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 This paper introduces the first study that offers dual analytical solutions for fractional 

MHD flow without employing the perturbation method, utilizing dual-scale transformation 

and the Galerkin method. The fractal model based on He's fractal derivative is transformed 

into its traditional derivative through a two-scale transformation. This transformed system 

of partial differential equations is then reformulated into a nonlinear form, i.e., a one-

dimensional cubic tremor model. The numerical solution determined by the launch method 

showed good agreement with the graphs and tables constructed for the analytical solution 

resulting from the proposed strategy. Where the present method keeps errors below 10−5 

compared to numerical solutions, showing great accuracy across different parameters. 

Physically, dimension or scale is a fundamental issue when studying a problem. Various 

scales can provide various outcomes when one observes something. The results showed 

that fractals act as forces resisting flow, similar in effect to the forces of the porous medium. 
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1. INTRODUCTION 

 

The behavior of magnetic fields (MF) on fluids has emerged 

as a key area of research with widespread applications across 

various industrial and technological sectors. Magnetic 

interactions in fluids have facilitated advances in magnetic 

modeling, magnetic sheeting, spinning operations, and the 

manufacture and processing of liquid metals, particularly in 

aluminum casting, smelting, plasma welding, and nuclear 

industries. Apart from industrial applications, MF has also 

been used intensively in medical sciences, wherein it can 

potentially improve venous blood flow by exposing an 

individual to a magnetic field, giving a potential approach to 

alternative medicine with reduced side effects. These different 

applications reflect a better understanding of 

magnetohydrodynamic (MHD) and its contribution to 

technological breakthroughs [1, 2]. 

The dimension is crucial in every study we conduct, and the 

scale we employ becomes essential whenever examining an 

issue. For instance, even though our Earth is sufficiently huge 

to be seen from a great distance, it turns into a point. Because 

Newton's gravity views the Earth as a point, it is unable to 

account for earthquakes. Therefore, a key component of the 

current investigation is the use of two-scale dimensions. The 

two-scale approach in fractal space has the following key 

features: The theory of embedding space and reconstruction of 

the state space can be used to get the dimension of the fractal 

and the fractal range of traffic movement data, which means 

that the scale has a significant impact on these fractal features 

[3]. From two-dimensional data, a fractal signature can be used 

to describe both manufactured and natural objects. A fractal 

pattern is a local measurement regarding the fractal dimension 

as a function of scale and spatial domain. It is possible to 

estimate the fractal signature using morphological filters that 

are fast on computers. Real and fake data can be used to check 

for consistency and edge, and anomaly effects [4]. He's fractal 

derivative can be an efficient means to create a mathematical 

model in a low-gravity environment, and its principle of 

variation can serve to derive laws of conservation and unveil 

the solution's structure. With the two-scale approach, it can be 

an approximate analytical way to establish its solution [5]. If 

the primordial fluctuations of tiny densities are fractal, we can 

naturally explain the current nonlinear structure resembling a 

fractal, and beneath the horizon scale can be studied. By 

observing the time evolution of fractal density fluctuations in 

an Einstein-de Sitter universe, the nonlinear structure 

stabilizes into a single attractor with one fractal dimension, 

regardless of the fractal dimensions of the initial perturbations 

[6]. 

The use of fractional space and fractional calculus in fluid 

dynamics is primarily due to the need to simulate complex 

media, such as biological fluids, such as describe the 

movement of biological fluids and air through blood vessels 

and airways within human body systems, such as the 

circulatory and respiratory systems [7]. In addition, it 

describes the flow of fluids through porous materials in 

petroleum and natural gas extraction processes [8]. It also 

describes food manufacturing processes and astrophysics [9, 

10], where fractional derivatives allow for a more accurate 

description of the positions and motion of celestial bodies in 

space. Therefore, there are a lot of studies focused on the uses 

of fractional calculus and fractional methods in fluid dynamics 
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[11-16]. Steady MHD fluid movement through a porous 

material in a fractal space has been studied extensively [17-

21]. The movement of a second-grade MHD fluid through a 

porous medium, considering Hall current effects, has been 

investigated, where precise solutions for flow velocity 

distribution were derived [17]. Transient problems of MHD 

flow in a Darcian porous medium next to a suddenly activated 

surface have also been studied [18]. Additionally, the analysis 

has been conducted on steady, laminar, incompressible, 

viscous, and electrically conducting fluid flow caused by a 

rotating disk, with uniform suction and injection through the 

walls, in the presence of a uniform transverse magnetic field. 

