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Customer churn in telecommunications undermines both financial stability and service
resilience, making its prediction essential within safety and security engineering. Existing
approaches are limited by redundant features and class imbalance, which reduce classifier
stability and reliability. This paper proposes an optimization-driven hybrid feature
selection framework that reformulates churn prediction as a mathematical optimization
problem balancing feature relevance and redundancy. The pipeline integrates
preprocessing, categorical encoding, normalization, and correlation-preserving reduction,
yielding a compact 16-feature subset from 29 attributes of the Kaggle Churn 2020 dataset.
Multiple classifiers—including Logistic Regression (LR), Support Vector Machines
(SVMs), Decision Trees (DTs), AdaBoost, and Multi-Layer Perceptrons (MLPs)—were
trained and evaluated. This is evident through experimental results since both models
showed better performance with consistent improvement, with the Multilayer Perceptron
recording an accuracy of 93.9%, while the DT recorded 92.1%, which is evident through
various metrics such as Precision, Recall, F1-score, and ROC-AUC. One of the key areas
that benefited from the application of the non-linear learning models, such as MLP and
K-Nearest Neighbors (KNNs), is the issue of redundant feature selection. The application

of optimization theory in predictive analytics is crucial in improving efficiency.

1. INTRODUCTION

Customer churn, also referred to as the discontinuation of
service provided to consumers, has appeared in recent years to
be a major challenge to both reliability and operational risk
issues in the telecom industry. Customer churn in a highly
competitive business environment where switching cost is low
will not only generate a direct financial risk but also impact a
system’s reliability. It has become very important to identify
correctly those consumers who are most likely to opt for
customer churn. It has been identified that making a balance
between these two factors has become a very important aspect
of enhancing system reliability in customer-churn-based
telecom analysis tasks [1]. Customer churn could be identified
as a high-level optimization task, taking into account an
objective of maximum predicted accuracy along with a low
level of instability.

Over the past ten years, a wide range of computational
models have been developed for churn prediction. Logistic
Regression (LR) models are used extensively owing to their
interpretive ability and mathematical grounding in probability
theory [2], while Decision Trees (DTs) enable a clear
interpretation of the classification rules using minimal
computation [3]. Support Vector Machines (SVMs) and neural
networks can be used for handling nonlinearities in customer
behaviors [3], while ensemble models like AdaBoost can be
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used for improving the strength of the prediction model using
a series of weak models [4]. Recent work has also explored the
use of deep learning models like convolutional neural
networks in churn prediction tasks. These models show
stronger ability in learning features but are also more
computation-heavy and less interpretable than existing models
of the past [1]. However, existing models in churn prediction
tasks are mainly restricted to classification without dealing
directly with the relevant optimization involved in relevance
and redundancy and sensitivity to risks [5].

Feature selection is an important step in churn modeling
work, and it has even more relevance due to its natural high
dimensionality and redundancy. Traditionally available
methods, such as mRMR filtering [6], developed for
minimizing redundancy and maximizing relevance, and
correlation-based feature selection (FCBF) [7], based on
feature correlation, focus on minimizing dimensionality based
on relevance and correlation. Nevertheless, such methods
conventionally focus on relevance and redundancy
individually and result in underoptimal selections of features.
Optimization methods for feature selection have attracted
interest lately, and research has indicated that redundancy
consideration during feature selections improves churn
modeling accuracy and robustness [8].

There exist certain limitations in the existing models of
churn prediction, which can be overcome. These models
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incorporate datasets with irrelevant and correlated features,
resulting in increased complexity and less accurate models [9].
Hybrid metaheuristic models for feature selection show some
improvement but are prone to parameter optimization and
computational complexity [10]. In most existing models, the
evaluation has been done based on accuracy only, ignoring
other parameters like Precision, Recall, F1-score, and ROC—
AUC, which are highly significant when dealing with
imbalanced datasets in churn prediction tasks [11]. There has
been less concentration on the concept of modeling risks in the
field of engineering, where the accuracy of the prediction
affects the resilience, security, and results of the system [3].

