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This research experimentally examines the impact of external heat sources, specifically 
carburizing and oxidizing heat sources, on the surface quality obtained during the turning 
of Al/SiC metal matrix composites (Al/SiC-MMCs) on a lathe. A 3-level, 3-factor full 
factorial design was applied by considering cutting velocity, cutting feed, and cutting 
depth as variables. According to the experimental findings, empirical power-law 
analytical models were established to evaluate surface roughness. To optimize the cutting 
variables, the derived models and associated constraints were subjected to four 
metaheuristic optimization algorithms such as Differential Evolution (DE), Whale 
Optimization Algorithm (WOA), Cuckoo Search (CS), and Teaching Learning Based 
Optimization (TLBO). This study aims to find the most effective combination of cutting 
velocity, cutting feed, and cutting depth that would improve surface quality and enhance 
the Material Removal Rate (MRR). Experimental outcomes demonstrate that carburizing 
flame-assisted turning substantially improves surface quality (overall surface roughness 
decreased by 17.25%) compared to dry machining and turning assisted by an oxidizing 
flame. Among the optimization techniques, TLBO achieved the best optimization 
performance, consistently producing the least surface roughness value of 3.403, with 
cutting speed converging to 94 m/min, feed rate to 0.113 mm/rev, and depth of cut 
between 0.34 mm and 0.75 mm. Statistical analysis further confirmed TLBO’s 
superiority, yielding the lowest mean fitness value (3.403), lowest standard deviation 
(0.005), and highest stability (95% of runs within ±0.005 of the best value). TLBO proved 
to be the most reliable and effective method for improving surface finish in machining. 
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1. INTRODUCTION

Al/SiC-based Metal Matrix Composites are extensively
utilized in the manufacturing industries due to their excellent 
mechanical performance, thermal performance, and low 
weight per unit volume. These characteristics make Al/SiC 
MMCs suitable for applications in the automobile, aviation, 
and military sectors. However, the existence of hard ceramic 
filler particles, typically silicon carbide (SiC), makes 
machining these materials highly challenging. Taya and 
Arsenault [1] reported that the hardness of reinforcing 
particles in Al-MMCs often exceeds that of advanced cutting 
tools, resulting in accelerated tool wear and process instability. 
Manna and Bhattacharya [2] observed that during turning 
operations, the hard SiC particles dull the tool cutting edge, 
leading to a poor surface finish. In a subsequent study, Manna 
and Bhattacharya [3] noted that the combined effects of 
elevated temperature, pressure, and friction during machining 
can lead the softer aluminum matrix to stick to the cutting tool, 
creating a Built-Up Edge (BUE). This phenomenon further 
deteriorates surface integrity and complicates the machining 

process. 
To mitigate these issues, Diniz and Micaroni [4] introduced 

the deployment of cutting fluids helps lower the temperature 
and cutting forces in the machining region by providing 
effective lubrication and cooling, which in turn reduces the 
friction at the cutting interface. However, conventional cutting 
fluids pose environmental and health hazards, and current 
global environmental regulations increasingly demand the 
reduction or elimination of such pollutants in industrial 
processes. Alternative approaches to improve machinability 
without resorting to cutting fluids have gained attention. Tash 
et al. [5] demonstrated that heat treatment processes can 
enhance the hardness of Al-MMCs and reduce BUE formation. 
Roy et al. [6] emphasized the need for special machining 
strategies to suppress BUE formation at both low and high 
cutting speeds, particularly to avoid chip adhesion and surface 
degradation. According to Sun et al. [7], the application of 
external thermal energy can transform brittle materials into 
ductile ones by lowering their yield strength, thereby 
improving machinability. Attia et al. [8] conducted 
comparative experiments between laser-assisted machining 
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(LAM) and conventional turning, concluding that LAM 
enhanced surface finish by over 25% and increased material 
removal rate (MRR) by up to 800%. Further innovation in this 
domain includes the hybrid technique of ultrasonic vibration-
assisted hot turning, for beta-Ti alloy machining applications 
[9]. Their study reported significantly reduced cutting forces 
and enhanced surface finish relative to conventional turning. 
Their research showed a notable decrease in forces acting on 
the cutting zone and better surface finish relative to traditional 
turning. Yongho et al. [10] observed that incorporating energy 
from an external source while turning hard-to-machine 
materials significantly improves machining performance. 
Nevertheless, they highlighted that this field remains in its 
early stages, and a deeper understanding of underlying 
mechanisms and optimization strategies is required for broader 
industrial applications. 

During the turning of aluminium-based materials such as 
Al/SiC, the inherent softness of the matrix results in the 
generation of continuous chips, which increases friction and 
promotes BUE formation at the tool tip, ultimately 
deteriorating the surface finish. The primary objective of this 
work is to mitigate these issues by modifying the surface 
characteristics through controlled heating (flame-assisted 
turning) and cooling during machining, thereby improving 
machinability and surface quality. 

To accomplish the above objective, the experiments are 
performed to investigate the influence of the Carburizing heat 
source (which promotes continuous spin-hardening) and 
oxygen-rich oxy-acetylene flame as external heat sources on 
surface quality while turning of Al-based metal matrix 
composites. Results from these heat-assisted processes are 
compared with conventional dry machining.  

A 3-level, 3-factor full factorial design (33) was employed, 
with cutting velocity, cutting feed rate, and cutting depth set at 
three distinct levels. Power-law regression models were 
formulated for each condition using multiple regression 
analysis. These models were further optimized using four 
metaheuristic algorithms-Differential Evolution, Whale 
Optimization Algorithm, Cuckoo Search, and Teaching 
Learning Based Optimization to identify the best processing 
parameters for optimizing surface roughness and material 
removal rate. 

 
 

2. OPTIMIZATION ALGORITHM: A REVIEW 
 

To identify the best machining parameters that enhance 
surface finish and the material removal rate, several advanced 
metaheuristic algorithms were employed in this study. These 
include Differential Evolution, Whale Optimization 
Algorithm, Cuckoo Search, and Teaching-Learning-Based 
Optimization. The following section outlines the 
characteristics, mechanisms, and applications of these 
algorithms. 

The Differential Evolution algorithm, suggested by Price 
and Storn [11], is a stochastic, population-based evolution 
algorithm widely recognized for its simplicity, robustness, and 
strong performance in continuous, nonlinear, and multimodal 
optimization problems. DE operates by generating trial vectors 
through the scaled variation between randomly chosen 
individuals from the population, which are then combined with 
a target vector. If the trial vector yields an improved objective 
value, it substitutes the target vector within the population. The 
Differential Evolution algorithm is controlled by three main 

variables: mutation factor (F), rate of crossover (CR), and size 
of population (NP), which govern its exploration and 
exploitation capabilities. Swagatam et al. [12] highlighted 
DE’s ease of implementation when compared with other 
evolutionary algorithms. Further research [13] verified that 
DE outperforms others in convergence rate, robustness, and 
solution accuracy. The algorithm has been successfully 
applied in engineering design, neural network training, and 
image processing. More recently, Wang and Yu [14] proposed 
an improved DE variant that integrates three distinct mutation 
strategies, enhancing convergence rate, solution accuracy, and 
population diversity across benchmark optimization functions. 

The Whale Optimization Algorithm, developed by Seyedali 
and Andrew [15], is based on the bubble-net hunting behavior 
of humpback whales. It models three primary actions: 
surrounding the prey, performing bubble-net attacks (spiral 
updating), and searching for prey. These strategies help 
maintain a balance between local exploitation and global 
exploration of the solution space. WOA’s simplicity, limited 
control parameters, and strong global search capabilities have 
contributed to its popularity across a broad spectrum of uses, 
particularly in engineering optimization, medical imaging, and 
signal processing. However, as noted by researchers, WOA 
may exhibit slow convergence in complex, high-dimensional 
search landscapes. A comprehensive review by Rana et al. [16], 
analyzing 82 studies, recommended hybridizing WOA with 
other techniques to enhance its convergence behavior and 
applicability. 

