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Cyber-physical systems (CPS) face rising sophisticated cyber attacks because they 

connect with digital systems through networks. Data security and privacy protection 

within these systems stands as the key factor for operational integrity maintenance. An 

effective intrusion detection method with improved security and privacy capabilities 

serves to enrich CPS environments. This research leverages the NSL-KDD, a well-

established benchmark dataset for attack detection and the proposed model employs the 

BI-GRU architecture. The design of this model targets both forward and backward time 

sequences because it aims to analyze contextual dependencies thus enhancing threat 

classification accuracy. Present intrusion detection methods currently find it difficult to 

maintain generality between developing attack vector patterns since their sequential 

pattern modeling capabilities remain inadequate. In order to overcome this limitation, the 

proposed Bi-Gated Recurrent Units (Bi-GRU) based model presents a bidirectional 

representation that yields more detailed dependencies and is more resistant to various 

intrusion behaviors. The model attains a high accuracy of 98.47%, surpassing other 

models such as LSTM (94.5%), GRU (95.7%), and BiLSTM (93.9%) in generalization. 

While existing CPS IDS frameworks have a high false-positive rate, the suggested 

framework reduces false-positives rate to 3%, which makes it more reliable in real-life 

CPS settings. The suggested model demonstrated its effectiveness by the efficient 

information processing capability and its low false positive rate with its high 

generalization capacity. The study performs significant experimental trials to demonstrate 

real-time application of this approach in CPS settings that introduces a significant 

breakthrough in cyber-physical infrastructure security against intelligent attacks.  
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1. INTRODUCTION

Cyber-physical systems (CPS) act as technological 

transformation drivers since they integrate physical processes 

with computational intelligence approaches [1]. These 

systems have now been widely applied in multiple 

applications, like industrial automation, transport systems, 

patient care, smart cities and energy distribution networks [2-

4]. Such systems have dynamic sensing and regulation based 

on predictive decision strategies that lead to more efficient and 

intellectually developed infrastructures. This extensive 

deployment of CPS creates higher connectivity that exposes 

these systems to numerous cyber risks as well as security 

breaches [5, 6]. 

Higher complexity within CPS environments results in 

expanded risk areas so cyber intrusions have increased rapidly. 

A series of cyberattacks including probing along with user-to-

root exploits and remote-to-local attacks as well as Denial of 

Service (DoS) and Distributed Denial of Service (DDoS 

attacks have demonstrated high disruptiveness in their nature 

[7, 8]. These attacks take advantage of network 

communication shortcomings to stop systems by manipulating 
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bandwidth limits into service hindrances and corrupting data 

systems [9, 10]. Because CPS connect to each other, the 

infrastructure suffers major operational and economic damage 

from localized attacks which spread throughout the entire 

network [11]. 

Intrusion Detection Systems (IDS) serve as deployed tools 

in many CPS applications to handle these risks [12]. Network 

pattern analysis and malicious activity recognition and 

warning generation are features built into IDS tools which 

serve system administrators. The effectiveness of signature-

based and rule-based IDS decreases when they operate in 

dynamic or evolving cyber systems especially when facing 

unknown threats [13, 14]. Zero-day attacks and new threat 

variants remain undetectable to IDS tools because their limited 

generalization capabilities make them unable to recognize 

unknown threats. 

CPS environments create considerable flows of real-time 

data whose relationships depend on time, along with 

contextual aspects [15]. Systems require proper pattern 

capturing and analysis techniques to differentiate between 

standard activities and security threats. The complex nature of 

CPS exceeds the analytical capacity of shallow algorithms and 

current models, leading to deterioration of detection 

performance and more misclassifications [16-19]. The lack of 

data analysis precision has led to an increasing adoption of 

superior data-specific techniques that implement machine 

learning (ML) and deep learning (DL) approaches.  

Effective digital protection in CPS is not only a technical 

specification but also a prerequisite that guarantees the 

security of critical infrastructure functioning. Hence, there is 

an essential need for a smart and scalable CPS environment 

defensive mechanism. 

