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Morphing wing technologies remain one of the most promising methods of increasing
the aerodynamic efficiency and adaptability of wing structures. This systematic review
compiles 112 studies on experimentally verified research chosen from among 750
publications to evaluate their pertinence using the PRISMA protocol. The study also
considers experiments on wind tunnels, actuation methods involving smart materials and
shape memory alloys (SMAs) or Macro-Fiber Composites (MFCs), and structural
designs, as well as other aspects of aerodynamic performance. Within the tested
literature, there are obvious improvements in the range of 25 percent for the lifting force,
more than 35 percent for the drag force, and about a factor of two for the lifting/drag ratio
with respect to a fixed wing. Continuous morphing solutions like rib morphing, FishBAC
trailing edge, or SMAs-MFCs multimorphing have shown the best performance ratios.
However, there are still challenges, albeit important ones, that include the speed of
actuator response, hysteresis, fatigue life, aeroelastic couplings, and scalability. The
current review provides a constructive synthesis of the methodologies and identifies the
key research gaps for the eventual extension of morphing wing technologies developed

in the lab-scale validation phase to operational aircraft.

1. INTRODUCTION

The experimental analysis of morphing wing technologies
has gradually recognized the importance of this area of
research due to its ability to improve aerodynamic
performance and fuel efficiency in various flight regimes [1,
2]. Since the initial phases of morphing wing research in the
1990s, in particular in the DARPA Smart Wing project,
important advances have been made through the use of smart
materials, structural concepts, and actuation methods [3, 4].
The use of shape memory alloys (SMAs) and compliant
structural mechanisms, in combination with piezoelectric
actuators, has made possible the implementation of adaptive
wing surfaces that can change shape continuously [5, 6].

These advances were mainly motivated by the growing need
for environmentally friendly aviation systems, with
performance improvements that demonstrate drag reduction of
up to 20% and lift-drag ratio increases of over 50% for specific
wing designs [7].

As a result, morphing wing technology has expanded from
its initial application in military aviation into unmanned aerial
vehicles and commercial aircraft, for which improved
maneuverability and flight efficiency are now required [8, 9].

Nevertheless, the experimental validation of morphing wing
concepts in realistic aerodynamic loading conditions has not
been adequately addressed in the literature [10, 11].

Although a significant number of studies have shown the
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possibility of using smart materials in actuation in a lab test
environment, their implementation in wind tunnel tests has not
been widely wvalidated in terms of overall aerodynamic
performance improvement [12-14].

In fact, there has been a debate on the trade-off between
complexity and weight and the possible benefits in terms of
aerodynamic performance [15-17]. In addition, a number of
studies have shown an extra drag factor in morphing wing
concepts, while others claim that these effects can be confined
or marginal with optimal design [1, 18-20].

In this context, the conceptual framework employed in the
current review regards morphing wings as adaptive
aerodynamic systems where smart materials are coupled with
advanced structural concepts [21, 22].

The key constituents of the conceptual framework are the
enhancement of aerodynamic efficiency in terms of the
improvement in the lift-to-drag ratio, smart actuation through
SMAs and piezoelectric materials, and the validation of
performance through wind tunnel testing and, where
necessary, additional CFD analyses [23-27].

The synergy of the key constituents enables adaptive shape
control in real time with the potential for systematic
experimental research [28-33].

Despite the encouraging results obtained in many studies,
there are still some challenges in testing morphing wing
concepts experimentally.

These are associated with response times in actuation,
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hysteretic cycles, non-linear behavior, aeroelastic phenomena,
and morphing performance under heavy aerodynamic loading
[34-40]. Specifically, combining compliant skins and
actuators in lightweight morphing structures that retain
stiffness, strength, and aerodynamic integrity has been cited as
an area that poses an ongoing challenge [41-46].

