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In the digital era, stock forecasting remains one of the most challenging tasks in financial 

time series analysis due to the nonlinear and volatile nature of real-time market data. 

Traditional statistical models such as ARIMA and GARCH often struggle to capture the 

complex temporal dependencies and non-stationary patterns inherent in stock movements. 

In contrast, hybrid deep learning architectures that integrate convolutional, recurrent, and 

attention mechanisms have demonstrated superior capabilities in modeling multiscale 

temporal patterns. This paper proposes a novel hybrid framework that combines a CNN–

LSTM model with the Temporal Fusion Transformer (TFT) for accurate and interpretable 

stock price forecasting. The CNN–LSTM captures short- and long-term dependencies, 

while the TFT enhances temporal feature fusion and interpretability. Evaluated on Apple 

Inc. (AAPL) daily stock data over five years (2016–2020), the proposed hybrid model 

achieved approximately 12% lower RMSE than a baseline LSTM model. Furthermore, a 

model-driven long/short trading strategy based on the forecasts yielded a return of 80.7%, 

significantly outperforming the buy-and-hold benchmark return of 38% over the same 

period. All results are reported before considering transaction costs. These findings 

demonstrate the proposed framework’s effectiveness in both predictive accuracy and real-

world trading applicability.  
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1. INTRODUCTION

As per the world federation 2024, the worldwide stock 

market plays a significant role in the development of $110 

trillion USD economy. In today's world, more than 60% 

people are investing in stocks because predicting the market 

has become an essential part of financial analysis [1-4]. Let the 

stock market index at time 𝑡 be represented as 𝑆𝑡. The main

goal of stockholders is to predict its worth 𝑆𝑡+𝑘 , where 𝑘
denotes the prediction. The return on investment (ROI) is 

calculated with below mathematical function: 

𝑅𝑡 =
𝑆𝑡+1 − 𝑆𝑡

𝑆𝑡

× 100% (1) 

Accurate prediction of 𝑆̂𝑡+𝑘  directly effects 𝔼[𝑅𝑡] , the

expected return. The existing methods fail because of abrupt 

fluctuations in the real-time data, where Var(𝑆𝑡) ≠ Var(𝑆𝑡+𝜏).

In the digital era, predicting the stock market has become more 

challenging and an economic necessity for online trading. 

The existing standard methods i.e. the Autoregressive 

Integrated Moving Average (ARIMA) and Exponential 

Smoothing (ES) used for past observations. These existing 

methods are based on linear dependencies: 

𝑆𝑡 = ∑ 𝜙𝑖𝑆𝑡−𝑖 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝒩(0, 𝜎2)

𝑝

𝑖=1

(2) 

where, 𝜙𝑖 are fixed autoregressive coefficients and

𝜖𝑡 represents Gaussian white noise. Real-time stock market

shows highly complex and dependencies among temporal, 

technical, and exogenous i.e., interest rate (𝐼𝑡), inflation (𝜋𝑡),

and trading volume ( 𝑉𝑡 ). Thus, 𝑆𝑡 is more realistically

represented as: 

𝑆𝑡 = 𝑓(𝑆𝑡−1, 𝑆𝑡−2, … , 𝐼𝑡 , 𝜋𝑡 , 𝑉𝑡 , … ) + 𝜖𝑡 (3) 

where, 𝑓(⋅) is a nonlinear and time-variant mapping. With the 

rapid growth of computational power ( ∼ 1015  FLOPS
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available in modern GPUs), machine learning (ML) and deep 

learning (DL) models can efficiently approximate 𝑓(⋅)  by 

minimizing the prediction loss 𝐿 =∥ 𝑆𝑡 − 𝑆̂𝑡 ∥2. Yet, existing

DL methods like LSTM or GRU, despite their strength in 

sequential learning, face vanishing gradient problems and 

limited interpretability, making it difficult to assess the 

contribution of each input feature over time. 

To overcome the existing problems, we proposed a hybrid 

framework based on Temporal Fusion Transformer (TFT) 

with a CNN–LSTM for more accurate prediction of the stock 

market economically. Let the hybrid feature representation be 

denoted as: 

H𝑡 = CNN(X𝑡) + LSTM(X𝑡) (4) 

where, X𝑡  represents multivariate input features (open, high,

low, close, volume, and temporal variables). The TFT module 

integrates both static and dynamic dependencies: 

𝑆̂𝑡+𝑘 = TFT(H𝑡 , C𝑡) (5) 

where, 𝐂𝑡denotes context variables and attention weights 𝛼𝑖 =
𝑒𝑞𝑖𝑘𝑖

∑ 𝑒
𝑞𝑗𝑘𝑗

𝑗

 quantify the temporal influence of each input. 

