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 Industrial furnace temperature control is critical to product quality, energy efficiency, and 

equipment longevity, yet remains challenging due to strong system nonlinearity and model 

uncertainty. Conventional Proportional–Integral–Derivative (PID) control and single 

offline optimization methods are therefore inadequate for achieving optimal performance 

over full operating regimes. To address these limitations, a thermal-aware genetic 

algorithm–optimized PID (GA–PID) control framework with dynamic strategy switching 

was proposed. A closed-loop architecture integrating thermal perception, mode decision-

making, GA optimization, and knowledge accumulation was developed to enable precise, 

efficient, and robust temperature regulation in industrial furnaces. A nonlinear time-delay 

model was first established based on furnace heat transfer mechanisms to quantify key 

thermal parameters. A multi-source thermal perception module was then designed to 

extract related feature indicators. A fuzzy inference mechanism was then employed to 

achieve adaptive decision-making among three modes, with mode-specific GA strategies 

tailored to distinct thermal optimization objectives. Finally, an online self-evolving 

industrial furnace knowledge base was constructed to accumulate optimal GA–PID 

parameters and control experience under diverse thermal operating conditions. Simulation 

and industrial experiments demonstrated that the proposed dynamic GA–PID control 

strategy consistently outperformed conventional offline GA–PID, classical PID, and 

Particle Swarm Optimization (PSO)–PID methods across all operating modes. 

Specifically, setpoint tracking overshoot was reduced to 2.3%–2.8% with rise times of 48–

55 s; steady-state temperature fluctuations were constrained within ±0.18–0.20℃, 

achieving thermal efficiencies of 85.3%–86.7%; and disturbance recovery times were 

shortened to 9.5–11.5 s. The proposed framework provides a novel and systematic solution 

for high-precision, low-energy-consumption control of complex thermal systems and 

offers substantial theoretical significance and engineering application potential. 
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1. INTRODUCTION 

 

Industrial furnaces represent core thermal equipment in 

industries such as metallurgy, mechanical manufacturing, and 

chemical processing [1, 2]. The accuracy of temperature 

regulation and the stability of thermal processes are directly 

linked to product microstructure, mechanical properties, and 

overall production energy consumption. Notably, energy 

consumption associated with industrial furnaces accounts for 

approximately 30–40% of total industrial energy usage [3]. 

With the increasing demand for product quality consistency in 

high-end manufacturing and the growing emphasis on energy 

conservation and emission reduction under carbon neutrality 

objectives, industrial furnace thermal control systems are 

required to achieve coordinated optimization of high-precision 

temperature regulation, elevated energy efficiency, and strong 

disturbance rejection capability [4-6]. Nevertheless, industrial 

furnace thermal processes exhibit pronounced complexity. 

The coupled effects of heat conduction, thermal radiation, and 

convection result in dynamic variations in system gain and 

time constants across different temperature ranges and 

material loading conditions, leading to strong nonlinearity [7]. 

In addition, heat storage effects of furnace materials and 

spatial arrangements of temperature sensors introduce 

significant temperature response delays, typically ranging 

from 10 to 60 s, giving rise to pronounced thermal inertia and 

time-delay characteristics [8]. Fluctuations in fuel combustion 

efficiency and degradation of furnace insulation performance 

further induce parameter drift in thermal models, resulting in 

substantial model uncertainty [9]. 

Moreover, multiple disturbance sources—including 

variations in fuel pressure and flow rate, changes in initial 

material temperature and charging quantity, and ambient 

temperature fluctuations—can readily disrupt thermal 

equilibrium within the furnace [10]. As a consequence of these 

characteristics, conventional fixed-parameter PID control 

tuned through empirical methods struggles to simultaneously 

balance dynamic response speed and steady-state accuracy 

under varying operating conditions. Furthermore, PID control 

optimized using single offline optimization algorithms lacks 
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adaptability to dynamically changing thermal regimes, often 

exhibiting weak disturbance rejection capability and elevated 

energy consumption [11-13]. Therefore, the development of a 

dynamic, self-adaptive GA–PID control strategy tailored to 

industrial furnace thermal characteristics is of significant 

practical engineering importance for enhancing thermal 

control performance and reducing energy consumption. Such 

an approach also provides valuable theoretical insights for the 

intelligent control of complex thermal systems. 

Research on industrial furnace temperature regulation has 

been conducted for several decades, with traditional 

approaches predominantly based on PID control and its 

variants. These methods are characterized by simple structures 

and ease of industrial implementation; however, they rely 

heavily on accurate system models and empirical parameter 

tuning, rendering them inadequate for addressing the complex 

thermal characteristics inherent in industrial furnaces. In 

recent years, intelligent control strategies—including fuzzy 

PID, neural network–based PID, and model predictive control 

(MPC)—have attracted increasing attention in industrial 

furnace applications. By leveraging the nonlinear 

approximation capabilities of intelligent algorithms, fuzzy 

PID and neural network–based PID approaches have 

demonstrated improved adaptability to system nonlinearity. 

Nevertheless, fuzzy PID control suffers from strong 

dependence on expert-defined fuzzy rules, while neural 

network–based PID control requires large volumes of high-

quality training data, limiting their practical deployment [14-

16]. MPC achieves high control accuracy through rolling 

optimization based on system models; however, its high 

computational complexity imposes stringent requirements on 

controller hardware, and control performance deteriorates 

markedly under model mismatch conditions [17, 18]. To 

address the long-standing challenge of PID parameter tuning, 

heuristic optimization algorithms such as GA and PSO have 

been widely employed for PID parameter optimization. 

Among these methods, GA has emerged as one of the most 

extensively adopted techniques owing to its strong global 

search capability, robustness, and independence from explicit 

system models.  

Existing studies have demonstrated that PID parameters 

optimized by GA can enhance steady-state temperature 

regulation accuracy in industrial furnaces or reduce 

optimization time through algorithmic improvements. 

However, most GA–PID approaches reported in the literature 

adopt an offline optimization paradigm, in which optimized 

parameters remain fixed and are unable to accommodate 

dynamic variations in furnace thermal operating conditions. 

Although several studies have explored online GA 

optimization, thermal system characteristics have not been 

explicitly incorporated into the optimization strategy design, 

resulting in low optimization efficiency and unstable control 

performance [19]. Overall, critical gaps remain in existing 

research. Insufficient perception and quantitative 

characterization of thermal characteristics have led to poor 

alignment between optimization strategies and thermal 

operating conditions. Furthermore, GA optimization 

objectives have primarily focused on dynamic response and 

steady-state accuracy, while core thermal system requirements 

such as energy consumption optimization have not been 

adequately considered. In addition, dynamic matching 

mechanisms between thermal operating modes and GA 

optimization strategies have not been established, making it 

difficult to achieve optimal control performance across the full 

operating range [20, 21]. To address these limitations, a GA–

PID control framework integrating thermal-aware perception 

and dynamic mode switching was proposed, enabling precise 

temperature regulation and coordinated energy optimization in 

industrial furnace thermal processes. 

The objectives of this study are defined below. First, a 

realistic nonlinear thermal model of the industrial furnace is to 

be established, enabling accurate characterization of thermal 

inertia, time-delay behavior, and disturbance dynamics. 

Second, a dynamic mode decision mechanism based on 

thermal-aware perception is to be designed, allowing adaptive 

matching between GA optimization strategies and varying 

thermal operating conditions. Third, customized GA 

optimization schemes are to be developed for different thermal 

regimes, achieving a balanced trade-off among control 

accuracy, response speed, and energy efficiency. Finally, the 

effectiveness and engineering applicability of the proposed 

approach are to be validated through numerical simulations 

and industrial field experiments. The main contributions are 

summarized below. A closed-loop control framework 

integrating thermal-aware perception, mode decision-making, 

GA optimization, and knowledge accumulation is proposed. 

Within this framework, quantified thermal characteristic 

indicators of industrial furnaces are dynamically bound to GA 

optimization strategies for the first time, overcoming the 

inherent limitations of conventional offline optimization. 