 

1.1 Contribution of the research 

 

Even with this rapid progress, the existing IDS tools used in 

CPS settings are characterized by limited adaptability, false-

positive rates, and poor temporal modeling, rendering them 

ineffective against zero-day and evolving attacks. These 

constraints become more important as CPS experience more 

advanced attacks like control-signal interference, sensor 

information corruption, and simultaneous network assaults, all 

of which demonstrate the incapacity of traditional IDS systems 

to guarantee dependable real-time security. Motivated by the 

above mentioned challenges, the study presents the following 

major findings and solutions to mitigate the growing 

challenges that safeguard CPS against emerging cyber threats: 

1. A DL-based intrusion detection framework is 

introduced, which employs Bi-GRU architecture to 

process both forward and backward sequence temporal 

patterns for enhancing threat classification outcomes. 

2. The study utilizes the NSL-KDD dataset with a 

comprehensive preprocessing pipeline that addresses 

the problems of data normalization and imbalance to 

generate high- quality training and evaluation data. 

3. The system exhibits strong detection abilities for 

various CPS threats, as demonstrated through 

performance metric validation utilising accuracy, 

precision, recall and F1-score measures with 

specificity. 

 

1.2 Paper organization  

 

The study is organized in the following manner: Section 2 

encompasses a thorough literature review on security in CPS 

environments. Section 3 presents the dataset characteristics, 

data pre-processing and the suggested Bi-GRU architecture. 

Section 4 includes analysis of experimental design along with 

evaluation outcomes and DL method comparison. At last, 

Section 5 wraps up the paper with valuable insights and 

provides the perspective of future research areas. 

 

 

2. RELATED WORKS  

 

Anusha et al. [20] presented a DL-based CNN model to 

identify cyber threats in IoT-based CPS. Their study discussed 

the limitations of the current Support Vector Machine (SVM) 

models, which cannot cope with the dynamic nature of cyber-

attacks because they heavily depend on the historical data. The 

suggested CNN model exhibited better detection of cyber-

attacks under different classification assessment metrics, 

compared to earlier models. Nevertheless, the recommended 

model has a comparatively high rate of false positives, which 

reduces its validity in real-world CPS settings where large 

numbers of false alerts may disrupt the normal operation of the 

system. 

Abdullahi et al. [21] examined the application of the 

Extreme Gradient Boosting (XGBoost) and Long Short-Term 

Memory (LSTM) frameworks to detect attacks in CPS. They 

validated their approach on the basis of several datasets, such 

as the gas pipeline industrial control system dataset, NetML-

2020, and the IoT-23 datasets that comprised a variety of 

cyberattacks. The experimental results showed that XGBoost 

and LSTM performed better than the classical algorithms, such 

as SVM and artificial neural networks (ANN), in all the 

performance metrics. One drawback of this work is that it fails 

to explain the performance of these models in the context of 

zero-day attacks or adversarial inputs. 

Sharma et al. [22] designed a lightweight CNN- 

Bidirectional LSTM network to recognize DDoS attacks in 

smart healthcare networks. Their strategy used CNNs to 

classify network traffic as benign or malicious. The 

implemented algorithm used a batch size of 500, 20 epochs, 

25 classes, with ReLU and softmax activation functions, 4 

convolutional layers with maximum pooling, and a dense layer 

at the end. Although the architecture demonstrates potential in 

resource-constrained settings, the robustness of the model 

against advanced evasion strategies has not been extensively 

discussed in the study. 

Alzahrani et al. [23] developed an enhanced Wireless 

Medical CPS based on ML techniques to address security 

concerns in healthcare networks. The system included three 

fundamental components, namely communication and 

monitoring, computational safety, and dynamic planning and 

resource administration. The patient-focused architecture 

retained the end-user smartphone authority on data interaction 

accessibility. The empirical investigation showed that the 

recommended system achieved an accuracy of 92%, with a 

minimal computation time of about 13 seconds and lower error 

rates against different threats. Nevertheless, the moderated 

accuracy of the recommended approach raises concerns about 

its generalization and detection. 