[19]. The mass transfer in magnetically influenced fluid flow 

through porous beds was found to decrease with an increase in 

the Hartmann number [20]. Furthermore, MHD steady and 

pulsatile fluid flows through porous media have been 

investigated [21]. Li et al. [22] also employed a fractional 

transformation to introduce an exact solution for a time-

fractional heat conduction model. Further, based on the fractal 

variation principle, an analytical study is presented on how to 

deal with a two-scale thermodynamic model [23].  

The key focus of the study is to use He’s Fractal-based 

derivative in the investigation concerning the fractal magnetic 

fluid flow in the boundary layer through a porous medium 

within a fractal space. The method is founded on the reduction 

of the fractal model to its differential form as equations 

involving partial derivatives by using the two-scale 

transformation. The exact solution of the reduced one-

dimensional non-linear jerk model is derived based on 

Galerkin’s approach. This issue has not been previously 

investigated, to the best of our knowledge. The approach of the 

work is delineated in section 2, which is divided into three 

sections: the system description, the mathematical model, and 

the Dual-scale transformation. The analytic solution via 

Galerkin’s technique is presented in section 3. The results of 

section 4 are presented, including the validation of the 

calculations and the impact of fractal parameters on these 

systems.  

 

 

2. MATHEMATICAL FORMULATION 
 

Consider a Newtonian incompressible viscous fluid flow 

over a stretching surface in a still fluid that emerges from a 

narrow slit through a porous medium with permeability 𝑘 in a 

fractal space. A magnetic field strength 𝐵0was also provided. 

The stretching sheet originating from a slot at the origin and 

moving at non-uniform speed 𝑢𝑤(𝑥) = 𝑐 𝑥
𝛼 , where, 𝑐 is a 

positive constant with dimensions (time)−1, see Figure 1. The 

fundamental steady conservation equations for mass and 

momentum in the boundary layer can be expressed in 

Cartesian coordinates as fractal differential equations: 

 

 
 

Figure 1. The geometry of problem  

𝜕𝑢

𝜕𝑥𝛼
+
𝜕𝑣

𝜕𝑦𝛽
= 0 (1) 

  

𝑢
𝜕𝑢

𝜕𝑥𝛼
+ 𝑣

𝜕𝑢

𝜕𝑦𝛽
= 𝜐

𝜕𝑢

𝜕𝑦2𝛽
−
𝜎

𝜌
𝐵0
2𝑢 −

𝜇

𝜌𝑘
𝑢  (2) 

 

Under the given boundary conditions:  

 
𝑢 = 𝑢𝑤(𝑥) = 𝑐𝑥

𝛼 , 𝑣 = −𝑉𝑤𝑎𝑡 𝑦 = 0
𝑢 = 0 𝑎𝑠 𝑦 → ∞

}  (3) 

 

where, (𝑢, 𝑣)  the components of velocity are represented, 

along with the fractal dimension parameters (𝛼, 𝛽) for the 𝑥 

and 𝑦  axes, respectively. 𝜎, 𝜈 and 𝜌 are the electrical 

conductivity, kinematic viscosity, and density of the fluid, 

respectively. (𝑢𝑤, 𝑉𝑤) are horizontal and vertical velocities at 

the sheet. 

Here, 
𝜕𝑢

𝜕𝑥𝛼
 and 

𝜕𝑢

𝜕𝑦𝛽
 are He’s fractal derivatives which may be 

defined in the following manner [24, 25]: 

 
𝜕𝑢

𝜕𝑥𝛼
= 𝛤(1 + 𝛼) 𝐿𝑖𝑚

𝑥−𝑥0→𝛥𝑥
𝛥𝑥≠0

𝑢(𝑥,𝑦)−𝑢(𝑥0,𝑦)

(𝑥−𝑥0)
𝛼   (4) 

 
𝜕𝑢

𝜕𝑦𝛽
= 𝛤(1 + 𝛽) 𝐿𝑖𝑚

𝑦−𝑦0→𝛥𝑦
𝛥𝑦≠0

𝑢(𝑥,𝑦)−𝑢(𝑥,𝑦0)

(𝑦−𝑦0)
𝛽   

(5) 

 

where, 𝑥0  and 𝑦0 denote the lowest hierarchical 𝑥  and 𝑦 

levels. 

