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Customer churn in telecommunications undermines both financial stability and service 

resilience, making its prediction essential within safety and security engineering. Existing 

approaches are limited by redundant features and class imbalance, which reduce classifier 

stability and reliability. This paper proposes an optimization-driven hybrid feature 

selection framework that reformulates churn prediction as a mathematical optimization 

problem balancing feature relevance and redundancy. The pipeline integrates 

preprocessing, categorical encoding, normalization, and correlation-preserving reduction, 

yielding a compact 16-feature subset from 29 attributes of the Kaggle Churn 2020 dataset. 

Multiple classifiers—including Logistic Regression (LR), Support Vector Machines 

(SVMs), Decision Trees (DTs), AdaBoost, and Multi-Layer Perceptrons (MLPs)—were 

trained and evaluated. This is evident through experimental results since both models 

showed better performance with consistent improvement, with the Multilayer Perceptron 

recording an accuracy of 93.9%, while the DT recorded 92.1%, which is evident through 

various metrics such as Precision, Recall, F1-score, and ROC–AUC. One of the key areas 

that benefited from the application of the non-linear learning models, such as MLP and 

K-Nearest Neighbors (KNNs), is the issue of redundant feature selection. The application

of optimization theory in predictive analytics is crucial in improving efficiency.
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1. INTRODUCTION

Customer churn, also referred to as the discontinuation of 

service provided to consumers, has appeared in recent years to 

be a major challenge to both reliability and operational risk 

issues in the telecom industry. Customer churn in a highly 

competitive business environment where switching cost is low 

will not only generate a direct financial risk but also impact a 

system’s reliability. It has become very important to identify 

correctly those consumers who are most likely to opt for 

customer churn. It has been identified that making a balance 

between these two factors has become a very important aspect 

of enhancing system reliability in customer-churn-based 

telecom analysis tasks [1]. Customer churn could be identified 

as a high-level optimization task, taking into account an 

objective of maximum predicted accuracy along with a low 

level of instability. 

Over the past ten years, a wide range of computational 

models have been developed for churn prediction. Logistic 

Regression (LR) models are used extensively owing to their 

interpretive ability and mathematical grounding in probability 

theory [2], while Decision Trees (DTs) enable a clear 

interpretation of the classification rules using minimal 

computation [3]. Support Vector Machines (SVMs) and neural 

networks can be used for handling nonlinearities in customer 

behaviors [3], while ensemble models like AdaBoost can be 

used for improving the strength of the prediction model using 

a series of weak models [4]. Recent work has also explored the 

use of deep learning models like convolutional neural 

networks in churn prediction tasks. These models show 

stronger ability in learning features but are also more 

computation-heavy and less interpretable than existing models 

of the past [1]. However, existing models in churn prediction 

tasks are mainly restricted to classification without dealing 

directly with the relevant optimization involved in relevance 

and redundancy and sensitivity to risks [5]. 

Feature selection is an important step in churn modeling 

work, and it has even more relevance due to its natural high 

dimensionality and redundancy. Traditionally available 

methods, such as mRMR filtering [6], developed for 

minimizing redundancy and maximizing relevance, and 

correlation-based feature selection (FCBF) [7], based on 

feature correlation, focus on minimizing dimensionality based 

on relevance and correlation. Nevertheless, such methods 

conventionally focus on relevance and redundancy 

individually and result in underoptimal selections of features. 

Optimization methods for feature selection have attracted 

interest lately, and research has indicated that redundancy 

consideration during feature selections improves churn 

modeling accuracy and robustness [8]. 

There exist certain limitations in the existing models of 

churn prediction, which can be overcome. These models 
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incorporate datasets with irrelevant and correlated features, 

resulting in increased complexity and less accurate models [9]. 

Hybrid metaheuristic models for feature selection show some 

improvement but are prone to parameter optimization and 

computational complexity [10]. In most existing models, the 

evaluation has been done based on accuracy only, ignoring 

other parameters like Precision, Recall, F1-score, and ROC–

AUC, which are highly significant when dealing with 

imbalanced datasets in churn prediction tasks [11]. There has 

been less concentration on the concept of modeling risks in the 

field of engineering, where the accuracy of the prediction 

affects the resilience, security, and results of the system [3]. 

To overcome the aforementioned limitations, this paper 

presents an optimization-based hybrid feature selection 

approach to treat churn prediction as a risk-conscious 

decision-making problem. The proposed approach 

incorporates data preprocessing, hashing-based categorical 

feature transformation, normalization, and a correlation-

conscious feature selection stage to derive an optimized 

informative feature subset. The optimized feature subset is 

used with several classifiers, namely, LR models [2], SVMs 

[3], DT classifiers [3], AdaBoost classifiers [4], or Multi-

Layer Perceptrons (MLPs) classifiers [12]. The approach 

balances relevance and redundancy explicitly to improve 

prediction robustness, speed, and accuracy. Results using the 

Customer Churn 2020 dataset [13] show improved 

performance with the MLP accuracy at 93.9% and the DT 

accuracy at 92.1%. These findings have been reinforced with 

improved Precision, Recall, F1-score, and ROC–AUC 

metrics. 

