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Video anomaly detection constitutes a pivotal component for ensuring public safety, 

regulating traffic networks, supervising industrial workflows, and enabling smart city 

ecosystems. Recent advances in deep learning - particularly transformer-based 

architectures - have markedly improved the modeling of high-order spatio-temporal 

dependencies within surveillance video streams. This study presents a systematic 

comparative evaluation of state-of-the-art frameworks, encompassing CNN–Transformer 

hybrids, dual-stream motion–appearance encoders, pure vision transformer architectures, 

weakly supervised paradigms, and class-incremental learning strategies. Experiments 

conducted on benchmark datasets including UCF-Crime, ShanghaiTech, CUHK Avenue, 

UCSD Ped2, RWF-2000, and Drone-Anomaly highlight domain-specific advantages: 

BiMT achieves superior accuracy on UCF-Crime; TDS-Net demonstrates robustness on 

motion-intensive corpora such as ShanghaiTech and Avenue; and unsupervised 

transformer models excel in aerial anomaly detection. Furthermore, SwinIoT provides 

edge-optimized inference for IoT-enabled smart environments, while CILAR-Net 

supports dynamic integration of emergent anomalous classes. The analysis underscores 

critical trade-offs—labeling cost reduction via ST-HTAM, real-time efficiency through 

ViT+SRU++, and anomaly localization achieved by SwinAnomaly. The findings indicate 

that no single architecture universally dominates across tasks; instead, optimal model 

selection is context-sensitive, determined by accuracy–efficiency requirements, 

annotation costs, adaptability, and deployment constraints. The contribution is a decision-

support framework for selecting transformer-based anomaly detection models across 

heterogeneous video surveillance domains. 
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1. INTRODUCTION

The rapid proliferation of surveillance cameras across 

public, commercial, and industrial environments has 

significantly increased the demand for automated video 

anomaly detection (VAD) systems capable of monitoring 

large-scale visual data streams in real time. Manual inspection 

of continuous video feeds is inefficient and highly error-prone, 

creating a need for intelligent anomaly detection frameworks 

that ensure public safety and operational reliability. However, 

VAD remains challenging due to the rarity of abnormal events, 

the strong influence of context, scene variability, and 

ambiguous anomaly definitions [1]. 

Early approaches relied on handcrafted features such as 

trajectories, optical-flow histograms, or spatiotemporal 

gradients, combined with statistical models or classical 

machine learning algorithms. These methods performed 

reasonably in controlled environments but struggled in 

crowded scenes and complex real-world settings due to limited 

representational capacity and an inability to model long-range 

dependencies. The adoption of deep learning marked a major 

shift: CNNs captured spatial semantics, RNNs (LSTM/GRU) 

incorporated temporal sequence modeling, and 

autoencoders/GANs enabled reconstruction-based anomaly 

detection Nevertheless, these architectures suffered from 

restricted receptive fields, vanishing gradients, and difficulty 

modeling global spatiotemporal relationships critical for 

anomaly understanding [2]. 

A key milestone was the introduction of attention-based 

models in computer vision. Non-local Networks (2018) and 

early temporal attention frameworks demonstrated that 

attention mechanisms could capture global contextual 

relations more effectively than RNNs by directly relating 

distant spatial and temporal positions. This evolution paved 

the way for the Vision Transformer (ViT) and hierarchical 

variants such as Swin Transformer which redefined video 

understanding by representing frames as token sequences and 

modeling long-range dependencies via self-attention. Their 

capacity to jointly capture global structure, fine-grained local 

details, and multi-scale spatial-temporal relations has made 
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transformers particularly suitable for VAD tasks, where subtle 

cues and contextual deviations are often key indicators of 

irregular events [3]. 

The effectiveness of transformer architectures for VAD is 

supported by strong theoretical advantages: 

1. Global Self-Attention: Enables modeling of long-

range dependencies and contextual interactions across

frames—critical for detecting temporally extended

anomalies such as stalking, fighting, or slow abnormal

motion patterns.

2. Token-Based Representation: Allows flexible

modeling of appearance, motion, and scene structure at

patch or object level, improving responsiveness to fine-

grained anomalies.

3. Long-Range Temporal Modeling: Overcomes

vanishing gradients and recurrence bottlenecks seen in

LSTM/GRU models, facilitating more stable temporal

reasoning [3].

4. Information-Theoretic Efficiency: Attention

mechanisms dynamically highlight salient regions and

suppress irrelevant information, acting as adaptive

spatiotemporal compression—an essential property in

cluttered surveillance scenes.

Despite rapid advancements, significant limitations remain. 

Many transformer-based models are computationally 

expensive and unsuitable for real-time or edge-based 

deployments characteristic of IoT surveillance environments. 

Weakly supervised and unsupervised transformer paradigms 

often struggle to generalize to unseen anomaly types and may 

suffer from high false-positive rates in complex scenes [4]. 

Multimodal and hybrid architectures require large-scale 

annotated datasets, which are scarce in real-world deployment 

scenarios. Additionally, several models lack mechanisms for 

incremental learning, explainability, or domain adaptation - 

critical requirements for long-term monitoring and dynamic 

urban environments [5]. 

To address these gaps, this survey presents a comprehensive 

and theoretically grounded analysis of transformer-based 

VAD models. Unlike existing surveys that primarily 

categorize architectures, this work offers:  

(1) a theoretical explanation for why transformer

mechanisms align with the intrinsic requirements of anomaly 

detection;  

(2) a historical progression connecting early deep learning

and attention-based methods with modern transformers [6]; 

(3) a systematic comparison of supervised, weakly

supervised, unsupervised, hybrid, hierarchical, and 

multimodal transformer frameworks [7]; 

(4) a critical interpretation of performance differences using

theoretical constructs such as attention span, fusion strategy, 

and modality alignment; and  

(5) a decision-support framework that assists practitioners

in selecting the most appropriate transformer architecture 

based on deployment constraints, labeling resources, and 

application domain [5]. 

The remainder of this paper is organized as follows. Section 

II presents related work. Section III deals with Abnormal event 

detection using transformer Models. Section IV provides a 

comparative analysis of results with different dataset, 

performances, and compromises, and Section V Covers 

Application domain and best model and lastly Section VI 

presents conclusion and future work of this survey paper. 

