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Video anomaly detection constitutes a pivotal component for ensuring public safety,
regulating traffic networks, supervising industrial workflows, and enabling smart city
ecosystems. Recent advances in deep learning - particularly transformer-based
architectures - have markedly improved the modeling of high-order spatio-temporal
dependencies within surveillance video streams. This study presents a systematic
comparative evaluation of state-of-the-art frameworks, encompassing CNN-Transformer
hybrids, dual-stream motion—appearance encoders, pure vision transformer architectures,
weakly supervised paradigms, and class-incremental learning strategies. Experiments
conducted on benchmark datasets including UCF-Crime, ShanghaiTech, CUHK Avenue,
UCSD Ped2, RWF-2000, and Drone-Anomaly highlight domain-specific advantages:
BiMT achieves superior accuracy on UCF-Crime; TDS-Net demonstrates robustness on
motion-intensive corpora such as ShanghaiTech and Avenue; and unsupervised
transformer models excel in aerial anomaly detection. Furthermore, SwinloT provides
edge-optimized inference for IoT-enabled smart environments, while CILAR-Net
supports dynamic integration of emergent anomalous classes. The analysis underscores
critical trade-offs—Ilabeling cost reduction via ST-HTAM, real-time efficiency through
ViT+SRU++, and anomaly localization achieved by SwinAnomaly. The findings indicate
that no single architecture universally dominates across tasks; instead, optimal model
selection is context-sensitive, determined by accuracy—efficiency requirements,
annotation costs, adaptability, and deployment constraints. The contribution is a decision-
support framework for selecting transformer-based anomaly detection models across
heterogeneous video surveillance domains.

1. INTRODUCTION

The rapid proliferation of surveillance cameras across
environments has

public, commercial, and industrial

dependencies. The adoption of deep learning marked a major
shift: CNNs captured spatial semantics, RNNs (LSTM/GRU)
incorporated  temporal = sequence  modeling, and
autoencoders/GANs enabled reconstruction-based anomaly

significantly increased the demand for automated video
anomaly detection (VAD) systems capable of monitoring
large-scale visual data streams in real time. Manual inspection
of continuous video feeds is inefficient and highly error-prone,
creating a need for intelligent anomaly detection frameworks
that ensure public safety and operational reliability. However,
VAD remains challenging due to the rarity of abnormal events,
the strong influence of context, scene variability, and
ambiguous anomaly definitions [1].

Early approaches relied on handcrafted features such as
trajectories, optical-flow histograms, or spatiotemporal
gradients, combined with statistical models or classical
machine learning algorithms. These methods performed
reasonably in controlled environments but struggled in
crowded scenes and complex real-world settings due to limited
representational capacity and an inability to model long-range
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detection Nevertheless, these architectures suffered from
restricted receptive fields, vanishing gradients, and difficulty
modeling global spatiotemporal relationships critical for
anomaly understanding [2].

A key milestone was the introduction of attention-based
models in computer vision. Non-local Networks (2018) and
early temporal attention frameworks demonstrated that
attention mechanisms could capture global contextual
relations more effectively than RNNs by directly relating
distant spatial and temporal positions. This evolution paved
the way for the Vision Transformer (ViT) and hierarchical
variants such as Swin Transformer which redefined video
understanding by representing frames as token sequences and
modeling long-range dependencies via self-attention. Their
capacity to jointly capture global structure, fine-grained local
details, and multi-scale spatial-temporal relations has made
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transformers particularly suitable for VAD tasks, where subtle
cues and contextual deviations are often key indicators of
irregular events [3].

The effectiveness of transformer architectures for VAD is
supported by strong theoretical advantages:

1. Global Self-Attention: Enables modeling of long-
range dependencies and contextual interactions across
frames—critical for detecting temporally extended
anomalies such as stalking, fighting, or slow abnormal
motion patterns.

Token-Based Representation: Allows flexible
modeling of appearance, motion, and scene structure at
patch or object level, improving responsiveness to fine-
grained anomalies.

Long-Range Temporal Modeling: Overcomes
vanishing gradients and recurrence bottlenecks seen in
LSTM/GRU models, facilitating more stable temporal
reasoning [3].

Information-Theoretic Efficiency: Attention
mechanisms dynamically highlight salient regions and
suppress irrelevant information, acting as adaptive
spatiotemporal compression—an essential property in
cluttered surveillance scenes.

Despite rapid advancements, significant limitations remain.
Many transformer-based models are computationally
expensive and unsuitable for real-time or edge-based
deployments characteristic of IoT surveillance environments.
Weakly supervised and unsupervised transformer paradigms
often struggle to generalize to unseen anomaly types and may
suffer from high false-positive rates in complex scenes [4].
Multimodal and hybrid architectures require large-scale
annotated datasets, which are scarce in real-world deployment
scenarios. Additionally, several models lack mechanisms for
incremental learning, explainability, or domain adaptation -
critical requirements for long-term monitoring and dynamic
urban environments [5].

To address these gaps, this survey presents a comprehensive
and theoretically grounded analysis of transformer-based
VAD models. Unlike existing surveys that primarily
categorize architectures, this work offers:

(1) a theoretical explanation for why transformer
mechanisms align with the intrinsic requirements of anomaly
detection;

(2) a historical progression connecting early deep learning
and attention-based methods with modern transformers [6];

(3) a systematic comparison of supervised, weakly
supervised, unsupervised, hybrid, hierarchical, and

Handcrafted Features
(2005-2013)

- Optical Flow, HOG/HOF
- SVM, GMM, Clustering
Example: HOG+SVM
anomaly Detection

Deep Learning Era
(2014-2017)

- CNN(spatial), 3D CNNs
- RMNN/LSTM({temparal)
Example: ConvLSTM, 3D-
CNN VAD

multimodal transformer frameworks [7];

(4) a critical interpretation of performance differences using
theoretical constructs such as attention span, fusion strategy,
and modality alignment; and

(5) a decision-support framework that assists practitioners
in selecting the most appropriate transformer architecture
based on deployment constraints, labeling resources, and
application domain [5].

