

Experimental Evaluation of Morphing Wing Technologies: A Systematic Review

 Ali Sabri Abbas¹, Ayad Ali Mohammed^{2*}
¹ Department of Mechanical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad 11001, Iraq

² Al-Mussaib Technical College, Al-Furat Al-Awsat Technical University, Babylon 51006, Iraq

 Corresponding Author Email: ayadial@atu.edu.iq

<https://doi.org/10.18280/rcma.350619>
Received: 7 November 2025

Revised: 8 December 2025

Accepted: 25 December 2025

Available online: 31 December 2025

Keywords:
morphing wings, smart material actuation, SMAs, MFCs, aerodynamic performance, wind tunnel testing, aeroelastic effects

ABSTRACT

Morphing wing technologies remain one of the most promising methods of increasing the aerodynamic efficiency and adaptability of wing structures. This systematic review compiles 112 studies on experimentally verified research chosen from among 750 publications to evaluate their pertinence using the PRISMA protocol. The study also considers experiments on wind tunnels, actuation methods involving smart materials and shape memory alloys (SMAs) or Macro-Fiber Composites (MFCs), and structural designs, as well as other aspects of aerodynamic performance. Within the tested literature, there are obvious improvements in the range of 25 percent for the lifting force, more than 35 percent for the drag force, and about a factor of two for the lifting/drag ratio with respect to a fixed wing. Continuous morphing solutions like rib morphing, FishBAC trailing edge, or SMAs-MFCs multimorphing have shown the best performance ratios. However, there are still challenges, albeit important ones, that include the speed of actuator response, hysteresis, fatigue life, aeroelastic couplings, and scalability. The current review provides a constructive synthesis of the methodologies and identifies the key research gaps for the eventual extension of morphing wing technologies developed in the lab-scale validation phase to operational aircraft.

1. INTRODUCTION

The experimental analysis of morphing wing technologies has gradually recognized the importance of this area of research due to its ability to improve aerodynamic performance and fuel efficiency in various flight regimes [1, 2]. Since the initial phases of morphing wing research in the 1990s, in particular in the DARPA Smart Wing project, important advances have been made through the use of smart materials, structural concepts, and actuation methods [3, 4]. The use of shape memory alloys (SMAs) and compliant structural mechanisms, in combination with piezoelectric actuators, has made possible the implementation of adaptive wing surfaces that can change shape continuously [5, 6].

These advances were mainly motivated by the growing need for environmentally friendly aviation systems, with performance improvements that demonstrate drag reduction of up to 20% and lift-drag ratio increases of over 50% for specific wing designs [7].

As a result, morphing wing technology has expanded from its initial application in military aviation into unmanned aerial vehicles and commercial aircraft, for which improved maneuverability and flight efficiency are now required [8, 9].

Nevertheless, the experimental validation of morphing wing concepts in realistic aerodynamic loading conditions has not been adequately addressed in the literature [10, 11].

Although a significant number of studies have shown the

possibility of using smart materials in actuation in a lab test environment, their implementation in wind tunnel tests has not been widely validated in terms of overall aerodynamic performance improvement [12-14].

In fact, there has been a debate on the trade-off between complexity and weight and the possible benefits in terms of aerodynamic performance [15-17]. In addition, a number of studies have shown an extra drag factor in morphing wing concepts, while others claim that these effects can be confined or marginal with optimal design [1, 18-20].

In this context, the conceptual framework employed in the current review regards morphing wings as adaptive aerodynamic systems where smart materials are coupled with advanced structural concepts [21, 22].

The key constituents of the conceptual framework are the enhancement of aerodynamic efficiency in terms of the improvement in the lift-to-drag ratio, smart actuation through SMAs and piezoelectric materials, and the validation of performance through wind tunnel testing and, where necessary, additional CFD analyses [23-27].

The synergy of the key constituents enables adaptive shape control in real time with the potential for systematic experimental research [28-33].

Despite the encouraging results obtained in many studies, there are still some challenges in testing morphing wing concepts experimentally.

These are associated with response times in actuation,

hysteretic cycles, non-linear behavior, aeroelastic phenomena, and morphing performance under heavy aerodynamic loading [34-40]. Specifically, combining compliant skins and actuators in lightweight morphing structures that retain stiffness, strength, and aerodynamic integrity has been cited as an area that poses an ongoing challenge [41-46].

Other concerns mentioned in literature include aeroelastic instability, degradation of SMA actuators under cyclic fatigue, and loss of structural stiffness in morphing cycles [47-50]. In light of this, the current review integrates 112 top-quality experimental papers related to the topics of wind tunnel testing, smart actuation systems, compliant structural concepts, aerodynamic performance analysis, and validation strategies for Multiphysics.

The aim is to offer a holistic and evidence-supported assessment of morphing wing systems while directly considering the contradictions and controversies that are documented in the current state-of-the-art literature [51-60].

A special focus is placed on experimental methods, validation strategies like PIV, DIC, and pressure mapping, and interdisciplinary integration as the primary facilitating tools for achieving a unified understanding of the current state-of-the-art [61-70].

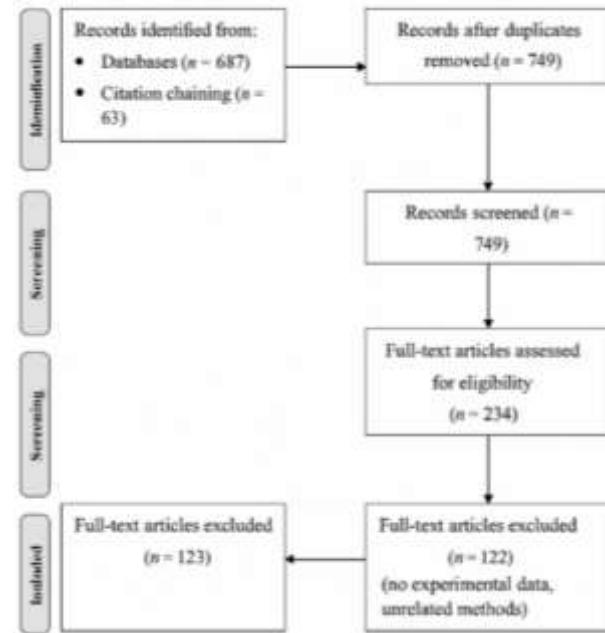
The primary objective of this review is to critically analyze the current literature on the experimental investigation of morphing wing technology, covering wind tunnel testing, smart materials, structural design approaches, aerodynamic performance, and verification techniques.

Through this critical analysis of experimental methods and results, this review aims to uncover any current research deficiencies in morphing wing technology, which must be addressed in order to further morphing wing technology towards being used in real-world airplane design. The objectives of this review are as follows:

- In order to evaluate the current experimental approaches being used in wind tunnel tests on morphing wing prototypes and models.
- The research will also seek to compare and benchmark the actuators made of smart materials and their implementation in morphing wing structures.
- To identify and synthesize various reported enhancements in aerodynamic efficiency that are linked to different morphing arrangements.
- To compare methods of performance validation used in quantifying the effectiveness of morphing wings in experimental conditions.
- Investigating the effect of structural design variables on the aerodynamic performance of morphing wing technologies.

2. METHODOLOGY

A full PRISMA search strategy was implemented [71-76] to assure that the retrieval, methodology uniformity, and selection process were improved as far as possible. The database repositories are included. Scopus, Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and the AIAA database repositories, along with forward and backward citation chaining, were all searched [77-82].