Javed et al. [24] developed a Graph Attention Network 

(GAN) approach to identify persistent attacks on industrial IoT 

to protect CPS. The study utilised masked self-attentional 

layers in their approach to achieve multi-dimensional 

behavioral features that would be missed by conventional 
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methods of the DL technology. The analysis showed that the 

GAN could identify the malicious activities of the DAPT2020 

malware dataset with 96.97% accuracy and process the Edge 

I-IoT dataset with 95.97% accuracy in 20.56 and 21.65 

seconds, respectively. Performance analysis revealed that 

there were significant operational benefits relative to standard 

machine learning processes in I-IoT assisted CPS. Meanwhile 

the significant prediction times may limit the use of approach 

where a solution requires urgent danger recognition. 

Bashar et al. [25] introduced a DL method for network 

threat recognition by using the multilayer LSTM network. 

Their architecture design focused on creating multiple levels 

which would optimize performance while maintaining 

stability during binary and multiclass classification operations. 

Experimental tests proved that the suggested model achieved 

outstanding results by delivering 95% binary classification 

accuracy together with 96% multiclass classification accuracy. 

The real-time detection of threats in high-speed networks 

using their method becomes complicated because stacked 

LSTM layers present heavy computational demands. 

Mohi-ud-din et al. [26] developed an attack control 

framework that uses MLP to boost security levels in CPS 

environments. Their study focused on fixing the gaps present 

in traditional digital defense systems and network protocols 

that protect information inside CPS. The comparison showed 

that the recommended method delivered higher accuracy 

compared to Bayes Naive Gaussian and SVM and logistic 

regression by reaching 99.52% accuracy. Nonetheless, the 

research does not comprehensively explore the method's 

efficiency under the resource constraints typical in many CPS 

deployments. 

Wang et al. [27] developed KD-TCNN as a Knowledge 

Distillation model that utilizes Triplet CNN to both enhance 

detection anomalies and decrease processing load for industry 

CPS applications. The researchers implemented a strong 

model loss function along with K-fold cross training as a new 

neural network training method to achieve stable results and 

accurate detection. The framework has been experimented 

using NSL-KDD and CIC IDS2017 benchmark datasets 

yielding higher performance than standard DL systems and 

existing state-of-the-art models. However, the dimensional 

reduction size-reduced the computation needs and achieved 

0.4% of performance loss creating a model that is highly 

optimized to the IoT hardware constraints. 

Akinsola et al. [28] utilised various DL algorithms to 

mitigate DDoS attacks on CPS environments by applying 

artificial intelligence methods to neutralize the attacks. They 

used CNN, LSTM and Gated Recurrent Units (GRU) in their 

method to track and identify incoming attacks. The findings 

showed that LSTM outperforms with 99.92% accuracy, 

0.0037 loss function and a 0.026 RMSE at training, which is 

consistent at the testing stage (99.92% accuracy, 0.0058 loss 

function and 0.0278 RMSE). The comparative analysis proved 

the effectiveness of LSTM in comparison with other deep 

learning algorithms in DDoS attack mitigation. However, even 

though the model is highly accurate, it exhibits some 

overfitting, which limits its ability to be resistant to 

unobservable or changing patterns of DDoS attacks. 

AlZubi et al. [29] presented a cognitive ML-assisted threat 

recognition framework to support secure medical information 

sharing in CPS. This patient-centric solution focused on 

ensuring the information was safe on trusted devices such as 

smartphones without losing sharing control. The system 

supported the aggregation and cloud storage of healthcare 

data, with ML models forecasting cyber-attack patterns to 

support healthcare experts. The Extreme Learning Machine 

(ELM), among others, demonstrated high performance and 

showed a threat recognition rate of 96.5%, a precision level of 

98.2% and a delay of 21.3%, and a communication cost of 

18.9% lower than the present methods. Nevertheless, the paper 

does not discuss the performance of the model against zero-

day attacks or adversarial inputs that are intended to escape 

neural network detection.  