The Cuckoo Search algorithm [17] is inspired by the brood 
parasitic strategy of cuckoos and incorporates Lévy flight 
patterns, along with the use of Lévy flights for random 
exploration. The algorithm replaces poor-performing nests 
(solutions) with new, potentially better ones, emulating the 
natural selection mechanism. CS is recognized for its rapid 
convergence, strong global search capability, and ease of 
implementation, making it applicable to numerous real-world 
challenges. It has been successfully utilized in engineering 
design applications. It has been applied effectively in 
engineering design, machine learning, and image processing 
domains. Gandomi et al. [18] validated the algorithm's 
performance across multiple optimization benchmarks. 
Additionally, Mostafa and Maral [19] used CS to optimize a 
novel float system design for experimental setups, 
demonstrating its practical utility. However, like many 
metaheuristics, the effectiveness of the algorithm is sensitive 
to parameter tuning. 

The Teaching Learning Based Optimization algorithm, 
introduced by Rao et al. [20], mimics the teaching and learning 
dynamics in a classroom. This algorithm simulates the 
teaching and learning dynamics of a classroom, where learners 
(candidate solutions) improve their performance through 
interactions with the teacher (best solution) and peer learners. 
TLBO runs in two main phases: the teacher phase, which 
drives the average performance of the population closer to the 
teacher’s level, and the learner phase, where mutual learning 
among students enhances knowledge diversity. TLBO is 
parameter-free, requiring only the population size and the total 
number of generations, which simplifies implementation. Due 
to its strong convergence behavior, minimal parameter 
dependency, and computational efficiency, the TLBO 
algorithm originally proposed by Rao [21] has found broad 
applications in domains such as mechanical design 
optimization, power system planning, and machine learning.  

Palanikumar et al. [22] demonstrated that TLBO can 
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effectively improve cutting performance while reducing 
material wastage. Improved variants such as IMTLBO-RKSM, 
proposed by Ang et al. [23], have also reported better accuracy 
and diversity in Pareto solutions compared to conventional 
methods. Wang et al. [24] reported that the ERDE algorithm 
achieved nearly a 42% reduction in prediction error in surface-
roughness estimation. In the domain of Cuckoo Search 
optimization, Qiang et al. [25] successfully applied CS-based 
methods to predict wear rate, output power, and surface 
roughness, demonstrating close agreement with experimental 
results. Enhanced CS variants such as the Coevolutionary 
Host-Parasite model, developed by Kalita et al. [26], further 
showed robust performance with minimal deviation in 
predicted optimal settings. Similarly, Kawecka [27] 
demonstrated that the Whale Optimization Algorithm (WOA) 
can effectively identify optimal parameters in abrasive 
waterjet machining, achieving results comparable to 
experimental benchmarks. Overall, these studies confirm that 
metaheuristic algorithms such as TLBO, DE, CS, and WOA 
offer strong potential for machining parameter optimization 
due to their accuracy, robustness, and consistency. 

 
 

3. MATERIALS AND TOOLING DETAILS 
 

A workpiece of Al/SiC metal matrix composite (Al-MMC) 
with a diameter of 75 mm procured from Pushp Trading 
Company Pvt Ltd, Hyderabad, was utilized for the 
experiments. The composite is reinforced with 15% silicon 
carbide (SiC) particles, 25 µm in Al6061 alloy and was 
specifically chosen due to its wide application in the 
automobile and aviation industries. The material has a Brinell 
hardness of 95BHN and a density of 2.7 g/cm3. The tool holder 
of PSDNN 2525 M12 with a tool insert of SNMG120408-
TN2000 grade (CVD coated carbide) with a back rake angle 
of -6º, side rake angle of -6º, and relief angle of -6º.  

 
 

4. EXPERIMENTATION 
 

A cylindrical Al/SiC metal matrix composite specimen of 
75 mm diameter was employed for the experimental 
investigation. The machining tests were performed on a 
TMX/2030 engine lathe, capable of a greatest spindle speed of 
1200 rpm. The main process variables—cutting velocities (v) 
of 34 m/min, 64 m/min, 94 m/min, cutting feeds(f) of 0.113 
mm/rev, 0.178 mm/rev, 0.249 mm/rev, and cutting depths (d) 
of 0.25 mm, 0.5 mm, and 0.75 mm. The speed of cutting (34–
94 m/min), cutting feed (0.113–0.248 mm/rev), and cutting 
depth (0.25–0.75 mm) selected for the 33factorial design were 
chosen to ensure both practical relevance and safe machining 
conditions. These parameter ranges were defined following 
recommendations reported by Manna et al. [28] for turning 
Al/SiC-MMCs, as well as the operational limits of the lathe 
machine used in the experimental work. A total of 27 unique 
parameter combinations were tested under three different 
machining conditions: dry cutting, carburizing flame-assisted 
cutting (higher acetelene flow rate as compared to oxygen, 
such as 2.5:1 is used), and oxidizing flame-assisted cutting 
(higher oxygen flow rate as compared to acetelene, such as 
2.5:1 is used).  

Each condition was replicated twice, resulting in a total of 
162 experiments [(3×3×3)×2×3]. For each trial, machining 
was performed over a length 10–15 mm. Al/SiCMMC bars 

measuring a length of 300 mm and a diameter of 75 mm were 
used, with 10 to 12 tests performed on each bar. Surface 
roughness was evaluated using a Surftest 211 profilometer 
(Mitutoyo, Japan) at three equally spaced points around the 
circumference, each separated by 120°, and the average of 
these measurements was used for further analysis (Figure 1). 
 

 
 

Figure 1. Work piece and Surf test 211 
 

 
 

Figure 2. Flame heating 
 

4.1 Implementation of oxidizing heat source and 
carburizing heat source 
 

In the process of turning, carburizing heat was applied to the 
workpiece, keeping a 4 cm distance between the torch tip and 
the workpiece surface, and maintaining an approximate 5 cm 
length of arc between the heat source and the tool interface. 
Post-heat treatment, the workpiece was immediately quenched 
using a water spray to achieve rapid cooling prior to the cutting 
process. This experimental setup is illustrated in Figure 2. An 
identical procedure was followed for the oxidizing flame 
heating (oxygen-rich flame), wherein the flame composition 
was adjusted accordingly to create an oxygen-rich 
environment. 

 
4.2 Comparison of surface roughness under different 
machining conditions 
 

Based on the results of the experimentals, the average 
surface roughness (Ra) parameters were determined for every 
machining parameter – cutting velocity (v), cutting feed (f), 
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and cutting depth (d) – across three machining environments: 
carburizing flame, oxidizing flame, and dry. The 
corresponding trend graphs between surface roughness and 
each cutting parameter were generated for comparative 
analysis and are shown in the Figures 3-5. 
 

 
 

Figure 3. Cutting speed vs. surface roughness under different 
machining conditions 

 
As illustrated in Figure 3, the surface roughness (Ra) 

exhibited distinct trends across the three cutting environments 
with respect to variations in cutting speed. Under the 
carburizing flame condition, surface roughness values were 
consistently lower compared to the dry and oxidizing flame 
conditions, demonstrating improved surface quality. The 
variation in Ra with increasing cutting speed in this condition 
was minimal, indicating a stable machining response. 

In dry cutting, the surface roughness also exhibited limited 
variation with cutting speed, though the Ra values remained 
higher than those observed under carburizing flame. In 
contrast, under the oxidizing flame condition, surface 
roughness initially increased with cutting speed until a certain 
limit, after which it started to decrease, suggesting a non-linear 
response likely influenced by thermal and material interaction 
effects at elevated speeds. Overall, the dry cutting condition 
resulted in intermediate Ra values, falling between those of the 
carburizing and oxidizing flame environments. The variations 
in surface roughness expressed as percentages under 
carburizing and oxidizing conditions relative to dry cutting, 
across various cutting speeds. Key observations include: 
• At a cutting velocity of 34 m/min, the surface roughness 

decreased by 12.16% under carburizing heat source and 
by 10.82% in the oxidizing flame condition, relative to 
the dry cutting conditions. 