Beginning with a pool of in excess of 750 identified records, 112 studies satisfied all the inclusion criteria, which included:

1. Morphing prototypes is experimental.

2. Wind-tunnel or physical laboratory validation.
3. Involving SMA, MFC, compliant skins, or hybrid systems.
4. Reporting of aerodynamic or structural performance parameters [83-88].

Exclusion criteria eliminated studies that focused entirely on computationally based analysis, non-aerospace materials, and papers without empirical support [89-92]. Studies with high rigor and emphasis on aerodynamic measurement quality, innovative actuation, performance, or multiphysics validation were ranked using a weighted scoring matrix [93-97]. Using PRISMA ensured that the search included all aspects of morphing wing technology development, from early beginnings in DARPA to current advances in morphing wing technology using hyperelastic skin, metastructures, and hybrid actuation [98-112].

Despite the substantial growth of morphing wing research, existing reviews predominantly emphasize conceptual designs and numerical simulations, while a comprehensive synthesis of experimentally validated aerodynamic performance remains limited. In particular, there is a lack of structured comparison between actuation technologies, validation methodologies, and aerodynamic gains obtained under realistic wind tunnel conditions. This review addresses this gap by systematically analyzing experimental studies to identify performance trends, validation reliability, and unresolved technical challenges.

Figure 1. PRISMA 2020 extended flow diagram illustrating the systematic process used to identify, screen, assess eligibility, include studies in the present literature review Note: The diagram summarizes the number of records retrieved, screened, excluded, and finally selected for qualitative synthesis.

2.1 Search strategy (PRISMA)

A literature search using the PRISMA protocol was used to ensure inclusiveness and methodological quality. This search focused on experimental studies of morphing wing technology, which span wind tunnel testing, smart material actuation, compliant structural design (folding and/or stretching), aerodynamic efficiency calculations, and performance validation techniques (Figure 1).

The broad research question was articulated in the form of many specific research inquiries to ensure that all subtopics were covered:

1. “Experimental characterization of morphing wing technologies: wind tunnel testing, smart materials, structural design, aerodynamic efficiency, performance validation.”
2. “Innovative actuation mechanisms and smart materials for morphing wings.”
3. “Recent advancements in morphing wings: novel materials, design methodologies, aerodynamic optimization.”
4. “Computational-experimental integration in morphing wing design.”
5. “Adaptive morphing wings: structural integrity and aerodynamic behavior.”

The PRISMA search protocol included:

- Identification
- Screening
- Eligibility
- Inclusion

Across databases containing > 270M scientific records.

2.2 Databases and search sources

The following databases were screened:

- Scopus
- Web of Science
- IEEE Xplore
- ScienceDirect
- SpringerLink
- AIAA Library

Additional sources: Google Scholar, ResearchGate, and publisher repositories

2.3 Inclusion and exclusion criteria

To guarantee methodological rigor as well as to ensure that high relevance was preserved throughout the screened studies, specific inclusion and exclusion criteria were predefined before commencing with screening. These criteria were used for the assessment of each publication in both steps (abstract and full text). Experimental validity, relevance to morphing wing technologies, application of smart material actuation, and availability of aerodynamic or structural performance data were the authors' selected criteria.

Table 1 provides a full list of the inclusion and exclusion criteria utilized for this review.

Table 1. Inclusion and exclusion criteria used for literature screening

Criterion	Inclusion	Exclusion
Study type	Experimental papers, wind tunnel tests, physical prototypes	Pure CFD or analytical works
Actuation	SMA, MFC, hybrid actuators	Non-aerospace material studies
Aerodynamics	L/D, drag, stall, wake, separation	Studies without aerodynamic metrics
Structures	Compliant skins, ribs, joints	Non-load-bearing or irrelevant structures
Validation	PIV, strain gauges, force balances	Missing experimental validation
Language	English only	Other languages

A weighted scoring system was employed to rank the screened studies based on experimental rigor (40%), relevance to morphing wing technologies (30%), innovation in actuation or structural design (20%), and quality of aerodynamic validation (10%). Only studies achieving high cumulative scores were included in the final synthesis.

2.4 Identification and retrieval of studies

A comprehensive search was conducted using a variety of science databases to ensure thorough coverage of experimentally validated morphing wing papers. In addition, a multi-query search allowed for the efficient retrieval of a wide and representative collection of papers related to various issues associated with morphing wing technology. In total, the search retrieved 687 papers using direct database searching and a further 63 papers through citation chaining, for a total of 750 papers identified. A total of 749 unique papers made it to the screening process.

2.5 Citation chaining

To supplement the database search and to counter the possibility of missing seminal work, both backward and forward citation chaining methods were used. Backward citation chaining involved scrutinizing reference lists to uncover seminal and highly cited literature, whereas forward citation chaining involved uncovering relatively recent literature that cited seminal literature in that area. Thus, both

methods ensured that there is continuity in terms of time coverage from early development to recent advancements.

2.6 Screening and relevance scoring

After the identification process, all 749 records were systematically screened using the title, abstract, and pre-defined criteria for the potential relevance of the studies. To provide an impartial evaluation of the relevance and quality of the studies, a weighted scoring system was employed. The weights were assigned as follows: the quality of the experiments conducted in the study was assigned a weight of 40%, the relevance of the morphing wing technology to the study was assigned a weight of 30%, innovation in the actuator and structural design of the wing technology was assigned a weight of 20%, and the quality of the aerodynamic validation of the wing technology was assigned a weight of 10%. On the basis of the full-text screening using the weighted scoring system, the top 112 studies were found to be very relevant to the topic and were classified.

3. RESULTS AND DISCUSSION

This section presents an integrated review of the 112 relevant experimental studies retrieved in the literature review. The topic is categorized into broad theme areas such as wind tunnel testing, smart material actuation, aerodynamic performance, structural design, and validation methods.

Finally, the discussion includes insights that extend beyond the identified theme areas. It should also be noted that all sources used in the citations belong to the literature review set.

3.1 Wind tunnel testing protocols and experimental practices

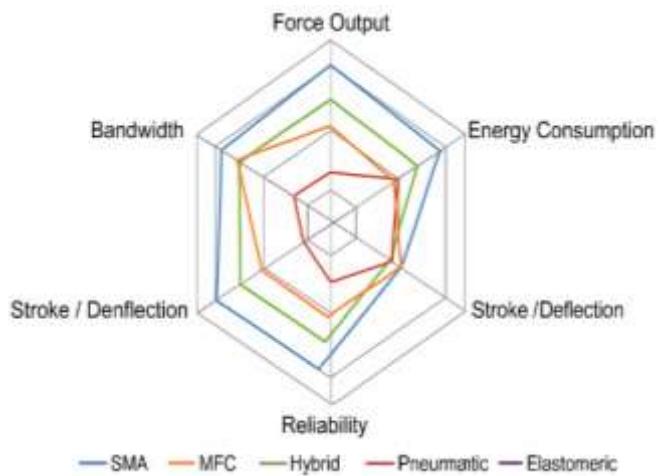
Wind tunnels are the primary approach that has been employed for testing morphing wing technologies and are cited in more than two-thirds of the 112 papers that are reviewed for this review. A wide range of facilities has been employed, including low-speed subsonic wind tunnels and test sections for UAV scale, as well as larger facilities, for testing aerodynamic loads, deformation, and aeroelasticity effects for wings [1, 10, 28-30].

