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This paper introduces the first study that offers dual analytical solutions for fractional
MHD flow without employing the perturbation method, utilizing dual-scale transformation
and the Galerkin method. The fractal model based on He's fractal derivative is transformed
into its traditional derivative through a two-scale transformation. This transformed system
of partial differential equations is then reformulated into a nonlinear form, i.e., a one-
dimensional cubic tremor model. The numerical solution determined by the launch method
showed good agreement with the graphs and tables constructed for the analytical solution
resulting from the proposed strategy. Where the present method keeps errors below 107>
compared to numerical solutions, showing great accuracy across different parameters.

Physically, dimension or scale is a fundamental issue when studying a problem. Various
scales can provide various outcomes when one observes something. The results showed
that fractals act as forces resisting flow, similar in effect to the forces of the porous medium.

1. INTRODUCTION

The behavior of magnetic fields (MF) on fluids has emerged
as a key area of research with widespread applications across
various industrial and technological sectors. Magnetic
interactions in fluids have facilitated advances in magnetic
modeling, magnetic sheeting, spinning operations, and the
manufacture and processing of liquid metals, particularly in
aluminum casting, smelting, plasma welding, and nuclear
industries. Apart from industrial applications, MF has also
been used intensively in medical sciences, wherein it can
potentially improve venous blood flow by exposing an
individual to a magnetic field, giving a potential approach to
alternative medicine with reduced side effects. These different
applications  reflect a  better  understanding  of
magnetohydrodynamic (MHD) and its contribution to
technological breakthroughs [1, 2].

The dimension is crucial in every study we conduct, and the
scale we employ becomes essential whenever examining an
issue. For instance, even though our Earth is sufficiently huge
to be seen from a great distance, it turns into a point. Because
Newton's gravity views the Earth as a point, it is unable to
account for earthquakes. Therefore, a key component of the
current investigation is the use of two-scale dimensions. The
two-scale approach in fractal space has the following key
features: The theory of embedding space and reconstruction of
the state space can be used to get the dimension of the fractal
and the fractal range of traffic movement data, which means
that the scale has a significant impact on these fractal features
[3]. From two-dimensional data, a fractal signature can be used
to describe both manufactured and natural objects. A fractal
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pattern is a local measurement regarding the fractal dimension
as a function of scale and spatial domain. It is possible to
estimate the fractal signature using morphological filters that
are fast on computers. Real and fake data can be used to check
for consistency and edge, and anomaly effects [4]. He's fractal
derivative can be an efficient means to create a mathematical
model in a low-gravity environment, and its principle of
variation can serve to derive laws of conservation and unveil
the solution's structure. With the two-scale approach, it can be
an approximate analytical way to establish its solution [5]. If
the primordial fluctuations of tiny densities are fractal, we can
naturally explain the current nonlinear structure resembling a
fractal, and beneath the horizon scale can be studied. By
observing the time evolution of fractal density fluctuations in
an Einstein-de Sitter universe, the nonlinear structure
stabilizes into a single attractor with one fractal dimension,
regardless of the fractal dimensions of the initial perturbations
[6].

The use of fractional space and fractional calculus in fluid
dynamics is primarily due to the need to simulate complex
media, such as biological fluids, such as describe the
movement of biological fluids and air through blood vessels
and airways within human body systems, such as the
circulatory and respiratory systems [7]. In addition, it
describes the flow of fluids through porous materials in
petroleum and natural gas extraction processes [8]. It also
describes food manufacturing processes and astrophysics [9,
10], where fractional derivatives allow for a more accurate
description of the positions and motion of celestial bodies in
space. Therefore, there are a lot of studies focused on the uses
of fractional calculus and fractional methods in fluid dynamics
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[11-16]. Steady MHD fluid movement through a porous
material in a fractal space has been studied extensively [17-
21]. The movement of a second-grade MHD fluid through a
porous medium, considering Hall current effects, has been
investigated, where precise solutions for flow velocity
distribution were derived [17]. Transient problems of MHD
flow in a Darcian porous medium next to a suddenly activated
surface have also been studied [18]. Additionally, the analysis
has been conducted on steady, laminar, incompressible,
viscous, and electrically conducting fluid flow caused by a
rotating disk, with uniform suction and injection through the
walls, in the presence of a uniform transverse magnetic field.
[19]. The mass transfer in magnetically influenced fluid flow
through porous beds was found to decrease with an increase in
the Hartmann number [20]. Furthermore, MHD steady and
pulsatile fluid flows through porous media have been
investigated [21]. Li et al. [22] also employed a fractional
transformation to introduce an exact solution for a time-
fractional heat conduction model. Further, based on the fractal
variation principle, an analytical study is presented on how to
deal with a two-scale thermodynamic model [23].