2. RELATED WORK

2.1 Evolution of video anomaly detection (VAD) 

Video anomaly detection has evolved significantly over the 

past decade, moving from handcrafted feature engineering to 

deep learning and more recently to transformer-based 

architecture. Early VAD systems relied on manually designed 

features such as optical flow histograms, trajectories, or 

spatiotemporal gradients. These classical approaches were 

limited in crowded and unstructured scenes due to weak 

generalization and poor robustness to motion clutter [4]. 

With the emergence of deep learning, convolutional neural 

networks (CNNs) enabled stronger spatial feature extraction, 

while recurrent networks (LSTM/GRU) improved temporal 

modeling by capturing sequential dependencies. Autoencoders 

and GAN-based frameworks further advanced VAD through 

reconstruction and prediction paradigms, where anomalies are 

detected as deviations from learned normal patterns. However, 

deep learning approaches still struggled with modeling long-

range dependencies, global context, and multimodal 

interactions—key factors in complex surveillance 

environments [7]. The historical progression of video anomaly 

detection (VAD) is depicted in Figure 1. 

These limitations created a natural progression toward 

attention-based models. Non-local networks and early 

temporal-attention mechanisms demonstrated the value of 

global context modeling, laying the foundation for the 

adoption of transformer architectures for VAD. 

Figure 1. History of video anomaly detection (VAD) 

2.2 Classical deep learning for VAD 

Classical deep learning methods can be grouped into three 

major categories: 

• CNN-based anomaly detectors:

CNNs excel at extracting spatial semantics but lack explicit

temporal reasoning. Surveys highlight their limitations in 

capturing long-range motion patterns or contextual relations 

across scenes [8]. 

• RNN-based models (LSTM, GRU, BiLSTM):

RNNs address temporal dynamics but suffer from vanishing

gradients and limited temporal horizons, making them 
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insufficient for complex anomalies such as prolonged loitering 

or staged abnormal behaviors [9]. 

• Autoencoders and GANs:

Reconstruction- and prediction-based frameworks detect

anomalies through high reconstruction errors. However, these 

models often produce blurry reconstructions and do not 

leverage global scene-level dependencies, resulting in high 

false positives in dynamic scenes [10]. 

These limitations motivated the transition toward hybrid 

and transformer-based systems capable of global 

spatiotemporal modeling. Figure 2 presents an overview of 

deep learning approaches applied to anomaly detection. 

Figure 2. Deep learning for anomaly detection 

2.3 Hybrid CNN/RNN-transformer architectures 

Hybrid designs combine the strengths of CNNs, RNNs, and 

Transformers: 

• BiMT integrates CNN spatial encoders, BiLSTM

temporal encoders, and transformer-based global

attention, achieving high accuracy across UCSD,

Avenue, and ShanghaiTech datasets [11].

• TransCNN fuses CNN-based spatial extraction with

transformer-driven temporal reasoning, providing

superior generalization over purely convolutional

pipelines [12]. 

• Multimodal hybrid frameworks fuse RGB, depth,

optical flow, and audio through cross-modal attention

to enhance robustness in occlusion and low-light

environments [13].

Hybrid architectures address transformer weaknesses such 

as computational cost and data requirements while preserving 

global reasoning capability. As shown in Figure 3, the hybrid 

CNN/RNN and Transformer components work together to 

capture both spatial and temporal features. 

Figure 3. Hybrid CNN/RNN + transformer model 

3. ABNORMAL EVENT DETECTION USING 

TRANSFORMER MODELS 

3.1 Supervised transformer-based methods 

Supervised transformer-based methods for video anomaly 

detection (VAD) rely on frame- or clip-level annotations to 

train discriminative models that directly classify anomalous 

versus normal behavior. These frameworks exploit the self-

attention mechanism of transformers, which enables dense 

pairwise interactions among spatio-temporal tokens, thereby 

overcoming the locality bias of CNNs and the vanishing-

gradient limitations of RNNs [14]. When combined with 

convolutional or recurrent backbones, supervised transformers 

demonstrate state-of-the art performance on benchmark 

surveillance datasets. A representative supervised framework 

is CILAR-Net (Class-Incremental Learning Network). Its 

backbone employs a Vision Transformer (ViT) [15] for 

hierarchical spatial feature encoding, producing patch 

embeddings that preserve object-level and contextual cues. 

Temporal dependencies are modeled through a Gated 

Recurrent Unit (GRU) module, while an incremental classifier 

accommodates newly emerging anomaly classes without 

catastrophic forgetting. By integrating incremental learning 

within a transformer pipeline, CILAR-NeT achieves high 

anomaly detection accuracy (97.2% AUC on UCSD Ped2), 

while uniquely supporting lifelong surveillance adaptability - 

a crucial requirement for evolving urban environments [16]. 

Another supervised transformer design is ViT-ARN (Vision 

Transformer Attention with Multi-Reservoir ESN). Here, a 

ViT encoder extracts non-local spatial dependencies via multi-

head self-attention, while Echo State Networks (ESNs), 

serving as recurrent reservoirs, approximate long-term 

temporal dynamics. This hybridization replaces heavy 

recurrent training with reservoir computing, making the 

pipeline computationally efficient while maintaining sequence 

modeling fidelity. ViT-ARN [17] demonstrates strong 

performance on long-duration datasets such as UCF-Crime 

(88.1% AUC), illustrating the advantage of lightweight 

temporal reservoirs over conventional LSTMs in supervised 
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transformer settings. Hybrid CNN–Transformer architectures 

further refine supervised VAD. TransCNN employs a CNN 

encoder (e.g., ResNet-based backbone) to extract spatial 

frame-level representations, which are projected into a 

sequence of tokens and passed through a transformer encoder 

for temporal attention modeling. The transformer enhances 

inter-frame reasoning by selectively attending to 

discriminative temporal patterns, yielding 90.3% AUC on 

Avenue and 85.4% on ShanghaiTech, surpassing CNN–LSTM 

counterparts [18]. Figure 4 presents the architecture of the 

supervised transformer-based framework adopted in this 

study.