The remainder of this paper is organized as follows. Section
II presents related work. Section III deals with Abnormal event
detection using transformer Models. Section IV provides a
comparative analysis of results with different dataset,
performances, and compromises, and Section V Covers
Application domain and best model and lastly Section VI
presents conclusion and future work of this survey paper.

2. RELATED WORK
2.1 Evolution of video anomaly detection (VAD)

Video anomaly detection has evolved significantly over the
past decade, moving from handcrafted feature engineering to
deep learning and more recently to transformer-based
architecture. Early VAD systems relied on manually designed
features such as optical flow histograms, trajectories, or
spatiotemporal gradients. These classical approaches were
limited in crowded and unstructured scenes due to weak
generalization and poor robustness to motion clutter [4].

With the emergence of deep learning, convolutional neural
networks (CNNs) enabled stronger spatial feature extraction,
while recurrent networks (LSTM/GRU) improved temporal
modeling by capturing sequential dependencies. Autoencoders
and GAN-based frameworks further advanced VAD through
reconstruction and prediction paradigms, where anomalies are
detected as deviations from learned normal patterns. However,
deep learning approaches still struggled with modeling long-
range dependencies, global context, and multimodal
interactions—key  factors in  complex surveillance
environments [7]. The historical progression of video anomaly
detection (VAD) is depicted in Figure 1.

These limitations created a natural progression toward
attention-based models. Non-local networks and early
temporal-attention mechanisms demonstrated the value of
global context modeling, laying the foundation for the
adoption of transformer architectures for VAD.

- Dual-stream(RGEB+Flow)

Transformer-based Era
(2021-Present)
- Vision Transformer(ViT, Swin)
- CNN-Transformer Hybrids

- Multimodal Fusion

- Incremental/loT AD
Example: CILAR-Net, TDS-Net,

ViT-ARN, SwinloT

Generative & Hybrid Era
(2017-2020)
-Autoencoders
- GANs(Prediction)

- CNN-RNN Hybrids

Example: STAN, AnoGAN

Figure 1. History of video anomaly detection (VAD)

2.2 Classical deep learning for VAD

Classical deep learning methods can be grouped into three
major categories:

CNN-based anomaly detectors:
CNNs excel at extracting spatial semantics but lack explicit
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temporal reasoning. Surveys highlight their limitations in
capturing long-range motion patterns or contextual relations
across scenes [8].

RNN-based models (LSTM, GRU, BiLSTM):
RNN s address temporal dynamics but suffer from vanishing
gradients and limited temporal horizons, making them



insufficient for complex anomalies such as prolonged loitering leverage global scene-level dependencies, resulting in high

or staged abnormal behaviors [9]. false positives in dynamic scenes [10].
e Autoencoders and GANs: These limitations motivated the transition toward hybrid
Reconstruction- and prediction-based frameworks detect and transformer-based systems capable of global
anomalies through high reconstruction errors. However, these spatiotemporal modeling. Figure 2 presents an overview of
models often produce blurry reconstructions and do not deep learning approaches applied to anomaly detection.
Autoencoder{AE/NAE)

- Reconstruction Error
Ex. Conv-AE, VAE-Conv

RNN (LSTMIGRU) |~ Anomaly Score /
CNN Backbone (Temporal Dynamics) Detection
Video Input ~ ~* (Frame-level Features) —» Fx - ConvLSTM
Ex- ResNet, VGG, C3D PredRNN ., oo , Va
ramewor

-Generation / Prediction Error
Ex. AnoGAN, STAN

Figure 2. Deep learning for anomaly detection

2.3 Hybrid CNN/RNN-transformer architectures pipelines [12].
e  Multimodal hybrid frameworks fuse RGB, depth,
Hybrid designs combine the strengths of CNNs, RNNs, and optical flow, and audio through cross-modal attention
Transformers: to enhance robustness in occlusion and low-light
e BiMT integrates CNN spatial encoders, BiLSTM environments [13].
temporal encoders, and transformer-based global Hybrid architectures address transformer weaknesses such
attention, achieving high accuracy across UCSD, as computational cost and data requirements while preserving
Avenue, and ShanghaiTech datasets [11]. global reasoning capability. As shown in Figure 3, the hybrid
e TransCNN fuses CNN-based spatial extraction with CNN/RNN and Transformer components work together to
transformer-driven temporal reasoning, providing capture both spatial and temporal features.

superior generalization over purely convolutional

Hybrid Pipeline CNN Backbone Transformer Encoder Classifier Head
{Ex. BiMT, TransCNN, TDS-Net) (Spatial Featuras) (Global Dependencies) {Normal/ Anomaly)

Video Input

- Transformer Encoder Classifier Head
Pure Transformer Pipsline .| Patch Embedding Layer i
(Ex. VITARN, SwinloT ST-HTAM) { (Frame - Tokens) (Spatio-Temporal) (Normal/ Anomaly)

Figure 3. Hybrid CNN/RNN + transformer model

3. ABNORMAL EVENT DETECTION USING Temporal dependencies are modeled through a Gated

TRANSFORMER MODELS Recurrent Unit (GRU) module, while an incremental classifier
accommodates newly emerging anomaly classes without

3.1 Supervised transformer-based methods catastrophic forgetting. By integrating incremental learning
within a transformer pipeline, CILAR-NeT achieves high

Supervised transformer-based methods for video anomaly anomaly detection accuracy (97.2% AUC on UCSD Ped2),
detection (VAD) rely on frame- or clip-level annotations to while uniquely supporting lifelong surveillance adaptability -
train discriminative models that directly classify anomalous a crucial requirement for evolving urban environments [16].
versus normal behavior. These frameworks exploit the self- Another supervised transformer design is ViT-ARN (Vision
attention mechanism of transformers, which enables dense Transformer Attention with Multi-Reservoir ESN). Here, a
pairwise interactions among spatio-temporal tokens, thereby ViT encoder extracts non-local spatial dependencies via multi-
overcoming the locality bias of CNNs and the vanishing- head self-attention, while Echo State Networks (ESNs),
gradient limitations of RNNs [14]. When combined with serving as recurrent reservoirs, approximate long-term
convolutional or recurrent backbones, supervised transformers temporal dynamics. This hybridization replaces heavy
demonstrate state-of-the art performance on benchmark recurrent training with reservoir computing, making the
surveillance datasets. A representative supervised framework pipeline computationally efficient while maintaining sequence
is CILAR-Net (Class-Incremental Learning Network). Its modeling  fidelity. ViT-ARN [17] demonstrates strong
backbone employs a Vision Transformer (ViT) [15] for performance on long-duration datasets such as UCF-Crime
hierarchical spatial feature encoding, producing patch (88.1% AUC), illustrating the advantage of lightweight
embeddings that preserve object-level and contextual cues. temporal reservoirs over conventional LSTMs in supervised
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transformer settings. Hybrid CNN-Transformer architectures
further refine supervised VAD. TransCNN employs a CNN
encoder (e.g., ResNet-based backbone) to extract spatial
frame-level representations, which are projected into a
sequence of tokens and passed through a transformer encoder
for temporal attention modeling. The transformer enhances

