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Cyber-physical systems (CPS) face rising sophisticated cyber attacks because they
connect with digital systems through networks. Data security and privacy protection
within these systems stands as the key factor for operational integrity maintenance. An
effective intrusion detection method with improved security and privacy capabilities
serves to enrich CPS environments. This research leverages the NSL-KDD, a well-
established benchmark dataset for attack detection and the proposed model employs the
BI-GRU architecture. The design of this model targets both forward and backward time
sequences because it aims to analyze contextual dependencies thus enhancing threat
classification accuracy. Present intrusion detection methods currently find it difficult to
maintain generality between developing attack vector patterns since their sequential
pattern modeling capabilities remain inadequate. In order to overcome this limitation, the
proposed Bi-Gated Recurrent Units (Bi-GRU) based model presents a bidirectional
representation that yields more detailed dependencies and is more resistant to various
intrusion behaviors. The model attains a high accuracy of 98.47%, surpassing other
models such as LSTM (94.5%), GRU (95.7%), and BiLSTM (93.9%) in generalization.
While existing CPS IDS frameworks have a high false-positive rate, the suggested
framework reduces false-positives rate to 3%, which makes it more reliable in real-life
CPS settings. The suggested model demonstrated its effectiveness by the efficient
information processing capability and its low false positive rate with its high
generalization capacity. The study performs significant experimental trials to demonstrate
real-time application of this approach in CPS settings that introduces a significant
breakthrough in cyber-physical infrastructure security against intelligent attacks.

1. INTRODUCTION

Cyber-physical systems

(CPS) act as technological

deployment of CPS creates higher connectivity that exposes
these systems to numerous cyber risks as well as security
breaches [5, 6].

transformation drivers since they integrate physical processes
with computational intelligence approaches [1]. These
systems have now been widely applied in multiple
applications, like industrial automation, transport systems,
patient care, smart cities and energy distribution networks [2-
4]. Such systems have dynamic sensing and regulation based
on predictive decision strategies that lead to more efficient and
intellectually developed infrastructures. This extensive
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Higher complexity within CPS environments results in
expanded risk areas so cyber intrusions have increased rapidly.
A series of cyberattacks including probing along with user-to-
root exploits and remote-to-local attacks as well as Denial of
Service (DoS) and Distributed Denial of Service (DDoS
attacks have demonstrated high disruptiveness in their nature
[7, 8]. These attacks take advantage of network
communication shortcomings to stop systems by manipulating
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bandwidth limits into service hindrances and corrupting data
systems [9, 10]. Because CPS connect to each other, the
infrastructure suffers major operational and economic damage
from localized attacks which spread throughout the entire
network [11].

Intrusion Detection Systems (IDS) serve as deployed tools
in many CPS applications to handle these risks [12]. Network
pattern analysis and malicious activity recognition and
warning generation are features built into IDS tools which
serve system administrators. The effectiveness of signature-
based and rule-based IDS decreases when they operate in
dynamic or evolving cyber systems especially when facing
unknown threats [13, 14]. Zero-day attacks and new threat
variants remain undetectable to IDS tools because their limited
generalization capabilities make them unable to recognize
unknown threats.

CPS environments create considerable flows of real-time
data whose relationships depend on time, along with
contextual aspects [15]. Systems require proper pattern
capturing and analysis techniques to differentiate between
standard activities and security threats. The complex nature of
CPS exceeds the analytical capacity of shallow algorithms and
current models, leading to deterioration of detection
performance and more misclassifications [16-19]. The lack of
data analysis precision has led to an increasing adoption of
superior data-specific techniques that implement machine
learning (ML) and deep learning (DL) approaches.

Effective digital protection in CPS is not only a technical
specification but also a prerequisite that guarantees the
security of critical infrastructure functioning. Hence, there is
an essential need for a smart and scalable CPS environment
defensive mechanism.

1.1 Contribution of the research

Even with this rapid progress, the existing IDS tools used in
CPS settings are characterized by limited adaptability, false-
positive rates, and poor temporal modeling, rendering them
ineffective against zero-day and evolving attacks. These
constraints become more important as CPS experience more
advanced attacks like control-signal interference, sensor
information corruption, and simultaneous network assaults, all
of which demonstrate the incapacity of traditional IDS systems
to guarantee dependable real-time security. Motivated by the
above mentioned challenges, the study presents the following
major findings and solutions to mitigate the growing
challenges that safeguard CPS against emerging cyber threats:

1. A DL-based intrusion detection framework is

introduced, which employs Bi-GRU architecture to
process both forward and backward sequence temporal
patterns for enhancing threat classification outcomes.