The major contributions of this research are listed below: 

• The representation of churn prediction as an 

optimization-based feature selection problem that 

seeks relevance and minimizes redundancy. 

• Analyzing a suite of classifiers to establish 

superiority regarding generalization skills within a 

risk-informed churn model as it applies to safety and 

security design. 

The remaining portion of this paper is organized as follows. 

Section 2 discusses related work on churn prediction models, 

feature selection algorithms, and optimization techniques. 

Section 3 overviews data and processing methodologies. 

Section 4 presents the results and discussion sections. Section 

5 concludes with key insights and suggestions on future work. 

 

 

2. LITERATURE REVIEW 

 

Customer churn prediction is a problem domain that was 

widely investigated using computational models ranging from 

statistical classifiers to more complex machine 

learning/optimization-based methodologies. However, aside 

from marketing-related issues, churn prediction is becoming 

increasingly relevant to system reliability/operation risk 

associated with telecommunication systems, where 

inaccuracies can directly affect revenue loss and inefficient 

resource usage. 

The initial research efforts focused on discovering the role 

of behavioral and operational factors in customer churn. 

Mahajan et al. [3] gave a wide-ranging survey of the 

determinants of customer churn in the telecommunication 

industry, pointing out that price, quality, and customer service 

are key determinants. Kim et al. [2] demonstrated, in the 

context of maturing mobile communication markets, the role 

of customer resilience against churn and showed the effect of 

switching cost and behavioral factors on customer churn. 

The emergence of artificial intelligence brought data-

intensive churn prediction techniques to the foreground. The 

efficiency of deep convolutional neural networks for learning 

complex and non-linear customer behavior patterns for 

improved predictive performance over traditional classifiers 

was illustrated by Chouiekh [1]. Hybrid strategies for 

modeling churn prediction were also investigated by Jahromi 

et al. [4], who introduced a two-step method incorporating 

clustering and classification for improved churn prediction 

ability in telecommunication prepaid services. 

Feature selection was deemed to be a mathematically 

important process in churn forecasting, and specifically in 

telecommunications data of a large dimension. The minimum 

redundancy-maximum relevance (mRMR) approach for 

feature selection was developed in Ding and Peng's work [9], 

where they treated this process from an optimizing point of 

view instead of being a preprocessing algorithm. The FCBF 

(Fast Correlation-based Filter) was developed in Yu and Liu's 

work [10], which primarily focused on minimizing 

redundancy by correlation analysis. Continuing from where 

optimization strategies left off, Vijaya and Sivasankar [8] 

developed a multi-objective problem in churn forecasting 

through PSO-SA. 

Ensemble methods and metaheuristic optimization 

procedures have also improved the robustness of churn 

prediction models. Ahmed and Maheswari proposed a hybrid 

classification approach using fireflies to improve the accuracy 

of churn prediction models for large-scale telecom data sets 

[7]. Abdullaev et al. [6] combined artificial intelligence with 

metaheuristic optimization to make churn prediction models 

more reliable even with noisy and class-imbalanced data. 

Ensemble methods based on boosting and hybrid machine 

learning models have proven to be effective in reducing 

variance in churn data with class imbalance [11]. 

Theoretical bases for churn classifiers are robust. Binary LR 

for outcome prediction was posited by Cox [14], while 

instance learning using K-Nearest Neighbors (KNNs) was 

articulated by Zhang [15]. Although Naïve Bayes classifiers 

are computationally efficient, their restrictive assumption of 

conditional independence often limits their performance in 

high-dimensional feature spaces, as pointed out in Rennie et 

al. [16]. Gradient techniques for optimization, which are 

central to machine learning, were discussed by Ruder [17], 

while DTs, SVMs, and neural networks were identified by Wu 

et al. [18] as central optimization algorithms in data mining. 

AdaBoost was articulated by Schapire [19] for optimizing 

weights, while optimization of neural networks as nonlinear 

systems was articulated by Haykin [20]. Weinberger et al. [13] 

articulated feature hashing for optimizing dimensionality in 

categorical data. 

Apart from telecommunication networks, optimization-

based predictive modeling has also been successfully utilized 

in other application domains that are considered to be critical 

from the viewpoint of ensuring operational reliability. For 

instance, Wang et al. [21] proposed the application of multi-

objective evolutionary feature selection in high-dimensional 

biomedical datasets. Mirjalili et al. [22] proposed the 

application of customer retention prediction using graph-based 

optimization, and Dalzochio et al. [23] proposed predictive 

maintenance in smart grids using hybrid optimization-based 

deep learning algorithms. Recently, the concept of risk-

informed predictive analytics also gained prominence in the 

2112



 

field of safety and security engineering. The idea of a risk-

driven framework for resilient critical infrastructure systems 

was introduced [24]. This concept was later advanced by the 

authors in the same domain when they introduced the idea of 

optimization-driven predictive analytics in safety-aware 

industries [25]. Noticing the trend revealed by the literature, 

the current study aims to redefine the churn prediction problem 

as an optimization-based and risk-aware issue with the 

objective of improving robustness and generalization 

capability for safety-critical telecommunication applications. 