The proposed hybrid work combines the short-term 

fluctuations, long-term dependencies, and temporal features in 

a unified framework. The model’s interpretability further 

allows analysis of feature importance 𝐼(𝑓𝑖) ∈ [0,1], leading to

explainable forecasts and significant reduction in mean 

absolute error (MAE) and root mean square error (RMSE): 

MAE =
1

𝑁
∑ ∣ 𝑆𝑖 − 𝑆̂𝑖 ∣

𝑁

𝑖=1

, RMSE

= √
1

𝑁
∑(𝑆𝑖 − 𝑆̂𝑖)2

𝑁

𝑖=1

(6) 

The output of the proposed work improves the prediction 

accuracy by 15–20% as compared to existing other state-of-

the-art methodologies [5-9]. The proposed system aims to 

achieve three key objectives: 

• High-fidelity prediction of AAPL’s daily and weekly

price movements through a calibrated deep learning

model.

• Quantified predictive uncertainty using TFT’s

probabilistic forecasting capability to enhance

interpretability and risk awareness.

• Evaluation of decision-layer performance, where

model outputs are transformed into actionable

long/short trading strategies to assess real-world

profitability.

2. LITERATURE REVIEW

Many authors worked on the prediction of the stock market 

using machine learning & deep learning and tried to reduce the 

manual intervention. Table 1 provides a summary of the state 

of the art. 

Table 1. Study on existing state-of-the-art methodology 

S.No. Author Name Methodology Dataset Remarks 

1. Ferreira et al. [10] Genetic Algorithm TRNA dataset 

1. It gives us an approximate estimation value but not the

exact future value. 

2. It doesn't consider the data's decimal points, which leads to

the false approaching of values. 

2. Nithya et al. [11]
K-Means Algorithm

RNN Algorithm

NSE_TATAGL

OBAL 

The model correctly forecasted the price as ₹ 231.85 for the 

following day, September 29, 2018, a close estimate of ₹ 

234.00 that NSE cited in its stock broking for the dataset. 

The stock price has recently been rapidly rising. Accuracy is 

86.6%(APPROX). 

3. Bharne et al. [12] ANN Algorithm Self dataset 

Asserts that the event of the stock market forecast is 

particularly severe and outlines the cause for it, among which 

are extraordinary modifications 

They developed an ANN system to predict stock transaction 

values for the following day, considering financial and legal 

developments, a lack of technical information, expertise, and 

other factors. 

4. 
Jearanaitanakij and 

Passava [13] 
CNN Algorithm 

Candlestick 

database 

Requirement ResNet-18 

Test precision proposed: 57.92% 65.62 

Practice period (minute) 

Count of trainable variables 

Architecture to take the candlestick pattern into account is 

30,900, 30,846. 

5. Sharma et al. [14]
Random 

forest algorithm 
Self dataset 

The decision tree's accuracy was 95.24%, while the random 

forest classifier's accuracy was 96.64%. 

6. Kalra and Prasad [15]

KNN Algorithm 

Supervised Machine 

Learning algorithm 

StockNumeric, 

Stock 

Prediction, 

Dataset 

Accuracy Precision SVM 81.2 0.817 0.812 0.812 KNN 78.7 

0.788 0.787 0.787 Recall F Measure 

Naive Bayes 80, 0.801, 0.806, and 0.801 

Neural Network 80: 0.801: 0.800: 800. 

7. Leiter and Bokor [16]
Dynamic Pricing 

Algorithm 
Self dataset 

It addresses capacity optimization, not cost Optimization. 

Mobile Internet usage will be even more widespread because 

of the EU roaming regulation. 

8. Kumar et al. [17]
(SVM), XGBoost, 

(ANN) (RNN) 
Self dataset 

In this study, the stacked LSTM stock forecasting model is 

developed. 
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Due to its distinctive memory structure, Long Short Term 

Memory (LSTM) is considered the finest time series 

prediction model. 

9. Bakanov et al. [18]
Algo Trading 

Method 

NSE Dataset 

and BSE Dataset 

By analyzing the benchmarks, we may conclude that our 

suggested incremental modifications reduce latency but are 

topology-dependent. 

