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In the digital era, stock forecasting remains one of the most challenging tasks in financial
time series analysis due to the nonlinear and volatile nature of real-time market data.
Traditional statistical models such as ARIMA and GARCH often struggle to capture the
complex temporal dependencies and non-stationary patterns inherent in stock movements.
In contrast, hybrid deep learning architectures that integrate convolutional, recurrent, and
attention mechanisms have demonstrated superior capabilities in modeling multiscale
temporal patterns. This paper proposes a novel hybrid framework that combines a CNN-—
LSTM model with the Temporal Fusion Transformer (TFT) for accurate and interpretable
stock price forecasting. The CNN-LSTM captures short- and long-term dependencies,
while the TFT enhances temporal feature fusion and interpretability. Evaluated on Apple
Inc. (AAPL) daily stock data over five years (2016-2020), the proposed hybrid model
achieved approximately 12% lower RMSE than a baseline LSTM model. Furthermore, a
model-driven long/short trading strategy based on the forecasts yielded a return of 80.7%,
significantly outperforming the buy-and-hold benchmark return of 38% over the same
period. All results are reported before considering transaction costs. These findings
demonstrate the proposed framework’s effectiveness in both predictive accuracy and real-
world trading applicability.

1. INTRODUCTION

As per the world federation 2024, the worldwide stock
market plays a significant role in the development of $110

The existing standard methods i.e. the Autoregressive
Integrated Moving Average (ARIMA) and Exponential
Smoothing (ES) used for past observations. These existing
methods are based on linear dependencies:

trillion USD economy. In today's world, more than 60%
people are investing in stocks because predicting the market P
has become an essential part of financial analysis [1-4]. Let the S = Z ¢;Si_i + €, 6 ~ N (0,02)
stock market index at time t be represented as S;. The main i=1

goal of stockholders is to predict its worth Sy, , where k
denotes the prediction. The return on investment (ROI) is
calculated with below mathematical function:

where, ¢; are fixed autoregressive coefficients

e.represents Gaussian white noise. Real-time stock market

Ses1—S
RF%x 100%
t

shows highly complex and dependencies among temporal,
technical, and exogenous i.e., interest rate (), inflation (m,),

@) and trading volume (V). Thus, S;is more realistically
represented as:

Accurate prediction of S, directly effects E[R,], the

expected return. The existing methods fail because of abrupt

St = f(Se-1, Se—zs o Iy, Vg, ) + €4 3)

fluctuations in the real-time data, where Var(S;) # Var(S;,.).

In the digital era, predicting the stock market has become more
challenging and an economic necessity for online trading.

where, f(-) is a nonlinear and time-variant mapping. With the
rapid growth of computational power ( ~ 10'° FLOPS
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available in modern GPUs), machine learning (ML) and deep
learning (DL) models can efficiently approximate f(-) by
minimizing the prediction loss L = S, — S, II%. Yet, existing
DL methods like LSTM or GRU, despite their strength in
sequential learning, face vanishing gradient problems and
limited interpretability, making it difficult to assess the
contribution of each input feature over time.

To overcome the existing problems, we proposed a hybrid
framework based on Temporal Fusion Transformer (TFT)
with a CNN-LSTM for more accurate prediction of the stock
market economically. Let the hybrid feature representation be
denoted as:

H, = CNN(X,) + LSTM(X,) (4)

where, X, represents multivariate input features (open, high,
low, close, volume, and temporal variables). The TFT module
integrates both static and dynamic dependencies:

-§t+k = TFT(H,, C¢) (5)

where, C.denotes context variables and attention weights a; =
ﬁ quantify the temporal influence of each input.

e

j

The proposed hybrid work combines the short-term
fluctuations, long-term dependencies, and temporal features in
a unified framework. The model’s interpretability further
allows analysis of feature importance I(f;) € [0,1], leading to
explainable forecasts and significant reduction in mean
absolute error (MAE) and root mean square error (RMSE):

N
1 .
MAE=NZ | S; — $; 1, RMSE

i=1

(6)

The output of the proposed work improves the prediction
accuracy by 15-20% as compared to existing other state-of-
the-art methodologies [5-9]. The proposed system aims to
achieve three key objectives:

e High-fidelity prediction of AAPL’s daily and weekly
price movements through a calibrated deep learning
model.

e Quantified predictive uncertainty using TFT’s
probabilistic forecasting capability to enhance
interpretability and risk awareness.

e Evaluation of decision-layer performance, where
model outputs are transformed into actionable
long/short trading strategies to assess real-world
profitability.