To overcome the aforementioned limitations, this paper
presents an optimization-based hybrid feature selection
approach to treat churn prediction as a risk-conscious
decision-making  problem. The proposed approach
incorporates data preprocessing, hashing-based categorical
feature transformation, normalization, and a correlation-
conscious feature selection stage to derive an optimized
informative feature subset. The optimized feature subset is
used with several classifiers, namely, LR models [2], SVMs
[3], DT classifiers [3], AdaBoost classifiers [4], or Multi-
Layer Perceptrons (MLPs) classifiers [12]. The approach
balances relevance and redundancy explicitly to improve
prediction robustness, speed, and accuracy. Results using the
Customer Churn 2020 dataset [13] show improved
performance with the MLP accuracy at 93.9% and the DT
accuracy at 92.1%. These findings have been reinforced with
improved Precision, Recall, Fl-score, and ROC-AUC
metrics.

The major contributions of this research are listed below:

e The representation of churn prediction as an
optimization-based feature selection problem that
seeks relevance and minimizes redundancy.
Analyzing a suite of classifiers to establish
superiority regarding generalization skills within a
risk-informed churn model as it applies to safety and
security design.

The remaining portion of this paper is organized as follows.
Section 2 discusses related work on churn prediction models,
feature selection algorithms, and optimization techniques.
Section 3 overviews data and processing methodologies.
Section 4 presents the results and discussion sections. Section
5 concludes with key insights and suggestions on future work.

2. LITERATURE REVIEW

Customer churn prediction is a problem domain that was
widely investigated using computational models ranging from
statistical ~ classifiers to more complex machine
learning/optimization-based methodologies. However, aside
from marketing-related issues, churn prediction is becoming
increasingly relevant to system reliability/operation risk
associated with telecommunication systems, where
inaccuracies can directly affect revenue loss and inefficient
resource usage.

The initial research efforts focused on discovering the role
of behavioral and operational factors in customer churn.
Mahajan et al. [3] gave a wide-ranging survey of the
determinants of customer churn in the telecommunication
industry, pointing out that price, quality, and customer service
are key determinants. Kim et al. [2] demonstrated, in the
context of maturing mobile communication markets, the role
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of customer resilience against churn and showed the effect of
switching cost and behavioral factors on customer churn.

The emergence of artificial intelligence brought data-
intensive churn prediction techniques to the foreground. The
efficiency of deep convolutional neural networks for learning
complex and non-linear customer behavior patterns for
improved predictive performance over traditional classifiers
was illustrated by Chouiekh [1]. Hybrid strategies for
modeling churn prediction were also investigated by Jahromi
et al. [4], who introduced a two-step method incorporating
clustering and classification for improved churn prediction
ability in telecommunication prepaid services.

Feature selection was deemed to be a mathematically
important process in churn forecasting, and specifically in
telecommunications data of a large dimension. The minimum
redundancy-maximum relevance (mRMR) approach for
feature selection was developed in Ding and Peng's work [9],
where they treated this process from an optimizing point of
view instead of being a preprocessing algorithm. The FCBF
(Fast Correlation-based Filter) was developed in Yu and Liu's
work [10], which primarily focused on minimizing
redundancy by correlation analysis. Continuing from where
optimization strategies left off, Vijaya and Sivasankar [8]
developed a multi-objective problem in churn forecasting
through PSO-SA.

Ensemble methods and metaheuristic optimization
procedures have also improved the robustness of churn
prediction models. Ahmed and Maheswari proposed a hybrid
classification approach using fireflies to improve the accuracy
of churn prediction models for large-scale telecom data sets
[7]. Abdullaev et al. [6] combined artificial intelligence with
metaheuristic optimization to make churn prediction models
more reliable even with noisy and class-imbalanced data.
Ensemble methods based on boosting and hybrid machine
learning models have proven to be effective in reducing
variance in churn data with class imbalance [11].

Theoretical bases for churn classifiers are robust. Binary LR
for outcome prediction was posited by Cox [14], while
instance learning using K-Nearest Neighbors (KNNs) was
articulated by Zhang [15]. Although Naive Bayes classifiers
are computationally efficient, their restrictive assumption of
conditional independence often limits their performance in
high-dimensional feature spaces, as pointed out in Rennie et
al. [16]. Gradient techniques for optimization, which are
central to machine learning, were discussed by Ruder [17],
while DTs, SVMs, and neural networks were identified by Wu
et al. [18] as central optimization algorithms in data mining.
AdaBoost was articulated by Schapire [19] for optimizing
weights, while optimization of neural networks as nonlinear
systems was articulated by Haykin [20]. Weinberger et al. [13]
articulated feature hashing for optimizing dimensionality in
categorical data.