Table 1 summarizes recent research on DL and ML-based 

intrusion detection and cyber-attack mitigation techniques for 

CPS and IoT environments, highlighting their advantages and 

limitations. 

 

Table 1. Overview of related literatures 

 
S. 

No. 

Author & 

Year 
Algorithm Findings Obtained Advantage Limitation 

1 
Anusha et 

al. [20] 
CNN 

Improved accuracy, precision, 

recall, and F1-score compared to 

SVM models 

Compared to SVM model, 

the recommended CNN 

algorithm attained good 

detection performance 

Obtained high False Positive 

Rate 

2 
Abdullahi 

et al. [21] 

Used XGBoost and 

LSTM 

Outperformed SVM and ANN 

across various performance 

measures 

Superior performance on 

multiple datasets (gas 

pipeline, NetML-2020, 

IoT-23) 

Does not address 

performance under zero-day 

attack scenarios or with 

adversarial inputs 

3 
Sharma et 

al. [22] 

Hybrid CNN-

Bidirectional 

LSTM 

Effective DDoS attack 

recognition 

Lightweight model 

suitable for resource-

constrained smart 

healthcare networks 

Does not extensively address 

resilience against 

sophisticated evasion 

techniques 

4 
Alzahrani et 

al. [23] 
ML methods 

Accuracy: 92%, Computation 

time: 13 seconds, reduced error 

metrics 

Patient-centric framework 

with user control over data 

exchange in wireless 

medical CPS 

Attained moderate accuracy 

5 
Javed et al. 

[24] 

Graph Attention 

Network (GAN) 

Accuracy: 96.97% (DAPT2020 

dataset), 95.97% (Edge I-IoT 

dataset) 

Multi-dimensional 

behavioral feature 

extraction 

Prediction times could restrict 

usage when immediate threat 

detection is essential 

6 
Bashar et 

al. [25] 
Multilayer LSTM 

Binary classification accuracy: 

95%, Multiclass classification 

accuracy: 96% 

Optimized performance 

with stability in 

classification operations 

Doesn’t address the 

recommended model’s 

computational complexity 

7 Mohi-ud- MLP Accuracy: 99.52% Superior accuracy for Does not comprehensively 
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din et al. 

[26] 

(outperformed Naive Bayes, 

SVM, and logistic regression) 

attack control in CPS 

environments 

explore efficiency under 

resource constraints typical in 

CPS deployments 

8 
Wang et al. 

[27] 

KD-TCNN 

(Knowledge 

Distillation with 

Triplet CNN) 

Better performance than typical 

DL systems 

Enhanced anomaly 

detection with decreased 

processing load 

Minor performance drop 

(0.4%) due to dimensional 

reduction 

9 
Akinsola et 

al. [28] 

CNN, LSTM, and 

GRU 

LSTM: 99.92% accuracy 

(training & testing), Loss: 0.0037 

(training), 0.0058 (testing), 

RMSE: 0.026 (training), 0.0278 

(testing) 

LSTM demonstrated 

superior performance for 

DDoS attack mitigation in 

CPS 

Suggested model overfitting 

concern 

10 
AlZubi et 

al. [29] 

Extreme Learning 

Machine (ELM) 

Threat recognition rate: 96.5%, 

Accuracy: 98.2%, Delay reduced 

by 21.3%, Communication cost 

reduced by 18.9% 

Patient-centric solution 

with user control; 

facilitates healthcare data 

aggregation and cloud 

storage 

Potential scalability issues 

3. PROPOSED METHODOLOGY 

 

Figure 1 illustrates the schematic representation of the 

recommended framework. The suggested design includes the 

following key stages: 1) Data Collection, in which the NSL-

KDD data set is utilized as the primary source of network 

traffic records; 2) Data Preprocessing, where the encoding 

categorical features and normalization techniques are applied 

to ensure consistency across the input data; 3) Feature 

Extraction using BiGRU, where Bi-GRU network is used to 

extract both forward and backward relationships in the data; 

and 4) Classification of Attack, in which the learned features 

are used to accurately determine the relationship between the 

normal data and various types of malicious traffic, followed 

by 5) Result Analysis and Interpretation, which assess the 

model’s effectiveness utilising standard measures for 

comprehensive evaluation.  

