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DeepFake technology, which uses deep learning to create highly accurate fake images and 

videos, is posing a growing threat to the integrity of digital media. Available detection 

methods frequently struggle with real-time flexibility and lack robustness under a variety 

of manipulations. In order to bridge this gap, this work proposes a hybrid multimodal 

DeepFake detection system that makes use of a multi-task cascaded convolutional 

network (MTCNN) for precise facial localization EfficientNet-B0 for efficient spatial 

feature extraction, and long short-term memory (LSTM) networks for temporal anomalies 

in videos. The suggested approach outperforms well-known baselines like XceptionNet 

and CapsuleNet, achieving 97.9% accuracy and computing efficiency. These results 

confirm that the system is resilient and scalable for real-world applications. All things 

considered, this work offers a lightweight high-performance DeepFake detection pipeline 

that maintains confidence in visual content and improves the reliability of digital 

forensics.  
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1. INTRODUCTION

Recent developments in deep generative models, 

particularly generative adversarial networks (GANs), have 

facilitated the creation of remarkably lifelike synthetic media 

or DeepFakes. These edited films and images, which closely 

resemble the appearance and behavior of real people, pose a 

serious threat to digital authenticity, public trust, and 

information integrity. In sensitive industries like politics, the 

media, and cybersecurity, where spreading fake or 

impersonated content can have serious social, legal, and 

ethical repercussions, the risks are especially apparent. This 

problem is exacerbated by the widespread use of DeepFake 

generating technologies and the large volume of publicly 

accessible multimedia content, especially that of public 

figures. In particular, social media plays a significant role in 

the rapid dissemination of this type of content. Despite the fact 

that there are numerous DeepFake detection methods, the ones 

that are currently in use frequently have serious drawbacks, 

such as poor generalization to invisible manipulation 

techniques, high computational complexity, and inadequate 

performance in real-world scenarios like low-resolution 

inputs, video compression, and occlusion. Additionally, a lot 

of systems aren't able to function in real-time, which restricts 

their application in real-world scenarios like surveillance or 

live media analysis. Even though DeepFake detection has 

made notable progress, current research still faces significant 

obstacles with regard to real- time performance, computational 

economy, and generalization. Many convolutional neural 

network (CNN)-based methods ignore the temporal 

discrepancies seen in edited videos in favor of concentrating 

only on spatial information. Despite their strength, transformer 

and GAN-based models are frequently computationally 

demanding and unsuitable for real-time implementation. 

Furthermore, low-quality situations, including compression, 

occlusion, and fluctuating illumination, are likely to cause 

current approaches to deteriorate. These drawbacks highlight 

the necessity for a powerful yet lightweight hybrid system that 

can satisfactorily detect picture and video forgeries in real-

world settings. In order to tackle these problems offers a strong 

and effective DeepFake detection system that integrates 

temporal and spatial analysis. The suggested approach models 

temporal inconsistencies across video frames using long short-

term memory (LSTM) networks, extracts high-resolution 

spatial features using EfficientNet, and accurately localizes 

faces using a multi-task cascaded convolutional network 

(MTCNN). Furthermore, the integration of adversarial 

training and attention mechanisms enhances generalization 

and robustness across a variety of DeepFake generating 

methods. After being trained on a sizable and a variety of 

datasets, including both real and altered media, the system's 

overall detection accuracy was about 97.9%. End users can do 

real- time analysis and visualization on both image and video 

inputs thanks to the framework's integration into a web-based 

interface, which facilitates practical deployment. The main 

goal of this work is to create a hybrid DeepFake detection 
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system that combines LSTM for temporal video analysis, 

EfficientNet for compact and effective spatial feature 

extraction, and MTCNN for precise face localization. This 

work is motivated by the concept that detection accuracy and 

generalization can be greatly enhanced while retaining real-time 

performance by integrating spatial and temporal modeling inside a 

lightweight architecture. In order to improve resilience against 

various DeepFake creation strategies, the system also integrates 

adversarial training and attention processes. This study highlights 

the significance of responsible development, regulation, and 

distribution of detection technologies while also addressing the 

wider ethical implications of synthetic media, in addition to its 

technological contributions. 