Within the context of these experimental investigations, the measurement of lift and drag forces was carried out using multi-axis force balances, while surface pressure measurements were conducted through the use of multiplexed pressure scanners or multi-hole probes [29, 30]. Deformation kinematics during morphing were captured using optical methods, which included photogrammetry, digital image correlation, or laser scanning, resulting in high-resolution displacement/strain measurements [10, 28]. Some studies have also used time-resolved particle image velocimetry (PIV) measurements to identify flow field properties, boundary layers, or wake phenomena associated with morphing wing geometries [16, 29].

The outcome studies have shown that morphing wing concepts are capable of achieving smoother pressure gradients and continuous geometries as opposed to traditional hinged surfaces. For instance, Wong et al. [1], Grigorie et al. [29], and Radestock et al. [10] found that morphing concepts that involved camber morphing and compliant trailing edges experienced later separation and stable stall characteristics. However, Samuel and Pines [16] found that span morphing had less desirable aerodynamic performance.

On a general note, it has been validated that the results of the experiments conducted in the wind tunnel are in favor of morphing wings when it comes to their aerodynamic performance and are directly linked to actuation systems, compliant structures, and measurement techniques. The comparison of experimental setup, measurement techniques, and morphing configuration has been summarized in Table 2 below.

3.2 Environmental factor analysis


Smart material actuation is one of the most studied areas in morphing wing literature, since 66 studies dealt with the actuation of SMAs and Macro Fiber Composites (MFC), but also the combination of both in one system. Such materials make it feasible to morph the wing surface without hinges,

significantly increasing the flow smoothness.

SMA actuation possesses very high force-to-weight ratio properties. Thus, it becomes feasible to deflect the camber/twist for shape adaptation related to the wind pressure effect. Experiments performed on the morphing surface indicated the ability to delay the boundary-layer transition [29], the smooth deformation of the camber surface without mechanical hinges, and adaptability to moderate actuation rates. But the main limitation in actuation was its low speed of thermal actuation along with the existence of strong hysteretic behavior [31], as exhibited in Geier et al. [32].

MFCs actuators also prove equally effective in the field of high-bandwidth and high-frequency operations [28, 33]. Due to their low weight, simple installation process, and the ability to provide high actuation forces, MFC actuation systems prove useful in fine adjustments related to the flow of aerospace. However, the use of MFC actuation systems also poses some disadvantages in terms of material nonlinearity, the requirement for stiff supporting substrates, and the effect of high aerodynamic forces.

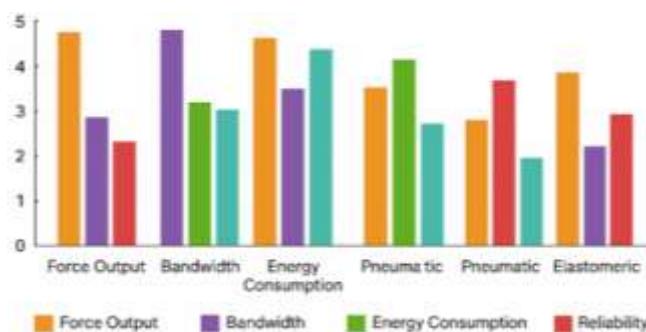
Hybrid SMA-MFC systems: Hybrid actuation combines the high stroke of the SMA material with the quick response of the MFC actuator in order to provide improved morphing dynamics. According to Jodin, the bandwidth for the proposed system approximately twice that of a stand-alone system by utilizing the actuation capabilities of the SMA material [34]. Such actuation systems are now gaining recognition for their potential in future morphing wing technology. A summarized comparison of the actuation technologies is presented in Table 2, while the relative performance variations for the morphing concepts, such as SMA Camber Morphing, MFC Twist Systems, FishBAC, and CTE structures, are represented in Figure 2. A structured comparison is given in Table 3.

Figure 2. Comparative performance of smart actuation mechanisms used in morphing wings

Table 2. Summary of wind tunnel testing characteristics reported in the literature

Study	Tunnel Type	Measurements	Morphing Concept	Validation Tools
Wong et al. [1]	Low-speed	L/D, pressure	Flexible ribs + composite skin	Force balance, CFD
Radestock et al. [10]	UAV tunnel	Pressure, deformation	Leading-edge + span extension	Pressure mapping
Samuel and Pines [16]	Full-scale	Drag, stability	Telescopic span	Theory comparison
Pankonien and Inman [28]	Subsonic	Lift, drag	MFC twist morphing	Optical tracking
Grigorie et al. [29]	Bench + tunnel	Flow transition	SMA camber	Pressure sensors
Martinez et al. [30]	30% scale	L/D	Hingeless smart surfaces	Flow visualization

Table 3. Comparison of smart material actuation technologies


Actuator	Advantages	Limitations	Typical Application
SMA	High force, large deformation	Slow response, hysteresis	Camber morphing
MFC	Fast, precise, high bandwidth	Strength limits, nonlinear behavior	Twist morphing
Hybrid SMA-MFC	Multi-modal, efficient	Complex integration	Advanced morphing wings

3.3 Aerodynamic efficiency and performance improvements

A total of fifty experimental studies in the studied literature reported the quantitative evaluation of aerodynamic performance generated by morphing wing configurations. The studies were mostly carried out on the differences in lift coefficient (CL), drag force, lift-to-drag ratio (L/D), and stall performance in controlled wind tunnels. The improvements in performance were not similar in all configurations but were dependent on the morphing approach used.

A study conducted on a FishBAC-based continuous camber morphing wing showed a significant enhancement in the lift-to-drag ratio of about a factor of two compared to an equivalent fixed wing configuration under similar test conditions [1]. Lift coefficient enhancement of about 25% was observed for actively camber morphed airfoils, which was associated with a reduced surface curvature and delayed flow separation [7]. More conservative aerodynamic performance enhancement was observed for telescopic span morphing systems, which reflects the morphing technology's influence on performance enhancement [16].

As far as drag performance is concerned, Marciniuk et al. [35] reported drag coefficients reduced by as much as 37% in the low Reynolds number regime for airfoils employing variable camber morphing. Further studies involving compliant trailing edge airfoils, such as those employing flexible ribs or TPU morphing actuators, also revealed postponed stall and reduced mid-chord separation when compared to conventional hinged control devices [7, 29, 30]. All these observations were generally attributed to the reduction of geometric discontinuities and the creation of more continuous pressure gradients on the airfoil surfaces.

Figure 3. Aerodynamic performance comparison

On a whole, the configurations involving continuous morphing, such as FishBAC trailing edges, rib-based camber morphing, as well as TPU composite structures, appeared to have the most significant aerodynamic effects. The comparison between the experimentally measured lift increase, drag reduction, as well as L/D ratio improvement, based on typical morphing mechanisms, has been illustrated in Figure 3. This graph summarizes the extracted data directly from experimental literature.

A bar chart illustrating lift coefficient improvement, L/D

enhancement, and drag reduction for SMA-camber, MFC-twist, FishBAC, telescopic span, and TPU-rib morphing mechanisms.

3.4 Structural design, compliant mechanisms, and aeroelastic behavior

Structural innovations were addressed in 53 research works. The research involved compliant ribs, structural skins, actuation systems for structures that are in modules, and topology-optimization structures. Structural innovations also included variations in rib types. According to the reviewed research works, structural designs significantly influence morphing due to the following factors:

- Obedient ribs provide a smooth transition but must also provide support against buckling [17].
- Flexure box morphing structures make operations easier [36].
- Variable-thickness composite skins offer tailored stiffness distributions [37].
- 3D printing of the TPU skins ensures their ability to withstand considerable deflections of the trailing edges [27].