The fractal-based derivative is viewed as an inherent 

extension of Leibniz's differentiation method, tailored for 

discontinuous fractal media. Notably, this definition of the 

fractal operator is comprehensively presented and explored in 

the relevant literature [26-28]. The fractal derivatives, as 

defined in Eqs. (4) and (5) have been extensively utilized in 

numerous studies [29-31], demonstrating significant efficacy. 

Additionally, this fractal-based derivative also has a lot of 

characteristics like the following [32, 33]: 

 

𝐿𝑖𝑚
𝛼→0

𝑑𝑢

𝑑𝑥𝛼
= 𝑢, 𝐿𝑖𝑚

𝛼→1

𝑑𝑢

𝑑𝑥𝛼
= 𝑢̇, 𝐿𝑖𝑚

𝛼→2

𝑑𝑢

𝑑𝑥𝛼
=

𝑢̈,and𝐿𝑖𝑚
𝛼→3

𝑑𝑢

𝑑𝑥𝛼
= 𝑢,…  

(6) 

 

In this framework, the over-dot symbol represents the 

conventional derivative of the variable. A crucial question 

arises regarding the behavior in fractal space under different 

conditions: when 0.0 < 𝛼 < 1.0.  

 

2.1 Dual-scale transformation 

 

The dual-scale transformation is introduced by Ain and He 

[21], He and Ain [23], and He and Ji [34]. It functions as an 

efficient tool for transforming a fragmented space into its 

continuous counterpart.  

Initially, we will utilize the next dual-scale transformation 

to write the fractal governing framework in the classical 

equation involving partial derivatives like: 

 
𝑋 = 𝑥𝛼

𝑌 = 𝑦𝛽
}  (7) 

 

Consequently, the following system is a representation of 

the fractal models (1) and (2): 
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𝜕𝑢

𝜕𝑋
+
𝜕𝑣

𝜕𝑌
= 0  (8) 

 

𝑢
𝜕𝑢

𝜕𝑋
+ 𝑣

𝜕𝑢

𝜕𝑌
= 𝜐

𝜕𝑢

𝜕𝑌2
−
𝜎

𝜌
𝐵0
2𝑢 −

𝜇

𝜌𝑘
𝑢  (9) 

 

In Eq. (3), the two boundary condition limits, 𝑦 = 0 and 

𝑦 → ∞ , can be rewritten as 𝑦𝛽 = 0  and 𝑦𝛽 → ∞  in fractal 

space, respectively, for all values of the fractal parameter 𝛽. 

So, by applying transformation (7), the constraints at the 

boundary take the form: 

 
𝑢 = 𝑢𝑤 = 𝑐𝑋, 𝑣 = −𝑉𝑤𝑎𝑡 𝑌 = 0
𝑢 = 0 𝑎𝑠 𝑌 → ∞

}  (10) 

 

By introducing the following non-dimensional variables 

[35-37]: 

 

𝜂 = √
𝜌𝑐

𝜇
𝑌, 𝜓(𝑋, 𝑌) = √

𝑐𝜇

𝜌
𝑋𝑓(𝜂)  (11) 

 

where, 𝑓 is a similarity function. 𝜓(𝑋, 𝑌) is also the stream 

function defined by: 

 

𝑢 =
𝜕𝜓

𝜕𝑌
= 𝑐𝑋

𝑑𝑓

𝑑𝜂
 and 𝑣 = −

𝜕𝜓

𝜕𝑋
= −√

𝑐𝜇

𝜌
𝑓(𝜂)  (12) 

 

Which automatically satisfies the continuity Eq. (8). 