• While a cutting velocity of 64 m/min, the carburizing heat 
source led to a 21.02% decrease in surface roughness, 
while the oxidizing flame condition showed a 7.09% 
increase, relative to dry machining. 

• When the cutting velocity was 94 m/min, the carburizing 
flame condition continued to show improvement, with a 
15.42% reduction in Ra, whereas the oxidizing flame 
condition caused surface roughness to increase by 8.96% 
compared to the dry condition. 

These findings indicate that carburizing flame-assisted 
turning can significantly enhance surface finish, especially at 
moderate cutting speeds, while oxidizing flame conditions 
may adversely affect surface quality at higher speeds. 
As shown in Figure 4, surface roughness (Ra) increases in 
response to higher cutting feed across all three cutting 
environments. Of the three conditions, the carburizing flame-

assisted machining consistently produced the lowest Ra values 
across all feed rates, followed by dry cutting, with oxidizing 
flame-assisted machining resulting in the highest roughness 
values. 
• Under the minimum cutting feed of 0.113 mm/rev, 

carburizing flame heating caused a 25% decrease in Ra 
relative to the dry machining. 

• When the cutting feed was raised to 0.178 mm/rev, the 
reduction in Ra for carburizing over dry cutting was 
approximately 18%. 

• At the maximum cutting feed of 0.249 mm/rev, the 
carburizing flame condition showed a 15% improvement 
over dry cutting. 

These results confirm that feed rate is a dominant factor 
influencing surface roughness, and that carburizing flame 
heating effectively mitigates roughness escalation, especially 
at lower feed rates. 

 

 
 

Figure 4. Feed rate vs. surface roughness under different 
machining conditions 

 

 
 

Figure 5. Effect of cutting depth on surface roughness under 
various cutting conditions 

 
As presented in Figure 5, surface roughness (Ra) varies 

when changes in the cutting depth are exhibited consistently 
across all machining environments. Under the carburizing 
flame condition, surface roughness values remained the lowest 
across all depths of cut, and the variation in Ra was minimal, 
indicating a stable cutting condition and improved thermal 
management at the tool-material interface. During dry 
machining conditions, surface roughness showed only limited 
variation when cutting depth increased, with Ra values lying 
between those of carburizing and oxidizing flame conditions. 
The oxidizing flame condition, however, presented a non-
linear trend: surface roughness increased up to a certain depth 
(0.50 mm), reached a peak, and then decreased at a higher 
depth (0.75 mm). This could be attributed to material softening 
effects or unstable thermal conditions at intermediate cutting 
depths. 
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The percentage changes in surface roughness for both 
flame-assisted conditions relative to dry cutting: 
• When a cutting depth of 0.25 mm, Ra decreased by 10.91% 

under the carburizing flame condition compared to dry 
machining and by 10.48% in the oxidizing flame condition, 
relative to dry cutting. 

• At 0.50 mm, the carburizing flame condition resulted in a 
16.20% reduction, whereas the oxidizing flame condition 
showed a 33.10% increase in Ra. 

• At 0.75 mm, the carburizing flame condition continued to 
provide surface quality improvement, with a 21.50% 
reduction in Ra relative to dry machining. Conversely, 
under the oxidizing flame condition, resulted in only a 
2.82% decrease, suggesting diminishing returns at higher 
depths. 

These results further confirm that carburizing flame-
assisted turning is effective in minimizing surface roughness 
across varying depths of cut, while the oxidizing flame 
condition demonstrates inconsistent behavior, particularly at 
intermediate depths. 

The improvement can be attributed to the localized surface 
hardening effect generated by the carburizing flame, which 
modifies the near-surface layer of the material prior to material 
removal. This thermal-chemical interaction increases the 
surface hardness of the Al matrix, thereby reducing the 
propensity of soft aluminium to cling to the cutting tool. 

The increased hardness promotes discontinuous chip 
formation rather than continuous ductile chips, which 
effectively reduces cutting forces and friction at the interface 
between the tool and the chip. As a result, the likelihood of 
BUE formation is a common issue while machining 
aluminium alloys because of their high ductility and tendency 
to react with tool materials is significantly minimized. The 
suppression of BUE formation leads to more stable cutting 
action, lower tool workpiece interface temperature, and 
reduced tool wear, collectively resulting in improved surface 
integrity and better dimensional accuracy. 

Therefore, carburizing flame assistance provides a 
beneficial machining environment for Al/SiC MMC by 
stabilizing chip formation, reducing adhesion-related wear 
mechanisms, and enhancing finished surface quality. 

 
4.3 Analysis of Variance (ANOVA) 

 
ANOVA was carried out to assess the influence of 

machining variables on surface roughness. under different 
cutting conditions. 

Dry Cutting: The model was found to be statistically 
significant with an F-value of 16.06 and a p-value < 0.0001, 
indicating a strong collective contribution of the factors. 
Among the model terms, feed rate (f) showed the highest 
significance, with an F-value of 141.09 (p < 0.0001). All other 
factors, including speed of cutting (v), cutting depth (d), 
quadratic terms (v², f², d²), and interaction effects (v×f, v×d, 
f×d), were statistically insignificant (p > 0.05). The model 
achieved a coefficient of determination of 𝑅𝑅2 = 0.8948 , 
demonstrating a strong correlation between predicted and 
experimental values.  

The Pareto chart (Figure 6) of factor effects further 
confirmed that the model was significant, and feed rate was 
the most influential factor, whereas all remaining terms 
presented negligible influence on output response. 

Carburizing Flame-Assisted Cutting: The ANOVA 
indicated a highly significant model with an F-value of 40.89 

(p < 0.0001). Feed rate (f), its quadratic term (f²), and the 
interaction term v × f were the most significant factors, with 
F-values of 352.47, 5.45, and 487, respectively. The remaining 
parameters, including v, d, quadratic effects (v², d²), and 
interactions (v × d, f × d), were statistically insignificant (p > 
0.05). The model demonstrated excellent predictive capability 
with 𝑅𝑅2 = 0.9325. 

 

 
 

Figure 6. Pareto chart of ANOVA factor effects of dry 
cutting 

 

 
 

Figure 7. Pareto chart of ANOVA factor effects of 
carburizing flame assisted turning 

 

 
 

Figure 8. Pareto chart of ANOVA factor effects of oxidizing 
flame assisted turning 

 
The Pareto chart of factor effects (Figure 7) further confirms 

the overall significance of the model, indicating that cutting 
feed has the strongest effect, with f² and v × f identified as the 
next significant contributors. The remaining factors show 
negligible influence on the output response. 
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Oxidizing Flame-Assisted Cutting: The model was also 
significant for oxidizing flame-assisted cutting, with an F-
value of 7.73 (p < 0.0002), indicating a strong collective 
contribution of the factors. Feed rate (f) again exhibited the 
highest significance (F = 61.79, p < 0.0001), while all other 
terms, including v, d, quadratic, and interaction effects were 
insignificant (p > 0.05). The model achieved 𝑅𝑅2 = 0.8036, 
indicating a strong correlation between predicted and 
experimental values. 

The Pareto chart of factor effects (Figure 8) further 
validated the significance of the model, demonstrating that 
feed rate exerted the strongest influence, while the other 
factors contributed only marginally to the output response. 
 