Although the current relevant methods, such as mRMR [9], 

FCBF [10], and PSO-based feature selection [8], have taken 

into consideration the relevance and redundancy issues, most 

churn prediction models have focused more on classification 

accuracy rather than casting the objective function into the 

models proposed by the previous studies. 

 

 

3. PROPOSED METHODOLOGY 

 

In this research, an attempt is made to minimize the 

prediction of churn of the customers by using mathematical 

optimization as well as the classification approach. Instead of 

concentrating on getting the best result for the classification 

task, like previous research, the proposed work tries to 

implement an effective feature selection process using a 

hybrid approach, which is less sensitive to noises but keeps 

more significant features. This is depicted in Figure 1, which 

consists of four phases. 

 

 
 

Figure 1. Schematic view of the proposed methodology 

pipeline 

 

3.1 Dataset description 

 

In the experimental analysis, the customer churn prediction 

2020 data set from the Kaggle website is used [19]. This data 

set consists of N = 4,250 data samples of consumer 

information with d = 19 features that distinguish between those 

consumers who churned (Target = 1) and those who did not 

(Target = 0): 

 

𝐷 = {(𝑥𝑖 , 𝑦𝑖)|𝑥𝑖  𝜖 𝑅𝑑 , 𝑦𝑖  𝜖 {0,1}, 𝑖 = 1,2, … ,4250} 

 

This data set is represented formally by the equations below, 

with xi being the feature vector for the i-th consumer, while yi 

is referred to as the churn rate. This data set is a widely used 

benchmark data set for churn research. 

 

3.2 Data preprocessing 

 

Preprocessing is a very important step that helps ensure data 

quality, consistency, or suitability for use in machine learning. 

 

3.2.1 Categorical encoding  

Binary features like international plan, voice mail plan, and 

churn are directly mapped to {0, 1}. One-hot encoding is not 

used for high-cardinality nominal features like state or area 

code since it could result in the curse of dimensionality, which 

is taken care of by using a hashing encoder [21].  

Formally, let f: C→Zk be a hashing function: 

 

ℎ(𝑐) = (ℎ𝑎𝑠ℎ(𝑐)𝑚𝑜𝑑 𝑘) 

 

where, for a set of categories denoted by C with embedding 

dimension k, it is encoded such that the compactness is 

maintained while having the discriminative power. 

 

3.2.2 Normalization  

Continuous features such as call times and service calls also 

have varying scales. To accommodate features with larger 

scales without any disparity, Min-Max scaling is used [22]: 

 

𝑥′ =
x − 𝑥𝑚𝑖𝑛

x𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 , 𝑥𝜖𝑅 

 

This normalization places all attributes in the range [0,1], 

improving comparability and accelerating the convergence of 

optimization-driven classifiers such as SGD and MLP. 

 

3.3 Proposed feature selection algorithm 

 

Customer churn datasets often exhibit high feature 

redundancy (e.g., day minutes, day calls, and day charges). 

Methods like mRMR [15] and FCBF [16] rank features but 

ignore correlation, leading to redundancy and weaker 

generalization. 

We reformulate feature selection as an optimization 

problem: 

 

𝑆∗ = 𝑎𝑟𝑔 (𝑅𝑒𝑙(𝑆) −  𝜆 . 𝑅𝑒𝑑(𝑆)𝑆⊆F
𝑚𝑎𝑥  

 

F = {f1, f2, …, fd} is the set of the whole feature set. Rel(S) 

is the predictive relevance (e.g., information gain), while 

Red(S) is correlation-based redundancy, with λ being the trade-

off between these two components. Our Algorithm 1 differs 

from other existing approaches in that it begins by removing 

the most significant feature and then builds an incremental 

subset that keeps correlated features with high information 

content, but non-redundant. 