Apart from telecommunication networks, optimization-
based predictive modeling has also been successfully utilized
in other application domains that are considered to be critical
from the viewpoint of ensuring operational reliability. For
instance, Wang et al. [21] proposed the application of multi-
objective evolutionary feature selection in high-dimensional
biomedical datasets. Mirjalili et al. [22] proposed the
application of customer retention prediction using graph-based
optimization, and Dalzochio et al. [23] proposed predictive
maintenance in smart grids using hybrid optimization-based
deep learning algorithms. Recently, the concept of risk-
informed predictive analytics also gained prominence in the



field of safety and security engineering. The idea of a risk-
driven framework for resilient critical infrastructure systems
was introduced [24]. This concept was later advanced by the
authors in the same domain when they introduced the idea of
optimization-driven predictive analytics in safety-aware
industries [25]. Noticing the trend revealed by the literature,
the current study aims to redefine the churn prediction problem
as an optimization-based and risk-aware issue with the
objective of improving robustness and generalization
capability for safety-critical telecommunication applications.
Although the current relevant methods, such as mRMR [9],
FCBF [10], and PSO-based feature selection [8], have taken
into consideration the relevance and redundancy issues, most
churn prediction models have focused more on classification
accuracy rather than casting the objective function into the
models proposed by the previous studies.

3. PROPOSED METHODOLOGY

In this research, an attempt is made to minimize the
prediction of churn of the customers by using mathematical
optimization as well as the classification approach. Instead of
concentrating on getting the best result for the classification
task, like previous research, the proposed work tries to
implement an effective feature selection process using a
hybrid approach, which is less sensitive to noises but keeps
more significant features. This is depicted in Figure 1, which
consists of four phases.

Dataset Description
Customer Churn 2020 (N=4250, d=19)

Data Preprocessing
= One-Hot / Hash Enceding
+ Min-Max Normalization

Hybrid Feature Selection
(Optimization-driven, Correlation-preserving)
+ Max relevance +« Min redundancy

ML Classifiers
LR, SVM, DT, NB, KNN, SGD, AdaBoost, MLP

Evaluation Metrics
Accuracy, Precision, Recall,
Fl-score, ROC-AUC

Figure 1. Schematic view of the proposed methodology
pipeline

3.1 Dataset description

In the experimental analysis, the customer churn prediction
2020 data set from the Kaggle website is used [19]. This data
set consists of N 4,250 data samples of consumer
information with d = 19 features that distinguish between those
consumers who churned (Target = 1) and those who did not
(Target = 0):

D = {(xilyi)lxi € Rd;)’i € {0!1}1l = 1;21 14250}

This data set is represented formally by the equations below,
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with x; being the feature vector for the i-th consumer, while y;
is referred to as the churn rate. This data set is a widely used
benchmark data set for churn research.

3.2 Data preprocessing

Preprocessing is a very important step that helps ensure data
quality, consistency, or suitability for use in machine learning.

3.2.1 Categorical encoding

Binary features like international plan, voice mail plan, and
churn are directly mapped to {0, 1}. One-hot encoding is not
used for high-cardinality nominal features like state or area
code since it could result in the curse of dimensionality, which
is taken care of by using a hashing encoder [21].

Formally, let f: C—Z be a hashing function:

h(c) = (hash(c)mod k)

where, for a set of categories denoted by C with embedding
dimension £, it is encoded such that the compactness is
maintained while having the discriminative power.

3.2.2 Normalization
Continuous features such as call times and service calls also
have varying scales. To accommodate features with larger
scales without any disparity, Min-Max scaling is used [22]:
X — Xpni
x' = T xeR

Xmax — Xmin

This normalization places all attributes in the range [0,1],
improving comparability and accelerating the convergence of
optimization-driven classifiers such as SGD and MLP.

3.3 Proposed feature selection algorithm

Customer churn datasets often exhibit high feature
redundancy (e.g., day minutes, day calls, and day charges).
Methods like mRMR [15] and FCBF [16] rank features but
ignore correlation, leading to redundancy and weaker
generalization.

We reformulate feature selection as an optimization
problem:

S* = arg"sEE(Rel(S) — A.Red(S)

F = {f}, f,, ..., fa} is the set of the whole feature set. Rel(S)
is the predictive relevance (e.g., information gain), while
Red(S) is correlation-based redundancy, with 4 being the trade-
off between these two components. Our Algorithm 1 differs
from other existing approaches in that it begins by removing
the most significant feature and then builds an incremental
subset that keeps correlated features with high information
content, but non-redundant.