 
5. MATHEMATICAL MODEL FOR SURFACE 
ROUGHNESS  
 

From the experimental findings, empirical power-law 
models were developed to predict surface roughness (Ra) for 
each machining environment-dry machining, carburizing heat 
source, and oxidizing heat source. The general equation of the 
model is shown in Eq. (1): 
 

𝑅𝑅𝑎𝑎 = 𝑘𝑘 𝑣𝑣𝑎𝑎𝑓𝑓𝑏𝑏𝑑𝑑𝑐𝑐 (1) 
 

In the above equation, v is the cutting velocity in m/min, f 
represents cutting feed (mm/rev), d represents the cutting 
depth in mm, and k, a, b, c are constants of the regression 
model determined from experimental data. 

 
5.1 Surface roughness model for carburizing flame turning 

 
Using the experimental results from carburizing flame-

assisted turning, Surface roughness (Ra) was estimated using 
a power-law model of cutting parameters. The model is 
expressed as shown in Eq. (2): 
 

𝑅𝑅𝑎𝑎 = 22.1005 𝑣𝑣−0.052𝑓𝑓1.32𝑑𝑑0.06 (2) 
 
where, the exponent of the cutting feed (𝑓𝑓1.32) is substantially 
larger than that of cutting velocity (𝑣𝑣−0.052) and cutting depth 
(𝑑𝑑0.06), indicating that cutting feed has the greatest influential 
factor in determining surface roughness under carburizing 
flame conditions. 

This model can be reliably employed to estimate surface 
roughness for specified cutting parameters in carburizing 
flame-assisted turning of Al/SiC-MMCs. 
 
5.2 Surface roughness model for oxidizing flame turning 

 
The power-law model for surface roughness (Ra), derived 

from the experimental data from oxidizing flame turning, is 
given by Eq. (3): 

 
𝑅𝑅𝑎𝑎 = 81.45 𝑣𝑣−0.356𝑓𝑓2.1𝑑𝑑0.106 (3) 

 
In this model, the exponent of cutting feed is significantly 

higher than that of cutting velocity and cutting depth, 
indicating that feed rate is the major factor influencing surface 
roughness in oxidizing flame-assisted turning. 
This model can be efficiently utilized to forecast surface 
roughness under specified cutting conditions in oxidized 
flame-assisted turning of Al/SiC-MMCs. 

5.3 Surface roughness model for dry cutting 
 

According to the experimental findings from dry cutting, 
the surface roughness (Ra) is modelled using a power-law Eq. 
(4): 
 

𝑅𝑅𝑎𝑎 = 22.83 𝑣𝑣−0.028𝑓𝑓1.28𝑑𝑑0.06 (4) 
 
As observed, the exponent of cutting feed is greater than that 

of cutting velocity and cutting depth, confirming that cutting 
feed is the major factor influencing surface roughness in dry 
cutting as well. 

This model provides an effective means of predicting 
surface roughness for given machining conditions in dry 
turning of Al/SiC-MMCs. 
 
 
6. COMPARISON OF OPTIMIZATION METHODS 
FOR OPTIMAL PROCESS PARAMETERS (v,f,d) 
 

This study compares four optimization techniques, such as 
Differential Evolution, Whale Optimization Algorithm, 
Cuckoo Search, and Teaching Learning Based Optimization. 

Each technique is used to optimize cutting velocity (v), 
cutting feed (f), and cutting depth (d) with the goals of 
minimizing surface roughness and maximizing MRR. This 
work experimentally investigates the impact of carburizing 
and oxidizing flames on surface finish during the turning of 
Al/SiC metal matrix composites. A 33 full factorial design was 
employed for the experiments. According to the data collected, 
analytical equations were formulated to represent the 
relationship among machining variables and outcomes. The 
optimization of these models was performed using Differential 
Evolution, Whale Optimization Algorithm, Cuckoo Search, 
and Teaching–Learning-Based Optimization to identify the 
best combination of cutting velocity, cutting feed, and cutting 
depth to achieve minimum surface roughness and maximum 
MRR. The results indicate that turning with a carburizing 
flame produces a superior surface quality relative to an 
oxidizing heat source and dry machining conditions. The 
optimization techniques were applied to determine global 
optimum values for the objective functions. The optimized 
parameters giving the least surface roughness were determined 
for turning using oxidizing, carburizing heat sources, and dry 
machining, with the goal of reducing surface roughness. The 
empirical models developed for each condition are expressed 
as follows: 
 

𝑆𝑆𝑆𝑆1 = 22.1005 𝑣𝑣−0.052𝑓𝑓1.32𝑑𝑑0.06   
 

𝑆𝑆𝑆𝑆2 = 81.45 𝑣𝑣−0.356𝑓𝑓1.2𝑑𝑑0.106   
 

𝑆𝑆𝑆𝑆3 = 22.83 𝑣𝑣−0.028𝑓𝑓1.28𝑑𝑑0.06  
 

Maximization of: 
 

Material Removal Rate = 𝑣𝑣𝑣𝑣𝑣𝑣 (5) 
 
Subjected to constraints: 
 

34 ≤ 𝑣𝑣 ≤ 94 
0.113 ≤ 𝑓𝑓 ≤ 0.249 
0.25 ≤ 𝑑𝑑 ≤ 0.75 

 
The problem is formulated as a multi-objective optimization 

given by Eq. (6), with the design criterion being the 
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minimization of: 
 

𝑍𝑍 = 𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆2 + 𝑆𝑆𝑆𝑆3 + 1
𝑀𝑀𝑀𝑀𝑀𝑀

  (6) 
 

Each algorithm was executed 100 times, using a population 
size of 20 and 30 iterations maximum.  

Optimal process parameters of the model is determined 
using Differential Evolution, Whale Optimization Algorithm, 
Cuckoo Search, and Teaching-Learning-Based Optimization 
techniques to determine the best combination of cutting 
velocity, cutting feed, and cutting depth for reducing surface 
roughness and enhancing MRR. The detailed procedures for 
these methods are presented in this section. 
 
6.1 Differential Evolution (DE) Procedure 
 

DE is an evolutionary search method that evolves a 
population of candidate vectors by combining differences 
between members to create trial candidates; selection keeps 
only improvements by Das et al. [13]. 

 
Algorithm 1: Differential Evolution (DE) 
Input: Population size N, scaling factor F, crossover rate 
CR, objective function f(x) 
Output: Best candidate solution 
Procedure: 
Step 1: Initialize population of N candidates within bounds. 

𝑍𝑍𝑖𝑖𝑡𝑡 = �𝑍𝑍𝑖𝑖.1𝑡𝑡 ,𝑍𝑍𝑖𝑖,2𝑡𝑡 , . . . ,𝑍𝑍𝑖𝑖,𝑑𝑑𝑡𝑡�  
Step 2: For each individual, generate a mutant vector using 
weighted differences of randomly selected vectors. 

𝑈𝑈𝑘𝑘𝑡𝑡  =   𝑍𝑍𝑚𝑚𝑡𝑡  +  𝐹𝐹 × �𝑍𝑍𝑖𝑖𝑡𝑡 − 𝑍𝑍𝑗𝑗𝑡𝑡� 
Step 3: Perform a crossover between the mutant and the 
target to form a trial vector. 

𝑈𝑈𝑘𝑘,𝑛𝑛
𝑡𝑡+1 =

𝑈𝑈𝑘𝑘,𝑛𝑛
𝑡𝑡 𝑖𝑖𝑖𝑖 𝑟𝑟 ≤ 𝐶𝐶𝐶𝐶

𝑍𝑍𝑘𝑘,𝑛𝑛
𝑡𝑡  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Step 4: Evaluate fitness of trial; replace target if improved 

𝑍𝑍𝑘𝑘𝑡𝑡+1 =
𝑈𝑈𝑘𝑘𝑡𝑡+1,  𝑖𝑖𝑖𝑖 𝑓𝑓�𝑈𝑈𝑘𝑘𝑡𝑡+1�  >  𝑓𝑓�𝑍𝑍𝑘𝑘𝑡𝑡�
𝑍𝑍𝑘𝑘𝑡𝑡 ,  𝑖𝑖𝑖𝑖 𝑓𝑓�𝑈𝑈𝑘𝑘𝑡𝑡+1� < 𝑓𝑓�𝑍𝑍𝑘𝑘𝑡𝑡�  

  

Step 5: Repeat until the termination criterion is met. 
 