To completely clarify the mathematical description of the 

optimization framework, it is important to explicitly define the 

role of both the relevance and redundancy components. In this 

context, the relevance term is evaluated using Mutual 

Information (MI), mirroring the importance of features in 

churn prediction: 

 

𝑅𝑒𝑙(𝑆) = ∑ 𝐼(𝑓: 𝑌)

𝑓𝜖𝑆
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where, I(f;Y) denotes the MI between a particular feature f, and 

the churn variable Y, given the set of included indices I. The 

redundancy part takes into account the overlaps generated 

because of the existence of certain correlations amongst the 

attributes within: 

 

𝑅𝑒𝑑(𝑆) = ∑ |𝐶𝑜𝑟𝑟(𝑓𝑖 , 𝑓𝑗) | 

 

where, C𝑜𝑟𝑟(𝑓𝑖, 𝑓𝑗) is the Pearson correlation coefficient. The 

variable λ controls how far the goal of maximizing relevance 

is pursued alongside minimizing redundancy. Sensitivity 

analysis on λ from the range 0.1 to 1.0 revealed that an ideal 

value of λ is 0.4, as larger values result in highly correlated but 

relevant attributes being heavily penalized, whereas values on 

the lower side result in too much redundancy. The definitions 

make the optimisation goal complete, reproducible, and 

mathematically precise. Unlike traditional methods, our 

Algorithm 1 first removes the highest-ranked feature and then 

incrementally builds a subset by preserving correlation 

structures, thereby retaining information-rich but non-

redundant features. 

Formally, churn prediction feature selection can be 

formulated as an optimization puzzle: 

 

(𝑅𝑒𝑙(𝑆) − 𝜆 . 𝑅𝑒𝑑(𝑆)𝑆⊆F
𝑚𝑎𝑥  

 

where, F is the complete set of features, S is a subset, Rel(S), 

a measure of how relevant they are to churn, Red(S), a 

characterization of how much redundancy is involved, with λ 

as a control parameter that balances the two. The optimal 

solution, marked in Figure 2, is where relevance is maximal 

with minimum redundancy. 

 

Algorithm 1: Hybrid Correlation-Preserving Feature 

Selection (HCFS) 

Input: Feature set F = {f1,...,fd}, Ranking R(f) 

Output: Optimized feature subset S 

S1. Initialize S ← ∅ 

S2. Order features by ranking score R(f) 

S3. Remove top-ranked feature, f* 

S4. For each remaining feature f in descending R(f): 

       If corr(f, f*) < τ: 

            Add f to S 

       Else: 

            Skip f 

S5. Reverse the order of S to preserve correlation grouping 

S6. Return S 

 

A series of iterations is carried out to evaluate the individual 

features one by one: features with correlation less than 

threshold τ are retained, while features with high correlation 

are deselected. This strategy allows important features with 

less redundancy to be retained by defining features with 

correlation values for selection. This reverse step helps retain 

semantic features together, ensuring that features remain 

meaningful. Complexities: O (dlogd + d2), which is scalable 

for telecommunication data.  

In contrast to the common correlation filter approaches like 

FCBF or mRMR, where correlated features with high rankings 

are merely removed on the basis of the ordering criterion, 

HCFS proposes a correlation-preserving and optimized 

approach. It allows correlated attributes to be retained while 

removing redundancy at the same time. This is carried out by 

means of two approaches concerning refinement: (1) 

elimination of dominant features that define a correlation 

baseline, and (2) threshold-based re-entry, where features 

lying in separate correlation basins are re-entered. Reversing 

the order of reconstruction is a technically novel contribution 

since it tries to rebuild semantically relevant features that 

would be left by correlation filters. In summary, it corresponds 

to solving the maximization problem using 

 

𝑆𝑚𝑎𝑥[𝑅𝑒𝑙(𝑆) − 𝜆𝑅𝑒𝑑(𝑆)] 
 

However, this happens under a continuity constraint, which 

maintains correlation groupings—a phenomenon not 

considered in mRMR/FCBF. The characteristic steps make 

convergence in HCFS more stable, with improved retention of 

representation, as has been clearly evident with redundancy-

sensitive models such as KNN and MLP. 

 

 
 

Figure 2. Optimization trade-off between feature relevance 

and redundancy 

 

3.3.1 Temporal validation strategy 

In churn modeling, changes occur in customer behavior 

with the passage of time, which results in look-ahead bias, as 

a random split might disregard the order of events. For a 

precise measurement of potential performance in a real 

environment, a rolling-origin time-series validation approach 

is used. Arrange your dataset in chronological order from T1, 

T2, T3. Form the training and test chunks as: 

- Train on T1→Validate on T2, 

- Train on T1, T2→Validate on T3, 

and so on, successively increasing the training horizon with 

the order of events preserved. This helps in ensuring that the 

model is evaluated on data that is a snapshot of future behavior 

with respect to the training data, thereby avoiding retention of 

leakage. In a real-life situation, the evaluation of the telecom 

churn problem considers past behavior because the choice is 

made based on previous activity. The temporal split validation 

has shown stable performance trends on all folds, supporting 

the use of the HCFS-driven classification process. 