The key focus of the study is to use He’s Fractal-based
derivative in the investigation concerning the fractal magnetic
fluid flow in the boundary layer through a porous medium
within a fractal space. The method is founded on the reduction
of the fractal model to its differential form as equations
involving partial derivatives by using the two-scale
transformation. The exact solution of the reduced one-
dimensional non-linear jerk model is derived based on
Galerkin’s approach. This issue has not been previously
investigated, to the best of our knowledge. The approach of the
work is delineated in section 2, which is divided into three
sections: the system description, the mathematical model, and
the Dual-scale transformation. The analytic solution via
Galerkin’s technique is presented in section 3. The results of
section 4 are presented, including the validation of the
calculations and the impact of fractal parameters on these
systems.

2. MATHEMATICAL FORMULATION

Consider a Newtonian incompressible viscous fluid flow
over a stretching surface in a still fluid that emerges from a
narrow slit through a porous medium with permeability k in a
fractal space. A magnetic field strength Bywas also provided.
The stretching sheet originating from a slot at the origin and
moving at non-uniform speed u,, (x) = c x%, where, cis a
positive constant with dimensions (time) ™1, see Figure 1. The
fundamental steady conservation equations for mass and
momentum in the boundary layer can be expressed in
Cartesian coordinates as fractal differential equations:

—
Region of boundary mfluence
S )

Slogs [. - Extending- sheet?

Figure 1. The geometry of problem
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Under the given boundary conditions:

u=u,x)=cx*v=-,aty=0

u=0asy- (3)
= y (00

where, (u,v) the components of velocity are represented,
along with the fractal dimension parameters (a, 8) for the x
and y axes, respectively. o,v and p are the electrical
conductivity, kinematic viscosity, and density of the fluid,
respectively. (u,,, V,,) are horizontal and vertical velocities at

the sheet.

ou

Here, = and _ﬁ

defined in the following manner [24, 25]:

are He’s fractal derivatives which may be
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where, x, and y, denote the lowest hierarchical x and y
levels.

The fractal-based derivative is viewed as an inherent
extension of Leibniz's differentiation method, tailored for
discontinuous fractal media. Notably, this definition of the
fractal operator is comprehensively presented and explored in
the relevant literature [26-28]. The fractal derivatives, as
defined in Egs. (4) and (5) have been extensively utilized in
numerous studies [29-31], demonstrating significant efficacy.
Additionally, this fractal-based derivative also has a lot of
characteristics like the following [32, 33]:

du du du
le— =u, le—a =1u,Lim— =
a—0 dx a—1 dx a—2 4x (6)
du _ ..
U, andLim — = Uu, ...
as3 dx®

In this framework, the over-dot symbol represents the
conventional derivative of the variable. A crucial question
arises regarding the behavior in fractal space under different
conditions: when 0.0 < a < 1.0.

2.1 Dual-scale transformation

The dual-scale transformation is introduced by Ain and He
[21], He and Ain [23], and He and Ji [34]. It functions as an
efficient tool for transforming a fragmented space into its
continuous counterpart.