10. Chen et al. [19]
Divide and Conquer 

method. 
Self Dataset 

Optimizing a DGSP (Diverse Group Stock Portfolio) 

requires a lot of time. 

Even though there are more stocks, optimizing a DGSP still 

takes a lot of work. 

Recent developments in stock market forecasting have 

exploited deep learning algorithms to address the difficulty 

and volatility of financial time series [11-13]. Non-linear 

dependencies and longer-term time pattern are usually lost 

with classical models. Such tools as the Long Short-Term 

Memory (LSTM) and the Gated Recurrent Units (GRUs) are 

working to learn the temporal dynamics and enhance 

predictive accuracy; however, they face the challenge in 

interpreting and handling multi-horizon forecasting. 

Temporal Fusion Transformer (TFT), a state-of-the-art deep 

learning model, has shown superiority in multi-horizon time 

series prediction. TFT aligns with attention mechanisms and 

recurrent layers, where the attention is applied to spatial 

features while preserving temporal context. It is also 

interpretable, that is, it provides insight into the importance of 

features and the reasoning behind predictions. 

3. PROPOSED WORK

The proposed work proposes a Temporal Fusion 

Transformer (TFT)-based hybrid approach for short-term and 

medium-term stock forecasting, applied to Apple Inc. (AAPL) 

data [20]. In the proposed system, we combined the CNN & 

LSTM for local and sequential feature extraction and further 

we used TFT’s multi-head attention and gated residual layers 

for dynamic feature selection and temporal fusion. The 

detailed methodology is mentioned in Figure 1 and Algorithm 

I. 

Algorithm I. Hybrid LSTM Bridge Temporal Fusion 

Transformer 

Step 1: Notation 

• Let time index 𝑡 = 1, … , 𝑇 represent trading days.

• The raw multivariate observation at 𝑡 is:

𝑋𝑡 = [𝑂𝑡 , 𝐻𝑡 , 𝐿𝑡 , 𝐶𝑡 , 𝑉𝑡]⊤ ∈ ℝ5,
where, 𝑂, 𝐻, 𝐿, 𝐶, 𝑉denote Open, High, Low, Close, Volume. 

• Let ℰ𝑡 = [SPX𝑡 , VIX𝑡]⊤ be exogenous market

covariates.

• Let ℱ𝑡 ∈ ℝ𝑚 denote engineered technical features.

Total feature vector:

𝑍𝑡 = [𝑋𝑡
⊤, ℰ𝑡

⊤ , ℱ𝑡
⊤]⊤ ∈ ℝ𝑑 .

• Forecast horizon ℎ ∈ {1,5}.

• Look-back window length 𝐿.

• Input window at time 𝑡.

𝑊𝑡 = [𝑍𝑡−𝐿+1, 𝑍𝑡−𝐿+2, … , 𝑍𝑡] ∈ ℝ𝐿×𝑑 .
• Target Close price, For horizon ℎ:

𝑦𝑡+ℎ = 𝐶𝑡+ℎ.
We sometimes forecast change Δ𝑦𝑡+ℎ = log (𝐶𝑡+ℎ) −

log (𝐶𝑡) or absolute price.

Step 2: Data processing and scaling 

• For each numeric feature 𝑓compute robust scaling

(median / IQR):

𝑓𝑡 =
𝑓𝑡 − median(𝑓train)

IQR(𝑓train) + 𝜀
. 

(IQR = 𝑄3 − 𝑄1; 𝜀 small constant).

• Log returns for price series:

𝑟𝑡
(𝑘)

= log
𝐶𝑡

𝐶𝑡−𝑘

, 𝑘 ∈ {1,5,20} 

• Train/validation/test split (chronological):

Train: 2012 − 2022, Val: 2023, Test: 2024 − 2025.

Step 3: Hybrid CNN–LSTM bridge 

Purpose: Produce a compact signal 𝑧𝑡 used as an extra

feature in the TFT. 

3.1 1D convolutional feature extractor (CNN) 

Treat each raw time series channel separately or jointly; 

apply 1D convolutions over the time axis. 

Input: window 𝑊𝑡 ∈ ℝ𝐿×𝑑.

• A 1D convolution layer with 𝐾 filters, kernel size 𝑘𝑠,

stride 1:

𝑈𝑖,𝜏
(1)

= ∑.