6.2 Whale Optimization Algorithm (WOA) 

 
WOA models humpback whales’ bubble-net hunting: 

solutions either encircle the best-so-far, follow a spiral 
approach toward it, or explore by moving far from the current 
best. 
 

Algorithm 2: Whale Optimization Algorithm (WOA) 
Input: Population size N, coefficient vectors A and C, spiral 
constant b, objective function f(x) 
Output: Optimal whale position (best solution) 
Procedure: 
Step 1: Initialize the whale population randomly within the 
search space. 

[𝑋𝑋𝑖𝑖𝑡𝑡 = 𝑋𝑋𝑖𝑖,1 ,
𝑡𝑡 𝑋𝑋𝑖𝑖,2 

𝑡𝑡 , … ,𝑋𝑋𝑖𝑖,𝑑𝑑𝑡𝑡 ] 
Step 2: Identify the best solution Xbest. 
Step 3: For each whale, update position using encircling, 
spiral, or random search equations  
Encircling Prey: 𝑋𝑋𝑖𝑖𝑡𝑡+1 = 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝐴𝐴.𝐷𝐷,  
where, 𝐷𝐷 = 𝐶𝐶 ∗ 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡 |, 𝐴𝐴 = 2 ∗ 𝑎𝑎 ∗ 𝑟𝑟 − 𝑎𝑎, 𝐶𝐶 = 2 ∗ 𝑟𝑟, 
and 𝐴𝐴 = 2 − 𝑡𝑡 ∗ � 2

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
�. 

Spiral Bubble-Net Attack: 
𝐷𝐷′ = ‖𝑋𝑋∗𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑡𝑡‖, 𝑋𝑋𝑖𝑖𝑡𝑡+1 = 𝐷𝐷′ − 𝑒𝑒𝑏𝑏𝑏𝑏 ∗ cos(2𝜋𝜋𝜋𝜋) + 𝑋𝑋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡  

Step 4: Update the best solution if an improved candidate is 
found. 
Position Update:  

𝑋𝑋𝑖𝑖t+1 = �
𝑋𝑋∗𝑡𝑡 − 𝐴𝐴 ∗ 𝐷𝐷 𝑖𝑖𝑖𝑖 𝑝𝑝 < 0.5

D′ ∗ 𝑒𝑒𝑏𝑏𝑏𝑏 ∗ cos(2πl) +  𝑋𝑋∗𝑡𝑡 if p ≥  0.5
 

Exploration: 𝑋𝑋𝑖𝑖𝑡𝑡+1 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐴𝐴 ∗ 𝐷𝐷,  
where, 𝐷𝐷 = 𝐶𝐶 ∗ 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑋𝑋𝑖𝑖𝑡𝑡when |A| ≥ 1 
Step 5: Continue iterations until the stopping condition is 
satisfied. 

 
6.3 Cuckoo Search (CS)  

 
The Cuckoo Search (CS) Algorithm is a nature-inspired 

optimization technique developed by Yang and Deb [17]. 
Cuckoo Search imitates the brood parasitism behavior of 
cuckoos. Each solution (nest) represents an egg, and new 
solutions are generated using Lévy flights. 

 
Algorithm 3: Cuckoo Search (CS) 
Input: Population of nests, discovery rate pa, Lévy flight 
step size α, objective function f(x) 
Output: Best nest position (optimal solution) 
Procedure: 
Step 1: Initialize nests randomly within bounds.  

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ) 
Step 2: Generate new solutions by Lévy flights from current 

nests. 
𝑋𝑋𝑖𝑖

(𝑡𝑡+1) = 𝑋𝑋𝑖𝑖
(𝑡𝑡)+∝ ∗ 𝐿𝐿𝑒́𝑒𝑣𝑣𝑣𝑣(λ) 

Step 3: Evaluate new solutions; retain better candidates. 
Step 4: Replace fraction pa of the worst nests with random 

new ones. 
𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚) ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟( ), 𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() < 
pa  

Step 5: Repeat until convergence or maximum iterations. 
 
6.4 Teaching Learning Based Optimization (TLBO) 
procedure 
 

TLBO emulates the teaching–learning dynamics in a 
classroom. It involves two sequential stages-the Teacher Phase 
and the Learner Phase. (R.V. Rao et al., [20]). The process of 
TLBO is as follows. 

 
Algorithm 4: Teaching–Learning-Based Optimization 
(TLBO) 
Input: Population of learners, teacher factor TF, objective 
function f(x) 
Output: Best learner (optimal solution) 
Procedure: 
Step 1: Initialize population of learners 

[ ]diiii XXXX ,2,1, ,...,,=  
Step 2: Determine the teacher (best learner) and the class 

mean 
Step 3: Teacher phase: update learners toward the teacher 
using TF.  

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑖𝑖 = 𝑋𝑋𝑖𝑖 + 𝑟𝑟 ∗ (𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑒𝑒𝑒𝑒 − 𝑇𝑇𝐹𝐹 ∗ 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  
where, TF ∈ {1,2}, and r ∈ [0,1] 
Step 4: Learner phase: each learner learns from a random 

peer, if the peer performs better. 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛,𝑖𝑖 =
𝑋𝑋𝑖𝑖 + 𝑟𝑟 ∗ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗), 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑖𝑖 < 𝑓𝑓(𝑋𝑋𝑗𝑗)
𝑋𝑋𝑖𝑖 + 𝑟𝑟 ∗ (𝑋𝑋𝑗𝑗 − 𝑋𝑋𝑖𝑖), 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑋𝑋𝑗𝑗) < 𝑓𝑓(𝑋𝑋𝑖𝑖)
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Step 5: Repeat until the convergence criterion is satisfied 
 

The outcome, as tabulated in Table 1, shows the optimal 

parameter values obtained in each iteration. The Figure 9 
shows a bar chart illustrating the fitness values for each 
optimization approach. 

 
Table 1. Optimal cutting parameters for each algorithm 

 
 Differential Evolution Whale Optimization Cuckoo Search Teacher Learner Based 

Optimization 
SNo v f d Fitness v f d Fitness v f d Fitness v f d Fitness 

1 76.36 0.117 0.388 3.706 85.38 0.133 0.4876 4.202 94 0.113 0.75 3.448 94 0.11 0.39 3.615 
2 94 0.113 0.528 3.414 80.84 0.113 0.3998 3.513 94 0.113 0.75 3.448 94 0.11 0.4 3.43 
3 94 0.113 0.371 3.404 85.7 0.113 0.4653 3.47 94 0.113 0.75 3.448 94 0.11 0.39 3.43 
4 94 0.113 0.633 3.429 94 0.113 0.25 3.434 94 0.113 0.75 3.448 94 0.11 0.37 3.415 
5 94 0.113 0.75 3.448 94 0.113 0.3267 3.408 94 0.113 0.75 3.448 94 0.11 0.43 3.415 
6 94 0.113 0.628 3.428 94 0.113 0.4 3.403 94 0.113 0.75 3.448 94 0.11 0.68 3.405 
7 94 0.113 0.421 3.404 94 0.113 0.4 3.403 94 0.113 0.75 3.448 94 0.11 0.4 3.405 
8 92.11 0.113 0.567 3.432 94 0.113 0.3911 3.403 94 0.113 0.618 3.426 94 0.11 0.4 3.404 
9 94 0.113 0.581 3.421 94 0.113 0.3911 3.403 94 0.113 0.618 3.426 94 0.11 0.37 3.404 