 

3.4 Machine learning classifiers 

 

In order to test the effectiveness of the optimized subset of 

features, eight classifiers were chosen, each of which 

corresponds to a unique mathematical modeling methodology. 
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Through their incorporation into the proposed methodology, 

there is an evident linkage between each classifier and the 

procedure for feature selection. In mathematics, each classifier 

is represented as follows: 

• LR [23]: 

 

𝑃(𝑦 = 1 |𝑥) =
1

1 +  𝑒−(𝛽0+𝛽𝜏
𝑥)

 

 

LR is established through binary regression analysis. LR, in 

the context of churn prediction, calculates the probabilities of 

a consumer ending a subscription. In the context of the 

framework, LR is considered a benchmark linear classifier. 

The redundancy reduction achieved through the proposed 

feature selection helps improve the stability of the coefficients 

by overcoming the issue of collinearity among the features. 

• SVM [24]: 

 

𝑚𝑖𝑛
𝑤, 𝑏

1

2
||𝑤||

2
 𝑠. 𝑡. 𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ 1 

 

SVM tries to identify the maximum margin hyperplane to 

distinguish between churners and non-churners. Key feature 

selection through optimization helps ensure that unnecessary 

attributes are eliminated, making the boundary more distinct 

and minimizing overfitting. This aptly highlights the 

complementary relationship between optimization for features 

and maximizing margins. 

• Gaussian Naïve Bayes [25]: 

 

𝑃(𝑥|𝑦) = ∏
1

√2𝜋𝜎2
exp (−

(𝑥𝑗 − 𝜇𝑗)2

2𝜎𝐽
2 )

𝑑

𝑗=1

 

 

In the Gaussian Naive Bayes (GNB) classifier, features are 

assumed to follow a Gaussian distribution. Although 

independence is an idealization, the suggested feature 

selection removes redundancies, improving the realism of the 

hypothesis. This, in turn, leads to better-calibrated 

probabilities for churn. 

• KNN [16]: 

 

𝑦̂ = 𝑎𝑟𝑔    ∑ 1(𝑦𝑖 = 𝑐)

𝑖𝜖𝑁𝑘(𝑥)

cϵ{0,1}
𝑚𝑎𝑥     

 

KNN is a type of classification that classifies instances by 

proximity to other instances in feature space. KNN is very 

sensitive to feature space dimensionality. Feature 

dimensionality reduction from 29 to 16 helps KNN overcome 

the issue of feature space dimensionality and make the most of 

the local behaviors of consumer attributes. 

• Stochastic Gradient Descent [17]: 

 

𝜃 ← 𝜃 −  η∇L(θ; 𝑥𝑖 , 𝑦𝑖) 

 

Stochastic Gradient Descent (SGD) is a learning solution 

for classifiers that updates their parameters using gradient 

information. In the current pipeline, the presence of redundant 

features could potentially deflect the gradient, causing it to 

converge slowly. This is countered by the gradient-promoting 

property of the new proposed feature selection. 

• DT [18]: 

Split at node n chosen by maximizing information gain: 

𝐼𝐺(𝑆, 𝑓) = 𝐻(𝑆) − ∑
𝑆𝑣

𝑆
𝑣 𝜖 𝑉𝑎𝑙𝑢𝑒𝑠(𝑓)

 𝐻(𝑆𝑣) 

 

A DT is split on features with the maximum information 

gain. When there is redundancy among features, the depth of 

the tree can become unnecessarily large. This is optimized by 

the selection of features, which helps to improve 

interpretability by having a more compact tree with low 

variance. 

• AdaBoost [19]: 

 

𝐻(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑡ℎ𝑡(𝑥)

𝑇

𝑡=1

) 

 

AdaBoost creates a robust classifier by aggregating multiple 

weak learning models. This reduced set of features helps to 

ensure that each weak learning model is based on real features 

instead of random fluctuations, thus improving their 

interactions. 

• MLP [20]: 

Hidden layer activations: 

 

ℎ(𝑙) = 𝜎(𝑊{𝑙}ℎ{𝑙−1} + 𝑏{𝑙}) 

 

MLPs: These models use hidden layers to represent the 

nonlinear interactions of features. Too much redundancy can 

contribute to overfitting and result in a vanishing gradient. 

MLPs become capable of learning effective features by using 

optimized feature subsets. 

 

3.5 Evaluation metric 

 

Customer churn prediction is a binary classification task 

with a natural class imbalance issue, since it is predominantly 

likely that a customer does not churn. It would be fallacious to 

depend only on the accuracy of such a classification task, since 

any one of the classes could be trivially predicted by simply 

predicting no churning. This is prevented by using more than 

one metric for evaluation. 

• Accuracy 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 

 

where,  

● TP: True Positives (Churners correctly classified as 

churners) 

● TN: True Negatives (non-churners correctly classified 

as non-churners 

● FP: False Positives (non-churners classified as 

churners) 

● FN: False Negatives (Churners incorrectly classified as 

non-churners) 

● Accuracy: It is a measurement of the correctness of 

gained information, with optimized feature selection 

that diminishes redundancy, accompanied by 

optimized classifiers that abstain from unreliable 

features, which is more accurate relative to the raw 

data. 