2. The study utilizes the NSL-KDD dataset with a
comprehensive preprocessing pipeline that addresses
the problems of data normalization and imbalance to
generate high- quality training and evaluation data.

3. The system exhibits strong detection abilities for

various CPS threats, as demonstrated through
performance metric validation utilising accuracy,
precision, recall and Fl-score measures with
specificity.

1.2 Paper organization

The study is organized in the following manner: Section 2
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encompasses a thorough literature review on security in CPS
environments. Section 3 presents the dataset characteristics,
data pre-processing and the suggested Bi-GRU architecture.
Section 4 includes analysis of experimental design along with
evaluation outcomes and DL method comparison. At last,
Section 5 wraps up the paper with valuable insights and
provides the perspective of future research areas.

2. RELATED WORKS

Anusha et al. [20] presented a DL-based CNN model to
identify cyber threats in IoT-based CPS. Their study discussed
the limitations of the current Support Vector Machine (SVM)
models, which cannot cope with the dynamic nature of cyber-
attacks because they heavily depend on the historical data. The
suggested CNN model exhibited better detection of cyber-
attacks under different classification assessment metrics,
compared to earlier models. Nevertheless, the recommended
model has a comparatively high rate of false positives, which
reduces its validity in real-world CPS settings where large
numbers of false alerts may disrupt the normal operation of the
system.

Abdullahi et al. [21] examined the application of the
Extreme Gradient Boosting (XGBoost) and Long Short-Term
Memory (LSTM) frameworks to detect attacks in CPS. They
validated their approach on the basis of several datasets, such
as the gas pipeline industrial control system dataset, NetML-
2020, and the 10T-23 datasets that comprised a variety of
cyberattacks. The experimental results showed that XGBoost
and LSTM performed better than the classical algorithms, such
as SVM and artificial neural networks (ANN), in all the
performance metrics. One drawback of this work is that it fails
to explain the performance of these models in the context of
zero-day attacks or adversarial inputs.

Sharma et al. [22] designed a lightweight CNN-
Bidirectional LSTM network to recognize DDoS attacks in
smart healthcare networks. Their strategy used CNNs to
classify network traffic as benign or malicious. The
implemented algorithm used a batch size of 500, 20 epochs,
25 classes, with ReLU and softmax activation functions, 4
convolutional layers with maximum pooling, and a dense layer
at the end. Although the architecture demonstrates potential in
resource-constrained settings, the robustness of the model
against advanced evasion strategies has not been extensively
discussed in the study.

Alzahrani et al. [23] developed an enhanced Wireless
Medical CPS based on ML techniques to address security
concerns in healthcare networks. The system included three
fundamental components, namely communication and
monitoring, computational safety, and dynamic planning and
resource administration. The patient-focused architecture
retained the end-user smartphone authority on data interaction
accessibility. The empirical investigation showed that the
recommended system achieved an accuracy of 92%, with a
minimal computation time of about 13 seconds and lower error
rates against different threats. Nevertheless, the moderated
accuracy of the recommended approach raises concerns about
its generalization and detection.

Javed et al. [24] developed a Graph Attention Network
(GAN) approach to identify persistent attacks on industrial [oT
to protect CPS. The study utilised masked self-attentional
layers in their approach to achieve multi-dimensional
behavioral features that would be missed by conventional



methods of the DL technology. The analysis showed that the
GAN could identify the malicious activities of the DAPT2020
malware dataset with 96.97% accuracy and process the Edge
[-IoT dataset with 95.97% accuracy in 20.56 and 21.65
seconds, respectively. Performance analysis revealed that
there were significant operational benefits relative to standard
machine learning processes in I-IoT assisted CPS. Meanwhile
the significant prediction times may limit the use of approach
where a solution requires urgent danger recognition.

Bashar et al. [25] introduced a DL method for network
threat recognition by using the multilayer LSTM network.
Their architecture design focused on creating multiple levels
which would optimize performance while maintaining
stability during binary and multiclass classification operations.
Experimental tests proved that the suggested model achieved
outstanding results by delivering 95% binary classification
accuracy together with 96% multiclass classification accuracy.
The real-time detection of threats in high-speed networks
using their method becomes complicated because stacked
LSTM layers present heavy computational demands.

