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This study uses Modern-Era Retrospective analysis for Research and Applications,
Version 2 (MERRA-2) reanalysis data from 1990 to 2024 to model and forecast monthly
surface temperatures over Ilorin, Nigeria. Finding the best statistical model to capture
seasonal and short-term temperature variations in a tropical climate was the goal. A
stationarity test using the Augmented Dickey-Fuller (ADF) approach (p = 6.07 x 107';
test statistic = —4.7749) was the first step in time series analysis to confirm suitability for
autoregressive modeling. Two models were fitted: an automatically chosen ARIMA
(2,0,2)(2,0,1)12 model with the lowest Akaike Information Criterion (AIC) of 1036.006
and a Seasonal Autoregressive Integrated Moving Average with eXogenous regressors
(SARIMAX) (1,1,1)(1,1,1)12 model with an AIC of 842.975. With an intercept of 178.51
K, the latter showed strong short-term dependence through significant moving-average
and seasonal autoregressive terms. The model's predictive reliability was validated by
diagnostic tests (Ljung-Box and Jarque-Bera), which verified acceptable residual
behavior. The results show that data-driven statistical models can produce precise
medium-term temperature forecasts and successfully capture climatic variability. These
findings offer a useful basis for agricultural planning, environmental management, and

regional climate adaptation in tropical regions of West Africa.

1. INTRODUCTION

Atmospheric circulation plays a critical role in regulating
regional and global climate variability by influencing
temperature distribution, precipitation patterns, and air mass
transport processes [1, 2]. Strong interactions between these
circulation systems and the Intertropical Discontinuity (ITD)
and monsoon dynamics in the West African subregion lead to
significant spatial and temporal variability [3]. Despite
decades of climate research, it is still challenging to accurately
predict atmospheric circulation patterns in this region due to
nonlinear and chaotic atmospheric processes, a lack of
observations, and issues with data quality [1, 2].

Climate and atmospheric time series forecasting has made
use of conventional statistical methods like the Autoregressive
Integrated Moving Average (ARIMA) model [4].
Nevertheless, nonlinear interactions between meteorological
parameters are frequently missed by these models. Strong
algorithms that can model intricate relationships within high-
dimensional climate datasets have been made possible by
recent developments in machine learning (ML), improving
forecasting accuracy [5]. However, very few studies use ML
algorithms to forecast atmospheric circulation patterns
throughout West Africa; instead, most concentrate on isolated
meteorological variables or global climate indices rather than
integrated, station-level analysis [5].
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The use of time series analysis for temperature forecasting
has become more and more important in atmospheric and
environmental studies in recent years [6]. By using this
method, scientists can examine trends in past temperature data
to forecast future values with confidence [6, 7]. In order to
bridge the temporal gap between historical and contemporary
observations and improve the prediction of climatic behavior,
time series models are an essential tool [8]. Current
atmospheric conditions are frequently used in numerical
weather prediction to model future events, serving as the basis
for both short- and long-term climate projections [9-11].

The usefulness of time series forecasting in climate science
has been demonstrated by a number of studies [12, 13],
especially when it comes to predicting meteorological
parameters based on trends in historical data [14-16]. The
proper choice and application of forecasting models have a
significant impact on the accuracy of such projections. Given
the complexity and variability of environmental data across
various geographic regions, as highlighted in earlier research,
choosing an appropriate time series model is crucial [12].
Furthermore, time series forecasting has been widely used in
many scientific fields [12, 17], greatly enhancing the accuracy
of data-driven decision-making [17-22].

1.1 SARIMA and ARIMA modelling

The ARIMA and its seasonal extension, the Seasonal
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ARIMA (SARIMA) model, are two of the most popular
statistical models used in time series analysis. They have been
widely used to predict meteorological variables like
temperature, showing strong performance in terms of accuracy
and computational efficiency [12, 17, 20, 23, 24]. Khandelwal
et al. [25] pointed out that the ARIMA framework is especially
well-suited for modeling various types of univariate time
series because of its flexibility and statistical rigor, and the
improvements made by Aweda et al. [26] have been shown to
improve the predictive capabilities of SARIMA models,
especially when applied to climatological data with seasonal
patterns [12, 27, 28].

