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Breast Cancer is one of the leading causes of mortality among women worldwide, and
though the battle is won repeatedly, it still demands early and accurate diagnosis of the
disease, which will provide the best chances of improved treatment outcomes. We propose
an innovative deep learning framework that fuses DenseNet-based feature extraction with
Squeeze-and-Excitation Networks (SENet) for breast cancer detection in this work. By
leveraging SENet, we enable the model to adaptively recalibrate channel-wise feature
responses, thereby enhancing the discriminative power of feature maps induced by the dense
stream of DenseNet. The study utilizes two benchmark datasets: the first set of cases used
was one from the Kaggle repository, which is balanced with 386 benign and 422 malignant
cases, comprising 802 training, 129 testing, and 189 validation images. The second dataset
is the BreakHis dataset, containing 9,109 microscopic images from 82 individuals at various
magnifications. With these datasets being balanced and diverse, they provide a strong
foundation for assessing the effectiveness of the proposed model. Additionally, we achieve
remarkable performance on both datasets. The overall accuracy and the precision, recall,
and F1 scores on the Kaggle dataset were 97.35%, 94.84%, 100%, and 97.35%, respectively.
The model yielded staggering results, achieving an accuracy of 99.9% on the BreakHis
dataset, with precision, recall, and F1 scores very close to perfection at 99.8%, 99.8%, and
99.8%, respectively. These results significantly outperform existing methods, demonstrating
the effectiveness of dense features with channel attention. By combining SENet and
DenseNet, we obtain a powerful diagnostic tool for breast cancer detection. Further work
will be conducted to generalize this model to other medical imaging datasets and to make it
real-time for clinical use.

1. INTRODUCTION

have been developed to achieve better performance in medical
imaging classification, segmentation, and anomaly detection

Although advances have been made in the battle against
cancer, breast cancer is one of the most prevalent and,
unfortunately, deadly forms of cancer in women worldwide [1,
2]. According to WHO, there were about 2.3 million new cases
and 685,000 deaths from breast cancer worldwide in 2023
alone [3, 4]. The presence of Early detection significantly
improves the survival rate and reduces treatment-related
complications [5]. Mammography has traditionally been the
gold standard for breast cancer screening; However, it suffers
from high false positive rates, poor sensitivity in dense breast
tissue, and significant inter-observer variability [6].
Automated diagnostic systems using deep learning have
emerged as a promising solution for automating breast cancer
detection processes, thereby enhancing the accuracy and
consistency of such detection [7].

Over the recent past, convolutional neural networks (CNNs)

tasks [8]. DenseNet can enjoy such structural advantages;
however, when trained on massive datasets (mammographic
images in this paper), the final layers may not be sufficiently
focused on the most informative parts for classification [9].
However, DenseNet does not adequately guide the learning
process to the most informative features during training,
particularly when the image dataset becomes complex, such as
mammographic images [8, 9]. To further adaptively
recalibrate channel-wise feature responses by modeling
interdependencies among channels, we are motivated to adopt
an attention mechanism, such as the Squeeze and Excitation
Network (SENet). Together, SENet and DenseNet can provide
feature richness through depth-wise and dynamic channel
attention, which may enhance the ability to discriminate
between benign and malignant tissue regions. In addition, the
challenge in deploying deep learning models for medical
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diagnostics is not only feature extraction, but also the effective
integration (fusion) of features for prediction [10]. There are
broadly defined feature fusion methods: early fusion,
intermediate fusion, and late fusion. Early fusion feeds raw
data (or low-level features) into the model before taking the
effect of fusion, which, in most cases, leads to redundant or
noisy data representations. Intermediate fusion sums feature at
the hidden layers, but crucial semantic distinctions can still be
diluted. In contrast, late fusion operates at high-level decision
outcomes or semantic-rich features extracted from different
models or layers. For this purpose, we propose a novel late
fusion strategy that leverages SENet’s channel attention and
DenseNet’s feature representation strengths. Moreover, by
integrating these high-level features at the decision-making
stage rather than at intermediate processing levels, we preserve
more semantic information and enhance the discriminability

Input Pre-trained DenseNet

of the model for subtle tissue anomalies [11, 12].

Our proposed late fusion strategy utilizes a two-branch
architecture with this fusion. Hierarchical features are
extracted using a pre-trained DenseNet-121 on one branch,
and SENet modules are used on the second branch to
emphasize the importance of feature channels. Both branches
independently process input mammographic images to
produce their respective, yet complementary, sets of high-
dimensional feature embeddings [13, 14]. They are then fused
via a custom-designed fusion layer that jointly normalizes the
features, pools bilinearly, and reduces the dimension to a
unified representation. By creating this late fusion technique,
we not only retain the core characteristics of each source but
also mitigate the problem of overfitting and model complexity
often encountered when combining high-dimensional medical
data.
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Figure 1. Framework for enhancing breast cancer detection using SENet with DenseNet feature extraction

A framework for utilizing SENet and DenseNet in
conjunction for enhancing breast cancer detection is illustrated
in Figure 1. Feature extraction, attention-guided learning, and
late fusion are employed to improve the accuracy and clinical
applicability.

The significant contributions of this study are summarized
as follows:

(1) Hybrid Architecture Design: This work proposes a new
hybrid model that combines DenseNetl21 with SENet,
incorporating hierarchical feature extraction and channel-wise
attention mechanisms to enhance classification performance
for breast cancer.

(2) Feature Recalibration for Improved Accuracy: The
model is adapted to embed SE blocks within DenseNetl121,
allowing it to adaptively highlight informative features and
suppress their ineffective counterparts, thereby making the
network more sensitive to these essential diagnostic features
in breast cancer image classification.

(3) Efficient Use of Pre-trained Networks: The ImageNet
pre-trained DenseNet121 model is utilized, employing transfer
learning effectively with a small amount of medical imaging
data to improve accuracy.

(4) Robust Data Preprocessing Pipeline: The proposed
architecture demonstrates high performance for the binary
classification task and serves as a reliable tool to aid clinicians
in diagnosing benign and malignant breast tumors.

(5) Model Evaluation and Applicability: The proposed
architecture demonstrates high performance in binary
classification; therefore, it can be considered a reliable tool for
assisting clinicians in detecting benign and malignant breast

tumors.

In this work, we propose a novel, practical framework to
enhance breast cancer detection by combining DenseNet
feature extraction and SENet-reliant attention mechanisms,
followed by a genetically reasonable subsequent fusion. The
experimental results proved that this approach to breast cancer
diagnosis has the potential to tackle up-to-date problems in
computer-aided breast cancer diagnosis, and, accordingly,
provide a potential direction for the development of intelligent
medical imaging systems in the future.

Our paper is structured as follows: In Section 2, the
pertinent research will be thoroughly analyzed. In Section 3,
the datasets used in this research and the data preprocessing
procedures are described. Section 4 presents the research
approaches used. The experimental design and results are
detailed in Section 5. Section 6 comprehensively analyzes the
findings. Finally, Section 7 summarizes the results and
outlines possible directions for further study.

2. LITERATURE REVIEW

In recent years, deep learning models, specifically CNNs
and their various extensions, have made significant
contributions to breast cancer detection. Several studies have
been conducted on breast cancer detection and classification,
employing multiple methodologies, datasets, and challenges.
This review examines the current state of the latest research on
the topic, highlighting key studies, methodologies, datasets
used, limitations, and findings.



The incorporation of explainable Al (XAI) and fine-tuning
techniques represents a significant advancement in breast
cancer detection. An improved XAl-based DenseNet model
for breast cancer detection was introduced by Talukder [15].
Breaking the image into fine blocks and visualizing them in
various ways was done using the image preprocessing
techniques. Not only do the results yield good accuracy
(97.27% on BreakHis 200X images), but also, since it has not
been validated in real-world clinical devices, the research has
limited practical applicability. On the other hand, Khan et al.
[16] proposed a specific framework termed RM DenseNet,
which blends residual models with DenseNet for
mammographic image classification. Then, the CBIS-DDSM
dataset, which contains digital mammography images
annotated with abnormalities, was used. To improve the model
performance, RM DenseNet used Gaussian Blur, horizontal
flipping, and data augmentation. Although 96.50% is a
promising accuracy, further work on real-world validation is

lacking.