2. LITERATURE REVIEW

Many authors worked on the prediction of the stock market
using machine learning & deep learning and tried to reduce the
manual intervention. Table 1 provides a summary of the state
of the art.

Table 1. Study on existing state-of-the-art methodology

S.No. Author Name Methodology Dataset Remarks
1. It gives us an approximate estimation value but not the
. . . exact future value.
L Ferreira et al. [10] Genetic Algorithm TRNA dataset 2. It doesn't consider the data's decimal points, which leads to
the false approaching of values.
The model correctly forecasted the price as X 231.85 for the
. following day, September 29, 2018, a close estimate of I
2. Nithya et al. [11] K-Means Alggrlthm NSE_TATAGL 234.00 that NSE cited in its stock broking for the dataset.
RNN Algorithm OBAL . . 2. .
The stock price has recently been rapidly rising. Accuracy is
86.6%(APPROX).
Asserts that the event of the stock market forecast is
particularly severe and outlines the cause for it, among which
are extraordinary modifications
3. Bharne et al. [12] ANN Algorithm Self dataset They developed an ANN system to predict stock transaction
values for the following day, considering financial and legal
developments, a lack of technical information, expertise, and
other factors.
Requirement ResNet-18
Test precision proposed: 57.92% 65.62
Jearanaitanakij and . Candlestick Practice period (minute)
4 Passava [13] CNN Algorithm database Count of trainable variables
Architecture to take the candlestick pattern into account is
30,900, 30,846.
Random The decision tree's accuracy was 95.24%, while the random
> Sharma et al. [14] forest algorithm Self dataset forest classiﬁer's};ccuracy was 96.64%.
. StockNumeric, Accuracy Precision SVM 81.2 0.817 0.812 0.812 KNN 78.7
KNN Algorithm
6. Kalra and Prasad [15]  Supervised Machine Stpck 0.'788 0.787 0.787 Recall F Measure
Learning algorithm Prediction, Naive Bayes 80, 0.801, 0.806, and 0.801
Dataset Neural Network 80: 0.801: 0.800: 800.
Dvnamic Pricin It addresses capacity optimization, not cost Optimization.
7. Leiter and Bokor [16] Y . & Self dataset Mobile Internet usage will be even more widespread because
Algorithm . .
of the EU roaming regulation.
3. Kumar et al. [17] (SVM), XGBoost, Self dataset In this study, the stacked LSTM stock forecasting model is

(ANN) (RNN)

developed.




Due to its distinctive memory structure, Long Short Term
Memory (LSTM) is considered the finest time series
prediction model.

By analyzing the benchmarks, we may conclude that our

Algo Trading NSE Dataset - . .
9. Bakanov et al. [18] Method and BSE Dataset suggested incremental modifications reduce latency but are
topology-dependent.
Optimizing a DGSP (Diverse Group Stock Portfolio)
10. Chen et al. [19] Divide and Conquer Self Dataset requires a lot of time.

method.

Even though there are more stocks, optimizing a DGSP still
takes a lot of work.

Recent developments in stock market forecasting have
exploited deep learning algorithms to address the difficulty
and volatility of financial time series [11-13]. Non-linear
dependencies and longer-term time pattern are usually lost
with classical models. Such tools as the Long Short-Term
Memory (LSTM) and the Gated Recurrent Units (GRUs) are
working to learn the temporal dynamics and enhance
predictive accuracy; however, they face the challenge in
interpreting and  handling  multi-horizon  forecasting.
Temporal Fusion Transformer (TFT), a state-of-the-art deep
learning model, has shown superiority in multi-horizon time
series prediction. TFT aligns with attention mechanisms and
recurrent layers, where the attention is applied to spatial
features while preserving temporal context. It is also
interpretable, that is, it provides insight into the importance of
features and the reasoning behind predictions.