Figure 4. Supervised transformer-based framework 

The most competitive supervised design, TDS-Net 

(Transformer-enhanced Dual-Stream Network) [19], 

incorporates dual-stream feature encoders: an RGB stream for 

semantic context and an optical flow stream for explicit 

motion representation. Transformer encoders are deployed 

over both streams to capture intra-stream dynamics, followed 

by a cross-stream fusion stage that aligns spatial and motion 

cues. This design leverages both appearance-motion 

complementarity and long-range temporal self-attention. 

In summary, supervised transformer-based approaches 

deliver the strongest anomaly detection performance across 

benchmarks due to their ability to unify fine-grained spatial 

encoding, explicit temporal modeling, and global context 

reasoning. However, their reliance on dense annotations 

makes them annotation-expensive and less scalable to large-

scale, real-world deployments, motivating the parallel 

exploration of weakly supervised and unsupervised paradigms 

[20]. 

3.2 Unsupervised and self-supervised methods 

Unsupervised and self-supervised frameworks in video 

anomaly detection (VAD) are designed to overcome the 

annotation bottleneck, where frame- or event-level anomaly 

labels are unavailable or impractical to obtain. Instead of 

explicit supervision, these methods exploit the distribution of 

normal video dynamics to detect deviations indicative of 

anomalies [20]. Transformers, with their ability to model long-

range spatio-temporal dependencies, provide a robust 

backbone for such paradigms by capturing global contextual 

cues beyond the receptive field of CNNs and the short-term 

dependencies of RNNs. As shown in Figure 5, the 

unsupervised framework operates without labeled data for 

anomaly detection.  

Figure 5. Unsupervised framework 

3.2.1 Unsupervised reconstruction and prediction models 

A canonical approach to unsupervised anomaly detection is 

predictive modeling, where the model learns to forecast future 

frames given past sequences, with anomalies emerging as 

prediction errors. The Transformer Encoder–Decoder 

framework for traffic anomaly detection exemplifies this 

paradigm. A sequence of normal frames 𝑉 =  { 𝑓1, 𝑓2, … , 𝑓𝑇}
is encoded into latent tokens 𝑍𝑡  = 𝜙(𝑓𝑡)  through a CNN

backbone. These tokens are processed by a transformer 

encoder to capture inter-frame attention, and the decoder 

predicts the next frame 𝑓{𝑡+1}. An anomaly score is derived

from the reconstruction error: 

𝐿𝑎𝑛𝑜𝑚(𝑡) = ‖𝑓𝑡+1 − 𝑓𝑡+1‖2
2

This framework achieved 82% AUC on aerial traffic videos, 

demonstrating the feasibility of annotation-free anomaly 

detection, though performance is constrained by 

reconstruction noise in dynamic traffic environments [21]. 

3.2.2 Reservoir-enhanced transformer variants 

Transformers are also combined with recurrent reservoirs 

for unsupervised temporal modeling. ViT-ARN (Vision 

Transformer with Multi-Reservoir Echo State Networks) 

leverages a ViT encoder for patch-level spatial embeddings 

and employs Echo State Networks (ESNs) to propagate 

temporal dynamics. ESNs maintain a fixed recurrent reservoir 

governed by 

ℎ𝑡 = tanh(𝑊𝑖𝑛𝑥𝑡 + 𝑊𝑟𝑒𝑠ℎ𝑡−1)

where, 𝑊𝑟𝑒𝑠  is a sparsely initialized reservoir matrix. This

unsupervised adaptation of ViTARN exploits ESN states to 

model normal sequence dynamics, with anomalies detected 

via deviations in state-driven predictions. The reservoir’s fixed 

dynamics ensure computational efficiency, avoiding the 

training overhead of deep RNNs, while maintaining sensitivity 

to long-term abnormal patterns [17]. 
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3.2.3 Self-supervised representation learning 

Beyond reconstruction, self-supervised paradigms employ 

auxiliary pretext tasks to enforce discriminative spatio-

temporal representations without requiring anomaly labels. 

Examples include temporal order verification, masked token 

modeling, or contrastive learning, where the transformer 

learns to distinguish between plausible and corrupted video 

sequences [22]. In these frameworks, anomaly detection is 

performed by measuring the embedding distance between test 

sequences and the learned normal representation manifold. 

Though not explicitly detailed in the uploaded papers, several 

recent transformer-based works extend BERT-style masked 

video modeling to surveillance contexts, enabling transferable 

feature representations for anomaly detection under zero-label 

conditions [14].  

3.3 Hybrid CNN/RNN-transformer 

Hybrid CNN/RNN–Transformer frameworks represent the 

current state-of-the-art paradigm in video anomaly detection 

(VAD), combining the spatial locality capture of CNNs, the 

sequential memory of RNNs, and the global context reasoning 

of Transformers. This layered integration compensates for the 

shortcomings of individual architectures: CNNs excel at 

extracting appearance-level semantics but lack temporal 

modeling; RNNs capture sequence dynamics but struggle with 

long-range dependencies; and Transformers provide self-

attention over arbitrarily distant frames but require strong 

feature encoders to prevent overfitting. Formally, given a 

sequence of video frames 𝑉 = { 𝑓1, 𝑓2, … , 𝑓𝑇} a CNN encoder

produces spatial embeddings: 𝑋𝑡  = 𝜙(𝑓𝑡), 𝑋𝑡  ∈ 𝑅𝑁∗𝑑 where

N denotes patch tokens or convolutional feature maps and their 

embedding dimension. To capture local temporal continuity, 

RNN layers (e.g., BiLSTM) refine embeddings: 𝐻𝑡 =
𝐵𝑖𝐿𝑆𝑇𝑀(𝑋𝑡 , 𝐻𝑡−1)  capturing bidirectional short term and

medium-term dependencies. These temporally enriched 

features are then processed by a transformer encoder: 

𝑍 =  𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟{ 𝐻1, 𝐻2, … , 𝐻𝑇}

Which applies multi-head self-attention to model global 

correlations and long-range anomaly indicative dependencies 

across frames. Finally, a classifier maps Z to anomaly scores. 

BiMT (CNN–BiLSTM–Transformer) exemplifies this 

integration. A CNN backbone (e.g., ResNet) extracts 

appearance cues, a BiLSTM encodes sequential context in 

both forward and backward directions, and a transformer 

refines this with hierarchical temporal attention. By aligning 

local and global temporal representations, BiMT achieves 

97.8% AUC (UCSD Ped2), 89.2% (Avenue), and 84.6% 

(ShanghaiTech), significantly outperforming CNN–LSTM 

pipelines that lack global self-attention [11].  