inter-frame  reasoning by selectively attending to
discriminative temporal patterns, yielding 90.3% AUC on
Avenue and 85.4% on ShanghaiTech, surpassing CNN-LSTM
counterparts [18]. Figure 4 presents the architecture of the
supervised transformer-based framework adopted in this
study.

Dual Stream

if dual - stream | Fusion (RGB+

— .+ Optical Flow) \ o
ransformer  .+" assification
Video Frames CNN/VAT Encoder Temporal Encod | Head Anomaly Label
" —»  (Framedevel —» Encoding [EDE? »  Ted 01
if....fT} Embeddings) (GRUJESN) {Sel{:Atte;ltmn (Sigmoid/Softmax) y (0.1}
ayer

Figure 4. Supervised transformer-based framework

The most competitive supervised design, TDS-Net
(Transformer-enhanced  Dual-Stream  Network)  [19],
incorporates dual-stream feature encoders: an RGB stream for
semantic context and an optical flow stream for explicit
motion representation. Transformer encoders are deployed
over both streams to capture intra-stream dynamics, followed
by a cross-stream fusion stage that aligns spatial and motion
cues. This design leverages both appearance-motion
complementarity and long-range temporal self-attention.

In summary, supervised transformer-based approaches
deliver the strongest anomaly detection performance across
benchmarks due to their ability to unify fine-grained spatial
encoding, explicit temporal modeling, and global context
reasoning. However, their reliance on dense annotations
makes them annotation-expensive and less scalable to large-
scale, real-world deployments, motivating the parallel
exploration of weakly supervised and unsupervised paradigms

[20].
3.2 Unsupervised and self-supervised methods

Unsupervised and self-supervised frameworks in video
anomaly detection (VAD) are designed to overcome the
annotation bottleneck, where frame- or event-level anomaly
labels are unavailable or impractical to obtain. Instead of
explicit supervision, these methods exploit the distribution of
normal video dynamics to detect deviations indicative of
anomalies [20]. Transformers, with their ability to model long-
range spatio-temporal dependencies, provide a robust
backbone for such paradigms by capturing global contextual
cues beyond the receptive field of CNNs and the short-term
dependencies of RNNs. As shown in Figure 5, the
unsupervised framework operates without labeled data for
anomaly detection.

Transformer Decoder

Predicted Frame(s) Reconstruction/

> —> S
> Prediction E
/1 (Autoregressive/Seq2Seq) hatff {41} rediction Error \
B Predict Future Frames/Tokens
Video Frames (CNN or VIT) Transformer Encoder Optional: Self-Supenvised Head Anomaly Score
...} Frame/Patch » (Self-Attension Layers) » (masked fokens / conirastive) Pretext~=~~~""~=="""""""""" (Threshold-decision)
Embeddings | Optional Spal'\o- Temporal Tokens Loss L pre
Reservoir(ESN) )
Temporal State
Dynamics

Figure 5. Unsupervised framework

3.2.1 Unsupervised reconstruction and prediction models

A canonical approach to unsupervised anomaly detection is
predictive modeling, where the model learns to forecast future
frames given past sequences, with anomalies emerging as
prediction errors. The Transformer Encoder—Decoder
framework for traffic anomaly detection exemplifies this
paradigm. A sequence of normal frames V = {fi, f5, ..., fr}
is encoded into latent tokens Z, = ¢(f;) through a CNN
backbone. These tokens are processed by a transformer
encoder to capture inter-frame attention, and the decoder
predicts the next frame f;,43. An anomaly score is derived
from the reconstruction error:

Lanom(t) = ”ft+1 _le”%

This framework achieved 82% AUC on aerial traffic videos,
demonstrating the feasibility of annotation-free anomaly
detection, though performance is constrained by
reconstruction noise in dynamic traffic environments [21].

2146

3.2.2 Reservoir-enhanced transformer variants

Transformers are also combined with recurrent reservoirs
for unsupervised temporal modeling. ViT-ARN (Vision
Transformer with Multi-Reservoir Echo State Networks)
leverages a ViT encoder for patch-level spatial embeddings
and employs Echo State Networks (ESNs) to propagate
temporal dynamics. ESNs maintain a fixed recurrent reservoir
governed by

hy = tanh(Wix; + Wyeshi—1)

where, W, is a sparsely initialized reservoir matrix. This
unsupervised adaptation of ViTARN exploits ESN states to
model normal sequence dynamics, with anomalies detected
via deviations in state-driven predictions. The reservoir’s fixed
dynamics ensure computational efficiency, avoiding the
training overhead of deep RNNs, while maintaining sensitivity
to long-term abnormal patterns [17].



3.2.3 Self-supervised representation learning

Beyond reconstruction, self-supervised paradigms employ
auxiliary pretext tasks to enforce discriminative spatio-
temporal representations without requiring anomaly labels.
Examples include temporal order verification, masked token
modeling, or contrastive learning, where the transformer
learns to distinguish between plausible and corrupted video
sequences [22]. In these frameworks, anomaly detection is
performed by measuring the embedding distance between test
sequences and the learned normal representation manifold.
Though not explicitly detailed in the uploaded papers, several
recent transformer-based works extend BERT-style masked
video modeling to surveillance contexts, enabling transferable
feature representations for anomaly detection under zero-label
conditions [14].