Other concerns mentioned in literature include aeroelastic
instability, degradation of SMA actuators under cyclic fatigue,
and loss of structural stiffness in morphing cycles [47-50]. In
light of this, the current review integrates 112 top-quality
experimental papers related to the topics of wind tunnel
testing, smart actuation systems, compliant structural
concepts, aecrodynamic performance analysis, and validation
strategies for Multiphysics.

The aim is to offer a holistic and evidence-supported
assessment of morphing wing systems while directly
considering the contradictions and controversies that are
documented in the current state-of-the-art literature [51-60].

A special focus is placed on experimental methods,
validation strategies like PIV, DIC, and pressure mapping, and
interdisciplinary integration as the primary facilitating tools
for achieving a unified understanding of the current state-of-
the-art [61-70].

The primary objective of this review is to critically analyze
the current literature on the experimental investigation of
morphing wing technology, covering wind tunnel testing,
smart materials, structural design approaches, aerodynamic
performance, and verification techniques.

Through this critical analysis of experimental methods and
results, this review aims to uncover any current research
deficiencies in morphing wing technology, which must be
addressed in order to further morphing wing technology
towards being used in real-world airplane design. The
objectives of this review are as follows:

e In order to evaluate the current experimental
approaches being used in wind tunnel tests on
morphing wing prototypes and models.

The research will also seek to compare and
benchmark the actuators made of smart materials
and their implementation in morphing wing
structures.

To identify and synthesize various reported
enhancements in aerodynamic efficiency that are
linked to different morphing arrangements.

To compare methods of performance validation
used in quantifying the effectiveness of morphing
wings in experimental conditions.

Investigating the effect of structural design
variables on the aerodynamic performance of
morphing wing technologies.

2. METHODOLOGY

A full PRISMA search strategy was implemented [71-76] to
assure that the retrieval, methodology uniformity, and
selection process were improved as far as possible. The
database repositories are included. Scopus, Web of Science,
IEEE Xplore, ScienceDirect, SpringerLink, and the ATAA
database repositories, along with forward and backward
citation chaining, were all searched [77-82].

Beginning with a pool of in excess of 750 identified records,
112 studies satisfied all the inclusion criteria, which included:

1.  Morphing prototypes is experimental.
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Wind-tunnel or physical laboratory validation.

3. Involving SMA, MFC, compliant skins, or hybrid
systems.
4. Reporting of acrodynamic or structural performance

parameters [83-88].

Exclusion criteria eliminated studies that focused entirely
on computationally based analysis, non-aerospace materials,
and papers without empirical support [89-92]. Studies with
high rigor and emphasis on aerodynamic measurement quality,
innovative actuation, performance, or multiphysics validation
were ranked using a weighted scoring matrix [93-97]. Using
PRISMA ensured that the search included all aspects of
morphing wing technology development, from early
beginnings in DARPA to current advances in morphing wing
technology using hyperelastic skin, metastructures, and hybrid
actuation [98-112].

Despite the substantial growth of morphing wing research,
existing reviews predominantly emphasize conceptual designs
and numerical simulations, while a comprehensive synthesis
of experimentally validated aerodynamic performance
remains limited. In particular, there is a lack of structured
comparison between actuation technologies, validation
methodologies, and aerodynamic gains obtained under
realistic wind tunnel conditions. This review addresses this
gap by systematically analyzing experimental studies to
identify performance trends, validation reliability, and
unresolved technical challenges.
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Figure 1. PRISMA 2020 extended flow diagram illustrating
the systematic process used to identify, screen, assess

eligibility, include studies in the present literature review
Note: The diagram summarizes the number of records retrieved, screened,
excluded, and finally selected for qualitative synthesis.

2.1 Search strategy (PRISMA)

A literature search using the PRISMA protocol was used to
ensure inclusiveness and methodological quality. This search
focused on experimental studies of morphing wing
technology, which span wind tunnel testing, smart material
actuation, compliant structural design (folding and/or
stretching), aerodynamic efficiency calculations, and
performance validation techniques (Figure 1).



