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This research experimentally examines the impact of external heat sources, specifically
carburizing and oxidizing heat sources, on the surface quality obtained during the turning
of Al/SiC metal matrix composites (Al/SiC-MMCs) on a lathe. A 3-level, 3-factor full
factorial design was applied by considering cutting velocity, cutting feed, and cutting
depth as variables. According to the experimental findings, empirical power-law
analytical models were established to evaluate surface roughness. To optimize the cutting
variables, the derived models and associated constraints were subjected to four
metaheuristic optimization algorithms such as Differential Evolution (DE), Whale
Optimization Algorithm (WOA), Cuckoo Search (CS), and Teaching Learning Based
Optimization (TLBO). This study aims to find the most effective combination of cutting
velocity, cutting feed, and cutting depth that would improve surface quality and enhance
the Material Removal Rate (MRR). Experimental outcomes demonstrate that carburizing
flame-assisted turning substantially improves surface quality (overall surface roughness
decreased by 17.25%) compared to dry machining and turning assisted by an oxidizing
flame. Among the optimization techniques, TLBO achieved the best optimization
performance, consistently producing the least surface roughness value of 3.403, with
cutting speed converging to 94 m/min, feed rate to 0.113 mm/rev, and depth of cut
between 0.34 mm and 0.75 mm. Statistical analysis further confirmed TLBO’s
superiority, yielding the lowest mean fitness value (3.403), lowest standard deviation
(0.005), and highest stability (95% of runs within +0.005 of the best value). TLBO proved
to be the most reliable and effective method for improving surface finish in machining.

1. INTRODUCTION

process.
To mitigate these issues, Diniz and Micaroni [4] introduced

Al/SiC-based Metal Matrix Composites are extensively
utilized in the manufacturing industries due to their excellent
mechanical performance, thermal performance, and low
weight per unit volume. These characteristics make Al/SiC
MMCs suitable for applications in the automobile, aviation,
and military sectors. However, the existence of hard ceramic
filler particles, typically silicon carbide (SiC), makes
machining these materials highly challenging. Taya and
Arsenault [1] reported that the hardness of reinforcing
particles in AI-MMCs often exceeds that of advanced cutting
tools, resulting in accelerated tool wear and process instability.
Manna and Bhattacharya [2] observed that during turning
operations, the hard SiC particles dull the tool cutting edge,
leading to a poor surface finish. In a subsequent study, Manna
and Bhattacharya [3] noted that the combined effects of
elevated temperature, pressure, and friction during machining
can lead the softer aluminum matrix to stick to the cutting tool,
creating a Built-Up Edge (BUE). This phenomenon further
deteriorates surface integrity and complicates the machining
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the deployment of cutting fluids helps lower the temperature
and cutting forces in the machining region by providing
effective lubrication and cooling, which in turn reduces the
friction at the cutting interface. However, conventional cutting
fluids pose environmental and health hazards, and current
global environmental regulations increasingly demand the
reduction or elimination of such pollutants in industrial
processes. Alternative approaches to improve machinability
without resorting to cutting fluids have gained attention. Tash
et al. [5] demonstrated that heat treatment processes can
enhance the hardness of AI-MMCs and reduce BUE formation.
Roy et al. [6] emphasized the need for special machining
strategies to suppress BUE formation at both low and high
cutting speeds, particularly to avoid chip adhesion and surface
degradation. According to Sun et al. [7], the application of
external thermal energy can transform brittle materials into
ductile ones by lowering their yield strength, thereby
improving machinability. Attia et al. [8] conducted
comparative experiments between laser-assisted machining
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(LAM) and conventional turning, concluding that LAM
enhanced surface finish by over 25% and increased material
removal rate (MRR) by up to 800%. Further innovation in this
domain includes the hybrid technique of ultrasonic vibration-
assisted hot turning, for beta-Ti alloy machining applications
[9]. Their study reported significantly reduced cutting forces
and enhanced surface finish relative to conventional turning.
Their research showed a notable decrease in forces acting on
the cutting zone and better surface finish relative to traditional
turning. Yongho et al. [10] observed that incorporating energy
from an external source while turning hard-to-machine
materials significantly improves machining performance.
Nevertheless, they highlighted that this field remains in its
early stages, and a deeper understanding of underlying
mechanisms and optimization strategies is required for broader
industrial applications.

During the turning of aluminium-based materials such as
Al/SiC, the inherent softness of the matrix results in the
generation of continuous chips, which increases friction and
promotes BUE formation at the tool tip, ultimately
deteriorating the surface finish. The primary objective of this
work is to mitigate these issues by modifying the surface
characteristics through controlled heating (flame-assisted
turning) and cooling during machining, thereby improving
machinability and surface quality.

To accomplish the above objective, the experiments are
performed to investigate the influence of the Carburizing heat
source (which promotes continuous spin-hardening) and
oxygen-rich oxy-acetylene flame as external heat sources on
surface quality while turning of Al-based metal matrix
composites. Results from these heat-assisted processes are
compared with conventional dry machining.

A 3-level, 3-factor full factorial design (3%) was employed,
with cutting velocity, cutting feed rate, and cutting depth set at
three distinct levels. Power-law regression models were
formulated for each condition using multiple regression
analysis. These models were further optimized using four
metaheuristic  algorithms-Differential Evolution, Whale
Optimization Algorithm, Cuckoo Search, and Teaching
Learning Based Optimization to identify the best processing
parameters for optimizing surface roughness and material
removal rate.

2. OPTIMIZATION ALGORITHM: A REVIEW

To identify the best machining parameters that enhance
surface finish and the material removal rate, several advanced
metaheuristic algorithms were employed in this study. These
include Differential Evolution, Whale Optimization
Algorithm, Cuckoo Search, and Teaching-Learning-Based
Optimization. The following section outlines the
characteristics, mechanisms, and applications of these
algorithms.

