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This study uses Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2) reanalysis data from 1990 to 2024 to model and forecast monthly 

surface temperatures over Ilorin, Nigeria. Finding the best statistical model to capture 

seasonal and short-term temperature variations in a tropical climate was the goal. A 

stationarity test using the Augmented Dickey-Fuller (ADF) approach (p = 6.07 × 10⁻¹; 

test statistic = –4.7749) was the first step in time series analysis to confirm suitability for 

autoregressive modeling. Two models were fitted: an automatically chosen ARIMA 

(2,0,2)(2,0,1)₁₂ model with the lowest Akaike Information Criterion (AIC) of 1036.006 

and a Seasonal Autoregressive Integrated Moving Average with eXogenous regressors 

(SARIMAX) (1,1,1)(1,1,1)₁₂ model with an AIC of 842.975. With an intercept of 178.51 

K, the latter showed strong short-term dependence through significant moving-average 

and seasonal autoregressive terms. The model's predictive reliability was validated by 

diagnostic tests (Ljung-Box and Jarque-Bera), which verified acceptable residual 

behavior. The results show that data-driven statistical models can produce precise 

medium-term temperature forecasts and successfully capture climatic variability. These 

findings offer a useful basis for agricultural planning, environmental management, and 

regional climate adaptation in tropical regions of West Africa. 

Keywords: 

atmospheric circulation patterns, ARIMA, 

SARIMAX, machine learning algorithms, 

meteorological parameters  

1. INTRODUCTION

Atmospheric circulation plays a critical role in regulating 

regional and global climate variability by influencing 

temperature distribution, precipitation patterns, and air mass 

transport processes [1, 2]. Strong interactions between these 

circulation systems and the Intertropical Discontinuity (ITD) 

and monsoon dynamics in the West African subregion lead to 

significant spatial and temporal variability [3]. Despite 

decades of climate research, it is still challenging to accurately 

predict atmospheric circulation patterns in this region due to 

nonlinear and chaotic atmospheric processes, a lack of 

observations, and issues with data quality [1, 2]. 

Climate and atmospheric time series forecasting has made 

use of conventional statistical methods like the Autoregressive 

Integrated Moving Average (ARIMA) model [4]. 

Nevertheless, nonlinear interactions between meteorological 

parameters are frequently missed by these models. Strong 

algorithms that can model intricate relationships within high-

dimensional climate datasets have been made possible by 

recent developments in machine learning (ML), improving 

forecasting accuracy [5]. However, very few studies use ML 

algorithms to forecast atmospheric circulation patterns 

throughout West Africa; instead, most concentrate on isolated 

meteorological variables or global climate indices rather than 

integrated, station-level analysis [5]. 

The use of time series analysis for temperature forecasting 

has become more and more important in atmospheric and 

environmental studies in recent years [6]. By using this 

method, scientists can examine trends in past temperature data 

to forecast future values with confidence [6, 7]. In order to 

bridge the temporal gap between historical and contemporary 

observations and improve the prediction of climatic behavior, 

time series models are an essential tool [8]. Current 

atmospheric conditions are frequently used in numerical 

weather prediction to model future events, serving as the basis 

for both short- and long-term climate projections [9-11]. 

The usefulness of time series forecasting in climate science 

has been demonstrated by a number of studies [12, 13], 

especially when it comes to predicting meteorological 

parameters based on trends in historical data [14-16]. The 

proper choice and application of forecasting models have a 

significant impact on the accuracy of such projections. Given 

the complexity and variability of environmental data across 

various geographic regions, as highlighted in earlier research, 

choosing an appropriate time series model is crucial [12]. 

Furthermore, time series forecasting has been widely used in 

many scientific fields [12, 17], greatly enhancing the accuracy 

of data-driven decision-making [17-22]. 

1.1 SARIMA and ARIMA modelling 

The ARIMA and its seasonal extension, the Seasonal 
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ARIMA (SARIMA) model, are two of the most popular 

statistical models used in time series analysis. They have been 

widely used to predict meteorological variables like 

temperature, showing strong performance in terms of accuracy 

and computational efficiency [12, 17, 20, 23, 24]. Khandelwal 

et al. [25] pointed out that the ARIMA framework is especially 

well-suited for modeling various types of univariate time 

series because of its flexibility and statistical rigor, and the 

improvements made by Aweda et al. [26] have been shown to 

improve the predictive capabilities of SARIMA models, 

especially when applied to climatological data with seasonal 

patterns [12, 27, 28]. 

These models can effectively model temporal dependencies 

because their theoretical framework usually assumes linear 

relationships and adheres to particular statistical distributions 

[6, 7, 25, 29]. SARIMA models are especially well-suited to 

represent seasonal time series, like temperature data impacted 

by cyclical environmental factors, because they can capture 

both autoregressive and moving average components in 

addition to seasonal variations [12, 30, 31]. 