The broad research question was articulated in the form of
many specific research inquiries to ensure that all subtopics
were covered:

1. “Experimental characterization of morphing wing
technologies: wind tunnel testing, smart materials,

structural ~ design,  aerodynamic  efficiency,
performance validation.”

2. “Innovative actuation mechanisms and smart
materials for morphing wings.”

3. “Recent advancements in morphing wings: novel
materials, design methodologies, aerodynamic
optimization.”

4. “Computational-experimental integration in
morphing wing design.”

5. “Adaptive morphing wings: structural integrity and

aerodynamic behavior.”
The PRISMA search protocol included:
* Identification
Screening
Eligibility
Inclusion
Across databases containing > 270M scientific records.

2.2 Databases and search sources

The following databases were screened:
*  Scopus
*  Web of Science
* IEEE Xplore
*  ScienceDirect
*  SpringerLink
* AIAA Library
Additional sources: Google Scholar, ResearchGate, and
publisher repositories

2.3 Inclusion and exclusion criteria

To guarantee methodological rigor as well as to ensure that
high relevance was preserved throughout the screened studies,
specific inclusion and exclusion criteria were predefined
before commencing with screening. These criteria were used
for the assessment of each publication in both steps (abstract
and full text). Experimental validity, relevance to morphing
wing technologies, application of smart material actuation, and
availability of aerodynamic or structural performance data
were the authors' selected criteria.

Table 1 provides a full list of the inclusion and exclusion
criteria utilized for this review.

Table 1. Inclusion and exclusion criteria used for literature screening

Criterion Inclusion Exclusion

Study type Experimental papers, wind tunnel tests, physical prototypes Pure CFD or analytical works

Actuation SMA, MFC, hybrid actuators Non-aerospace material studies
Aerodynamics L/D, drag, stall, wake, separation Studies without aerodynamic metrics

Structures Compliant skins, ribs, joints Non-load-bearing or irrelevant structures

Validation PIV, strain gauges, force balances Missing experimental validation

Language English only Other languages

A weighted scoring system was employed to rank the
screened studies based on experimental rigor (40%), relevance
to morphing wing technologies (30%), innovation in actuation
or structural design (20%), and quality of aerodynamic
validation (10%). Only studies achieving high cumulative
scores were included in the final synthesis.

2.4 Identification and retrieval of studies

A comprehensive search was conducted using a variety of
science databases to ensure thorough coverage of
experimentally validated morphing wing papers. In addition, a
multi-query search allowed for the efficient retrieval of a wide
and representative collection of papers related to various
issues associated with morphing wing technology. In total, the
search retrieved 687 papers using direct database searching
and a further 63 papers through citation chaining, for a total of
750 papers identified. A total of 749 unique papers made it to
the screening process.

2.5 Citation chaining

To supplement the database search and to counter the
possibility of missing seminal work, both backward and
forward citation chaining methods were used. Backward
citation chaining involved scrutinizing reference lists to
uncover seminal and highly cited literature, whereas forward
citation chaining involved uncovering relatively recent
literature that cited seminal literature in that area. Thus, both
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methods ensured that there is continuity in terms of time
coverage from early development to recent advancements.

2.6 Screening and relevance scoring

After the identification process, all 749 records were
systematically screened using the title, abstract, and pre-
defined criteria for the potential relevance of the studies. To
provide an impartial evaluation of the relevance and quality of
the studies, a weighted scoring system was employed. The
weights were assigned as follows: the quality of the
experiments conducted in the study was assigned a weight of
40%, the relevance of the morphing wing technology to the
study was assigned a weight of 30%, innovation in the actuator
and structural design of the wing technology was assigned a
weight of 20%, and the quality of the aerodynamic validation
of the wing technology was assigned a weight of 10%. On the
basis of the full-text screening using the weighted scoring
system, the top 112 studies were found to be very relevant to
the topic and were classified.