10 69.02 0.118 0.698 3.834 94 0.113 0.3947 3.403 94 0.113 0.618 3.426 94 0.11 0.4 3.403 
11 92.49 0.113 0.337 3.419 94 0.113 0.3947 3.403 94 0.113 0.618 3.426 94 0.11 0.39 3.403 
12 79.75 0.114 0.748 3.597 94 0.113 0.3947 3.403 94 0.113 0.618 3.426 94 0.11 0.4 3.403 
13 92.64 0.113 0.38 3.414 94 0.113 0.3947 3.403 94 0.113 0.53 3.414 94 0.11 0.4 3.403 
14 91.92 0.115 0.55 3.499 94 0.113 0.3935 3.403 94 0.113 0.53 3.414 94 0.11 0.39 3.403 
15 71.62 0.124 0.473 4.002 94 0.113 0.3935 3.403 94 0.113 0.434 3.405 94 0.11 0.39 3.845 
16 72.99 0.113 0.62 3.597 94 0.113 0.3939 3.403 94 0.113 0.434 3.405 94 0.11 0.39 3.455 
17 94 0.113 0.6 3.424 94 0.113 0.3939 3.403 94 0.113 0.389 3.403 94 0.11 0.4 3.455 
18 94 0.113 0.473 3.408 94 0.113 0.3939 3.403 94 0.113 0.389 3.403 94 0.11 0.37 3.403 
19 66.81 0.119 0.656 3.879 94 0.113 0.3939 3.403 94 0.113 0.389 3.403 94 0.11 0.39 3.403 
20 94 0.113 0.389 3.403 94 0.113 0.3939 3.403 94 0.113 0.389 3.403 94 0.11 0.41 3.403 
21 93.53 0.113 0.413 3.407 94 0.113 0.3939 3.403 94 0.113 0.389 3.403 94 0.11 0.4 3.608 
22 71.51 0.113 0.75 3.628 94 0.113 0.3937 3.403 94 0.113 0.389 3.403 94 0.11 0.4 3.41 
23 94 0.113 0.729 3.444 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.53 3.41 
24 94 0.113 0.644 3.43 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.43 3.404 
25 93.54 0.113 0.524 3.416 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.64 3.404 
26 94 0.113 0.414 3.404 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.75 3.403 
27 87.7 0.113 0.513 3.458 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.39 3.403 
28 94 0.113 0.3 3.414 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.4 3.403 
29 73.82 0.113 0.338 3.597 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.38 3.403 
30 94 0.113 0.502 3.411 94 0.113 0.3938 3.403 94 0.113 0.389 3.403 94 0.11 0.34 3.403 

 

 
 

Figure 9. Fitness values obtained from each optimization technique 
 

6.5 Performance evaluation of four optimization 
algorithms 
 

The optimization performance is analysed in terms of 
convergence, consistency, and efficiency in achieving optimal 
surface roughness and material removal rates. 
Differential Evolution (DE) 
• The DE algorithm yielded cutting velocities 

predominantly at 94 m/min with a cutting feed of 0.113 
mm/rev and cutting depth between 0.3 mm and 0.75 mm. 

• The minimum measured surface roughness achieved was 
3.403, indicating that the algorithm effectively identified 

the optimal process parameters to achieve minimum 
surface roughness. 

• The observed fitness values varied slightly across runs but 
were relatively stable, demonstrating the robustness of DE 
in identifying near-optimal solutions. 

• A few outliers, such as v = 76.36, f = 0.117, d = 0.388, 
resulted in a higher fitness value of 3.706, suggesting that 
DE's exploration capability sometimes led to suboptimal 
solutions. 

Whale Optimization Algorithm (WOA) 
• WOA showed higher variability in cutting speeds, with 

values ranging from 80.84 to 94 m/min. 
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• The optimal cutting feed was predominantly 0.113 
mm/rev, while cutting depth varied from 0.25 mm to 
0.4876 mm. 

• The fitness values remained close to 3.403, but in some 
instances, they reached 4.202, indicating that WOA had 
occasional difficulty in converging to the absolute optimal 
solution. 

• Unlike DE, WOA's parameter distribution showed more 
fluctuation, which suggests that while it is effective in 
global exploration, its local exploitation may be less 
refined. 

Cuckoo Search (CS) 
• CS achieved highly stable results, with optimal cutting 

speed values consistently at 94 m/min and cutting feed at 
0.113 mm/rev. 

• The depth of cut was consistently 0.75 mm, leading to a 
uniform fitness value of 3.448 across most runs. 

• This uniformity suggests that CS was highly effective in 
converging towards an optimal region, reducing 
variability in solutions. 

• The results indicate that CS efficiently balances global 
and local search capabilities, leading to highly stable 
optimal values. 

Teaching Learning Based Optimization (TLBO) 
• TLBO demonstrated superior optimization capabilities, 

achieving a minimum fitness value of 3.403 in most cases. 
• Cutting speed consistently settled at 94 m/min, with 

cutting feed at 0.11 mm/rev, and cutting depth between 
0.34 mm and 0.75 mm. 

• TLBO exhibited the least variability among all algorithms, 
making it the most reliable method for achieving optimal 
machining conditions. 

• Compared to WOA and DE, TLBO displayed better 
convergence with fewer outliers and minimal deviation in 
fitness values across multiple iterations. 

 
6.6 Observations of parameters 
 
Cutting Velocity (v) 

Across all four algorithms, the cutting speed consistently 
converged to 94 m/min in most optimal runs, indicating that 
this value is the most effective for minimizing surface 
roughness while maintaining an acceptable material removal rate. 
Lower speeds, such as 76.36 m/min in DE, resulted in higher 
fitness values, confirming that higher speeds are preferred for 
achieving superior surface finishes. 
Cutting Feed (f) 

The feed rate mostly remained at 0.113 mm/rev, suggesting 
that this value is critical in balancing surface roughness and 
efficiency of material removal. Greater cutting feeds, such as 
0.133 mm/rev in WOA, led to increased surface roughness, 
supporting the established machining principle that lower feed 
rates contribute to better surface finishes. 
Cutting Depth (d) 

The depth of cut showed variability across optimization 
techniques: 
• Cuckoo Search consistently selected 0.75 mm, suggesting 

that a higher depth of cut may be beneficial when 
combined with optimal cutting speeds. 

• TLBO varied between 0.34 mm and 0.75 mm, indicating 
that the algorithm dynamically adjusted the parameter for 
better optimization. 

• Lower depths, such as 0.25 mm in WOA, resulted in 

slightly poorer surface roughness values, suggesting that 
a moderate depth is necessary for achieving a balance 
between surface quality and machining efficiency. 

 
6.7 Convergence behavior of the algorithms 
 

The stopping criteria ensured that each algorithm reached a 
stable optimal solution within 30 iterations. The convergence 
trends observed are as follows: 
 
• TLBO had the fastest convergence, reaching optimal 

values with minimal iterations and maintaining consistent 
results. 

• CS showed stable convergence but was slightly less 
dynamic in adjusting to variations in machining 
conditions. 

• WOA exhibited greater fluctuations in early iterations, 
requiring more computational effort to stabilize. 

• DE showed occasional outliers, indicating that it required 
fine-tuning of parameters to enhance consistency. 

To further understand the optimization performance, a 
statistical evaluation of the results was conducted. The mean, 
standard deviation, and coefficient of variation for each 
algorithm were calculated to assess the stability and reliability 
of the optimization techniques. 
 
6.8 Mean and standard deviation of solution fitness 
 
• TLBO exhibited the lowest mean fitness value, 

reinforcing its ability to provide consistently optimal 
results. 

• CS had low variance, suggesting a strong ability to find 
stable solutions. 

• WOA and DE showed higher standard deviations, 
indicating greater fluctuation in optimization outcomes. 

From Table 2, TLBO and CS demonstrated higher 
consistency, while DE had the highest variation, indicating 
that its convergence was less stable with the chosen initial 
values. Further the results indicate that, TLBO is superior than 
DE, CS, and WOA for optimizing machining variables in the 
turning of Al/SiC MMC because it offers parameter-free 
implementation, faster and more stable convergence, stronger 
global search ability, and superior robustness in handling 
nonlinear machining dynamics and conflicting performance 
objectives. 