Dedicated thermal feature indicators tailored to industrial 

furnaces are further designed, providing precise inputs for 

mode decision-making and GA optimization. For three 

representative thermal operating modes—setpoint tracking, 

steady-state holding, and disturbance recovery—differentiated 

GA optimization strategies are developed to realize multi-

objective coordinated optimization of response speed, steady-

state accuracy, and energy consumption. In addition, an 

online, self-evolving knowledge base specific to industrial 

furnace thermal operating conditions is constructed, 

accelerating optimization under disturbance scenarios and 

enabling continuous improvement of control performance. 

The remainder of this study is organized below. Section 2 

presents the modeling and characteristic analysis of the 

industrial furnace thermal system. Section 3 details the design 

principles of the proposed GA–PID control framework. 

Section 4 reports simulation studies and corresponding result 

analyses and describes industrial field experiments for 

experimental validation. Section 5 discusses robustness, 

sensitivity, and thermodynamic performance advantages of 

the proposed approach. Section 6 concludes the study and 

outlines directions for future research. 

 

 

2. MODELING AND CHARACTERISTIC ANALYSIS 

OF THE INDUSTRIAL FURNACE THERMAL 

SYSTEMS 

 

2.1 Mechanism analysis of industrial furnace thermal 

processes 

 

The core thermal processes of an industrial furnace are 

governed by the coupled interaction between heat generation 

from fuel combustion and multipath heat transfer. Heat 

produced by fuel combustion is transferred to the processed 

material through heat conduction, thermal radiation, and 

convection, while heat losses occur simultaneously through 

furnace wall dissipation and heat carried away by flue gas. The 
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overall process is subject to the principle of energy 

conservation. Accordingly, the thermal energy balance of an 

industrial furnace can be expressed as: 

 

Q
in

(t)=Q
material

(t)+Q
loss

(t)+Q
flue

(t) (1) 

 

where, Qin(t) denotes the thermal energy input from fuel 

combustion, which is directly related to fuel flow rate and 

combustion efficiency; Qmaterial(t) represents the thermal 

energy absorbed by the material and is determined by material 

mass, specific heat capacity, and temperature variation; Qloss(t) 

corresponds to heat dissipation from the furnace body, 

influenced by insulation performance and ambient 

temperature; and Qflue(t) denotes the thermal energy carried 

away by flue gas, which is closely associated with flue gas 

flow rate and temperature. Based on the above thermal balance 

relationship, the industrial furnace temperature regulation 

system exhibits pronounced dynamic characteristics. Thermal 

inertia arises from the heat storage effects of the furnace 

structure and processed material, causing temperature 

variations to lag behind changes in thermal input. Time-delay 

characteristics permeate the entire process, including fuel 

combustion, heat transfer, and temperature sensing. 

Nonlinearity is manifested through temperature- and load-

dependent variations in combustion efficiency and heat 

transfer coefficients. Disturbance sensitivity is reflected in the 

susceptibility of the thermal balance to external factors such as 

fluctuations in fuel flow rate and variations in material loading 

conditions. 

 

2.2 Development of a nonlinear thermal model 

 

A nonlinear time-delay model of the industrial furnace 

temperature regulation system is developed by integrating 

mechanism-based analysis with data-driven modeling, 

enabling accurate representation of system dynamics. In the 

proposed model, fuel flow rate or electric heating power is 

defined as the control input u(t), the temperature of the furnace 

core region is taken as the system output T(t), and external 

disturbances—including fuel pressure fluctuations and 

variations in material charging—are represented by d(t). 

Based on thermal energy balance principles and dynamic 

characteristic analysis, the governing equation for the 

temperature variation rate and the measurement equation are 

expressed, respectively, as: 

 

Ṫ(t)=
1

Cm+Cf

[K(u(t))⋅u(t)-
T(t)-T0

R
-d(t)] (2) 

 

Tmeas(t)=T(t-τ)+ξ(t) (3) 

 

where, Cm denotes the thermal capacity of the processed 

material and Cf represents the thermal capacity of the furnace 

structure; together, these parameters determine the system’s 

thermal inertia. The term K(u(t)) is a nonlinear system gain. 

To capture its input-dependent variation, linear fitting is 

adopted as K(u(t)) = K0 + K1⋅u(t), where K0 and K1 are 

parameters to be identified. The term R denotes the thermal 

resistance of the furnace body and reflects insulation 

performance, while T0 represents ambient temperature. The 

term τ is the time-delay constant characterizing system 

response lag, and ξ(t) denotes measurement noise following a 

Gaussian distribution, accounting for the sensor error. By 

incorporating both nonlinear gain and time-delay effects, the 

proposed model is capable of accurately capturing the 

dominant dynamic characteristics of industrial furnace thermal 

systems. 

 

2.3 Model parameter identification and characteristic 

validation 

 

A hybrid parameter identification approach combining the 

least squares method and PSO is employed to determine model 

parameters, thereby ensuring both estimation accuracy and 

physical plausibility. The identification procedure is 

conducted as follows. A step-input experiment is designed in 

which the fuel flow rate is increased from 50% to 80% of its 

rated value, while the corresponding furnace temperature 

response is synchronously recorded. An identification 

objective function is then formulated by minimizing the sum 

of squared temperature response errors. PSO is subsequently 

applied to solve the objective function, yielding estimates of 

the key parameters Cm, Cf, K0, K1, R, and τ. Model accuracy is 

validated using a goodness-of-fit criterion of R2 ≥ 0.95, with 

model outputs compared against experimental measurements 

to confirm validity. Based on the identified model, quantitative 

analysis of industrial furnace thermal characteristics is 

performed. Thermal inertia is quantified by Cm + Cf, where 

larger values indicate slower temperature variation. Time-

delay behavior is characterized by τ, enabling analysis of delay 

evolution across different temperature ranges and material 

loading conditions. The degree of nonlinearity is reflected by 

K1, which reveals the influence of fuel flow rate on system 

gain. Disturbance rejection capability is evaluated by 

simulating temperature response trajectories under varying 

disturbance intensities. The resulting characteristic analysis 

provides a rigorous theoretical foundation for the targeted 

design of subsequent control strategies. 

 

 

3. DYNAMIC GA–PID OPTIMIZATION CONTROL 

FRAMEWORK BASED ON THERMAL-AWARE 

PERCEPTION 

 

3.1 Overall framework architecture 

 

A dynamic GA–PID optimization control framework is 

developed with the objective of accommodating industrial 

furnace thermal characteristics and achieving optimal 

performance across all operating conditions. A four-level 

collaborative closed-loop architecture is constructed, 

comprising multi-source thermal information perception and 

feature extraction, online mode decision-making based on 

fuzzy inference, a three-mode GA–PID optimization engine, 

and an online self-evolving thermal knowledge base. The core 

logic of the framework is founded on full-process dynamic 

adaptation through a “perception–decision–optimization–

memory” paradigm, thereby overcoming the limitations of 

conventional fixed-parameter control and offline optimization. 

Specifically, the multi-source thermal information perception 

and feature extraction module functions as the information 

input layer, responsible for capturing and quantifying the 

thermal state of the system. The fuzzy inference–based online 

mode decision module serves as the decision center, where 

operating conditions are identified according to extracted 

thermal features. The three-mode GA–PID optimization 

engine acts as the execution core, in which customized GA 

strategies are invoked to tune PID parameters for different 
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operating modes. The online self-evolving thermal knowledge 

base constitutes the experience repository, where optimal 

parameters and control knowledge are accumulated and 

subsequently fed back to enhance the optimization process. 

Real-time data exchange among all modules is achieved 

through industrial communication buses and controllers, 

enabling millisecond-level dynamic matching between control 

strategies and thermal operating conditions. As a result, high-

precision and low-energy-consumption thermal control 

performance is maintained throughout all operational stages of 

the industrial furnace, including start-up heating, steady-state 

holding, and disturbance recovery. The overall dynamic GA–

PID optimization control framework based on thermal-aware 

perception is illustrated in Figure 1. 

 

 
 

Figure 1. Thermal-aware dynamic GA–PID optimization control framework for industrial furnaces 

 

 
 

Figure 2. Dual-zone temperature dynamic GA–PID decoupled control architecture for an industrial furnace 

 

Figure 2 illustrates the core structure of the proposed control 

framework, in which dual-zone (core zone and peripheral 

zone) temperature regulation is achieved through dynamic 

GA–PID decoupled control. The architecture integrates zone-

specific temperature setpoints, thermal-feature–driven 

dynamic GA–PID controllers, a dual-zone thermal coupling 

compensator, and the controlled industrial furnace system, 

thereby enabling decoupled and adaptive temperature control 

across multiple zones. 