3. RESULTS AND DISCUSSION

This section presents an integrated review of the 112
relevant experimental studies retrieved in the literature review.
The topic is categorized into broad theme areas such as wind
tunnel testing, smart material actuation, aerodynamic
performance, structural design, and validation methods.



Finally, the discussion includes insights that extend beyond the
identified theme areas. It should also be noted that all sources
used in the citations belong to the literature review set.

3.1 Wind tunnel testing protocols and experimental
practices

Wind tunnels are the primary approach that has been
employed for testing morphing wing technologies and are
cited in more than two-thirds of the 112 papers that are
reviewed for this review. A wide range of facilities has been
employed, including low-speed subsonic wind tunnels and test
sections for UAV scale, as well as larger facilities, for testing
aerodynamic loads, deformation, and aeroelasticity effects for
wings [1, 10, 28-30].

Within the context of these experimental investigations, the
measurement of lift and drag forces was carried out using
multi-axis force balances, while surface pressure
measurements were conducted through the use of multiplexed
pressure scanners or multi-hole probes [29, 30]. Deformation
kinematics during morphing were captured using optical
methods, which included photogrammetry, digital image
correlation, or laser scanning, resulting in high-resolution
displacement/strain measurements [10, 28]. Some studies have
also used time-resolved particle image velocimetry (PIV)
measurements to identify flow field properties, boundary
layers, or wake phenomena associated with morphing wing
geometries [16, 29].

The outcome studies have shown that morphing wing
concepts are capable of achieving smoother pressure gradients
and continuous geometries as opposed to traditional hinged
surfaces. For instance, Wong et al. [ 1], Grigorie et al. [29], and
Radestock et al. [10] found that morphing concepts that
involved camber morphing and compliant trailing edges
experienced later separation and stable stall characteristics.
However, Samuel and Pines [16] found that span morphing
had less desirable aerodynamic performance.

On a general note, it has been validated that the results of
the experiments conducted in the wind tunnel are in favor of
morphing wings when it comes to their aerodynamic
performance and are directly linked to actuation systems,
compliant structures, and measurement techniques. The
comparison of experimental setup, measurement techniques,
and morphing configuration has been summarized in Table 2
below.

3.2 Environmental factor analysis

Smart material actuation is one of the most studied areas in
morphing wing literature, since 66 studies dealt with the
actuation of SMAs and Macro Fiber Composites (MFC), but
also the combination of both in one system. Such materials
make it feasible to morph the wing surface without hinges,

significantly increasing the flow smoothness.

SMA actuation possesses very high force-to-weight ratio
properties. Thus, it becomes feasible to deflect the
camber/twist for shape adaptation related to the wind pressure
effect. Experiments performed on the morphing surface
indicated the ability to delay the boundary-layer transition
[29], the smooth deformation of the camber surface without
mechanical hinges, and adaptability to moderate actuation
rates. But the main limitation in actuation was its low speed of
thermal actuation along with the existence of strong hysteretic
behavior [31], as exhibited in Geier et al. [32].

MFCs actuators also prove equally effective in the field of
high-bandwidth and high-frequency operations [28, 33]. Due
to their low weight, simple installation process, and the ability
to provide high actuation forces, MFC actuation systems prove
useful in fine adjustments related to the flow of aerospace.
However, the use of MFC actuation systems also poses some
disadvantages in terms of material nonlinearity, the
requirement for stiff supporting substrates, and the effect of
high aerodynamic forces.