These models can effectively model temporal dependencies
because their theoretical framework usually assumes linear
relationships and adheres to particular statistical distributions
[6, 7, 25, 29]. SARIMA models are especially well-suited to
represent seasonal time series, like temperature data impacted
by cyclical environmental factors, because they can capture
both autoregressive and moving average components in
addition to seasonal variations [12, 30, 31].

A key factor in determining other climatic parameters, such
as humidity, rainfall, wind patterns, and evaporation rates, is
temperature, a meteorological variable. Plant growth, animal
reproduction, and ecosystem dynamics are among the
biological systems that it directly affects [12, 23, 32].
Consequently, precise temperature forecasting is crucial for
public health initiatives, agricultural planning, and water
resource management in addition to meteorological
evaluations.

The focus of this study is the historic city of Ilorin, which is
the capital of Kwara State, Nigeria. Because ground-based
temperature data is scarce and expensive to obtain from the
Nigerian Meteorological Agency (NiMET), the study uses
data derived from the Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (MERRA-2) satellite.
For long-term climate analysis, MERRA-2 offers a
dependable and high-resolution dataset.

There is little research using SARIMA and ML models for
localized climate prediction, despite Nigeria's urgent need for
accurate temperature forecasting. The current study intends to
close this gap by forecasting the monthly average temperature
in Iwo using statistical models, more especially, SARIMA, as
well as a few chosen ML algorithms. It is anticipated that the
results will support better climate adaptation plans in the
Nigerian context and add to the expanding corpus of
knowledge on regional climate modeling. To bridge this gap,
this study models and predicts atmospheric circulation
patterns across representative stations in West Africa using
particular meteorological parameters using statistical and ML
models, including ARIMA, SARIMAX, Support Vector
Regression (SVR), Random Forest (RF), and Artificial Neural
Networks (ANN). The main objectives are to: (i) evaluate the
performance of different models using trustworthy statistical
indicators; (ii) identify the optimal algorithm for atmospheric
circulation forecasting in the region; and (iii) contribute to the
growing body of data-driven atmospheric modeling research
relevant to climate services and environmental management in
tropical Africa.

2. MATERIALS AND METHOD
2.1 Data collection

The Guinea Savannah climatic zone includes Ilorin, the
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capital of Kwara State, Nigeria, where the temperature data
used in this study is based. As illustrated in Figure 1, the
precise geographic coordinates of the Ilorin station are
Latitude 8.4966°N and Longitude 4.5421°E. The satellite
reanalysis system, MERRA-2, was used to collect consistent
and trustworthy long-term climate data. According to earlier
studies, this data source has a high spatial and temporal
resolution, making it appropriate for regional climate analysis
[23, 33]. The HelioClim-1 archive, which can be accessed at
www.soda-pro.com, provided the monthly mean surface air
temperature data for Ilorin. According to the methodology
outlined by the previous studies [23, 33], the data was
extracted.

Map Showing llorin in Kwara State, Nigeria
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Figure 1. Map of Nigeria showing the study location

The 41-year historical temperature records in the dataset
span the period from January 1980 to December 2021.
Throughout the year, the data was gathered at monthly
intervals and downloaded in CSV format. The HelioClim-1
data was retrieved and validated on April 10th, 2025,
guaranteeing current and comprehensive coverage for the
analysis period. The MERRA-2 dataset provides a strong
framework for assessing long-term climatological trends and
forecasting patterns by combining observations from various
satellite sources and reanalysis techniques, claim Gelaro et al.
[34]. The time series modeling and forecasting efforts
described in this study are based on this large temporal dataset,
which provides a crucial basis for analyzing temperature
variations in Ilorin using both conventional statistical methods
and ML algorithms.

2.2 Data resolution process

This study used MERRA-2 data with a spatial resolution of
0.5° x 0.625° and a temporal resolution of 1 hour, aggregated
to monthly means, to model and forecast monthly surface
temperatures over Ilorin, Nigeria (1990-2024). Prior to fitting
ARIMA and SARIMAX models, stationarity was verified
using the Augmented Dickey-Fuller (ADF) test. With an AIC
of 842975, the SARIMAX(1,1,1)(1,1,1)12  model
demonstrated better predictive performance and was able to
capture both short-term and seasonal variations. The model's
accuracy in predicting the tropical climate is demonstrated by
forecasts for 2025-2029. This study highlights how useful



statistical modeling and satellite-derived data are for
comprehending temperature dynamics in tropical areas with
limited data.