 

 
 

Figure 1. Architecture of the suggested framework 

3.1 Materials and methods  

 

The research uses the NSL-KDD, a proven benchmark 

dataset accessible on Kaggle, to assess the performance of the 

developed intrusion detection system [30]. The dataset 

accommodates 148,517 records with 41 network traffic 

features outlining diverse connection attributes that cover 

protocol type to service duration and data transfer volume. 

This record set consists of several detailed attributes that allow 

experts to conduct full network monitoring to determine 

normal and attacking behavior [31]. The records are divided 

into two types: normal traffic and threat instances, where 

threats are divided into DoS, Probe, Remote to Local (R2L) 

and User to Root (U2R) [32]. The NSL-KDD format, along 

with its size balance, has been found helpful in model 

development and comparison in intrusion detection since it 

provides stable experimental data. 

 

Table 2. Overview of data categories in NSL-KDD dataset 

 
S. No. Dataset Description Data Count 

1 Total Number of Data Records 148,517 

2 Training Dataset 125,973 

3 Testing Dataset 22,544 

4 Number of Features 41 

 

 
 

Figure 2. Data distribution for training, testing, and 

validation in the NSL-KDD dataset 

 

Table 2 displays a summary of the data distribution and the 

number of features in the dataset, whereas Figure 2 shows how 

data are distributed for training, testing, and validation 

process. 
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3.2 Data pre-processing technique 

 

Several crucial preprocessing steps are applied to the data 

for improving consistency and data quality. The categorical 

features like protocol_type, service and flag are transformed 

into numerical format through the one-hot encoding method. 

Each unique category in a dataset receives binary columns 

through this method to let algorithms read categorical data 

without unintentional hierarchy structures. Min-Max 

normalization becomes the next step for processing the 

numerical dataset features. The dataset possesses 

measurement units of different magnitudes, particularly the 

duration and src_bytes and dst_bytes attributes, which 

normalization transforms into values ranging from 0 to 1. The 

normalization process helps decrease feature magnitude 

disparities that let every input provide a similar value during 

model training. The Min-Max normalization requires this 

calculation for its operation: 

 

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1) 

 

The equation includes original feature 𝑋  alongside its 

minimum value 𝑋𝑚𝑖𝑛  and maximum value 𝑋𝑚𝑎𝑥 . The 

conversion methods generate numerically homogeneous data 

for the successful analytical processing. 

 

3.3 Model design 

 

The BiGRU model developed by this research helps detect 

various network threats in CPS through an efficient intrusion 

detection technique. The following sections describes the 

BiGRU model architecture and details its operational 

mechanisms which are employed throughout this 

investigation. 

 

3.3.1 BiGRU 

The Bi-GRU model belongs to recurrent neural networks 

(RNNs) and serves as a temporal sequence manager to learn 

temporal connections within and beyond current time points. 

BiGRUs differ from typical RNNs because they process inputs 

sequentially, both forward and backward, thus achieving a 

better understanding of temporal sequences. The model 

contains dual GRU processing components which scan the 

data forward while another unit works in the reverse direction. 

The model incorporates the integrated outputs as an 

enhancement to its potential to learn more complicated 

temporal patterns to recognize anomalies and intrusions. The 

BiGRU architecture is depicted in Figure 3. 

 

 
 

Figure 3. BI-GRU network architecture 

GRU Cell Mechanics. BiGRU implements the GRU at its 

foundation, which represents an efficient LSTM-related unit. 