 

3.2 Multi-source thermal information perception and 

feature extraction module 

 

The multi-source thermal information perception and 

feature extraction module constitutes the foundation of precise 

control within the proposed framework and is responsible for 

three core functions: thermal state acquisition, data 

preprocessing, and feature quantification. At the data 

perception level, a distributed sensing network is constructed 

based on the on-site layout of the industrial furnace. 

Temperature sensors with an accuracy of ±0.1℃ are deployed 

in both the core zone and peripheral zone to acquire spatial 

temperature distribution data. Fuel flow rate and pressure 

sensors (accuracy ±1% full scale) are used to measure fuel 

input conditions. Heat flux density sensors (accuracy ±2% full 

scale) are employed to capture heat transfer intensity within 

the furnace. Material weighing sensors (accuracy ±0.5% full 

scale) record material charging quantities, while ambient 

temperature sensors monitor external environmental 

conditions. All sensing data are transmitted to the controller in 

real time via an industrial communication bus, with a sampling 

frequency of 10 Hz selected to ensure temporal 

responsiveness. At the feature extraction level, raw data are 

subjected to preprocessing procedures, including noise 

filtering, data synchronization, and outlier removal. 

Subsequently, three categories of core thermal feature 

indicators are extracted to achieve quantitative 

characterization of the system state. The first indicator is the 

transient thermal response intensity, denoted as Itr, which is 

used to characterize the temperature response rate and thermal 

inertia during start-up or setpoint change stages. It is defined 

as: 
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Itr=
max | Ṫ(t)|

Tset-Tinitial

 (4) 

 

where, max | Ṫ(t)| represents the maximum temperature rate of 

change, Tset denotes the temperature setpoint, and Tinitial is the 

initial temperature. Larger values of Itr indicate faster thermal 

response and lower thermal inertia. The second indicator is the 

steady-state temperature uniformity index, denoted as Isu, 

which is used to evaluate temperature distribution uniformity 

during steady-state holding. It is expressed as: 

 

Isu=

√1
n
∑ (n

i=1 Ti-T̄)
2

T̄
 

(5) 

 

where, n is the number of temperature sensors, Ti represents 

the temperature measured by the i-th sensor, and T̄ denotes the 

average furnace temperature. Smaller values of Isu correspond 

to more uniform temperature distributions. The third indicator 

is the disturbance-induced thermal shock coefficient, denoted 

as Ids, which quantifies the impact intensity of external 

disturbances on the thermal system. It is defined as: 

 

Ids=
ΔTmax

Δt
 (6) 

 

where, ΔTmax represents the maximum temperature deviation 

observed within 10 s after disturbance onset, and Δt denotes 

the disturbance duration. Larger values of Ids indicate more 

severe disturbance effects. Together, these three indicators 

form a comprehensive quantitative representation of the 

thermal state, providing reliable data support for subsequent 

mode decision-making and precise adaptation of GA 

optimization strategies. 

 

3.3 Fuzzy inference–based online mode decision module 

 

To enable accurate identification of thermal operating 

conditions, a fuzzy inference system with three inputs and one 

output is designed. The input variables are directly linked to 

the core feature indicators generated by the multi-source 

thermal perception module, namely the transient thermal 

response intensity Itr, the steady-state temperature uniformity 

index Isu, and the disturbance-induced thermal shock 

coefficient Ids. To balance classification accuracy and 

computational complexity, each input variable is described 

using three fuzzy linguistic terms—low, medium, and high. 

The output variable represents the thermal operating mode, 

corresponding to three fundamental conditions: setpoint 

tracking, steady-state holding, and disturbance recovery, with 

fuzzy linguistic values mapped to these modes. Triangular 

membership functions are adopted for all variables, as this 

form provides high computational efficiency and clear 

classification boundaries. The universes of discourse for each 

variable are calibrated based on multiple sets of industrial 

furnace experimental data. Specifically, the range of Itr is 

defined as [0, 0.05] ℃/s, the range of Isu as [0, 0.01], and the 

range of Ids as [0, 0.5] ℃/s. These ranges are selected to fully 

cover the variation of feature indicators under all operating 

conditions of the industrial furnace. 

The fuzzy rule base is constructed on the basis of industrial 

furnace thermal process mechanisms and long-term 

accumulated expert knowledge, forming a complete rule set 

comprising 27 rules that cover all possible combinations of 

fuzzy linguistic values for the three input variables. The core 

rule logic is designed around the intrinsic relationships 

between thermal features and operating conditions. For 

example, a high transient thermal response intensity, medium 

steady-state temperature uniformity index, and low 

disturbance-induced thermal shock coefficient correspond to 

the setpoint tracking mode, reflecting an active thermal 

response with minimal disturbance influence. A low transient 

thermal response intensity, low steady-state temperature 

uniformity index, and low disturbance-induced thermal shock 

coefficient correspond to the steady-state holding mode, which 

is consistent with the characteristics of slow temperature 

variation and uniform distribution during constant-

temperature operation. A medium transient thermal response 

intensity, medium steady-state temperature uniformity index, 

and high disturbance-induced thermal shock coefficient 

correspond to the disturbance recovery mode, indicating 

pronounced temperature fluctuations and disruption of thermal 

equilibrium following disturbance onset. The Mamdani 

inference method is employed, and the inference process 

consists of four stages: fuzzification, rule matching, inference 

aggregation, and defuzzification. A crisp mode decision result 

is generated at the output. The total decision latency is 

controlled within 50 ms, fully satisfying the real-time 

requirements of industrial furnace temperature regulation and 

providing a reliable basis for precise switching of subsequent 

optimization strategies. 

 

3.4 Three-mode GA–PID optimization engine 

 

The setpoint tracking mode is applicable to industrial 

furnace start-up heating and step changes in temperature 

setpoints. The primary requirement in this mode is rapid 

response to temperature commands while strictly suppressing 

overshoot, thereby preventing thermal stress damage to 

furnace materials caused by abrupt temperature increases. To 

meet these requirements, a GA–based global exploration 

strategy is adopted for tuning the PID parameters Kp, Ki, and 

Kd. Real-valued encoding is employed for parameter 

representation. The ranges of Kp, Ki, and Kd are defined as [0.1, 

10], [0.01, 1], and [0, 5]. These ranges have been validated 

through industrial furnace control parameter calibration 

experiments and are sufficient to cover practical thermal 

control demands. A multi-objective weighted fitness function 

is formulated as: 

 

J=ω1⋅σ+ω2⋅tr+ω3⋅tp (7) 

 

where, σ denotes overshoot, tr represents rise time, and tp 

indicates peak time. The weighting factors are set to ω1 = 0.4, 

ω2 = 0.3, and ω3 = 0.3, thereby prioritizing overshoot 

suppression. Adaptive genetic operators are employed, with 

the crossover probability dynamically adjusted within the 

range [0.7, 0.9] and the mutation probability adaptively varied 

within [0.01, 0.05]. Higher crossover and mutation rates are 

applied during early iterations to expand the search space, 

followed by gradual reduction to accelerate convergence in 

later stages. In addition, a niching technique based on fitness 

clustering is introduced to prevent premature convergence. 

The population size is set to 50, and the maximum number of 

generations is set to 30. Extensive experimental evaluation has 

demonstrated that this parameter configuration achieves an 

optimal balance between optimization accuracy and real-time 

requirements. 
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The steady-state holding mode corresponds to the constant-

temperature processing stage after the furnace reaches the 

desired setpoint. The core requirements in this mode are 

extremely high steady-state temperature regulation accuracy 

and reduced energy consumption, thereby avoiding product 

quality degradation due to temperature fluctuations and 

excessive fuel usage. To address these objectives, a hybrid 

GA–PSO fine optimization strategy is developed. Random 

initialization is avoided in generating the initial population. 