Hybrid SMA-MFC systems: Hybrid actuation combines the
high stroke of the SMA material with the quick response of the
MFC actuator in order to provide improved morphing
dynamics. According to Jodin, the bandwidth for the proposed
system approximately twice that of a stand-alone system by
utilizing the actuation capabilities of the SMA material [34].
Such actuation systems are now gaining recognition for their
potential in future morphing wing technology. A summarized
comparison of the actuation technologies is presented in Table
2, while the relative performance variations for the morphing
concepts, such as SMA Camber Morphing, MFC Twist
Systems, FishBAC, and CTE structures, are represented in
Figure 2. A structured comparison is given in Table 3.
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Figure 2. Comparative performance of smart actuation
mechanisms used in morphing wings

Table 2. Summary of wind tunnel testing characteristics reported in the literature

Study Tunnel Type Measurements Morphing Concept Validation Tools
Wong et al. [1] Low-speed L/D, pressure Flexible ribs + composite skin Force balance, CFD
Radestock et al. [10] UAYV tunnel Pressure, deformation ~ Leading-edge + span extension Pressure mapping
Samuel and Pines [16] Full-scale Drag, stability Telescopic span Theory comparison
Pankonien and Inman [28] Subsonic Lift, drag MEFC twist morphing Optical tracking
Grigorie et al. [29] Bench + tunnel Flow transition SMA camber Pressure sensors
Martinez et al. [30] 30% scale L/D Hingeless smart surfaces Flow visualization
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Table 3. Comparison of smart material actuation technologies

Actuator Advantages Limitations Typical Application
SMA High force, large deformation Slow response, hysteresis Camber morphing
MFC Fast, precise, high bandwidth  Strength limits, nonlinear behavior Twist morphing

Hybrid SMA-MFC Multi-modal, efficient

Complex integration

Advanced morphing wings

3.3 Aerodynamic and

improvements

efficiency performance

A total of fifty experimental studies in the studied literature
reported the quantitative evaluation of aerodynamic
performance generated by morphing wing configurations. The
studies were mostly carried out on the differences in lift
coefficient (CL), drag force, lift-to-drag ratio (L/D), and stall
performance in controlled wind tunnels. The improvements in
performance were not similar in all configurations but were
dependent on the morphing approach used.

A study conducted on a FishBAC-based continuous camber
morphing wing showed a significant enhancement in the lift-
to-drag ratio of about a factor of two compared to an
equivalent fixed wing configuration under similar test
conditions [1]. Lift coefficient enhancement of about 25% was
observed for actively camber morphed airfoils, which was
associated with a reduced surface curvature and delayed flow
separation [7]. More conservative acrodynamic performance
enhancement was observed for telescopic span morphing
systems, which reflects the morphing technology's influence
on performance enhancement [16].

As far as drag performance is concerned, Marciniuk et al.
[35] reported drag coefficients reduced by as much as 37% in
the low Reynolds number regime for airfoils employing
variable camber morphing. Further studies involving
compliant trailing edge airfoils, such as those employing
flexible ribs or TPU morphing actuators, also revealed
postponed stall and reduced mid-chord separation when
compared to conventional hinged control devices [7, 29, 30].
All these observations were generally attributed to the
reduction of geometric discontinuities and the creation of more
continuous pressure gradients on the airfoil surfaces.
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Figure 3. Aerodynamic performance comparison

On a whole, the configurations involving continuous
morphing, such as FishBAC trailing edges, rib-based camber
morphing, as well as TPU composite structures, appeared to
have the most significant aerodynamic effects. The
comparison between the experimentally measured lift
increase, drag reduction, as well as L/D ratio improvement,
based on typical morphing mechanisms, has been illustrated in
Figure 3. This graph summarizes the extracted data directly
from experimental literature.

A bar chart illustrating lift coefficient improvement, L/D
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enhancement, and drag reduction for SMA-camber, MFC-
twist, FishBAC, telescopic span, and TPU-rib morphing
mechanisms.

3.4 Structural design, and
aeroelastic behavior

compliant mechanisms,

Structural innovations were addressed in 53 research works.
The research involved compliant ribs, structural skins,
actuation systems for structures that are in modules, and
topology-optimization structures. Structural innovations also
included variations in rib types. According to the reviewed
research works, structural designs significantly influence
morphing due to the following factors:

*  Obedient ribs provide a smooth transition but must
also provide support against buckling [17].