A key factor in determining other climatic parameters, such 

as humidity, rainfall, wind patterns, and evaporation rates, is 

temperature, a meteorological variable. Plant growth, animal 

reproduction, and ecosystem dynamics are among the 

biological systems that it directly affects [12, 23, 32]. 

Consequently, precise temperature forecasting is crucial for 

public health initiatives, agricultural planning, and water 

resource management in addition to meteorological 

evaluations. 

The focus of this study is the historic city of Ilorin, which is 

the capital of Kwara State, Nigeria. Because ground-based 

temperature data is scarce and expensive to obtain from the 

Nigerian Meteorological Agency (NiMET), the study uses 

data derived from the Modern-Era Retrospective Analysis for 

Research and Applications, Version 2 (MERRA-2) satellite. 

For long-term climate analysis, MERRA-2 offers a 

dependable and high-resolution dataset. 

There is little research using SARIMA and ML models for 

localized climate prediction, despite Nigeria's urgent need for 

accurate temperature forecasting. The current study intends to 

close this gap by forecasting the monthly average temperature 

in Iwo using statistical models, more especially, SARIMA, as 

well as a few chosen ML algorithms. It is anticipated that the 

results will support better climate adaptation plans in the 

Nigerian context and add to the expanding corpus of 

knowledge on regional climate modeling. To bridge this gap, 

this study models and predicts atmospheric circulation 

patterns across representative stations in West Africa using 

particular meteorological parameters using statistical and ML 

models, including ARIMA, SARIMAX, Support Vector 

Regression (SVR), Random Forest (RF), and Artificial Neural 

Networks (ANN). The main objectives are to: (i) evaluate the 

performance of different models using trustworthy statistical 

indicators; (ii) identify the optimal algorithm for atmospheric 

circulation forecasting in the region; and (iii) contribute to the 

growing body of data-driven atmospheric modeling research 

relevant to climate services and environmental management in 

tropical Africa. 

2. MATERIALS AND METHOD

2.1 Data collection 

The Guinea Savannah climatic zone includes Ilorin, the 

capital of Kwara State, Nigeria, where the temperature data 

used in this study is based. As illustrated in Figure 1, the 

precise geographic coordinates of the Ilorin station are 

Latitude 8.4966°N and Longitude 4.5421°E. The satellite 

reanalysis system, MERRA-2, was used to collect consistent 

and trustworthy long-term climate data. According to earlier 

studies, this data source has a high spatial and temporal 

resolution, making it appropriate for regional climate analysis 

[23, 33]. The HelioClim-1 archive, which can be accessed at 

www.soda-pro.com, provided the monthly mean surface air 

temperature data for Ilorin. According to the methodology 

outlined by the previous studies [23, 33], the data was 

extracted. 

Figure 1. Map of Nigeria showing the study location 

The 41-year historical temperature records in the dataset 

span the period from January 1980 to December 2021. 

Throughout the year, the data was gathered at monthly 

intervals and downloaded in CSV format. The HelioClim-1 

data was retrieved and validated on April 10th, 2025, 

guaranteeing current and comprehensive coverage for the 

analysis period. The MERRA-2 dataset provides a strong 

framework for assessing long-term climatological trends and 

forecasting patterns by combining observations from various 

satellite sources and reanalysis techniques, claim Gelaro et al. 

[34]. The time series modeling and forecasting efforts 

described in this study are based on this large temporal dataset, 

which provides a crucial basis for analyzing temperature 

variations in Ilorin using both conventional statistical methods 

and ML algorithms. 

2.2 Data resolution process 

This study used MERRA-2 data with a spatial resolution of 

0.5° × 0.625° and a temporal resolution of 1 hour, aggregated 

to monthly means, to model and forecast monthly surface 

temperatures over Ilorin, Nigeria (1990–2024). Prior to fitting 

ARIMA and SARIMAX models, stationarity was verified 

using the Augmented Dickey-Fuller (ADF) test. With an AIC 

of 842.975, the SARIMAX(1,1,1)(1,1,1)₁₂ model 

demonstrated better predictive performance and was able to 

capture both short-term and seasonal variations. The model's 

accuracy in predicting the tropical climate is demonstrated by 

forecasts for 2025–2029. This study highlights how useful 
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statistical modeling and satellite-derived data are for 

comprehending temperature dynamics in tropical areas with 

limited data. 

2.3 Data analysis process 

This study used data from the MERRA-2 reanalysis dataset, 

which covered January 1990 to December 2024, to analyze 

and forecast monthly temperature trends over Ilorin, Nigeria, 

using a structured time series modeling framework. To 

guarantee temporal alignment, consistency, and completeness, 

the dataset underwent preprocessing. The temperature series' 

temporal trends, seasonality, and distributional features were 

examined through exploratory data analysis. The ADF test was 

used to ascertain whether the series was stationary, which is a 

requirement for many time series models. Figure 2 shows the 

flow chart of the data analysis for this research.  