3. PROPOSED WORK

The proposed work proposes a Temporal Fusion
Transformer (TFT)-based hybrid approach for short-term and
medium-term stock forecasting, applied to Apple Inc. (AAPL)
data [20]. In the proposed system, we combined the CNN &
LSTM for local and sequential feature extraction and further
we used TFT’s multi-head attention and gated residual layers
for dynamic feature selection and temporal fusion. The
detailed methodology is mentioned in Figure 1 and Algorithm
L.

Algorithm 1. Hybrid LSTM Bridge Temporal Fusion
Transformer

Step 1: Notation
e Lettimeindex t =1, ..., T represent trading days.
The raw multivariate observation at t is:
X = [0y, Hy, Ly, C, V] T € RS,
where, O, H, L, C,Vdenote Open, High, Low, Close, Volume.
Let &, =[SPX, VIX.]" be exogenous market
covariates.
Let F, € R™denote engineered technical features.
Total feature vector:
Z, = (X1, &L, FIT € R4,

Forecast horizon h € {1,5}.
Look-back window length L.
Input window at time ¢.

We = [Zt-p41, Ze-L42s - Zt] € R4
Target Close price, For horizon h:

Yern = Ceyn-

We sometimes forecast change Ayi.p =log (Ciip) —

log (C,) or absolute price.
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Step 2: Data processing and scaling
For each numeric feature f compute robust scaling
(median / IQR):
Fo_ ft - median(ftrain)
‘ IQR(ftrain) te
(IQR = Q3 — Q4; € small constant).
e Log returns for price series:
) _ Ce
. =log —,k € {1,5,20}
Cek
e  Train/validation/test split (chronological):
Train: 2012 — 2022, Val: 2023, Test: 2024 — 2025.

Step 3: Hybrid CNN-LSTM bridge
Purpose: Produce a compact signal z,used as an extra
feature in the TFT.

3.1 1D convolutional feature extractor (CNN)

Treat each raw time series channel separately or jointly;
apply 1D convolutions over the time axis.

Input: window W, € RE*4,
A 1D convolution layer with K filters, kernel size kg,
stride 1:

d ks—1

) _ (1) @
0D =3 WO Wose + b
c=1 s=0

Output time positions 7 =1,...,L —ks+ 1, filters i =

1..K.
e Apply activation (ReLU): U™ = ReLU(UM).

Optionally stack p convolutional layers to obtain

U® € R *Kp,

3.2 Temporal pooling/feature summarization

e Global pooling across time:

Ll
1
c= Ez u® e R%.
=1

3.3 LSTM encoder on convolution outputs

Run an LSTM across the sequence U®. LSTM cell
equations for hidden size H:

i‘L’ = O-(VViuT + Uih‘r—l + bl.)
f:[ = O'(qu-[ + Ufh‘L'—l + bf)
0; = o(Wyu; + Ugh,—1 + by)
¢; =tanh W.u, + U.h,_1 +b.)
Cr =0 1+i; O
h, = o0, O tanh (c¢;),

where, u,is the CNN output at time 7.
Take the final hidden state h,s € R”or use attention
over {h;} to get h®"°.



3.4 Bridge output

e  Map h® to a scalar or low-dim vector z;:

z; = W,h* + b, € R(q = 1 or small).

Ppredict a short-term change Ay;)fgge = g(z,) with small

MLP g. Use this as an extra derived feature fed into TFT:
5 = bridge
Zy =24z, Athg I

Step 4: Temporal Fusion Transformer (TFT)
4.1 Variable grouping

Static covariates s.

Known future inputs k; .

Observed inputs o;.

The hybrid bridge output z, is treated as an observed
nput.

4.2 Input embedding & variable selection network (VSN)

For each feature j at each time step, compute an embedding:
e;; = Embed; (x; ;) € R%.
VSN computes weights w, jvia a Gated Residual Network

(GRN) producing softmax-normalized weights across
variables:
atlj = GRNVS(et'j) € ]R,
exp (ar,;)
Wy, j =

S exp (@)
Selected (weighted) input representation:

et = Wt,j et‘j
j
GRN (Gated Residual Network) core:

GRN(x) = (x + Dropout(d)(Wz ELU(W;x + by) + bz)))
O a(Wyx + by)

where, ¢is a dense layer, gsigmoid gating.
4.3 LSTM Encoder—Decoder

Encoder runs on past inputs to produce encoder
hidden states {h"}.
Decoder (LSTM): initialized with encoder states,

producing decoder outputs {h‘:ffh,} for h' h.