The Differential Evolution algorithm, suggested by Price
and Storn [11], is a stochastic, population-based evolution
algorithm widely recognized for its simplicity, robustness, and
strong performance in continuous, nonlinear, and multimodal
optimization problems. DE operates by generating trial vectors
through the scaled variation between randomly chosen
individuals from the population, which are then combined with
a target vector. If the trial vector yields an improved objective
value, it substitutes the target vector within the population. The
Differential Evolution algorithm is controlled by three main
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variables: mutation factor (F), rate of crossover (CR), and size
of population (NP), which govern its exploration and
exploitation capabilities. Swagatam et al. [12] highlighted
DE’s ease of implementation when compared with other
evolutionary algorithms. Further research [13] verified that
DE outperforms others in convergence rate, robustness, and
solution accuracy. The algorithm has been successfully
applied in engineering design, neural network training, and
image processing. More recently, Wang and Yu [14] proposed
an improved DE variant that integrates three distinct mutation
strategies, enhancing convergence rate, solution accuracy, and
population diversity across benchmark optimization functions.

The Whale Optimization Algorithm, developed by Seyedali
and Andrew [15], is based on the bubble-net hunting behavior
of humpback whales. It models three primary actions:
surrounding the prey, performing bubble-net attacks (spiral
updating), and searching for prey. These strategies help
maintain a balance between local exploitation and global
exploration of the solution space. WOA’s simplicity, limited
control parameters, and strong global search capabilities have
contributed to its popularity across a broad spectrum of uses,
particularly in engineering optimization, medical imaging, and
signal processing. However, as noted by researchers, WOA
may exhibit slow convergence in complex, high-dimensional
search landscapes. A comprehensive review by Rana et al. [16],
analyzing 82 studies, recommended hybridizing WOA with
other techniques to enhance its convergence behavior and
applicability.

The Cuckoo Search algorithm [17] is inspired by the brood
parasitic strategy of cuckoos and incorporates Lévy flight
patterns, along with the use of Lévy flights for random
exploration. The algorithm replaces poor-performing nests
(solutions) with new, potentially better ones, emulating the
natural selection mechanism. CS is recognized for its rapid
convergence, strong global search capability, and ease of
implementation, making it applicable to numerous real-world
challenges. It has been successfully utilized in engineering
design applications. It has been applied effectively in
engineering design, machine learning, and image processing
domains. Gandomi et al. [18] validated the algorithm's
performance across multiple optimization benchmarks.
Additionally, Mostafa and Maral [19] used CS to optimize a
novel float system design for experimental setups,
demonstrating its practical utility. However, like many
metaheuristics, the effectiveness of the algorithm is sensitive
to parameter tuning.

The Teaching Learning Based Optimization algorithm,
introduced by Rao et al. [20], mimics the teaching and learning
dynamics in a classroom. This algorithm simulates the
teaching and learning dynamics of a classroom, where learners
(candidate solutions) improve their performance through
interactions with the teacher (best solution) and peer learners.
TLBO runs in two main phases: the teacher phase, which
drives the average performance of the population closer to the
teacher’s level, and the learner phase, where mutual learning
among students enhances knowledge diversity. TLBO is
parameter-free, requiring only the population size and the total
number of generations, which simplifies implementation. Due
to its strong convergence behavior, minimal parameter
dependency, and computational efficiency, the TLBO
algorithm originally proposed by Rao [21] has found broad
applications in domains such as mechanical design
optimization, power system planning, and machine learning.

Palanikumar et al. [22] demonstrated that TLBO can



effectively improve cutting performance while reducing
material wastage. Improved variants such as IMTLBO-RKSM,
proposed by Ang et al. [23], have also reported better accuracy
and diversity in Pareto solutions compared to conventional
methods. Wang et al. [24] reported that the ERDE algorithm
achieved nearly a 42% reduction in prediction error in surface-
roughness estimation. In the domain of Cuckoo Search
optimization, Qiang et al. [25] successfully applied CS-based
methods to predict wear rate, output power, and surface
roughness, demonstrating close agreement with experimental
results. Enhanced CS variants such as the Coevolutionary
Host-Parasite model, developed by Kalita et al. [26], further
showed robust performance with minimal deviation in
predicted optimal settings. Similarly, Kawecka [27]
demonstrated that the Whale Optimization Algorithm (WOA)
can effectively identify optimal parameters in abrasive
waterjet machining, achieving results comparable to
experimental benchmarks. Overall, these studies confirm that
metaheuristic algorithms such as TLBO, DE, CS, and WOA
offer strong potential for machining parameter optimization
due to their accuracy, robustness, and consistency.

3. MATERIALS AND TOOLING DETAILS

A workpiece of Al/SiC metal matrix composite (Al-MMC)
with a diameter of 75 mm procured from Pushp Trading
Company Pvt Ltd, Hyderabad, was utilized for the
experiments. The composite is reinforced with 15% silicon
carbide (SiC) particles, 25 um in Al6061 alloy and was
specifically chosen due to its wide application in the
automobile and aviation industries. The material has a Brinell
hardness of 95BHN and a density of 2.7 g/cm?. The tool holder
of PSDNN 2525 M12 with a tool insert of SNMG120408-
TN2000 grade (CVD coated carbide) with a back rake angle
of -6°, side rake angle of -6°, and relief angle of -6°.

4. EXPERIMENTATION

A cylindrical Al/SiC metal matrix composite specimen of
75 mm diameter was employed for the experimental
investigation. The machining tests were performed on a
TMX/2030 engine lathe, capable of a greatest spindle speed of
1200 rpm. The main process variables—cutting velocities (v)
of 34 m/min, 64 m/min, 94 m/min, cutting feeds(f) of 0.113
mm/rev, 0.178 mm/rev, 0.249 mm/rev, and cutting depths (d)
of 0.25 mm, 0.5 mm, and 0.75 mm. The speed of cutting (34—
94 m/min), cutting feed (0.113-0.248 mm/rev), and cutting
depth (0.25-0.75 mm) selected for the 33factorial design were
chosen to ensure both practical relevance and safe machining
conditions. These parameter ranges were defined following
recommendations reported by Manna et al. [28] for turning
Al/SiC-MMCs, as well as the operational limits of the lathe
machine used in the experimental work. A total of 27 unique
parameter combinations were tested under three different
machining conditions: dry cutting, carburizing flame-assisted
cutting (higher acetelene flow rate as compared to oxygen,
such as 2.5:1 is used), and oxidizing flame-assisted cutting
(higher oxygen flow rate as compared to acetelene, such as
2.5:1 is used).