Substituting Eq. (11) into the governing PDEs (9) and (10) will 

be converted into the subsequent standard differential 

equation:  

 
𝑑3𝑓

𝑑𝜂3
+ 𝑓

𝑑2𝑓

𝑑𝜂2
− (

𝑑𝑓

𝑑𝜂
)
2

− (𝑀 +
1

𝐾
)
𝑑𝑓

𝑑𝜂
= 0  (13) 

 

With Dirichlet boundary conditions: 

 

𝑓(𝜂) = 𝑓𝑤,
𝑑𝑓

𝑑𝜂
= 1at𝜂 = 0

𝑑𝑓

𝑑𝜂
= 0as𝜂 → ∞

}  (14) 

 

where, 𝑀 =
𝜎𝐵0

2

𝑐𝜌
 , 𝐾 =

(𝑘𝑐)

𝜈
, and 𝑓𝑤 =

𝑉𝑤

√𝑐𝜈
 are the magnetic, 

permeability, and mass transfer parameters. Here, 𝜈 represents 

the kinematic viscosity and 𝑓𝑤 takes positive/negative sign for 

injection/suction. 

 

2.2 Physical quantities 

 

The significant quantity in this problem is the coefficient of 

skin friction, characterized as: 

 

𝐶𝑓 =
𝜏𝑤

𝜌𝑢𝑤
2  (15) 

 

Which can write in dimensionless form as: 

 

√𝑅𝑒𝑋𝐶𝑓 =
𝑑2𝑓

𝑑𝜂2
|
𝜂=0

  (16) 

 

where, 𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑌
)
𝑌=0

 is shear stress and 𝑅𝑒𝑋 =
𝜌𝑋

𝜇
𝑢𝑤 is the 

Reynolds number at a local point. 

 

 

 

3. ANALYTIC SOLUTION VIA GALERKIN’S 

TECHNIQUE 
 

Since the above jerk model (13) is nonlinear, meaning it 

does not have an exact solution, the goal is to find an 

approximate solution. Firstly, by imposing a trial solution for 

transformed ODE (13) on the following form: 

 

𝑓0(𝜂) = 𝐶 + 𝐴(1 − 𝑒
−𝐵𝜂)  (17) 

 

where, 𝐴, 𝐵, and 𝐶 are fixed values. 

It can be observed that the above proposed solution (17) has 

fulfilled the Dirichlet boundary constraints in Eq. (14); by 

applying the first two conditions in Eq. (14), the exact solution 

(17) can be simplified to the following expression:  

 

𝑓0(𝜂) = 𝑓𝑤 + 𝐴 (1 − 𝑒
−
1

𝐴
𝜂)  (18) 

 

Since the proposed trial solution (17) is not exact, it does 

not satisfy the model (13). Then, when it is substituted into Eq. 

(13), a remainder is produced. Therefore, the residual function 

𝑅(𝐴; 𝜂) can be expressed in this manner: 

 

𝑅(𝐴; 𝜂) = 𝑓0
′′′(𝜂) + 𝑓0𝑓0

′′(𝜂) − (𝑓0
′(𝜂))

2
−

(𝑀 +
1

𝐾
) 𝑓0

′(𝜂)  
(19) 

 

According to Galerkin’s approach, there are no limitations 

present in the study [38-41]. Now the unknown constant 

frequency 𝐴 in Eq. (18) can be evaluated as: 

 

∫  
∞

0

𝑅(𝐴; 𝜂)𝑊(𝐴; 𝜂)d𝜂 = 0 (20) 

 

where, 𝑊(𝐴; 𝜂) is the weight function which can formed as 

follows: 

 

𝑊(𝐴; 𝜂) =
𝜕𝑓

𝜕𝐴
= 1 − (1 +

1

𝐴
𝜂) 𝑒−

1

𝐴
𝜂
  (21) 

 

By calculating the integration (20) by applying the 

Mathematica program yields: 

 

𝐴 =
−𝑓𝑤𝐾±√𝐾√4+4𝐾+𝑓𝑤

2𝐾+4𝐾𝑀

2(1+𝐾+𝐾𝑀)
  (22) 

 

where, we notice that the values under the root are positive 

values, so a dual Galerkin’s solution of the transformed system 

(13) and (14) will be obtained as:  

 