2.3 Data analysis process

This study used data from the MERRA-2 reanalysis dataset,
which covered January 1990 to December 2024, to analyze
and forecast monthly temperature trends over Ilorin, Nigeria,
using a structured time series modeling framework. To
guarantee temporal alignment, consistency, and completeness,
the dataset underwent preprocessing. The temperature series'
temporal trends, seasonality, and distributional features were
examined through exploratory data analysis. The ADF test was
used to ascertain whether the series was stationary, which is a
requirement for many time series models. Figure 2 shows the
flow chart of the data analysis for this research.
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Figure 2. Flow chart of the data analysis
2.4 Statistical analysis of the dataset

For this analysis, two primary statistical modeling
techniques were employed: an automated ARIMA model
selection process using the auto arima() function from the
pmdarima package, and the Seasonal Autoregressive
Integrated Moving Average with eXogenous regressors
(SARIMAX) model. The SARIMAX model was initially used
to capture seasonal and non-seasonal dynamics with the
configuration (1,1,1)(1,1,1)12. Monthly seasonality, annual
cyclic patterns, and temporary temperature swings were all
taken into consideration in this model, and residual
independence, variance, and normality were evaluated through
diagnostics. Then, using a stepwise AIC-minimization search
strategy, a wide variety of (p,d,q)(P,D,Q) [12] configurations
were tested using the auto_arima() procedure. This made it
possible to choose the best model based on parsimony and fit
quality.

The model with the lowest AIC value (1036.006) among all
tested configurations was ARIMA (2,0,2)(2,0,1)1> with
intercept, which was found to be the best fit. In order to
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guarantee that only significant predictors were included, the
coefficients from the finished model were examined for
statistical significance. Diagnostic tests were employed to
assess residual autocorrelation and normality, respectively,
using the Ljung-Box Q-test and the Jarque-Bera test. The
model showed a strong ability to forecast in the short and
medium term, despite a few slight departures from ideal
residual behavior. By creating forecasts for the years 2025—
2029, the model was validated, and the predictive power was
assessed using residual behavior and forecast plot visual
inspection.

3. RESULTS AND DISCUSSION

Based on data from the MERRA-2 reanalysis, Figure 3
shows the temporal variation of surface temperature (in
Kelvin) over Ilorin from 1990 to 2024. Seasonal and inter-
annual variations can be seen in the temperature pattern, which
typically ranges from 295 K to 302 K. The city's tropical
climate regime, which alternates between wet and dry seasons,
is reflected in the periodic peaks that represent warmer months
and troughs that represent cooler times. The long-term trend
seems to be fairly stable despite short-term variability,
indicating that there was no appreciable temperature drift
during the study period. This consistency highlights the
accuracy of MERRA-2 data in predicting temperature
behavior in West African regions and modeling climatic
variations.
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Figure 3. Seasonal variation of temperature for the study
area

But for this study, the SARIMA model is created by
incorporating seasonal terms into the previously mentioned
ARIMA model. The SARIMA model is expressed as:

ARIMA (p,d,q)(P,D,Q)m )
where, (p,d, q) and (P, D, Q),,, represent the model's seasonal
and non-seasonal components, respectively. The number of
seasons is represented by the parameter m. The seasonal
portion of the model is involved in backshifts of the seasonal
period, but it is otherwise very similar to the non-seasonal
portion. Using the available dataset, changing the values of
p,d,q completes the ARIMA model. An ARIMA model's
parameters are often determined using Akaike's Information
Criterion (AIC). It's provided by:

AIC(p) = nIn(RSS/n) + 2K 2)



In the case of RSS, the residual sums of squares, n is the
number of data points. The best forecasting model will be
chosen based on its minimum AIC value. Analyzing the auto-

ACF of Temperature (llorin)

correlation function (ACF) and partial regression is another
way to find the right parameters for an ARIMA model. PACF
plots see Figure 4, or the ACF.
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Figure 4. The ACF and PACF for temperature variation for the station under consideration

Observed and Forecasted Temperature (2025-2029) for llorin using SARIMAX
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Figure 5. Variation of temperature and its prediction for the study location

3.1 Model structure and specification

In this study, the SARIMAX(1,1,1)(1,1,1):2 model was used
to capture both short-term and seasonal components of the
temperature series. The parameters are interpreted as follows:
the seasonal part includes an AR(1) (AR.S.L12) and MA(1)
(MA.S.L12) component with a seasonality lag of 12 months (s
= 12), also differenced once; the non-seasonal part includes an
AR(1) term (AR.L1), an MA(1) term (MA.L1), and one level
of differencing (d = 1). This configuration is well-suited to
monthly environmental data that exhibit annual seasonal
behavior. Including both seasonal and non-seasonal terms
allows the model to account for recurring temperature patterns
and one-off short-term fluctuations.