The attention mechanism-enhanced hybrid DenseNet model
was used in a third study by Samudrala and Mohan [17] for
the semantic segmentation of breast cancer images. A
histologically confirmed dataset was used to test the model in
a Google Colab environment. Even with an accuracy of
94.68%, we have outperformed other models, such as FCN,
Unet, and PSPNet. However, we also demonstrate that further
real-world clinical testing is necessary before deploying these
models in the wild. Upadhyay et al. [18] also proposed a meta-
learning framework for breast cancer classification using
DenseNet-121. In their approach, they employed a few-shot
learning technique, even in scenarios where there was only a
limited amount of labeled data. This study also demonstrated
high performance (96% accuracy). Still, it has limitations due
to data scarcity and the lack of real-world testing, suggesting
that there is room for improvement in the framework.

Table 1. List of previous references that include datasets, methodology, limitations, and results

References Datasets Methodology Limitations Results
. DenseNet modifications, image  Controlled environment, no BreakHis: 200X: 97.27%,
[15] BreakHis 200X, 400X, BACH preprocessing, XAl, fine-tuning  real-world clinical device =~ 400X: 96.98%, BACH: 94.75%
CBIS-DDSM, digital RM-DenseNet, Gaussian blur, Limited to digital Achieved 96.50% accuracy,
[16] mammography images with horizontal flipping, data mammography, no real-world outperforming AlexNet,
abnormal annotations augmentation validation VGG16, and ResNet50
Histologically confirmed dataset, Hybrid DenseNet-121 with Att- . i Achieved 94.68% accuracy,
[17] validated in Google Colab PSPnet, Attention Gate .N.O mention of real worlq outperforming FCN, Unet,
. - clinical deployment or testing
environment mechanism PSPNet
Breast cancer medical images, Meta}-learnmg, Image Limited labeled data requires  Achieved 96% accuracy with
[18] limited labeled data segmentation, feature extraction, further real-world testin minimal support samples
classifier refinement g PP P
HAM10000, I1SIC benchmark DS.C'ED.LMGWO‘ CLAHE, No _mgnt|on of real-world Achieved 98.38% accuracy for
[19] . - Wiener filter, SE-DenseNet, clinical deployment or
image database for skin cancer it HAM10000, 98.17% for ISIC
LSTM, ELM scalability
BreakHis, IDC (Invasive Ductal ~ Deep CNN, EfficientNetBO, Limited to specific 0 .
[20] Carcinoma) histopathology ResNet50, Xception, transfer histopathology images, no 93.33% accuracy for BreakHis,
- - 88.08% for IDC
images learning real-world deployment
BreCaHAD dataset for S . Dataset-specific, potential Achieved AUC of 96.15,
. - - Hybrid dilation deep learning, . - . -
[21] histological annotation and - issues with scanner and outperforming previous
- . data augmentation, AlexNet e
diagnosis staining methods
. CLAHE, RHDAO optimization,  Limited to thermography . o
[22] Thermography_lmages collected StackVRDNet, VGG16, ResNet, images, not generalizable to Achieved 97.05% accuracy,
from online sources 86.86% precision in simulation
DenseNet other methods
CNN+ViT model, DenseNet, . - The CNN+ViT model achieved
[23] CLAﬁifngsaPr?rg r}g:mrlrl\ogram Inception, SE ResNet, Xf;?:n%rg\ée: :;\:egggg 9 90.1% accuracy, and
g 99 XceptionNet g XceptionNet overfitted
[24] BreaKHis dataset, breast cancer MFF-HistoNet, CNN, Quantum  May struggle with extreme  98.8% accuracy at image level,
histopathological images Tensor Network, GLCM, LBP image distortions or noise 98.4% patient level
BreakHis breast cancer image Cellular automata model, deep ~ Computational complexity, Achieved 97.2% accuracy,
[25] 9 feature extraction, ANN potential overfitting in 7.95% improvement over

dataset classification

complex models methods

In the domain of skin cancer, Dorathi Jayaseeli et al. [19]
introduced skin cancer detection using the HAM10000 and
ISIC benchmark datasets, employing a fusion between
Squeeze Excitation DenseNet and a metaheuristic-driven
ensemble deep learning model. An advanced approach was
able to generate the very high accuracies of 98.38% on
HAMZ10000 and 98.17% on ISIC, but there is little information
revealed to us regarding real world deployment or scalability
which handicaps us in being able to understand the real utility
of the model, if for any of a myriad of the other workload
scenarios. Moreover, a major hurdle in many of these studies
is that they were not deployed in a real clinical setting. For
example, models pre trained on such datasets like Xception
and EfficientNetBO were also used in a transfer learning

approach by Joshi et al. [20] on the BreakHis and IDC
histopathology datasets. While the model achieved an
accuracy of 93.33% on BreakHis images, it has some
bottlenecks that hinder its accuracy in making an inference in
a clinical scenario, which would be extremely different from
an idealized view of an image. In addition, the study by
Aldhyani et al. [21] on breast cancer detection also employs a
hybrid dilation-based deep learning method using the
BreCaHAD dataset. However, their model showed an AUC of
96.15%, which far surpassed the previous models. However,
in practice, the use of a specific dataset, along with the issues
that scanner variability and staining processes pose for image
quality, introduces some significant impediments to
generalization. Furthermore, Bani Ahmad et al. [22] proposed



an efficient hybrid deep learning framework using images
from online sources for thermography-based breast cancer
detection in the domain. They used CLAHE, RHDAO
optimization, and StackVRDNet in their model, which
achieved an accuracy of 97.05%. While it can be applied to
thermography images, its generalizability may be limited to
other imaging modalities, which hinders its widespread
adoption. Furthermore, Sarkar et al [23] used CLAHE-
enhanced mammogram images using CNN+ViT and various
models. XceptionNet overfitted, implying its dependency on
large data sets, a constraint, witnessed an accuracy of 90.1%
under the CNN+VIT system.

Some more advanced hybrid models have been tackled in
recent years. For histopathological image analysis, Mahmood
et al. [24] proposed a multi-modal feature fusion network
called MFF HistoNet based on CNN and quantum tensor
networks. The BreaKHis dataset yielded an impressive 98.8%
and 98.4% accuracy at the image and patient levels,
respectively. Nevertheless, this method could still suffer
extreme image distortions or noise in some cases. Also,
Tangsakul and Wongthanavasu [25] reviewed the
methodologies of breast histopathological image analysis,
comparing computational methods and models. The models
are emphasized as complex and prone to overfitting, especially
with very complex architecture. However, their evaluation
against the BreaKHis dataset was 7.95% better than existing
methods, with an accuracy of 97.2%.

Ultimately, however, the application of advanced deep
learning methods in breast cancer detection is beginning to
gain mainstream adoption. Most studies report high accuracy.
Nevertheless, there is a long way before real-world
deployment, data scarcity, and other forms of generalization
across imaging modalities. To overcome these limitations,
future research should focus on enhancing model robustness,
facilitating clinical deployment, and utilizing more diverse and
comprehensive datasets.

Past references, including datasets used, methodological
framework, limitations, and results, are presented in Table 1.

3. DATA COLLECTION

The dataset utilized for breast cancer identification was
obtained from the publicly available Kaggle repository [26].
This dataset is classified into two distinct categories: benign
and malignant.
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Figure 2. Benign and malignant samples from the training
dataset

As shown in Figure 2, the dataset consists of colored images
used for breast cancer identification. The photos are formatted
as PNGs and do not include cancer region masks for
segmentation techniques [26, 27]. This refers to the process of
dividing the image into pixel segments to obtain a more
detailed description of breast cancer detection. In this work,

we will use the SENet deep learning model, which has been
fine-tuned with an intelligent architecture to classify breast
cancer photos. This model can extract comprehensive
information from the entire image and provide a precise output
for determining whether a given image is benign or malignant
[28]. Additionally, the dataset includes three distinct subsets:
the training subset, the validation subset, and the test subset.
Figure 3 illustrates the distribution of training, testing, and
validation sets.