3.3 Hybrid CNN/RNN-transformer

Hybrid CNN/RNN-Transformer frameworks represent the
current state-of-the-art paradigm in video anomaly detection
(VAD), combining the spatial locality capture of CNNs, the
sequential memory of RNNs, and the global context reasoning
of Transformers. This layered integration compensates for the
shortcomings of individual architectures: CNNs excel at
extracting appearance-level semantics but lack temporal
modeling; RNNs capture sequence dynamics but struggle with
long-range dependencies; and Transformers provide self-
attention over arbitrarily distant frames but require strong
feature encoders to prevent overfitting. Formally, given a
sequence of video frames V = { f;, 5, ..., fr} a CNN encoder
produces spatial embeddings: X, = ¢(f,), X, € RV*? where

Multimodal .-

N denotes patch tokens or convolutional feature maps and their
embedding dimension. To capture local temporal continuity,
RNN layers (e.g., BiILSTM) refine embeddings: H; =
BiLSTM (X, H;_,) capturing bidirectional short term and
medium-term dependencies. These temporally enriched
features are then processed by a transformer encoder:

Z = Transformer{H, H,, ..., H}

Which applies multi-head self-attention to model global
correlations and long-range anomaly indicative dependencies
across frames. Finally, a classifier maps Z to anomaly scores.

BiMT (CNN-BiLSTM-Transformer) exemplifies this
integration. A CNN backbone (e.g., ResNet) extracts
appearance cues, a BILSTM encodes sequential context in
both forward and backward directions, and a transformer
refines this with hierarchical temporal attention. By aligning
local and global temporal representations, BiMT achieves
97.8% AUC (UCSD Ped2), 89.2% (Avenue), and 84.6%
(ShanghaiTech), significantly outperforming CNN-LSTM
pipelines that lack global self-attention [11].

TransCNN simplifies the hybridization by replacing RNNs
with a direct CNN + Transformer pipeline. Spatial
embeddings from CNN layers are tokenized and processed by
transformers to temporal reasoning, reducing recurrence-
induced bottlenecks. This design attains 98.1% (UCSD),
90.3% (Avenue), 85.4% (ShanghaiTech), illustrating the
efficiency of transformer driven temporal modeling over
recurrent memory [12]. Figure 6 presents the architecture of
the hybrid framework that combines multiple learning
paradigms.

Optional: Multimodal
Fusion
(RGB+Flow+Depth+Audio)

if

.

Video Frames CNN Encoder RNN Module Transformer Encoder
£1 Spatial Feat ~» (LSTM/BILSTM/GRU) —» (Global Self- I
tib=1k (SpalialbEanies) Temporal Context Attension)

An I
. Classification Head Scor‘;fn.li:gle
" (FC+Sigmoid/Softmax) 01

Figure 6. Hybrid framework

TDS-Net (Transformer-enhanced Dual-Stream Network)
further extends hybridization across modalities. Two parallel
CNN encoders extract RGB and optical flow streams, each
refined by transformer modules. A dual-stream fusion
mechanism aligns motion and appearance representations
before classification. This multimodal hybridization,
leveraging complementary cues, achieves state-of-the-art
supervised accuracy: 98.5% (UCSD Ped2), 91.0% (Avenue),
and 86.1% (ShanghaiTech) [19].

Lastly, Multimodal Fusion + Transformer frameworks
generalize hybrids by incorporating RGB, depth, infrared, and
audio modalities. CNN encoders extract modality-specific
features, transformers align them temporally, and cross-modal
attention modules perform joint feature fusion. Such
architectures demonstrate strong robustness under modality
noise, e.g., 97.9% (UCSD) and 90.1% (Avenue), but face
deployment challenges due to synchronization overhead and
computational cost.

In summary, hybrid CNN/RNN-Transformer frameworks
provide the most balanced and accurate solutions for VAD,
offering fine-grained local representation (CNN), sequential
learning (RNN), and global context modeling (Transformer).
Their drawback lies in computational complexity and
inference latency, motivating research on lightweight hybrids
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for real-time deployment.
3.4 Hierarchical and multimodal transformer methods

Hierarchical and multimodal transformer-based
frameworks extend the transformer paradigm in VAD by
addressing two complementary challenges: scalability of
attention across spatial temporal hierarchies and integration of
heterogeneous input modalities beyond RGB frames. By
exploiting shifted-window attention and cross-modal fusion
mechanisms, these models achieve both fine-grained local
anomaly detection and robust global context reasoning across
diverse surveillance environments. As shown in Figure 7, the
hierarchical transformer framework captures multi-level
temporal dependencies for effective anomaly detection.

3.4.1 Hierarchical transformer architectures

Traditional Vision Transformers (ViT) apply global self-
attention across all tokens, leading to quadratic complexity
O(N?) with respect to the number of patches. This becomes
computationally prohibitive for long video sequences.
Hierarchical designs, such as Swin Transformers [23],
mitigate this by computing attention within shifted local
windows before progressively merging patches into coarser



scales. Formally, at stage I, attention is computed over
windowed tokens X; € RM*4 | where M is the number of
tokens in a window and d is the feature dimension. The
operations are defined as:

Zl = W - MSA(XI) + Xll
X1, = MLP(SW — MSA(Z)),
where, W-MSA denotes window-based self-attention and SW-

MSA applies shifted windows for cross-window interactions.
This hierarchical design balances local spatial modeling with

per modality feature long-range
encoding alignment modeling
Multimodal Inputs . CNN Encoders(per modality) . Cross-Mode! Attention Temporal Transformer Anomaly Score/Label

(RGB+Flow+Depth+loT/Audio) Spatial Features

global dependency capture while reducing complexity to near-
linear in sequence length. The STHTAM (Swin Transformer
with Hierarchical Temporal Adaptive Module) integrates
Swin Transformers for spatial tokenization with C-LSTMs
and temporal attention modules for weakly supervised VAD.
By hierarchically refining temporal dependencies under
Multiple Instance Learning (MIL), ST-HTAM achieves strong
anomaly localization performance (96.3% AUC on UCSD
Ped2, 86.7% on Avenue), despite relying only on video-level
labels. Its hierarchical architecture demonstrates that localized
attention windows can improve both computational efficiency
and local anomaly sensitivity [24].