Mohi-ud-din et al. [26] developed an attack control
framework that uses MLP to boost security levels in CPS
environments. Their study focused on fixing the gaps present
in traditional digital defense systems and network protocols
that protect information inside CPS. The comparison showed
that the recommended method delivered higher accuracy
compared to Bayes Naive Gaussian and SVM and logistic
regression by reaching 99.52% accuracy. Nonetheless, the
research does not comprehensively explore the method's
efficiency under the resource constraints typical in many CPS
deployments.

Wang et al. [27] developed KD-TCNN as a Knowledge
Distillation model that utilizes Triplet CNN to both enhance
detection anomalies and decrease processing load for industry
CPS applications. The researchers implemented a strong
model loss function along with K-fold cross training as a new
neural network training method to achieve stable results and
accurate detection. The framework has been experimented
using NSL-KDD and CIC IDS2017 benchmark datasets

yielding higher performance than standard DL systems and
existing state-of-the-art models. However, the dimensional
reduction size-reduced the computation needs and achieved
0.4% of performance loss creating a model that is highly
optimized to the IoT hardware constraints.

Akinsola et al. [28] utilised various DL algorithms to
mitigate DDoS attacks on CPS environments by applying
artificial intelligence methods to neutralize the attacks. They
used CNN, LSTM and Gated Recurrent Units (GRU) in their
method to track and identify incoming attacks. The findings
showed that LSTM outperforms with 99.92% accuracy,
0.0037 loss function and a 0.026 RMSE at training, which is
consistent at the testing stage (99.92% accuracy, 0.0058 loss
function and 0.0278 RMSE). The comparative analysis proved
the effectiveness of LSTM in comparison with other deep
learning algorithms in DDoS attack mitigation. However, even
though the model is highly accurate, it exhibits some
overfitting, which limits its ability to be resistant to
unobservable or changing patterns of DDoS attacks.

AlZubi et al. [29] presented a cognitive ML-assisted threat
recognition framework to support secure medical information
sharing in CPS. This patient-centric solution focused on
ensuring the information was safe on trusted devices such as
smartphones without losing sharing control. The system
supported the aggregation and cloud storage of healthcare
data, with ML models forecasting cyber-attack patterns to
support healthcare experts. The Extreme Learning Machine
(ELM), among others, demonstrated high performance and
showed a threat recognition rate of 96.5%, a precision level of
98.2% and a delay of 21.3%, and a communication cost of
18.9% lower than the present methods. Nevertheless, the paper
does not discuss the performance of the model against zero-
day attacks or adversarial inputs that are intended to escape
neural network detection.

Table 1 summarizes recent research on DL and ML-based
intrusion detection and cyber-attack mitigation techniques for
CPS and IoT environments, highlighting their advantages and
limitations.

Table 1. Overview of related literatures

S. Author & Algorithm Findings Obtained Advantage Limitation
No. Year
Improved accuracy, precision. Compared to SVM model,
Anusha et P > P 2 the recommended CNN Obtained high False Positive
1 CNN recall, and F1-score compared to . .
al. [20] algorithm attained good Rate
SVM models .
detection performance
Superior performance on Does not address
2 Abdullahi ~ Used XGBoost and ngssrsfovr;rrlieoissvel\r/lfj:nfaﬁ?eN multiple datasets (gas performance under zero-day
etal. [21] LSTM P pipeline, NetML-2020, attack scenarios or with
measures s
[0T-23) adversarial inputs
. Lightweight model Does not extensively address
Sharma et Hybr id C.NN_ Effective DDoS attack suitable for resource- resilience against
3 Bidirectional " . . .
al. [22] recognition constrained smart sophisticated evasion
LSTM .
healthcare networks techniques
. Accuracy: 92%, Computation Pgtlent-centrlc IEAmEWORS
Alzahrani et . with user control over data .
4 ML methods time: 13 seconds, reduced error L Attained moderate accuracy
al. [23] metrics exchange in wireless
medical CPS
. Accuracy: 96.97% (DAPT2020 Multi-dimensional Prediction times could restrict
Javed et al. Graph Attention . . .
5 dataset), 95.97% (Edge I-IoT behavioral feature usage when immediate threat
[24] Network (GAN) . . .
dataset) extraction detection is essential
Bashar et Binary classification accuracy: Optimized performance Doesn’t address the
6 Multilayer LSTM 95%, Multiclass classification with stability in recommended model’s
al. [25] o . . . . .
accuracy: 96% classification operations computational complexity
7 Mohi-ud- MLP Accuracy: 99.52% Superior accuracy for Does not comprehensively

2035



din et al.