𝑑

𝑐=1

∑ 𝑤𝑖,𝑐,𝑠
(1)

𝑊𝑡,𝜏+𝑠,𝑐 + 𝑏𝑖
(1)

𝑘𝑠−1

𝑠=0

Output time positions 𝜏 = 1, … , 𝐿 − 𝑘𝑠 + 1 , filters 𝑖 =
1 … 𝐾. 

• Apply activation (ReLU): 𝑈(1) = ReLU(𝑈(1)).

• Optionally stack 𝑝 convolutional layers to obtain

𝑈(𝑝) ∈ ℝ𝐿′×𝐾𝑝.

3.2 Temporal pooling/feature summarization 

• Global pooling across time:

𝑐 =
1

𝐿′
∑ 𝑈:,𝜏

(𝑝)
∈ ℝ𝐾𝑝 .

𝐿′

𝜏=1

3.3 LSTM encoder on convolution outputs 

• Run an LSTM across the sequence 𝑈(𝑝). LSTM cell

equations for hidden size 𝐻:
𝑖𝜏 = 𝜎(𝑊𝑖𝑢𝜏 + 𝑈𝑖ℎ𝜏−1 + 𝑏𝑖)

𝑓𝜏 = 𝜎(𝑊𝑓𝑢𝜏 + 𝑈𝑓ℎ𝜏−1 + 𝑏𝑓)

𝑜𝜏 = 𝜎(𝑊𝑜𝑢𝜏 + 𝑈𝑜ℎ𝜏−1 + 𝑏𝑜)
𝑐̃𝜏 = tanh (𝑊𝑐𝑢𝜏 + 𝑈𝑐ℎ𝜏−1 + 𝑏𝑐)

𝑐𝜏 = 𝑓𝜏 ⊙ 𝑐𝜏−1 + 𝑖𝜏 ⊙ 𝑐̃𝜏

ℎ𝜏 = 𝑜𝜏 ⊙ tanh (𝑐𝜏),
where, 𝑢𝜏is the CNN output at time 𝜏.

• Take the final hidden state ℎ𝐿′ ∈ ℝ𝐻or use attention

over {ℎ𝜏} to get ℎenc.
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3.4 Bridge output 

• Map ℎenc to a scalar or low-dim vector 𝑧𝑡:

𝑧𝑡 = 𝑊𝑧ℎenc + 𝑏𝑧 ∈ ℝ𝑞(𝑞 = 1 or small).

Ppredict a short-term change Δ𝑦̂𝑡+ℎ
bridge

= 𝑔(𝑧𝑡)with small

MLP 𝑔. Use this as an extra derived feature fed into TFT: 

𝑍𝑡 = [𝑍𝑡 , 𝑧𝑡 , Δ𝑦̂𝑡+ℎ
bridge

].

Step 4: Temporal Fusion Transformer (TFT) 

4.1 Variable grouping 

• Static covariates 𝑠.

• Known future inputs 𝑘𝑡+ℎ.

• Observed inputs 𝑜𝑡.

• The hybrid bridge output 𝑧𝑡 is treated as an observed

input.

4.2 Input embedding & variable selection network (VSN) 

For each feature 𝑗 at each time step, compute an embedding: 

𝑒𝑡,𝑗 = Embed𝑗(𝑥𝑡,𝑗) ∈ ℝ𝑑𝑒 .

VSN computes weights 𝑤𝑡,𝑗via a Gated Residual Network

(GRN) producing softmax-normalized weights across 

variables: 
𝛼𝑡,𝑗 = GRNvs(𝑒𝑡,𝑗) ∈ ℝ,

𝑤𝑡,𝑗 =
exp (𝛼𝑡,𝑗)

∑ exp (𝛼𝑡,𝑗′)
𝑗′

.  

Selected (weighted) input representation: 

𝑒̃𝑡 = ∑ 𝑤𝑡,𝑗  𝑒𝑡,𝑗

𝑗

GRN (Gated Residual Network) core: 

GRN(𝑥) = (𝑥 + Dropout(𝜙(𝑊2 ELU(𝑊1𝑥 + 𝑏1) + 𝑏2))) 

⊙ 𝜎(𝑊𝑔𝑥 + 𝑏𝑔)

where, 𝜙is a dense layer, 𝜎sigmoid gating. 

4.3 LSTM Encoder–Decoder 

• Encoder runs on past inputs to produce encoder

hidden states {ℎ𝜏
enc}.