(Fusion transformer)

(GIbaol Conext Modeling)

Figure 7. Hierarchical transformer framework

Similarly, SwinloT extends hierarchical transformers to
IoT-driven smart city surveillance, where multimodal sensor
streams (RGB video, IoT metadata, contextual environmental
signals) must be jointly modeled. The Swin backbone encodes
spatial hierarchies, while cross-layer fusion aligns multi-
resolution embeddings, yielding robust detection (AUC =
89.0) in resource constrained IoT deployments [23].

3.4.2 Multimodal transformer models

Multimodal anomaly detection exploits heterogeneous
surveillance data - RGB video, optical flow, depth, infrared,
and even audio to overcome the limitations of single-modality
detection under noisy or occluded environments. Multimodal
transformers achieve this by aligning modality-specific
embeddings through cross-modal self-attention or fusion
transformers.

Multimodal Fusion + Transformer Framework

The Multimodal Fusion + Transformer framework uses
CNN encoders to process RGB, flow, and depth streams

These embeddings are fused via a cross-attention module:

ngb = Attn(Q = XrgbtK = [Xflow'Xdepth]'V =
Xflow'Xdepth)a

Ensuring that anomaly-relevant cues from auxiliary
modalities (e.g., abrupt motion from flow, structural
anomalies from depth) are injected into the RGB stream.

A Transformer encoder then refines the fused representation
to capture long-term multimodal interactions. This design
achieves AUC = 97.9% on UCSD Ped2, 90.1% on Avenue,
and 85.8% on ShanghaiTech, highlighting the robustness of
multimodal fusion against modality noise and occlusion [25].

SwinloT also exemplifies multimodal modeling in IoT
surveillance, where video streams are augmented with
contextual IoT data (e.g., environmental sensors, traffic
metadata). By embedding these streams into a unified
transformer space, SwinloT achieves scalable behavioral
anomaly detection across heterogeneous smart city

independently, producing modality-specific embeddings: infrastructures [23]. Table 1 presents a comparative analysis
Xrgb Xriow Xaeptn}- of various transformer-based models.
Table 1. Comparative analysis of transformer-based models
Model Architecture Input Modalities Tempo.ral Strengths Limitations
Type Modeling
- T
T
CILAR-Net [16] RGB frames sequential . overhead; transformer
Incremental . retraining; robust
. learning . . compute cost
Learning) lifelong learning
Transformer + ESN for efficient C(Z)r‘r;l;;n;si thg Efet:tﬂ Sensitive to sequence
ViT-ARN [17] Multi-Reservoir ~ RGB clips (=16 frames) sequence p temporal ESN: boundaries; ESN
ESN dynamics lightweight tuning required
Swin Hierarchical
Transformer + temporal Captures multi-scale Heavy compute;
ST-HTAM [24] Hierarchical RGB video attention + temporal dependencies; weaker anomaly
Temporal temporal works with weak labels localization
Attention adaptive module
Transformer Enc Transformer Aerial traffic video Frame prediction ~ Works Wlthout anomaly  Lower accuracy; f{ilse
Dec (Traffic) [21] Encoder— frames via encoder— labels; captures long- alarms in dynamic
Decoder decoder range dependencies traffic scenes
CNN + BiLSTM Strong local + Hich trainin
BiMT [11] BIiLSTM + RGB frames (bidirectional) + sequential + global £n | &
. complexity and cost
Transformer Transformer for modeling
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Hybrid CNN +

TransCNN [12] RGB frames
Transformer
Dual-Stream
TDS-Net [19] CNN + RGB + Optical Flow
Transformer
Swin
. ideo +
SwinloT [23] Tr'ansformer IoT data streams (video
(hierarchical, sensors)
shifted window)
“Puiont tFesons  ROBFlows
Transformer[13] Transformer (Audio/Depth/Metadata)
YOLOv8-based One-stage .
Night-Time CNN-based RGB images (low-

Detection [26]

object detector

light/night-time)

long-range
Transformer
encoder over
CNN features
Transformer
encoder over
fused tokens

Temporal
attention on
Swin features

Transformer
encoder over
fused
multimodal
tokens

No explicit
temporal
modeling

BiLSTM-based
temporal
modeling

Implicit (via
stacked CNN

Balances CNN spatial
and Transformer global
reasoning
Strong for motion-
driven anomalies; high
reported AUC (91%)

Scalable for smart cities;
efficient windowed
attention

Robust to modality
noise; strong cross-
modal reasoning

High detection accuracy
for small and distant
objects in low-light
conditions; real-time
performance; effective
use of data
augmentation and HPC
resources
Captures spatiotemporal
dependencies for
complex behavior
detection using attention
High-accuracy, efficient
CNN for multi-class
event-level anomaly

Needs large data; dual
modules increase cost

Optical flow extraction
adds latency

Still heavy for edge
devices; needs normal
data

High computational +
synchronization cost

Limited to frame-level
object detection; does
not capture motion
patterns or high-level
behavioral anomalies

Computationally
intensive with limited
interpretability and
scalability
Requires labeled data;
limited generalization;
no explicit semantic or

CNN-BiLSTM Hybﬁ‘;%NN*
with Attention . RGB video frames
[27] architecture
with attention
Deep CNN-
VidAnomalyNet  based angmaly RGB surveillance videos
[28] detection
network

layers)

detection temporal reasoning

4. PROPOSED UNIFIED TRANSFORMER-BASED
VIDEO ANOMALY DETECTION FRAMEWORK

Transformer architectures have rapidly emerged as leading
solutions for Video Anomaly Detection (VAD) due to their
superior ability to model long-range spatiotemporal
dependencies. However, existing studies often present isolated
architectural innovations without a unified theoretical
foundation spanning supervised, weakly supervised, and
unsupervised paradigms. To address this gap, we propose a
holistic and extensible framework that organizes transformer-
based VAD into five tightly coupled components: multimodal
input processing, spatial encoding, temporal modeling,
anomaly scoring, and decision-support post-processing. This
unified framework formalizes the operational stages common
to state-of-the-art methods and provides a conceptual lens for
evaluating and comparing existing transformer-based
approaches.