(outperformed Naive Bayes,

[26] SVM, and logistic regression)
KD-TCNN
8 Wang et al. (Knowledge Better performance than typical
[27] Distillation with DL systems
Triplet CNN)
LSTM: 99.92% accuracy
Akinsola et  CNN, LSTM., and (tralmqg_& testing), Loss:_ 0.0037
9 al. [28] GRU (training), 0.0058 (testing),
’ RMSE: 0.026 (training), 0.0278
(testing)
Threat recognition rate: 96.5%,
10 AlZubi et Extreme Learning  Accuracy: 98.2%, Delay reduced
al. [29] Machine (ELM) by 21.3%, Communication cost

attack control in CPS
environments

Enhanced anomaly
detection with decreased
processing load

LSTM demonstrated
superior performance for
DDoS attack mitigation in
CPS

Patient-centric solution
with user control;
facilitates healthcare data

explore efficiency under
resource constraints typical in
CPS deployments

Minor performance drop
(0.4%) due to dimensional
reduction

Suggested model overfitting
concern

Potential scalability issues

reduced by 18.9%

aggregation and cloud
storage

3. PROPOSED METHODOLOGY

Figure 1 illustrates the schematic representation of the
recommended framework. The suggested design includes the
following key stages: 1) Data Collection, in which the NSL-
KDD data set is utilized as the primary source of network
traffic records; 2) Data Preprocessing, where the encoding
categorical features and normalization techniques are applied
to ensure consistency across the input data; 3) Feature
Extraction using BiGRU, where Bi-GRU network is used to
extract both forward and backward relationships in the data;
and 4) Classification of Attack, in which the learned features
are used to accurately determine the relationship between the
normal data and various types of malicious traffic, followed
by 5) Result Analysis and Interpretation, which assess the
model’s effectiveness utilising standard measures for
comprehensive evaluation.

Data Collection

\ZE \&E0

—l Data Preprocessing

( Classification of Attack Data )

g ~~>~ ~N~ J

Result Analysis & )
Interpretation @

" S

Figure 1. Architecture of the suggested framework
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3.1 Materials and methods

The research uses the NSL-KDD, a proven benchmark
dataset accessible on Kaggle, to assess the performance of the
developed intrusion detection system [30]. The dataset
accommodates 148,517 records with 41 network traffic
features outlining diverse connection attributes that cover
protocol type to service duration and data transfer volume.
This record set consists of several detailed attributes that allow
experts to conduct full network monitoring to determine
normal and attacking behavior [31]. The records are divided
into two types: normal traffic and threat instances, where
threats are divided into DoS, Probe, Remote to Local (R2L)
and User to Root (U2R) [32]. The NSL-KDD format, along
with its size balance, has been found helpful in model
development and comparison in intrusion detection since it
provides stable experimental data.

Table 2. Overview of data categories in NSL-KDD dataset

S. No. Dataset Description Data Count
1 Total Number of Data Records 148,517
2 Training Dataset 125,973
3 Testing Dataset 22,544
4 Number of Features 41
Data Distribution
120000
100000
3
Q
€ 80000
&
G
g 60000
€
p |
Z 40000
20000
0
Training Testing Validation

Figure 2. Data distribution for training, testing, and
validation in the NSL-KDD dataset

Table 2 displays a summary of the data distribution and the
number of features in the dataset, whereas Figure 2 shows how
data are distributed for training, testing, and validation
process.