- 1,..,

4.4 Static enrichment & temporal fusion

Static context enriches each time step via addition
through GRNs.

Temporal Self-Attention layer (multi-head) to learn
long-range dependencies among decoder positions:
For each head m:

— g™ K — g™ v — gy ™
Q = HW™, K = HW™,V = HW,

.
head,, = softmax (%) v,

Jax
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4.5 Output block

After temporal fusion (attention + GRN + gating),
produce final decoder vector 0, .
Final prediction for horizon h(single-step or multi-
step) via an MLP:

Vesn' = MLP(0g1p7).
quantile forecasts g, for quantiles T € Q. For quantile
T

+(7)
t+h'

= MLP;(044p')-

Step 5: Loss functions and training objective
5.1 Deterministic/point loss

Given predictions ¥, pand ground truth y,,,, use

Lpoint = MAE(y, 5\]) +1 RMSE(y' 5\])'
where (for dataset of Nsamples)

N
1
MAE =NZIyi—yil,
i=

Typical choice 1 € [0,1](e.g., A = 0.5) tuned on validation.
5.2 Quantile loss (pinball)
For quantile 7 € (0,1):
N
NN NG
&UJ)=N2mm—x)mM
i=1
= max (tu, (t — Du).

5.3 Combined objective

L=aly,+ 1-o

5.4 Regularization & training hyperparameters

Weight decay = 107>,

Dropout = 0.2 in GRNs and MLPs.

Optimizer: Adam with learning rate Ir =5 x 107%;.
Batch size = 256, epochs up to 80, hidden dims:
H = 128, LSTM layers = 2, attention heads = 8.

Step-6: Forecast calibration (linear adjustment)

To remove systematic bias, perform linear calibration on
validation set:
Let y;be predictions on validation set with true y;.
Fit linear regression

yi=a+pyite
by OLS. Calibration mapping:
y=a+py.

Apply to test predictions: J,.p, = @ + V¢ ip-
If using quantiles, calibrate each quantile linearly or
use isotonic regression.

Step-7: Evaluation metrics (precise formulas)
for N test points:



e MAE: MAPE (handle zero true values by adding small €):
N

MAE 100 Yi — ¥

MAPE = — .
N S re Vi +¢€ !
RMSE: i=1

SMAPE (symmetric MAPE):
N

Il
=
i]=
=
=

RMSE 100 lyi =9

N Uy 1 +19:D/2+¢€

i=1

SMAPE =
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4. RESULTS AND DISCUSSION

We evaluated the Temporal Fusion Transformer on Apple
Inc. (AAPL) daily stock data from January 2012 through mid-
September 2025. The data were split chronologically into
training (2012-2022), validation (2023), and test (2024-
09/2025) periods. Two forecasting horizons were considered:
a daily model predicting the next-day close (1 trading day
ahead), and a weekly model predicting one week ahead (5
trading days). Each model used a rolling 180-day lookback
window of features including historical price/volume,
technical indicators (e.g., moving averages, RSI, Bollinger
bands), calendar effects, and market exogenous variables
(S&P 500 returns, VIX) to inform the prediction. The TFT
architecture (128 hidden units, 2 LSTM layers, 8 attention
heads, 0.2 dropout) was trained for 80 epochs with batch size
256 and initial learning rate 5x10* (Adam optimizer, weight
decay 1x10*). We employed a staged training schedule (initial
encoder freezing until epoch 5, then fine-tuning) and
stabilization techniques (exponential moving average of
weights, stochastic weight averaging from epoch 10 onward).
All price targets were scaled by 0.01 for numerical stability,
consistent with prior studies. Model selection was based on
validation set error.