Structural-aeroelastic interaction was also an important consideration. Thus, though deformable structures increase the smoothness of the flow field, they are:

- Nonlinear deformation
- Reduced stiffness during load cycles
- Increased sensitivity to gusts

Aeroelastic coupling might prove fruitful if effectively utilized, though various studies [38, 39] highlighted the instability issue in the event of improper stiffness distribution.

3.5 Performance validation, control methods, and measurement quality

Among 42 studies, validation techniques used were:

- Force balances
- Pressure distribution mapping
- Digital Image Correlation (DIC)
- Photogrammetry and laser scanning
- PIV for flow-field insight

This multi-technique validation brought powerful insights in the areas of both aerodynamics and structural dynamics, particularly within multi-disciplined validation studies [18, 40]

Techniques like fuzzy logic control, adaptive tuning control, and online optimization had great potential for:

- Autonomous camber/twist control [14]
- Dynamic stall delay
- L/D maximization under variable flow conditions

Such results prove the morphing wing's ability to function in real-time adaptability, an essential aspect for the future generation of aircraft.

3.6 Cross-theme integrated discussion

Integrated analysis reveals the following overarching

themes:

1. Relationship Between Smart Materials and Aerodynamic Outcomes
 - SMA → broad morphing capability on large scales increased low-speed life
 - The high-frequency response in MFC → an increased maneuverability
 - The mixed mode performed well in hybrid system.
2. Structural–Aerodynamic Trade-Off
 - More pliable skins = More streamlined cuts through the air
 - More susceptibility to aeroelastic instabilities
3. Effectiveness of Validation Approaches
 - DIC + PIV + force balance had the best-quality data in studies
 - Simulations-heavy studies had demonstrated
4. Practical Limitations
 - Many studies used subscale models → limited generalizability
 - Actuator fatigue remains under-studied
 - Few full-scale validations exist

Summed-up results from individual works clearly prove the applicability of morphing wing technologies to provide revolutionary innovations in the field of aerodynamics for improved efficiency, adaptability, and control of aircraft. Even the experimental results demonstrate a significant improvement in the generated lift and drag forces, as well as in the lift-to-drag ratio values. Furthermore, smart material actuation, like SMA and MFC, proves effective for morphing purposes. But certain issues still persist in terms of actuation speed, structural life, interaction of aeroelasticity, etc.

4. CONCLUSIONS

This systematic review compiles the experimental findings of 112 rigorous studies on the aerodynamic capabilities of morphing wing technology. The reviewed literature reveals the conclusive superiority of continuous morphing designs over conventional wing designs in terms of aerodynamic smoothness, stall delay, and the improvement of the lift-to-drag ratio due to the aid of smart material actuation and the compliant structural configuration of morphing wings. The aerodynamic testing of morphing wings in a wind tunnel verifies their effectiveness in improving the aerodynamic characteristics of the technology by using SMA, MFC, and combined actuators.

Despite such encouraging findings, the literature review reveals some current experimental limitations. Most experimental work carried out so far has been conducted using subscale models within the wind tunnel environment. This naturally imposes limitations on directly applying the test results to full-scale aircraft. In addition, the literature review shows that actuator response rate, hysteresis effects, life, and aeroelastic coupling are not investigated with a focus on long duration and/or high load testing.

Future research should focus on validation at full scale or at a high Reynolds number, testing of smart actuator endurance and fatigue properties, and development of integrated aerostructural control models that are able to adapt online to gusts and transient events. The development of a set of standardized experimental procedures will play a key role in promoting morphing wing technology from the research lab to the aircraft.

REFERENCES

- [1] Wong, A., Bil, C., Marino, M. (2022). Design and aerodynamic performance of a FishBAC morphing wing. In AIAA SCITECH 2022 Forum, San Diego, CA & Virtual, p. 1298. <https://doi.org/10.2514/6.2022-1298>
- [2] Mkhoyan, T., Ruland, O., De Breuker, R., Wang, X. (2022). On-line black-box aerodynamic performance optimization for a morphing wing with distributed sensing and control. *IEEE Transactions on Control Systems Technology*, 31(3): 1063-1077. <https://doi.org/10.1109/TCST.2022.3210164>
- [3] Kudva, J.N., Sanders, B.P., Pinkerton-Florance, J.L., Garcia, E. (2002). DARPA/AFRL/NASA Smart Wing program: Final overview. In Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, pp. 37-43. <https://doi.org/10.1117/12.475083>
- [4] Kudva, J.N., Martin, C.A., Scherer, L.B., Jardine, A.P., et al. (1999). Overview of the DARPA/AFRL/NASA smart wing program. In Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies, pp. 230-236. <https://doi.org/10.1117/12.351561>
- [5] Jodin, G., Scheller, J., Duhayon, E., Rouchon, J.F., Braza, M. (2017). Implementation of a hybrid electro-active actuated morphing wing in wind tunnel. *Solid State Phenomena*, 260: 85-91. <https://doi.org/10.4028/www.scientific.net/ssp.260.85>
- [6] Bilgen, O., Kochersberger, K., Diggs, E., Kurdila, A., Inman, D. (2007). Morphing wing aerodynamic control via macro-fiber-composite actuators in an unmanned aircraft. In AIAA Infotech@ Aerospace 2007 Conference and Exhibit, Rohnert Park, California, p. 2741. <https://doi.org/10.2514/6.2007-2741>
- [7] Rakhshani, B., Samson, N., Leslie, T. (2025). Experimental and numerical analysis of the aerodynamic characteristics of the flexing wing with active camber design. *International Journal of Aerospace Engineering*, 2025(1): 1212535. <https://doi.org/10.1155/ijae/1212535>
- [8] Molinari, G., Arrieta, A.F., Guillaume, M., Ermanni, P. (2016). Aerostructural performance of distributed compliance morphing wings: Wind tunnel and flight testing. *AIAA Journal*, 54(12): 3859-3871. <https://doi.org/10.2514/1.J055073>
- [9] De Breuker, R., Mkhoyan, T., Nazeer, N., Stuber, V., et al. (2022). Overview of the SmartX wing technology integrator. *Actuators*, 11(10): 302. <https://doi.org/10.3390/act11100302>
- [10] Radestock, M., Riemschneider, J., Monner, H.P., Huxdorf, O., Werter, N., De Breuker, R. (2016). Deformation measurement in the wind tunnel for an UAV leading edge with a morphing mechanism. In 30th Congress of the International Council of the Aeronautical Sciences, ICAS 2016, Daejeon, South Korea, pp. 1-9. https://elib.dlr.de/107200/1/ID_2016_0166_Radestock_ICAS.pdf
- [11] Kammegne, M.J.T., Botez, M.R., Mamou, M., Mebarki, Y., Koreanschi, A., Gabor, O.S., Grigorie, T.L. (2016). Experimental wind tunnel testing of a new multidisciplinary morphing wing model. In Proceedings of the 18th International Conference on Mathematical Methods, Computational Techniques and Intelligent

Systems (MAMECTIS 2016), pp. 90-97. <https://d1wqtxts1xzle7.cloudfront.net/90768428/MAMUA-14-libre.pdf>.

[12] Rivero, A.E., Fournier, S., Weaver, P., Cooper, J., Woods, B.K.S. (2018). Manufacturing and characterisation of a composite FishBAC morphing wind tunnel model. In 29th International Conference on Adaptive Structures and Technologies, Seoul, Korea. <http://www.bristol.ac.uk/engineering/news/2018/icast-prize.html>.