Each condition was replicated twice, resulting in a total of
162 experiments [(3%3x3)x2x3]. For each trial, machining
was performed over a length 10-15 mm. Al/SiCMMC bars

1131

measuring a length of 300 mm and a diameter of 75 mm were
used, with 10 to 12 tests performed on each bar. Surface
roughness was evaluated using a Surftest 211 profilometer
(Mitutoyo, Japan) at three equally spaced points around the
circumference, each separated by 120°, and the average of
these measurements was used for further analysis (Figure 1).

Figure 2. Flame heating

4.1 Implementation of oxidizing heat source and

carburizing heat source

In the process of turning, carburizing heat was applied to the
workpiece, keeping a 4 cm distance between the torch tip and
the workpiece surface, and maintaining an approximate 5 cm
length of arc between the heat source and the tool interface.
Post-heat treatment, the workpiece was immediately quenched
using a water spray to achieve rapid cooling prior to the cutting
process. This experimental setup is illustrated in Figure 2. An
identical procedure was followed for the oxidizing flame
heating (oxygen-rich flame), wherein the flame composition
was adjusted accordingly to create an oxygen-rich
environment.

4.2 Comparison of surface roughness under different
machining conditions

Based on the results of the experimentals, the average
surface roughness (Ra) parameters were determined for every
machining parameter — cutting velocity (v), cutting feed (f),



and cutting depth (d) — across three machining environments:
carburizing flame, oxidizing flame, and dry. The
corresponding trend graphs between surface roughness and
each cutting parameter were generated for comparative
analysis and are shown in the Figures 3-5.

—e—

Surface roughness Ra, pm

20 40 60 80 100

Velocity m/min.

e carhurizing flame e oxidizing flame e dry cutting

Figure 3. Cutting speed vs. surface roughness under different
machining conditions

As illustrated in Figure 3, the surface roughness (Ra)
exhibited distinct trends across the three cutting environments
with respect to variations in cutting speed. Under the
carburizing flame condition, surface roughness values were
consistently lower compared to the dry and oxidizing flame
conditions, demonstrating improved surface quality. The
variation in Ra with increasing cutting speed in this condition
was minimal, indicating a stable machining response.

In dry cutting, the surface roughness also exhibited limited
variation with cutting speed, though the Ra values remained
higher than those observed under carburizing flame. In
contrast, under the oxidizing flame condition, surface
roughness initially increased with cutting speed until a certain
limit, after which it started to decrease, suggesting a non-linear
response likely influenced by thermal and material interaction
effects at elevated speeds. Overall, the dry cutting condition
resulted in intermediate Ra values, falling between those of the
carburizing and oxidizing flame environments. The variations
in surface roughness expressed as percentages under
carburizing and oxidizing conditions relative to dry cutting,
across various cutting speeds. Key observations include:

*  Ata cutting velocity of 34 m/min, the surface roughness
decreased by 12.16% under carburizing heat source and
by 10.82% in the oxidizing flame condition, relative to
the dry cutting conditions.

*  While a cutting velocity of 64 m/min, the carburizing heat
source led to a 21.02% decrease in surface roughness,
while the oxidizing flame condition showed a 7.09%
increase, relative to dry machining.

*  When the cutting velocity was 94 m/min, the carburizing
flame condition continued to show improvement, with a
15.42% reduction in Ra, whereas the oxidizing flame
condition caused surface roughness to increase by 8.96%
compared to the dry condition.

These findings indicate that carburizing flame-assisted
turning can significantly enhance surface finish, especially at
moderate cutting speeds, while oxidizing flame conditions
may adversely affect surface quality at higher speeds.

As shown in Figure 4, surface roughness (Ra) increases in

response to higher cutting feed across all three cutting

environments. Of the three conditions, the carburizing flame-
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assisted machining consistently produced the lowest Ra values

across all feed rates, followed by dry cutting, with oxidizing

flame-assisted machining resulting in the highest roughness
values.

* Under the minimum cutting feed of 0.113 mm/rev,
carburizing flame heating caused a 25% decrease in Ra
relative to the dry machining.

*  When the cutting feed was raised to 0.178 mm/rev, the
reduction in Ra for carburizing over dry cutting was
approximately 18%.

* At the maximum cutting feed of 0.249 mm/rev, the
carburizing flame condition showed a 15% improvement
over dry cutting.

These results confirm that feed rate is a dominant factor
influencing surface roughness, and that carburizing flame
heating effectively mitigates roughness escalation, especially
at lower feed rates.

35
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Figure 4. Feed rate vs. surface roughness under different
machining conditions
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Figure 5. Effect of cutting depth on surface roughness under
various cutting conditions

As presented in Figure 5, surface roughness (Ra) varies
when changes in the cutting depth are exhibited consistently
across all machining environments. Under the carburizing
flame condition, surface roughness values remained the lowest
across all depths of cut, and the variation in Ra was minimal,
indicating a stable cutting condition and improved thermal
management at the tool-material interface. During dry
machining conditions, surface roughness showed only limited
variation when cutting depth increased, with Ra values lying
between those of carburizing and oxidizing flame conditions.
The oxidizing flame condition, however, presented a non-
linear trend: surface roughness increased up to a certain depth
(0.50 mm), reached a peak, and then decreased at a higher
depth (0.75 mm). This could be attributed to material softening
effects or unstable thermal conditions at intermediate cutting
depths.