Instead, the population is constructed around the optimal PID 

parameters corresponding to the current operating condition, 

with a local search radius defined as 10% of the current 

parameter values. This approach effectively prevents large 

parameter variations associated with global search that could 

disrupt steady-state performance. A staged cooperative 

optimization mechanism is adopted. First, 15 iterations of 

local fine search are performed using PSO, leveraging its rapid 

convergence characteristics to approach a local optimum 

efficiently. Subsequently, a low-probability GA mutation 

operator with a mutation rate in the range [0.005, 0.01] is 

introduced to refine the PSO-optimized solution and escape 

potential local optima, thereby enabling coordinated 

optimization of temperature precision and energy 

consumption. The fitness function is defined as: 

 

J=ω1⋅ISE+ω2⋅uavg (8) 

 

where, ISE is used to quantify steady-state temperature 

regulation accuracy, while the average control input uavg is 

employed to represent energy consumption. The weighting 

factors are set to ω1 = 0.8 and ω2 = 0.2, thereby prioritizing 

temperature stability. The total number of iterations is limited 

to 25, significantly shortening the optimization cycle and 

minimizing interference with steady-state operation. 

The disturbance recovery mode targets operating scenarios 

in which the industrial furnace is subjected to external 

disturbances, such as fuel pressure fluctuations or sudden 

changes in material charging. The primary objective in this 

mode is rapid restoration of thermal equilibrium, preventing 

amplification of temperature deviations and secondary 

oscillations, and avoiding further degradation of thermal 

balance. To meet these requirements, a GA optimization 

strategy incorporating directional mutation and historical 

knowledge integration is designed. A hybrid initialization 

scheme is adopted for the initial population. Specifically, 60% 

of the population individuals are retrieved from the online self-

evolving thermal knowledge base by selecting optimal GA–

PID parameter sets associated with similar disturbance 

scenarios. Parameter relevance is ensured through dual 

matching based on Ids and disturbance type. The remaining 

40% of the population is generated randomly to preserve 

global search capability, thereby substantially shortening the 

optimization search path. Directional mutation operators are 

designed based on heuristic rules derived from common 

industrial furnace disturbance characteristics. For example, an 

increase in Kp is encouraged when fuel pressure decreases to 

enhance proportional compensation capability, whereas an 

increase in Ki is promoted when material charging increases to 

accelerate elimination of steady-state error. Through such 

guided mutation, GA is steered toward parameter regions that 

enable rapid disturbance compensation, avoiding blind 

exploration. The fitness function is defined as: 

 

J=ω1⋅trec+ω2⋅σrec+ω3⋅ΔTss (9) 

 

where, trec denotes recovery time, σrec represents overshoot 

during the recovery process, and ΔTss is the steady-state 

temperature error after recovery. The weighting coefficients 

are assigned as ω1 = 0.5, ω2 = 0.3, and ω3 = 0.2, emphasizing 

rapid recovery performance. The maximum number of 

iterations is set to 20, which fully satisfies the real-time 

response requirements under disturbance conditions. 

 

 
 

Figure 3. Thermal-feature–driven GA–PID parameter optimization workflow for an industrial furnace 
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Figure 3 illustrates the thermal-feature–driven GA–PID 

parameter optimization workflow for the industrial furnace, 

presenting the complete optimization process, including 

thermal data preprocessing, GA population initialization, 

evaluation of individual control performance, population 

update through genetic operations, and output of optimal 

parameters. The workflow is designed to accommodate 

parameter tuning requirements across diverse industrial 

furnace thermal operating conditions. 

 

3.5 Online self-evolving thermal knowledge base module 

 

The online self-evolving thermal knowledge base module 

functions as the memory core of the system. Its primary role is 

to store optimization knowledge covering all operating 

conditions of industrial furnace temperature regulation, 

thereby providing accurate prior experience for the 

disturbance recovery mode while enabling continuous 

evolution of control performance through dynamic knowledge 

updating. By means of structured storage and intelligent 

retrieval mechanisms, a strong association between control 

experience and operating-condition features is established, 

significantly enhancing the response efficiency and adaptation 

accuracy of optimization strategies. 

The knowledge base is implemented using an SQLite 

database and adopts a three-dimensional structured storage 

architecture comprising operating-condition features, 

optimization parameters, and thermal performance. This 

design ensures logical data organization and efficient retrieval. 

The operating-condition feature dimension includes mode 

type, setpoint temperature range (low temperature: 200–

400℃; medium temperature: 400–600℃; high temperature: 

600–1000℃), disturbance type (fuel disturbance, material 

disturbance, and environmental disturbance), and core thermal 

feature indicators, forming a comprehensive quantitative 

description of operating conditions. The optimization-

parameter dimension stores the optimal PID parameters and 

GA operator parameters corresponding to each condition. The 

PID parameters include proportional, integral, and derivative 

gains, while the GA operator parameters comprise crossover 

probability, mutation probability, and population size, 

providing direct reference values for subsequent optimization. 

The thermal-performance dimension records control 

performance metrics and thermodynamic indicators. Control 

performance metrics include overshoot, rise time, steady-state 

error, and recovery time, whereas thermodynamic indicators 

cover thermal efficiency, energy consumption density, and 

heat loss rate, supplying quantitative criteria for evaluating 

knowledge quality. Through precise mapping among 

operating-condition features, optimization parameters, and 

thermal performance, rapid knowledge localization and 

invocation are achieved. 

To ensure timeliness and efficiency of the knowledge base, 

a dynamic update strategy based on rolling elimination and 

performance priority is employed. The update triggering 

mechanism is governed by a weighted comprehensive thermal 

performance score, defined as: 

 

S=0.3σ+0.2tr+0.3ΔTss+0.2uavg (10) 

 

where, σ denotes overshoot, tr represents rise time, ΔTss 

indicates steady-state temperature error, and uavg denotes the 

average control input. When the comprehensive performance 

score associated with a newly optimized GA result under a 

given operating condition exceeds the corresponding historical 

record stored in the knowledge base by more than 10%, the 

historical data are automatically replaced to ensure that only 

optimal experience is retained. For operating conditions 

associated with multiple historical records, clustering analysis 

is employed to retain the top five data sets with the best 

performance, while redundant and low-efficiency data are 

eliminated. In addition, a periodic maintenance mechanism is 

implemented, whereby the knowledge base is 

comprehensively reviewed every 72 h, and low-performance 

data with fewer than three retrieval instances are removed, 

further streamlining the knowledge base structure and 

improving retrieval efficiency. 

Knowledge base invocation primarily serves the 

disturbance recovery mode, with a dual-matching retrieval 

logic based on disturbance type and thermal feature similarity 

to achieve accurate adaptation of prior knowledge. The 

retrieval process is executed in three steps. First, the current 

disturbance type is identified, and its matching degree with 

historical disturbance types stored in the knowledge base is 

computed, with matching scores ranging from 0 to 1. Second, 

Euclidean distance is employed to evaluate the similarity 

between current thermal feature indicators and historical data, 

thereby quantifying feature correspondence. Finally, the top 

three historical data sets with a disturbance-type matching 

degree not less than 0.8 and the highest feature similarity are 

selected, and their associated optimal PID parameters and GA 

operator parameters are extracted as the initial population for 

GA optimization in the disturbance recovery mode. Through 

effective reuse of prior knowledge, this retrieval mechanism 

significantly shortens the GA optimization search path. 

Experimental validation has demonstrated that the 

optimization time can be reduced by approximately 40%–

60%, substantially enhancing control response speed under 

disturbance scenarios. 

 

 

4. SIMULATION EXPERIMENTS AND RESULTS 

ANALYSIS 

 

4.1 Simulation design 

 

To validate the effectiveness of the proposed thermal-aware 

dynamic GA–PID optimization control method, a simulation 

platform for the industrial furnace temperature regulation 

system was developed in MATLAB/Simulink. Model 

parameters were adopted from the identification results 

presented in Section 2 and are specified as follows: material 

thermal capacity of 1.2 × 10⁵ J/℃, furnace thermal capacity of 

8.5 × 10⁴ J/℃, base gain of 0.8, gain coefficient of 0.02, 

furnace thermal resistance of 5.2℃·s/J, and a time-delay 

constant of 25 s. The simulation platform integrates five core 

modules. The industrial furnace thermal model module is 

constructed based on the nonlinear time-delay equations 

established previously, enabling accurate reproduction of 

thermal inertia, time-delay behavior, and nonlinearity. A 

multi-source disturbance generation module is incorporated to 

simulate typical disturbances, including fuel pressure 

fluctuations, variations in material charging, and ambient 

temperature disturbances. The proposed control framework 

module is implemented using customized Simulink blocks, 

fully integrating thermal-aware perception, online mode 

decision-making, three-mode GA–PID optimization, and the 

online self-evolving thermal knowledge base. A comparative 
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control module embeds three benchmark methods—

conventional PID, offline GA–PID, and PSO–PID—for 

horizontal performance comparison. In addition, a data 

acquisition and analysis module is employed to record 

temperature response trajectories, control input variations, and 

thermal performance indicators in real time, providing 

comprehensive data support for subsequent analysis. 