They evaluate models including CNNs, RNNs, and transfer 

learning frameworks, and divide detection techniques into image-

based, video-based, and hybrid approaches. Preprocessing 

techniques that are necessary to improve detection performance, 

such as face alignment and frame selection, are also included in the 

review. draws attention to the main issues facing the area, such as 

the absence of defined benchmarks, real-time performance limits, 

and generalization across datasets. Their study emphasizes the 

necessity of advanced, adaptable detection methods to deal with 

temporal and spatial irregularities in synthetic media [1]. The 

multi-modal, multi-scale transformer framework (M2TR) detects 

differences in transformed information by using visual and aural 

cues. The model enhances generalizability and resilience across 

various DeepFake manipulation methods by combining audio-

visual fusion with multi-scale Vision Transformers, which provide 

features at various resolutions [2]. By highlighting the need for 

more diverse and richer datasets and the use of transfer learning it 

tackles the persistent problem of the rapid advancement of 

DeepFake generation techniques, which outpace detection 

advances and accelerate the development of safe generalized 

models [3]. To enhance the ability to identify temporal and spatial 

disparities in DeepFake content, the dual attention network (DAN) 

for facial forgery detection in movies was introduced. The 

technique makes it easier to identify traits unique to forgeries in a 

variety of video clips [4]. By increasing feature reuse and CNN 

structure depth, the model aims to capture fine-grained face 

manipulation information, especially in high-resolution images. 

By emphasizing localized facial artifacts and improving feature 

reuse, it is possible to demonstrate increased accuracy and 

efficiency. The study highlights the significance of preprocessing 

methods that assist the model in focusing on the most pertinent 

facial regions, such as face cropping and alignment [5]. Models 

can now concentrate on perceptually important facial regions 

thanks to Cyborg, a technique that integrates human saliency maps 

into the training loss. The basic idea is that when evaluating a face's 

legitimacy, people frequently concentrate on particular facial 

features like the lips, eyes, and forehead. By integrating these 

saliency-based attention maps into the model's loss function, the 

detection network is encouraged to learn features from regions that 

are crucial for human perceptible and forgery recognition [6]. 

2. RELATED WORK

CNN hybrid models, which combine temporal and spatial 

data processing, are one type of deep learning architecture that 

has gained popularity due to recent advancements in 

DeepFake detection. Numerous studies have suggested 

innovative methods that use face landmarks frequency domain 

data and attention mechanisms to differentiate between real 

and fake faces. The growing complexity of generative models 

and the widespread dissemination of fake content on digital 

platforms have made deepfake detection a significant area of 

study. El-Gayar et al. [7] modeled facial landmarks as graph 

structures. Geometric flaws and subtle manipulation patterns 

that pixel-based models occasionally missed could be found 

using a graph neural network-based framework. Zhang et al. 

[8] reported that optimization techniques like Particle Swarm

Optimization (PSO) have also been used to improve temporal

consistency and model generalization under dynamic video

settings. Similar to the studies in the audio domain that used

the PartialSpoof dataset, focused on segment-level and frame-

level speech analysis to identify DeepFakes in artificial audio.

Waqas et al. [9] showed that adding GAN-generated 

synthetic images to training pipelines increased model 

resilience to unobserved manipulation strategies, improving 

robustness and generalization. A thorough analysis of 

DeepFake detection techniques for photos and videos was 

carried out by Malik et al. [10], who divided the techniques 

into feature-based, model-driven, and hybrid frameworks. In a 

similar vein, Rana et al. [11] offered a comprehensive 

assessment of the literature emphasizing the necessity of 

explainable AI, cross-modal fusion, and defined standards to 

enhance deployment reliability in the real world. 

Numerous investigations revealed serious issues with 

generalization and processing efficiency despite encouraging 

outcomes. According to Patel et al. [12], many high-accuracy 

models saw performance loss when subjected to real-time 

limitations, noise, and compression. Additionally, Alnaim et 

al. [13] showed that occlusions, such as face masks, 

significantly decreased the efficacy of traditional CNN-based 

detectors by concealing important facial features like the 

mouth and nose. 