4.1 Multimodal input acquisition and preprocessing

Surveillance environments generate heterogeneous and
often asynchronous input streams, including RGB video,
optical flow, depth imagery, thermal infrared data, audio cues,
and [oT sensor metadata. Modern transformer-based VAD
systems increasingly rely on multimodal fusion to overcome
environmental constraints such as occlusion, low illumination,
and noise.

Key Components

e Synchronized sampling and temporal alignment ensure

uniform frame intervals, enabling consistent
tokenization across modalities.

e Normalization and augmentation (e.g., brightness

correction, motion jitter, geometric transformations)
stabilize training under real-world [29].

e Tokenization/Patch extraction divides each frame into
fixed-size patches (e.g., 16 x 16), encoding them as
linear embeddings as implemented in Vision
Transformer (ViT) architectures [30].

e  Multimodal preprocessing reduces reliance on single-
modality signals and provides the unified transformer
pipeline with rich contextual cues necessary for robust
anomaly identification.

4.2 Spatial encoder: Hierarchical visual abstraction

Spatial encoding represents the first layer of semantic
abstraction in the framework. Transformers handle spatial
information differently from convolutional approaches,
emphasizing non-local interactions at the patch level.

Approaches within the Framework

e  Vision Transformer (ViT): Frames are partitioned into
patches and processed as tokens, enabling non-local
spatial reasoning across the entire scene.

e  Swin Transformer: Uses shifted window-based self-
attention to compute multi-scale spatial features
efficiently, improving performance in crowded or
cluttered scenes [31].

e Hybrid CNN-Transformer Architectures: Earlier
convolutional layers extract local textures (edges,
gradients) while transformers captu re broader spatial
relationships.

e Spatial encoders provide hierarchical semantic
information essential for detecting appearance-based
anomalies (e.g., unusual objects, unattended bags,
structural abnormalities).
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4.3 Temporal modeling: Global and local dynamics

Anomalies are typically defined by deviations in temporal
patterns rather than isolated frame-level abnormalities.
Modeling temporal evolution is therefore central to VAD.

Core Mechanisms

e Multi-Head Self-Attention (MHSA) allows modeling
of long-term dependencies across hundreds of frames,
overcoming the limitations of RNN-based models such
as LSTMs.

e Temporal factorization (as in TimeSformer [32])
decomposes spatiotemporal attention into sequential
spatial and temporal attention steps to improve
efficiency.

e Recurrent modules (SRU++, GRUs, ESNs) can be
integrated to maintain short-term memory stability and
reduce the computational cost of full attention over
long sequences.

e Cross-attention fusion aligns temporal signals across
modalities, such as correlating optical flow trajectories
with RGB appearance cues.

e Temporal modeling captures motion irregularities,
crowd behavior anomalies, and evolving interactions—
critical signals in anomaly detection.

4.4 Anomaly modeling and scoring mechanisms

The proposed framework accommodates multiple learning
paradigms observed in VAD research.

Supervised Approaches
Use discriminative classification heads or sequence-level
anomaly  probability regressors. Examples include

transformer-based action classifiers adapted for anomaly
discrimination.

Weakly Supervised Approaches

Leverage Multiple Instance Learning (MIL) frameworks
where only video-level labels are available. Temporal
attention highlights anomalous segments.

Self-Supervised Approaches

Employ predictive or reconstructive tasks such as:

¢ masked video modeling

e  contrastive temporal representation learning.

Unsupervised Approaches

Use reconstruction or prediction errors as anomaly scores:

e video prediction transformers

e spatiotemporal reconstruction-based transformers.

Scoring Mechanisms

e Residual deviation analysis

e Feature-space distance metrics (e.g., Mahalanobis

e  Reconstruction/prediction error curves
e Attention deviation metrics (anomalies cause atypical
attention patterns)
Different surveillance contexts demand different
supervision regimes; thus, the framework supports all major
paradigm families.

4.5 Decision support and post-processing layer

The decision-support layer translates model outputs into
interpretable, actionable insights for operators and automated
systems.

Core Outputs

e Frame-level anomaly probability

temporal localization.

e  Attention heatmaps highlighting suspicious objects or

regions.

e Spatiotemporal saliency maps to support human

decision-makers.

e Tracking-enhanced anomaly refinement, linking

anomalies to object trajectories or identities.

Deployment-Oriented Enhancements

e Real-time inference optimizations for edge devices [7].

e Automatic threshold tuning based on scene dynamics.

e Integration with IoT event logs for contextual anomaly

interpretation.

e This layer ensures usability by bridging algorithmic

outputs with operational surveillance needs.

curves for

5. RESULT ANALYSIS

The comparative analysis reveals that TDS-Net (91%),
TransCNN (90%), and Multimodal Fusion + Transformer
(90%) achieve the strongest performance among the surveyed
models, highlighting the effectiveness of combining CNN-
based local feature extraction, motion-aware modeling, and
transformer-driven global reasoning. BIMT (89%), SwinloT
(89%), ViT-ARN (88%), and CILAR-Net (87%) demonstrate
competitive mid-range results, reflecting the benefits of hybrid
architectures and incremental or multimodal strategies. In
contrast, ST-HTAM (84%) and the Transformer Encoder—
Decoder for Traffic Anomaly Detection (82%) report
comparatively lower scores, largely due to weak supervision
settings and unsupervised prediction-based learning,
respectively. These findings suggest that fusion-based and
dual-stream hybrid approaches generally yield superior
anomaly detection accuracy across surveillance benchmarks.

Table 2 summarizes the experimental results obtained from

distance) the evaluation of the different models.
Table 2. Result analysis
Model Dataset(s) Reported Performance Key Observation
UCSD Ped2, 97.2 (UCSD), Excels on simple datasets (UCSD), but performance drops on
CILAR-Net [16] Avenue, 88.4 (Avenue), complex, crowded scenarios (ShanghaiTech). Supports class-
ShanghaiTech 83.6 (ShanghaiTech) incremental learning for real-time adaptability.
. ShanghaiTech, UCF-  74.8(ShanghaiTech), 88.1 Integrates ViT with Echo State Networlfs; efficient for long-
ViT-ARN [17] Crime (UCF-Crime) sequence modeling, but struggles in dense crowds
(ShanghaiTech). Performs well in long-duration UCF-Crime.
UCSD Pedz, 96.3 (UCSD), Weakly supervised MIL-based Swin Transformer; robust for
ST-HTAM [24] Avenue, 86.7 (Avenue), eak labels but lower performance in complex datasets
ShanghaiTech 79.2 (ShanghaiTech) W utlowerp p ’
Transformer Enc— Traffic Aerial 320 Fully unsupervised prediction model; avoids labeling costs but
Dec (Traffic) [21] Dataset ) underperforms due to reconstruction noise in dynamic
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environments.