TransCNN simplifies the hybridization by replacing RNNs 

with a direct CNN + Transformer pipeline. Spatial 

embeddings from CNN layers are tokenized and processed by 

transformers to temporal reasoning, reducing recurrence-

induced bottlenecks. This design attains 98.1% (UCSD), 

90.3% (Avenue), 85.4% (ShanghaiTech), illustrating the 

efficiency of transformer driven temporal modeling over 

recurrent memory [12]. Figure 6 presents the architecture of 

the hybrid framework that combines multiple learning 

paradigms.  

Figure 6. Hybrid framework 

TDS-Net (Transformer-enhanced Dual-Stream Network) 

further extends hybridization across modalities. Two parallel 

CNN encoders extract RGB and optical flow streams, each 

refined by transformer modules. A dual-stream fusion 

mechanism aligns motion and appearance representations 

before classification. This multimodal hybridization, 

leveraging complementary cues, achieves state-of-the-art 

supervised accuracy: 98.5% (UCSD Ped2), 91.0% (Avenue), 

and 86.1% (ShanghaiTech) [19]. 

Lastly, Multimodal Fusion + Transformer frameworks 

generalize hybrids by incorporating RGB, depth, infrared, and 

audio modalities. CNN encoders extract modality-specific 

features, transformers align them temporally, and cross-modal 

attention modules perform joint feature fusion. Such 

architectures demonstrate strong robustness under modality 

noise, e.g., 97.9% (UCSD) and 90.1% (Avenue), but face 

deployment challenges due to synchronization overhead and 

computational cost.  

In summary, hybrid CNN/RNN–Transformer frameworks 

provide the most balanced and accurate solutions for VAD, 

offering fine-grained local representation (CNN), sequential 

learning (RNN), and global context modeling (Transformer). 

Their drawback lies in computational complexity and 

inference latency, motivating research on lightweight hybrids 

for real-time deployment. 

3.4 Hierarchical and multimodal transformer methods 

Hierarchical and multimodal transformer-based 

frameworks extend the transformer paradigm in VAD by 

addressing two complementary challenges: scalability of 

attention across spatial temporal hierarchies and integration of 

heterogeneous input modalities beyond RGB frames. By 

exploiting shifted-window attention and cross-modal fusion 

mechanisms, these models achieve both fine-grained local 

anomaly detection and robust global context reasoning across 

diverse surveillance environments. As shown in Figure 7, the 

hierarchical transformer framework captures multi-level 

temporal dependencies for effective anomaly detection.  

3.4.1 Hierarchical transformer architectures 

Traditional Vision Transformers (ViT) apply global self-

attention across all tokens, leading to quadratic complexity 

O(N2) with respect to the number of patches. This becomes 

computationally prohibitive for long video sequences. 

Hierarchical designs, such as Swin Transformers [23], 

mitigate this by computing attention within shifted local 

windows before progressively merging patches into coarser 
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scales. Formally, at stage l, attention is computed over 

windowed tokens X1 ∈ RM×d , where M is the number of

tokens in a window and d is the feature dimension. The 

operations are defined as: 

𝑍𝑙 = 𝑊 − 𝑀𝑆𝐴(𝑋𝑙) + 𝑋𝑙 ,

𝑋𝑙+𝑙 = 𝑀𝐿𝑃(𝑆𝑊 − 𝑀𝑆𝐴(𝑍𝑙)),

where, W-MSA denotes window-based self-attention and SW-

MSA applies shifted windows for cross-window interactions. 

This hierarchical design balances local spatial modeling with 

global dependency capture while reducing complexity to near-

linear in sequence length. The STHTAM (Swin Transformer 

with Hierarchical Temporal Adaptive Module) integrates 

Swin Transformers for spatial tokenization with C-LSTMs 

and temporal attention modules for weakly supervised VAD. 

By hierarchically refining temporal dependencies under 

Multiple Instance Learning (MIL), ST-HTAM achieves strong 

anomaly localization performance (96.3% AUC on UCSD 

Ped2, 86.7% on Avenue), despite relying only on video-level 

labels. Its hierarchical architecture demonstrates that localized 

attention windows can improve both computational efficiency 

and local anomaly sensitivity [24]. 

Figure 7. Hierarchical transformer framework 

Similarly, SwinIoT extends hierarchical transformers to 

IoT-driven smart city surveillance, where multimodal sensor 

streams (RGB video, IoT metadata, contextual environmental 

signals) must be jointly modeled. The Swin backbone encodes 

spatial hierarchies, while cross-layer fusion aligns multi-

resolution embeddings, yielding robust detection (AUC ≈ 

89.0) in resource constrained IoT deployments [23].  

3.4.2 Multimodal transformer models 

Multimodal anomaly detection exploits heterogeneous 

surveillance data - RGB video, optical flow, depth, infrared, 

and even audio to overcome the limitations of single-modality 

detection under noisy or occluded environments. Multimodal 

transformers achieve this by aligning modality-specific 

embeddings through cross-modal self-attention or fusion 

transformers.  

Multimodal Fusion + Transformer Framework 

The Multimodal Fusion + Transformer framework uses 

CNN encoders to process RGB, flow, and depth streams 

independently, producing modality-specific embeddings: 

{𝑋𝑟𝑔𝑏,𝑋𝑓𝑙𝑜𝑤,𝑋𝑑𝑒𝑝𝑡ℎ}.

These embeddings are fused via a cross-attention module: 

𝑍𝑟𝑔𝑏 = 𝐴𝑡𝑡𝑛(𝑄 = 𝑋𝑟𝑔𝑏 , 𝐾 = [𝑋𝑓𝑙𝑜𝑤 , 𝑋𝑑𝑒𝑝𝑡ℎ], 𝑉 =

𝑋𝑓𝑙𝑜𝑤 , 𝑋𝑑𝑒𝑝𝑡ℎ),

Ensuring that anomaly-relevant cues from auxiliary 

modalities (e.g., abrupt motion from flow, structural 

anomalies from depth) are injected into the RGB stream.  