¢ Flexure box morphing structures make operations
easier [36].

*  Variable-thickness composite skins offer tailored
stiffness distributions [37].

* 3D printing of the TPU skins ensures their ability to
withstand considerable deflections of the trailing
edges [27].

Structural-aeroelastic interaction was also an important
consideration. Thus, though deformable structures increase the
smoothness of the flow field, they are:

*  Nonlinear deformation
*  Reduced stiffness during load cycles
* Increased sensitivity to gusts

Aeroelastic coupling might prove fruitful if effectively
utilized, though various studies [38, 39] highlighted the
instability issue in the event of improper stiffness distribution.
and

3.5 Performance validation, control

measurement quality

methods,

Among 42 studies, validation techniques used were:
Force balances

Pressure distribution mapping

Digital Image Correlation (DIC)
Photogrammetry and laser scanning

PIV for flow-field insight

This multi-technique validation brought powerful insights
in the areas of both aerodynamics and structural dynamics,
particularly within multi-disciplined validation studies [18,
40]

Techniques like fuzzy logic control, adaptive tuning
control, and online optimization had great potential for:
Autonomous camber/twist control [14]

Dynamic stall delay
L/D maximization under variable flow conditions

Such results prove the morphing wing’s ability to function
in real-time adaptability, an essential aspect for the future
generation of aircraft.

3.6 Cross-theme integrated discussion

Integrated analysis reveals the following overarching



themes:

1. Relationship Between Smart Materials and Aerodynamic
Outcomes

* SMA — broad morphing capability on large scales

increased low-speed life
The high-frequency response in MFC — an increased
maneuverability
The mixed mode performed well in hybrid system.
2. Structural-Aerodynamic Trade-Off

*  More pliable skins = More streamlined cuts through
the air
More susceptibility to aeroelastic instabilities
3. Effectiveness of Validation Approaches
DIC + PIV + force balance had the best-quality data
in studies
Simulations-heavy studies had demonstrated
4. Practical Limitations

* Many studies used subscale models — limited
generalizability
Actuator fatigue remains under-studied
Few full-scale validations exist

Summed-up results from individual works clearly prove the
applicability of morphing wing technologies to provide
revolutionary innovations in the field of aerodynamics for
improved efficiency, adaptability, and control of aircraft. Even
the experimental results demonstrate a significant
improvement in the generated lift and drag forces, as well as
in the lift-to-drag ratio values. Furthermore, smart material
actuation, like SMA and MFC, proves effective for morphing
purposes. But certain issues still persist in terms of actuation
speed, structural life, interaction of aeroelasticity, etc.

4. CONCLUSIONS

This systematic review compiles the experimental findings
of 112 rigorous studies on the aerodynamic capabilities of
morphing wing technology. The reviewed literature reveals
the conclusive superiority of continuous morphing designs
over conventional wing designs in terms of aerodynamic
smoothness, stall delay, and the improvement of the lift-to-
drag ratio due to the aid of smart material actuation and the
compliant structural configuration of morphing wings. The
aerodynamic testing of morphing wings in a wind tunnel
verifies their effectiveness in improving the aerodynamic
characteristics of the technology by using SMA, MFC, and
combined actuators.

Despite such encouraging findings, the literature review
reveals some current experimental limitations. Most
experimental work carried out so far has been conducted using
subscale models within the wind tunnel environment. This
naturally imposes limitations on directly applying the test
results to full-scale aircraft. In addition, the literature review
shows that actuator response rate, hysteresis effects, life, and
aeroelastic coupling are not investigated with a focus on long
duration and/or high load testing.

Future research should focus on validation at full scale or at
a high Reynolds number, testing of smart actuator endurance
and fatigue properties, and development of integrated
aerostructural control models that are able to adapt online to
gusts and transient events. The development of a set of
standardized experimental procedures will play a key role in
promoting morphing wing technology from the research lab to
the aircraft.
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