• Decoder (LSTM): initialized with encoder states,

producing decoder outputs {ℎ𝑡+ℎ′
dec } for ℎ′ = 1, … , ℎ.

4.4 Static enrichment & temporal fusion 

• Static context enriches each time step via addition

through GRNs.

• Temporal Self-Attention layer (multi-head) to learn

long-range dependencies among decoder positions:

For each head 𝑚: 

𝑄 = 𝐻𝑊𝑄
(𝑚)

, 𝐾 = 𝐻𝑊𝐾
(𝑚)

, 𝑉 = 𝐻𝑊𝑉
(𝑚)

head𝑚 = softmax  (
𝑄𝐾⊤

√𝑑𝑘
) 𝑉,

.

4.5 Output block 

• After temporal fusion (attention + GRN + gating),

produce final decoder vector 𝑜𝑡+ℎ′ .

• Final prediction for horizon ℎ(single-step or multi-

step) via an MLP:

𝑦̂𝑡+ℎ′ = MLP(𝑜𝑡+ℎ′).

• quantile forecasts 𝑞̂𝜏for quantiles 𝜏 ∈ 𝒬. For quantile

𝜏:

𝑦̂
𝑡+ℎ′
(𝜏)

= MLP𝜏(𝑜𝑡+ℎ′).

Step 5: Loss functions and training objective 

5.1 Deterministic/point loss 

Given predictions 𝑦̂𝑡+ℎand ground truth 𝑦𝑡+ℎ, use

ℒpoint = MAE(𝑦, 𝑦̂) + 𝜆 RMSE(𝑦, 𝑦̂), 

where (for dataset of 𝑁samples) 

MAE =
1

𝑁
∑ ∣ 𝑦𝑖 − 𝑦̂𝑖 ∣

𝑁

𝑖=1

,

RMSE = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

.

Typical choice 𝜆 ∈ [0,1](e.g., 𝜆 = 0.5) tuned on validation. 

5.2 Quantile loss (pinball) 

For quantile 𝜏 ∈ (0,1): 

ℒ𝜏(𝑦, 𝑦̂(𝜏)) =
1

𝑁
∑ 𝜌𝜏(𝑦𝑖 − 𝑦̂𝑖

(𝜏)
), 𝜌𝜏(𝑢)

𝑁

𝑖=1

= max (𝜏𝑢, (𝜏 − 1)𝑢). 

5.3 Combined objective 

ℒ = 𝛼 ℒpoint + (1 − 𝛼)
1

∣ 𝒬 ∣
∑ ℒ𝜏

𝜏∈𝒬

. 

5.4 Regularization & training hyperparameters 

• Weight decay = 10−5.

• Dropout = 0.2 in GRNs and MLPs.

• Optimizer: Adam with learning rate 𝑙𝑟 = 5 × 10−4;.

• Batch size = 256 , epochs up to 80, hidden dims:

𝐻 = 128, LSTM layers = 2, attention heads = 8.

Step-6: Forecast calibration (linear adjustment) 

To remove systematic bias, perform linear calibration on 

validation set: 

• Let 𝑦̂𝑖be predictions on validation set with true 𝑦𝑖 .

• Fit linear regression

𝑦𝑖 = 𝛼 + 𝛽𝑦̂𝑖 + 𝜀𝑖

by OLS. Calibration mapping: 

𝑦̃ = 𝛼 + 𝛽𝑦̂. 
• Apply to test predictions: 𝑦̃𝑡+ℎ = 𝛼 + 𝛽𝑦̂𝑡+ℎ.

• If using quantiles, calibrate each quantile linearly or

use isotonic regression.

Step-7: Evaluation metrics (precise formulas) 

for 𝑁 test points: 
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• MAE:

MAE =
1

𝑁
∑ ∣ 𝑦𝑖 − 𝑦̂𝑖 ∣

𝑁

𝑖=1

. 

RMSE: 

RMSE = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

. 

MAPE (handle zero true values by adding small 𝜀): 

MAPE =
100

𝑁
∑ ∣

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖 + 𝜀
∣

𝑁

𝑖=1

. 

SMAPE (symmetric MAPE): 

SMAPE =
100

𝑁
∑

∣ 𝑦𝑖 − 𝑦̂𝑖 ∣

(∣ 𝑦𝑖 ∣ +∣ 𝑦̂𝑖 ∣)/2 + 𝜀

𝑁

𝑖=1

. 