𝑓(𝜂) = 𝑓𝑤 ± [
∓𝑓𝑤𝐾+√𝐾√4+4𝐾+𝑓𝑤

2𝐾+4𝐾𝑀

2(1+𝐾+𝐾𝑀)
] ×

(

 
 
1 −

𝑒

∓[
2(1+𝐾+𝐾𝑀)

∓𝑓𝑤𝐾+√𝐾√4+4𝐾+𝑓𝑤
2𝐾+4𝐾𝑀

]𝜂

)

 
 

  

(23) 

 

Therefore, with the help of transformation (11), the stream 

function 𝜓(𝑋, 𝑌) via Galerkin’s technique will be expressed 
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as:  

 

𝜓(𝑋, 𝑌) = √𝑐𝜈𝑋 [𝑓𝑤 + 𝐴(1 − 𝑒
−
1

𝐴
√
𝑐

𝜈
𝑌
)]  (24) 

 

Also, with the help of the two-scale transformation (7), the 

stream function 𝜓(𝑥, 𝑦) in the fractal space can be formulated 

as: 

 

𝜓(𝑥, 𝑦) = √𝑐𝜈𝑥𝛼 [𝑓𝑤 + 𝐴(1 − 𝑒
−
1
𝐴
√
𝑐
𝜈
𝑦𝛽

)] (25) 

 

This dual Galerkin stream function will be illustrated 

numerically in the next section. 

 

 

4. FINDINGS AND ANALYSIS 

 

Before beginning to display the graphs for the results 

obtained, the validity of the analytical approach used must first 

be verified. To do this, the analytical results should be 

compared to the exact solution. However, since no exact 

solution exists for the present system, we will instead compare 

it with one of the most widely used, effective, and accurate 

numerical methods used for this type of nonlinear system: the 

shooting method. 

 

4.1 Validation  

 

It is worth noting here that the system being dealt with 

represents a jerk model, which is a nonlinear differential 

equation. Therefore, it is difficult to obtain an exit solution, so 

we can conclude that our method maintains an error rate less 

than 𝑋% that of numerical solutions. Although the accuracy of 

the analytical method used has been previously evaluated in 

numerous studies in the literature, this is the first time it has 

been used in such systems, where the boundary conditions 

contain infinity. Therefore, it was necessary to compare the 

solution obtained using Galerkin method with numerical 

solutions using the most reliable and common method for this 

type of problem, the shooting method. This is illustrated 

graphically in Figures 2(a), 2(b), 3(a), and 3(b). In addition, 

the error in the calculations between the numerical and 

analytical solutions is calculated in Tables 1 and 2 to 

demonstrate the extent of agreement between the results and 

provide confidence in the analytical method used for this type 

of fluid flow system. Figure 2(a) represents a comparison 

between the numerical and Galerkin initial solutions for the 

function 𝑓(𝜂) . In this a (Galerkin) analytic solution 

(represented by the dashed blue line), whereas a numerical 

solution (represented by the solid red line). The solution 𝑓(𝜂) 
is represented on the vertical axis, spanning from 0 to above 

0.6, in relation to the independent variable 𝜂 on the horizontal 

axis, which extends from 0 to 5. The great agreement between 

the Galerkin and Numerical solutions over the whole region of 

𝜂 displayed is a remarkable aspect of this study. The answers 

are identical, as seen by the nearly perfect superimposition of 

the blue dashed line (Galerkin) and the red solid line 

(shooting). Furthermore, low 𝜂 Values (𝜂 ≃ 0 to 𝜂 ≃ 2) are 

indicated by this diagram: The function f(η) shows a fast, non-

linear exponential-like growth as 𝜂  grows, reaching values 

between 0 and 0.5 at 𝜂 ≃ 2. The superposition of the two 

curves is preserved even in this area of significant amplitude 

and fast change. In the second case (subsequent solution), 

Figure 2(b) also shows a comparison between the numerical 

and the initial Galerkin solutions for the function 𝑓(𝜂). The 

vertical axis, which spans from 0 to over 2000, represents the 

function 𝑓(𝜂), while the horizontal axis, which spans from 0 

to 5, represents the independent variable 𝜂. The function 𝑓(𝜂) 
exhibits rapid nonlinear growth with the growth of 𝜂. The high 

agreement between the Galerkin and numerical solutions, 

represented in blue and red, remains prominent throughout the 

entire range, even in this region of rapid change. Compared 

favorably to the numerical solution, this is an important 

observation that shows how accurate and robust the Galerkin 

approach is at capturing complex, high-magnitude non-linear 

phenomena. 