To comprehensively cover the principal operating scenarios 

of industrial furnaces, three representative simulation 

conditions were designed. The setpoint tracking condition 

focuses on start-up heating and stepwise temperature 

adjustment, with the setpoint increased from 200℃ to 600℃ 

and subsequently to 800℃, in the absence of external 

disturbances. The steady-state holding condition targets 

constant-temperature operation at 800℃, superimposed with a 

periodic fuel pressure disturbance of ±5% and a period of 60 

s. The sudden disturbance condition maintains an 800℃ 

setpoint, while a step increase of 50% in material charging is 

introduced at 100 s and a step decrease of 10% in fuel pressure 

is applied at 300 s, with particular emphasis placed on 

evaluating disturbance rejection capability. 

To systematically assess the comprehensive performance of 

the control methods, a scientific evaluation framework is 

established from two complementary dimensions: control 

performance and thermodynamic performance, in line with the 

core concerns of thermal-engineering journals. Control 

performance metrics include overshoot, rise time, steady-state 

error, and recovery time. Overshoot characterizes dynamic 

response smoothness, rise time reflects response rapidity, 

steady-state error quantifies steady-state regulation accuracy, 

and recovery time evaluates the system’s ability to restore 

performance following disturbances. Thermodynamic 

performance metrics encompass thermal efficiency, energy 

consumption density, and temperature uniformity. Thermal 

efficiency is defined as the ratio of heat absorbed by the 

material to the heat input from fuel, directly indicating energy 

utilization efficiency. Energy consumption density is 

quantified by the average control input per unit time, providing 

an intuitive measure of energy usage during control. 

Temperature uniformity is represented by the steady-state 

temperature uniformity index, reflecting the balance of 

thermal distribution within the furnace. The coordinated use of 

these two categories of metrics enables a comprehensive and 

objective comparison of different control strategies in terms of 

dynamic response, steady-state regulation, and energy 

utilization, thereby providing an objective basis for validating 

the effectiveness of the proposed approach. 

 

4.2 Simulation results and analysis 

 

4.2.1 Operating condition 1: Setpoint tracking performance 

The primary objective of the setpoint tracking condition is 

to evaluate the dynamic response performance of different 

control strategies during start-up heating and temperature step 

changes. Key performance indicators, including overshoot, 

rise time, and peak time, are emphasized. A detailed 

comparison of performance metrics is presented in Table 1. 

As indicated by the data in Table 1, the proposed method 

exhibits pronounced performance advantages during both 

temperature step transitions. For the 200℃ → 600℃ step, the 

overshoot is limited to 2.5%, corresponding to reductions of 

67.9%, 79.7%, and 55.4% compared with conventional offline 

GA–PID, conventional PID, and PSO–PID methods, 

respectively. The rise time is reduced to 48 s, representing 

decreases of 22.6%, 36.0%, and 12.7% relative to the three 

benchmark methods. The peak time is also significantly 

shortened to 72 s. Consistent performance superiority is 

maintained during the 600℃ → 800℃ step, where the 

overshoot is further reduced to 2.3% and the rise time is 

shortened to 51 s. These results demonstrate that the GA-based 

global exploration optimization strategy designed for the 

setpoint tracking mode effectively accommodates the 

pronounced thermal inertia of industrial furnaces. Through 

adaptive crossover and mutation rates combined with niching 

mechanisms, global optimal tuning of PID parameters is 

achieved. As a result, rapid dynamic response is ensured while 

overshoot is precisely suppressed, thereby mitigating the risk 

of thermal stress damage to furnace structures caused by 

abrupt temperature increases. 

 

Table 1. Performance comparison under setpoint tracking conditions 

 

Control Method 

200℃→600℃ Step 600℃→800℃ Step 

Overshoot σ 

(%) 

Rise Time tᵣ 

(s) 

Peak Time tₚ 

(s) 
Overshoot σ (%) 

Rise Time tᵣ 

(s) 

Peak Time tₚ 

(s) 

Proposed method 2.5 48 72 2.3 51 76 

Conventional offline GA–PID 7.8 62 95 7.5 65 98 

Conventional PID 12.3 75 118 11.9 78 122 

PSO–PID 5.6 55 83 5.3 58 86 

 

4.2.2 Operating condition 2: Steady-state holding performance 

The steady-state holding condition is designed to evaluate 

control performance during constant-temperature operation, 

with particular emphasis on steady-state regulation accuracy 

and energy utilization efficiency. Core evaluation metrics 

include steady-state temperature fluctuation, temperature 

uniformity index, thermal efficiency, and energy consumption 

density. The corresponding quantitative performance 

indicators are summarized in Table 2. 

As shown in Table 2, the proposed method achieves the best 

overall performance during the steady-state holding stage. The 

steady-state temperature fluctuation is constrained to ±0.18℃, 

corresponding to reductions of 60.0%, 80.4%, and 43.8% 

relative to conventional offline GA–PID, conventional PID, 

and PSO–PID methods, respectively. The temperature 

uniformity index is reduced to 0.0025, indicating a 

substantially more uniform thermal distribution within the 

furnace compared with the benchmark methods. In terms of 

thermodynamic performance, the thermal efficiency attained 

by the proposed method reaches 86.7%, representing 

improvements of 8.3, 15.2, and 5.1 percentage points over 

conventional offline GA–PID, conventional PID, and PSO–

PID methods, respectively. The energy consumption density is 

reduced to 18.2 kW·h/m³, corresponding to decreases of 

11.2%, 21.2%, and 5.7% compared with the benchmark 

methods. These advantages are attributed to the hybrid GA–

PSO fine optimization strategy adopted for the steady-state 

holding mode. Rapid convergence to locally optimal 
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parameters is first achieved through PSO, followed by low-

probability genetic mutation to escape local optima, thereby 

enabling coordinated optimization of temperature regulation 

accuracy and energy consumption. In addition, the 

optimization objective is formulated around the integral of 

squared steady-state error and the average control input, 

ensuring that temperature stability is maintained while fuel 

consumption and heat loss are minimized. This optimization 

philosophy is well aligned with the core industrial 

requirements for energy conservation and efficiency 

enhancement in industrial furnace operation. 

 

4.2.3 Operating condition 3: Sudden disturbance performance 

The sudden disturbance condition is designed to evaluate 

the robustness of different control strategies under external 

perturbations. Key performance metrics include recovery 

time, overshoot during the recovery process, and steady-state 

error after recovery. A quantitative comparison of disturbance 

rejection performance is provided in Table 3. 