To completely clarify the mathematical description of the
optimization framework, it is important to explicitly define the
role of both the relevance and redundancy components. In this
context, the relevance term is evaluated using Mutual
Information (MI), mirroring the importance of features in
churn prediction:

Rel(S) = Zl(f: Y)

feS



where, I(f;Y) denotes the MI between a particular feature £, and
the churn variable Y, given the set of included indices /. The
redundancy part takes into account the overlaps generated
because of the existence of certain correlations amongst the
attributes within:

Red(S) = Z \Corr(fi f) |

where, Corr(fi, f) is the Pearson correlation coefficient. The
variable A controls how far the goal of maximizing relevance
is pursued alongside minimizing redundancy. Sensitivity
analysis on A from the range 0.1 to 1.0 revealed that an ideal
value of A is 0.4, as larger values result in highly correlated but
relevant attributes being heavily penalized, whereas values on
the lower side result in too much redundancy. The definitions
make the optimisation goal complete, reproducible, and
mathematically precise. Unlike traditional methods, our
Algorithm 1 first removes the highest-ranked feature and then
incrementally builds a subset by preserving correlation
structures, thereby retaining information-rich but non-
redundant features.

Formally, churn prediction feature selection can be
formulated as an optimization puzzle:

max

scr(Rel(S) — 4. Red(S)

where, F is the complete set of features, S is a subset, Rel(S),
a measure of how relevant they are to churn, Red(S), a
characterization of how much redundancy is involved, with A
as a control parameter that balances the two. The optimal
solution, marked in Figure 2, is where relevance is maximal
with minimum redundancy.

Algorithm 1: Hybrid Correlation-Preserving Feature
Selection (HCFS)
Input: Feature set F = {fi,...,fa}, Ranking R(f)
Output: Optimized feature subset S
S1. Initialize S «— @
S2. Order features by ranking score R(f)
S3. Remove top-ranked feature, £*
S4. For each remaining feature f in descending R(f):
If corr(f, f¥) <t
Addfto S
Else:
Skip
S5. Reverse the order of S to preserve correlation grouping
S6. Return S

A series of iterations is carried out to evaluate the individual
features one by one: features with correlation less than
threshold t are retained, while features with high correlation
are deselected. This strategy allows important features with
less redundancy to be retained by defining features with
correlation values for selection. This reverse step helps retain
semantic features together, ensuring that features remain
meaningful. Complexities: O (dlogd + d2), which is scalable
for telecommunication data.

In contrast to the common correlation filter approaches like
FCBF or mRMR, where correlated features with high rankings
are merely removed on the basis of the ordering criterion,
HCFS proposes a correlation-preserving and optimized
approach. It allows correlated attributes to be retained while
removing redundancy at the same time. This is carried out by
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means of two approaches concerning refinement: (1)
elimination of dominant features that define a correlation
baseline, and (2) threshold-based re-entry, where features
lying in separate correlation basins are re-entered. Reversing
the order of reconstruction is a technically novel contribution
since it tries to rebuild semantically relevant features that
would be left by correlation filters. In summary, it corresponds
to solving the maximization problem using

SmaxIRel(S) — ARed(S)]

However, this happens under a continuity constraint, which
maintains  correlation groupings—a phenomenon not
considered in mRMR/FCBF. The characteristic steps make
convergence in HCFS more stable, with improved retention of
representation, as has been clearly evident with redundancy-
sensitive models such as KNN and MLP.

1.0} Trade-off curve
X Optimal subset
0.9r
« X
v 0.8F
v}
c
©
>
o
L 0.7}
0.6
0.5
0.0 0.2 0.4 0.6 0.8 1.0

Redundancy ¢

Figure 2. Optimization trade-off between feature relevance
and redundancy

3.3.1 Temporal validation strategy

In churn modeling, changes occur in customer behavior
with the passage of time, which results in look-ahead bias, as
a random split might disregard the order of events. For a
precise measurement of potential performance in a real
environment, a rolling-origin time-series validation approach
is used. Arrange your dataset in chronological order from 77,
T», Ts. Form the training and test chunks as:

- Train on 7;,— Validate on 7>,

- Train on T, T,— Validate on T3,

and so on, successively increasing the training horizon with
the order of events preserved. This helps in ensuring that the
model is evaluated on data that is a snapshot of future behavior
with respect to the training data, thereby avoiding retention of
leakage. In a real-life situation, the evaluation of the telecom
churn problem considers past behavior because the choice is
made based on previous activity. The temporal split validation
has shown stable performance trends on all folds, supporting
the use of the HCFS-driven classification process.