Initially, we will utilize the next dual-scale transformation
to write the fractal governing framework in the classical
equation involving partial derivatives like:

|

Consequently, the following system is a representation of
the fractal models (1) and (2):

X =x“

Y = yP M



5+5=0 (8)
du Lo 0 _gpp ©)
uax+vay_vayz pBOu pku

In Eq. (3), the two boundary condition limits, y = 0 and
y — o, can be rewritten as y# = 0 and y# — o in fractal
space, respectively, for all values of the fractal parameter S.
So, by applying transformation (7), the constraints at the
boundary take the form:
u=u, =cX,v=-,at¥ =0
u=0asY - o } (10)

By introducing the following non-dimensional variables

[35-37]:
n=\[%7Y.¢(X.Y)=\/%Xf(n) (11)

where, f is a similarity function. ¥(X,Y) is also the stream
function defined by:

W _ xY = __ |
u—ay—chnandv— o \[:f(r)) (12)

Which automatically satisfies the continuity Eq. (8).
Substituting Eq. (11) into the governing PDEs (9) and (10) will
be converted into the subsequent standard differential
equation:

- () - (M )L =0 (13)

With Dirichlet boundary conditions:

) = fL=1am =0
o o (14)

— = (Qasn —»
dn U

_ 0B g _ :
where, M = > K = o and f,, = T are the magnetic,
permeability, and mass transfer parameters. Here, v represents
the kinematic viscosity and f;, takes positive/negative sign for

injection/suction.
2.2 Physical quantities

The significant quantity in this problem is the coefficient of
skin friction, characterized as:

Tw

Cr = (15)

Which can write in dimensionless form as:

d?f
,/ReXCf = d_r]2

(16)

n=0

u . X .
where, 7, = u(— is shear stress and Rey =2=u,, is the
s tw av/y—g X u w

Reynolds number at a local point.

3. ANALYTIC
TECHNIQUE

SOLUTION VIA GALERKIN’S

Since the above jerk model (13) is nonlinear, meaning it
does not have an exact solution, the goal is to find an
approximate solution. Firstly, by imposing a trial solution for
transformed ODE (13) on the following form:

fom) = C+AQ —e™P7) (17

where, A, B, and C are fixed values.

It can be observed that the above proposed solution (17) has
fulfilled the Dirichlet boundary constraints in Eq. (14); by
applying the first two conditions in Eq. (14), the exact solution
(17) can be simplified to the following expression:

fom = fyy + A (1= e7A) (18)

Since the proposed trial solution (17) is not exact, it does
not satisfy the model (13). Then, when it is substituted into Eq.
(13), a remainder is produced. Therefore, the residual function
R(A; 1) can be expressed in this manner:

RUA;) = £ () + fofd () = () —

(M +1) 4

According to Galerkin’s approach, there are no limitations
present in the study [38-41]. Now the unknown constant
frequency A in Eq. (18) can be evaluated as:

f R(A; )W (A m)dn = 0 (20)
0

where, W (4; n) is the weight function which can formed as
follows:

1
W =2L=1-(1+3n)e @1)

By calculating the integration (20) by applying the
Mathematica program yields:

Ao —fwK+VEK |4+4K+f, 2 K+4KM (22)

- 2(1+K+KM)

where, we notice that the values under the root are positive
values, so a dual Galerkin’s solution of the transformed system
(13) and (14) will be obtained as:

FfwK+VE |4+4K+ [ K+4KM
fm=fut 2K KM ‘ X|1-—
(23)
I 2(1+K+KM) n

FfwK+VE |4 +4K+ [y K+4KM

Therefore, with the help of transformation (11), the stream
function Y (X, Y) via Galerkin’s technique will be expressed



as:

24)

1- e‘%ﬁy)]

Also, with the help of the two-scale transformation (7), the
stream function 1 (x, y) in the fractal space can be formulated
as:

YXY) = Vevx [fw +A<

Y(x,y) =Vevx® [fw +A (1 — e_%\/gyﬁ)] (25)

This dual Galerkin stream function will be illustrated
numerically in the next section.

4. FINDINGS AND ANALYSIS

Before beginning to display the graphs for the results
obtained, the validity of the analytical approach used must first
be verified. To do this, the analytical results should be
compared to the exact solution. However, since no exact
solution exists for the present system, we will instead compare
it with one of the most widely used, effective, and accurate
numerical methods used for this type of nonlinear system: the
shooting method.