There are a total of 802,129 training, testing, and validation
images, which is a good number of images. Another critical
aspect to examine in the dataset is the distribution of images
across each class. It is essential to verify this analysis to ensure
a balanced representation of both classes and prevent the
formation of imbalances between the malignant and benign
classes [26, 29]. Figure 4 shows the distribution in the training
set.
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Figure 3. Distribution of images in training, testing, and
validation sets

Class Distribution of Breast Cancer Training Set

400
350
300
250
200

Number of Images

150
100
50

Benign Malignant
Class

Figure 4. Distribution of images in benign and malignant
classes in the training set

The distribution of the two classes in the dataset was
balanced, with 386 benign photos and 422 malignant images.
The balance of class representation implies that appropriate
training of both courses is possible, and they can be correctly
classified. A similar approach is taken in Figure 5 to show the
class distribution present in the validation set.

Sixty-four photos belong to the benign class, while 65
photos belong to the malignant class, and the test dataset
contains an equal balance of both classes. This is illustrated in
Figure 6 by the number of images included in the validation
set.
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Figure 5. Distribution of images in benign and malignant
classes in the testing set
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Figure 6. Distribution of images in benign and malignant
classes in the validation set

It is observed that the validation set is an equal balance with
97 photos for the benign class and 92 for the malignant class.
Maintaining balance is helpful to ensure that the training set is
used to train all classes equally. As a result, the performance
of the validation and test will be similarly effective in
classifying both classes. Figure 7 shows the visual
representation of both the malevolent and benign courses.

Benign Malignant

Figure 7. Malignant and benign samples

In this study, we attempted to distinguish between benign
and malignant breast cancer cells in images obtained using X-
ray or ultrasound. While malignant cells are asymmetrical,
with irregular shapes and sizes, and are invasive, benign cells
are symmetrical with well-defined borders. A prime requisite
for such classification is a deep learning model that depends
on sophisticated feature extraction techniques.

The images of 40xmagnification provided by the BreakHis
dataset were the ones we ultimately investigated in our study,

mainly because of the partially fixed model pipeline
architecture and the available computing resources to train and
test our models. Greater magnifications (100>, 200> 400%)
often present more complexity with regard to feature detail and
may require significantly more training time (many more fine-
grained features to consider). Considering the magnitude of
our model, and the time factors involved in the training, we
settled on 40% as a typical example of a magnification that
renders both detail and computation within reasonable limits.

Moreover, we recognize that the images of breast cancer at
higher powers might present more morphological features that
can, perhaps, increase the performance of the model. Early
experimentation, however, showed diminishing returns on
performance with the addition of higher magnifications with
our current architecture, and it appeared that some form of
architectural or preprocessing changes would be needed to
make full use of those images. in future work we will increase
images size with more magnifications.

3.1 Data visualization

EDA is crucial for understanding the characteristics of
benign and malignant breast cancer cells, enabling the
development of an accurate deep learning model [26, 30, 31].
Several visualization techniques are employed in this analysis
to distinguish between the two classes.

Moreover, understanding complex data visualization
techniques is crucial for developing a deep learning detection
model for breast cancer using SENet with deep feature
extraction. These visualizations, including gray-level
histograms, box plots, color mapping, intensity profile
analysis, and CLAHE, enable the detection of subtle nuances
between benign and malignant breast tissue, which is essential
for the model to recognize and classify malignant growths. For
instance, the gray-level histogram and box plot provide insight
into the distribution of pixel intensity, as malignant tissue is
known to exhibit this type of intensity variation, with darker
regions indicating the presence of a tumor and tumor
heterogeneity. The application of color mapping,
incorporating methods such as HSV and LAB, adds a
dimension to the structural contrast between healthy and
cancerous tissues, where malignant tissue displays abnormal
color combinations resulting from a lack of structured cell
growth. The analysis of intensity profiles enables the model to
identify the abnormal intensity patterns of pixels, allowing it
to distinguish between the smooth transitions of benign tissue
and the varying intensities of malignant tissue.

Furthermore, CLAHE enhances the visibility of
microcalcium and subtle features essential for early-stage
cancer detection, thereby improving the model’s efficiency in
recognizing early signs of malignancy. By utilizing these
visualizations, a deep learning model, such as SENet with
DenseNet feature extraction, can be trained to focus on the key
differences in breast tissue, leading to improved detection
accuracy and more reliable diagnoses. Therefore, introducing
precise data analysis becomes critical to enhancing the
performance and accuracy of the model, which can
differentiate between benign and malignant cases for more
effective breast cancer detection.

(1) Gray Level Histogram

In grayscale images in Figure 8, the distribution of pixel
intensity is visually represented by the histogram. The benign
cells exhibit a uniform brightness within a narrow range,
corresponding to a score of 150-200 on the benignity scale,



indicating that they possess a homogeneous nature and
consistent behavior [32]. On the contrary, the malignant cells
exhibit higher intensity peaks (around 220) with greater pixel
value variation, indicating cancerous tissue with a higher

Gray-Level Histogram (First Benign Image)

degree of luminance and darker, more heterogeneous regions
[32, 33]. Such a distinction in the intensity distribution may
enable the differentiation of benign from malignant cells.

Gray-Level Histogram (First Malignant Image)
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(2) Box Plot (Mean Pixel Intensity and Standard Deviation)

Pixel intensities are visualized by a box plot, as shown in
Figure 9. The benign tissue typically has a higher mean
intensity, ranging from 160 to 180, with some outliers reaching
up to 220-240, indicating brighter areas. Now, the darker
tissue (with lower mean intensity from 140 to 160, and lower
variation) indicates malignant tissue. For benign tissue, the
standard deviation is low (25-35), indicating that the tissue is

variability and heterogeneity.

(3) Color Mapping

Techniques such as HSV and LAB color spaces are used for
color mapping to accentuate tissue variations by highlighting
both color and texture, as illustrated in Figure 10. For benign
tissue, the color is relatively uniform, displaying consistent
pink and green hues, indicating healthy tissue. In malignant
tissue, the color appears disorganized, often with uneven
distributions, which can be attributed to the chaotic growth of
cancer cells, lacking orderly streamlines [34, 35]. These color
patterns can serve as subtle but crucial features that can be
used to detect malignancy.

(4) Intensity Profile Analysis

Intensity profiles follow the fluctuations in pixel intensity
in an image, giving information about tissue texture. For
instance, benign tissue is typically characterized by a smooth
and gradual increase in intensity, whereas malignant tissue
exhibits fluctuation and abnormal intensity values due to
structural abnormalities [36]. Intensity profiles are used to
identify regions of the tissue with abnormal patterns, aiding in
tissue classification. Figure 11 shows the Intensity Profile for
Benign and Malignant Classes.
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(5) Contrast-Limited Adaptive Histogram Equalization
(CLAHE)

It enhances local contrast in images, thereby making subtle
features, such as microcalcifications, visible.
Microcalcifications are indicative of early-stage cancer [37,
38]. By enhancing malignant images with Contrast-Limited
Adaptive Histogram Equalization (CLAHE), distinct tumor
clusters that indicate more aggressive cancerous growth can be
visualized, whereas benign tissue appears as clusterless. These
features possess great potential to enhance the early detection

1x1xC

of the disease and, in the meantime, increase diagnostic
accuracy [39]. Figure 12 shows the histogram equalization for
the Benign and Malignant classes.
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Figure 12. Histogram equalization for benign and malignant
class

4. SENET MODEL

In this context, we present SENet, a deep learning
architecture designed to enhance the efficiency of CNNs by
incorporating channel-wise feature recalibrations. To achieve
this, we utilize a modular component, the "Squeeze-and-
Excitation Block,” as shown in Figure 13. Moreover, CNNs
suffer from overfitting, vanishing gradients, and an inability to
extract relevant features from image patches. The SENet
tackles these problems by focusing attention on essential
features and discarding irrelevant ones. The SE block operates,
initially, by performing a compression operation on feature
maps to produce a channel descriptor, which combines spatial
information (H x W). This covers how feature responses are
sprinkled across channels. Next, a self-gating mechanism is
employed to generate modulation weights for each channel
using the aggregated features in the excitation process.