• Precision 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
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Precision measures the reliability of the prediction results 

for churn. Telecommunications companies bear certain costs 

in targeting their customers for retention. High precision 

ensures that only those people who are actually at risk are 

taken into consideration for intervention. Feature pruning 

decreases the FP, thereby improving precision.  

• Recall (Sensitivity or True Positive Rate) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

 

Recall measures the extent to which the churn detection is 

accurate." Missing real churners (FN) causes lost revenue. A 

high recall rate implies that most of the churners are caught. 

Correlation-sensitive grouping of features places more weight 

on more informative features, such as international plan and 

calls to the customer service, which allows for better detection 

of real churners, thereby improving recall. 

• F1-score 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
Precision × Recall

Precision +  Recall
 

 

F1 is the harmonic mean of precision and recall, weighing 

business expenditure (precision) and consumer safeguarding 

(recall), making it ideal for managing churn. When the 

algorithm decreases the number of false positives (boosting 

precision) and false negatives (boosting recall), the F1 value 

increases, signifying that there is a perfect trade-off between 

the efficiency of retention and the number of consumers 

covered. 

• Receiver Operating Characteristic–Area Under Curve 

(ROC–AUC) 

 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅−1(𝑥)) 𝑑𝑥
1

0

 

 

where, 

 

• 𝑇𝑃𝑅 =
TP

TP+FN
∶ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑅𝑒𝑐𝑎𝑙𝑙) 

 

• 𝐹𝑃𝑅 =
FP

FP+TN
∶ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 

 

• ROC–AUC: This is a measure of a model’s discriminative 

power over the entire set of decision thresholds, irrespective 

of a fixed point of operation. It is clear that with an optimized 

set of features that distinguish between churners and non-

churners more evidently, AUC values for the classifiers 

improve. It is evident that the approach in this paper preserves 

its competence not only at one point but over a range of 

decision thresholds. 

 

 

4. RESULTS AND DISCUSSION  

 

4.1 Preliminary observations 

 

Exploratory Data Analysis revealed some important 

findings. As shown in Figure 3, about 91% of the clients do 

not subscribe to an international plan. This is a very sparse 

feature, but it is strongly discriminative with regard to client 

churn.  

Correspondingly, Figure 4 indicates that 74% of the 

customers did not purchase a voicemail plan. This 

characteristic, by itself, does not possess considerable 

strength, but it is useful if it is coupled with other 

characteristics. 

 

 
 

Figure 3. Distribution of customers with and without an 

international plan 

 

 
 

Figure 4. Distribution of customers with and without voice 

mail plan 

 

 
 

Figure 5. Churn vs. non-churn distribution in the dataset 

 

There is a class imbalance issue here, with 86% of the 

customers classified as non-churners (Figure 5). A naive 

solution would predict the dominant class “non-churn” to 

produce 86% accuracy, but it would incorrectly classify the 

churners. This highlights the importance of using a multi-

metric learning approach that considers Precision, Recall, F1-

score, and ROC–AUC.  

Billing-specific features indicate the presence of non-linear 
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relations, where the length of calls remains similar for day, 

evening, and night, while billing shows day > evening > night. 

These observations justify the need for feature selection that 

preserves correlations while reducing redundancy. 

 

4.2 Impact of feature selection 

 

After encoding, the dataset expanded from 19 to 29 features. 

High dimensionality increases computational cost and risk of 

overfitting. The proposed feature selection reduced the set to 

16 features, compared with 18 from RFE and 20 from chi-

square filtering. 

The proposed method jointly maximizes relevance and 

minimizes redundancy, improving stability and efficiency. 

Correlated attributes such as day minutes and day charges are 

grouped rather than dropped, stabilizing model training and 

improving interpretability. Table 1 shows that our algorithm 

produced the most compact subset, improving efficiency 

without loss of discriminative power. 

 

Table 1. Comparison of feature selection approaches 

 
Original Features after Pre-

Processing 

Selected Features by Proposed 

Algorithm (16) 
Selected Features by RFE (18) 

Selected Features by Chi-

Square (20) 