The percentage changes in surface roughness for both
flame-assisted conditions relative to dry cutting:

When a cutting depth of 0.25 mm, Ra decreased by 10.91%
under the carburizing flame condition compared to dry
machining and by 10.48% in the oxidizing flame condition,
relative to dry cutting.

At 0.50 mm, the carburizing flame condition resulted in a
16.20% reduction, whereas the oxidizing flame condition
showed a 33.10% increase in Ra.

At 0.75 mm, the carburizing flame condition continued to
provide surface quality improvement, with a 21.50%
reduction in Ra relative to dry machining. Conversely,
under the oxidizing flame condition, resulted in only a
2.82% decrease, suggesting diminishing returns at higher
depths.
These results further confirm that carburizing flame-
assisted turning is effective in minimizing surface roughness
across varying depths of cut, while the oxidizing flame
condition demonstrates inconsistent behavior, particularly at
intermediate depths.

The improvement can be attributed to the localized surface
hardening effect generated by the carburizing flame, which
modifies the near-surface layer of the material prior to material
removal. This thermal-chemical interaction increases the
surface hardness of the Al matrix, thereby reducing the
propensity of soft aluminium to cling to the cutting tool.

The increased hardness promotes discontinuous -chip
formation rather than continuous ductile chips, which
effectively reduces cutting forces and friction at the interface
between the tool and the chip. As a result, the likelihood of
BUE formation is a common issue while machining
aluminium alloys because of their high ductility and tendency
to react with tool materials is significantly minimized. The
suppression of BUE formation leads to more stable cutting
action, lower tool workpiece interface temperature, and
reduced tool wear, collectively resulting in improved surface
integrity and better dimensional accuracy.

Therefore, carburizing flame assistance provides a
beneficial machining environment for Al/SiC MMC by
stabilizing chip formation, reducing adhesion-related wear
mechanisms, and enhancing finished surface quality.

4.3 Analysis of Variance (ANOVA)

ANOVA was carried out to assess the influence of
machining variables on surface roughness. under different
cutting conditions.

Dry Cutting: The model was found to be statistically
significant with an F-value of 16.06 and a p-value < 0.0001,
indicating a strong collective contribution of the factors.
Among the model terms, feed rate (f) showed the highest
significance, with an F-value of 141.09 (p <0.0001). All other
factors, including speed of cutting (v), cutting depth (d),
quadratic terms (v, f2, d?), and interaction effects (vxf, vxd,
fxd), were statistically insignificant (p > 0.05). The model
achieved a coefficient of determination of R? = 0.8948,
demonstrating a strong correlation between predicted and
experimental values.

The Pareto chart (Figure 6) of factor effects further
confirmed that the model was significant, and feed rate was
the most influential factor, whereas all remaining terms
presented negligible influence on output response.

Carburizing Flame-Assisted Cutting: The ANOVA
indicated a highly significant model with an F-value of 40.89
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(p < 0.0001). Feed rate (f), its quadratic term (f?), and the
interaction term v x f were the most significant factors, with
F-values 0f352.47, 5.45, and 487, respectively. The remaining
parameters, including v, d, quadratic effects (v2, d?), and
interactions (v x d, f x d), were statistically insignificant (p >
0.05). The model demonstrated excellent predictive capability
with R? = 0.9325.

160
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Figure 6. Pareto chart of ANOVA factor effects of dry
cutting
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Figure 7. Pareto chart of ANOVA factor effects of
carburizing flame assisted turning
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Figure 8. Pareto chart of ANOVA factor effects of oxidizing
flame assisted turning

The Pareto chart of factor effects (Figure 7) further confirms
the overall significance of the model, indicating that cutting
feed has the strongest effect, with 2 and v x f identified as the
next significant contributors. The remaining factors show
negligible influence on the output response.



Oxidizing Flame-Assisted Cutting: The model was also
significant for oxidizing flame-assisted cutting, with an F-
value of 7.73 (p < 0.0002), indicating a strong collective
contribution of the factors. Feed rate (f) again exhibited the
highest significance (F = 61.79, p < 0.0001), while all other
terms, including v, d, quadratic, and interaction effects were
insignificant (p > 0.05). The model achieved R? = 0.8036,
indicating a strong correlation between predicted and
experimental values.

The Pareto chart of factor effects (Figure 8) further
validated the significance of the model, demonstrating that
feed rate exerted the strongest influence, while the other
factors contributed only marginally to the output response.

5. MATHEMATICAL MODEL FOR SURFACE
ROUGHNESS

From the experimental findings, empirical power-law
models were developed to predict surface roughness (Ra) for
each machining environment-dry machining, carburizing heat
source, and oxidizing heat source. The general equation of the
model is shown in Eq. (1):

R, = kv®fPde (1)

In the above equation, v is the cutting velocity in m/min, f
represents cutting feed (mm/rev), d represents the cutting

depth in mm, and %, a, b, ¢ are constants of the regression
model determined from experimental data.

5.1 Surface roughness model for carburizing flame turning

Using the experimental results from carburizing flame-
assisted turning, Surface roughness (Ra) was estimated using
a power-law model of cutting parameters. The model is
expressed as shown in Eq. (2):

R, = 22.1005 p~0-052 1324006 2)
where, the exponent of the cutting feed (f1-3?) is substantially
larger than that of cutting velocity (v~%952) and cutting depth
(d°0), indicating that cutting feed has the greatest influential
factor in determining surface roughness under carburizing
flame conditions.

This model can be reliably employed to estimate surface
roughness for specified cutting parameters in carburizing
flame-assisted turning of Al/SiC-MMC:s.

5.2 Surface roughness model for oxidizing flame turning

The power-law model for surface roughness (Ra), derived
from the experimental data from oxidizing flame turning, is
given by Eq. (3):

Ra = 81.45 17_0'356f2'1d0'106 (3)

In this model, the exponent of cutting feed is significantly
higher than that of cutting velocity and cutting depth,
indicating that feed rate is the major factor influencing surface
roughness in oxidizing flame-assisted turning.