GRUs are more efficient in their information flow than LSTM 

networks in executing time steps and need fewer parameters. 

The GRU cell has two critical gating systems that act in a 

mutually exclusive way: 

1. Update Gate (zₜ): Decides how much of the past data 

needs to be retained and how much of the new 

information should be incorporated. 

2. Reset Gate (rₜ): This parameter determines how much 

old information should be forgotten when the current 

output is being computed. 

These gates dynamically regulate the passage of 

information, allowing the model to selectively focus on 

relevant patterns while discarding noise and redundancy. The 

model solves the issue of gradient disappearance that occurs 

when deep neural networks process extended sequence data. 

The GRU cell performs its internal operations based on these 

subsequent expressions: 

The computation for the update gate requires the following 

expression: 

 

𝑧ₜ = 𝜎(𝑊𝑧𝑥ₜ + 𝑈𝑧ℎₜ₋₁ + 𝑏𝑧) (2) 

 

The reset gate is denoted using, 

 

𝑟ₜ = 𝜎(𝑊𝑟𝑥ₜ + 𝑈𝑟ℎₜ₋₁ + 𝑏𝑟) (3) 

 

The candidate activation, representing the intermediate 

memory content, is expressed as: 

 

ĥ𝑡 = tanh(𝑊𝑥ₜ + 𝑈(𝑟ₜ ⊙ ℎₜ₋₁) + 𝑏) (4) 

 

The last activation which represents the hidden state 

transforms according to the following equation: 

 

ℎₜ = (1 −  𝑧ₜ) ⊙ ℎₜ₋₁ +  𝑧ₜ ⊙ ĥ𝑡  (5) 

 

The equations include xₜ as input and hₜ₋₁ from previous step 

and use σ as the sigmoid function along with ⊙ for element-

wise multiplication and W, U, b for weight matrices and bias 

terms.  

The GRU unit uses its gating mechanism to automatically 

maintain proper short-term and long-term dependency 

relationships over time as a means of dealing with 

unpredictable network dynamics.  

Output Layer. Both the forward and backward outputs of 

processed input sequences are concatenated at the BiGRU 

before dense layers classify them. The dense layers receive 

learned temporal features as inputs and transform them into 

category assignments. 

The output sequences are classified into one of several 

attack types or normal traffic through an application of the 

softmax activation function at the final stage. The dual-context 

approach in the model design allows it to detect complex 

patterns, which boosts its accuracy and defensive capabilities 

in detecting threats in CPS. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Implementation details 

 

The recommended methodology conducted operations 
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through Python 3.8 alongside dependencies NumPy and 

Pandas and libraries Matplotlib and Seaborn and Scikit-learn. 

The TensorFlow and Keras frameworks carried out the deep 

learning operations during the execution. The high-end 

workstation with an Intel Core i7 CPU (3.4 GHz) speed 

combined with 16 GB of RAM and an NVIDIA RTX 3060 

GPU allowed for fast model training and validation processes 

that reduced computational delays. Table 3 summarizes the 

key hyperparameters and their values used for training the 

recommended BiGRU model to optimize performance. 

 

Table 3. Hyperparameters utilized for training the suggested 

model 

 
S. 

No. 
Hyperparameter Description / Value 

1 Epochs Count 80 
2 Batch Size 64 
3 Optimizer Adam 
4 Learning Rate 0.001 

5 
Activation Function 

(Output) 
Softmax 

6 Dropout Rate 0.3 

7 Loss Function 
Categorical Cross-

Entropy 

 

During the training phase, the BiGRU model was 

configured with the listed hyperparameters to optimize 

learning. Early stopping technique was used to prevent 

overfitting and assure the algorithm generalizes effectively to 

unseen data. 

 

4.2 Performance metrics 

 

The effectiveness of the suggested approach was measured 

by applying accuracy, precision, recall, specificity together 

with F1-score evaluation indicators. A comprehensive set of 

performance indicators allows complete evaluation of how 

well the model performs in attack traffic detection. During 

training the model utilized early stopping to prevent 

overfitting, thus ensuring algorithm performance on new test 

data. All formulas for the evaluation measure calculations 

appear in Table 4. 