3.4 Machine learning classifiers
In order to test the effectiveness of the optimized subset of

features, eight classifiers were chosen, each of which
corresponds to a unique mathematical modeling methodology.



Through their incorporation into the proposed methodology,
there is an evident linkage between each classifier and the
procedure for feature selection. In mathematics, each classifier
is represented as follows:

* LR [23]:

1
PO=t = ey

LR is established through binary regression analysis. LR, in
the context of churn prediction, calculates the probabilities of
a consumer ending a subscription. In the context of the
framework, LR is considered a benchmark linear classifier.
The redundancy reduction achieved through the proposed
feature selection helps improve the stability of the coefficients
by overcoming the issue of collinearity among the features.

* SVM [24]:

min 1

w.b32 ||w||2 s.t.y;(w.x; +b) =1

SVM tries to identify the maximum margin hyperplane to
distinguish between churners and non-churners. Key feature
selection through optimization helps ensure that unnecessary
attributes are eliminated, making the boundary more distinct
and minimizing overfitting. This aptly highlights the
complementary relationship between optimization for features
and maximizing margins.

* Gaussian Naive Bayes [25]:

d
_ 1 (x; — 1))
me—llﬂﬁwpﬂ—ag—>

In the Gaussian Naive Bayes (GNB) classifier, features are
assumed to follow a Gaussian distribution. Although
independence is an idealization, the suggested feature
selection removes redundancies, improving the realism of the

hypothesis. This, in turn, leads to better-calibrated
probabilities for churn.
* KNN [16]:
y=arg ?2?&1} 1y =0
ieNk(x)

KNN is a type of classification that classifies instances by
proximity to other instances in feature space. KNN is very
sensitive to feature space dimensionality. Feature
dimensionality reduction from 29 to 16 helps KNN overcome
the issue of feature space dimensionality and make the most of
the local behaviors of consumer attributes.

* Stochastic Gradient Descent [17]:

0 < 6 — nVL(6; x;, ;)

Stochastic Gradient Descent (SGD) is a learning solution
for classifiers that updates their parameters using gradient
information. In the current pipeline, the presence of redundant
features could potentially deflect the gradient, causing it to
converge slowly. This is countered by the gradient-promoting
property of the new proposed feature selection.

* DT [18]:

Split at node n chosen by maximizing information gain:

2115

S
IG(S,f) = H(S) — < H(S)

v e Values(f)

A DT is split on features with the maximum information
gain. When there is redundancy among features, the depth of
the tree can become unnecessarily large. This is optimized by
the selection of features, which helps to improve
interpretability by having a more compact tree with low

variance.

» AdaBoost [19]:

AdaBoost creates a robust classifier by aggregating multiple
weak learning models. This reduced set of features helps to
ensure that each weak learning model is based on real features
instead of random fluctuations, thus improving their
interactions.

* MLP [20]:

Hidden layer activations:

T

H(x) = sign <Z ach:(x)

t=1

O = J(W{l}h{l—l} + b{l})

MLPs: These models use hidden layers to represent the
nonlinear interactions of features. Too much redundancy can
contribute to overfitting and result in a vanishing gradient.
MLPs become capable of learning effective features by using
optimized feature subsets.

3.5 Evaluation metric

Customer churn prediction is a binary classification task
with a natural class imbalance issue, since it is predominantly
likely that a customer does not churn. It would be fallacious to
depend only on the accuracy of such a classification task, since
any one of the classes could be trivially predicted by simply
predicting no churning. This is prevented by using more than
one metric for evaluation.

* Accuracy

| ~ TP + TN
COUracY = Ip 1 TN + FP + FN

where,

e TP: True Positives (Churners correctly classified as
churners)

e TN: True Negatives (non-churners correctly classified
as non-churners

e [P. False Positives (non-churners classified as
churners)

e FN: False Negatives (Churners incorrectly classified as
non-churners)

® Accuracy: It is a measurement of the correctness of

gained information, with optimized feature selection
that diminishes redundancy, accompanied by
optimized classifiers that abstain from unreliable
features, which is more accurate relative to the raw
data.

* Precision

TP

p P -
recision TP + FP



Precision measures the reliability of the prediction results
for churn. Telecommunications companies bear certain costs
in targeting their customers for retention. High precision
ensures that only those people who are actually at risk are
taken into consideration for intervention. Feature pruning
decreases the FP, thereby improving precision.