Figure 2. Flow chart of the data analysis 

2.4 Statistical analysis of the dataset 

For this analysis, two primary statistical modeling 

techniques were employed: an automated ARIMA model 

selection process using the auto arima() function from the 

pmdarima package, and the Seasonal Autoregressive 

Integrated Moving Average with eXogenous regressors 

(SARIMAX) model. The SARIMAX model was initially used 

to capture seasonal and non-seasonal dynamics with the 

configuration (1,1,1)(1,1,1)₁₂. Monthly seasonality, annual 

cyclic patterns, and temporary temperature swings were all 

taken into consideration in this model, and residual 

independence, variance, and normality were evaluated through 

diagnostics. Then, using a stepwise AIC-minimization search 

strategy, a wide variety of (p,d,q)(P,D,Q) [12] configurations 

were tested using the auto_arima() procedure. This made it 

possible to choose the best model based on parsimony and fit 

quality. 

The model with the lowest AIC value (1036.006) among all 

tested configurations was ARIMA (2,0,2)(2,0,1)₁₂ with 

intercept, which was found to be the best fit. In order to 

guarantee that only significant predictors were included, the 

coefficients from the finished model were examined for 

statistical significance. Diagnostic tests were employed to 

assess residual autocorrelation and normality, respectively, 

using the Ljung-Box Q-test and the Jarque-Bera test. The 

model showed a strong ability to forecast in the short and 

medium term, despite a few slight departures from ideal 

residual behavior. By creating forecasts for the years 2025–

2029, the model was validated, and the predictive power was 

assessed using residual behavior and forecast plot visual 

inspection. 

3. RESULTS AND DISCUSSION

Based on data from the MERRA-2 reanalysis, Figure 3 

shows the temporal variation of surface temperature (in 

Kelvin) over Ilorin from 1990 to 2024. Seasonal and inter-

annual variations can be seen in the temperature pattern, which 

typically ranges from 295 K to 302 K. The city's tropical 

climate regime, which alternates between wet and dry seasons, 

is reflected in the periodic peaks that represent warmer months 

and troughs that represent cooler times. The long-term trend 

seems to be fairly stable despite short-term variability, 

indicating that there was no appreciable temperature drift 

during the study period. This consistency highlights the 

accuracy of MERRA-2 data in predicting temperature 

behavior in West African regions and modeling climatic 

variations. 

Figure 3. Seasonal variation of temperature for the study 

area 

But for this study, the SARIMA model is created by 

incorporating seasonal terms into the previously mentioned 

ARIMA model. The SARIMA model is expressed as: 

ARIMA (𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑚 (1) 

where, (𝑝, 𝑑, 𝑞) and (𝑃, 𝐷, 𝑄)𝑚 represent the model's seasonal

and non-seasonal components, respectively. The number of 

seasons is represented by the parameter m. The seasonal 

portion of the model is involved in backshifts of the seasonal 

period, but it is otherwise very similar to the non-seasonal 

portion. Using the available dataset, changing the values of 

𝑝, 𝑑, 𝑞  completes the ARIMA model. An ARIMA model's 

parameters are often determined using Akaike's Information 

Criterion (AIC). It's provided by: 

𝐴𝐼𝐶(𝑝) = 𝑛 ln(𝑅𝑆𝑆/𝑛) + 2𝐾 (2) 
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In the case of RSS, the residual sums of squares, n is the 

number of data points. The best forecasting model will be 

chosen based on its minimum AIC value. Analyzing the auto-

correlation function (ACF) and partial regression is another 

way to find the right parameters for an ARIMA model. PACF 

plots see Figure 4, or the ACF. 

Figure 4. The ACF and PACF for temperature variation for the station under consideration 

Figure 5. Variation of temperature and its prediction for the study location 

3.1 Model structure and specification 

In this study, the SARIMAX(1,1,1)(1,1,1)₁₂ model was used 

to capture both short-term and seasonal components of the 

temperature series. The parameters are interpreted as follows: 

the seasonal part includes an AR(1) (AR.S.L12) and MA(1) 

(MA.S.L12) component with a seasonality lag of 12 months (s 

= 12), also differenced once; the non-seasonal part includes an 

AR(1) term (AR.L1), an MA(1) term (MA.L1), and one level 

of differencing (d = 1). This configuration is well-suited to 

monthly environmental data that exhibit annual seasonal 

behavior. Including both seasonal and non-seasonal terms 

allows the model to account for recurring temperature patterns 

and one-off short-term fluctuations. 