4.1 Validation

It is worth noting here that the system being dealt with
represents a jerk model, which is a nonlinear differential
equation. Therefore, it is difficult to obtain an exit solution, so
we can conclude that our method maintains an error rate less
than X% that of numerical solutions. Although the accuracy of
the analytical method used has been previously evaluated in
numerous studies in the literature, this is the first time it has
been used in such systems, where the boundary conditions
contain infinity. Therefore, it was necessary to compare the
solution obtained using Galerkin method with numerical
solutions using the most reliable and common method for this
type of problem, the shooting method. This is illustrated
graphically in Figures 2(a), 2(b), 3(a), and 3(b). In addition,
the error in the calculations between the numerical and
analytical solutions is calculated in Tables 1 and 2 to
demonstrate the extent of agreement between the results and
provide confidence in the analytical method used for this type
of fluid flow system. Figure 2(a) represents a comparison
between the numerical and Galerkin initial solutions for the
function f(n) . In this a (Galerkin) analytic solution
(represented by the dashed blue line), whereas a numerical
solution (represented by the solid red line). The solution f (1)
is represented on the vertical axis, spanning from 0 to above
0.6, in relation to the independent variable 7 on the horizontal
axis, which extends from 0 to 5. The great agreement between
the Galerkin and Numerical solutions over the whole region of
7 displayed is a remarkable aspect of this study. The answers
are identical, as seen by the nearly perfect superimposition of
the blue dashed line (Galerkin) and the red solid line
(shooting). Furthermore, low 1 Values (n =~ 0 ton = 2) are
indicated by this diagram: The function f{#) shows a fast, non-
linear exponential-like growth as n grows, reaching values
between 0 and 0.5 at n = 2. The superposition of the two
curves is preserved even in this area of significant amplitude
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and fast change. In the second case (subsequent solution),
Figure 2(b) also shows a comparison between the numerical
and the initial Galerkin solutions for the function f (7). The
vertical axis, which spans from 0 to over 2000, represents the
function f(n), while the horizontal axis, which spans from 0
to 5, represents the independent variable 7. The function f ()
exhibits rapid nonlinear growth with the growth of 7. The high
agreement between the Galerkin and numerical solutions,
represented in blue and red, remains prominent throughout the
entire range, even in this region of rapid change. Compared
favorably to the numerical solution, this is an important
observation that shows how accurate and robust the Galerkin
approach is at capturing complex, high-magnitude non-linear
phenomena.

Additionally, Figure 3(a) and Figure 3(b) show comparisons
of the numerically calculated and analytically calculated
velocities f'(n). This effective comparison, which clearly
demonstrates the overlap between the analytically calculated
velocity curves and their numerically calculated counterparts,
is an important result that demonstrates the accuracy and
robustness of the Galerkin technique in capturing the complex,
high-volume nonlinear phenomena that occur in magneto-
fluid flow problems in porous media. This technique has
numerous applications in diverse fields, including
hydrogeology (groundwater flow), petroleum engineering (oil
and gas reservoir modeling), biomedical engineering (flow in
biological tissues), and industrial applications (filters and heat
exchangers).

06
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f(n)os
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(a) Initinl solution

Numerical solution

- = = « Galerkin solution

Numerical solution

= = = « Galerkin solution
1500

(1) 1000

500 (b) Subsequent solution

Figure 2. A comparison between the Galerkin and numerical
solutions for f(n) ata =K =1,f,, = —0.1,and M = 0.5

Table 1 and Table 2 show the percentage of error resulting
from comparing the outcomes of the solution f (1) which was
calculated analytically via Galerkin’s approach (23) and
numerically using the well-known shooting technique for
various values ofnatK =1, f,, = —0.1, and M = 0.5. The
number of relative errors between the results of the two
methods, whether in the first or second solution, is within a
part per million, which expresses the accuracy of Galerkin’s



strategy. The strong relationship supports the Galerkin
method's usage as a trustworthy supplement or substitute for
the numerical solution to this problem. The Galerkin method,
a kind of weighted residual approach frequently used to
discover approximate solutions to differential equations,
appears to be successfully convergent to the genuine solution
(represented here by the Numerical result) based on the
minimal variation between the two solutions. When an
analytical approximation is preferred over a purely numerical
method, or for further study, these figures and tables
effectively illustrate the excellent accuracy of the Galerkin
solution and its safe use.