 

Table 2. Performance comparison under steady-state holding conditions 

 

Control Method 
Steady-State Temperature 

Fluctuation (±℃) 

Temperature 

Uniformity Index Iₛᵤ 

Thermal 

Efficiency η (%) 

Energy Consumption Density 

uₐᵥ₉ (kW·h/m³) 

Proposed method 0.18 0.0025 86.7 18.2 

PSO–PID 0.32 0.0046 81.6 19.3 

Conventional offline 

GA–PID 
0.45 0.0068 78.4 20.5 

Conventional PID 0.92 0.0123 71.5 23.1 

 

Table 3. Performance comparison under sudden disturbance conditions 

 

Control Method Disturbance Scenario 
Recovery Time 

tᵣₑc (s) 

Recovery Overshoot 

σᵣₑc (%) 

Post-Recovery Steady-State Error 

ΔTₛₛ (℃) 

Proposed method 
Material charging +50% 10.8 1.2 0.21 

Fuel pressure −10% 9.5 1.0 0.19 

PSO–PID 
Material charging +50% 17.3 3.1 0.38 

Fuel pressure −10% 15.7 2.8 0.35 

Conventional 

offline GA–PID 

Material charging +50% 21.5 4.8 0.56 

Fuel pressure −10% 20.0 4.5 0.52 

Conventional PID 
Material charging +50% 32.6 8.3 1.12 

Fuel pressure −10% 30.2 7.9 1.05 

 

As indicated by the data in Table 3, the proposed method 

demonstrates superior disturbance recovery performance 

under both sudden disturbance scenarios. When a 50% 

increase in material charging is introduced, the recovery time 

is limited to 10.8 s, corresponding to reductions of 49.8%, 

66.9%, and 37.6% relative to conventional offline GA–PID, 

conventional PID, and PSO–PID methods, respectively. The 

recovery overshoot is constrained to 1.2%, substantially lower 

than the values observed for the benchmark methods (4.8%, 

8.3%, and 3.1%). In addition, the post-recovery steady-state 

error is reduced to 0.21℃, ensuring rapid restoration of 

temperature to the vicinity of the setpoint. Under the fuel 

pressure decrease of 10%, recovery performance is further 

improved, with the recovery time shortened to 9.5 s. Relative 

reductions of 52.2%, 68.4%, and 39.8% are achieved 

compared with conventional offline GA–PID, conventional 

PID, and PSO–PID methods, respectively, while recovery 

overshoot and steady-state error remain at the lowest levels 

among all methods. These results are attributed to the 

synergistic effect of the directional mutation strategy and the 

online self-evolving thermal knowledge base integrated into 

the proposed method. The knowledge base rapidly retrieves 

optimal parameter sets associated with similar disturbance 

types and thermal feature patterns, providing high-quality 

initial populations for GA optimization and significantly 

shortening the search path. Meanwhile, the directional 

mutation operator guides the optimization process toward 

effective disturbance compensation through heuristic rules, 

avoiding blind exploration. As a result, rapid and smooth 

recovery following disturbances is achieved, effectively 

preventing further degradation of thermal equilibrium. 

To further verify the adaptability of the proposed dynamic 

GA–PID method to the pronounced thermal inertia of 

industrial furnaces, as well as its control robustness under 

thermal parameter perturbations, response tests were 

conducted under scenarios involving core-zone temperature 

step disturbances, setpoint adjustments, and fuel pressure 

variations.  

 

 
 

Figure 4. Comparison of control response curves under a 

core-zone temperature step disturbance in an industrial 

furnace 

 

Figure 4 illustrates the response characteristics under a core-

zone temperature step disturbance. Under a target temperature 

step of 1.0℃, the rise time achieved by the proposed dynamic 

GA–PID method is approximately 200 s, while the overshoot 

is constrained to about 5%. In contrast, the conventional PID 

method exhibits a prolonged rise time of approximately 250 s 

and a substantially larger overshoot of 18%. This performance 

disparity can be attributed to the directional optimization of 
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PID parameters enabled by GA. To compensate for the 

delayed temperature response induced by the large thermal 

inertia of the industrial furnace, the derivative action is 

strengthened during GA-based tuning to enhance sensitivity to 

temperature variation rates, while the initial accumulation rate 

of the integral action is attenuated. Through this coordinated 

adjustment, rapid tracking of temperature commands is 

achieved while preventing overshoot accumulation caused by 

thermal inertia–induced lag. As a result, temperature 

regulation performance is improved in a manner that 

effectively balances dynamic responsiveness and overshoot 

suppression, thereby aligning with practical requirements for 

mitigating thermal stress in furnace materials. 

 

 
 

Figure 5. Control response under core-zone temperature 

setpoint step adjustment in an industrial furnace 

 

 
 

Figure 6. Control response under a fuel pressure setpoint 

step adjustment in an industrial furnace 

 

Figures 5 and 6 present the response results under thermal-

parameter perturbation conditions. During step adjustments of 

the core-zone temperature setpoint, temperature regulation is 

completed within 8 s using the proposed method, while the 

fluctuation amplitude of the fuel control input is constrained 

to within ±0.3 kW and persists for no longer than 2 s. Reduced 

fuel input fluctuation is associated with an approximately 4% 

decrease in localized heat loss within the furnace, thereby 

directly improving thermal efficiency. Under fuel pressure 

variation conditions, the maximum deviation of the core-zone 

temperature is limited to 0.1℃, and steady state is restored 

within 5 s, whereas conventional control approaches typically 

exhibit temperature deviations exceeding 0.3℃ in comparable 

scenarios. This enhanced robustness is attributed to the 

parameter self-adaptation mechanism of the dynamic GA–PID 

method. When perturbations in thermal parameters alter 

system characteristics, GA rapidly matches parameter 

templates associated with similar operating conditions stored 

in the knowledge base. Subsequently, PID parameters are fine-

tuned according to current thermal feature indicators, 

effectively compensating for control deviations induced by 

perturbations and maintaining stable furnace temperature 

regulation. 

The experimental results presented above demonstrate that 

the proposed dynamic GA–PID method achieves effective 

adaptation to the pronounced thermal inertia of industrial 

furnaces through global optimization of PID parameters 

enabled by GA, thereby realizing a favorable balance between 

rapid dynamic response and low overshoot. In addition, stable 

control accuracy is maintained under thermal-parameter 

perturbations through the incorporated parameter self-

adaptation mechanism. As a result, reliable temperature 

regulation is ensured despite variations in fuel pressure and 

other thermal parameters, providing robust technical support 

for efficient, low-damage operation of industrial furnaces. 

 

4.3 Industrial field experiment validation design 

 

To verify the engineering applicability of the proposed 

control method, industrial field experiments were conducted 

on a 200 kW gas-fired industrial furnace at a mechanical 

manufacturing facility. The furnace had a rated temperature of 

1000℃ and a chamber volume of 12 m³, covering typical 

thermal processing requirements in mechanical 

manufacturing. To ensure accurate data acquisition and stable 

execution of control strategies, targeted modifications were 

implemented on the experimental platform. Six temperature 

sensors were distributed across the furnace core zone and 

peripheral zone, while two heat flux density sensors and one 

fuel flow sensor and one fuel pressure sensor were additionally 

installed to construct a comprehensive thermal state perception 

network. An edge computing controller with a processing 

frequency of no less than 2.0 GHz and memory of no less than 

4 GB was deployed to run the proposed dynamic GA–PID 

optimization control framework and benchmark control 

algorithms. A data acquisition system with a sampling 

frequency of 10 Hz was established to record key operational 

variables in real time, including furnace temperature, fuel flow 

rate, and fuel pressure. In addition, a dedicated disturbance 

simulation device was configured to accurately emulate 

typical industrial disturbances, such as fuel pressure 

fluctuations and variations in material charging, thereby 

providing controllable conditions for disturbance rejection 

evaluation. 

The experimental protocol was designed in alignment with 

the simulation scenarios and consisted of three progressive 

stages to ensure consistency and comprehensive validation 

across the full range of industrial furnace operating conditions. 

Stage I corresponds to the setpoint tracking experiment, in 

which the temperature setpoint is increased stepwise from 

300℃ to 500℃ and subsequently to 700℃. Dynamic response 

performance during heating and setpoint adjustment is 

emphasized, with temperature response trajectories and 

energy consumption data recorded simultaneously. Stage II 

corresponds to the steady-state holding experiment, where the 

temperature is maintained at 700℃ for a continuous duration 

of 72 h. During this period, periodic fuel pressure disturbances 

of ±5% are superimposed, and steady-state control accuracy 

and energy utilization efficiency under long-term constant-

temperature operation are evaluated through recorded 

temperature fluctuation data and thermal efficiency metrics. 

Stage III corresponds to the sudden disturbance experiment, 

conducted under a constant temperature of 700℃, in which 

abrupt disturbances are introduced by simulating a 40% 
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increase in material charging and a 15% decrease in fuel 

pressure. Disturbance recovery capability is emphasized, and 

full recovery process data are recorded. To reduce 

experimental uncertainty, comparative tests were performed in 

all stages using four control strategies: the proposed method, 

conventional offline GA–PID, conventional PID, and PSO–

PID. Each experiment was repeated three times for each 

control strategy, and the averaged results were reported, 

ensuring the reliability of the validation results and their 

statistical significance. 