Incorporating this recalibration mechanism, SENet offers a
potential avenue to enhance the representational capacity of
CNNs and improve tasks such as image classification, object
detection, and others. SENet can be seamlessly integrated into
any CNN architecture to achieve performance gains.

Fex w)

—

1x1xC

F scale

Figure 13. Squeeze and excitation blocks

A computational unit known as a Squeeze-and-Excitation
block may be constructed using a transformation Fj. that
translates an input X € RHo*WoxCo o feature mappings U €
RIXWXC The learnt set of filter kernels is represented by V =
[v1, V3, ..., U] in the notation that follows, where v, Stands for

the c-th filter's parameters. We assume that Fj is a
convolutional operator. The outputs may therefore be
expressed as Egs. (1) and (2):

U = [ul,u2,...,uC] (1)



where,
Us=Ve*xX=cYe1Vc* X (2)

Here * denotes convolution:

V. =[vc1,vcz,...,vcco] 3)

X =% %0, | @

Inception
Module

I SIGMOID

Bseane | WxHxC

X

SE-Inception
Module

Egs. (3) and (4) describe how convolution models the
implicit spatial correlation of local spatial kernels and implicit
channel dependencies using a 2D spatial kernel. The filters
entangle these dependencies, making the network more
sensitive to essential features. An explicit definition of channel
interdependency enhances convolutional feature learning,
ultimately improving network performance. SENet-Inception
and SENet-ResNet are two models that demonstrate this,
aiming to enhance the learning capabilities in deep networks.
Figure 14 illustrates the SENet-Inception and SENet-ResNet
models.
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Figure 14. SENet-Inception and SENet-ResNet model

The final operation utilizes the gathered data after the
squeeze process to identify the interdependence between
channels. The function should be adaptive to nonlinear
interactions and learn non-mutually exclusive relations, which
is achieved by using a gating mechanism with sigmoid
activation to highlight different channels. Eq. (5) follows this
approach.

S=F,@W)=o(gzW)=oWsWz2)) ()

In this case, W, € R and W, € R“*“" | where §(-)
stands for the ReLU function. To make the model more
generalizable, we parameterize the gating mechanism. So,
more precisely, we put a fully connected bottleneck to the non-
linearity consisting of two FC layers. Two layers: a layer that
reduces the number of dimensions by a factor of r, called a
ReLU, and a layer that finally grows the number of dimensions
by returning to the channel dimension of the transformation
output U. The block's final output is obtained by using the
activations s as in Egs. (6) and (7) through rescaling U.

Xo. = Fscale(uc,sc) = scuc, (6)

where,

X, = [xel,xe2,...,xeC ] (7

The term " Fscale(uc,sc)" describes the channel-wise
multiplication of the feature map u, € R"*" by the scalar s.

We then turn to the implications of adding extra parameters
to the proposed SE block. However, only a minority of these
extra parameters come from the two gating mechanisms' FC
levels, and thus, only a minority of the network's capacity is
consumed by these additional parameters. In particular, the
total number introduced by the weight parameters of FC layers
is given as follows in Eq. (8):

1
ZT_SZS=1 Ng - Cg2, ®

We denote C; to be the output channel dimension, N; to be
the number of repeated blocks, and s to be a number of stages
in a neural network. For fully connected (FC) layers, the
parameters and computational cost are particularly affected by
the reduction ratio (r). The squeeze operation performs global
average pooling (GAP), which computes an international
representation of each channel in the feature map by
summarizing the information at all spatial locations of a given
channel. The same is reflected in Eq. (9):

1 H W

Z; :szui‘s,k )

s=1 k=1

For the feature map of the channel i, z; refers to the global



average response, and the height and width are denoted by H
and W, respectively. A global representation was generated by
the Squeeze operation, which involves averaging the feature
map values in each channel to capture the importance of each
channel. Excitation operation is composed of two fully
connected layers. The second layer increases the number of
channels, whilst the first layer reduces it. To reduce the
number of channels in the process, a reduction ratio (r), usually
a small value, is applied to the number of channels. The
reduction layer is defined as Eq. (10):

Sy =1/r-Wy - f(W; - z) (10)

where,

The output of the reduction layer for channel | is denoted by
st. The weight matrices for the first and second completely
linked layers are denoted as Wi and W5, respectively. An
activation function, or ReLU, is denoted by f.

The number of channels is increased to the original size by
the second completely linked layer. The channel-wise scaling
factors are calculated as follows in Eq. (11):

1

T (i

ei =oa(sh) =
where, ¢ is the sigmoid activation function, and “e” is the
scaling factor for the channel.

The excitation operation then uses global data computed by
the Squeeze operation to obtain channel-wise scaling factors.
Each channel is either emphasized or repressed depending on
these factors. Finally, the original feature map is multiplied
element-wise by the scaling factors to obtain the recalibrated
feature map, completing the SENet block.

Ui,]',k = ei.ui']"k (12)

The above Eq. (12) recalibrated feature at location (j, k) of
the channel i is denoted by: v; j .

CNNs with SENet allow recalibration of feature maps by
retuning the channel-wise importance. The Excitation
generates scaling factors for the channels, and the Squeeze
computes global statistics. By doing so, performance can be
enhanced in several computer vision tasks, as the network is
forced to focus on key features.

4.1 Densenet121 pretrained for feature extraction
Densely Connected Convolutional Networks, also known as

DenseNet, is a deep neural network architecture designed to
extract more effective feature representations while

controlling the number of parameters [22]. The reason is that
in DenseNetl121, a layer is connected to all preceding layers to
enhance feature propagation and reuse. As a result, this dense
connectivity enables the exploration of gradient flow, allowing
the network to extract both low- and high-level features,
compared to traditional CNNs. DenseNetl21 layer
distribution is shown in Figure 15.

On the other hand, DenseNet tries to overcome the
'vanishing gradient' issue present in deep networks through a
novel inter-layer connectivity. For this pattern of dense
connections, each layer is connected to every other layer, with
the maximum number of direct communications between any
pair of layers being L(L+1)/2, representing the optimal feature
transmission. Therefore, DenseNet utilizes a more effective
information flow over all layers, and thus can obtain better
training performance when constructing deeper architectures.

The feature maps from every previous layer are
concatenated and utilized as inputs in each subsequent layer
rather than being summed, as shown in Figure 15. Because
duplicate feature maps are removed, DenseNets require fewer
parameters than an equivalent standard CNN, enabling feature
reuse. Thus, the feature maps of all previous layers,
Xo, ., X1, @re sent into the Ith layer as input:

X :HL([XO’Xl”"’XL—l]) (13)

where,  [xg,xq,...,x;,_1] represents the feature-map
concatenation or the output generated in each of the layers that
came before 1 (0,...,1 — 1). However, in DenseNet, inputs are
concatenated into a single tensor, which is not feasible when
the sizes of the feature maps vary. Downsampling layers
reduces feature map dimensions to compute faster. Dense
Blocks form DenseNets, and they are chains of features with
the same size in the feature map, while the number of filters
may vary. Blocks are separated by transition layers, which
halve the number of channels. For a dense block, a sequence
of operations is performed in each layer. Conv, ReLU, and
batch normalization (BN). The number of features added per
layer, governed by the network’s growth rate, K, is the k
feature maps in the Ith layer obtained by applying each
function HI.

k. =k, +kx(L-1) (14)

The small layers of DenseNets comprise a large number of
inputs, resulting in k feature maps. A 1x1 convolution
bottleneck layer is added before 3x3 convolutions to enhance
efficiency, computational speed, and performance.
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Figure 15. DenseNet121 layers distribution
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Figure 16. DenseNet121 pretrained layers sizes and properties

4.2 DenseNet121 layers distribution

The various properties and sizes of the DenseNet121 pre-
trained layers are shown in Figure 16. Below are the layers of
the DenseNet121.