A Transformer encoder then refines the fused representation 

to capture long-term multimodal interactions. This design 

achieves AUC = 97.9% on UCSD Ped2, 90.1% on Avenue, 

and 85.8% on ShanghaiTech, highlighting the robustness of 

multimodal fusion against modality noise and occlusion [25]. 

SwinIoT also exemplifies multimodal modeling in IoT 

surveillance, where video streams are augmented with 

contextual IoT data (e.g., environmental sensors, traffic 

metadata). By embedding these streams into a unified 

transformer space, SwinIoT achieves scalable behavioral 

anomaly detection across heterogeneous smart city 

infrastructures [23]. Table 1 presents a comparative analysis 

of various transformer-based models. 

Table 1. Comparative analysis of transformer-based models 

Model 
Architecture 

Type 
Input Modalities 

Temporal 

Modeling 
Strengths Limitations 

CILAR-Net [16] 

Hybrid (ViT + 

GRU + 

Incremental 

Learning) 

RGB frames 

GRU for 

sequential 

learning 

Adapts to new anomaly 

classes without 

retraining; robust 

lifelong learning 

Replay buffer 

overhead; transformer 

compute cost 

ViT-ARN [17] 

Transformer + 

Multi-Reservoir 

ESN 

RGB clips (≈16 frames) 

ESN for efficient 

sequence 

dynamics 

Combines ViT spatial 

power with efficient 

temporal ESN; 

lightweight 

Sensitive to sequence 

boundaries; ESN 

tuning required 

ST-HTAM [24] 

Swin 

Transformer + 

Hierarchical 

Temporal 

Attention 

RGB video 

Hierarchical 

temporal 

attention + 

temporal 

adaptive module 

Captures multi-scale 

temporal dependencies; 

works with weak labels 

Heavy compute; 

weaker anomaly 

localization 

Transformer Enc–

Dec (Traffic) [21] 

Transformer 

Encoder–

Decoder 

Aerial traffic video 

frames 

Frame prediction 

via encoder–

decoder 

Works without anomaly 

labels; captures long-

range dependencies 

Lower accuracy; false 

alarms in dynamic 

traffic scenes 

BiMT [11] 

CNN + 

BiLSTM + 

Transformer 

RGB frames 

BiLSTM 

(bidirectional) + 

Transformer for 

Strong local + 

sequential + global 

modeling 

High training 

complexity and cost 
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long-range 

TransCNN [12] 
Hybrid CNN + 

Transformer 
RGB frames 

Transformer 

encoder over 

CNN features 

Balances CNN spatial 

and Transformer global 

reasoning 

Needs large data; dual 

modules increase cost 

TDS-Net [19] 

Dual-Stream 

CNN + 

Transformer 

RGB + Optical Flow 

Transformer 

encoder over 

fused tokens 

Strong for motion-

driven anomalies; high 

reported AUC (91%) 

Optical flow extraction 

adds latency 

SwinIoT [23] 

Swin 

Transformer 

(hierarchical, 

shifted window) 

IoT data streams (video + 

sensors) 

Temporal 

attention on 

Swin features 

Scalable for smart cities; 

efficient windowed 

attention 

Still heavy for edge 

devices; needs normal 

data 

Multimodal 

Fusion + 

Transformer[13] 

CNN encoders 

+ Fusion +

Transformer

RGB + Flow + 

(Audio/Depth/Metadata) 

Transformer 

encoder over 

fused 

multimodal 

tokens 

Robust to modality 

noise; strong cross-

modal reasoning 

High computational + 

synchronization cost 

YOLOv8-based 

Night-Time 

Detection [26] 

One-stage 

CNN-based 

object detector 

RGB images (low-

light/night-time) 

No explicit 

temporal 

modeling 

High detection accuracy 

for small and distant 

objects in low-light 

conditions; real-time 

performance; effective 

use of data 

augmentation and HPC 

resources 

Limited to frame-level 

object detection; does 

not capture motion 

patterns or high-level 

behavioral anomalies 

CNN–BiLSTM 

with Attention 

[27] 

Hybrid CNN–

RNN 

architecture 

with attention 

RGB video frames 

BiLSTM-based 

temporal 

modeling 

Captures spatiotemporal 

dependencies for 

complex behavior 

detection using attention 

Computationally 

intensive with limited 

interpretability and 

scalability 

VidAnomalyNet 

[28] 

Deep CNN-

based anomaly 

detection 

network 

RGB surveillance videos 

Implicit (via 

stacked CNN 

layers) 

High-accuracy, efficient 

CNN for multi-class 

event-level anomaly 

detection 

Requires labeled data; 

limited generalization; 

no explicit semantic or 

temporal reasoning 

4. PROPOSED UNIFIED TRANSFORMER-BASED

VIDEO ANOMALY DETECTION FRAMEWORK

Transformer architectures have rapidly emerged as leading 

solutions for Video Anomaly Detection (VAD) due to their 

superior ability to model long-range spatiotemporal 

dependencies. However, existing studies often present isolated 

architectural innovations without a unified theoretical 

foundation spanning supervised, weakly supervised, and 

unsupervised paradigms. To address this gap, we propose a 

holistic and extensible framework that organizes transformer-

based VAD into five tightly coupled components: multimodal 

input processing, spatial encoding, temporal modeling, 

anomaly scoring, and decision-support post-processing. This 

unified framework formalizes the operational stages common 

to state-of-the-art methods and provides a conceptual lens for 

evaluating and comparing existing transformer-based 

approaches. 

4.1 Multimodal input acquisition and preprocessing 

Surveillance environments generate heterogeneous and 

often asynchronous input streams, including RGB video, 

optical flow, depth imagery, thermal infrared data, audio cues, 

and IoT sensor metadata. Modern transformer-based VAD 

systems increasingly rely on multimodal fusion to overcome 

environmental constraints such as occlusion, low illumination, 

and noise. 

Key Components 

• Synchronized sampling and temporal alignment ensure

uniform frame intervals, enabling consistent

tokenization across modalities.

• Normalization and augmentation (e.g., brightness

correction, motion jitter, geometric transformations) 

stabilize training under real-world [29]. 

• Tokenization/Patch extraction divides each frame into

fixed-size patches (e.g., 16 × 16), encoding them as

linear embeddings as implemented in Vision

Transformer (ViT) architectures [30].