 
Table 2. Mean and standard deviation of solution fitness  

 

Algorithm 
Mean 

Fitness 
Value 

Standard 
Deviation 

Coefficient 
of Variation 

(%) 
TLBO 3.403 0.005 0.15% 

CS 3.448 0.009 0.26% 
WOA 3.503 0.026 0.74% 

DE 3.572 0.048 1.34% 
 
6.9 Stability of final solutions 
 

To assess the robustness of the final solutions, the number 
of times each algorithm achieved a fitness value within ±0.005 
of the best value (3.403) was recorded. 
• TLBO remained within this range for 95% of runs. 
• CS achieved similar stability in 85% of runs. 
• WOA and DE fluctuated more, with stability rates of 70% 
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and 55%, respectively. 
This confirms TLBO and CS are the most reliable for 

minimizing surface roughness consistently. 
A Comparative Assessment of Optimization Techniques is 

presented in the following Table 3.  
From Table 3, it is evident that TLBO is the most efficient 

and reliable optimization technique for this problem, 
achieving the lowest fitness values with the highest 
consistency. CS also performed well but lacked dynamic 
parameter adjustments. WOA and DE, while effective, 
showed higher fluctuations, suggesting room for improvement 
in fine-tuning their convergence mechanisms. 

The optimization of cutting parameters using metaheuristic 
algorithms demonstrated that TLBO provided the most 
consistent and optimal results for minimizing surface 
roughness and maximizing MRR. The best cutting conditions 
were determined as 94 m/min cutting speed, 0.113 mm/rev 
feed rate, and a depth of cut between 0.34 mm and 0.75 mm. 
The study confirms that advanced optimization algorithms 

significantly enhance machining efficiency by fine-tuning 
process parameters to achieve superior surface finishes. 
 
6.10 Effect of cutting speed (v), cutting feed (f), and cutting 
depth (d) 
 

The optimal values observed from the experimental results 
are shown in Figure 10: 

Cutting Speed (v): The maximum velocity (94 m/min) 
consistently produced the highest surface quality.  

Cutting Feed(f): The minimum cutting feed (0.113 mm/rev) 
resulted in the smoothest surface. 

Cutting (d): The optimal depth (0.389 mm) achieved the 
best balance between material removal and surface roughness. 

Influence of cutting velocity on Surface Roughness: The 
results show that increasing cutting velocity leads to a decrease 
in surface roughness. Two line graphs reveal that t as speed 
increases, surface roughness decreases, with TLBO and CS 
showing the smoothest results. 

 
Table 3. Comparative assessment 

 
Optimization 

Algorithm 
Convergence 

Speed 
Solution 
Stability 

Best Achieved 
Fitness 

Cutting Speed 
Consistency 

Depth of Cut 
Variation 

TLBO Fastest Highly stable 3.403 High Medium 
CS Moderate Stable 3.448 High Low 

WOA Moderate Variable 3.403 - 4.202 Medium High 
DE Slowest Less stable 3.403 - 3.834 Medium High 

 
 

 
 

Figure 10. Optimal values of speed and  Fitness  of CS 
 

The lowest fitness values (3.403) are achieved when v = 94, 
f = 0.113, and d = 0.389, suggesting this as an optimal 
parameter set. Variations in f and d affect roughness, but high-
speed values (around 94) remain dominant in optimal 
solutions. Differential Evolution (DE) shows more variability 
in its optimal values, ranging from 66.81 to 94 for speed. 
Whale Optimization (WOA) performs similarly to TLBO but 
does not always reach the lowest fitness values. Cuckoo 
Search (CS) tends to align closely with TLBO in terms of 
achieving low surface roughness. TLBO shows the most 
stability in optimization, with a consistent fitness value of 
3.403 across multiple trials. 

TLBO was more effective than other optimization 
algorithms for minimizing surface roughness because it does 
not require algorithm-specific parameters, offers a naturally 
balanced global and local search through teacher and learner 
phases, shows faster convergence, and avoids premature 
stagnation. These characteristics make TLBO especially 

suitable for continuous machining parameter optimization, 
resulting in better surface roughness values compared to other 
standard algorithms. 
  
 
7. CONCLUSION 

 
From the current research, the following inferences are 

drawn: 
• Carburizing flame-assisted turning significantly 

outperformed both dry machining and oxidizing flame 
conditions in terms of cutting performance and surface 
integrity. The carburizing environment promoted localized 
surface hardening, resulting in discontinuous chip 
formation, reduced friction, suppressed built-up-edge 
formation, and improved chip tool interaction. 

• Surface roughness was consistently lowest under 
carburizing flame-assisted turning across all levels of 
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cutting velocity, feed rate, and depth of cut. Dry cutting 
produced intermediate values, whereas oxidizing flame 
conditions yielded the poorest surface finish. 

• Scientifically, the findings establish a clear relationship 
between localized thermal hardening, chip segmentation, 
and improved surface integrity, contributing to a deeper 
understanding of thermo-mechanical interactions in hybrid 
machining. Practically, the proposed method offers a cost-
effective and easily implementable solution for industries 
machining lightweight aluminium-based composites, 
enabling improved productivity and component quality 
without major changes in machine configuration. 

• Quantitatively, carburizing flame assistance achieved 
overall surface roughness reductions of 17.23% relative to 
dry cutting, while oxidizing conditions caused a 6.49% 
deterioration. Similar improvements were observed across 
individual parameter variations: 
 Cutting velocity: 16.20% reduction (carburizing) vs. 

1.84% increase (oxidizing) 
 Feed rate: 8.31% reduction (carburizing) vs. 4.03% 

increase (oxidizing) 
 Depth of cut: 16.20% reduction (carburizing) vs. 

13.58% increase (oxidizing) 
• Cutting feed was identified as the dominant parameter 

affecting surface roughness, surpassing the effects of 
cutting velocity and depth of cut in all machining 
environments. 

• Regression analysis confirmed feed rate and its interaction 
with cutting velocity as dominant contributors to surface 
roughness under carburizing flame conditions, whereas 
feed rate alone governed the response in oxidizing and dry 
machining. 

• Metaheuristic optimization demonstrated that Teaching–
Learning-Based Optimization (TLBO) produced the most 
stable and optimal solution for minimizing surface 
roughness and maximizing MRR. The optimal parameters 
were determined as: cutting velocity = 94 m/min, feed = 
0.113 mm/rev, cutting depth = 0.34–0.75 mm. 

 
 
REFERENCES  
 
[1] Taya, M., Arsenault, R. (1989). Metal Matrix 

Composites: Thermomechanical Behavior. Oxford 
Pergamon Press, UK. https://doi.org/10.1016/B978-0-
08-036984-6.50010-7 

[2] Manna, A., Battacharya, B. (2001). Investigation for 
effective tooling system to machine Al/SiC-MMC. In 
Proceedings of National Conference of Recent Advances 
in Material Processing, pp. 465-472.  

[3] Manna, A., Battacharya, B. (2002). A study on different 
tooling systems during machining of Al/SiC-MMC. 
Journal of Material Processing Technology, 123(3): 476-
482. https://doi.org/10.1016/S0924-0136(02)00127-9 

[4] Diniz, A.E., Micaroni, R. (2002). Cutting conditions for 
finish turning process aiming: The use of dry cutting. 
International Journal of Machine Tools and Manufacture, 
42(8): 899-904. https://doi.org/10.1016/S0890-
6955(02)00028-7 

[5] Tash, M., Samuel, F.H., Mucciardi, F., Doty, H.W., 
Valtierra, S. (2006). Effect of metallurgical parameters 
on the machinability of heat-treated 356 and 319 
aluminum alloys. Materials Science and Engineering: A, 
434(1-2): 207-217. 

https://doi.org/10.1016/j.msea.2006.06.129 
[6] Roy, P., Sarangi, S.K., Ghosh, A., Chattopadhyay, A.K. 