Cunha et al. [14] suggested a temporal DeepFake detection 

system that integrated deep neural networks with PSO to 

enhance temporal consistency and generalization under 

dynamic video situations in order to combat video-based 

manipulation. Karaköse et al. [15] investigated DeepFake 

detection in medical photos in specialized domains and 

demonstrated that, despite the need for high reliability and 

resilience, CNN-based techniques were crucial for preserving 

diagnostic integrity. 

Attention has also been drawn to hybrid and adversarial 

methods. A GAN-based detection method was presented by 

Preeti et al. [16], and adversarial training enhanced the model's 

capacity to generalize to previously unseen forgeries on social 

media platforms. A systematic review by Abbas and Taeihagh 

[17] demonstrated that whereas temporal and multimodal

approaches increased robustness, they frequently resulted in

increased processing overhead and latency.

The effectiveness of transfer learning-based spatial models 

has kept them in widespread usage. In video-based DeepFake 

detection tasks, Suratkar and Kazi [18] showed that pre-trained 

CNNs performed competitively. Fine-grained face aberrations 

in modified photos were successfully caught by InceptionNet-

based architectures, as demonstrated by Theerthagiri and 

Nagaladinne [19]. In the field of audio forensics, Mcuba et al. 

[20] examined how deep learning models affected the

identification of DeepFake audio and identified issues with

recording variability and noise sensitivity.

Overall, earlier research showed a definite trade-off 

between generalization, computing cost, and accuracy. 

Temporal-based techniques captured motion irregularities at a 

greater computational cost, spatial-based techniques were 

effective but less reliable, and hybrid or multimodal systems 
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increased complexity while improving detection reliability. 

Inspired by these results, the current work suggests a 

lightweight hybrid CNN–LSTM framework that combines 

LSTM for temporal modeling, EfficientNet-B0 for efficient 

spatial feature extraction, and MTCNN for face localization to 

achieve high accuracy while retaining real-time viability. 

3. PROPOSED SYSTEM

The proposed DeepFake detection system, which can 

analyze inputs that are both images and videos, is presented in 

this section. Excellent detection accuracy and generalizability 

across a variety of manipulated information types are achieved 

by the suggested method, which employs a hybrid deep 

learning framework intended to detect false material in both 

images and videos. The CNN, MTCNN, LSTM, and 

EfficientNet networks are all combined. This work proposes a 

hybrid face forensics framework that combines CNN-based 

facial analysis with general-purpose photo forensics to 

improve manipulation detection across different DeepFake 

generating techniques. Accurate and real-time classification of 

manipulated data is made possible by the suggested DeepFake 

detection system, which uses a hybrid deep learning pipeline 

that combines temporal and spatial modeling. The design's 

scalable and effective modules can handle both image-based 

and video-based inputs, which makes it appropriate for use in 

practical situations like media verification and forensic 

investigation. Face detection, spatial feature extraction, 

temporal modeling, and classification are the four key 

components of the system's modular, multi-stage design, 

which is coordinated to maintain high detection accuracy 

(97.9%) with minimal computing affordability. 

Figure 1 illustrates how the system is set up as a multi-stage 

pipeline, with data collection and preparation arriving before 

feature extraction, classification, and real-time inference. 

Figure 1. Proposed system architecture 

Using the MTCNN, which detects faces reliably in a variety 

of scenarios, such as changing illumination, poses, and 

occlusions, the process starts with facial region localization. 

MTCNN provides precise bounding boxes and facial 

landmarks that enable accurate cropping of the face regions 

from pictures or video frames. Frames are extracted at a 

predetermined rate from visual inputs in order to preserve 

temporal coherence and offer consistent temporal sampling 

across sequences. Every recognized face is scaled and 

normalized to ensure consistency across the dataset and 

compatibility with the convolutional network downstream. 