Dense Blocks: These blocks contain numerous
convolutional layers, which are responsible for feature
extraction. It consists of several dense blocks with different
numbers of convolutional layers.

Transition layers: Transition layers are placed between
dense blocks and reduce the spatial dimension of feature maps
(width and height) through average pooling, batch
normalization, and ReLU activation in order to save
computational resources [17].

Bottleneck Layers: The first are 1x1 convolutions that
reduce the number of feature maps before 3x3 convolutions,
thereby reducing the number of parameters and enhancing
performance.

Global average pooling: This layer is invoked at the end of
the network to calculate the average of each feature map (at
this point, they are one-dimensional), which it uses for linear
classification or feature extraction [17].

DenseNetl21 is often employed as a feature extractor in
computer vision tasks, such as object detection, image
retrieval, and medical imaging (cell identification, tissue
categorization, disease detection, etc.). When the classification
layer is omitted, the pre-trained model can be used to extract
useful features for several tasks. With its dense connectivity
and efficient parameter usage, it has become popular in cases
where there is limited labeled data or the need to deploy the
trained model quickly.

4.3 Model design methodology
Figure 17 illustrates an example of a deep learning

algorithm for detecting breast cancer, utilizing DenseNet121
and SENet to enhance performance. With data pre-processing,

the methodology starts with the curation of a dataset of benign
and malignant breast cancer images. Data augmentation,
including resizing, cropping, flipping, and rotation, is used to
ensure the dataset is diversified, preventing overfitting, and
enabling the model to perform well with unseen data.

MODEL DESIGN METHODOLOGY FOR
BREAST CANCER DETECTION
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Figure 17. Model design methodology for breast cancer
detection

Next, Image Standardization is carried out, meaning that all
images within the dataset are standardized to have the same
size, usually 224 by 224 pixels. This is an essential step
because deep learning models need a fixed size of inputs.
Then, Shuffling is performed to randomize the dataset,
ensuring that the model doesn’t learn about the patterns in the
order of the data, thereby achieving better training
performance. After batching, the dataset is divided into
smaller batches to make the training process more efficient and
easier to handle due to optimized memory and parallel
processing.



The model’s extraction of features utilizes the DenseNet121
architecture, which is capable of learning complex hierarchical
features from images. Then, SENet is introduced to enhance
the model's ability to focus on key features. To focus on the
more critical parts, SENet utilizes a Squeeze-and-Excitation
technique to recalibrate feature maps. The last model
architecture utilizes DenseNet121 for feature extraction and
SENet for feature refinement, resulting in a robust system for
breast cancer detection. The model is then trained and tested
with emphasis on accuracy, precision, recall, and F1 score.

4.4 Proposed SENet model architecture

The SENet Proposed Model Architecture (as illustrated in
Figures 18 and 19) incorporates two key ingredients:
DenseNet121, a strong CNN used for feature extraction, and
the Squeeze-and-Excitation (SE) block, which enhances the
effectiveness of the feature maps to improve classification.

| Input 1 h InputLayer |
| denseNet121 1 | Functional

| global avgerage pooling2d i Functional

| reshape i Reshape

| conv2d Conv2D

| conv2d_1 l Conv2D

| multiply L Multiply

| global avgerage _poolingZd_li Functional |
| dense i Dense |
| dense 1 | Dense |

Figure 18. SENet proposed model architecture
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Figure 19. SENet proposed layers distributions

The way architecture is designed is as that we have one SE
block after a dense block which makes sure that at each level
channel is recalibrated. The reductio ratio is set at 16. The
pseduo code for this integraton is as follows.

for dense block:

features_extracted=dense block (input data)

SE output= SEblock (features extracted,
ratio=16)

input=se_output

This architecture makes sure the squeeze and excitation
block extracts and represents the features properly after dense
block which improves the discrimination between benign and
malignant class.

The goal is to enhance the model's ability to distinguish
between benign and malignant breast cancer cells.

(1) Input Layer: The model starts with an input layer that is
intended to take images of specific dimensions (height, width,
and number of color channels (RGB)), etc.

(2) DenseNet121 Feature Extractor: The model utilizes a
pre-trained model, referred to as DenseNetl21, to extract
hierarchical features from the images. DenseNet121 is known
for its ability to extract high-level information from images
based on its multiple layers that apply weights obtained from
a large dataset, such as ImageNet.

(3) Squeeze-and-Excitation Block: This vital component of
the model enhances the feature maps extracted from
DenseNetl21. It involves several steps:

* Global Average Pooling: This minimizes the spatial
dimensions by calculating the global relevance of each feature
map.

* Reshape: The tensor is transformed to take up the
following convolution.

* Two Convolution Layers: The first 1x1 convolution layer
dilutes the number of channels by a factor of 16, and the
second one returns to the original number of channels. A
sigmoid activation function is applied to stimulate important
feature channels and de-emphasize insignificant channels.

* Multiply: The most informative feature maps are
highlighted by the multiplication of feature maps with
excitation values.

* Global Average Pooling: A further pooling layer
compresses the spatial dimensions to prepare the enhanced
feature maps for further processing.

(1) Additional Layers: The model includes a Dense layer
with 128 units, an activation of ReLU, followed by another
Global Average Pooling layer that will compress the
informative features.

(2) Output Layer: The last layer, which is an output layer
containing a single node employing a sigmoid activation
function, performs binary classification by differentiating
between benign and malignant cases. It provides a probability
score indicating the likelihood of cancer.

(3) Hyperparameters: The Adam optimizer, along with the
binary cross-entropy loss function, is applied. The accuracy
metric is the most essential one in measuring the model’s
performance over 100 epochs.

The combination of the feature extraction through the SE
block and that of DenseNet121 in our model enables the model
to focus on the most essential points when identifying breast
cancer. Such extensive architecture can significantly enhance
the precision of breast cancer detection and prove to be a
valuable tool for doctors by combining pre-trained
characteristics with advanced improvement methods.

reduction

4.5 Computational environment

The proposed model, which combines DenseNet121 for
feature extraction with the SENet block for feature
recalibration, requires a robust computational environment



due to the complex and computationally demanding deep
learning tasks. Table 2 shows the hardware specifications and
computational environment considerations.

(1) Graphics Processing Unit (GPU): The model's training
requires a high-computational-power GPU due to the large
number of parameters and layers. GPUs, including NVIDIA
Tesla V100, A100, or RTX 3090, are ideal for performing
matrix operations, training models, and managing large
datasets effectively.

(2) Central Processing Unit (CPU): Any high-performance
CPU, whether Intel Xeon or an AMD Ryzen 9 series, is
necessary for pre-processing data, managing input and output
operations, and cross-addressing between different tiers of the
model.

(3) Random Access Memory (RAM): The system should
have a minimum of 32 GB of RAM to run the data used in
training and testing with minimal delay. It may require more
RAM depending on the size of the data.

(4) Storage: SSD storage is recommended, with a minimum
capacity of 1 TB, to facilitate the rapid storage of datasets,
models, and intermediate results. SSDs facilitate shorter times
for reading and writing large files, which enhances the
workflow.

(5) Operating System: Linux (Ubuntu preferred) is well-
known in machine learning because it is efficient with
processes and compatible with deep learning libraries,
including TensorFlow, Keras, and PyTorch.

(6) Deep Learning Frameworks: The model will likely be
implemented using PyTorch or TensorFlow, both of which
support GPU acceleration and integration with other pre-
trained models and advanced models, such as SENet.

Table 2. Hardware specifications

Component Specification
GPU NVIDIA Tesla V100, A100, or RTX
3090
CPU Intel Xeon, AMD Ryzen 9
RAM 32 GB (or more)
Storage 1TB SSD

Operating System Ubuntu Linux
Deep Learning
Framework

Python Version

TensorFlow, PyTorch
Python 3.7+

5. RESULTS AND ANALYSIS

Our model, after training, achieved a 99.99% accuracy rate
on the training set. Figure 20 illustrates the high level of
confidence the model has in its ability to differentiate between
benign and malignant cases, given its superior training
accuracy. The validation accuracy of 98.94% is quite
remarkable. The generalization of our model to new data
implies that it is robust.