,,,,,,,,,,,,,,,,,,,,,,,,,

1.0

0.8

(a) Initial solution

0.6 |
f'(n) |
0.4}
Numerical solution |
0.2} ]
t = = = « Galerkin solution |
00l — T - '
1 2 3 4 5
n
B R B A R SR
F Numerical solution
3000 -
E - = = « Galerkin solution
2500 F
f'(n) 2000 (b) Subsequent solution
1500 |
1000
500 F j
of |
0 1 2 3 4 5

Figure 3. A comparison of the Galerkin and computational
answers fordf /dnatK =1,f, = —0.1,and M = 0.5

Table 1. Relative error between the Galerkin and numerical
first solution f(n) for various values of n at K = 1, f,,

terms (like the Lorentz force) and transport phenomena (like
heat and mass transfer), leading to distinct flow behaviors
compared to idealized, non-fractal porous media models.
Therefore, this discussion section interprets the stream
function ¥Y(x,y) (25) plot under the effect of fractal
parameters « and £, links the visual data to fundamental fluid
mechanics concepts (velocity gradient). All calculations in this
section have been done at K =1, f,, = —0.1,M = 0.5, and
¢ =v = 1. The analytical results obtained from Galerkin’s
approach, particularly the visualization of the stream function
Y in Figures 4, 5, 6, and 7, provide clear insights into the
development and characteristics of the internal fluid flow. The
stream function contours represent the instantancous
streamlines of the flow, thereby -elucidating both the
qualitative flow patterns and the underlying velocity
distribution.

Table 2. Relative error between the Galerkin and numerical
second solution f(n) for various values of nat K = 1, f;,

—0.1,and M = 0.5

First Solution
n Galerkin’s Computational Percentage

Method Solution Solution Error

0.2 0.127831 0.127832 6.3 x107°
0.4 0.421884 0.421886 49x10°°
0.6 0.801405 0.801409 48x107°
0.8 1.29124 1.29124 48x107°
1.0 1.92344 1.92345 49x10°°
1.2 2.73941 2.73942 48x107°
1.4 3.79254 3.79256 47 x107°
1.6 5.15177 5.15180 45x%x10°°
1.8 6.90608 6.90611 43x107°
2.0 9.17029 9.17033 4.0x10°°

—0.1,and M = 0.5

First Solution
n Galerkin’s Computational Percentage

Method Solution Solution Error

0.2 0.0782245 0.0782244 9.6 x 1077
0.4 0.219102 0.219102 1.4 x107°
0.6 0.330459 0.330458 2.1x107°
0.8 0.418480 0.418479 3.0x107¢
1.0 0.488057 0.488055 1.1 x107°
1.2 0.543054 0.543051 52x107°
1.4 0.586527 0.586523 6.5x107¢
1.6 0.620889 0.620884 7.9 x107°
1.8 0.648051 0.648045 9.5x107¢
2.0 0.669522 0.669514 1.1 x 1075

4.2 Computational illustrations

Fractal parameters provide a sophisticated, physically
realistic way to characterize the microstructure of the porous
medium. This characterization then feeds directly into the
governing equations (like the momentum equation via
permeability/drag) and indirectly affects the MHD-specific
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For the first solution, Figure 4 illustrates the impact of
fractal parameter a on the stream function. Figure 4 clearly
illustrates the development of the velocity profile over the
stretching surface, in the range from y = 0 and y = 3. The
contours corresponding to different Y (x,y) values are
observed to be nearly parallel to the x-axis throughout the
domain, confirming that the flow is predominantly
unidirectional in the x-direction, in the range from x = 0 and
x = 10. A crucial finding is the non-uniform spacing between
the streamlines. According to fluid dynamics principles, the
distance between adjacent streamlines is inversely
proportional to the local flow velocity. A tight clustering of
streamlines signifies high velocity, while wider spacing
indicates slower movement. With decreasing the magnitude of
a, a decrease in the magnitude of the stream expression
Y (x,y) is observed at a constant value for fractal parameter
(B = 1). For the second solution, Figure 5 also represents that
as the magnitude of @, a reduction in the magnitude of the
stream function ¥ has occurred. However, comparing the
results in the two cases in Figures 4 and 5, it can be observed
that the impact of the fractal parameter @ on the stream
function ¥ in the second case is significantly greater than in
the first case with the same constant parameters K, f,,, M, and
B.
On the other hand, Figures 6 and 7 demonstrate the
influence of the fractal factor (8) regarding the behavior of the
stream function 1, both in first and second solutions,
respectively, at a constant value of fractal parameter (¢ = 1).
The shape of the curvature of the stream function ¥ gradually
decreases and becomes smoother with increasing 8, reaching