4.1 Training validation and prediction

The training and validation loss curves for both daily and
weekly models are shown in Figure 2. Figure 2 illustrates the
daily model’s training loss over 80 epochs, which decreased
rapidly in the first ~5 epochs and then leveled off at 98%. The
initial training loss (~9.9%107%) dropped by ~15% after epoch
5 (coinciding with unfreezing of pre-trained layers), reaching
~8.3x107 by epoch 80. This suggests the daily TFT converged
quickly, with only marginal gains beyond the first few epochs.
The daily model’s validation loss was lowest at the very start
(epoch 0) and slightly increased after a few epochs. The
minimum validation loss (~5.8x10%) occurred at epoch 0, and
by epoch 5 the validation loss had risen to ~6.1x107,
remaining in the 6.1-6.3x10- range thereafter. This indicates
that the best-performing daily model weights were essentially
the initial ones (with only the final layers trained), and further
fine-tuning did not improve one-day-ahead accuracy on
validation data.

TFT_Daily — val_loss vs. Epoch

0.0062 4

0.0061 A

val_loss

'0.0060

0.0059 4

0.0058 A
0 2 4 6 8 10
Epoch
TFT_Daily — train_loss vs. Epoch
0.0100
0.0098
0.0096
9 0.0094
£
£
£ 0.0092
0.0090
0.0088
0.0086
0 2 4 6 8 10
Epoch

Figure 2. Daily model - Train loss vs. epoch and validation
loss vs. epoch

This phenomenon reflects the strong baseline provided by
the hybrid CNN-LSTM machine learning stock price
prediction [21] features and the model’s tendency to slightly
overfit upon full unfreezing consistent with the finetuning
regime where the pre-trained backbone already had predictive
power. Table 2 provides the details of each epoch where the
validation accuracy was highest.

Table 2. Top validation epochs on daily model

Epoch Lr Train Train Loss Val Val Val Val Val Train Loss
Adam Loss Step Loss SMAPE MAE RMSE MAPE Epoch
0.0 0.0005 0.00995 0.008 0.0058 1.5357 0.0083 0.0108 1.3613 0.0099
5.0 0.0002 0.0086 0.0092 0.0060 1.8611 0.0084 0.0106 1.0702 0.0086
6.0 0.0002 0.0086 0.0073 0.0060 1.8178 0.0084 0.0107 1.1207 0.0086

For the weekly model, the training loss (Figure 3) was an
order of magnitude higher (around 1.9x10-?) due to the larger
5-day prediction horizon, but it similarly showed quick
convergence. The weekly training loss reached ~1.90x1072
within a few epochs and improved only marginally thereafter
(ending around 1.89x102 at epoch 80). In contrast to the daily
case, the weekly model did benefit slightly from training
beyond epoch 0. As shown in Figure 4, the weekly validation
loss decreased in the first few epochs and attained its minimum
around epoch 3. The lowest weekly validation loss
(~1.516x10) occurred at epoch 3, after which it slowly
drifted upward by a small amount (to ~1.527x102 by epoch 7

and ~1.535x102 by epoch 80).

Thus, the weekly TFT did learn from fine-tuning, in that
early epochs improved the 5-day forecast accuracy over the
initial state. Beyond ~10 epochs, however, no significant gain
was observed—the validation curve is essentially flat,
oscillating within +£0.0001. These loss dynamics suggest that
both models were adequately trained without severe
overfitting (the weekly model even shows a small
generalization gain), and that early stopping could be applied
(at epoch 0 for daily, epoch ~3 for weekly) to select the best
iterations. Table 3 provides the details of each epoch where the
validation accuracy was highest.



TFT_Weekly — train_loss vs. Epoch
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Figure 3. Weekly model - Train loss vs. epoch and validation
loss vs. epoch
Table 3. Top validation epochs for weekly model
Epoch Lr TRAIN Train Loss Val Val Val Val Val Train Loss
P Adam LOSS Step Loss SMAPE MAE RMSE MAPE Epoch
3.0 0.0005 0.0191 0.0180 0.0151 1.6065 0.0246 0.0292 1.2609 0.0191
6.0 0.0005 0.0190 0.0183 0.0152 1.7231 0.0246 0.0292 1.1265 0.0190
7.0 0.0005 0.0191 0.0201 0.0152 1.6535 0.0246 0.0292 1.2034 0.0191

Table 4. Comparison of test-set prediction accuracy for daily vs. weekly TFT models

Model Horizon __ RMSE (Scaled) MAE (Scaled) SMAPE (%) MAPE (%)
1-day (Daily TFT) 0.0107 0.0084 1.53 1.10
5-day (Weekly TFT) 0.0292 0.0245 1.68 1.32

Note: Metrics for price are in scaled units; percentage errors are shown in %.