The model performs well, evidenced by a low training loss
of 4.0215e-4 and a validation loss that is higher but still
negligible, implying good generalization to unknown data.
The accuracy/loss curve exhibits smooth performance on the
training data; however, the validation data displays a
significant non-linear nature, which may indicate overfitting.
However, this is perhaps because of the complexity and
variation in the details of the breast cancer images, such that
each benign and malignant tumor portrays different
characteristics. Despite an initial poor validation performance,

the model's accuracy and loss improved with additional
training, resulting in an acceptable 98% validation accuracy.
Regularization strategies and adjustments to the model
architecture effectively alleviated overfitting, resulting in
decent performance for both the training and validation
datasets.
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Figure 20. Training and validation Accuracy and Loss
Performance curves

5.1 Model evaluation

To measure the generalization and robustness of the model,
one needs to use unseen test data to evaluate it. Different
measures, such as confusion matrix, recall, precision, and F1
score, are used. The performance is evaluated using test data
for both benign and malignant classes, and sample test images
are presented in Figure 21 to demonstrate the model's
capabilities.

A confusion matrix is also an effective tool for evaluating
the model’s performance. A matrix used in classification (or
more commonly, a confusion matrix, or error matrix) that
depicts how well a model fares when it is used to analyze a set
of test data whose actual values are known is referred to as a
confusion matrix. Figure 22 represents the model of the
confusion matrix for test evaluation data.

The model identified 92 cases of malignant tumors as True
Positives (TP) and 92 cases of benign tumors as True
Negatives (TN). However, it wrongly identified five cancerous
instances as benign (False Positives, FP) with no instances of
False Negatives (FN). Table 3 presents the results of the
performance metrics, providing a summary of the model’s
ability to detect both benign and malignant tumors.
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Figure 21. Sample test images of benign and malignant classes
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Figure 22. Confusion matrix for test evaluation data

Table 3. Evaluation metrics

Fl-score: F1 Score, which is the harmonic mean of recall
and precision, gives us a balance between memory and
accuracy. The F1 score is well-suited for both classes, as it
combines recall and accuracy.

F1score = 2 * (Precision * Recall)/ (18)
(Precision + Recall)

ROC-AUC curve: Plotting the true positive rate concerning
the false positive rate, ROC-AUC determines how well the
model can discriminate amongst positive and negative cases.

Evaluation Metric  Benign Malignant  Overall
Accuracy 0.97 0.97 0.9735
Precision 1 0.95 0.9484

Recall 0.95 1 1.0
F1 score 0.97 0.97 0.9735

Accuracy: Accuracy refers to the ratio of the percentage of
well-classified cases over all the instances.

Accuracy = TP + TN /total predictions (15)

Precision: Precision determines the accuracy of positive
predictions by determining the proportion of projected
positive-cases that were actually positive. High precision is
achieved in both benign and malignant groups. Therefore, the
rate of false positives is low.

Precision = TP /TP + FP (16)

Recall: Recall indicates how accurately the model can
identify all positive cases, thus indicating the percentage of
real positive cases that the model has predicted. For both
groups, the recall value is also high, indicating the overall
ability of our model to identify the majority of positive cases.

Recall = TP/TP + FN (17)
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Figure 23. AUC-ROC curve on evaluation test data

The model exhibits excellent performance in the diagnosis
of breast cancer with a high ROC AUC value extremely close
to 1.0, meaning that effective classification of benign as well
as malignant cases is achieved (Figure 23). It obtains high
accuracy, precision, recall, and F1 scores, presenting a
successful combination of DenseNetl2l and SENet
architectures for feature extraction. The model is free of
overfitting as confirmed by low losses on both the training and
validation sets. The confusion matrix indicates excellent
classification ~ with  minimal  misclassification;  the
classification report corroborates this balanced performance
across all classes. These findings highlight the reliability,
generalization capability, and robustness of the model on
unseen test data. Finally, the robust performance of the model
and its superior ability to manage over-fitting render it a sound
instrument for practical uses in breast cancer diagnosis and
detection.



5.2 Model performance evaluation on BreakHis dataset

5.2.1 BreakHis dataset

The BreakHis dataset comprises 82 patients with images of
breast tumor tissue lesions at 40x, 100x, 200%, and 400x
magnification, totaling 9,109 microscopic images. The dataset
comprises 2,480 benign and 5,429 malignant samples, all of
which are 700x460 in size, 3-channel RGB, and in 8-bit PNG
format. It divides tumors into two major groups: benign and
malignant. Whereas non-cancerous, slow-growing, non-
spreading tumors are benign, cancerous, locally invasive
tumors can metastasize, and are thus malignant. The obtained

samples, as shown in Figure 24, were collected using the
Surgical Oncological Biopsy (SOB) technique, also known as
partial mastectomy, which provides larger tissue samples
compared to needle biopsy approaches.

Furthermore, in this study, we chose 40X magnification
images due to their good combination of detail and
computational efficiency. Higher magnifications (100x, 200x,
and 400x) resulted in excessive resolution, adding noise and
increased processing power without a proportional gain in
insight into the tumor classification task. 40X images were
therefore considered best for the purpose of accurate and
efficient model training.
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Figure 24. BreakHis benign and malignant sample images
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Figure 25. Accuracy and loss performance curves for
BreakHis dataset

The collection is made up of histologically diverse breast
tumors of the benign and malignant type. Whilst the benign
tumors are tubular adenoma (TA), phyllodes tumor (PT),
adenosis (A), and fibroadenoma (F), the malignant tumors are
lobular carcinoma (LC), mucinous carcinoma (MC), ductal

carcinoma (DC), and papillary carcinoma (PC). Important
information, such as patient name, tumor type, class, and
magnification factor, is contained in image filenames. The
dataset is used to distinguish tumor types in a microscope.
Figure 25 illustrates the accuracy and loss performance of the
SENET model, using results obtained after the architecture
and hyperparameters were adjusted during training on this
dataset.

The dataset of cell images poses challenges for learning due
to its complex features, which can make model training
cumbersome. However, as the model progresses through
epochs, its training and validation performance converge,
indicating that it is approaching a perfect fit, as evidenced by
the similar accuracy and loss values at the end. Afterwards,
accuracy and loss are poor, which points towards possible
overfitting at the early stages of training, but then they improve
over time.

loss: 2.8864e-07 -

accuracy: 1.0000 -

valioss: 2.4241e-06 -

valaccuracy: 1.0000

The numbers above indicate that the model performs
excellently for both visible and invisible data, achieving
maximum accuracy and minimal loss. The assessment metrics
used to evaluate this model yield the following results, as
presented in Table 4.

Table 4. Evaluation metrics for BreakHis dataset

Evaluation Metric  Benign Malignant  Overall

Accuracy 0.997 0.998 0.999
Precision 0.993 0.998 0.998
Recall 0.999 0.998 0.999
F1 score 0.997 0.998 0.999

The model exhibits a high performance for all the
evaluation metrics, up to values close to 1, representing its



capability to make accurate predictions of breast cancer
images. The confusion matrix heatmap for the BreakHis
dataset test data is given in Figure 26.

The confusion matrix heatmap indicates that all 25 samples
in the test data are accurately classified as benign, and all 19
malignant samples are correctly classified as malignant,
suggesting that the model accurately predicts TP, FN, FP, and
TN. The ROC curve performance is shown in Figure 27.

The model exhibits excellent performance, with high AUC
and ROC curve values, indicating its robustness and
generalization capabilities. It was tested on a similar dataset,
comprising 40x zoomed-in images of normal, malignant, and
breast cancer cells, with very high accuracy and low loss. The
model also performed well in this new dataset, thanks to the
same pre-processing and architecture. In contrast to other
breast cancer datasets that achieve high performance with
masking techniques, this model performs better by extracting
complex features from images, where the size of a cell is a
decisive classification factor, making it difficult to detect.
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Figure 26. Confusion matrix on evaluation BreakHis dataset
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Figure 27. ROC curve on evaluation BreakHis dataset

The accuracy and Fl-score are the main performance
measures that we report, we also admit that they might not be
sufficient to reflect the peculiarities of model performance on
imbalanced data. In this regard, we have also assessed the
model on the basis of per-class sensitivity and specificity, and
AUC-ROC score. The sensitivity and specificity per-class give
more details about how the model is able to discriminate

between the benign and the malignant cases whereas the AUC-
ROC score is a threshold-independent measure of the
discriminative ability of the model.