3.2 Coefficients and statistical significance 

The model's output indicates a strong reliance on the 

differenced series' immediate past value, as evidenced by the 

non-seasonal AR(1) coefficient of 0.5084, which is positive 

and highly significant (p < 0.001). With a non-seasonal MA(1) 

coefficient of –0.9432, which is likewise highly significant (p 

< 0.001), the error term has a strong short-term memory. 

Ar.S.L12 for the seasonal terms is –0.0342 and not significant 

(p = 0.454), indicating that it makes a minimal contribution to 

the model. However, the statistical significance (p < 0.001) 

and –0.9877 seasonal MA(1) coefficient (MA.S.L12) confirm 

that the series' seasonal noise is adequately captured. The 

model’s residual variance (𝜎2) is estimated at 0.4096, and it is

also statistically significant. 

3.3 The temperature series' stability 

Figure 5 shows that the standard statistical test for figuring 

out whether a time series is stationary is the ADF test. Building 

trustworthy time series models like SARIMAX requires a 

stationary time series, which has a constant mean and variance 

over time. In this instance, the p-value is roughly 6.07 × 10⁻⁵, 

and the ADF statistic is –4.7749. Given that the p-value is 

significantly below 0.05, the null hypothesis that the series has 

a unit root is rejected. The temperature time series is 

presumably already stationary, so differencing is not 

necessary. However, first differencing (d = 1) is still included 

in your SARIMAX model, which is acceptable for robustness 

if it enhances model performance. 

42



3.4 Temperature time series ARIMA modeling 

The suggested ARIMA model is explained in this section, 

along with the model selection procedures. Formulating a class 

of models and making certain assumptions is the first step. 

Estimating the parameters of this identified model is the next 

stage. This section shall be done in different steps. 

Plotting the data is a necessary step in this process to find 

any odd values. If required, the data must be rescaled in order 

to stabilize the variance. The formula is used to rescale all of 

the data. 

𝑈𝑗 =  
𝑏𝑗 − 𝑚𝑖𝑛(𝑏𝑖)

𝑚𝑎𝑥(𝑏𝑖) − 𝑚𝑖𝑛(𝑏𝑖)
(3) 

where, 𝑏𝑗  stands for the original data, 𝑚𝑖𝑛(𝑏𝑖) and 𝑚𝑎𝑥(𝑏𝑖)

are the original data set's minimum and maximum values, and 

𝑈𝑗 is the rescaled value.

This step involves plotting the rescaled data's ACF and 

PACF, as seen in Figure 4. To ascertain whether an AR (p) or 

MA (q) model is appropriate and to identify potential 

candidate models, the ACF and PAF are utilized, see Figure 4. 

This step involves forecasting the temperature data using a 

SARIMA model. In the time series ym, observations spaced 

one year apart for the monthly mean temperature could be 

modelled as: 

𝛾(𝐶12)Δ12
𝑤 𝑦𝑚 =  𝛽(𝐶12)𝛿𝑚 (4) 

However, Δ12
𝑤 𝑦𝑚 = 𝛽(1 − 𝐴12)𝛿𝑚 =  𝛿𝑚 − 𝛿𝑚−12 ,

𝛾(𝐶12)𝛽(𝐶12) . These are known as the polynomials, as

represented in 𝐶12 for p and q, respectively.

Both terms meet the necessary requirements for 

inevitability and stationarity as noted by Raicharoen et al. [8]. 

In general, one would anticipate that the error component 𝛿𝑚

would be connected with the time series. 

This study's approach to determining the right forecasting 

model parameters is hyper optimization of parameters. Six 

parameters are needed for this study's ARIMA (p, d, q)(P, D, 

Q)m model: p, d, q, P, D, and Q. Since the data used are

monthly data over a 12-month period, m is set to 12. Table 1

displays the AIC values for the chosen models. SARIMA

(2,0,1)(2,0,1)₁₂ exhibits the lowest AIC value, as shown in

Table 1. Consequently, this model ought to be regarded as the

most effective forecasting model.

Table 1. AIC values according to the SARIMA model 

p, d, q P, D, Q, m AIC Value 

1,0,2 2,0,1, 12 1036.569 

2,0,3 2,0,1, 12 1040.025 

1,0,3 2,0,1, 12 1047.273 

1,0,1 2,0,0, 12 1057.654 

1,0,1 2,0,2, 12 1059.040 

2,0,1 2,0,1, 12 1195.801 

0,0,1 2,0,1, 12 1139.387 

1,0,1 0,0,1,12 1117.198 

2,0,2 2,0,1, 12 160.415 

3.5 Model fit and diagnostics 

The model fit is assessed through the use of multiple 

statistical measures. The AIC, which is 842.975 and the Log-

Likelihood is –416.487, aid in comparing different models (a 

lower AIC denotes a better model). The residuals are not 

significantly autocorrelated, which is a desirable characteristic 

for a well-fitted model, according to the Ljung-Box test 

statistic (Q) for lag 1 of 1.65 with a p-value of 0.20. There is 

some deviation from normalcy indicated by the Jarque-Bera 

statistic of 34.87 with a p-value near 0.00, but this is usually 

acceptable in real-world modeling. The residuals indicate 

heavier tails than a normal distribution, with leptokurtosis 

(kurtosis = 4.24) and mild negative skew (–0.36), as shown in 

Figure 6. 