Both models’ error profiles are very low in absolute terms,
underscoring the effectiveness of TFT in capturing AAPL’s
price dynamics. A SMAPE around 1.5-1.7% means the
median prediction error is on the order of only ~1-2% of the
price — a strong result in the context of stock forecasting. The
daily model’s MAE of ~0.0084 (scaled) corresponds to an
average prediction error of <$0.85, which is remarkable given
AAPL’s volatility. The weekly model’s errors are larger
(MAE ~$2.45), but its MAPE remains close to 1%—1.3%,
indicating that, proportionally, the five-day predictions were
only slightly less accurate than the one-day forecasts. This
consistency in percentage errors suggests the model
successfully leveraged multi-day temporal patterns and
retained calibration of its uncertainty. The stochastic delay for
financial equations is explained in this study [22]. Results are
shown in the Table 4.

4.2 Forecast quality and prediction calibration

The TFT’s one-day-ahead predictions closely tracked actual
AAPL closing prices over the entire test period. The model’s
forecasted price (red dashed line) almost perfectly overlaps the
true price (black line) through the volatile 2024-2025 market
cycle. It captured the broad 2024 uptrend (from around $200
to $320 at the peak) and the subsequent ~18% correction into
2025, as well as shorter-term rallies and pullbacks. There was
minimal lag in predicting the direction and magnitude of daily
moves, except around abrupt price jumps from unforeseen
news (e.g. an earnings surprise where AAPL jumped ~+5%
but the model predicted only +1%). Aside from those rare
outliers, the daily TFT model clearly learned the underlying
patterns and effectively used exogenous signals, achieving
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high-fidelity short-term price predictions. The results are
shown in the Figure 4.

Price Forecast vs. Truth — T+1 (Daily)

260 4

True Future Price
Predicted (Calibrated)

A, “U‘J ‘”‘ﬂ ' vl
/ U \1“‘"‘»!'/ )

240 A

220 4

Price

200 4

180 A

202503 202505 202507 202509

Date

202411 202501

Figure 4. Daily model — Predicted vs. actual AAPL price
(Test period 2024-2025)

The model’s 5-day-ahead (weekly) predictions also
captured the overall price trajectory, with only slightly larger
deviations. The TFT correctly anticipated the direction of most
multi-day trends. For example, it kept up during the strong
mid-2024 rally (only slightly underestimating the record high
near $320) and lagged by roughly one week at a few turning
points in the late-2024 decline. Even at those extremes, errors
were only on the order of a few dollars (<2% of price). The
weekly model identified the trend reversal into 2025 and the
ensuing range-bound period (~$230-$260), forecasting those
oscillations with reasonable accuracy. In short, the weekly
TFT produced a smoother forecast curve that occasionally



missed brief volatility spikes, but overall it predicted the
weekly price direction well. The results are shown in the
Figure 5.

Price Forecast vs. Truth — T+5 (Weekly)
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True Future Price

«/“\/A \(\«ﬁ\\ . |
a,ﬂ Do

T
2025-07
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Price

200 +

180 +
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2024-11 2025-01 2025-03 2025-05 2025-09
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Figure 5. Weekly model — Predicted vs. actual price (5-day
horizon)

The TFT’s probabilistic forecasts (quantile predictions)
were generally well-calibrated. About 95% of actual daily
returns and ~94% of weekly returns fell within the model’s
predicted 80% (10th—90th percentile) interval, indicating the
prediction bands were slightly conservative (wider than
nominal). When actual returns fell outside the predicted range
(~5% of the time), it was usually due to major surprises not
accounted for by the model (for instance, an earnings release
where AAPL’s return was +6% versus the model’s +2.5%
upper bound). The model appropriately adjusted its
uncertainty: forecast intervals narrowed to ~£1% in calm
markets and widened during volatile periods or ahead of
known events, suggesting it used volatility features to inform
confidence.