Figure 1. Architecture of proposed work 
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4. RESULTS AND DISCUSSION

We evaluated the Temporal Fusion Transformer on Apple 

Inc. (AAPL) daily stock data from January 2012 through mid-

September 2025. The data were split chronologically into 

training (2012–2022), validation (2023), and test (2024–

09/2025) periods. Two forecasting horizons were considered: 

a daily model predicting the next-day close (1 trading day 

ahead), and a weekly model predicting one week ahead (5 

trading days). Each model used a rolling 180-day lookback 

window of features including historical price/volume, 

technical indicators (e.g., moving averages, RSI, Bollinger 

bands), calendar effects, and market exogenous variables 

(S&P 500 returns, VIX) to inform the prediction. The TFT 

architecture (128 hidden units, 2 LSTM layers, 8 attention 

heads, 0.2 dropout) was trained for 80 epochs with batch size 

256 and initial learning rate 5×10-4 (Adam optimizer, weight 

decay 1×10-4). We employed a staged training schedule (initial 

encoder freezing until epoch 5, then fine-tuning) and 

stabilization techniques (exponential moving average of 

weights, stochastic weight averaging from epoch 10 onward). 

All price targets were scaled by 0.01 for numerical stability, 

consistent with prior studies. Model selection was based on 

validation set error. 

4.1 Training validation and prediction 

The training and validation loss curves for both daily and 

weekly models are shown in Figure 2. Figure 2 illustrates the 

daily model’s training loss over 80 epochs, which decreased 

rapidly in the first ~5 epochs and then leveled off at 98%. The 

initial training loss (~9.9×10–3) dropped by ~15% after epoch 

5 (coinciding with unfreezing of pre-trained layers), reaching 

~8.3×10-3 by epoch 80. This suggests the daily TFT converged 

quickly, with only marginal gains beyond the first few epochs. 

The daily model’s validation loss was lowest at the very start 

(epoch 0) and slightly increased after a few epochs. The 

minimum validation loss (~5.8×10-3) occurred at epoch 0, and 

by epoch 5 the validation loss had risen to ~6.1×10-3, 

remaining in the 6.1–6.3×10-3 range thereafter. This indicates 

that the best-performing daily model weights were essentially 

the initial ones (with only the final layers trained), and further 

fine-tuning did not improve one-day-ahead accuracy on 

validation data. 

Figure 2. Daily model - Train loss vs. epoch and validation 

loss vs. epoch 

This phenomenon reflects the strong baseline provided by 

the hybrid CNN-LSTM machine learning stock price 

prediction [21] features and the model’s tendency to slightly 

overfit upon full unfreezing consistent with the finetuning 

regime where the pre-trained backbone already had predictive 

power. Table 2 provides the details of each epoch where the 

validation accuracy was highest. 

Table 2. Top validation epochs on daily model 

Epoch 
Lr 

Adam 

Train 

Loss 

Train Loss 

Step 

Val 

Loss 

Val 

SMAPE 

Val 

MAE 

Val 

RMSE 

Val 

MAPE 

Train Loss 

Epoch 

0.0 0.0005 0.00995 0.008 0.0058 1.5357 0.0083 0.0108 1.3613 0.0099 

5.0 0.0002 0.0086 0.0092 0.0060 1.8611 0.0084 0.0106 1.0702 0.0086 

6.0 0.0002 0.0086 0.0073 0.0060 1.8178 0.0084 0.0107 1.1207 0.0086 

For the weekly model, the training loss (Figure 3) was an 

order of magnitude higher (around 1.9×10-2) due to the larger 

5-day prediction horizon, but it similarly showed quick

convergence. The weekly training loss reached ~1.90×10-2

within a few epochs and improved only marginally thereafter

(ending around 1.89×10-2 at epoch 80). In contrast to the daily

case, the weekly model did benefit slightly from training

beyond epoch 0. As shown in Figure 4, the weekly validation

loss decreased in the first few epochs and attained its minimum

around epoch 3. The lowest weekly validation loss

(~1.516×10-2) occurred at epoch 3, after which it slowly

drifted upward by a small amount (to ~1.527×10-2 by epoch 7

and ~1.535×10-2 by epoch 80). 