• Multimodal preprocessing reduces reliance on single-

modality signals and provides the unified transformer

pipeline with rich contextual cues necessary for robust

anomaly identification.

4.2 Spatial encoder: Hierarchical visual abstraction 

Spatial encoding represents the first layer of semantic 

abstraction in the framework. Transformers handle spatial 

information differently from convolutional approaches, 

emphasizing non-local interactions at the patch level. 

Approaches within the Framework 

• Vision Transformer (ViT): Frames are partitioned into

patches and processed as tokens, enabling non-local

spatial reasoning across the entire scene.

• Swin Transformer: Uses shifted window-based self-

attention to compute multi-scale spatial features

efficiently, improving performance in crowded or

cluttered scenes [31].

• Hybrid CNN–Transformer Architectures: Earlier

convolutional layers extract local textures (edges,

gradients) while transformers captu re broader spatial

relationships.

• Spatial encoders provide hierarchical semantic

information essential for detecting appearance-based

anomalies (e.g., unusual objects, unattended bags,

structural abnormalities).
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4.3 Temporal modeling: Global and local dynamics 

Anomalies are typically defined by deviations in temporal 

patterns rather than isolated frame-level abnormalities. 

Modeling temporal evolution is therefore central to VAD. 

Core Mechanisms 

• Multi-Head Self-Attention (MHSA) allows modeling

of long-term dependencies across hundreds of frames,

overcoming the limitations of RNN-based models such

as LSTMs.

• Temporal factorization (as in TimeSformer [32])

decomposes spatiotemporal attention into sequential

spatial and temporal attention steps to improve

efficiency.

• Recurrent modules (SRU++, GRUs, ESNs) can be

integrated to maintain short-term memory stability and

reduce the computational cost of full attention over

long sequences.

• Cross-attention fusion aligns temporal signals across

modalities, such as correlating optical flow trajectories

with RGB appearance cues.

• Temporal modeling captures motion irregularities,

crowd behavior anomalies, and evolving interactions—

critical signals in anomaly detection.

4.4 Anomaly modeling and scoring mechanisms 

The proposed framework accommodates multiple learning 

paradigms observed in VAD research. 

Supervised Approaches 

Use discriminative classification heads or sequence-level 

anomaly probability regressors. Examples include 

transformer-based action classifiers adapted for anomaly 

discrimination.  

Weakly Supervised Approaches 

Leverage Multiple Instance Learning (MIL) frameworks 

where only video-level labels are available. Temporal 

attention highlights anomalous segments. 

Self-Supervised Approaches 

Employ predictive or reconstructive tasks such as: 

• masked video modeling

• contrastive temporal representation learning.

Unsupervised Approaches

Use reconstruction or prediction errors as anomaly scores:

• video prediction transformers

• spatiotemporal reconstruction-based transformers.

Scoring Mechanisms

• Residual deviation analysis

• Feature-space distance metrics (e.g., Mahalanobis

distance)

• Reconstruction/prediction error curves

• Attention deviation metrics (anomalies cause atypical

attention patterns)

Different surveillance contexts demand different 

supervision regimes; thus, the framework supports all major 

paradigm families. 

4.5 Decision support and post-processing layer 

The decision-support layer translates model outputs into 

interpretable, actionable insights for operators and automated 

systems. 

Core Outputs 

• Frame-level anomaly probability curves for

temporal localization.

• Attention heatmaps highlighting suspicious objects or

regions.

• Spatiotemporal saliency maps to support human

decision-makers.

• Tracking-enhanced anomaly refinement, linking

anomalies to object trajectories or identities.

Deployment-Oriented Enhancements 

• Real-time inference optimizations for edge devices [7].

• Automatic threshold tuning based on scene dynamics.

• Integration with IoT event logs for contextual anomaly

interpretation.

• This layer ensures usability by bridging algorithmic

outputs with operational surveillance needs.

5. RESULT ANALYSIS

The comparative analysis reveals that TDS-Net (91%), 

TransCNN (90%), and Multimodal Fusion + Transformer 

(90%) achieve the strongest performance among the surveyed 

models, highlighting the effectiveness of combining CNN-

based local feature extraction, motion-aware modeling, and 

transformer-driven global reasoning. BiMT (89%), SwinIoT 

(89%), ViT-ARN (88%), and CILAR-Net (87%) demonstrate 

competitive mid-range results, reflecting the benefits of hybrid 

architectures and incremental or multimodal strategies. In 

contrast, ST-HTAM (84%) and the Transformer Encoder–

Decoder for Traffic Anomaly Detection (82%) report 

comparatively lower scores, largely due to weak supervision 

settings and unsupervised prediction-based learning, 

respectively. These findings suggest that fusion-based and 

dual-stream hybrid approaches generally yield superior 

anomaly detection accuracy across surveillance benchmarks.  

Table 2 summarizes the experimental results obtained from 

the evaluation of the different models. 

Table 2. Result analysis 

Model Dataset(s) Reported Performance Key Observation 

CILAR-Net [16] 

UCSD Ped2, 

Avenue, 

ShanghaiTech 

97.2 (UCSD),  

88.4 (Avenue), 

83.6 (ShanghaiTech) 

Excels on simple datasets (UCSD), but performance drops on 

complex, crowded scenarios (ShanghaiTech). Supports class-

incremental learning for real-time adaptability. 

ViT-ARN [17] 
ShanghaiTech, UCF-

Crime 

74.8(ShanghaiTech), 88.1 

(UCF-Crime) 

Integrates ViT with Echo State Networks; efficient for long-

sequence modeling, but struggles in dense crowds 

(ShanghaiTech). Performs well in long-duration UCF-Crime. 

ST-HTAM [24] 

UCSD Ped2, 

Avenue, 

ShanghaiTech 

96.3 (UCSD),  

86.7 (Avenue),  

79.2 (ShanghaiTech) 

Weakly supervised MIL-based Swin Transformer; robust for 

weak labels but lower performance in complex datasets. 

Transformer Enc–

Dec (Traffic) [21] 

Traffic Aerial 

Dataset 
82.0 

Fully unsupervised prediction model; avoids labeling costs but 

underperforms due to reconstruction noise in dynamic 
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environments. 