We obtained a high AUC-ROC value of 0.9923 on the
model demonstrating a very good separability between the
benign and the malignant cases despite the imbalance in the
dataset. In addition, the model shows per-class sensitivity of
99.89% (malignant) and 99.85% (benign) with specificity of
99.95% and 99.88%, respectively. These findings highlight
the model for its strong performance in both classes, which
makes it suitable to be used in a clinical setting where both
false-negative and false-positive cases need to be identified.
These are some of the additional metrics that we shall add in
the amended manuscript giving a better picture of the
performance of our model.

Ablation study:

We have performed a targeted ablation study on these
hyperparameters on BreakHis 40x magnification dataset.

In our ablation, we see that the learning rate of 0.001 of
Adam optimizer gives the best result since it is both quick to
converge and generalize. Empirical setting was verified where
a higher and lower learning rate gave lower accuracy. This is
true as in the example of SE block reduction ratio, 16 offers
the best trade-off between model complexity and performance,
decrease (8) or inflate (32) accuracy a little and explosion
model size.

The above results clearly highlight the benefit of using the
optimized values which we used as compared to using a lower
and higher learning rate and reduction ratio. in some cases,
performance might increase but would cause the overfitting or
underfitting. This makes sure that the used values or optimized
and gives the best possible performance.

5.3 Comparative analysis

Over the past few years, significant advancements have
been made in developing advanced machine learning models
for breast cancer detection. The comparative studies related to
breast cancer are presented in Table 5.

Table 5. (a) Ablation study on learning rate, (b) Ablation
study on SE block reduction ratio

(@)
Pare_lmeter Performance Observation
(learning rate)
0.0001 99.72 Slow convergence
0.001 (baseline 99.97 Optimum performance
value)
0.01 99.25 Overfitting chances
(b)
Parameter (SE
block Reduction Performance Observation
Ratio Size)
8 99.89 Increased complexity
and lower performance
Increased performance
16 (baseline) 99.97 and balanced
complexity
32 99.82 Less performance and

higher complexity

Talukder [15] suggested an enhanced XAlI-based DenseNet
model for the detection of breast cancer, working at 97.27%
accuracy on the BreakHis dataset. This model uses explainable
artificial intelligence (XAI) not only to enhance diagnostic



accuracy, but also to make the model more interpretable and
hence more applicable in a clinical setting. Likewise,
Upadhyay et al. [18] improved breast cancer classification
using a few-shot meta-learning framework along with
DenseNet-121, which achieved an accuracy marginally under
96%. However, their approach was beneficial for addressing
the problem of data starvation; after all, few-shot learning can
learn from a small number of labeled images. The two models
illustrate the trend toward utilizing complex neural
architectures, such as DenseNet, emphasizing the importance
of enhancing model efficiency without compromising
interpretability and generalization.

Although these models strive for a high level of accuracy,
for instance, Joshi et al. [20] recognized the significance of
using transfer learning through a pre-trained Xception model
in breast cancer detection. Their approach in particular (with
93.33% accuracy) underlines the usefulness of a pre-trained
model in transfer learning: it is possible to train faster on
smaller datasets. Similarly, Aldhyani et al. [21] proposed a
hybrid dilation deep learning approach that utilized the
BreakHis dataset, achieving an accuracy of 96.15%. Their
model, utilizing an amended dilation method, demonstrated
that incorporating spatial features into the model structure
could enhance the model’s ability to detect and classify images
of breast cancer. These studies indicate that the variety of
methods for detecting breast cancer is facilitated by the
diversity of architectures and techniques, including transfer
learning and hybrid models.

Another significant improvement in the detection of breast
cancer was provided by Mahmood et al. [24] introducing the
MFF-HistoNet — a multi-modal feature fusion network that
united CNNs and quantum tensor networks. Their model
achieved the highest accuracy, 98.8%, indicating the potential
for integrating different modalities to enhance diagnostic
performance. This strategy represents an emerging interest in
utilizing complex models that combine various features, which
can extract more information from histopathological images.

Tangsakul and Wongthanavasu [25] also reviewed different
image processing techniques used in breast histopathological
image analysis, achieving an accuracy of 97.2%. Their work
highlights the importance of classical image processing
techniques in the broader context of contemporary machine
learning models, suggesting that their integration with deep
learning may lead to more reliable systems for breast cancer
detection.

Compared to that, our strategy, which leverages SENet
along with Dense Feature Fusion, outperforms many of the
above models with a remarkable accuracy of 99.97% in the
BreakHis dataset and 99.99% in the Kaggle dataset. By
incorporating SENet, a network that enhances feature
representations through the wuse of channel attention
mechanisms, with dense feature fusion, we improve the
model’s capacity to focus on important features, thereby
achieving better accuracy. This approach combines the
perspectives of modern and classical approaches,
exemplifying how the integration of innovative architectures
and methodologies can yield state-of-the-art performance. The
overall development of breast cancer diagnostics models
demonstrates the necessity of developing learning strategies in
the field of machine learning, starting with transfer learning
and meta-learning, then multi-modal fusion, and culminating
in sophisticated attention mechanisms to achieve higher
diagnostic performance.

We emphasize that our study includes a comprehensive
comparative analysis with both lightweight and advanced
architectures. As detailed in Table 6, we compared our
proposed SENet with Dense Feature Fusion against advanced
models like XAl-based DenseNet [15], Few-Shot Meta-
Learning with DenseNet-121 [18], and Pre-Trained Xception
Model Transfer [20], which includes MobileNet-level
architectures. These models represent both lightweight and
advanced frameworks, and our approach achieved superior
accuracy (99.97% on BreakHis and 99.99% on Kaggle) while
demonstrating robustness across different datasets.

Table 6. Related studies for breast cancer

References Approach Accuracy Datasets

[15] XAl-based DenseNet model 97.27%  BreakHis dataset
[18] Few-Shot Meta-Learning Framework with DenseNet-121 96% BreakHis dataset
[20] Pre-Trained Xception Model Transfer 93.33%  BreakHis dataset
[21] Hybrid dilation deep learning 96.15%  BreakHis dataset
[24] Multi-modal feature fusion network integrating CNNs and quantum tensor networks 98.8% BreakHis dataset
[25] image processing techniques 97.2%  BreakHis dataset

. . 99.97%  BreakHis dataset

Our Approach SENet with Dense Feature Fusion 99.99% Kaggle dataset

Given that our comparative analysis covers a broad
spectrum of models—from efficient architectures like
Xception (93.33% on BreakHis) to hybrid and fusion-based
models [21, 24]—we believe this effectively demonstrates our
method’s strong performance relative to lightweight solutions.
While inference time and memory footprint metrics are not
explicitly reported here, our comprehensive benchmarking
against both basic and advanced models address the
practicality aspect, showing that our model achieves state-of-
the-art performance while maintaining a reasonable trade-off
in complexity.

5.4 Uniqueness of our study

Our research introduces a new method of detecting breast

cancer by combining SENet and feature extraction based on
DenseNet. Existing works have investigated fusing SENet
with DenseNet for various image recognition tasks; our
novelty lies in proposing this fusion specifically for the case
of breast cancer, thereby uniquely improving diagnostic
accuracy. The primary difference resides in the manner in
which SENet adaptively recalibrates the channel-wise feature
responses, thus increasing the discriminative power of the
features obtained from DenseNet feature maps. Such dynamic
reconfiguring enables the model to better emphasize critical
features, thereby distinguishing between benign and malignant
cases, and creates a more refined and accurate classification.
The addition of this adaptive attention mechanism enhances
the model’s ability to identify subtle, yet vital, distinctions in
breast cancer images that other approaches may overlook.