 

4.4 Industrial field experiment results and analysis 

 

4.4.1 Stage I: Setpoint tracking experiment results 

The setpoint tracking experiment was conducted to evaluate 

the dynamic response performance of different control 

strategies during actual industrial furnace heating and 

temperature step adjustments. The primary evaluation metrics 

include overshoot, rise time, and peak time. A detailed 

comparison of performance indicators for the four control 

methods is provided in Table 4. 

As indicated by the data in Table 4, superior dynamic 

response performance is consistently achieved by the proposed 

method during both temperature step transitions. For the 

300℃ → 500℃ step, the overshoot is limited to 2.8%, 

representing reductions of 62.7%, 76.3%, and 47.2% relative 

to conventional offline GA–PID, conventional PID, and PSO–

PID methods, respectively. The rise time is reduced to 52 s, 

corresponding to decreases of 19.7%, 31.6%, and 10.3% 

compared with the three benchmark methods. The peak time 

is shortened to 78 s, which is substantially lower than the 

values observed for the comparison methods (102 s, 120 s, and 

86 s). Consistent performance advantages are maintained 

during the 500℃ → 700℃ step, where the overshoot is further 

reduced to 2.6%, and the rise time and peak time are shortened 

to 55 s and 82 s, respectively. These experimental results 

exhibit strong agreement with the simulation trends, 

confirming that the GA-based global exploration optimization 

strategy designed for setpoint tracking effectively 

accommodates the actual thermal characteristics of industrial 

furnaces. Through adaptive crossover and mutation rates 

combined with niching techniques, precise tuning of PID 

parameters is achieved, enabling rapid heating while 

effectively suppressing overshoot. Consequently, thermal 

stress induced by abrupt temperature increases is mitigated, 

satisfying industrial requirements for stable heating processes. 

 

4.4.2 Stage II: Steady-state holding experiment results 

The steady-state holding experiment was conducted to 

evaluate steady-state temperature regulation accuracy and 

energy utilization efficiency during long-term constant-

temperature operation of the industrial furnace. The primary 

evaluation metrics include average steady-state temperature 

fluctuation, temperature uniformity index, average thermal 

efficiency, and average energy consumption density. A 

quantitative comparison of performance indicators is 

presented in Table 5. 

 

Table 4. Performance comparison of setpoint tracking experiments 

 

Control Method 

300℃ → 500℃ Step 500℃ → 700℃ Step 

Overshoot σ 

(%) 

Rise Time tᵣ 

(s) 

Peak Time tₚ 

(s) 
Overshoot σ (%) Rise Time tᵣ (s) Peak Time tₚ (s) 

Proposed method 2.8 52 78 2.6 55 82 

PSO–PID 5.3 58 86 5.1 61 89 

Conventional offline GA–PID 7.5 65 102 7.2 68 105 

Conventional PID 11.8 76 120 11.5 79 124 

 

Table 5. Performance comparison of steady-state holding experiments 

 

Control Method 
Average Steady-State Temperature 

Fluctuation (±℃) 

Temperature Uniformity 

Index Iₛᵤ 

Average Thermal 

Efficiency η (%) 

Proposed method 0.2 0.0028 85.3 

PSO–PID 0.3 0.0043 80.5 

Conventional offline GA–PID 0.42 0.0065 77.5 

Conventional PID 0.88 0.0118 70.8 

 

As shown in Table 5, the proposed method exhibits a 

pronounced overall performance advantage during long-term 

steady-state holding operation. The average steady-state 

temperature fluctuation is limited to ±0.20℃, corresponding 

to reductions of 52.4%, 77.3%, and 26.7% relative to 

conventional offline GA–PID, conventional PID, and PSO–

PID methods, respectively. The temperature uniformity index 

is reduced to 0.0028, indicating a highly uniform thermal 

distribution within the furnace and effectively mitigating the 

adverse impact of localized temperature deviations on product 

quality. From a thermodynamic perspective, the average 

thermal efficiency achieved by the proposed method reaches 

85.3%, representing improvements of 7.8, 14.5, and 4.8 

percentage points compared with conventional offline GA–

PID, conventional PID, and PSO–PID methods, respectively. 

In addition, the average energy consumption density is 

reduced to 17.9 kW·h/m³, corresponding to decreases of 

10.5%, 20.3%, and 5.3% relative to the benchmark methods. 

These advantages are attributed to the hybrid GA–PSO fine 

optimization strategy adopted for the steady-state holding 

mode. PSO enables rapid convergence toward locally optimal 

parameters, ensuring stable steady-state regulation, while low-

probability genetic mutation facilitates escape from local 

optima, thereby achieving coordinated optimization of 

temperature accuracy and energy consumption. Moreover, 

continuous operation over 72 h confirms the long-term 

stability of the proposed method, providing reliable support for 

uninterrupted industrial production and demonstrating 

substantial engineering applicability. 

 

4.4.3 Stage III: Sudden disturbance experiment results 

The sudden disturbance experiment was conducted to 
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evaluate the robustness of different control strategies under 

typical industrial disturbances. The primary evaluation metrics 

include recovery time, overshoot during the recovery process, 

and post-recovery steady-state error. A comparative summary 

of performance indicators for the four control methods under 

two sudden disturbance scenarios is presented in Table 6. 

 

Table 6. Performance comparison of sudden disturbance experiments 

 

Control Method Disturbance Scenario 
Recovery Time tᵣₑc 

(s) 

Recovery Overshoot σᵣₑc 

(%) 

Post-Recovery Steady-State 

Error ΔTₛₛ (℃) 

Proposed method 
Material charging +40% 11.5 1.5 0.23 

Fuel pressure −15% 10.2 1.3 0.21 

PSO–PID 
Material charging +40% 16.8 2.9 0.36 

Fuel pressure −15% 15.5 2.6 0.33 

Conventional offline 

GA–PID 

Material charging +40% 20.8 4.2 0.53 

Fuel pressure −15% 19.3 3.9 0.49 

Conventional PID 
Material charging +40% 31.2 7.8 1.05 

Fuel pressure −15% 29.5 7.5 1.01 

 

As indicated by the data in Table 6, the proposed method 

demonstrates outstanding disturbance recovery performance 

under both sudden disturbance scenarios. When a 40% 

increase in material charging is introduced, the recovery time 

is limited to 11.5 s, corresponding to reductions of 44.7%, 

63.1%, and 31.5% relative to conventional offline GA–PID, 

conventional PID, and PSO–PID methods, respectively. The 

recovery overshoot is constrained to 1.5%, which is 

substantially lower than the values observed for the 

benchmark methods (4.2%, 7.8%, and 2.9%). In addition, the 

post-recovery steady-state error is reduced to 0.23℃, ensuring 

rapid restoration of temperature to the vicinity of the setpoint 

without noticeable deviation. Under the fuel pressure decrease 

of 15%, the recovery time is further shortened to 10.2 s, 

representing reductions of 47.2%, 65.4%, and 34.2% 

compared with conventional offline GA–PID, conventional 

PID, and PSO–PID methods, respectively. Recovery 

overshoot and post-recovery steady-state error are also 

maintained at the lowest levels among all methods. These 

results provide strong validation of the synergistic 

effectiveness of the directional mutation strategy and the 

online self-evolving thermal knowledge base integrated into 

the proposed method. By rapidly retrieving optimal parameter 

sets associated with similar disturbance types and real-time 

thermal feature patterns, the knowledge base supplies high-

quality initial populations for GA optimization, thereby 

significantly shortening the search path. Meanwhile, the 

directional mutation operator guides the optimization process 

toward effective disturbance compensation through heuristic 

rules, avoiding blind exploration. Consequently, rapid and 

smooth recovery following sudden disturbances is achieved, 

effectively ensuring stable operation of the industrial furnace 

thermal system and meeting the control requirements imposed 

by complex disturbance environments in industrial practice. 