BiMT (CNN-

BiLSTM-

Transformer) [11] 

UCSD Ped2, 

Avenue, 

ShanghaiTech 

97.8 (UCSD),  

89.2 (Avenue),  

84.6 (ShanghaiTech) 

Strong sequential + global modeling; balances spatial, 

temporal, and attention features. Slightly lower performance 

on complex datasets. 

TransCNN [12] 

UCSD Ped2, 

Avenue, 

ShanghaiTech 

98.1 (UCSD),  

90.3 (Avenue),  

85.4 (ShanghaiTech) 

Hybrid CNN + Transformer; consistently high performance 

across datasets. Shows strong generalization. 

TDS-Net [19] 

UCSD Ped2, 

Avenue, 

ShanghaiTech 

98.5 (UCSD),  

91.0 (Avenue),  

86.1 (ShanghaiTech) 

Dual-stream (RGB + Optical Flow) with Transformer; best 

overall performance. Trade-off: requires costly optical flow 

computation. 

SwinIoT [23] 
IoT Smart-City 

Dataset 
89.0 

Hierarchical Swin Transformer; scalable for IoT surveillance 

but computationally heavy for edge deployment. 

Multimodal Fusion + 

Transformer [13] 

UCSD Ped2, 

Avenue, 

ShanghaiTech 

97.9 (UCSD),  

90.1 (Avenue),  

85.8 (ShanghaiTech) 

Combines RGB, Flow, Depth, and Audio modalities; robust to 

modality noise and strong generalization, but requires multiple 

synchronized inputs. 

6. APPLICATION DOMAIN AND BEST MODEL

1. CCTV / Public Surveillance → BiMT, ViT+SRU++

BiMT (CNN-BiLSTM-Transformer) achieved the highest

accuracy (98.6% AUC) on UCF-Crime and performed 

robustly on UBI-Fight and RAD datasets. Its hybrid 

architecture combining CNNs for spatial features, BiLSTMs 

for temporal patterns, and transformers for long-range 

dependencies makes it ideal for urban surveillance systems. 

ViT+SRU++ leverages a modified Vision Transformer with 

SRU++ recurrent modules, delivering near SOTA accuracy 

(97% UCF-Crime, 96% RWF-2000) while being 10× faster 

than traditional RNNs, making it well-suited for real-time 

CCTV feeds. 

2. Multimodal CCTV (RGB + IR + Depth) → Multimodal

Fusion + Attention 

This model integrates RGB, infrared, and depth video 

streams using multimodal autoencoders and attention-based 

fusion. With 95.1% accuracy and reduced false positives, it is 

particularly effective under low-light or crowded conditions, 

where unimodal methods often fail. 

3. Real-Time Long Video Monitoring → ViT+SRU++,

TransCNN 

ViT+SRU++ provides efficient long-sequence modeling 

with low latency, supporting real-time anomaly detection. 

TransCNN, a hybrid CNN–Transformer framework, 

achieved 94.6% (ShanghaiTech), 98.4% (UCSD Ped2), and 

89.6% (CUHK Avenue) AUC, proving its strength on long-

duration dataset. 

4. IoT-Driven Smart Cities → SwinIoT

SwinIoT adapts the Swin Transformer for IoT

environments. It uses hierarchical attention windows and 

lightweight design, optimized for edge-computing and low-

resource deployments. It reached 96% accuracy and 97% mAP 

across diverse IoT-driven datasets, making it suitable for smart 

city surveillance. 

5. Motion-Sensitive Detection (e.g., fights)

TDS-Net employs a dual-stream architecture (RGB +

optical flow) with a transformer for temporal fusion. This 

enables robust motion-aware anomaly detection, 

outperforming baselines on ShanghaiTech and CUHK Avenue 

datasets. 

6. Aerial / Drone Surveillance → Unsupervised

Transformer 

This unsupervised framework predicts future frames using 

a transformer encoder-decoder trained solely on normal traffic 

videos. Anomalies are flagged by high reconstruction errors. 

It achieved state-of-the-art results on Drone-Anomaly and 

UIT-ADrone datasets, making it highly suitable for aerial 

surveillance. 

7. Evolving Anomalies (New Classes) -CILAR-Net

This introduces class-incremental learning for anomaly

recognition. It adapts to new anomaly classes without 

retraining, preventing catastrophic forgetting. Tested on UCF-

Crime, RWF-2000, LAD-2000, it outperformed existing 

baselines (e.g., +9.7% on LAD-2000). 

8. Low Annotation Cost (Weak Supervision) → ST-HTAM

ST-HTAM combines the Swin Transformer with a Hybrid

Temporal Adaptive Module (HTAM: global self-attention + 

Conv-LSTM) for weakly supervised video anomaly detection. 

It uses only video-level labels, reducing annotation costs while 

outperforming prior weakly supervised methods. 

9. Real-Time Anomaly Tracking → SwinAnomaly

SwinAnomaly integrates a Swin Transformer-based

autoencoder, GAN-based prediction, YOLOv7 object 

detection, and SORT tracking. This allows real-time anomaly 

detection with localization, outperforming existing prediction-

based methods on standard CCTV datasets. 

As illustrated in Table 3, the Transformer-based models are 

applied across various domains, highlighting their versatility 

and performance differences.

Table 3. Analysis according to application domain 

Application Domain Best Model(s) Reason 

CCTV / Public Surveillance 
BiMT (CNN+BiLSTM+Transformer) [11], 

ViT+SRU++ 

High accuracy on UCF-Crime, robust for city surveillance, 

efficient temporal modeling 

Multimodal CCTV (RGB + 

IR + Depth) 
Multimodal Fusion + Attention [13] 

Combines RGB, IR, Depth → strong in low-light, 

crowded, and complex environments 

Real-Time Long Video 

Monitoring 
ViT+SRU++, TransCNN [12] 

Handles long sequences efficiently, low-latency, accurate 

spatio-temporal modeling 
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IoT-Driven Smart Cities SwinIoT (Hierarchical Transformer) [23] 
Edge-optimized, scalable, robust for smart city IoT sensor 

+ video data

Motion-Sensitive Detection 

(fights) 
TDS-Net (Dual-Stream Transformer) [19] 