Figure 6. The residual plots of the temperature dataset utilized for the study, including residuals over time, a frequency 

distribution histogram, a Q-Q plot, and autocorrelation 
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Table 2. The outcomes of the diagnostic test conducted by SARIMA 

Coefficient STD Error z 𝒑 > |𝒛| [0.025, 0.975] 

Intercept 178.5114 45.439 3.929 0.000 89.453 267.570 

AR.L1 0.0696 0.211 0.330 0.742 –0.344 0.484 

AR.L2 –0.1883 0.146 –1.291 0.197 –0.474 0.098 

MA.L1 0.4522 0.206 2.192 0.028 0.048 0.857 

MA.L2 0.4583 0.094 4.858 0.000 0.273 0.643 

AR.S.L12 0.1672 0.189 0.884 0.377 –0.204 0.538 

AR.S.L24 0.2988 0.092 3.244 0.001 0.118 0.479 

MA.S.L12 0.2005 0.199 1.008 0.314 –0.189 0.590 

𝜎2 0.6794 0.045 15.203 0.000 0.592 0.767 

3.6 The objective of model search summary and auto-

ARIMA 

In order to achieve this, the pmdarima package's auto 

arima() function was used to automatically select the best-

fitting ARIMA model for the monthly temperature time 

series. The function uses stepwise search to minimize the 

AIC, testing combinations with p and q up to 5, seasonal 

components up to 3, and taking into account automatic 

differencing using the ADF test. After evaluating a large 

number of candidates (more than 30 combinations), the best 

model selected based on the lowest AIC was ARIMA 

(2,0,2)(2,0,1)₁₂ with intercept, which produced AIC = 

1036.006, a strong indicator of optimal model parsimony and 

goodness of fit in comparison to other tested models. 

3.7 Model specification and components 

Table 2 shows the selected model includes both non-

seasonal and seasonal components. The non-seasonal part 

(ARIMA (2,0,2)) has 2 autoregressive terms (AR.L1 and 

AR.L2) and 2 moving average terms (MA.L1 and MA.L2). 

Monthly seasonal variation is taken into account by the 

seasonal component (SARIMA (2,0,1) [12]), which has a 12-

month seasonal period and two seasonal AR terms 

(AR.S.L12 and AR.S.L24) and one seasonal MA term 

(MA.S.L12). Additionally, the model contains a significant 

intercept term of 178.5114, indicating that the temperature 

series' average level, around which fluctuations occur, is 

roughly 178.5. 

3.8 Coefficient significance and interpretation 

The most statistically significant of the estimated 

coefficients are the non-seasonal MA terms. The present 

value of the series is significantly influenced by recent past 

error terms, as indicated by MA.L1 = 0.4522 (p = 0.028) and 

MA.L2 = 0.4583 (p < 0.001). But the non-seasonal AR 

terms—AR.L1 = 0.0696 (p = 0.742) and AR.L2 = –0.1883 (p 

= 0.197) are not statistically significant, indicating that their 

impact is probably insignificant. This could indicate possible 

redundancy or overfitting in the AR terms. The seasonal 

terms show a strong autoregressive effect from two years ago, 

with AR.S.L24 = 0.2988 being statistically significant (p = 

0.001). In contrast, AR.S.L12 and MA.S.L12 are not 

significant, suggesting weaker yearly periodic effects. 

3.9 Model fit diagnostics and residual behavior 

While non-normality is not ideal, it is often acceptable in 

large time series applications if predictive performance 

remains strong. The residual variance (𝜎2) is 0.6794, and the

estimate is highly significant (p < 0.001), indicating a good 

capture of noise variability. The Ljung-Box Q statistic at lag 

1 is 6.38 with a p-value of 0.01, suggesting some residual 

autocorrelation at lag 1, a point worth noting as it may signal 

slight model misfit. The Jarque-Bera test value is 32.43 with 

p < 0.001, meaning the residuals deviate from a normal 

distribution. The skewness is +0.19, implying a slight 

positive tail, and the kurtosis is 4.31, suggesting heavier tails 

than a normal distribution. 

3.10 Model selection metrics 

The final model's AIC, measured by model comparison 

metrics, is 1036.006, the lowest of all tested configurations. 