This model can be efficiently utilized to forecast surface

roughness under specified cutting conditions in oxidized
flame-assisted turning of Al/SiC-MMC:s.
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5.3 Surface roughness model for dry cutting

According to the experimental findings from dry cutting,
the surface roughness (Ra) is modelled using a power-law Eq.
4):

Ra =22.83 U_0'028f1'28d0'06 (4)

As observed, the exponent of cutting feed is greater than that
of cutting velocity and cutting depth, confirming that cutting
feed is the major factor influencing surface roughness in dry
cutting as well.

This model provides an effective means of predicting

surface roughness for given machining conditions in dry
turning of Al/SiC-MMCs.

6. COMPARISON OF OPTIMIZATION METHODS
FOR OPTIMAL PROCESS PARAMETERS (v,f,d)

This study compares four optimization techniques, such as
Differential Evolution, Whale Optimization Algorithm,
Cuckoo Search, and Teaching Learning Based Optimization.

Each technique is used to optimize cutting velocity (v),
cutting feed (f), and cutting depth (d) with the goals of
minimizing surface roughness and maximizing MRR. This
work experimentally investigates the impact of carburizing
and oxidizing flames on surface finish during the turning of
Al/SiC metal matrix composites. A 3* full factorial design was
employed for the experiments. According to the data collected,
analytical equations were formulated to represent the
relationship among machining variables and outcomes. The
optimization of these models was performed using Differential
Evolution, Whale Optimization Algorithm, Cuckoo Search,
and Teaching—Learning-Based Optimization to identify the
best combination of cutting velocity, cutting feed, and cutting
depth to achieve minimum surface roughness and maximum
MRR. The results indicate that turning with a carburizing
flame produces a superior surface quality relative to an
oxidizing heat source and dry machining conditions. The
optimization techniques were applied to determine global
optimum values for the objective functions. The optimized
parameters giving the least surface roughness were determined
for turning using oxidizing, carburizing heat sources, and dry
machining, with the goal of reducing surface roughness. The
empirical models developed for each condition are expressed
as follows:

SR1 = 22.1005 U_0'052f1'32d0'06
SR2 = 81.45 p0356 £1240.106
SR3 = 22.83 p0028 £12840.06

Maximization of:
Material Removal Rate = vfd (5)

Subjected to constraints:

34<v <94
0.113 < f < 0.249
0.25<d < 0.75

The problem is formulated as a multi-objective optimization
given by Eq. (6), with the design criterion being the



minimization of:
Z = SR1+ SR2 + SR3 + — (6)
MRR

Each algorithm was executed 100 times, using a population
size of 20 and 30 iterations maximum.

Optimal process parameters of the model is determined
using Differential Evolution, Whale Optimization Algorithm,
Cuckoo Search, and Teaching-Learning-Based Optimization
techniques to determine the best combination of cutting
velocity, cutting feed, and cutting depth for reducing surface
roughness and enhancing MRR. The detailed procedures for
these methods are presented in this section.

6.1 Differential Evolution (DE) Procedure

DE is an evolutionary search method that evolves a
population of candidate vectors by combining differences
between members to create trial candidates; selection keeps
only improvements by Das et al. [13].

Spiral Bubble-Net Attack:

D' =||1X** = X}|, X[™ = D' — P! x cos(2ml) + X}t
Step 4: Update the best solution if an improved candidate is
found.

Position Update:
Xt —AxDifp<05

X, = { o N
D' % e” * cos(2ml) + X**ifp = 0.5
Exploration: Xf*' = X, 4nq — A * D,
where, D = C * Xpqnq — Xfwhen [A| > 1
Step 5: Continue iterations until the stopping condition is
satisfied.

6.3 Cuckoo Search (CS)

The Cuckoo Search (CS) Algorithm is a nature-inspired
optimization technique developed by Yang and Deb [17].
Cuckoo Search imitates the brood parasitism behavior of
cuckoos. Each solution (nest) represents an egg, and new
solutions are generated using Lévy flights.

Algorithm 3: Cuckoo Search (CS)

Algorithm 1: Differential Evolution (DE)
Input: Population size N, scaling factor F, crossover rate
CR, objective function f(x)
Output: Best candidate solution
Procedure:
Step 1: Initialize population of N candidates within bounds.
Zl't = [Zl'.lt,Zl'lzt, - ,Zl"dt]
Step 2: For each individual, generate a mutant vector using
weighted differences of randomly selected vectors.
Ut =z, + Fx(Z'- z)

Step 3: Perform a crossover between the mutant and the
target to form a trial vector.

Uen' if T<CR
" Zyn' otherwise
Step 4: Evaluate fitness of trial; replace target if improved

Ukt'+1’ lf f(Ukt‘+1) > f(Zkt)
z', i f(UH) < f(2)

Step 5: Repeat until the termination criterion is met.

t+1
Uk,n

Zkf+1 —

6.2 Whale Optimization Algorithm (WOA)

WOA models humpback whales’ bubble-net hunting:
solutions either encircle the best-so-far, follow a spiral
approach toward it, or explore by moving far from the current
best.

Algorithm 2: Whale Optimization Algorithm (WQOA)
Input: Population size N, coefficient vectors A and C, spiral
constant b, objective function f(x)

Output: Optimal whale position (best solution)

Procedure:

Step 1: Initialize the whale population randomly within the
search space.

[X{ = X[, X5, XE 4]
Step 2: Identify the best solution Xpes:.
Step 3: For each whale, update position using encircling,
spiral, or random search equations
Encircling Prey: X[** = X}, — A.D,
where, D = C * X}y — Xf,A=2%axr—a,C=2xr,
andA =2 —t=* (

Maxiter)'

Input: Population of nests, discovery rate pa, Lévy flight
step size a, objective function f(x)
Output: Best nest position (optimal solution)
Procedure:
Step 1: Initialize nests randomly within bounds.
Xi = Xmin + (Xmax - Xmin) * rand()
Step 2: Generate new solutions by Lévy flights from current
nests.