Additionally, Figure 3(a) and Figure 3(b) show comparisons 

of the numerically calculated and analytically calculated 

velocities 𝑓′(𝜂) . This effective comparison, which clearly 

demonstrates the overlap between the analytically calculated 

velocity curves and their numerically calculated counterparts, 

is an important result that demonstrates the accuracy and 

robustness of the Galerkin technique in capturing the complex, 

high-volume nonlinear phenomena that occur in magneto-

fluid flow problems in porous media. This technique has 

numerous applications in diverse fields, including 

hydrogeology (groundwater flow), petroleum engineering (oil 

and gas reservoir modeling), biomedical engineering (flow in 

biological tissues), and industrial applications (filters and heat 

exchangers).  

 

 

 
 

Figure 2. A comparison between the Galerkin and numerical 

solutions for 𝑓(𝜂) at 𝛼 = 𝐾 = 1, 𝑓𝑤 = −0.1, and 𝑀 = 0.5 

 

Table 1 and Table 2 show the percentage of error resulting 

from comparing the outcomes of the solution 𝑓(𝜂) which was 

calculated analytically via Galerkin’s approach (23) and 

numerically using the well-known shooting technique for 

various values of 𝜂 at 𝐾 = 1,  𝑓𝑤 = −0.1, and 𝑀 = 0.5.  The 

number of relative errors between the results of the two 

methods, whether in the first or second solution, is within a 

part per million, which expresses the accuracy of Galerkin’s 
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strategy. The strong relationship supports the Galerkin 

method's usage as a trustworthy supplement or substitute for 

the numerical solution to this problem. The Galerkin method, 

a kind of weighted residual approach frequently used to 

discover approximate solutions to differential equations, 

appears to be successfully convergent to the genuine solution 

(represented here by the Numerical result) based on the 

minimal variation between the two solutions. When an 

analytical approximation is preferred over a purely numerical 

method, or for further study, these figures and tables 

effectively illustrate the excellent accuracy of the Galerkin 

solution and its safe use. 

 

 

 
 

Figure 3. A comparison of the Galerkin and computational 

answers for 𝑑𝑓/𝑑𝜂 at 𝐾 = 1, 𝑓𝑤 = −0.1, and 𝑀 = 0.5 

 

Table 1. Relative error between the Galerkin and numerical 

first solution 𝑓(𝜂) for various values of 𝜂 at 𝐾 = 1, 𝑓𝑤 =
−0.1, and 𝑀 = 0.5 

 

𝜼 

First Solution 

Galerkin’s 

Method Solution 

Computational 

Solution 

Percentage 

Error 

0.2 0.0782245 0.0782244 9.6 × 10−7 

0.4 0.219102 0.219102 1.4 × 10−6 

0.6 0.330459 0.330458 2.1 × 10−6 

0.8 0.418480 0.418479 3.0 × 10−6 

1.0 0.488057 0.488055 1.1 × 10−6 

1.2 0.543054 0.543051 5.2 × 10−6 

1.4 0.586527 0.586523 6.5 × 10−6 

1.6 0.620889 0.620884 7.9 × 10−6 

1.8 0.648051 0.648045 9.5 × 10−6 

2.0 0.669522 0.669514 1.1 × 10−5 

 

4.2 Computational illustrations 

 

Fractal parameters provide a sophisticated, physically 

realistic way to characterize the microstructure of the porous 

medium. This characterization then feeds directly into the 

governing equations (like the momentum equation via 

permeability/drag) and indirectly affects the MHD-specific 

terms (like the Lorentz force) and transport phenomena (like 

heat and mass transfer), leading to distinct flow behaviors 

compared to idealized, non-fractal porous media models. 