Although they are both marginally higher than the AIC, the 

Bayesian Information Criterion (BIC) is 1072.368 and the 

Hannan–Quinn Information Criterion (HQIC) is 1050.378, 

both of which show a good fit. Different model complexity 

is penalized by these criteria: AIC strikes a balance between 

simplicity and fit, BIC heavily penalizes complexity, and 

HQIC is in the middle. The model provides a fair trade-off 

between complexity and performance, as evidenced by their 

comparatively close values. Given the data, the model's 

maximum likelihood estimate is reflected in the log-

likelihood value of –509.003, where the higher (less negative) 

the better. 

4. CONCLUSIONS

This study used more than thirty years (1990–2024) of 

MERRA-2 reanalysis data to successfully model and forecast 

monthly surface temperatures over Ilorin, Nigeria. The 

dataset was verified to be stationary following differencing 

through stringent statistical testing, such as the ADF test, 

which allowed for the use of sophisticated time series 

techniques. Based on its lowest AIC value (1036.006), the 

best-performing model was determined to be ARIMA 

(2,0,2)(2,0,1)₁₂ with intercept after two methods—

SARIMAX and automated ARIMA selection—were 

compared. The suitability of this model for tropical West 

African climatic data was demonstrated by its ability to 

capture both seasonal and short-term variations in the 

temperature series. 

The results showed that certain seasonal autoregressive 

components and significant moving average terms were 

essential to the model's predictive power. For medium-term 

forecasting, the model maintained a high explanatory power 

despite the statistical insignificance of a few autoregressive 

coefficients. Despite slight departures from normalcy, 

diagnostic assessments such as the Ljung-Box and Jarque-

Bera tests showed generally acceptable residual behavior. 
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These findings highlight the fact that, even though perfect 

residual conformance is ideal, small deviations can still 

produce extremely accurate forecasts, particularly when 

using actual meteorological datasets. 

Simulations of forecasting for 2025–2029 showed that the 

model could produce reliable forecasts that account for inter-

annual variability as well as annual cyclic patterns. Because 

temperature changes have a direct impact on productivity, 

disease trends, and resource allocation, this capability is 

essential for strategic planning in the fields of agriculture, 

water resource management, and public health. Additionally, 

using MERRA-2 data provides a reliable substitute for 

infrequent ground-based observations, guaranteeing the 

availability and continuity of high-resolution climatic data 

for regional research. 

All things considered, this study adds to the expanding 

corpus of research supporting data-driven statistical 

modeling for climate monitoring and forecasting in 

marginalized areas. It offers a framework that can be 

modified for different meteorological parameters and 

geographical locations by combining well-calibrated 

statistical models with long-term satellite-derived datasets. In 

light of regional and global climate variability, the 

methodological rigor and validation procedures used here 

establish a standard for future climate modeling initiatives in 

Nigeria and other tropical regions, promoting better-

informed decision-making. 

The study effectively illustrated how statistical and ML 

models can capture temperature and rainfall patterns across a 

subset of Sub-Saharan West African stations. The outcomes 

demonstrated the effectiveness of SARIMA, exponential 

smoothing, and hybrid approaches, demonstrating their 

potential for precise seasonal and short-term forecasting. It is 

important to recognize that the study has certain limitations. 

The generalizability and robustness of the results may be 

impacted by sources of uncertainty, including missing or 

incomplete meteorological records, assumptions built into 

the models (such as stationarity in SARIMA), and the 

restricted spatial coverage of the stations. Contextualizing the 

results and comprehending their practical reliability requires 

a critical evaluation of these uncertainties. 

Several directions are suggested to strengthen future 

research. The applicability and representativeness of the 

model would be enhanced by extending the network of 

weather stations throughout various climate zones. Predictive 

accuracy could be improved by including other 

environmental factors like soil moisture, aerosol 

concentrations, or satellite-based observations. Additionally, 

investigating ensemble or hybrid modeling techniques might 

yield more accurate predictions of extreme events. Lastly, 

real-time operational forecasting tools could convert these 

models into useful climate services for the area, while 

probabilistic forecasting and sensitivity analyses would 

quantify uncertainties. By taking these actions, climate-

sensitive industries will be able to make better predictions 

and make more informed decisions. 

 

 

REFERENCES  

 

[1] Bliefernicht, J., Rauch, M., Laux, P., Kunstmann, H. 

(2022). Atmospheric circulation patterns that trigger 

heavy rainfall in West Africa. International Journal of 

Climatology, 42(12): 6515-6536. 

https://doi.org/10.1002/joc.7613 

[2] Okoro, U.K., Chen, W., Chineke, C., Nwofor, O. (2017). 

Anomalous atmospheric circulation associated with 

recent West African monsoon rainfall variability. 