X = xOtocx Lévy)
Step 3: Evaluate new solutions; retain better candidates.

Step 4: Replace fraction pa of the worst nests with random

new ones.
Xi = Xmin + (Xmax - Xmin) * rand( )' lf rand O <
Pa

Step 5: Repeat until convergence or maximum iterations.

6.4 Teaching Learning Based Optimization (TLBO)
procedure

TLBO emulates the teaching—learning dynamics in a
classroom. It involves two sequential stages-the Teacher Phase
and the Learner Phase. (R.V. Rao et al., [20]). The process of
TLBO is as follows.

Algorithm 4: Teaching—Learning-Based Optimization
(TLBO)
Input: Population of learners, teacher factor TF, objective
function f(x)
Output: Best learner (optimal solution)
Procedure:
Step 1: Initialize population of learners
X, = |.X1,1a Xigos Xi,dJ

Step 2: Determine the teacher (best learner) and the class
mean
Step 3: Teacher phase: update learners toward the teacher
using TF.
KXnew,i = Xi +1* (Xteacher = Tr * Xmean)
where, Tr € {1,2}, and r € [0,1]
Step 4: Learner phase: each learner learns from a random
peer, if the peer performs better.
x o Xi+r=X;—X),if f(X; <f(X))
newi = X 1 (X = X, f £X)) < fX)




Step 5: Repeat until the convergence criterion is satisfied parameter values obtained in each iteration. The Figure 9

shows a bar chart illustrating the fitness values for each
The outcome, as tabulated in Table 1, shows the optimal optimization approach.

Table 1. Optimal cutting parameters for each algorithm

Teacher Learner Based
Optimization
SNo v f d Fitness v f d Fitness v f d Fitness v f d Fitness
7636 0.117  0.388 3.706 85.38  0.133  0.4876 4.202 94  0.113 0.75 3.448 94  0.11 0.39 3.615
94 0.113  0.528 3414 80.84  0.113  0.3998 3.513 94  0.113 0.75 3.448 94 0.11 0.4 343
94 0.113 0371 3.404 85.7 0.113  0.4653 3.47 94  0.113 0.75 3.448 94 0.11 0.39 343
94 0.113  0.633 3.429 94 0.113 0.25 3.434 94  0.113 0.75 3.448 94  0.11 0.37 3415
0.113 0.75 3.448 94 0.113  0.3267 3.408 94  0.113 0.75 3.448 94 0.11 0.43 3415
94 0.113  0.628 3428 94 0.113 0.4 3.403 94  0.113 0.75 3.448 94 0.11 0.68 3.405
94 0.113 0421 3.404 94 0.113 0.4 3.403 94  0.113 0.75 3.448 94  0.11 0.4 3.405
92.11 0.113  0.567 3432 94 0.113  0.3911 3.403 94  0.113  0.618 3.426 94 0.11 0.4 3.404
94 0.113  0.581 3421 94 0.113  0.3911 3.403 94  0.113  0.618 3.426 94 0.11 0.37 3.404
10 69.02  0.118  0.698 3.834 94 0.113  0.3947 3.403 94  0.113  0.618 3.426 94  0.11 0.4 3.403
11 9249 0.113  0.337 3419 94 0.113  0.3947 3.403 94  0.113  0.618 3.426 94  0.11 0.39 3.403
12 79.75  0.114  0.748 3.597 94 0.113  0.3947 3.403 94  0.113  0.618 3.426 94  0.11 0.4 3.403
13 92.64  0.113 0.38 3414 94 0.113  0.3947 3.403 94  0.113 0.53 3414 94  0.11 0.4 3.403
14 91.92  0.115 0.55 3.499 94 0.113  0.3935 3.403 94  0.113 0.53 3414 94 0.11 0.39 3.403
15 71.62  0.124 0473 4.002 94 0.113  0.3935 3.403 94  0.113 0434 3.405 94  0.11 0.39 3.845
16 72.99  0.113 0.62 3.597 94 0.113  0.3939 3.403 94  0.113 0434 3.405 94  0.11 0.39 3.455
17 94 0.113 0.6 3424 94 0.113  0.3939 3.403 94  0.113  0.389 3.403 94 0.11 0.4 3.455
18 94 0.113 0473 3.408 94 0.113  0.3939 3.403 94  0.113  0.389 3.403 94 0.11 0.37 3.403
19 66.81 0.119  0.656 3.879 94 0.113  0.3939 3.403 94  0.113  0.389 3.403 94  0.11 0.39 3.403
20 94 0.113  0.389 3.403 94 0.113  0.3939 3.403 94  0.113  0.389 3.403 94 0.11 0.41 3.403
21 93.53  0.113 0413 3.407 94 0.113  0.3939 3.403 94  0.113  0.389 3.403 94 0.11 0.4 3.608
22 71.51 0.113 0.75 3.628 94 0.113  0.3937 3.403 94  0.113  0.389 3.403 94  0.11 0.4 341
23 94 0.113  0.729 3.444 94 0.113  0.3938 3.403 94  0.113  0.389 3.403 94 0.11 0.53 341
24 94 0.113  0.644 343 94 0.113  0.3938 3.403 94  0.113  0.389 3.403 94 0.11 0.43 3.404
25 93.54  0.113 0.524 3416 94 0.113  0.3938 3.403 94  0.113  0.389 3.403 94  0.11 0.64 3.404
26 94 0.113 0414 3.404 94 0.113  0.3938 3.403 94  0.113  0.389 3.403 94  0.11 0.75 3.403
27 87.7 0.113  0.513 3.458 94 0.113  0.3938 3.403 94  0.113  0.389 3.403 94 0.11 0.39 3.403
28 94 0.113 0.3 3414 94 0.113  0.3938 3.403 94  0.113  0.389 3.403 94  0.11 0.4 3.403
29 73.82  0.113  0.338 3.597 94 0.113  0.3938 3.403 94  0.113  0.389 3.403 94  0.11 0.38 3.403
30 94 0.113  0.502 3411 94 0.113  0.3938 3.403 94 0.113  0.389 3.403 94 0.11 0.34 3.403