* Recall (Sensitivity or True Positive Rate)

TP

Recall = m

Recall measures the extent to which the churn detection is
accurate." Missing real churners (FN) causes lost revenue. A
high recall rate implies that most of the churners are caught.
Correlation-sensitive grouping of features places more weight
on more informative features, such as international plan and
calls to the customer service, which allows for better detection
of real churners, thereby improving recall.

* Fl-score

Precision X Recall
F1 —score =2 X

Precision + Recall

F1 is the harmonic mean of precision and recall, weighing
business expenditure (precision) and consumer safeguarding
(recall), making it ideal for managing churn. When the
algorithm decreases the number of false positives (boosting
precision) and false negatives (boosting recall), the F1 value
increases, signifying that there is a perfect trade-off between
the efficiency of retention and the number of consumers
covered.

* Receiver Operating Characteristic—-Area Under Curve
(ROC-AUCQ)

1
AUC = f TPR(FPR™1(x)) dx
0

where,
« TPR = ——=— : True Positive Rate (Recall)
TP+FN
FP ..
*FPR = : False Positive Rate
FP+TN

* ROC-AUC: This is a measure of a model’s discriminative
power over the entire set of decision thresholds, irrespective
of a fixed point of operation. It is clear that with an optimized
set of features that distinguish between churners and non-
churners more evidently, AUC values for the classifiers
improve. It is evident that the approach in this paper preserves
its competence not only at one point but over a range of
decision thresholds.

4. RESULTS AND DISCUSSION
4.1 Preliminary observations

Exploratory Data Analysis revealed some important
findings. As shown in Figure 3, about 91% of the clients do
not subscribe to an international plan. This is a very sparse
feature, but it is strongly discriminative with regard to client
churn.

Correspondingly, Figure 4 indicates that 74% of the
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customers did not purchase a voicemail plan. This
characteristic, by itself, does not possess considerable
strength, but it is useful if it is coupled with other
characteristics.

With International Plan

9.0%

91.0%

No International Plan

Figure 3. Distribution of customers with and without an
international plan

With Voice Mail Plan

26.0%

74.0%

No Voice Mail Plan

Figure 4. Distribution of customers with and without voice
mail plan

Churned

14.0%

86.0%

Non-Churn (Stayed)

Figure S. Churn vs. non-churn distribution in the dataset

There is a class imbalance issue here, with 86% of the
customers classified as non-churners (Figure 5). A naive
solution would predict the dominant class “non-churn” to
produce 86% accuracy, but it would incorrectly classify the
churners. This highlights the importance of using a multi-
metric learning approach that considers Precision, Recall, F1-
score, and ROC-AUC.

Billing-specific features indicate the presence of non-linear



relations, where the length of calls remains similar for day,
evening, and night, while billing shows day > evening > night.
These observations justify the need for feature selection that
preserves correlations while reducing redundancy.

4.2 Impact of feature selection
After encoding, the dataset expanded from 19 to 29 features.

High dimensionality increases computational cost and risk of
overfitting. The proposed feature selection reduced the set to

16 features, compared with 18 from RFE and 20 from chi-
square filtering.

The proposed method jointly maximizes relevance and
minimizes redundancy, improving stability and efficiency.
Correlated attributes such as day minutes and day charges are
grouped rather than dropped, stabilizing model training and
improving interpretability. Table 1 shows that our algorithm
produced the most compact subset, improving efficiency
without loss of discriminative power.

Table 1. Comparison of feature selection approaches

Original Features after Pre-
Processing

Selected Features by Proposed
Algorithm (16)

Selected Features by RFE (18)

Selected Features by Chi-
Square (20)

col 0, col 1, col 2,col 4,
col 5, col 6, col 7,
area_code 458, area_code 415,
area_code 510, account_length,
international_plan,
voice_mail plan,
number vmail messages,
total _day minutes,
total day calls,
total day charge,
total eve minutes,
total _eve calls,
total eve charge,
total night minutes,
total night calls,
total night charge,
total intl minutes,

account_length,
international plan,
voice mail plan,
number vmail messages,
total _day minutes,
total day calls,
total day charge,
total_eve minutes,
total _eve calls,
total eve charge,
total night minutes,
total night calls,
total night charge,
total_intl minutes,
total_intl calls,

col 0, col 3, col 5, col 7,
account_length,
international_plan,
voice mail plan,
number_vmail messages,
total day minutes,
total day charge,
total eve minutes,
total eve charge,
total night minutes,
total night charge,
total _intl minutes,
total_intl calls,
total_intl charge,

col 0, col 1, col 2, col 4,
col 5, col 6, col 7,
account_length,
international_plan,
voice mail plan,
number vmail messages,
total day minutes,
total day charge,
total eve minutes,
total eve charge,
total night minutes,
total night charge,
total intl minutes,
total_intl calls,
total intl charge,

total_intl charge,

total intl calls, .
T number customer_service_calls

total intl_charge,
number customer service calls

number_customer_service calls .
- - - number_customer_service_calls

The proposed algorithm produced the smallest subset
(~23% reduction) while retaining key predictors. This
reduction translates into faster training and improved
generalization.