[13] Grogorie, L., Popov, A., Botez, R.M. (2013). Control of actuation system based smart material actuators in a morphing wing experimental model. In AIAA Atmospheric Flight Mechanics (AFM) Conference, Boston, MA, p. 4918. <https://doi.org/10.2514/6.2013-4918>

[14] Grigorie, T.L., Botez, R.M. (2018). Control techniques for a smart actuated morphing wing model: Design, numerical simulation and experimental validation. Morphing Wing Technologies, pp. 351-397. <https://doi.org/10.1016/B978-0-08-100964-2.00012-5>

[15] Keidel, D.H.K., Sodja, J., Werter, N.P.M., De Breuker, R., Ermanni, P. (2015). Development and testing of an unconventional morphing wing concept with variable chord and camber. In ICAST2015: 26th International Conference on Adaptive Structures and Technologies, Kobe, Japan. <https://resolver.tudelft.nl/uuid:12881ca7-e6c1-4644-b3f9-1009909721e9>.

[16] Samuel, J.B., Pines, D. (2007). Design and testing of a pneumatic telescopic wing for unmanned aerial vehicles. Journal of Aircraft, 44(4): 1088-1099. <https://doi.org/10.2514/1.22205>

[17] Rivero, A.E., Fournier, S., Heeb, R.M., Woods, B.K. (2022). Design, manufacture and wind tunnel test of a modular FishBAC wing with novel 3D printed skins. Applied Sciences, 12(2): 652. <https://doi.org/10.3390/app12020652>

[18] Stroud, H.R., Leal, P.B., Hartl, D.J. (2018). Experimental multiphysical characterization of an SMA driven, camber morphing owl wing section. In Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XII, pp. 176-184. <https://doi.org/10.1117/12.2300913>

[19] Abbas, A.S., Khudheyer, A.F., Hussain, J.M. (2018). Investigation the effect of flap design optimization on wake propagation behind wings of transport plan. ARPN Journal of Engineering and Applied Sciences, 13: 8393. https://www.google.com/url?sa=E&q=http%3A%2F%2Fwww.arpnjournals.com%2Fjeas%2Fresearch_papers%2Frp_2018%2Fjeas_1118_7287.pdf.

[20] Salinas, M.F., Botez, R.M., Gauthier, G. (2023). New validation methodology of an adaptive wing for UAV S45 for fuel reduction and climate improvement. Applied Sciences, 13(3): 1799. <https://doi.org/10.3390/app13031799>

[21] Xiao, L., Zhao, H., Xu, Z., Li, X., Shen, C., Wang, K., Zhang, L. (2022). A new architecture of morphing wing based on hyperelastic materials and metastructures with tunable stiffness. Frontiers in Mechanical Engineering, 7: 814446. <https://doi.org/10.3389/fmec.2021.814446>

[22] Raither, W., Heymanns, M., Bergamini, A., Ermanni, P. (2012). Morphing airfoil with adaptive bending-twist coupling. Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV. <https://d1wqtxts1xzle7.cloudfront.net/78725552/281251-libre.pdf>.

[23] Kouchlef, M.N.A., Shen, X. (2024). Development of a fishbone camber morphing airfoil actuated by SMA wires. International Journal of Science and Research Archive, 12(1): 800-808. <https://doi.org/10.30574/ijrsa.2024.12.1.0900>

[24] Bilgen, O., Friswell, M.I. (2014). Piezoceramic composite actuators for a solid-state variable-camber wing. Journal of Intelligent Material Systems and Structures, 25(7): 806-817. <https://doi.org/10.1177/1045389X13500575>

[25] Marciuk, M., Piskur, P., Kiszkowiak, Ł., Malicki, Ł., et al. (2024). Aerodynamic analysis of variable camber-morphing airfoils with substantial camber deflections. Energies, 17(8): 1801. <https://doi.org/10.3390/en17081801>

[26] Smith, D.D., Lowenberg, M.H., Jones, D.P., Friswell, M.I. (2014). Computational and experimental validation of the active morphing wing. Journal of Aircraft, 51(3): 925-937. <https://doi.org/10.2514/1.C032262>

[27] Kodigaddi, S.P., Venkataramana, S.H., Natesan, K. (2025). Experimental investigation on a trailing edge morphing airfoil (TEMA) with Zigzag Rib structure at low speed. Pertanika Journal of Science & Technology, 33(1): 195-217. <https://doi.org/10.47836/pjst.33.1.09>

[28] Pankonien, A.M., Inman, D.J. (2014). Aeroelastic performance evaluation of a flexure box morphing airfoil concept. In Active and Passive Smart Structures and Integrated Systems 2014, pp. 403-416. <https://doi.org/10.1117/12.2046406>

[29] Grigorie, L.T., Popov, A.V., Botez, R.M., Mébarki, Y., Mamou, M. (2011). Intelligent Control of a Morphing Wing Part 2: Validation Phase. ACTA Press. <https://doi.org/10.2316/P.2011.715-054>

[30] Martinez, J.M., Scopelliti, D., Bil, C., Carrese, R., Marzocca, P., Cestino, E., Frulla, G. (2017). Design, analysis and experimental testing of a morphing wing. In 25th AIAA/AHS Adaptive Structures Conference, Grapevine, Texas, p. 0059. <https://doi.org/10.2514/6.2017-0059>

[31] Georges, T., Brailovski, V., Morellon, E., Coutu, D., Terriault, P. (2009). Wind-tunnel testing of shape memory alloys actuators as morphing wing driving systems. In Smart Materials, Adaptive Structures and Intelligent Systems, Oxnard, California, USA, pp. 169-174. <https://doi.org/10.1115/SMASIS2009-1231>

[32] Geier, S., Kintscher, M., Mahrholz, T., Wierach, P., Monner, H.P., Wiedemann, M. (2013). Characterization of multifunctional skin-material for morphing leading-edge applications. In Active and Passive Smart Structures and Integrated Systems, pp. 365-376. <https://doi.org/10.1117/12.2009865>

[33] Bilgen, O., Kochersberger, K., Diggs, E., Kurdila, A., Inman, D. (2007). Morphing wing micro-air-vehicles via macro-fiber-composite actuators. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, p. 1785. <https://doi.org/10.2514/6.2007-1785>

[34] Jodin, G. (2017). Hybrid electroactive morphing at real scale - application to Airbus A320 wings. Electric Power. Institut National Polytechnique de Toulouse – INPT. English. <https://theses.hal.science/tel-04228420>.