Therefore, this discussion section interprets the stream 

function 𝜓(𝑥, 𝑦)  (25) plot under the effect of fractal 

parameters 𝛼 and 𝛽, links the visual data to fundamental fluid 

mechanics concepts (velocity gradient). All calculations in this 

section have been done at 𝐾 = 1, 𝑓𝑤 = −0.1,𝑀 = 0.5 , and 

𝑐 = 𝜈 = 1. The analytical results obtained from Galerkin’s 

approach, particularly the visualization of the stream function 

𝜓  in Figures 4, 5, 6, and 7, provide clear insights into the 

development and characteristics of the internal fluid flow. The 

stream function contours represent the instantaneous 

streamlines of the flow, thereby elucidating both the 

qualitative flow patterns and the underlying velocity 

distribution. 

 

Table 2. Relative error between the Galerkin and numerical 

second solution 𝑓(𝜂) for various values of 𝜂 at 𝐾 = 1, 𝑓𝑤 =
−0.1, and 𝑀 = 0.5 

 

𝜼 

First Solution 

Galerkin’s 

Method Solution 

Computational 

Solution 

Percentage 

Error 

0.2 0.127831 0.127832 6.3 × 10−6 

0.4 0.421884 0.421886 4.9 × 10−6 

0.6 0.801405 0.801409 4.8 × 10−6 

0.8 1.29124 1.29124 4.8 × 10−6 

1.0 1.92344 1.92345 4.9 × 10−6 

1.2 2.73941 2.73942 4.8 × 10−6 

1.4 3.79254 3.79256 4.7 × 10−6 

1.6 5.15177 5.15180 4.5 × 10−6 

1.8 6.90608 6.90611 4.3 × 10−6 

2.0 9.17029 9.17033 4.0 × 10−6 

 

For the first solution, Figure 4 illustrates the impact of 

fractal parameter 𝛼 on the stream function . Figure 4 clearly 

illustrates the development of the velocity profile over the 

stretching surface, in the range from 𝑦 = 0 and 𝑦 = 3. The 

contours corresponding to different 𝜓(𝑥, 𝑦) values are 

observed to be nearly parallel to the 𝑥-axis throughout the 

domain, confirming that the flow is predominantly 

unidirectional in the 𝑥-direction, in the range from 𝑥 = 0 and 

𝑥 = 10. A crucial finding is the non-uniform spacing between 

the streamlines. According to fluid dynamics principles, the 

distance between adjacent streamlines is inversely 

proportional to the local flow velocity. A tight clustering of 

streamlines signifies high velocity, while wider spacing 

indicates slower movement. With decreasing the magnitude of 

𝛼 , a decrease in the magnitude of the stream expression 

𝜓(𝑥, 𝑦) is observed at a constant value for fractal parameter 

(𝛽 = 1). For the second solution, Figure 5 also represents that 

as the magnitude of 𝛼, a reduction in the magnitude of the 

stream function 𝜓  has occurred. However, comparing the 

results in the two cases in Figures 4 and 5, it can be observed 

that the impact of the fractal parameter  𝛼  on the stream 

function 𝜓 in the second case is significantly greater than in 

the first case with the same constant parameters 𝐾, 𝑓𝑤, 𝑀, and 

𝛽.  

On the other hand, Figures 6 and 7 demonstrate the 

influence of the fractal factor (𝛽) regarding the behavior of the 

stream function 𝜓 , both in first and second solutions, 

respectively, at a constant value of fractal parameter (𝛼 = 1). 

The shape of the curvature of the stream function 𝜓 gradually 

decreases and becomes smoother with increasing 𝛽, reaching 
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a value of unity, which represents a continuous space state. 

This observation is more evident in the initial solution's case 

than in the subsequent solution's case.  Consequently, by 

studying the effect of these fractal parameters on the stream 

function, we find that they have a significant impact on the 

fluid flow behavior. This demonstrates the effectiveness of 

incorporating the study of the effect of these parameters on 

movement  and, subsequently, the investigation of motion in a 

fractal space.  

In summary, the above Figures indicate that if the fractal 

parameter takes a value of unity (the normal case in which 

there are no fractals), the flow function reaches its highest 

value. That is, fractals function as forces resisting flow, similar 

in effect to the forces of the porous medium. 