a value of unity, which represents a continuous space state. v
This observation is more evident in the initial solution's case g
than in the subsequent solution's case. Consequently, by
studying the effect of these fractal parameters on the stream
function, we find that they have a significant impact on the
fluid flow behavior. This demonstrates the effectiveness of
incorporating the study of the effect of these parameters on
movement and, subsequently, the investigation of motion in a
fractal space.

In summary, the above Figures indicate that if the fractal
parameter takes a value of unity (the normal case in which
there are no fractals), the flow function reaches its highest
value. That is, fractals function as forces resisting flow, similar
in effect to the forces of the porous medium.

(b)a =07 ©a=1

K=1f,=-01,M=05andB =1

©a=1

Figure 4. The influence of the concerning fractal factor a
upon the stream function ¥(x, y) (initial solution) at K =
1,fw=—-01,M=05andf =1
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L Figure 5. The influence of the concerning fractal factor «
——~—— upon the stream function ¥ (x, y) (subsequent solution) at



() B =07

©p=1

Figure 6. The influence of the concerning fractal factor 8
upon the stream function ¥ (x, y) (initial solution) at K =
1,fy=—01,M=05anda =1

() B =07

©B=1

Figure 7. The influence of the concerning fractal factor 8
upon the stream function ¥ (x, y) (subsequent solution) at
K=1f,=-01,M=05,anda =1

5. CONCLUSIONS

Dimension or scale is a fundamental issue when studying a
problem. Various scales can provide various outcomes when
one observes something. Two scales can be employed to
address the most practical issues, and for handling
discontinuous issues, an updated definition of a dual-scale
dimension is presented in place of the fractal dimension.
Although the dual-scale theory views every issue with dual
scales - the big one for an approximate smooth problem where
the classical calculus can be applied fully, in one case, the
impact of regarding the porous structure's effect on the
characteristics can be described. In this paper, we aim to derive
dual analytical solutions for nonlinear fractional MHD models
using dual-scale transformation and Galerkin’s approach, then
verify them against numerical results. The proposed strategy
can be summarized as follows:

e The fractal model is converted into its differential
counterpart through the dual-scale transformation.

e A transformed governing system of PDEs is converted into
a nonlinear one-dimensional cubic jerk model.

e Applying Galerkin technique to the resulting equation and
obtaining a dual analytical solution.

e Our method keeps errors below 107> compared to
numerical solutions, showing great accuracy across
different parameters.

Fractals act as forces resisting flow, similar in effect to the
forces of the porous medium.
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NOMENCLATURE

c positive constant, s™!

(u,v) velocity components along the x and y

axes, m-s’!

(x,y) cartesian coordinates along the surface and

normal to it

B, magnetic field strength, kg':m?-s™!

k permeability, m?

(%0, Y0) lowest hierarchical x and y levels

M dimensionless magnetic parameter

K dimensionless permeability parameter

fw dimensionless mass transfer parameter,

positive/negative sign for injection/suction

X, V) dual-scale transformation

(uw, V) horizontal and vertical velocities at the

sheet, m-s!

R residual function

Cy coefficient of local skin fraction

Rey Reynolds number at a local point

Greek symbols

(o, ) fractal dimension parameters

p fluid density, kg'm™

o electrical conductivity, m™-s

v kinematic viscosity, m?-s™!

u dynamic viscosity, (Pa‘s) kg. m™'-s™!

n similarity variable

P stream function

Tw shear stress





