transient thermal response
intensity, 0.003—0.007 for the steady-state temperature
uniformity index, and 0.1-0.3°C/s for the disturbance thermal
shock coefficient. Regarding the knowledge-base similarity
threshold, a value of 0.8 is found to ensure high-quality initial
populations, leading to a 45% improvement in optimization
efficiency while keeping the occurrence rate of unmatched
data below 3%. Accordingly, 0.8 is selected as the optimal
threshold.

Although the proposed method demonstrates substantial
advantages in both control performance and thermodynamic
efficiency, three limitations remain to be addressed. First,
construction of the fuzzy inference rule base relies on expert
knowledge and experimental data, resulting in limited
adaptability to extreme thermal operating conditions, such as
ultra-high temperatures above 1000°C or severe large-load
disturbances. Second, the computational complexity of the
GA-based optimization strategy exceeds that of conventional
control methods, which may constrain deployment on low-
computing-power edge controllers. Third, the current
optimization objectives do not explicitly account for pollutant
emissions, such as nitrogen oxides (NOx), leaving a gap
relative to the requirements of green and low-carbon industrial
furnace operation. Future research directions may therefore be
focused on three aspects. First, reinforcement learning
techniques may be integrated to enable automatic optimization
of the fuzzy inference rule base, thereby enhancing
adaptability under extreme operating conditions. Second,
lightweight optimization algorithms, such as quantum GAs or
micro-GA variants, may be employed to reduce computational
complexity and improve compatibility with low-power
hardware platforms. Third, multi-objective optimization
frameworks may be established to simultaneously balance
temperature control accuracy, energy consumption, and
pollutant emissions, thereby promoting high-efficiency and
low-carbon operation of industrial furnaces.

6. CONCLUSIONS AND OUTLOOK

To address the inherent nonlinearity, thermal inertia, time-
delay characteristics, and variable operating disturbances of
thermal control systems in industrial furnaces, a GA-PID
optimization control framework integrating thermal-feature
perception and dynamic strategy switching was developed.
Through systematic investigation encompassing theoretical
modeling, numerical simulation, and industrial field
validation, the following principal conclusions were drawn.
First, a nonlinear thermal model of the industrial furnace was
established, by which thermal inertia, time delay, and
disturbance characteristics were accurately captured. A
goodness-of-fit exceeding 0.95 was achieved, providing a
reliable theoretical basis for control strategy design. Second, a
multi-source thermal information perception and feature
extraction method was designed, enabling effective
quantification of transient thermal response intensity, steady-
state temperature uniformity, and the disturbance thermal
shock coefficient, thereby providing precise data support for
mode decision-making and GA-based optimization. Third, a
three-mode GA-PID optimization engine was proposed,
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wherein global exploration, local fine optimization, and
directional mutation integrated with historical knowledge
were customized, thereby achieving coordinated optimization
of control performance and thermodynamic performance
across the full operating range. Fourth, an online self-evolving
thermal knowledge base was constructed, significantly
enhancing optimization efficiency under disturbance scenarios
and reducing recovery time by approximately 40%—60%,
thereby enabling continuous evolution of control performance.

Simulation studies and industrial field experiments
consistently verified the effectiveness of the proposed method
and demonstrated comprehensive performance advantages
across the principal operating conditions of industrial
furnaces. Under setpoint tracking conditions, overshoot was
limited to 2.3%-2.8%, representing reductions exceeding
47.2% relative to benchmark methods, while rise time was
shortened to 48-55 s, corresponding to improvements of more
than 10.3%. Under steady-state holding conditions, the
average steady-state temperature fluctuation was constrained
to £0.18-0.20°C, representing reductions of more than 26.7%,
while the average thermal efficiency reached 85.3%—-86.7%
and energy consumption was reduced by 5.3%—-21.2%. Under
sudden disturbance conditions, recovery time was limited to
9.5-11.5 s, corresponding to reductions exceeding 31.5%
compared with benchmark methods, while recovery overshoot
remained no greater than 1.5%. The close agreement between
industrial field experiment results and simulation trends
confirms effective adaptation of the proposed method to real
thermal characteristics of industrial furnaces, demonstrating
substantial engineering applicability.

Future research could be extended and deepened on the
basis of the present findings to promote technological iteration
and large-scale engineering deployment. On one hand,
expansion toward multi-zone industrial furnace temperature
coordinated control could be pursued, in which spatial
coupling of in-furnace temperature distributions is explicitly
considered and distributed GA—PID optimization control
strategies are developed to further enhance overall temperature
uniformity. On the other hand, digital twin technology could
be integrated to construct virtual-physical mapping models of
industrial furnaces, enabling predictive optimization of
thermal operating conditions and intelligent fault diagnosis,
thereby improving the intelligence level of system operation
and maintenance. In addition, deep integration of artificial
intelligence algorithms, such as deep learning and
reinforcement learning, with GAs could be explored to further
enhance the adaptability and robustness of control strategies.
Moreover, large-scale application validation across different
types of industrial furnaces—including electric furnaces and
oil-fired furnaces—could be conducted to accumulate control
experience under diverse thermal scenarios. Such efforts are
expected to facilitate engineering implementation and
standardized deployment of the proposed method, ultimately
providing more comprehensive technical support for the high-
efficiency and low-carbon operation of industrial furnaces.
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