[35] Pankonien, A.M., Inman, D.J. (2015). Spanwise

morphing trailing edge on a finite wing. In Active and Passive Smart Structures and Integrated Systems 2015, pp. 248-262. <https://doi.org/10.1117/12.2083945>

[36] Previtali, F., Molinari, G., Arrieta, A.F., Guillaume, M., Ermanni, P. (2016). Design and experimental characterisation of a morphing wing with enhanced corrugated skin. *Journal of Intelligent Material Systems and Structures*, 27(2): 278-292. <https://doi.org/10.1177/1045389X15595296>

[37] Vasista, S., De Gaspari, A., Ricci, S., Riemenschneider, J., Monner, H.P., van de Kamp, B. (2016). Compliant structures-based wing and wingtip morphing devices. *Aircraft Engineering and Aerospace Technology: An International Journal*, 88(2): 311-330. <https://doi.org/10.1108/AEAT-02-2015-0067>

[38] Andersen, G., Cowan, D., Piatak, D. (2007). Aeroelastic modeling, analysis and testing of a morphing wing structure. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, p. 1734. <https://doi.org/10.2514/6.2007-1734>

[39] Sanders, B.P., Martin, C.A., Cowan, D.L. (2001). Aerodynamic and aeroelastic characteristics of the DARPA smart wing phase II wind tunnel model. In Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, pp. 390-398. <https://doi.org/10.1117/12.429679>

[40] Noviello, M.C., Pecora, R., Amoroso, F., Rea, F., Arena, M., Dimino, I. (2017). Experimental shape reconstruction of a morphing wing trailing edge in simulated operative conditions. In 2017 8th International Conference on Mechanical and Aerospace Engineering (ICMAE), Prague, Czech Republic, pp. 249-256. <https://doi.org/10.1109/ICMAE.2017.8038651>

[41] Evans, C., Harmer, M., Marks, O., Tiley, S., Willis, T., Bouferrouk, A., Yao, Y. (2016). Development and testing of a variable camber morphing wing mechanism. In Proceedings of the International Symposium of Sustainable Aviation (ISSA), Istanbul, Turkey (Vol. 29).

[42] Wang, Z.G., Sun, X.S., Yang, Y., Ge, W.J., et al. (2024). Design optimization and testing of a morphing leading-edge with a variable-thickness compliant skin and a closed-chain mechanism. *Chinese Journal of Aeronautics*, 37(7), 285-300. <https://doi.org/10.1016/j.cja.2024.04.021>

[43] Molinari, G., Quack, M., Arrieta, A.F., Morari, M., Ermanni, P. (2015). Design, realization and structural testing of a compliant adaptable wing. *Smart Materials and Structures*, 24(10): 105027. <https://doi.org/10.1088/0964-1726/24/10/105027>

[44] Li, S., Chen, X., Wang, Z., Liang, Y. (2024). Ground strength test technique of variable-camber wing leading edge. *Biomimetics*, 9(8): 467. <https://doi.org/10.3390/biomimetics9080467>

[45] Kojima, T., Ikeda, T., Senba, A., Tamayama, M., Arizono, H. (2017). Wind tunnel test of morphing flap driven by shape memory alloy wires. *Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan*, 15(APISAT-2016): a75-a82. <https://doi.org/10.2322/TASTJ.15.A75>

[46] Ahmad, D., Parancheerivilakkathil, M.S., Kumar, A., Goswami, M., Ajaj, et al. (2024). Recent developments of polymer-based skins for morphing wing applications. *Polymer Testing*, 135: 108463. <https://doi.org/10.1016/j.polymertesting.2024.108463>

[47] Carvalho, M., Raibaudo, C., Cazin, S., Marchal, M., et al. (2019). Dynamics of a cambered A320 wing by means of SMA morphing and time-resolved PIV at high Reynolds number. In *Symposium on Fluid-Structure-Sound Interactions and Control*, pp. 283-293. https://doi.org/10.1007/978-981-33-4960-5_44

[48] Boston, D.M., Phillips, F.R., Henry, T.C., Arrieta, A.F. (2022). Spanwise wing morphing using multistable cellular metastructures. *Extreme Mechanics Letters*, 53: 101706. <https://doi.org/10.1016/j.eml.2022.101706>

[49] Marks, C.R., Zientarski, L., Joo, J.J. (2016). Investigation into the effect of shape deviation on variable camber compliant wing performance. In 24th AIAA/AHS Adaptive Structures Conference, San Diego, California, USA, pp. 1313. <https://doi.org/10.2514/6.2016-1313>

[50] Jodin, G., Scheller, J., Rizzo, K. J., Duhayon, E., Rouchon, J. F., Braza, M. (2015). Dimensionnement d'une maquette pour l'investigation du morphing électroactif hybride en soufflerie subsonique. In 22e Congrès Français de Mécanique (CFM 2015), pp. 1-13. <https://hal.science/hal-03444778/>

[51] Harvey, C., Gamble, L.L., Bolander, C.R., Hunsaker, D.F., Joo, J.J., Inman, D.J. (2022). A review of avian-Inspired morphing for UAV flight control. *Progress in Aerospace Sciences*, 132: 100825. <https://doi.org/10.1016/j.paerosci.2022.100825>

[52] Vasista, S., Riemenschneider, J., Van de Kamp, B., Monner, H.P., Cheung, R.C., Wales, C., Cooper, J.E. (2017). Evaluation of a compliant droop-nose morphing wing tip via experimental tests. *Journal of Aircraft*, 54(2): 519-534. <https://doi.org/10.2514/1.C033909>

[53] Groves-Raines, M.M., Araujo-Estrada, S.A., Mohamed, A., Watkins, S., Windsor, S.P. (2022). Wind tunnel testing of an avian-inspired morphing wing with distributed pressure sensing. In 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, pp. 290-299. <https://doi.org/10.1109/icuas54217.2022.9836045>

[54] Ko, S.H., Bae, J.S., Rho, J.H. (2014). Development of a morphing flap using shape memory alloy actuators: The aerodynamic characteristics of a morphing flap. *Smart Materials and Structures*, 23(7): 074015. <https://doi.org/10.1088/0964-1726/23/7/074015>

[55] Ozbek, E., Ekici, S., Karakoc, T.H. (2023). Unleashing the potential of morphing wings: A novel cost effective morphing method for UAV surfaces, rear spar articulated wing camber. *Drones*, 7(6): 379. <https://doi.org/10.3390/drones7060379>

[56] Mennu, M., Tran, B., O'Donnell, R., Tripp, C., Ifju, P. (2023). Design study of outboard wing incorporating MFC for a morphing vehicle. *Journal of Intelligent Material Systems and Structures*, 34(8): 960-975. <https://doi.org/10.1177/1045389X221128570>

[57] Béguin, B., Breitsamter, C., Adams, N. (2012). Aerodynamic optimization of a morphing membrane wing. In 28th International Congress of the Aeronautical Sciences, pp. 1168-1178. https://icas.org/icas_archive/ICAS2012/PAPERS/212.PDF

[58] Pankonien, A., Inman, D.J. (2013). Experimental testing of spanwise morphing trailing edge concept. In *Active*

and Passive Smart Structures and Integrated Systems 2013, pp. 352-364. <https://doi.org/10.1117/12.2009400>

[59] Stein, C.A., Hartl, D.J., Hodge, L., Mabe, J., Herrington, J., Saunders, R. (2015). Development of a twisting wing powered by a shape memory alloy actuator. In 23rd AIAA/AHS Adaptive Structures Conference, Kissimmee, Florida, p. 0733. <https://doi.org/10.2514/6.2015-0733>

[60] Reddy, R.A., Hinglajia, D.D., Modi, A., Prithvirajan, V., Hiremath, S. R., Sazawal, P., Roy Mahapatra, D. (2017). Morphing airfoil with thermally activated SMA actuators. *ISSS Journal of Micro and Smart Systems*, 6(1): 29-45. <https://doi.org/10.1007/S41683-017-0003-1>

[61] Grigorie, T.L., Popov, A.V., Botez, R.M., Mamou, M., Mébarki, Y. (2011). A new morphing wing mechanism using smart actuators controlled by a self-tuning fuzzy logic controller. In AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress", Virginia Beach, VA, pp. 20-22. <https://doi.org/10.2514/6.2011-7071>