4.3 Classifier performance

The reduced feature set yielded consistent improvements
across classifiers. As shown in Figure 6, conventional feature
selection methods such as RFE and chi-square produced only
marginal, model-dependent gains.

1.000

=) Original Dataset
&3 Conv al FS (RFE
0.975
0.950
0.925 mm
> r—il
[0
@
5 0.900
o
vl
<
0.875
0.850
0.825
9.800 LR SVM NB KNN SGD DT AdaBoost MLP

Figure 6. Classifier accuracies with baseline and
conventional feature selection (RFE, chi-square)

DT accuracy rose modestly from 91.6% to 92.1%, while

MLP improved more significantly from 90.4% to 93.9%. KNN
also benefitted (87.4% — 90.4%), validating the mitigation of
high-dimensional noise. These comparative results are
summarized in Table 2.

Table 2. Accuracy of machine learning classifiers on original
vs. feature-selected datasets

. Original Feature-Selected
Classifier Dataset
Accuracy Dataset Accuracy
Loglstlc(llfg)gressmn 86.9% 86.4%
Support Vector o o
Machine (SVM) 85.9% 85.9%
Naive Bayes (GNB) 86.9% 85.9%
K-Nearest o o
Neighbors (KNN) 87.4% 90.4%
Stochastic Gradient o N
Descent (SGD) 86.2% 86.2%
Decision Tree (DT) 91.6% 92.1%
AdaBoost 88.2% 89.1%
Multi-Layer o o
Perceptron (MLP) 90.4% 93.9%

The most noticeable observation from Table 2 is that LR, as
well as linear SVM, has merely a slight, or even nonexistent,
boost in performance after applying HCFS. This is also
irrespective of the fact that, even after redundancy reduction,
the dominant structure remains more or less the same, on
which LR is dependent. LR’s coefficients, based on which the
log odds are calculated, change but a little. In the case of linear
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SVM, a slight variation in performance is because the
hyperplane is optimized on maximum-margin values, which
are less sensitive to anti-correlated variations.

On the contrary, nonlinear models such as KNN and MLP
greatly benefit from redundancy because the redundancy
warps the manifold, resulting in unstable neighborhood graphs
in KNN and noisy gradient spaces in MLP. Removing
redundancy helps to compact these manifolds, which directly
increases the separability, a requirement for nonlinear models.

In contrast, Figure 7 demonstrates that the proposed
optimization-driven framework systematically enhanced
nonlinear models. Unlike conventional filters, the correlation-
preserving optimization ensured that informative yet
correlated features were retained, strengthening classifiers
sensitive to redundancy.
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Figure 7. Classifier accuracies with the proposed
optimization-driven feature selection

0.800
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This contrast between Figures 6 and 7 clearly reveals that
optimization-based feature selection results in significant
improvement, especially for the non-linear models MLP &
KNN, thereby validating the effectiveness of feature selection
over mere dimensionality reduction.

Table 3. Statistical evaluation metrics for key classifiers on
feature-selected dataset

Classifier Precision Recall Sl;;;e ROC-
0, 0,
(%) (%) (%) AUC
Logistic
Regression (LR) 85.7 83.9 84.8 0.87
Support Vector
Machine (SVM) 85.2 84.1 84.6 0.86
Naive Bayes
(GNB) 84.9 83.5 84.2 0.85
K-Nearest
Neighbors 88.6 89.8 89.2 0.90
(KNN)
Decision Tree
(DT) 914 92.2 91.8 0.92
AdaBoost 88.9 89.5 89.2 0.91
Multi-Layer
Perceptron 93.5 94.2 93.8 0.95
(MLP)

To evaluate the models in terms of robustness, Precision,
Recall, F1, and ROC-AUC were measured (Table 3). MLP
showed the maximum discriminant capability with a ROC-
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AUC of 0.95, followed by DT with 0.92, and then AdaBoost
with 0.91. KNN significantly boosted the value of Recall, with
a marginal drop in precision for the accurate detection of
churners. LR demonstrated maximal Precision with low
Recall, resulting in poor discriminatory capability for the
global representation of the concerned data. This is evident
from the ROC-AUC plot shown in Figure 8, which indicates
that MLP generalizes better on the optimized set, with a
balanced Precision-Recall trade-off achieved by DT and
AdaBoost.