3.2 Data pre-processing technique

Several crucial preprocessing steps are applied to the data
for improving consistency and data quality. The categorical
features like protocol type, service and flag are transformed
into numerical format through the one-hot encoding method.
Each unique category in a dataset receives binary columns
through this method to let algorithms read categorical data
without unintentional hierarchy structures. Min-Max
normalization becomes the next step for processing the
numerical dataset features. The dataset possesses
measurement units of different magnitudes, particularly the
duration and src_bytes and dst bytes attributes, which
normalization transforms into values ranging from 0 to 1. The
normalization process helps decrease feature magnitude
disparities that let every input provide a similar value during
model training. The Min-Max normalization requires this
calculation for its operation:

X — Xmi
X/ — min (1)

Xmax - Xmin

The equation includes original feature X alongside its
minimum value X,,;, and maximum value X,,,, . The
conversion methods generate numerically homogeneous data
for the successful analytical processing.

3.3 Model design

The BiGRU model developed by this research helps detect
various network threats in CPS through an efficient intrusion
detection technique. The following sections describes the
BiGRU model architecture and details its operational
mechanisms which are employed throughout this
investigation.

3.3.1 BiGRU

The Bi-GRU model belongs to recurrent neural networks
(RNNs) and serves as a temporal sequence manager to learn
temporal connections within and beyond current time points.
BiGRUs differ from typical RNNs because they process inputs
sequentially, both forward and backward, thus achieving a
better understanding of temporal sequences. The model
contains dual GRU processing components which scan the
data forward while another unit works in the reverse direction.
The model incorporates the integrated outputs as an
enhancement to its potential to learn more complicated
temporal patterns to recognize anomalies and intrusions. The
BiGRU architecture is depicted in Figure 3.

Output .’
Sequences :

Concat

Backward
GRU

Forward
GRU

4
Input 1
Sequences l

Figure 3. BI-GRU network architecture
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GRU Cell Mechanics. BiGRU implements the GRU at its
foundation, which represents an efficient LSTM-related unit.
GRUs are more efficient in their information flow than LSTM
networks in executing time steps and need fewer parameters.
The GRU cell has two critical gating systems that act in a
mutually exclusive way:

1. Update Gate (z): Decides how much of the past data
needs to be retained and how much of the new
information should be incorporated.

Reset Gate (1;): This parameter determines how much
old information should be forgotten when the current
output is being computed.

These gates dynamically regulate the passage of
information, allowing the model to selectively focus on
relevant patterns while discarding noise and redundancy. The
model solves the issue of gradient disappearance that occurs
when deep neural networks process extended sequence data.
The GRU cell performs its internal operations based on these
subsequent expressions:

The computation for the update gate requires the following
expression:

Zy = J(szt + Uzht_l + bZ) (2)
The reset gate is denoted using,
Ty = O-(Wr.xt + Urht_]_ + bT') (3)

The candidate activation, representing the intermediate
memory content, is expressed as:

ht = tanh(Wx, + U(r; © he_1) + b) 4)

The last activation which represents the hidden state
transforms according to the following equation:

he=(1-2z) ©Qheer + 2.0 ht (5

The equations include x; as input and /1 from previous step
and use o as the sigmoid function along with © for element-
wise multiplication and W, U, b for weight matrices and bias
terms.

The GRU unit uses its gating mechanism to automatically
maintain proper short-term and long-term dependency
relationships over time as a means of dealing with
unpredictable network dynamics.

Output Layer. Both the forward and backward outputs of
processed input sequences are concatenated at the BiGRU
before dense layers classify them. The dense layers receive
learned temporal features as inputs and transform them into
category assignments.

The output sequences are classified into one of several
attack types or normal traffic through an application of the
softmax activation function at the final stage. The dual-context
approach in the model design allows it to detect complex
patterns, which boosts its accuracy and defensive capabilities
in detecting threats in CPS.

4. RESULTS AND DISCUSSION
4.1 Implementation details

The recommended methodology conducted operations



through Python 3.8 alongside dependencies NumPy and
Pandas and libraries Matplotlib and Seaborn and Scikit-learn.
The TensorFlow and Keras frameworks carried out the deep
learning operations during the execution. The high-end
workstation with an Intel Core i7 CPU (3.4 GHz) speed
combined with 16 GB of RAM and an NVIDIA RTX 3060
GPU allowed for fast model training and validation processes
that reduced computational delays. Table 3 summarizes the
key hyperparameters and their values used for training the
recommended BiGRU model to optimize performance.