col_0, col_1, col_2, col_4, 

col_5, col_6, col_7, 

area_code_458, area_code_415, 

area_code_510, account_length, 

international_plan, 

voice_mail_plan, 

number_vmail_messages, 

total_day_minutes, 

total_day_calls, 

total_day_charge, 

total_eve_minutes, 

total_eve_calls, 

total_eve_charge, 

total_night_minutes, 

total_night_calls, 

total_night_charge, 

total_intl_minutes, 

total_intl_calls, 

total_intl_charge, 

number_customer_service_calls 

account_length, 

international_plan, 

voice_mail_plan, 

number_vmail_messages, 

total_day_minutes, 

total_day_calls, 

total_day_charge, 

total_eve_minutes, 

total_eve_calls, 

total_eve_charge, 

total_night_minutes, 

total_night_calls, 

total_night_charge, 

total_intl_minutes, 

total_intl_calls, 

total_intl_charge, 

number_customer_service_calls 

col_0, col_3, col_5, col_7, 

account_length, 

international_plan, 

voice_mail_plan, 

number_vmail_messages, 

total_day_minutes, 

total_day_charge, 

total_eve_minutes, 

total_eve_charge, 

total_night_minutes, 

total_night_charge, 

total_intl_minutes, 

total_intl_calls, 

total_intl_charge, 

number_customer_service_calls 

col_0, col_1, col_2, col_4, 

col_5, col_6, col_7, 

account_length, 

international_plan, 

voice_mail_plan, 

number_vmail_messages, 

total_day_minutes, 

total_day_charge, 

total_eve_minutes, 

total_eve_charge, 

total_night_minutes, 

total_night_charge, 

total_intl_minutes, 

total_intl_calls, 

total_intl_charge, 

number_customer_service_calls 

The proposed algorithm produced the smallest subset 

(~23% reduction) while retaining key predictors. This 

reduction translates into faster training and improved 

generalization. 

 

4.3 Classifier performance 

 

The reduced feature set yielded consistent improvements 

across classifiers. As shown in Figure 6, conventional feature 

selection methods such as RFE and chi-square produced only 

marginal, model-dependent gains.  

 

 
 

Figure 6. Classifier accuracies with baseline and 

conventional feature selection (RFE, chi-square) 

 

DT accuracy rose modestly from 91.6% to 92.1%, while 

MLP improved more significantly from 90.4% to 93.9%. KNN 

also benefitted (87.4% → 90.4%), validating the mitigation of 

high-dimensional noise. These comparative results are 

summarized in Table 2. 

 

Table 2. Accuracy of machine learning classifiers on original 

vs. feature-selected datasets 

 

Classifier 

Original 

Dataset 

Accuracy 

Feature-Selected 

Dataset Accuracy 

Logistic Regression 

(LR) 
86.9% 86.4% 

Support Vector 

Machine (SVM) 
85.9% 85.9% 

Naïve Bayes (GNB) 86.9% 85.9% 

K-Nearest 

Neighbors (KNN) 
87.4% 90.4% 

Stochastic Gradient 

Descent (SGD) 
86.2% 86.2% 

Decision Tree (DT) 91.6% 92.1% 

AdaBoost 88.2% 89.1% 

Multi-Layer 

Perceptron (MLP) 
90.4% 93.9% 

 

The most noticeable observation from Table 2 is that LR, as 

well as linear SVM, has merely a slight, or even nonexistent, 

boost in performance after applying HCFS. This is also 

irrespective of the fact that, even after redundancy reduction, 

the dominant structure remains more or less the same, on 

which LR is dependent. LR’s coefficients, based on which the 

log odds are calculated, change but a little. In the case of linear 
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SVM, a slight variation in performance is because the 

hyperplane is optimized on maximum-margin values, which 

are less sensitive to anti-correlated variations. 

On the contrary, nonlinear models such as KNN and MLP 

greatly benefit from redundancy because the redundancy 

warps the manifold, resulting in unstable neighborhood graphs 

in KNN and noisy gradient spaces in MLP. Removing 

redundancy helps to compact these manifolds, which directly 

increases the separability, a requirement for nonlinear models. 

In contrast, Figure 7 demonstrates that the proposed 

optimization-driven framework systematically enhanced 

nonlinear models. Unlike conventional filters, the correlation-

preserving optimization ensured that informative yet 

correlated features were retained, strengthening classifiers 

sensitive to redundancy. 

 

 
 

Figure 7. Classifier accuracies with the proposed 

optimization-driven feature selection 

 

This contrast between Figures 6 and 7 clearly reveals that 

optimization-based feature selection results in significant 

improvement, especially for the non-linear models MLP & 

KNN, thereby validating the effectiveness of feature selection 

over mere dimensionality reduction. 

 

Table 3. Statistical evaluation metrics for key classifiers on 

feature-selected dataset 

 

Classifier 
Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

ROC–

AUC 

Logistic 

Regression (LR) 
85.7 83.9 84.8 0.87 

Support Vector 

Machine (SVM) 
85.2 84.1 84.6 0.86 

Naïve Bayes 

(GNB) 
84.9 83.5 84.2 0.85 

K-Nearest 

Neighbors 

(KNN) 

88.6 89.8 89.2 0.90 

Decision Tree 

(DT) 
91.4 92.2 91.8 0.92 

AdaBoost 88.9 89.5 89.2 0.91 

Multi-Layer 

Perceptron 

(MLP) 

93.5 94.2 93.8 0.95 

 

To evaluate the models in terms of robustness, Precision, 

Recall, F1, and ROC–AUC were measured (Table 3). MLP 

showed the maximum discriminant capability with a ROC–

AUC of 0.95, followed by DT with 0.92, and then AdaBoost 

with 0.91. KNN significantly boosted the value of Recall, with 

a marginal drop in precision for the accurate detection of 

churners. LR demonstrated maximal Precision with low 

Recall, resulting in poor discriminatory capability for the 

global representation of the concerned data. This is evident 

from the ROC–AUC plot shown in Figure 8, which indicates 

that MLP generalizes better on the optimized set, with a 

balanced Precision-Recall trade-off achieved by DT and 

AdaBoost. 