(2009). Machinability study of pure aluminium and Al-
12% Si alloys against uncoated and coated carbide inserts. 
International Journal of Refractory Metals & Hard 
Materials, 27(3): 534-535. 
https://doi.org/10.1016/j.ijrmhm.2008.04.008 

[7] Sun, S., Brandt, M., Dargusch, M.S. (2010). Thermally 
enhanced machining of hard-to-machine materials-A 
review. International Journal of Machine Tools and 
Manufacture, 50(8): 663-680. 
https://doi.org/10.1016/j.ijmachtools.2010.04.008 

[8] Attia, H., Tavakoli, S., Vargas, R., Thomson, V. (2010). 
Laser-assisted high-speed finish turning of superalloy 
Inconel 718 under dry conditions. CIRP Annals, 59(1): 
83-88. https://doi.org/10.1016/j.cirp.2010.03.093 

[9] Muhammad, R., Maurotto, A., Roy, A., Silberschmidt, 
V.V. (2012). Hot ultrasonically assisted turning of β-Ti 
alloy. Procedia CIRP, 1: 336-341. 
https://doi.org/10.1016/j.procir.2012.04.060 

[10] Yongho, J., Hyung, W.P., Choon, M.L. (2013). Current 
research trends in external energy assisted machining. 
International Journal of Precision Engineering and 
Manufacturing, 14(2): 337-342. 
https://doi.org/10.1007/s12541-013-0047-5 

[11] Price, K., Storn, R. (1997). Differential evolution–A 
simple and efficient heuristic for global optimization 
over continuous spaces. Journal of Global Optimization, 
11: 341-359. https://doi.org/10.1023/A:1008202821328 

[12] Swagatam, D., Ajith, A., Amit, K. (2009). Metaheuristic 
Clustering. Springer-Verlag Berlin Heidelberg. 
https://doi.org/10.1007/978-3-540-93964-1 

[13] Das, S., Suganthan, P.N. (2011). Differential evolution: 
A survey of the state-of-the-art. IEEE Transactions on 
Evolutionary Computation, 15(1): 4-32. 
https://doi.org/10.1109/TEVC.2010.2059031 

[14] Wang, X., Yu, X. (2024). Differential evolution 
algorithm with three mutation operators for global 
optimization. Mathematics, 12(15): 2311. 
https://doi.org/10.3390/math12152311 

[15] Seyedali M., Andrew, L. (2016). The Whale 
Optimization Algorithm. Advances in Engineering 
Software, 95: 51-67. 
https://doi.org/10.1016/j.advengsoft.2016.01.008 

[16] Rana, N., Latiff, M.S.A., Abdulhamid, S.M., Chiroma, H. 
(2020). Whale Optimization Algorithm: A systematic 
review of contemporary applications, modifications and 
developments. Neural Computing and Applications, 32: 
16245-16277. https://doi.org/10.1007/s00521-020-
04849-z 

[17] Yang, X., Deb, S. (2009). Cuckoo search via Lévy flights. 
In World Congress on Nature & Biologically Inspired 
Computing (NaBIC), Coimbatore, India, pp. 210-214. 
https://doi.org/10.1109/NABIC.2009.5393690 

[18] Gandomi, A.H., Yang, X.S., Alavi, A.H. (2013). Cuckoo 
search algorithm: A metaheuristic approach to solve 
structural optimization problems. Engineering with 
Computers, 29(1): 17-35. 
https://doi.org/10.1007/s00366-012-0308-4 

[19] Mostafa, J., Maral, G. (2019). Cuckoo search algorithm 
for applied structural and design optimization: Float 
system for experimental setups. Journal of 
Computational Design and Engineering, 6(2): 159-172. 
https://doi.org/10.1016/j.jcde.2018.07.001 

1139



 

[20] Rao, R.V., Savsani, V.J., Vakharia, D.P. (2011). 
Teaching learning-based optimization: A novel method 
for constrained mechanical design optimization 
problems. Computer-Aided Design, 43(3): 303-315. 
https://doi.org/10.1016/j.cad.2010.12.015 

[21] Rao, R.V. (2015). Teaching Learning Based 
Optimization Algorithm and Its Engineering 
Applications. Springer Verlag, London. 
https://doi.org/10.1007/978-3-319-22732-0 

[22] Palanikumar, K., Nithyanandam, J., Natarajan, E., Lim, 
W.H., Tiang, S.S. (2023). Mitigated cutting force and 
surface roughness in titanium alloy multiple effective 
guided chaotic multi objective teaching learning based 
optimization. Alexandria Engineering Journal, 64: 877-
909. https://doi.org/10.1016/j.aej.2022.09.029 

[23] Ang, K.M., Natarajan, E., Mat Isa, N.A., Sharma, A., 
Rahman, H., Then, R.Y.S., Alrifaey, M., Tiang, S.S., 
Lim, W.H. (2022). Modified teaching learning based 
optimization and applications in multi response 
machining processes. Computers & Industrial 
Engineering, 174: 108719. 
https://doi.org/10.1016/j.cie.2022.108719  

[24] Wang, Y., He, Z., Xie, S., Wang, R., Zhang, Z., Liu, S., 

Shang, S., Zheng, P., Wang, C. (2024). Explainable 
prediction of surface roughness in multi jet polishing 
based on ensemble regression and differential evolution 
method. Expert Systems with Applications, 249: 123578. 
https://doi.org/10.1016/j.eswa.2024.123578 

[25] Qiang, Z., Miao, X., Wu, M., Sawhney, R. (2018). 
Optimization of abrasive waterjet machining using multi 
objective cuckoo search algorithm. International Journal 
of Advanced Manufacturing Technology, 99: 1257-1266. 
https://doi.org/10.1007/s00170-018-2549-x 

[26] Kalita, K., Ghadai, R.K., Cepova, L., Shivakoti, I., Bhoi, 
A.K. (2020). Memetic cuckoo search based optimization 
in machining galvanized iron. Materials, 13(14): 3047. 
https://doi.org/10.3390/ma13143047 

[27] Kawecka, E. (2023). The Whale Optimization Algorithm 
in abrasive water jet machining of tool steel. Procedia 
Computer Science, 225: 1037-1044. 
https://doi.org/10.1016/j.procs.2023.10.091 

[28] Manna, A., Battacharya, B. (2003). A study on 
machinability of Al/SiC-MMC. Journal of Material 
Processing Technology, 140(1-3): 711-716. 
https://doi.org/10.1016/S0924-0136(03)00905-1 

 

1140


	1. Introduction
	Figure 5. Effect of cutting depth on surface roughness under various cutting conditions
	5. MATHEMATICAL MODEL FOR SURFACE ROUGHNESS
	5.1 Surface roughness model for carburizing flame turning
	5.2 Surface roughness model for oxidizing flame turning
	5.3 Surface roughness model for dry cutting
	6.2 Whale Optimization Algorithm (WOA)

	6.3 Cuckoo Search (CS)
	6.5 Performance evaluation of four optimization algorithms
	Differential Evolution (DE)
	Whale Optimization Algorithm (WOA)
	Cuckoo Search (CS)
	Teaching Learning Based Optimization (TLBO)

	6.6 Observations of parameters
	Cutting Velocity (v)
	Cutting Feed (f)
	Cutting Depth (d)

	6.7 Convergence behavior of the algorithms
	6.8 Mean and standard deviation of solution fitness
	6.9 Stability of final solutions

	Table 3. Comparative assessment

	Algorithm 1: Differential Evolution (DE)
	Step 1: Initialize nests randomly within bounds. 
	Algorithm 4: Teaching–Learning-Based Optimization (TLBO)
	Algorithm 2: Whale Optimization Algorithm (WOA)