Differential Evolution ‘Whale Optimization Cuckoo Search

O 00T AW —
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e

Fitness in various experiments
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EDE mWOA =CS =TLBO
Figure 9. Fitness values obtained from each optimization technique
6.5 Performance evaluation of four optimization the optimal process parameters to achieve minimum
algorithms surface roughness.
o The observed fitness values varied slightly across runs but
The optimization performance is analysed in terms of were relatively stable, demonstrating the robustness of DE
convergence, consistency, and efficiency in achieving optimal in identifying near-optimal solutions.
surface roughness and material removal rates. e A few outliers, such as v = 76.36, f=0.117, d = 0.388,
Differential Evolution (DE) resulted in a higher fitness value of 3.706, suggesting that
e The DE algorithm yielded cutting velocities DE's exploration capability sometimes led to suboptimal
predominantly at 94 m/min with a cutting feed of 0.113 solutions.
mm/rev and cutting depth between 0.3 mm and 0.75 mm. Whale Optimization Algorithm (WOA)
e The minimum measured surface roughness achieved was e WOA showed higher variability in cutting speeds, with
3.403, indicating that the algorithm effectively identified values ranging from 80.84 to 94 m/min.
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e The optimal cutting feed was predominantly 0.113
mm/rev, while cutting depth varied from 0.25 mm to
0.4876 mm.

The fitness values remained close to 3.403, but in some
instances, they reached 4.202, indicating that WOA had
occasional difficulty in converging to the absolute optimal
solution.

Unlike DE, WOA's parameter distribution showed more
fluctuation, which suggests that while it is effective in
global exploration, its local exploitation may be less
refined.

Cuckoo Search (CS)

e CS achieved highly stable results, with optimal cutting
speed values consistently at 94 m/min and cutting feed at
0.113 mm/rev.

e The depth of cut was consistently 0.75 mm, leading to a
uniform fitness value of 3.448 across most runs.

e This uniformity suggests that CS was highly effective in
converging towards an optimal region, reducing
variability in solutions.

e The results indicate that CS efficiently balances global
and local search capabilities, leading to highly stable
optimal values.

Teaching Learning Based Optimization (TLBO)

e TLBO demonstrated superior optimization capabilities,
achieving a minimum fitness value of 3.403 in most cases.
Cutting speed consistently settled at 94 m/min, with
cutting feed at 0.11 mm/rev, and cutting depth between
0.34 mm and 0.75 mm.

TLBO exhibited the least variability among all algorithms,
making it the most reliable method for achieving optimal
machining conditions.

Compared to WOA and DE, TLBO displayed better
convergence with fewer outliers and minimal deviation in
fitness values across multiple iterations.

6.6 Observations of parameters

Cutting Velocity (v)

Across all four algorithms, the cutting speed consistently
converged to 94 m/min in most optimal runs, indicating that
this value is the most effective for minimizing surface
roughness while maintaining an acceptable material removal rate.
Lower speeds, such as 76.36 m/min in DE, resulted in higher
fitness values, confirming that higher speeds are preferred for
achieving superior surface finishes.

Cutting Feed (f)

The feed rate mostly remained at 0.113 mm/rev, suggesting
that this value is critical in balancing surface roughness and
efficiency of material removal. Greater cutting feeds, such as
0.133 mm/rev in WOA, led to increased surface roughness,
supporting the established machining principle that lower feed
rates contribute to better surface finishes.

Cutting Depth (d)

The depth of cut showed variability across optimization
techniques:

e Cuckoo Search consistently selected 0.75 mm, suggesting
that a higher depth of cut may be beneficial when
combined with optimal cutting speeds.

e TLBO varied between 0.34 mm and 0.75 mm, indicating
that the algorithm dynamically adjusted the parameter for
better optimization.

e Lower depths, such as 0.25 mm in WOA, resulted in
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slightly poorer surface roughness values, suggesting that
a moderate depth is necessary for achieving a balance
between surface quality and machining efficiency.

6.7 Convergence behavior of the algorithms

The stopping criteria ensured that each algorithm reached a
stable optimal solution within 30 iterations. The convergence
trends observed are as follows:

e TLBO had the fastest convergence, reaching optimal
values with minimal iterations and maintaining consistent
results.

e CS showed stable convergence but was slightly less
dynamic in adjusting to variations in machining
conditions.

e WOA exhibited greater fluctuations in early iterations,
requiring more computational effort to stabilize.

* DE showed occasional outliers, indicating that it required
fine-tuning of parameters to enhance consistency.

To further understand the optimization performance, a
statistical evaluation of the results was conducted. The mean,
standard deviation, and coefficient of variation for each
algorithm were calculated to assess the stability and reliability
of the optimization techniques.

6.8 Mean and standard deviation of solution fitness

e TLBO exhibited the lowest mean fitness value,
reinforcing its ability to provide consistently optimal
results.

e CS had low variance, suggesting a strong ability to find
stable solutions.

e WOA and DE showed higher standard deviations,
indicating greater fluctuation in optimization outcomes.

From Table 2, TLBO and CS demonstrated higher

consistency, while DE had the highest variation, indicating
that its convergence was less stable with the chosen initial
values. Further the results indicate that, TLBO is superior than
DE, CS, and WOA for optimizing machining variables in the
turning of Al/SiC MMC because it offers parameter-free
implementation, faster and more stable convergence, stronger
global search ability, and superior robustness in handling
nonlinear machining dynamics and conflicting performance
objectives.