These preprocessing procedures also involve pixel value 

normalization and standard scaling to get the data ready for 

feature extraction while preserving manipulation artifacts that 

can be important for detection. The EfficientNet-B0 

architecture, which was selected because it strikes the perfect 

balance between accuracy and efficiency, is used to process 

the cropped face regions after preprocessing. Using compound 

scaling to continuously modify network depth, width, and 

resolution, EfficientNet-B0 generates a compact yet 

expressive model that is perfect for resource constrained real- 

time inference scenarios. Convolutional layers frequently 

extract hierarchical spatial data from DeepFake material, 

capturing subtle manipulation indicators such as anomalies in 

texture, blurring of edges, or strange lighting patterns. To 

enhance the detection performance of video data, an LSTM 

network is fed the spatial information that is extracted from 

sequential frames. The LSTM component helps the system 

identify abnormalities in facial behavior, such as anomalous 

blinking, unpredictable changes in expression, or strange head 

motions, which are signs of changed video information. It does 

this by modeling temporal dependencies and motion dynamics 

across frames. Because of this sequential learning, the 

framework is able to distinguish between real and synthetic 

content even when individual frames appear visually realistic. 

Using the binary cross-entropy loss function, the entire 

network is trained end- to-end, and effective convergence is 

facilitated by the Adam optimizer. During training, several 

data augmentation techniques are used, including brightness 

modification, Gaussian noise addition, random cropping, and 

horizontal flipping, to enhance model generalization and lower 

the danger of overfitting. These additions mimic aberrations 

found in the actual world and improve the model's resistance 

to various modification methods and outside noise. The 

detection pipeline is included in a web-based user interface 

that accepts both image and video inputs to make the user's 

accessibility and practical application. To preserve modularity 

and scalability, the frontend interface is separated from the 

central backend detection mechanism. The entire system is 

optimized for implementation on general-purpose computing 

devices or edge platforms with constrained computational 

resources, and it offers real-time inference with low latency. 

The hyperparameters of the suggested hybrid model were 

empirically adjusted using grid search and validation-based 

optimization. Because they offered the optimum balance 

between model complexity and temporal representation, 128 

hidden units were selected for the LSTM layer. A 0.3 dropout 

rate was used to avoid overfitting without sacrificing 

performance. With a batch size of 32, binary cross-entropy 

loss, and a learning rate, the model was trained using the Adam 

optimizer. In order to prevent overfitting, early stopping was 

used based on validation accuracy. Because of its better 

efficiency-to-accuracy ratio, the EfficientNet-B0 backbone 

was chosen over its larger counterparts (B1–B7). Compared to 

heavier alternatives, its compound scaling technique 

minimizes parameters while maintaining accuracy, making it 

ideal for resource-constrained situations and real-time 

deployment. 

3.1 Algorithm 

To detect fake facial information in images and videos, the 

proposed DeepFake detection system combines face detection 

with deep learning-based categorization. For precise face 
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localization, it uses MTCNN. A refined EfficientNet-B0 

model is then used for preprocessing and classification. The 

workflow allows for automated annotation of predictions on 

the processed outputs and guarantees consistent detection 

across a variety of media formats. 

Algorithm 

Input: file_path, input_size, prediction_threshold. Output: 

Annotated images/videos. 

1. Load Required Libraries

2. Model Initialization & Pre-processing Setup

-Load the MTCNN for face detection.

-Load pre-trained Model.

-Define the input size.

3. File Acquisition

-If input is an image, read it from file.

-If input is a video, open video stream and

initialize a video writer for annotated output.

4. Frame Extraction & Processing Loop

-If input is an image → Process it as a single

frame.

-If input is a video → Process each frame

sequentially.

5. Face Detection

-Apply MTCNN to detect the face region in

the frame.

-For each detected face, extract the bounding

box & detected confidence.

6. Pre-processing & Feature Extraction

For each detected face,

-Crop the facial patch using bounding box.

-Resize the patch to the input size.

-Pre-process the image.

7. Classification & Confidence

-Pass the pre-processed face patch to the

trained model.

-Obtain the prediction probability (P).

-If P > prediction_threshold, label as ‘Real’

else ‘Fake’.

-Compute confidence score as either ‘P’ for

Fake else ‘1-P’.

8. Annotation

-Draw a bounding box around the detected

face.

-Annotate the box with the

prediction label & confidence

score.

9. Output Generation

-If input is an image → save annotated image

to output path.

-If input is a video → write annotated frame

to video writer until all frames are processed.