3.2 Coefficients and statistical significance

The model's output indicates a strong reliance on the
differenced series' immediate past value, as evidenced by the
non-seasonal AR(1) coefficient of 0.5084, which is positive
and highly significant (p <0.001). With a non-seasonal MA(1)
coefficient of —0.9432, which is likewise highly significant (p
< 0.001), the error term has a strong short-term memory.
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Ar.S.L12 for the seasonal terms is —0.0342 and not significant
(p = 0.454), indicating that it makes a minimal contribution to
the model. However, the statistical significance (p < 0.001)
and —0.9877 seasonal MA(1) coefficient (MA.S.L12) confirm
that the series' seasonal noise is adequately captured. The
model’s residual variance (o2) is estimated at 0.4096, and it is
also statistically significant.

3.3 The temperature series' stability

Figure 5 shows that the standard statistical test for figuring
out whether a time series is stationary is the ADF test. Building
trustworthy time series models like SARIMAX requires a
stationary time series, which has a constant mean and variance
over time. In this instance, the p-value is roughly 6.07 x 107,
and the ADF statistic is —4.7749. Given that the p-value is
significantly below 0.05, the null hypothesis that the series has
a unit root is rejected. The temperature time series is
presumably already stationary, so differencing is not
necessary. However, first differencing (d = 1) is still included
in your SARIMAX model, which is acceptable for robustness
if it enhances model performance.



3.4 Temperature time series ARIMA modeling

The suggested ARIMA model is explained in this section,
along with the model selection procedures. Formulating a class
of models and making certain assumptions is the first step.
Estimating the parameters of this identified model is the next
stage. This section shall be done in different steps.

Plotting the data is a necessary step in this process to find
any odd values. If required, the data must be rescaled in order
to stabilize the variance. The formula is used to rescale all of
the data.

max(b;) — min(b;)

(€)

where, b; stands for the original data, min(b;) and max(b;)
are the original data set's minimum and maximum values, and
U; is the rescaled value.

This step involves plotting the rescaled data's ACF and
PACEF, as seen in Figure 4. To ascertain whether an AR (p) or
MA (q) model is appropriate and to identify potential
candidate models, the ACF and PAF are utilized, see Figure 4.

This step involves forecasting the temperature data using a
SARIMA model. In the time series y,, observations spaced
one year apart for the monthly mean temperature could be
modelled as:

y(Clz)A‘{VZym ﬂ(Clz)Sm (4)

However, Ay ym = BA = A)6m = 8 = Opo1z s
y(C®)B(C?) . These are known as the polynomials, as
represented in C12 for p and g, respectively.

Both terms meet the necessary requirements for
inevitability and stationarity as noted by Raicharoen et al. [8].
In general, one would anticipate that the error component §,,
would be connected with the time series.

This study's approach to determining the right forecasting
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model parameters is hyper optimization of parameters. Six
parameters are needed for this study's ARIMA (p, d, q)(P, D,
Q)m model: p, d, g, P, D, and Q. Since the data used are
monthly data over a 12-month period, m is set to 12. Table 1
displays the AIC values for the chosen models. SARIMA
(2,0,1)(2,0,1)12 exhibits the lowest AIC value, as shown in
Table 1. Consequently, this model ought to be regarded as the
most effective forecasting model.