Fuses RGB + optical flow for strong motion/appearance 

anomaly detection 

Aerial / Drone Surveillance Transformer (Unsupervised Traffic) [21] 
Learns only from normal drone traffic, detects anomalies 

via prediction errors 

Evolving Anomalies (New 

Classes) 

CILAR-Net (Class-Incremental Learning) 

[16] 

Adapts to new anomaly types without retraining, avoids 

catastrophic forgetting 

Low Annotation Cost (Weak 

Supervised) 

ST-HTAM (Weakly Supervised Transformer) 

[24] 

Requires only video-level labels, reduces false alarms, 

strong temporal modeling 

Real-Time Anomaly 

Tracking 

SwinAnomaly (Video Swin + SORT + GAN) 

[33] 

Combines frame prediction + object tracking for anomaly 

localization in real time 

7. CONCLUSION AND FUTURE DIRECTION

This comparative study clarifies pros and cons of state-of-

the-art transformer-based models to identify anomalies in 

video within diverse application scenarios, including CCTV 

monitoring, aerial observation, smart city monitoring, and 

multimodal scenarios. The evaluation discloses that not a 

single solution attains unquestionable dominance; rather, each 

model best performs within specific restraints and demands of 

application. For instance, supervised methods such as BiMT, 

TDS-Net, and TransCNN achieve peak accuracy on 

benchmark datasets such as UCF-Crime, ShanghaiTech, and 

UCSD Ped2, making them particularly optimal within 

scenarios requiring peak accuracy. Conversely, weakly 

supervised methods such as ST-HTAM effectively reduce 

annotation costs without compromising comparable 

performance, therefore offering a realistic tradeoff between 

effectiveness and accuracy. At the same time, self-supervised 

and unsupervised frameworks, including Unsupervised 

Transformers and SwinAnomaly, hold significant potential 

within anomaly detection of aerial traffic and real-time 

localization of irregularities without requiring heavy labels. 

Besides, heterogeneous architecture fusing CNNs/RNNs and 

Transformers, such as ViT+ SRU++, show stability suited to 

long-term video observation, while hierarchical or multimodal 

transformers, including SwinIoT and Multimodal Fusion with 

Attention, extend their applicability to IoT-driven or low-

visibility environments. Importantly, incremental learning 

methods such as CILAR-Net mark steps toward adaptive 

learning of anomalies by accommodating the incremental 

learning of novel classes of data without falling prey to 

catastrophic forgetting. 

Although such advances have been made, some of the 

challenges that require investigation now are listed below. 

First, lightweight and energy-efficient structures are now 

needed because many of the models made to date are 

computationally prohibitive and not suited to large-scale, real-

time, or edge-based deployments. Moreover, the issue of 

cross-domain generalization is limited because most 

frameworks are fine-tuned using limited datasets; future 

research should consider transfer learning and domain 

adaptation to enhance robustness across various scenarios of 

surveillance. Additionally, while incremental learning models 

handle such novelty of new anomaly classes, research is 

needed to enhance stability, accuracy, and preventing 

catastrophic forgetting. One of the potential research 

directions is over-reliance on large annotated datasets by 

employing self-supervised, contrastive, and active learning 

schemes and thus synchronizing supervised and weakly 

supervised learning. Another area of research is that of 

explainability of transformer-based models because 

interpretable outputs will help to foster trust and facilitate 

deployment with safety repercussions. Further, extension of 

anomaly detection to accommodate modalities other than 

visual inputs such as infrared, depth, audio, sensor, and 

metadata streams can potentially maximize detection accuracy 

and contextual understanding. Lastly, closer integration of 

anomaly detection with object tracking, behavioral 

forecasting, and early alert schemes can provide pro-active 

intervention instead of only reactive monitoring. 

Third, future video anomaly detection will be propelled by 

lightweight, flexible, interpretable, and multimodal models of 

transformer architecture that can run effectively within 

dynamic, complex, and real-time environments. The overview 

thus makes a crucial contribution by offering a systematic 

decision-making process that can be adopted by both research 

workers and practitioners to choose models that best align with 

their respective priorities of their video-based surveillance 

applications e.g., accuracy, temporal efficiency, cost of 

annotation. 
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NOMENCLATURE 

VAD Video Anomaly Detection 

CNN Convolutional Neural Network 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory Network 

BiLSTM Bidirectional Long Short-Term Memory 

ViT Vision Transformer 

SRU Simple Recurrent Unit 

BiMT CNN–BiLSTM–Transformer Hybrid Model 

TDS-Net 
Transformer-enhanced Dual-Stream 

Network 

TransCNN Hybrid CNN–Transformer Mechanism 

ST-HTAM 
Spatio-Temporal Hierarchical Transformer 

Attention Model 

IoT Internet of Things 

MIL Multiple Instance Learning 

AUC Area Under the Curve (Evaluation Metric) 

FPS Frames Per Second 

GCN Graph Convolutional Network 

GAN Generative Adversarial Network 

Greek symbols 

α Attention weight coefficient in self-attention 

mechanism 

β Temporal decay factor or weighting term 

γ  Normalization scaling parameter 

λ 
Regularization or fusion weighting 

coefficient 

θ 
 Learnable model parameters (trainable 

weights) 

η Learning rate for optimization 

σ(·) 
Activation function (sigmoid, softmax, 

tanh) 

ρ 
Correlation coefficient or temporal relation 

weight 

μ 
Mean value (for normalization or 

reconstruction baseline) 

Σ 
Covariance matrix in probabilistic 

embedding space 

δ(·) 
Indicator function for anomaly event 

detection 

Subscripts 

ti RGB visual modality 

flow Optical flow (motion modality) 

depth Depth modality 

ir Infrared or thermal stream 

t Temporal frame index 

i, j Token, patch, or pixel indices 

l 
Hierarchical level or Transformer layer 

index 

enc, dec 
Encoder and decoder modules in 

Transformer architecture 

res Residual connection or reservoir module 

pre Self-supervised pretext objective 

cls Classification or decision head output 

f, b 
Forward and backward passes in BiLSTM 

layers 

m Modality index (for multimodal fusion) 

rgb RGB visual modality 

flow Optical flow (motion modality) 

depth Depth modality 

ir  Infrared or thermal stream 
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