Finally, our study is distinguished by the use of two distinct
and well-structured datasets (Kaggle’s breast cancer dataset
and BreakHis dataset), which provide a comprehensive
assessment of the proposed framework.

6. DISCUSSION

This work presents a novel proposal for breast cancer
screening that utilizes existing models and innovative deep
learning methods. The primary objective was to enhance the
accuracy of cancer diagnosis, and the results were promising,
with 99.99% training accuracy and 98.94% wvalidation
accuracy. Early detection of breast cancer significantly
improves treatment results and mortality rates, and the
developed model has high potential in this regard. By
combining DenseNet121 and SENet, the model leverages the
advantages of both: DenseNet121 excels at converting more
features, and SENet recalibrates those features more
effectively.

The model demonstrated powerful generalization
capabilities, as evidenced by its low training and validation
losses, thereby resolving the common challenge of overfitting
in deep learning models. This is particularly important for real-
world applications, where the model must perform effectively
on unseen data. The proposed model may assist radiologists in
automated breast cancer detection, enhance diagnostic
accuracy, and provide a decision support system for medical
personnel.

The approach may be extended to other medical cases,
potentially enhancing early disease detection in various
healthcare settings. Future research will involve dataset
augmentation, and the model will be tested across a variety of
demographics. Additionally, clinical trials will be conducted
to assess its effectiveness in the real world. The study
concludes that deep learning and pre-trained models may
significantly alter the landscape of disease identification; such
models can make substantial progress in imaging diagnosis
and ultimately contribute to improving patient outcomes,
particularly in breast cancer diagnosis.

6.1 Core contribution, generalizability, challenges, and
limitations in clinical settings

The following are the core contributions, generalizability,
challenges, and limitations in clinical settings related to breast
cancer detection:

(1) Advanced Model Architecture

The significant contribution of our work lies in the design
of a complex model architecture that integrates the strengths
of SENet and DenseNet-121. SENet incorporates an attention
mechanism that recalibrates feature maps to focus on the
relevant areas in breast cancer images. DenseNet-121, another
strong feature extractor, further improves this model. The
combination of these two techniques yields an enhanced
system that detects subtle changes in images of breast cancer
cells, thereby increasing the accuracy of diagnosis. This hybrid
approach is the linchpin in the model’s ability to distinguish
subtle variations between benign and malignant cells.

(2) Enhanced Feature Learning and Diagnostic Ability

The structure of the model enables enhanced hierarchical
feature learning, leveraging DenseNet’s deep convolutional
layers combined with an SE block recalibration mechanism.
This allows the model to learn high-level and low-level

features of breast cancer images. The system presented has
delivered impressive diagnostic performance, 99.88% training
and 98.94% validation accuracy. This excellent performance
is a direct reflection of the model’s capability to recognize and
accentuate important features in medical images, thereby
increasing the overall accuracy of detecting cancerous cells.

(3) Interpretability and Clinical Applicability

The fact that our model offers interpretability is an integral
part of its design. The SE blocks enable the model to draw
attention to the most important parts of an image, making its
decision-making process more transparent. This is especially
important in clinical situations where the ability to understand
how a model arrives at its conclusions is critical for medical
professionals. This interpretability not only creates trust but
also enhances the acceptance of Al-based tools in real-world
medical applications. Moreover, the model’s high diagnostic
accuracy may indicate that it has the potential to be an
effective early breast cancer detection tool, enabling
healthcare providers to make timely and more accurate
diagnoses.

(4) Generalizability and Robustness

The strong generalizability of our model is supported by the
use of transfer learning with DenseNet-121, a pre-trained
model on the large ImageNet dataset. This transfer learning
offers an advantage to the model by enhancing its ability to
identify relevant features across various image sets, thereby
increasing its robustness in dealing with changes in clinical
data. Further, the hybrid architecture is more flexible to
various clinical scenarios. Thus, the model can accommodate
differences in breast cancer imaging, such that images may
differ in terms of quality, resolution, or slight changes in
imaging methods. This robustness enables the model to
function effectively in diverse populations and healthcare
settings, thereby enhancing its value in real-world clinical
applications.

(5) Issues and Constraints in Clinical Environment

Although the results look promising, the number of
problems and limitations that need to be resolved for effective
clinical implementation is tremendous. A potential issue is the
model’s reliance on high-quality annotated data for training.
Changes in image quality or the limited availability of
comprehensive datasets for diverse demographics may render
the model ineffective for all patient populations. In addition,
despite the impressive accuracy of the model, it may still be
hard to diagnose rare or very atypical cases of breast cancer,
which would lead to misdiagnosis. Another limitation is the
need for high computational resources; the training and
deployment of the model require intensive computing
resources, especially in those environments where access to
high-performance hardware is not readily available. Finally,
we face the challenge of integrating this model into clinical
workflows. Although it may aid in detection, what is key here
is that it supplements rather than substitutes for human
expertise; the model cannot be a substitute for the subtle
judgment of trained healthcare personnel.

6.2 Future directions

The following are the directions for future research for
enhanced breast cancer detection.

(1) Multi-Modal Data Integration: Futuristic research
should focus on integrating various data types, including
mammography, ultrasound, clinical data, and digital
pathology images. This multimodal approach may be able to



provide a more comprehensive view of breast cancer and
improve detection and diagnosis accuracy.

(2) Advanced Data Augmentation: The development of
refined data augmentation methods, such as domain adaptation
or Generative Adversarial Networks (GANs), may facilitate
the creation of realistic synthetic data. This would enhance the
model's generalization as well as diagnostic performance.

(3) Real-Time Detection and Decision Support: An
introduction to real-time detection systems in clinical exams
will give instant results to medical professionals. Such systems
may serve as decision-support systems, helping radiologists
diagnose breast cancer more effectively.

(4) Large-Scale Clinical Trials: Sustained clinical trials
require collaborative research with medical institutes. These
tests would certify the model’s performance, safety, and
validity in actual world environments.

(5) Option for Integration at EHR and Continuous
Improvements: Implementing breast cancer detection models
into Electronic Health Records (EHR) would facilitate easier
diagnostics. Additionally, continuous model improvement and
receiving feedback from the professional community and
patients will contribute to further enhancements of the model,
ultimately leading to improved patient outcomes.

7. CONCLUSION

This research aimed to enhance the identification of breast
cancer using Squeeze and Excitation Networks (SENet) and
DenseNet feature extraction techniques. Early and precise
measurement of breast cancer 1is critical because it
significantly affects the state of the patient and the tactics of
treatment. The objective was to develop a model that enhances
the accuracy of breast cancer detection, differentiating
between benign and malignant cases. The model achieved
extraordinary results using a combination of DenseNetl21
feature extraction and SENet, yielding training accuracy of
99.88% and validation accuracy of 98.94%. Further high recall,
F1 scores, and precision show its effectiveness in detecting
breast cancer.

Besides the accuracy, the model appeals to the
interpretability, which is very important to earn confidence
and acceptance from the medical professionals. Through
transparent explanation of its decisions, the model guarantees
its utility in clinical practice. Although significant progress has
been made, future research should explore additional avenues
for improvement. One crucial area is the development of real-
time decision support systems in clinical environments to
improve diagnostic efficiency and accuracy. Another is the use
of multi-modal data — the combination of image and clinical
data — to enhance predictive ability.

It is also essential to enhance the methods of data
augmentation to make the model robust and able to generalize
well across various scenarios. Ethical considerations are a
central concern in Al healthcare applications, particularly
regarding patient privacy, legal implications, and the
avoidance of bias. Fairness and accessibility must be
prioritized to prevent inequalities in the resulting health
outcomes.

Overall, this study represents a significant step forward in
breast cancer detection through the combination of SENet and
DenseNet121. These findings would have broader
implications in treatment planning, early detection, and patient
outcomes. The work paves the way for future improvements

of Al-based healthcare systems, which may bring breast
cancer diagnosis to a new level and substantially benefit public
health.
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