[62] Love, M., Zink, P., Stroud, R., Bye, D., Rizk, S., White, D. (2007). Demonstration of morphing technology through ground and wind tunnel tests. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, p. 1729. <https://doi.org/10.2514/6.2007-1729>

[63] Popov, A.V., Grigorie, L.T., Botez, R., Mamou, M., Mébarki, Y. (2010). Real time morphing wing optimization validation using wind-tunnel tests. *Journal of Aircraft*, 47(4): 1346-1355. <https://doi.org/10.2514/1.47431>

[64] Rodrigue, H., Cho, S., Han, M.W., Bhandari, B., Shim, J.E., Ahn, S.H. (2016). Effect of twist morphing wing segment on aerodynamic performance of UAV. *Journal of Mechanical Science and Technology*, 30(1): 229-236. <https://doi.org/10.1007/S12206-015-1226-3>

[65] Sanders, B., Cowan, D., Scherer, L. (2004). Aerodynamic performance of the smart wing control effectors. *Journal of Intelligent Material Systems and Structures*, 15(4): 293-303. <https://doi.org/10.1177/1045389X04042799>

[66] Suman, A., Fabbri, E., Fortini, A., Merlin, M., Pinelli, M. (2020). On the design strategies for SMA-based morphing actuators: State of the art and common practices applied to a fascinating case study. In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 234(14): 2114-2130. <https://doi.org/10.1177/0954410020925687>

[67] Vos, R., De Breuker, R., Barrett, R., Tiso, P. (2007). Morphing wing flight control via postbuckled precompressed piezoelectric actuators. *Journal of Aircraft*, 44(4): 1060-1068. <https://doi.org/10.2514/1.21292>

[68] Bartley-Cho, J.D., Wang, D.P., Martin, C.A., Kudva, J.N., West, M.N. (2004). Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model. *Journal of Intelligent Material Systems and Structures*, 15(4): 279-291. <https://doi.org/10.1177/1045389X04042798>

[69] Grigorie, T.L., Botez, R.M., Popov, A.V. (2015). How the airfoil shape of a morphing wing is actuated and controlled in a smart way. *Journal of Aerospace Engineering*, 28(1): 04014043. [https://doi.org/10.1061/\(ASCE\)AS.1943-5525.0000372](https://doi.org/10.1061/(ASCE)AS.1943-5525.0000372)

[70] Coutu, D., Brailovski, V., Terriault, P., Mamou, M., Mébarki, Y., Laurendeau, E. (2011). Lift-to-drag ratio and laminar flow control of a morphing laminar wing in a wind tunnel. *Smart Materials and Structures*, 20(3): 035019. <https://doi.org/10.1088/0964-1726/20/3/035019>

[71] Debiasi, M., Khoo, H.H., Bouremel, Y., Luo, S.C., Zhiwei, E. (2011). Shape change of the upper surface of an airfoil by macro fiber composite actuators. In 29th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, p. 3809. <https://doi.org/10.2514/6.2011-3809>

[72] Van Oorschot, B.K., Choroszucha, R., Tobalske, B. W. (2020). Passive aeroelastic deflection of avian primary feathers. *Bioinspiration & Biomimetics*, 15(5): 056008. <https://doi.org/10.1088/1748-3190/ab97fd>

[73] Coutu, D., Brailovski, V., Terriault, P., Mamou, M., Mebarki, Y. (2011). Aerostructural model for morphing laminar wing optimization in a wind tunnel. *Journal of Aircraft*, 48(1): 66-76. <https://doi.org/10.2514/1.C000232>

[74] Kuzmina, S.I., Ishmuratov, F., Zichenkov, M., Chedrik, V.V., et al. (2018). Wind tunnel testing of adaptive wing structures. In *Morphing Wing Technologies*, pp. 713-755. <https://doi.org/10.1016/B978-0-08-100964-2.00023-X>

[75] Abdullah, E.J., Bil, C., Watkins, S.C. (2011). Performance of adaptive airfoil control system using shape memory alloy actuators for UAV. In 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Virginia Beach, VA. <https://doi.org/10.2514/6.2011-6849>

[76] Guezguez, M.S., Botez, R.M., Mamou, M., Mebarki, Y. (2016). Morphing wing-tip open loop controller and its validation during wind tunnel tests at the IAR-NRC. *INCAS Bulletin*, 8(3): 41. <https://doi.org/10.13111/2066-8201.2016.8.3.4>

[77] Li, J., Qin, Y.H., Bai, T., Yu, Z.H. (2009). Development of a morphing wing with adaptive capability. *Acta Aerodynamica Sinica*, 27(5): 505-508.

[78] Nagel, C., Fiedler, A., Schorsch, O., Lühring, A. (2015). Seamless morphing concepts for smart aircraft wing tip. In *Smart Intelligent Aircraft Structures (SARISTU) Proceedings of the Final Project Conference*, pp. 275-291. https://doi.org/10.1007/978-3-319-22413-8_14

[79] Pecora, R., Amoroso, F., Magnifico, M., Dimino, I. (2016). KRISTINA: Kinematic rib-based structural system for innovative adaptive trailing edge. In *Industrial and Commercial Applications of Smart Structures Technologies 2016*, pp. 67-77. <https://doi.org/10.1117/12.2218516>

[80] Blondeau, J., Richeson, J., Pines, D. (2003). Design of a morphing aspect ratio wing using an inflatable telescoping spar. In 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, Virginia, p. 1718. <https://doi.org/10.2514/6.2003-1718>

[81] Popov, A.V., Grigorie, L.T., Botez, R.M., Mamou, M., Mébarki, Y. (2010). Controller optimization in real time for a morphing wing in a wind tunnel. In *Melecon 2010-2010 15th IEEE Mediterranean Electrotechnical Conference*, Valletta, Malta, pp. 107-112. <https://doi.org/10.1109/MELCON.2010.5476329>

[82] Heryawan, Y., Park, H.C., Goo, N.S., Yoon, K.J., Byun, Y.H. (2005). Design and demonstration of a small expandable morphing wing. In *Smart Structures and*

Materials 2005: Smart Structures and Integrated Systems, pp. 224-231. <https://doi.org/10.1117/12.599287>

[83] Ivanco, T., Scott, R., Love, M., Zink, S., Weisshaar, T. (2007). Validation of the Lockheed Martin morphing concept with wind tunnel testing. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, p. 2235. <https://doi.org/10.2514/6.2007-2235>

[84] Strelec, J.K., Lagoudas, D.C. (2002). Fabrication and testing of a shape memory alloy actuated reconfigurable wing. In Smart Structures and Materials 2002: Smart Structures and Integrated Systems, pp. 267-280. <https://doi.org/10.1117/12.474664>

[85] Kim, D.K., Han, J.H., Kwon, K.J. (2009). Wind tunnel tests for a flapping wing model with a changeable camber using macro-fibercomposite actuators. Smart Materials and Structures, 18(2): 024008. <https://doi.org/10.1088/0964-1726/18/2/024008>

[86] Flanagan, J., Strutzenberg, R., Myers, R., Rodrian, J. (2007). Development and flight testing of a morphing aircraft, the NextGen MFX-1. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii, pp. 1707. <https://doi.org/10.2514/6.2007-1707>

[87] Bil, C., Massey, K., Abdullah, E.J. (2013). Wing morphing control with shape memory alloy actuators. Journal of Intelligent Material Systems and Structures, 24(7): 879-898. <https://doi.org/10.1177/1045389X12471866>

[88] Kim, D.K., Han, J.H. (2006). Smart flapping wing using macrofiber composite actuators. In Smart Structures and Materials 2006: Smart Structures and Integrated Systems, pp. 133-141. <https://doi.org/10.1117/12.658117>

[89] Almubarak, Y., Tadesse, Y. (2017). Twisted and coiled polymer (TCP) muscles embedded in silicone elastomer for use in soft robot. International Journal of Intelligent Robotics and Applications, 1(3): 352-368. <https://doi.org/10.1007/S41315-017-0022-X>

[90] Neal III, D.A. (2006). Design, development, and analysis of a morphing aircraft model for wind tunnel experimentation. Doctoral dissertation, Virginia Tech.