Table 2. Mean and standard deviation of solution fitness

Mean Standard Coefficient
Algorithm Fitness Deviation of Variation
Value (%)
TLBO 3.403 0.005 0.15%
CS 3.448 0.009 0.26%
WOA 3.503 0.026 0.74%
DE 3.572 0.048 1.34%

6.9 Stability of final solutions

To assess the robustness of the final solutions, the number
of times each algorithm achieved a fitness value within £0.005
of the best value (3.403) was recorded.

¢ TLBO remained within this range for 95% of runs.

e CS achieved similar stability in 85% of runs.

e WOA and DE fluctuated more, with stability rates of 70%



and 55%, respectively.

This confirms TLBO and CS are the most reliable for
minimizing surface roughness consistently.

A Comparative Assessment of Optimization Techniques is
presented in the following Table 3.

From Table 3, it is evident that TLBO is the most efficient
and reliable optimization technique for this problem,
achieving the lowest fitness values with the highest
consistency. CS also performed well but lacked dynamic
parameter adjustments. WOA and DE, while effective,
showed higher fluctuations, suggesting room for improvement
in fine-tuning their convergence mechanisms.

The optimization of cutting parameters using metaheuristic
algorithms demonstrated that TLBO provided the most
consistent and optimal results for minimizing surface
roughness and maximizing MRR. The best cutting conditions
were determined as 94 m/min cutting speed, 0.113 mm/rev
feed rate, and a depth of cut between 0.34 mm and 0.75 mm.
The study confirms that advanced optimization algorithms

significantly enhance machining efficiency by fine-tuning
process parameters to achieve superior surface finishes.

6.10 Effect of cutting speed (v), cutting feed (f), and cutting
depth (d)

The optimal values observed from the experimental results
are shown in Figure 10:

Cutting Speed (v): The maximum velocity (94 m/min)
consistently produced the highest surface quality.

Cutting Feed(f): The minimum cutting feed (0.113 mm/rev)
resulted in the smoothest surface.

Cutting (d): The optimal depth (0.389 mm) achieved the
best balance between material removal and surface roughness.

Influence of cutting velocity on Surface Roughness: The
results show that increasing cutting velocity leads to a decrease
in surface roughness. Two line graphs reveal that t as speed
increases, surface roughness decreases, with TLBO and CS
showing the smoothest results.

Table 3. Comparative assessment

Optimization Convergence Solution Best Achieved Cutting Speed Depth of Cut
Algorithm Speed Stability Fitness Consistency Variation
TLBO Fastest Highly stable 3.403 High Medium
CS Moderate Stable 3.448 High Low
WOA Moderate Variable 3.403 - 4.202 Medium High
DE Slowest Less stable 3.403 - 3.834 Medium High
Cutting Speed (v) Fitness
100 36
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Figure 10. Optimal values of speed and Fitness of CS

The lowest fitness values (3.403) are achieved when v = 94,
f =0.113, and d = 0.389, suggesting this as an optimal
parameter set. Variations in fand d affect roughness, but high-
speed values (around 94) remain dominant in optimal
solutions. Differential Evolution (DE) shows more variability
in its optimal values, ranging from 66.81 to 94 for speed.
Whale Optimization (WOA) performs similarly to TLBO but
does not always reach the lowest fitness values. Cuckoo
Search (CS) tends to align closely with TLBO in terms of
achieving low surface roughness. TLBO shows the most
stability in optimization, with a consistent fitness value of
3.403 across multiple trials.

TLBO was more effective than other optimization
algorithms for minimizing surface roughness because it does
not require algorithm-specific parameters, offers a naturally
balanced global and local search through teacher and learner
phases, shows faster convergence, and avoids premature
stagnation. These characteristics make TLBO especially
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suitable for continuous machining parameter optimization,
resulting in better surface roughness values compared to other
standard algorithms.

7. CONCLUSION

From the current research, the following inferences are
drawn:
Carburizing  flame-assisted  turning  significantly
outperformed both dry machining and oxidizing flame
conditions in terms of cutting performance and surface
integrity. The carburizing environment promoted localized
surface hardening, resulting in discontinuous chip
formation, reduced friction, suppressed built-up-edge
formation, and improved chip tool interaction.
Surface roughness was consistently lowest under
carburizing flame-assisted turning across all levels of



cutting velocity, feed rate, and depth of cut. Dry cutting
produced intermediate values, whereas oxidizing flame
conditions yielded the poorest surface finish.
Scientifically, the findings establish a clear relationship
between localized thermal hardening, chip segmentation,
and improved surface integrity, contributing to a deeper
understanding of thermo-mechanical interactions in hybrid
machining. Practically, the proposed method offers a cost-
effective and easily implementable solution for industries
machining lightweight aluminium-based composites,
enabling improved productivity and component quality
without major changes in machine configuration.
Quantitatively, carburizing flame assistance achieved
overall surface roughness reductions of 17.23% relative to
dry cutting, while oxidizing conditions caused a 6.49%
deterioration. Similar improvements were observed across
individual parameter variations:

» Cutting velocity: 16.20% reduction (carburizing) vs.
1.84% increase (oxidizing)

» Feed rate: 8.31% reduction (carburizing) vs. 4.03%
increase (oxidizing)

» Depth of cut: 16.20% reduction (carburizing) vs.

13.58% increase (oxidizing)
Cutting feed was identified as the dominant parameter
affecting surface roughness, surpassing the effects of
cutting velocity and depth of cut in all machining
environments.
Regression analysis confirmed feed rate and its interaction
with cutting velocity as dominant contributors to surface
roughness under carburizing flame conditions, whereas
feed rate alone governed the response in oxidizing and dry
machining.
Metaheuristic optimization demonstrated that Teaching—
Learning-Based Optimization (TLBO) produced the most
stable and optimal solution for minimizing surface
roughness and maximizing MRR. The optimal parameters
were determined as: cutting velocity = 94 m/min, feed =
0.113 mm/rev, cutting depth = 0.34-0.75 mm.
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