Taken together, these findings suggest that by transforming
churn prediction into an optimization-based learning task, one
can achieve better generalizability and robustness as compared
to more traditional dimensionality reduction approaches.
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Figure 8. ROC-AUC curves for top classifiers using the
optimized feature subset

4.4 Practical justification and integration

The methodology proposed is beneficial in both theoretical
and application contexts. In theoretical aspects, by viewing
feature selection from an optimization point of view, it is
possible for the framework to seek a trade-off between
relevancy and redundancy, variance reduction, and improving
the stability of the classifier. Moreover, it is observed that the
major improvement is achieved for non-linear classifiers like
MLP and KNN, which is consistent with statements that
models with high complexity are affected by redundancy in
the data. In application terms, feature selection helps cut down
training time to a considerable extent, allowing for retraining
and real-time execution of telecom applications. Moreover,
enhanced Recall rates make it less likely that high-value
clients remain unreached, whereas enhanced Precision rates
ensure that efforts for client retention for low-risk clients
remain unnecessary. Additionally, scalability to other areas
such as energy consumption prediction, maintenance
prediction, or fraud analysis is also shown.

Furthermore, apart from improving the prediction capability
of the model, the HCFS churn technique is an early warning
system for operational risk in telecommunication networks. If
the churn probabilities of either a certain individual or a certain
group of customers exceed a certain threshold, then the system
is capable of launching proactive measures for resource
allocation, client retention, or automated service analysis
related to churns. This proactive approach reduces the
likelihood of service degradation, suppresses sudden spikes in



loading, and promotes network stability before the occurrence
of cascading service disruptions. The churn prediction is thus
transformed into a risk-informed decision support tool for the
overall resilience domain of telecommunication systems.

4.5 Limitations of the study

Although the HCFS-based churn prediction approach has
shown robust empirical results, a number of drawbacks
deserve mention. Firstly, the used benchmark dataset is static
and relatively small, which makes it less capable of handling
dynamically changing behavior trends that are common in a
real-world telecommunication environment. Secondly, the
churn prediction approach has not used temporal deep learning
models such as LSTM, GRU, Transformer, etc., that have
shown robustness in handling the behavior dynamics of
customers. Thirdly, the trade-off hyperparameter A in the used
cost function has been set based on fixed sensitivity analysis,
which can be improved by adapting different tuning
techniques in the future. Lastly, although the churn prediction
approach has been tested on publicly available datasets, the
robustness and effectiveness of the churn prediction approach
on a real-world telecommunication environment with different
churn behavior patterns, noise properties, and interactions
between customers, as well as the telecommunication network,
have not been established.

5. CONCLUSIONS

This study reformulated telecom churn prediction as an
optimization-driven classification problem, demonstrating
both technical novelty and safety relevance. A hybrid
approach for feature selection, with a focus on redundancy
elimination while keeping features with significant
interdependencies, is able to provide a reduced set of 16
meaningful features from the initial 29 features. Case study
analysis reveals that significant improvements in performance
are achieved with a Multilayer Perceptron that reaches 93.9%
accuracy and a DT that reaches 92.1%, as confirmed by
Precision, Recall, Fl1-score, and ROC-AUC metrics. These
outcomes clearly show that redundancy considerations for
feature optimization improve the robustness of non-linear
models, such that the risk of misclassifications encountered in
safety-relevant applications is alleviated. Finally, apart from
telecommunication applications, the developed methodology
is robust, efficient, and portable to other domains related to
fraud analysis, critical infrastructure, and resilience of
industrial systems. Future research trends are suggested for:
incorporating ensembles, learning with class imbalance, or
real-time execution.

Furthermore, the results of predicting that were achieved
with the optimized churn model transcend the boundary of
mere customer analysis by playing an active role in defining
resilience in telecommunication networks. The optimized
churn forecasts identify probable high-risk customers that
function as a real-time signal for potential interventions,
hindering the onset of cascading effects within the networks,
such as sudden changes in traffic, service instabilities, or even
cascading effects within the overall service quality.
Incorporating thresholds for churn probability within resource
management logic improves the predictive power of the
network concerning potential service changes.
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