 

 
(a) 𝛼 = 0.5 

 

 
(b) 𝛼 = 0.7 

 

 
(c) 𝛼 = 1 

 

Figure 4. The influence of the concerning fractal factor 𝛼 

upon the stream function 𝜓(𝑥, 𝑦) (initial solution) at 𝐾 =
1, 𝑓𝑤 = −0.1,𝑀 = 0.5, and 𝛽 = 1 

 

 
(a) 𝛼 = 0.5 

 

 
(b) 𝛼 = 0.7 

 

 
(c) 𝛼 = 1 

 

Figure 5. The influence of the concerning fractal factor 𝛼 

upon the stream function 𝜓(𝑥, 𝑦) (subsequent solution) at 

𝐾 = 1, 𝑓𝑤 = −0.1,𝑀 = 0.5, and 𝛽 = 1 

 

 
(a) 𝛽 = 0.5 
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(b) 𝛽 = 0.7 

 

 
(c) 𝛽 = 1 

 

Figure 6. The influence of the concerning fractal factor 𝛽 

upon the stream function 𝜓(𝑥, 𝑦) (initial solution) at 𝐾 =
1, 𝑓𝑤 = −0.1,𝑀 = 0.5, and 𝛼 = 1 

 

 
(a) 𝛽 = 0.5 

 

 
(b) 𝛽 = 0.7 

 

 
(c) 𝛽 = 1 

 

Figure 7. The influence of the concerning fractal factor 𝛽 

upon the stream function 𝜓(𝑥, 𝑦) (subsequent solution) at 

𝐾 = 1, 𝑓𝑤 = −0.1,𝑀 = 0.5, and 𝛼 = 1 

 

 

5. CONCLUSIONS 

 

Dimension or scale is a fundamental issue when studying a 

problem. Various scales can provide various outcomes when 

one observes something. Two scales can be employed to 

address the most practical issues, and for handling 

discontinuous issues, an updated definition of a dual-scale 

dimension is presented in place of the fractal dimension. 

Although the dual-scale theory views every issue with dual 

scales - the big one for an approximate smooth problem where 

the classical calculus can be applied fully, in one case, the 

impact of regarding the porous structure's effect on the 

characteristics can be described. In this paper, we aim to derive 

dual analytical solutions for nonlinear fractional MHD models 

using dual-scale transformation and Galerkin’s approach, then 

verify them against numerical results. The proposed strategy 

can be summarized as follows: 

• The fractal model is converted into its differential 

counterpart through the dual-scale transformation. 

• A transformed governing system of PDEs is converted into 

a nonlinear one-dimensional cubic jerk model. 

• Applying Galerkin technique to the resulting equation and 

obtaining a dual analytical solution. 

• Our method keeps errors below 10−5  compared to 

numerical solutions, showing great accuracy across 

different parameters. 

Fractals act as forces resisting flow, similar in effect to the 

forces of the porous medium. 
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NOMENCLATURE 

𝑐 positive constant, s-1  

(𝑢, 𝑣) velocity components along the 𝑥  and 𝑦 

axes, m·s-1 

(𝑥, 𝑦) cartesian coordinates along the surface and 

normal to it 

𝐵0 magnetic field strength, kg‧m-2·s-1  

𝑘 permeability, m2 

(𝑥0, 𝑦0) lowest hierarchical 𝑥 and 𝑦 levels 

𝑀 dimensionless magnetic parameter 

𝐾 dimensionless permeability parameter 

𝑓𝑤 dimensionless mass transfer parameter, 

positive/negative sign for injection/suction 

(𝑋, 𝑌) dual-scale transformation 

(𝑢𝑤, 𝑉𝑤) horizontal and vertical velocities at the 

sheet, m·s-1 

𝑅 residual function 

𝐶 𝑓 coefficient of local skin fraction 

𝑅𝑒𝑋 Reynolds number at a local point 

Greek symbols 

(𝛼, 𝛽) fractal dimension parameters 

𝜌 fluid density, kg·m-3 

𝜎 electrical conductivity, m-1·s 

𝜈 kinematic viscosity, m2·s-1 

𝜇 dynamic viscosity, (Pa‧s) kg. m-1·s-1 

𝜂 similarity variable 

𝜓 stream function 

𝜏𝑤 shear stress 
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