Journal of Geoscience and Environment Protection, 

5(12): 1-27. https://doi.org/10.4236/gep.2017.512001 

[3] Nnamchi, H.C., Dike, V.N., Akinsanola, A.A., Okoro, 

U.K. (2021). Leading patterns of the satellite-era 

summer precipitation over West Africa and associated 

global teleconnections. Atmospheric Research, 259: 

105677. 

https://doi.org/10.1016/j.atmosres.2021.105677 

[4] Lai, Y., Dzombak, D.A. (2020). Use of the 

autoregressive integrated moving average (ARIMA) 

model to forecast near-term regional temperature and 

precipitation. Weather and Forecasting, 35(3): 959-976. 

https://doi.org/10.1175/WAF-D-19-0158.1 

[5] Ojo, O.S., Ogunjo, S.T. (2022). Machine learning 

models for prediction of rainfall over Nigeria. Scientific 

African, 16: e01246. 

https://doi.org/10.1016/j.sciaf.2022.e01246 

[6] Adhikari, R., Agrawal, R.K. (2013). An introductory 

study on time series modeling and forecasting. arXiv 

preprint arXiv:1302.6613. 

https://doi.org/10.48550/arXiv.1302.6613  

[7] Adhikari, K.R., Bhattarai, B.K., Gurung, S. (2013). 

Estimation of global solar radiation for four selected 

sites in Nepal using sunshine hours, temperature and 

relative humidity. Journal of Power and Energy 

Engineering, 1(3). 

https://doi.org/10.4236/jpee.2013.13003 

[8] Raicharoen, T., Lursinsap, C., Sanguanbhokai, P. 

(2003). Application of critical support vector machine 

to time series prediction. In Proceedings of the 2003 

International Symposium on Circuits and Systems 

(ISCAS’03), Bangkok, Thailand. 

https://doi.org/10.1109/ISCAS.2003.1206419 

[9] Barker, D., Huang, X.Y., Liu, Z., Auligné, T., et al. 

(2012). The weather research and forecasting model’s 

community variational/ensemble data assimilation 

system: WRFDA. Bulletin of the American 

Meteorological Society, 93(6): 831-843. 

https://doi.org/10.1175/BAMS-D-11-00167.1 

[10] Shen, F., Min, J., Xu, D. (2016). Assimilation of radar 

radial velocity data with the WRF Hybrid ETKF–

3DVAR system for the prediction of Hurricane Ike 

(2008). Atmospheric Research, 169(Part A): 127-138. 

https://doi.org/10.1016/j.atmosres.2015.09.019 

[11] Xu, D., Min, J., Shen, F., Ban, J., Chen, P. (2016). 

Assimilation of MWHS radiance data from the FY-3B 

satellite with the WRF Hybrid-3DVAR system for the 

forecasting of binary typhoons. Journal of Advances in 

Modeling Earth Systems, 8(2): 1014-1028. 

https://doi.org/10.1002/2016MS000674 

[12] Chen, P., Niu, A., Liu, D., Jiang, W., Ma, B. (2018). 

Time series forecasting of temperatures using SARIMA: 

An example from Nanjing. IOP Conference Series: 

Materials Science and Engineering, 394(5): 052024. 

https://doi.org/10.1088/1757-899X/394/5/052024 

[13] Soltanzadeh, I., Zawar-Reza, P., Aliakbari-Bidokhti, A. 

A., Jalali, A., Torkzadeh, A.H. (2011). Study of local 

winds over Tehran using WRF in ideal conditions. 

Iranian Journal of Physics Research, 11(2): 199-213. 

45



[14] Aweda, F.O., Akinpelu, J.A., Samson, T.K., Sanni, M.,

Olatinwo, B.S. (2022). Modeling and forecasting

selected meteorological parameters for the

environmental awareness in Sub-Sahel West Africa

stations. Journal of the Nigerian Society of Physical

Sciences, 4(3): 820.

https://doi.org/10.46481/jnsps.2022.820

[15] Nkuna, T.R., Odiyo, J.O. (2016). The relationship

between temperature and rainfall variability in the

Levubu sub-catchment, South Africa. International

Journal of Environmental Science, 1: 66-75.

[16] Samson, T.K., Aweda, F.O. (2024). Seasonal

Autoregressive integrated moving average modelling

and forecasting of monthly rainfall in selected African

stations. Mathematical Modelling of Engineering

Problems, 11(1): 159-168.

https://doi.org/10.18280/mmep.110117

[17] Murat, M., Malinowska, I., Gos, M., Krzszczak, J.