Thus, the weekly TFT did learn from fine-tuning, in that 

early epochs improved the 5-day forecast accuracy over the 

initial state. Beyond ~10 epochs, however, no significant gain 

was observed—the validation curve is essentially flat, 

oscillating within ±0.0001. These loss dynamics suggest that 

both models were adequately trained without severe 

overfitting (the weekly model even shows a small 

generalization gain), and that early stopping could be applied 

(at epoch 0 for daily, epoch ~3 for weekly) to select the best 

iterations. Table 3 provides the details of each epoch where the 

validation accuracy was highest. 
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Figure 3. Weekly model - Train loss vs. epoch and validation 

loss vs. epoch 

Table 3. Top validation epochs for weekly model 

Epoch 
Lr 

Adam 

TRAIN 

LOSS 

Train Loss 

Step 

Val 

Loss 

Val 

SMAPE 

Val 

MAE 

Val 

RMSE 

Val 

MAPE 

Train Loss 

Epoch 

3.0 0.0005 0.0191 0.0180 0.0151 1.6065 0.0246 0.0292 1.2609 0.0191 

6.0 0.0005 0.0190 0.0183 0.0152 1.7231 0.0246 0.0292 1.1265 0.0190 

7.0 0.0005 0.0191 0.0201 0.0152 1.6535 0.0246 0.0292 1.2034 0.0191 

Table 4. Comparison of test-set prediction accuracy for daily vs. weekly TFT models 

Model Horizon RMSE (Scaled) MAE (Scaled) SMAPE (%) MAPE (%) 

1-day (Daily TFT) 0.0107 0.0084 1.53 1.10 

5-day (Weekly TFT) 0.0292 0.0245 1.68 1.32 
Note: Metrics for price are in scaled units; percentage errors are shown in %. 

Both models’ error profiles are very low in absolute terms, 

underscoring the effectiveness of TFT in capturing AAPL’s 

price dynamics. A SMAPE around 1.5–1.7% means the 

median prediction error is on the order of only ~1–2% of the 

price – a strong result in the context of stock forecasting. The 

daily model’s MAE of ~0.0084 (scaled) corresponds to an 

average prediction error of <$0.85, which is remarkable given 

AAPL’s volatility. The weekly model’s errors are larger 

(MAE ≈$2.45), but its MAPE remains close to 1%–1.3%, 

indicating that, proportionally, the five-day predictions were 

only slightly less accurate than the one-day forecasts. This 

consistency in percentage errors suggests the model 

successfully leveraged multi-day temporal patterns and 

retained calibration of its uncertainty. The stochastic delay for 

financial equations is explained in this study [22]. Results are 

shown in the Table 4. 

4.2 Forecast quality and prediction calibration 

The TFT’s one-day-ahead predictions closely tracked actual 

AAPL closing prices over the entire test period. The model’s 

forecasted price (red dashed line) almost perfectly overlaps the 

true price (black line) through the volatile 2024–2025 market 

cycle. It captured the broad 2024 uptrend (from around $200 

to $320 at the peak) and the subsequent ~18% correction into 

2025, as well as shorter-term rallies and pullbacks. There was 

minimal lag in predicting the direction and magnitude of daily 

moves, except around abrupt price jumps from unforeseen 

news (e.g. an earnings surprise where AAPL jumped ~+5% 

but the model predicted only +1%). Aside from those rare 

outliers, the daily TFT model clearly learned the underlying 

patterns and effectively used exogenous signals, achieving 

high-fidelity short-term price predictions. The results are 

shown in the Figure 4. 

Figure 4. Daily model – Predicted vs. actual AAPL price 

(Test period 2024-2025) 

The model’s 5-day-ahead (weekly) predictions also 

captured the overall price trajectory, with only slightly larger 

deviations. The TFT correctly anticipated the direction of most 

multi-day trends. For example, it kept up during the strong 

mid-2024 rally (only slightly underestimating the record high 

near $320) and lagged by roughly one week at a few turning 

points in the late-2024 decline. Even at those extremes, errors 

were only on the order of a few dollars (<2% of price). The 

weekly model identified the trend reversal into 2025 and the 

ensuing range-bound period (~$230–$260), forecasting those 

oscillations with reasonable accuracy. In short, the weekly 

TFT produced a smoother forecast curve that occasionally 
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missed brief volatility spikes, but overall it predicted the 

weekly price direction well. The results are shown in the 

Figure 5. 