 

Table 4. Mathematical representation for the evaluation 

measures 

 
S. 

No. 
Evaluation Measures Numerical Representation 

1 Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

2 Recall 
TP

TP+FN
 ×100 

3 Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

4 Precision 
𝑇𝑁

𝑇𝑃 + 𝐹𝑃
 

5 F1-Score 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

 

The analysis involved True Positive (TP) along with True 

Negative (TN) values and False Positive (FP) while False 

Negative (FN) cases also utilized. 

 

4.3 Experimental findings 

 

Table 5 presents a comparative analysis of various DL 

algorithms for intrusion recognition in CPS, based on key 

performance measures established in Table 4. The suggested 

model is substantially superior to the conventional DL 

methods, such as RNN, 1D CNN, LSTM, GRU, Bidirectional 

LSTM (BiLSTM). With a high classification accuracy of 

98.47%, the suggested model exhibits a greater ability to 

detect and classify network-based attacks. From Table 5, it is 

evident that the excellent results in all the measures highlight 

its strength, effectiveness, and dependability in protecting CPS 

environments against the changing cyber threats.  

Figure 4, on the other hand, contrasts the performance of 

specific DL models in cyber-attack detection in CPS settings. 

Each of the evaluation metrics indicates the superiority of the 

recommended Bi-GRU model over other models to establish 

its remarkable threat recognition capacity. 

 

Table 5. Comparative performance of models in cyber threat classification 
 

Algorithms Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%) 

LSTM 94.5 93.8 92.3 93.2 93.5 

GRU 95.7 94.8 94.2 94.5 94.6 

1D CNN 92.8 91.7 90.9 91.3 91.5 

BiLSTM 93.9 92.2 91.6 92.8 93.0 

Proposed Model 98.47 98.2 97.0 97.5 98.9 

 

Table 6. Computational parameters for distinct models in both CPU and GPU 

 

Algorithm 
Computational Performance (CPU) 

Inference Time (s) Memory (MB) FLOPs (×10⁶) Computation Time (s) No. of Parameters  

LSTM 0.185 28.4 88 10.42 402,110 

GRU 0.162 25.7 76 9.31 348,920 

1D-CNN 0.141 23.5 65 8.12 221,640 

BiLSTM 0.214 32.1 112 11.96 489,530 

Proposed BiGRU 0.118 21.3 59 7.84 274,310 

Algorithm 
Computational Performance (GPU) 

Inference Time (s) Memory (MB) FLOPs (×10⁶) Computation Time (s) No. of Parameters 

LSTM 0.134 26.9 84 7.86 402,110 

GRU 0.109 24.3 72 6.51 348,920 

1D-CNN 0.087 22.7 61 5.47 221,640 

BiLSTM 0.153 29.8 107 8.72 489,530 

Proposed BiGRU 0.073 20.8 54 4.99 274,310 
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Figure 4. Comparison between different algorithms that 

detect attacks 

 

 
 

Figure 5. Confusion matrix for the suggested network 

 

Figure 5 presents a confusion matrix of the suggested 

algorithm indicating high classification accuracy across all 

categories with particular excellence of the suggested 

algorithm in detecting both Normal and DoS attacks. Figure 6 

demonstrates that training and testing levels of accuracy 

measured across epochs smoothly improve without showing 

any signs of overfitting in the system. Figure 7 demonstrates 

the ROC curve which proves that the algorithm shows 

exceptional capability in detecting normal and malicious 

traffic, thus affirming its strength in CPS intrusion detection. 