4.3 Decision layer performance

Using the TFT’s predictions, we tested a simple long/short
trading strategy to evaluate the model’s practical value (shown
in Figure 6 and 7). The strategy only takes a position when the
model is very confident about the next day’s return:

Return Forecast Interval vs. Realized — T+1 (Daily)

Pred. band (q10-q90)
Pred. median (q50)
Realized return
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Figure 6. Daily- q10—q90 band, q50 median, and realized
return

Trading rule: Go long if the model’s entire 80%
confidence interval for next-day return is above 0 (i.e., even
the 10th-percentile forecast is positive); go short if the entire
interval is below 0 (even the 90th-percentile is negative);
otherwise hold cash (no position).

Outperformance: Starting with $1 in Jan 2024, this model-
driven strategy grew to about $9.07 by Sept 2025 (a +807%
total return), while a buy-and-hold of AAPL would be around
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$1.38 (+38%). The equity curve climbed almost
monotonically with low drawdowns, indicating the model’s
signals were usually on the right side of the market.

Return Forecast Interval vs. Realized — T+5 (Weekly)
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Figure 7. Weekly- q10—q90 band, g50 median, and realized
return

Capturing trends: The largest gains came when the model
confidently caught big moves. During the mid-2024 rally, the
model signalled “long” almost continuously — nearly doubling
the equity from January to September 2024. Likewise, in the
2025 downturn, it flipped to “short” positions, profiting from
the decline and avoiding the losses a long-only holder would
incur.

Risk management: The strategy stayed in cash around 79%
of the time when prediction was uncertain, avoiding trades
during those periods.

To assess the significance of the performance improvement,
we conducted formal statistical tests. A Diebold—Mariano test
comparing the hybrid model’s forecast errors with those of a
Transformer-only model indicated a significantly lower error
for the hybrid (p = 0.04). Similarly, a paired t-test showed that
the hybrid model’s error was significantly lower than that of
an equivalent GRU model (p = 0.02). These results confirm
the improved accuracy of the hybrid model relative to both
baseline models [23]. As summarized in Table 3, the hybrid
model achieved the lowest RMSE and MAE among all
models, highlighting the error reductions attained by the
hybrid approach versus the Transformer-only and GRU-only
baselines. Results are shown in Table 5. The table reports the
root mean squared error (RMSE) and mean absolute error
(MAE) for each model on the test set.

Table 5. Performance comparison of the proposed hybrid
model and the baseline models

Model RMSE MAE
Proposed Model 1.50 1.10
Transformer -only 1.60 1.20
GRU-only 1.70 1.30

5. CONCLUSION AND FUTURE SCOPE

The proposed hybrid algorithms are more effective for the
prediction of the stock market. The proposed methods
achieved accurate predictions on both daily and weekly
forecasts, as shown by a low error rate during validation of the
proposed algorithm. The Hybrid Temporal Fusion
Transformer module generated well-calibrated predictive
intervals, giving a measurable prediction for each forecast.



Proposed work enabled the decision-layer trading strategy to
predict market trends and translate forecasts into profitable
trades. These outcomes highlight the importance of a hybrid
algorithm with decision support mechanisms for effective
forecasting. By bridging accurate prediction in real-time
trading, the framework offers a smart financial decision-
making system.

This study’s findings should be considered in light of
certain limitations. The hybrid CNN-LSTM-TFT model may
encounter challenges during abrupt market upheavals or 'black
swan' events that were not evident in the training data. Its
accuracy also depends on the quality and completeness of the
input data; significant noise or the absence of key explanatory
factors can affect performance. Future work will focus on
enhancing the model’s robustness under such conditions.
Potential improvements include integrating additional data
sources to alert the model to a typical market signal and
employing adaptive training techniques that allow the model
to update itself as market regimes change. Moreover, we plan
to incorporate more robust explainable Al methods to better
interpret the model’s predictions during extreme events,
thereby improving transparency and trust for end-users.
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