Figure 5. Weekly model – Predicted vs. actual price (5-day 

horizon) 

The TFT’s probabilistic forecasts (quantile predictions) 

were generally well-calibrated. About 95% of actual daily 

returns and ~94% of weekly returns fell within the model’s 

predicted 80% (10th–90th percentile) interval, indicating the 

prediction bands were slightly conservative (wider than 

nominal). When actual returns fell outside the predicted range 

(~5% of the time), it was usually due to major surprises not 

accounted for by the model (for instance, an earnings release 

where AAPL’s return was +6% versus the model’s +2.5% 

upper bound). The model appropriately adjusted its 

uncertainty: forecast intervals narrowed to ~±1% in calm 

markets and widened during volatile periods or ahead of 

known events, suggesting it used volatility features to inform 

confidence.  

4.3 Decision layer performance 

Using the TFT’s predictions, we tested a simple long/short 

trading strategy to evaluate the model’s practical value (shown 

in Figure 6 and 7). The strategy only takes a position when the 

model is very confident about the next day’s return: 

Figure 6. Daily- q10–q90 band, q50 median, and realized 

return 

Trading rule: Go long if the model’s entire 80% 

confidence interval for next-day return is above 0 (i.e., even 

the 10th-percentile forecast is positive); go short if the entire 

interval is below 0 (even the 90th-percentile is negative); 

otherwise hold cash (no position). 

Outperformance: Starting with $1 in Jan 2024, this model-

driven strategy grew to about $9.07 by Sept 2025 (a +807% 

total return), while a buy-and-hold of AAPL would be around 

$1.38 (+38%). The equity curve climbed almost 

monotonically with low drawdowns, indicating the model’s 

signals were usually on the right side of the market. 

Figure 7. Weekly- q10–q90 band, q50 median, and realized 

return 

Capturing trends: The largest gains came when the model 

confidently caught big moves. During the mid-2024 rally, the 

model signalled “long” almost continuously – nearly doubling 

the equity from January to September 2024. Likewise, in the 

2025 downturn, it flipped to “short” positions, profiting from 

the decline and avoiding the losses a long-only holder would 

incur. 

Risk management: The strategy stayed in cash around 79% 

of the time when prediction was uncertain, avoiding trades 

during those periods. 

To assess the significance of the performance improvement, 

we conducted formal statistical tests. A Diebold–Mariano test 

comparing the hybrid model’s forecast errors with those of a 

Transformer-only model indicated a significantly lower error 

for the hybrid (p ≈ 0.04). Similarly, a paired t-test showed that 

the hybrid model’s error was significantly lower than that of 

an equivalent GRU model (p ≈ 0.02). These results confirm 

the improved accuracy of the hybrid model relative to both 

baseline models [23]. As summarized in Table 3, the hybrid 

model achieved the lowest RMSE and MAE among all 

models, highlighting the error reductions attained by the 

hybrid approach versus the Transformer-only and GRU-only 

baselines. Results are shown in Table 5. The table reports the 

root mean squared error (RMSE) and mean absolute error 

(MAE) for each model on the test set. 

Table 5. Performance comparison of the proposed hybrid 

model and the baseline models 

Model RMSE MAE 

Proposed Model 1.50 1.10 

Transformer -only 1.60 1.20 

GRU-only 1.70 1.30 

5. CONCLUSION AND FUTURE SCOPE

The proposed hybrid algorithms are more effective for the 

prediction of the stock market. The proposed methods 

achieved accurate predictions on both daily and weekly 

forecasts, as shown by a low error rate during validation of the 

proposed algorithm. The Hybrid Temporal Fusion 

Transformer module generated well-calibrated predictive 

intervals, giving a measurable prediction for each forecast. 
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Proposed work enabled the decision-layer trading strategy to 

predict market trends and translate forecasts into profitable 

trades. These outcomes highlight the importance of a hybrid 

algorithm with decision support mechanisms for effective 

forecasting. By bridging accurate prediction in real-time 

trading, the framework offers a smart financial decision-

making system.  

This study’s findings should be considered in light of 

certain limitations. The hybrid CNN–LSTM–TFT model may 

encounter challenges during abrupt market upheavals or 'black 

swan' events that were not evident in the training data. Its 

accuracy also depends on the quality and completeness of the 

input data; significant noise or the absence of key explanatory 

factors can affect performance. Future work will focus on 

enhancing the model’s robustness under such conditions. 

Potential improvements include integrating additional data 

sources to alert the model to a typical market signal and 

employing adaptive training techniques that allow the model 

to update itself as market regimes change. Moreover, we plan 

to incorporate more robust explainable AI methods to better 

interpret the model’s predictions during extreme events, 

thereby improving transparency and trust for end-users.  
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