 

 

5. DISCUSSION 

 

The thermodynamic performance advantages of the 

proposed method primarily originate from deep adaptation to 

the intrinsic thermal characteristics of industrial furnaces and 

from dynamic regulation aligned with fundamental energy 

conservation principles. In the setpoint tracking mode, the 

GA-based global exploration strategy explicitly accounts for 

pronounced thermal inertia and time-delay effects, enabling 

precise tuning of PID parameters to suppress temperature 

overshoot and thereby prevent additional heat losses induced 

by abrupt temperature increases. In the steady-state holding 

mode, the hybrid GA–PSO optimization strategy targets 

coordinated improvement of temperature uniformity and 

energy consumption, where fine adjustment of the control 

input reduces temperature fluctuations and, consequently, 

lowers fuel consumption and furnace heat loss. In the 

disturbance recovery mode, the combination of directional 

mutation and knowledge-base retrieval enables rapid 

restoration of thermal equilibrium, effectively avoiding 

reductions in thermal efficiency caused by external 

disturbances. Through the coordinated action of these multi-

modal optimization strategies, the industrial furnace thermal 

system is maintained near an optimal balance among energy 

input, energy absorption, and energy dissipation, ultimately 

achieving thermodynamic optimization characterized by 

enhanced thermal efficiency and reduced energy consumption. 

In addition, strong robustness is exhibited by the proposed 

method in the presence of model parameter perturbations. To 

evaluate robustness, representative perturbation scenarios are 

introduced in simulation, including ±20% variation in time 

delay, ±30% variation in system gain, and ±15% variation in 

thermal capacity. Comparative analysis of performance 

variations among four control strategies indicates that the 

relative change rates of key control performance indicators for 

the proposed method remain within 8% under parameter 

perturbations. By contrast, performance variation ranges of 

15%–22%, 25%–35%, and 12%–18% are observed for 

conventional offline GA–PID, conventional PID, and PSO–

PID methods, respectively. This robustness advantage is 

attributed to the integrated thermal-feature perception module, 

which captures perturbation-induced variations in thermal 

characteristics in real time. Through online mode decision-

making and dynamic adjustment of GA optimization 

strategies, control deviations caused by parameter changes are 

adaptively compensated, thereby ensuring stable system 

performance. 

A systematic sensitivity analysis is conducted using the 

control-variable method to quantify the influence of key 

parameters on control performance and to determine their 

optimal ranges and selection rationale. For the GA population 

size, a significant improvement in control performance is 

observed as the population size increases from 30 to 50, with 

overshoot reduced by approximately 30% and recovery time 

shortened by about 25%. However, when the population size 

exceeds 50, performance gains fall below 5%, while 

computational cost increases markedly. Consequently, a 

population size of 50 is identified as the optimal trade-off 

between performance improvement and computational 

efficiency. With respect to fuzzy inference thresholds, 
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excessively high thresholds result in mode misclassification 

rates exceeding 8%, whereas overly low thresholds induce 

frequent mode switching and control instability. Based on 

experimental calibration, the optimal threshold ranges are 

determined to be 0.01–0.03℃/s for transient thermal response 

intensity, 0.003–0.007 for the steady-state temperature 

uniformity index, and 0.1–0.3℃/s for the disturbance thermal 

shock coefficient. Regarding the knowledge-base similarity 

threshold, a value of 0.8 is found to ensure high-quality initial 

populations, leading to a 45% improvement in optimization 

efficiency while keeping the occurrence rate of unmatched 

data below 3%. Accordingly, 0.8 is selected as the optimal 

threshold. 

Although the proposed method demonstrates substantial 

advantages in both control performance and thermodynamic 

efficiency, three limitations remain to be addressed. First, 

construction of the fuzzy inference rule base relies on expert 

knowledge and experimental data, resulting in limited 

adaptability to extreme thermal operating conditions, such as 

ultra-high temperatures above 1000℃ or severe large-load 

disturbances. Second, the computational complexity of the 

GA-based optimization strategy exceeds that of conventional 

control methods, which may constrain deployment on low-

computing-power edge controllers. Third, the current 

optimization objectives do not explicitly account for pollutant 

emissions, such as nitrogen oxides (NOx), leaving a gap 

relative to the requirements of green and low-carbon industrial 

furnace operation. Future research directions may therefore be 

focused on three aspects. First, reinforcement learning 

techniques may be integrated to enable automatic optimization 

of the fuzzy inference rule base, thereby enhancing 

adaptability under extreme operating conditions. Second, 

lightweight optimization algorithms, such as quantum GAs or 

micro-GA variants, may be employed to reduce computational 

complexity and improve compatibility with low-power 

hardware platforms. Third, multi-objective optimization 

frameworks may be established to simultaneously balance 

temperature control accuracy, energy consumption, and 

pollutant emissions, thereby promoting high-efficiency and 

low-carbon operation of industrial furnaces. 

 

 

6. CONCLUSIONS AND OUTLOOK 

 

To address the inherent nonlinearity, thermal inertia, time-

delay characteristics, and variable operating disturbances of 

thermal control systems in industrial furnaces, a GA–PID 

optimization control framework integrating thermal-feature 

perception and dynamic strategy switching was developed. 

Through systematic investigation encompassing theoretical 

modeling, numerical simulation, and industrial field 

validation, the following principal conclusions were drawn. 

First, a nonlinear thermal model of the industrial furnace was 

established, by which thermal inertia, time delay, and 

disturbance characteristics were accurately captured. A 

goodness-of-fit exceeding 0.95 was achieved, providing a 

reliable theoretical basis for control strategy design. Second, a 

multi-source thermal information perception and feature 

extraction method was designed, enabling effective 

quantification of transient thermal response intensity, steady-

state temperature uniformity, and the disturbance thermal 

shock coefficient, thereby providing precise data support for 

mode decision-making and GA-based optimization. Third, a 

three-mode GA–PID optimization engine was proposed, 

wherein global exploration, local fine optimization, and 

directional mutation integrated with historical knowledge 

were customized, thereby achieving coordinated optimization 

of control performance and thermodynamic performance 

across the full operating range. Fourth, an online self-evolving 

thermal knowledge base was constructed, significantly 

enhancing optimization efficiency under disturbance scenarios 

and reducing recovery time by approximately 40%–60%, 

thereby enabling continuous evolution of control performance.  

Simulation studies and industrial field experiments 

consistently verified the effectiveness of the proposed method 

and demonstrated comprehensive performance advantages 

across the principal operating conditions of industrial 

furnaces. Under setpoint tracking conditions, overshoot was 

limited to 2.3%–2.8%, representing reductions exceeding 

47.2% relative to benchmark methods, while rise time was 

shortened to 48–55 s, corresponding to improvements of more 

than 10.3%. Under steady-state holding conditions, the 

average steady-state temperature fluctuation was constrained 

to ±0.18–0.20℃, representing reductions of more than 26.7%, 

while the average thermal efficiency reached 85.3%–86.7% 

and energy consumption was reduced by 5.3%–21.2%. Under 

sudden disturbance conditions, recovery time was limited to 

9.5–11.5 s, corresponding to reductions exceeding 31.5% 

compared with benchmark methods, while recovery overshoot 

remained no greater than 1.5%. The close agreement between 

industrial field experiment results and simulation trends 

confirms effective adaptation of the proposed method to real 

thermal characteristics of industrial furnaces, demonstrating 

substantial engineering applicability. 

Future research could be extended and deepened on the 

basis of the present findings to promote technological iteration 

and large-scale engineering deployment. On one hand, 

expansion toward multi-zone industrial furnace temperature 

coordinated control could be pursued, in which spatial 

coupling of in-furnace temperature distributions is explicitly 

considered and distributed GA–PID optimization control 

strategies are developed to further enhance overall temperature 

uniformity. On the other hand, digital twin technology could 

be integrated to construct virtual–physical mapping models of 

industrial furnaces, enabling predictive optimization of 

thermal operating conditions and intelligent fault diagnosis, 

thereby improving the intelligence level of system operation 

and maintenance. In addition, deep integration of artificial 

intelligence algorithms, such as deep learning and 

reinforcement learning, with GAs could be explored to further 

enhance the adaptability and robustness of control strategies. 

Moreover, large-scale application validation across different 

types of industrial furnaces—including electric furnaces and 

oil-fired furnaces—could be conducted to accumulate control 

experience under diverse thermal scenarios. Such efforts are 

expected to facilitate engineering implementation and 

standardized deployment of the proposed method, ultimately 

providing more comprehensive technical support for the high-

efficiency and low-carbon operation of industrial furnaces. 
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