Table 3. Hyperparameters utilized for training the suggested

model
S. L.
No Hyperparameter Description / Value
1 Epochs Count 80
2 Batch Size 64
3 Optimizer Adam
4 Learning Rate 0.001
Activation Function
5 (Output) Softmax
6 Dropout Rate 0.3
7 Loss Function Categorical Cross-
Entropy

During the training phase, the BiGRU model was
configured with the listed hyperparameters to optimize
learning. Early stopping technique was used to prevent
overfitting and assure the algorithm generalizes effectively to
unseen data.

4.2 Performance metrics

The effectiveness of the suggested approach was measured
by applying accuracy, precision, recall, specificity together
with Fl-score evaluation indicators. A comprehensive set of
performance indicators allows complete evaluation of how
well the model performs in attack traffic detection. During
training the model utilized early stopping to prevent
overfitting, thus ensuring algorithm performance on new test

data. All formulas for the evaluation measure calculations
appear in Table 4.

Table 4. Mathematical representation for the evaluation

measures
1\?(') Evaluation Measures Numerical Representation
TP+TN
1 Accuracy
TP+TN + FP +FN
2 Recall TP+FNTN x100
3 Specifici —_—
pecttielty TN + FP
- TN
4 Precision —_—
P isy FPR l
5 Fl-Score recison * Reca

Precision + Recall

The analysis involved True Positive (TP) along with True
Negative (TN) values and False Positive (FP) while False
Negative (FN) cases also utilized.

4.3 Experimental findings

Table 5 presents a comparative analysis of various DL
algorithms for intrusion recognition in CPS, based on key
performance measures established in Table 4. The suggested
model is substantially superior to the conventional DL
methods, such as RNN, 1D CNN, LSTM, GRU, Bidirectional
LSTM (BiLSTM). With a high classification accuracy of
98.47%, the suggested model exhibits a greater ability to
detect and classify network-based attacks. From Table 5, it is
evident that the excellent results in all the measures highlight
its strength, effectiveness, and dependability in protecting CPS
environments against the changing cyber threats.

Figure 4, on the other hand, contrasts the performance of
specific DL models in cyber-attack detection in CPS settings.
Each of the evaluation metrics indicates the superiority of the
recommended Bi-GRU model over other models to establish
its remarkable threat recognition capacity.

Table 5. Comparative performance of models in cyber threat classification

Algorithms Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-score (%)
LSTM 94.5 93.8 92.3 93.2 93.5
GRU 95.7 94.8 94.2 94.5 94.6
1D CNN 92.8 91.7 90.9 91.3 91.5
BiLSTM 93.9 92.2 91.6 92.8 93.0
Proposed Model 98.47 98.2 97.0 97.5 98.9
Table 6. Computational parameters for distinct models in both CPU and GPU
Algorithm Computational Performance (CPU)
Inference Time (s) Memory (MB) FLOPs (x10%) Computation Time (s) No. of Parameters
LSTM 0.185 28.4 88 10.42 402,110
GRU 0.162 25.7 76 9.31 348,920
1D-CNN 0.141 23.5 65 8.12 221,640
BiLSTM 0.214 32.1 112 11.96 489,530
Proposed BiGRU 0.118 21.3 59 7.84 274,310
Algorithm Computational Performance (GPU)
Inference Time (s) Memory (MB) FLOPs (x10%) Computation Time (s) No. of Parameters
LSTM 0.134 26.9 84 7.86 402,110
GRU 0.109 243 72 6.51 348,920
1D-CNN 0.087 22.7 61 547 221,640
BiLSTM 0.153 29.8 107 8.72 489,530
Proposed BiGRU 0.073 20.8 54 4.99 274,310
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LSTM

GRU 1D CNN BiLSTM  Proposed

Model

mAccuracy ®Recall #Specificity = Precision ®F1-Score

Figure 4. Comparison between different algorithms that
detect attacks
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Figure 5. Confusion matrix for the suggested network

Figure 5 presents a confusion matrix of the suggested
algorithm indicating high classification accuracy across all
categories with particular excellence of the suggested
algorithm in detecting both Normal and DoS attacks. Figure 6
demonstrates that training and testing levels of accuracy
measured across epochs smoothly improve without showing
any signs of overfitting in the system. Figure 7 demonstrates
the ROC curve which proves that the algorithm shows
exceptional capability in detecting normal and malicious
traffic, thus affirming its strength in CPS intrusion detection.