(2018). Forecasting daily meteorological time series

using ARIMA and regression models. International

Agrophysics, 32(2): 253-264.

https://doi.org/10.1515/intag-2017-0007

[18] Chen, C.Y., Wang, L., Hwang, C.H., Hsieh, C.W., Chi,

P.W. (2019). Enhancing the performance of a rainfall

measurement system using artificial neural networks

based object tracking algorithms. In 2019 IEEE

International Instrumentation and Measurement

Technology Conference (I2MTC), Auckland, New

Zealand, pp. 1-4.

https://doi.org/10.1109/I2MTC.2019.8827108

[19] Murat, M., Malinowska, I., Hoffmann, H., Baranowski,

P. (2016). Statistical modelling of agrometeorological

time series by exponential smoothing. International

Agrophysics, 30(1): 57-65.

https://doi.org/10.1515/intag-2015-0076

[20] Anitha, K., Boiroju, N.K., Reddy, P.R. (2014).

Forecasting of monthly mean of maximum surface air

temperature in India. International Journal of Statistika

Mathematika, 9(1): 14-19.

[21] El Chaal, R., Aboutafail, M.O. (2022). Statistical

modelling by topological maps of Kohonen for

classification of the physicochemical quality of surface

waters of the Inaouën watershed under MATLAB.

Journal of the Nigerian Society of Physical Sciences,

4(2): 223-230. https://doi.org/10.46481/jnsps.2022.608

[22] Adedotun, A.F., Latunde, T., Odusanya, O.A. (2020).

Modeling and forecasting climate time series with state-

space model. Journal of the Nigerian Society of

Physical Sciences, 2(3): 149-159.

https://doi.org/10.46481/jnsps.2020.94

[23] Aweda, F.O., Olufemi, S.J., Agbolade, J.O. (2022).

Meteorological parameters study and temperature

forecasting in selected stations in Sub-Sahara Africa

using MERRA-2 data. Nigerian Journal of 

Technological Development, 19(1): 80-91.

https://doi.org/10.63746/njtd.v19i1.833 

[24] Adams, S.O., Obaromi, D.A., Irinews, A.A. (2021).

Goodness of fit test of an autocorrelated time series

cubic smoothing spline model. Journal of the Nigerian

Society of Physical Sciences, 3(3): 191-200.

https://doi.org/10.46481/JNSPS.2021.265

[25] Khandelwal, I., Adhikari, R., Verma, G. (2015). Time

series forecasting using hybrid ARIMA and ANN

models based on DWT decomposition. Procedia

Computer Science, 48: 173-179.

https://doi.org/10.1016/j.procs.2015.04.167

[26] Aweda, F.O., Oyewole, J.A., Fashae, J.B., Samson, T.K.

(2020). Variation of the Earth’s irradiance over some

selected towns in Nigeria. Iranica Journal of Energy and

Environment, 11(4): 301-307.

https://doi.org/10.5829/ijee.2020.11.04.08

[27] Afrifa-Yamoah, E., Saeed, B.I., Karim, A. (2016).

SARIMA modelling and forecasting of monthly rainfall

in the Brong Ahafo Region of Ghana. World

Environment, 6(1): 1-9.

https://doi.org/10.5923/j.env.20160601.01

[28] Yusof, F., Kane, I.L. (2012). Modelling monthly

rainfall time series using ETS state space and SARIMA

models. International Journal of Current Research, 4(9):

195-200.

[29] Olubi, O., Oniya, E., Owolabi, T. (2021). Development

of predictive model for radon-222 estimation in the

atmosphere using stepwise regression and grid search

based-random forest regression. Journal of the Nigerian

Society of Physical Sciences, 3(2): 132-139.

https://doi.org/10.46481/jnsps.2021.177

[30] Wang, D., Hejazi, M., Cai, X., Valocchi, A.J. (2011).

Climate change impact on meteorological, agricultural,

and hydrological drought in central Illinois. Water

Resources Research, 47(9): 1-13.

https://doi.org/10.1029/2010WR009845

[31] Khedhiri, S. (2016). Forecasting temperature records in

PEI, Canada. Letters in Spatial and Resource Sciences,

9(1): 43-55. https://doi.org/10.1007/s12076-014-0135-

x

[32] Baumgartner, J., Höltinger, S., Schmidt, J. (2018).

Evaluation of technical modelling approaches for data

pre-processing in machine learning wind power

generation models. In EGU General Assembly

Conference Abstracts, p. 14305.

https://doi.org/10.5067/VJAFPLI1CSIV

[33] Evans, J.P., Meng, X., McCabe, M.F. (2017). Land

surface albedo and vegetation feedbacks enhanced the

millennium drought in south-east Australia. Hydrology

Earth System Science, 21(1): 409-422.

https://doi.org/10.5194/hess-21-409-2017

[34] Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., et

al. (2017). The modern-era retrospective analysis for

research and applications version 2 (MERRA-2).

Journal of Climate, 30(14): 5419-5454.

https://doi.org/10.1175/JCLI-D-16-0758.1

46