10. Post-processing (For video)

-Release the video capture.

-Close all windows.

4. METHODOLOGY

For reliable categorization of synthetic media, the suggested 

methodology offers an end-to-end DeepFake detection system 

that integrates temporal analysis, hybrid deep learning models, 

and image preprocessing. In order to distinguish between 

authentic and modified content, the detection system uses 

sophisticated feature extraction and classification techniques 

to process both pictures and video sequences. The system 

starts by acquiring datasets that include samples of both 

DeepFake and real videos. MTCNNs are utilized for facial 

recognition and cropping after these films have been 

preprocessed by being divided into frames. By concentrating 

just on the areas of the face that are most vulnerable to 

manipulation, this stage guarantees the elimination of 

extraneous background features. After the face-cropped 

frames are arranged, a processed dataset is created and split 

into training and testing sets. In order to ensure uniformity in 

input dimensions and format, a data loader module efficiently 

handles the entry of batch samples to the model during 

training. DeepFake Detection Model is a hybrid detection 

model comprising two elements, which are Feature Extraction 

and Video Classification. CNN- based architectures, such as 

ResNet or EfficientNet, are used to implement feature 

extraction, which takes advantage of the facial images to 

extract high-level spatial characteristics. The convolution 

operation is mathematically represented as: 

( ) Re ( * )cnnF f I LU W I b= = + (1) 

Eq. (1) uses CNN to analyze visual features in facial images 

or frames. This equation represents the core operation in each 

convolutional layer. This is essential for detecting tampering 

artifacts like pixel inconsistencies, blending edges, or color 

mismatches, and helps to learn the hierarchical features. 

For video inputs, sequential dependencies across frames are 

modeled using LSTM networks. The LSTM computes hidden 

states over time as: 

( )1 1, ,t t t th LSTM x h c− −= (2) 

Eq. (2) represents the functioning of an LSTM network, 

which is a type of Recurrent Neural Network (RNN) 

particularly effective for sequence modeling. It plays a critical 

role, especially when analyzing video data. Preprocessing and 

face detection using MTCNN, 

1 2 3. . .MTCNN cls bbox landmarkL L L L  = + + (3) 

Eq. (3) ensures consistent input across all videos and 

images. Facial regions are extracted using MTCNN. The total 

loss used for face localization is a blend of classification, 

bounding box regression, and landmark detection. Binary 

cross entropy (BCE) loss function, which is used in 

classification tasks like real and DeepFake, 

( ) ( ) ( )
1

1
ˆ ˆ.log 1 .log 1

N

BCE i i i i

i

L y y y y
N =

= − + − −   (4) 

Eq. (4) Sigmoid Activation is used in the final output layer 

to squeeze predictions between 0 and 1. Helps the model to 

discover the correct probability distribution over two classes 

(Real/Fake). Accuracy metrics and a confusion matrix are used 

to evaluate the classification performance of the trained model. 

The model is used for real-time detection after training and 

evaluation. Users provide preprocessed media samples, which 

the trained model uses to generate predictions and classify the 

input as either Real or Deepfake. Our technology ensures a 

scalable and precise detection pipeline to handle the evolving 

issues brought on by DeepFake content by integrating 
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geographical and temporal data. Images and video frames are 

categorized as Real or Fake using a deep learning-based binary 

classification technique. In order to eliminate facial regions 

from every picture or video frame, the MTCNN face detection 

algorithm is first used. These cropped face areas are then fed 

into a trained CNN-based classifier such as EfficientNet. 

LSTM could be used for temporal learning in videos. The 

possibility that the input face is authentic is indicated by the 

model's confidence score, which ranges from 0 to 1. The input 

is classified as Real if the projected confidence score is greater 

than 0.5 and as Fake otherwise, using a thresholding 

technique. This procedure is carried out frame-by-frame for 

video inputs, and the predictions are visualized by 

superimposing them on the video frames. Each recognized 

face is surrounded by a bounding box, and labels with the 

corresponding confidence percentages are shown on the 

frame. To ensure a guaranteed consistent classification output 

that can be used for analysis and reporting, this technique 

enables automatic, interpretable, and real-time labeling of both 

pictures and videos. 