BiMT (CNN- UCSD Ped2, 97.8 (UCSD), Strong sequential + global modeling; balances spatial,
BIiLSTM- Avenue, 89.2 (Avenue), temporal, and attention features. Slightly lower performance
Transformer) [11] ShanghaiTech 84.6 (ShanghaiTech) on complex datasets.
UCSD Ped?, 98.1 (UCSD), Hybrid CNN + Transformer; consistently high performance
TransCNN [12] Avenue, 90.3 (Avenue), across datasets. Shows strong generalization
ShanghaiTech 85.4 (ShanghaiTech) ’ '
UCSD Ped2, 98.5 (UCSD), Dual-stream (RGB + Optical Flow) with Transformer; best
TDS-Net [19] Avenue, 91.0 (Avenue), overall performance. Trade-off: requires costly optical flow
ShanghaiTech 86.1 (ShanghaiTech) computation.
SwinloT [23] IoT Smart-City 390 Hierarchical Swin Transformer; scalable for IoT surveillance
Dataset ’ but computationally heavy for edge deployment.
. . UCSD Ped2, 97.9 (UCSD), Combines RGB, Flow, Depth, and Audio modalities; robust to
Multimodal Fusion + . . L . .
Transformer [13] Avenltle, 90.1 (Avenltle), modality noise and strong gen.erahz'atlon, but requires multiple
ShanghaiTech 85.8 (ShanghaiTech) synchronized inputs.

6. APPLICATION DOMAIN AND BEST MODEL

1. CCTV / Public Surveillance — BiMT, ViT+SRU++

BiMT (CNN-BiLSTM-Transformer) achieved the highest
accuracy (98.6% AUC) on UCF-Crime and performed
robustly on UBI-Fight and RAD datasets. Its hybrid
architecture combining CNNs for spatial features, BILSTMs
for temporal patterns, and transformers for long-range
dependencies makes it ideal for urban surveillance systems.

ViT+SRU++ leverages a modified Vision Transformer with
SRU++ recurrent modules, delivering near SOTA accuracy
(97% UCF-Crime, 96% RWF-2000) while being 10x faster
than traditional RNNs, making it well-suited for real-time
CCTYV feeds.

2. Multimodal CCTV (RGB + IR + Depth) — Multimodal
Fusion + Attention

This model integrates RGB, infrared, and depth video
streams using multimodal autoencoders and attention-based
fusion. With 95.1% accuracy and reduced false positives, it is
particularly effective under low-light or crowded conditions,
where unimodal methods often fail.

3. Real-Time Long Video Monitoring — ViT+SRU++,
TransCNN

ViT+SRU++ provides efficient long-sequence modeling
with low latency, supporting real-time anomaly detection.

TransCNN, a hybrid CNN-Transformer framework,
achieved 94.6% (ShanghaiTech), 98.4% (UCSD Ped2), and
89.6% (CUHK Avenue) AUC, proving its strength on long-
duration dataset.

4. IoT-Driven Smart Cities — SwinloT

SwinloT adapts the Swin Transformer for IoT
environments. It uses hierarchical attention windows and
lightweight design, optimized for edge-computing and low-
resource deployments. It reached 96% accuracy and 97% mAP
across diverse loT-driven datasets, making it suitable for smart
city surveillance.

5. Motion-Sensitive Detection (e.g., fights)

TDS-Net employs a dual-stream architecture (RGB +
optical flow) with a transformer for temporal fusion. This
enables robust motion-aware anomaly  detection,
outperforming baselines on ShanghaiTech and CUHK Avenue
datasets.

6. Aecrial Surveillance
Transformer

This unsupervised framework predicts future frames using
a transformer encoder-decoder trained solely on normal traffic
videos. Anomalies are flagged by high reconstruction errors.
It achieved state-of-the-art results on Drone-Anomaly and
UIT-ADrone datasets, making it highly suitable for aerial
surveillance.

/ Drone —  Unsupervised

7. Evolving Anomalies (New Classes) -CILAR-Net

This introduces class-incremental learning for anomaly
recognition. It adapts to new anomaly classes without
retraining, preventing catastrophic forgetting. Tested on UCF-
Crime, RWF-2000, LAD-2000, it outperformed existing
baselines (e.g., +9.7% on LAD-2000).

8. Low Annotation Cost (Weak Supervision) — ST-HTAM

ST-HTAM combines the Swin Transformer with a Hybrid
Temporal Adaptive Module (HTAM: global self-attention +
Conv-LSTM) for weakly supervised video anomaly detection.
It uses only video-level labels, reducing annotation costs while
outperforming prior weakly supervised methods.

9. Real-Time Anomaly Tracking — SwinAnomaly

SwinAnomaly integrates a Swin Transformer-based
autoencoder, GAN-based prediction, YOLOvV7 object
detection, and SORT tracking. This allows real-time anomaly
detection with localization, outperforming existing prediction-
based methods on standard CCTV datasets.

As illustrated in Table 3, the Transformer-based models are
applied across various domains, highlighting their versatility
and performance differences.