Taken together, these findings suggest that by transforming 

churn prediction into an optimization-based learning task, one 

can achieve better generalizability and robustness as compared 

to more traditional dimensionality reduction approaches. 

 

 
 

Figure 8. ROC–AUC curves for top classifiers using the 

optimized feature subset 

 

4.4 Practical justification and integration 

 

The methodology proposed is beneficial in both theoretical 

and application contexts. In theoretical aspects, by viewing 

feature selection from an optimization point of view, it is 

possible for the framework to seek a trade-off between 

relevancy and redundancy, variance reduction, and improving 

the stability of the classifier. Moreover, it is observed that the 

major improvement is achieved for non-linear classifiers like 

MLP and KNN, which is consistent with statements that 

models with high complexity are affected by redundancy in 

the data. In application terms, feature selection helps cut down 

training time to a considerable extent, allowing for retraining 

and real-time execution of telecom applications. Moreover, 

enhanced Recall rates make it less likely that high-value 

clients remain unreached, whereas enhanced Precision rates 

ensure that efforts for client retention for low-risk clients 

remain unnecessary. Additionally, scalability to other areas 

such as energy consumption prediction, maintenance 

prediction, or fraud analysis is also shown.  

Furthermore, apart from improving the prediction capability 

of the model, the HCFS churn technique is an early warning 

system for operational risk in telecommunication networks. If 

the churn probabilities of either a certain individual or a certain 

group of customers exceed a certain threshold, then the system 

is capable of launching proactive measures for resource 

allocation, client retention, or automated service analysis 

related to churns. This proactive approach reduces the 

likelihood of service degradation, suppresses sudden spikes in 
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loading, and promotes network stability before the occurrence 

of cascading service disruptions. The churn prediction is thus 

transformed into a risk-informed decision support tool for the 

overall resilience domain of telecommunication systems. 

 

4.5 Limitations of the study 

 

Although the HCFS-based churn prediction approach has 

shown robust empirical results, a number of drawbacks 

deserve mention. Firstly, the used benchmark dataset is static 

and relatively small, which makes it less capable of handling 

dynamically changing behavior trends that are common in a 

real-world telecommunication environment. Secondly, the 

churn prediction approach has not used temporal deep learning 

models such as LSTM, GRU, Transformer, etc., that have 

shown robustness in handling the behavior dynamics of 

customers. Thirdly, the trade-off hyperparameter λ in the used 

cost function has been set based on fixed sensitivity analysis, 

which can be improved by adapting different tuning 

techniques in the future. Lastly, although the churn prediction 

approach has been tested on publicly available datasets, the 

robustness and effectiveness of the churn prediction approach 

on a real-world telecommunication environment with different 

churn behavior patterns, noise properties, and interactions 

between customers, as well as the telecommunication network, 

have not been established. 

 

 

5. CONCLUSIONS 

 

This study reformulated telecom churn prediction as an 

optimization-driven classification problem, demonstrating 

both technical novelty and safety relevance. A hybrid 

approach for feature selection, with a focus on redundancy 

elimination while keeping features with significant 

interdependencies, is able to provide a reduced set of 16 

meaningful features from the initial 29 features. Case study 

analysis reveals that significant improvements in performance 

are achieved with a Multilayer Perceptron that reaches 93.9% 

accuracy and a DT that reaches 92.1%, as confirmed by 

Precision, Recall, F1-score, and ROC–AUC metrics. These 

outcomes clearly show that redundancy considerations for 

feature optimization improve the robustness of non-linear 

models, such that the risk of misclassifications encountered in 

safety-relevant applications is alleviated. Finally, apart from 

telecommunication applications, the developed methodology 

is robust, efficient, and portable to other domains related to 

fraud analysis, critical infrastructure, and resilience of 

industrial systems. Future research trends are suggested for: 

incorporating ensembles, learning with class imbalance, or 

real-time execution. 

Furthermore, the results of predicting that were achieved 

with the optimized churn model transcend the boundary of 

mere customer analysis by playing an active role in defining 

resilience in telecommunication networks. The optimized 

churn forecasts identify probable high-risk customers that 

function as a real-time signal for potential interventions, 

hindering the onset of cascading effects within the networks, 

such as sudden changes in traffic, service instabilities, or even 

cascading effects within the overall service quality. 

Incorporating thresholds for churn probability within resource 

management logic improves the predictive power of the 

network concerning potential service changes. 
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