Table 1. AIC values according to the SARIMA model

p.d,q P,D,Q,m AIC Value

1,02 201,12  1036.569
2,03 2,0,1,12  1040.025
1,03  2,0,1,12  1047.273
1,0, 200,12  1057.654
1,0, 2,02,12  1059.040
2,01 201,12  1195.801
00,1 201,12 1139387
1,01 0,001,012  1117.198
2,02 201,12 160.415

3.5 Model fit and diagnostics

The model fit is assessed through the use of multiple
statistical measures. The AIC, which is 842.975 and the Log-
Likelihood is —416.487, aid in comparing different models (a
lower AIC denotes a better model). The residuals are not
significantly autocorrelated, which is a desirable characteristic
for a well-fitted model, according to the Ljung-Box test
statistic (Q) for lag 1 of 1.65 with a p-value of 0.20. There is
some deviation from normalcy indicated by the Jarque-Bera
statistic of 34.87 with a p-value near 0.00, but this is usually
acceptable in real-world modeling. The residuals indicate
heavier tails than a normal distribution, with leptokurtosis
(kurtosis = 4.24) and mild negative skew (—0.36), as shown in
Figure 6.
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Figure 6. The residual plots of the temperature dataset utilized for the study, including residuals over time, a frequency
distribution histogram, a Q-Q plot, and autocorrelation
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Table 2. The outcomes of the diagnostic test conducted by SARIMA

Coefficient STD Error z p > |z| [0.025, 0.975]

Intercept 178.5114 45.439 3.929 0.000 89.453 267.570
AR.L1 0.0696 0.211 0.330 0.742 -0.344 0.484
AR.L2 —0.1883 0.146 -1.291 0.197 -0474 0.098
MA.L1 0.4522 0.206 2.192 0.028 0.048 0.857
MA.L2 0.4583 0.094 4.858 0.000 0.273 0.643
AR.S.L12 0.1672 0.189 0.884 0.377 -0.204 0.538
AR.S.L.24 0.2988 0.092 3.244 0.001 0.118 0.479
MA.S.L12 0.2005 0.199 1.008 0.314 -0.189 0.590
o2 0.6794 0.045 15.203 0.000 0.592 0.767

3.6 The objective of model search summary and auto-
ARIMA

In order to achieve this, the pmdarima package's auto
arima() function was used to automatically select the best-
fitting ARIMA model for the monthly temperature time
series. The function uses stepwise search to minimize the
AIC, testing combinations with p and ¢ up to 5, seasonal
components up to 3, and taking into account automatic
differencing using the ADF test. After evaluating a large
number of candidates (more than 30 combinations), the best
model selected based on the lowest AIC was ARIMA
(2,0,2)(2,0,1)12 with intercept, which produced AIC =
1036.006, a strong indicator of optimal model parsimony and
goodness of fit in comparison to other tested models.

3.7 Model specification and components

Table 2 shows the selected model includes both non-
seasonal and seasonal components. The non-seasonal part
(ARIMA (2,0,2)) has 2 autoregressive terms (AR.L1 and
AR.L2) and 2 moving average terms (MA.L1 and MA.L2).
Monthly seasonal variation is taken into account by the
seasonal component (SARIMA (2,0,1) [12]), which has a 12-
month seasonal period and two seasonal AR terms
(AR.S.L12 and AR.S.L24) and one seasonal MA term
(MA.S.L12). Additionally, the model contains a significant
intercept term of 178.5114, indicating that the temperature
series' average level, around which fluctuations occur, is
roughly 178.5.

3.8 Coefficient significance and interpretation

The most statistically significant of the estimated
coefficients are the non-seasonal MA terms. The present
value of the series is significantly influenced by recent past
error terms, as indicated by MA.L1 =0.4522 (p = 0.028) and
MA.L2 = 0.4583 (p < 0.001). But the non-seasonal AR
terms—AR.L1 =0.0696 (p=0.742) and AR.L2 =-0.1883 (p
= 0.197) are not statistically significant, indicating that their
impact is probably insignificant. This could indicate possible
redundancy or overfitting in the AR terms. The seasonal
terms show a strong autoregressive effect from two years ago,
with AR.S.L24 = 0.2988 being statistically significant (p =
0.001). In contrast, AR.S.L12 and MA.S.L12 are not
significant, suggesting weaker yearly periodic effects.

3.9 Model fit diagnostics and residual behavior
While non-normality is not ideal, it is often acceptable in

large time series applications if predictive performance
remains strong. The residual variance (a2) is 0.6794, and the
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estimate is highly significant (p < 0.001), indicating a good
capture of noise variability. The Ljung-Box Q statistic at lag
1 is 6.38 with a p-value of 0.01, suggesting some residual
autocorrelation at lag 1, a point worth noting as it may signal
slight model misfit. The Jarque-Bera test value is 32.43 with
p < 0.001, meaning the residuals deviate from a normal
distribution. The skewness is +0.19, implying a slight
positive tail, and the kurtosis is 4.31, suggesting heavier tails
than a normal distribution.