5. EXPERIMENTAL AND RESULTS ANALYSIS

This section evaluates the DeepFake detection system's 

effectiveness, robustness, and generalizability. The 

performance is assessed using a variety of datasets, advanced 

metrics, and comparison with existing models. 

5.1 Datasets 

The study's dataset, which includes 2,500 images and 400 

videos, is in line with dataset scales frequently utilized in 

DeepFake detection literature. Similar numbers of altered 

samples per class are used in earlier studies like 

FaceForensics++ and Celeb-DF, proving that datasets of this 

size are adequate for training and assessing lightweight hybrid 

models. In order to provide sufficient variability between 

subjects, lighting settings, and manipulation methods, the 

collection contains balanced genuine and fake examples. 

A thorough dataset of both authentic and modified material 

was gathered and processed using a methodical workflow in 

order to efficiently train and assess the suggested DeepFake 

detection algorithm. Datasets were divided 80:10:10 for 

testing, validation, and training, accordingly. The DeepFake 

video data (in.mp4 format) was divided into distinct image 

frames using OpenCV. Several DeepFake generation 

approaches, including identity switching, expression 

reenactment, and GAN-based synthesis, are used in the 

modified samples in our dataset to guarantee reproducibility. 

The model's ability to generalize to both low-level and high- 

level facial alterations is evaluated thanks to this diversity. To 

ascertain whether the video labels were authentic or 

fraudulent, the metadata related to each film was extracted 

from a file. Every video had a frame rate of five frames per 

second. Area- based interpolation was used to resize the video 

frames in order to obtain the best downsampling. The 

extracted frames were saved as. png files in folders with 

distinct names for every movie. All video frames were 

recovered using a uniform temporal sampling technique to 

avoid temporal bias. A predetermined number of five frames 

per film was selected by splitting the entire video duration into 

equal intervals and sampling one frame from each segment. 

This ensures that the selected frames reflect different phases 

of facial movement and prevents the model from identifying 

patterns specific to any one segment of the video. When 

utilized for order-based cropping and facial identification, 

MTCNN guarantees consistency and concentrates on 

particular face regions. To find one or more faces, each frame 

was first converted from BGR to RGB before being run 

through MTCNN. All cropped faces were categorized as real 

or fake using the metadata labels. The dataset was balanced to 

maintain an equal percentage of real and fake samples in order 

to prevent model bias. A balanced, well-labeled, and superior 

dataset for model training and assessment was guaranteed by 

this configuration. 

5.2 Evaluation metrics 

Designing any machine learning or deep learning system 

starts with model training. Adding a large set of labeled images 

or frames to a neural network is obligatory to train it to 

recognize discriminative patterns that can distinguish altered 

data from authentic information in light of DeepFake 

detection. In this study, both real and DeepFake images and 

videos were included in the training dataset. The first step in 

the preparation process is frame extraction, which creates a 

collection of picture frames from each video using OpenCV. 