Performance Analysis
1.00
—e— Training Accuracy

~®- Testing Accuracy Ch

0.95

2
©
o

Accuracy

&
o
ol

0.80

20

25 30

No of Epochs

35 40 45 50

Figure 6. Training and testing accuracy over epochs for the
suggested method
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ROC Curves for the Proposed Model
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Figure 7. Receiver Operating Characteristic (ROC) curve
depicting multi-class classification performance

4.4 Computational performance analysis

A computational performance study was carried out to
evaluate the feasibility of implementing the recommended
intrusion detection framework in real-time CPS settings. The
analysis included inference speed, memory usage, overall
computation time, and the count of trainable parameters in
various baseline models. Tests were performed on both CPU-
based and GPU-accelerated systems to obtain a complete
performance comparison. Table 6 present the computational
properties of different deep learning architectures utilized in
intrusion detection.

The suggested architecture, as indicated in Table 6,
consistently needs fewer computational resources than other
deep learning-based IDS frameworks. It has the shortest
inference time and memory consumption and has a much
lower FLOP count. These findings support the model in real-
time CPS settings, especially in edge and embedded
applications where the computational efficiency is required.

4.5 Statistical validation process

A Wilcoxon signed-rank test was performed to confirm
whether the performance gains achieved by the suggested
BiGRU model were statistically significant. This non-
parametric paired test indicates whether the differences in the
observed accuracy between the recommended approach and
other models are consistent and not due to random variation.
The test was conducted with the accuracy scores based on five
independent runs on the NSL-KDD dataset. The resulting p-
values for each model comparison are presented in Figure 8.

Based on Figure 8§, it is apparent that the recommended
BiGRU model yields the lowest p-value among all the
compared IDS models. This is a clear indication that its
performance gains are statistically significant. The low p-
values in all comparisons verify that BiGRU model is
providing a consistent and repeatable gain and not a random
variation. Altogether, the statistical test confirms the
excellence of the recommended approach in comparison to the
current baseline models.



Wilcoxon Signed-Rank Test Outcomes

LSTM

1D-CNN

GRU

BILSTM

Proposed Model

O.dUO 0.001 0.002 0.003

P-Values

0.004 0.005 0.006

Figure 8. Wilcoxon signed-rank statistical comparison for
different models

4.6 Results discussion

The overall results indicate that the Suggested BiGRU-
based IDS provides a consistent enhancement compared to
current DL models. The suggested framework has the
advantage to include both forward and backward temporal
dependencies, which adds to its high-accuracy level of
98.47%, indicating high recognition power in all types of
attacks. The confusion matrix also supports the stable
classification behavior, especially between the Normal and
DoS classes, in which the misclassification is low. Other
performance measures like precision, recall, specificity, and
F1-score indicate similar results, proving that the model does
not over-fit and still maintains a good level of generalization.
The ROC curve substantiates the strength of the highly
separable normal and malicious traffic classifier. The
computational analysis also demonstrates the applicability of
the model to real-time CPS functions, with low inference time
and low resource usage. The statistical validation by Wilcoxon
test proves that the improvement of performance is not some
random increase, which indicates great reliability of the
suggested framework.

5. CONCLUSION

The research establishes data security and privacy
improvement in CPS as an essential matter which deep
learning advances effectively address. When connected CPS
infrastructures link with a regulatory framework of digital
utilities they become strong security targets for sophisticated
cyber attacks that lead to critical service failures and the
compromising of private data. The study uses NSL-KDD data
to develop a robust intrusion detection framework which
implements the BI-GRU model. The BI-GRU model
demonstrates ability to detect both forward and backward
sequence dependencies which leads to 98.47% classification
accuracy. Numerous evaluation measures with precision and
recall and specificity and Fl-score indicate that the model
demonstrates dependable recognition for multiple cyber-
attack patterns. The suggested approach proves suitable for
real-time CPS deployment, as it offers excellent generalization
and minimizes false positives. The developed security system
further design advanced defensive systems that secure
vulnerable infrastructure components. This exploration
provides future directions to create adaptive system models
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that address new attack patterns in dynamic CPS operating
environments. Nevertheless, the research is restricted by the
absence of real-life validation data, that can influence the
applicability to dynamic CPS settings. Future research may
include the implementation of the model on real-world CPS
traffic, the introduction of federated learning to train a privacy-
aware model, and the use of explainable Al methods like
SHAP or LIME to enhance model interpretability.
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