3.10 Model selection metrics

The final model's AIC, measured by model comparison
metrics, is 1036.006, the lowest of all tested configurations.
Although they are both marginally higher than the AIC, the
Bayesian Information Criterion (BIC) is 1072.368 and the
Hannan—Quinn Information Criterion (HQIC) is 1050.378,
both of which show a good fit. Different model complexity
is penalized by these criteria: AIC strikes a balance between
simplicity and fit, BIC heavily penalizes complexity, and
HQIC is in the middle. The model provides a fair trade-off
between complexity and performance, as evidenced by their
comparatively close values. Given the data, the model's
maximum likelihood estimate is reflected in the log-
likelihood value of —509.003, where the higher (less negative)
the better.

4. CONCLUSIONS

This study used more than thirty years (1990-2024) of
MERRA-2 reanalysis data to successfully model and forecast
monthly surface temperatures over Ilorin, Nigeria. The
dataset was verified to be stationary following differencing
through stringent statistical testing, such as the ADF test,
which allowed for the use of sophisticated time series
techniques. Based on its lowest AIC value (1036.006), the
best-performing model was determined to be ARIMA
(2,0,2)(2,0,1)12  with intercept after two methods—
SARIMAX and automated ARIMA selection—were
compared. The suitability of this model for tropical West
African climatic data was demonstrated by its ability to
capture both seasonal and short-term variations in the
temperature series.

The results showed that certain seasonal autoregressive
components and significant moving average terms were
essential to the model's predictive power. For medium-term
forecasting, the model maintained a high explanatory power
despite the statistical insignificance of a few autoregressive
coefficients. Despite slight departures from normalcy,
diagnostic assessments such as the Ljung-Box and Jarque-
Bera tests showed generally acceptable residual behavior.



These findings highlight the fact that, even though perfect
residual conformance is ideal, small deviations can still
produce extremely accurate forecasts, particularly when
using actual meteorological datasets.

Simulations of forecasting for 2025-2029 showed that the
model could produce reliable forecasts that account for inter-
annual variability as well as annual cyclic patterns. Because
temperature changes have a direct impact on productivity,
disease trends, and resource allocation, this capability is
essential for strategic planning in the fields of agriculture,
water resource management, and public health. Additionally,
using MERRA-2 data provides a reliable substitute for
infrequent ground-based observations, guaranteeing the
availability and continuity of high-resolution climatic data
for regional research.

All things considered, this study adds to the expanding
corpus of research supporting data-driven statistical
modeling for climate monitoring and forecasting in
marginalized areas. It offers a framework that can be
modified for different meteorological parameters and
geographical locations by combining well-calibrated
statistical models with long-term satellite-derived datasets. In
light of regional and global climate variability, the
methodological rigor and validation procedures used here
establish a standard for future climate modeling initiatives in
Nigeria and other tropical regions, promoting better-
informed decision-making.

The study effectively illustrated how statistical and ML
models can capture temperature and rainfall patterns across a
subset of Sub-Saharan West African stations. The outcomes
demonstrated the effectiveness of SARIMA, exponential
smoothing, and hybrid approaches, demonstrating their
potential for precise seasonal and short-term forecasting. It is
important to recognize that the study has certain limitations.
The generalizability and robustness of the results may be
impacted by sources of uncertainty, including missing or
incomplete meteorological records, assumptions built into
the models (such as stationarity in SARIMA), and the
restricted spatial coverage of the stations. Contextualizing the
results and comprehending their practical reliability requires
a critical evaluation of these uncertainties.

Several directions are suggested to strengthen future
research. The applicability and representativeness of the
model would be enhanced by extending the network of
weather stations throughout various climate zones. Predictive
accuracy could be improved by including other
environmental factors like soil moisture, aerosol
concentrations, or satellite-based observations. Additionally,
investigating ensemble or hybrid modeling techniques might
yield more accurate predictions of extreme events. Lastly,
real-time operational forecasting tools could convert these
models into useful climate services for the area, while
probabilistic forecasting and sensitivity analyses would
quantify uncertainties. By taking these actions, climate-
sensitive industries will be able to make better predictions
and make more informed decisions.
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