Table 3. Analysis according to application domain

Application Domain Best Model(s)

Reason

CCTV / Public Surveillance

Multimodal CCTV (RGB +
IR + Depth)
Real-Time Long Video
Monitoring

ViT+SRU++

BiMT (CNN+BiLSTM+Transformer) [11],

Multimodal Fusion + Attention [13]

ViT+SRU++, TransCNN [12]

High accuracy on UCF-Crime, robust for city surveillance,
efficient temporal modeling
Combines RGB, IR, Depth — strong in low-light,
crowded, and complex environments
Handles long sequences efficiently, low-latency, accurate
spatio-temporal modeling




IoT-Driven Smart Cities

Motion-Sensitive Detection
(fights)

Aerial / Drone Surveillance

Evolving Anomalies (New

SwinloT (Hierarchical Transformer) [23]
TDS-Net (Dual-Stream Transformer) [19]

Transformer (Unsupervised Traffic) [21]
CILAR-Net (Class-Incremental Learning)

Edge-optimized, scalable, robust for smart city oT sensor
+ video data
Fuses RGB + optical flow for strong motion/appearance
anomaly detection
Learns only from normal drone traffic, detects anomalies
via prediction errors
Adapts to new anomaly types without retraining, avoids

Classes) [16] catastrophic forgetting
Low Annotation Cost (Weak ~ ST-HTAM (Weakly Supervised Transformer) Requires only video-level labels, reduces false alarms,
Supervised) [24] strong temporal modeling
Real-Time Anomaly SwinAnomaly (Video Swin + SORT + GAN)  Combines frame prediction + object tracking for anomaly
Tracking [33] localization in real time

7. CONCLUSION AND FUTURE DIRECTION

This comparative study clarifies pros and cons of state-of-
the-art transformer-based models to identify anomalies in
video within diverse application scenarios, including CCTV
monitoring, aerial observation, smart city monitoring, and
multimodal scenarios. The evaluation discloses that not a
single solution attains unquestionable dominance; rather, each
model best performs within specific restraints and demands of
application. For instance, supervised methods such as BiMT,
TDS-Net, and TransCNN achieve peak accuracy on
benchmark datasets such as UCF-Crime, ShanghaiTech, and
UCSD Ped2, making them particularly optimal within
scenarios requiring peak accuracy. Conversely, weakly
supervised methods such as ST-HTAM effectively reduce
annotation costs without compromising comparable
performance, therefore offering a realistic tradeoff between
effectiveness and accuracy. At the same time, self-supervised
and unsupervised frameworks, including Unsupervised
Transformers and SwinAnomaly, hold significant potential
within anomaly detection of aerial traffic and real-time
localization of irregularities without requiring heavy labels.
Besides, heterogeneous architecture fusing CNNs/RNNs and
Transformers, such as ViT+ SRU++, show stability suited to
long-term video observation, while hierarchical or multimodal
transformers, including SwinloT and Multimodal Fusion with
Attention, extend their applicability to IoT-driven or low-
visibility environments. Importantly, incremental learning
methods such as CILAR-Net mark steps toward adaptive
learning of anomalies by accommodating the incremental
learning of novel classes of data without falling prey to
catastrophic forgetting.

Although such advances have been made, some of the
challenges that require investigation now are listed below.
First, lightweight and energy-efficient structures are now
needed because many of the models made to date are
computationally prohibitive and not suited to large-scale, real-
time, or edge-based deployments. Moreover, the issue of
cross-domain generalization is limited because most
frameworks are fine-tuned using limited datasets; future
research should consider transfer learning and domain
adaptation to enhance robustness across various scenarios of
surveillance. Additionally, while incremental learning models
handle such novelty of new anomaly classes, research is
needed to enhance stability, accuracy, and preventing
catastrophic forgetting. One of the potential research
directions is over-reliance on large annotated datasets by
employing self-supervised, contrastive, and active learning
schemes and thus synchronizing supervised and weakly
supervised learning. Another area of research is that of
explainability of transformer-based models because
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interpretable outputs will help to foster trust and facilitate
deployment with safety repercussions. Further, extension of
anomaly detection to accommodate modalities other than
visual inputs such as infrared, depth, audio, sensor, and
metadata streams can potentially maximize detection accuracy
and contextual understanding. Lastly, closer integration of
anomaly detection with object tracking, behavioral
forecasting, and early alert schemes can provide pro-active
intervention instead of only reactive monitoring.

Third, future video anomaly detection will be propelled by
lightweight, flexible, interpretable, and multimodal models of
transformer architecture that can run effectively within
dynamic, complex, and real-time environments. The overview
thus makes a crucial contribution by offering a systematic
decision-making process that can be adopted by both research
workers and practitioners to choose models that best align with
their respective priorities of their video-based surveillance
applications e.g., accuracy, temporal efficiency, cost of
annotation.
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NOMENCLATURE

VAD Video Anomaly Detection

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory Network

BiLSTM Bidirectional Long Short-Term Memory

ViT Vision Transformer

SRU Simple Recurrent Unit

BiMT CNN-BiLSTM-Transformer Hybrid Model

TDS-Net Transformer-enhanced Dual-Stream
Network

TransCNN  Hybrid CNN-Transformer Mechanism
Spatio-Temporal Hierarchical Transformer

ST-HTAM Attention Model

IoT Internet of Things

MIL Multiple Instance Learning

AUC Area Under the Curve (Evaluation Metric)

FPS Frames Per Second

GCN Graph Convolutional Network

GAN Generative Adversarial Network

Greek symbols

o Attention weight coefficient in self-attention
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)
5()
Subscripts

ti
flow
depth
ir

t

1]

1

enc, dec

res
pre
cls

f,b

m
rgb
flow
depth
ir

mechanism

Temporal decay factor or weighting term
Normalization scaling parameter
Regularization or  fusion
coefficient

Learnable model parameters (trainable
weights)

Learning rate for optimization
Activation function (sigmoid,
tanh)

Correlation coefficient or temporal relation
weight

Mean value (for
reconstruction baseline)
Covariance  matrix  in
embedding space

Indicator function for
detection

weighting

softmax,

normalization or

probabilistic

anomaly event

RGB visual modality

Optical flow (motion modality)

Depth modality

Infrared or thermal stream

Temporal frame index

Token, patch, or pixel indices

Hierarchical level or Transformer layer
index

Encoder and decoder
Transformer architecture
Residual connection or reservoir module
Self-supervised pretext objective
Classification or decision head output
Forward and backward passes in BiILSTM
layers

Modality index (for multimodal fusion)
RGB visual modality

Optical flow (motion modality)

Depth modality

Infrared or thermal stream

modules in