[91] Bendine, K., Gomes, G.F., Pereira, J.L.J., Daraji, A.H.A. (2025). A novel optimized artificial neural networks-based controller for smart morphing wings. Machine Learning for Computational Science and Engineering, 1(1): 8. <https://doi.org/10.1007/s44379-024-00005-9>

[92] Sivanandi, P., Sanjay, N., Chidambaram, S., Varatharaj, S. (2025). Design and numerical evaluation of trailing edge deflection distance-based morphing wing. Eng, 6(12): 354. <https://doi.org/10.3390/eng6120354>

[93] Bouremel, Y., Chan, W.L., Jones, G., Debiasi, M.T. (2014). Measurements of a symmetric airfoil morphed by macro fiber composite actuators. In 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, p. 3246. <https://doi.org/10.2514/6.2014-3246>

[94] Beguin, B., Breitsamter, C., Adams, N.A. (2010). Experimental investigations of an elasto-flexible morphing wing concept. In 27th International Congress of the Aeronautical Sciences. https://www.icas.org/icas_archive/ICAS2010/PAPERS/263.PDF.

[95] Scherer, L.B., Martin, C.A., Sanders, B.P., West, M.N., et al. (2002). DARPA/AFRL Smart Wing Phase 2 wind tunnel test results. In Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, pp. 64-75. <https://doi.org/10.1117/12.475104>

[96] Bilgen, O., Kochersberger, K.B., Inman, D.J., Ohanian, O.J. (2010). Macro-fiber composite actuated simply supported thin airfoils. Smart Materials and Structures, 19(5): 055010. <https://doi.org/10.1088/0964-1726/19/5/055010>

[97] Contell Asins, C., Landersheim, V., Laveuve, D., Adachi, S., May, M., Wacker, J.D., Decker, J. (2021). Analysis and design of a leading edge with morphing capabilities for the wing of a regional aircraft—Gapless chord-and camber-increase for high-lift performance. Applied Sciences, 11(6): 2752. <https://doi.org/10.3390/app11062752>

[98] Martin, C.A., Scherer, L.B., Flanagan, J.S., Carpenter, B.F. (2001). Design, fabrication, and testing of scaled wind tunnel model for the Smart Wing Phase II program. In Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, pp. 399-406. <https://doi.org/10.1117/12.429681>

[99] Jodin, G., Rouchon, J.F., Schller, J., Simiriotis, N., et al. (2021). Electroactive morphing vibrating trailing edge of a cambered wing: PIV, turbulence manipulation and velocity effects. In Advances in Critical Flow Dynamics Involving Moving/Deformable Structures with Design Applications: Proceedings of the IUTAM Symposium on Critical Flow Dynamics involving Moving/Deformable Structures with Design Applications, Santorini, Greece, pp. 427-439. https://doi.org/10.1007/978-3-030-55594-8_35

[100] Martin, C.A., Bartley-Cho, J.D., Flanagan, J.S., Carpenter, B.F. (1999). Design and fabrication of Smart Wing wind tunnel model and SMA control surfaces. In Smart Structures and Materials 1999: Industrial and Commercial Applications of Smart Structures Technologies, pp. 237-248. <https://doi.org/10.1117/12.351562>

[101] Manzo, J., Garcia, E. (2010). Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism. Smart Materials and Structures, 19(2): 025012. <https://doi.org/10.1088/0964-1726/19/2/025012>

[102] Avoni, L., Bronz, M., Condomines, J.P., Moschetta, J.M. (2025). Enhancing ASWING flight dynamics simulations with closed-loop control for flexible aircraft. In AIAA AVIATION 2025 Forum [Paper No. AIAA 2025-3425]. <https://doi.org/10.2514/6.2025-3425>

[103] Barbarino, S., Ameduri, S., Lecce, L., Concilio, A. (2009). Wing shape control through an SMA-based device. Journal of Intelligent Material Systems and Structures, 20(3): 283-296. <https://doi.org/10.1177/1045389X08093825>

[104] Kudva, J., Appa, K., Martin, C., Jardine, A., et al. (1997). Design, fabrication, and testing of the DARPA/Wright Lab'smart wing'wind tunnel model. In 38th Structures, Structural Dynamics, and Materials Conference, p. 1198. <https://doi.org/10.2514/6.1997-1198>

[105] Kim, D.K., Kim, H.I., Han, J.H., Kwon, K.J. (2008). Experimental investigation on the aerodynamic characteristics of a bio-mimetic flapping wing with

Macro-Fiber Composites. *Journal of Intelligent Material Systems and Structures*, 19(3): 423-431. <https://doi.org/10.1177/1045389X07083618>

[106] Fichera, S., Jiffri, M., Wei, X., Mottershead, J.E. (2014). High Bandwidth Morphing Aerofoil. In 22nd AIAA/ASME/AHS Adaptive Structures Conference, [Paper No. AIAA 2014-0164]. <https://doi.org/10.2514/6.2014-0164>

[107] Communier, D., Le Besnerais, F., Botez, R.M., Wong, T. (2019). Design, manufacturing, and testing of a new concept for a morphing leading edge using a subsonic blow down wind tunnel. *Biomimetics*, 4(4): 76. <https://doi.org/10.3390/BIOMIMETICS4040076>

[108] Bilgen, O., Kochersberger, K.B., Inman, D.J., Ohanian III, O.J. (2010). Novel, bidirectional, variable-camber airfoil via macro-fiber composite actuators. *Journal of Aircraft*, 47(1): 303-314. <https://doi.org/10.2514/1.45452>

[109] Chen, D., Xiong, J.J., Li, D.S. (2024). Nonlinear fluid-solid coupling responses of flexible skin-based morphing camber wings. *International Journal of Mechanical Sciences*, 278: 109482. <https://doi.org/10.1016/j.ijmecsci.2024.109482>

[110] Sonnenmeier, J.R., Onipede Jr, O., Detar, A.J., Myers, H.L. (2005). The Aerodynamics of an Actively Twisted Wing. In ASME International Mechanical Engineering Congress and Exposition, Orlando, Florida, USA, pp. 277-284. <https://doi.org/10.1115/IMECE2005-81213>

[111] Negahban, M.H., Bashir, M., Traisnel, V., Botez, R.M. (2024). Seamless morphing trailing edge flaps for UAS-S45 using high-fidelity aerodynamic optimization. *Chinese Journal of Aeronautics*, 37(2): 12-29. <https://doi.org/10.1016/j.cja.2023.10.024>

[112] Mowla, M.N., Asadi, D., Durhasan, T., Jafari, J.R., Amoozgar, M. (2025). Recent advancements in morphing applications: Architecture, artificial intelligence integration, challenges, and future trends-a comprehensive survey. *Aerospace Science and Technology*, 156: 110102.