 

 
 

Figure 6. Training and testing accuracy over epochs for the 

suggested method 

 
 

Figure 7. Receiver Operating Characteristic (ROC) curve 

depicting multi-class classification performance 

 

4.4 Computational performance analysis 

 

A computational performance study was carried out to 

evaluate the feasibility of implementing the recommended 

intrusion detection framework in real-time CPS settings. The 

analysis included inference speed, memory usage, overall 

computation time, and the count of trainable parameters in 

various baseline models. Tests were performed on both CPU-

based and GPU-accelerated systems to obtain a complete 

performance comparison. Table 6 present the computational 

properties of different deep learning architectures utilized in 

intrusion detection. 

The suggested architecture, as indicated in Table 6, 

consistently needs fewer computational resources than other 

deep learning-based IDS frameworks. It has the shortest 

inference time and memory consumption and has a much 

lower FLOP count. These findings support the model in real-

time CPS settings, especially in edge and embedded 

applications where the computational efficiency is required. 

 

4.5 Statistical validation process 

 

A Wilcoxon signed-rank test was performed to confirm 

whether the performance gains achieved by the suggested 

BiGRU model were statistically significant. This non-

parametric paired test indicates whether the differences in the 

observed accuracy between the recommended approach and 

other models are consistent and not due to random variation. 

The test was conducted with the accuracy scores based on five 

independent runs on the NSL-KDD dataset. The resulting p-

values for each model comparison are presented in Figure 8. 

Based on Figure 8, it is apparent that the recommended 

BiGRU model yields the lowest p-value among all the 

compared IDS models. This is a clear indication that its 

performance gains are statistically significant. The low p-

values in all comparisons verify that BiGRU model is 

providing a consistent and repeatable gain and not a random 

variation. Altogether, the statistical test confirms the 

excellence of the recommended approach in comparison to the 

current baseline models. 
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Figure 8. Wilcoxon signed-rank statistical comparison for 

different models 

 

4.6 Results discussion 

 

The overall results indicate that the Suggested BiGRU-

based IDS provides a consistent enhancement compared to 

current DL models. The suggested framework has the 

advantage to include both forward and backward temporal 

dependencies, which adds to its high-accuracy level of 

98.47%, indicating high recognition power in all types of 

attacks. The confusion matrix also supports the stable 

classification behavior, especially between the Normal and 

DoS classes, in which the misclassification is low. Other 

performance measures like precision, recall, specificity, and 

F1-score indicate similar results, proving that the model does 

not over-fit and still maintains a good level of generalization. 

The ROC curve substantiates the strength of the highly 

separable normal and malicious traffic classifier. The 

computational analysis also demonstrates the applicability of 

the model to real-time CPS functions, with low inference time 

and low resource usage. The statistical validation by Wilcoxon 

test proves that the improvement of performance is not some 

random increase, which indicates great reliability of the 

suggested framework. 

 

 

5. CONCLUSION 

 

The research establishes data security and privacy 

improvement in CPS as an essential matter which deep 

learning advances effectively address. When connected CPS 

infrastructures link with a regulatory framework of digital 

utilities they become strong security targets for sophisticated 

cyber attacks that lead to critical service failures and the 

compromising of private data. The study uses NSL-KDD data 

to develop a robust intrusion detection framework which 

implements the BI-GRU model. The BI-GRU model 

demonstrates ability to detect both forward and backward 

sequence dependencies which leads to 98.47% classification 

accuracy. Numerous evaluation measures with precision and 

recall and specificity and F1-score indicate that the model 

demonstrates dependable recognition for multiple cyber-

attack patterns. The suggested approach proves suitable for 

real-time CPS deployment, as it offers excellent generalization 

and minimizes false positives. The developed security system 

further design advanced defensive systems that secure 

vulnerable infrastructure components. This exploration 

provides future directions to create adaptive system models 

that address new attack patterns in dynamic CPS operating 

environments. Nevertheless, the research is restricted by the 

absence of real-life validation data, that can influence the 

applicability to dynamic CPS settings. Future research may 

include the implementation of the model on real-world CPS 

traffic, the introduction of federated learning to train a privacy-

aware model, and the use of explainable AI methods like 

SHAP or LIME to enhance model interpretability. 
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