Depending on the frame rate of the video, a frame is extracted 

every second to maximize data relevance and storage. To 

ensure uniformity in proportions throughout the dataset, these 

extracted frames go through dynamic resizing, where each 

frame's width is changed in accordance with the original 

resolution. The MTCNN method, which precisely identifies 

facial regions, is then used to recognize faces. The bounding 

boxes surrounding each identified face are expanded to 

guarantee the preservation of every facial feature. To provide 

a more focused dataset of facial inputs for later model training, 

the trimmed faces are then saved as separate images in the 

pertinent face’s subfolder. For the DeepFake detection model 

to be effectively trained, data must be structured during the 

label assignment and dataset structuring phases. Following the 

extraction of the labels, ground truth annotations classifying 

each video as REAL or FAKE are applied. A down-sampling 

strategy is used to address any potential class imbalance that 

might result in biased model learning. This procedure ensures 

a balanced distribution of classes by randomly decreasing the 

number of fake face samples to match the number of real face 

samples. The dataset is separated into training, validation, and 

test subsets after it has been balanced and arranged in an 80- 

10-10 ratio. This demonstrates that 80% of the data is used for

training, 10% is used for validation to adjust the model’s

performance during training, and the final 10% is used for

testing and assessment. During training, real-time data

augmentation techniques are used to improve the model’s

generalization and resilience to various real-world events. By

simulating different facial characteristics and environmental

conditions, these augmentation techniques strengthen the

model’s resistance to noise and hidden patterns. The

augmentation pipeline uses rotation (± 10°) to simulate

different head orientations, width and height shifts to account

for off-centered faces, shearing to handle affine distortions,

zooming for different distances, horizontal flipping to prepare

the model for mirrored inputs, and rescaling pixel values to

[0,1] for improved convergence. Global Max Pooling is used

as a feature extractor in the proposed model, which comes after

EfficientNet-B0, which was trained on ImageNet. Between the

thick layers with ReLU activation, there is a Dropout layer
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with a rate of 0.5 to avoid overfitting. Binary classification is 

made possible by an additional Sigmoid-activated dense layer 

(Real/Fake). The Adam optimizer, which was chosen for its 

quicker convergence and adaptable learning capabilities, is 

used to optimize the model. Binary cross-entropy is the loss 

function, accuracy is the main evaluation metric, and the 

learning rate is set at 0.0001. This design guarantees resilience, 

generalization, and effective training. The model is trained 

using RGB face photos with a batch size of 32 for a maximum 

of 20 epochs. While ModelCheckpoint preserves the top 

performing model, EarlyStopping stops training if validation 

loss doesn't improve after five epochs in order to prevent 

overfitting. Accuracy and loss are tracked for every epoch for 

both training and validation sets after the training data is fed 

into ImageDataGenerator. Two essential performance plots, 

Training vs. Validation Accuracy and Training vs. Validation 

Loss, are utilized to depict training outcomes so as to evaluate 

the learning behavior of the suggested DeepFake detection 

model. These charts offer insightful information about the 

learning dynamics of the model over each epoch. 

The accuracy curve can be utilized to evaluate how well the 

model is learning to differentiate between authentic and 

fraudulent inputs. Good generalization is shown by an 

accuracy that increases continuously, and the training and 

validation curves' gaps are small. By highlighting underfitting, 

overfitting, and convergence patterns, these graphs assist make 

sure the model learns efficiently and generalizes well. 

Figure 2 shows the trends in training and validation 

accuracy for the suggested DeepFake detection model. 

Indicating that the model is successfully learning and fitting 

the training data, the training accuracy, which is displayed in 

yellow, gradually rises with each epoch until it reaches 

roughly 97%. Concurrently, the red-colored validation 

accuracy increases in tandem and reaches a peak of roughly 

93%, indicating that the model works effectively when used 

with unidentified data. 

Over 20 epochs, the training and validation loss trends are 

depicted in Figure 3. The model appears to be maintaining its 

generalization capacity and not overfitting, as indicated by the 

moderate and consistent difference between the training and 

validation losses. All things considered, the model has been 

trained effectively, striking a balance between learning from 

the training data and delivering consistent results on unseen 

validation data. These metrics help evaluate not only accuracy 

but also the reliability of the model in imbalanced or 

ambiguous cases.  

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
(5) 

Eq. (5) is utilized to decide the accuracy, which indicates 

correctness in overall classification, to guarantee that the 

performance review was thorough. With a 97.9% accuracy 

rate, the suggested model outperformed baseline models. 

The execution of the proposed DeepFake detection model 

on the test dataset is summed up in the confusion matrix shown 

in Figure 4. The program correctly identified four real 

occurrences as real and four phony instances as fake, 

according to the data. Minor misclassifications did occur, 

though: one fake occurrence was mistakenly forecasted as real 

(false negative), and one actual instance was mistakenly 

predicted as fake (false positive). This balanced distribution 

demonstrates the model's excellent ability to discriminate 

between authentic and fraudulent inputs, attaining high recall 

and precision. The matrix is an essential tool for assessing the 

efficacy of classification and offers information about areas 

where minor adjustments could increase accuracy even more. 

Figure 2. Training and validation accuracy plot 

Figure 3. Training and validation loss plot 

Figure 4. Confusion matrix visualization 

5.3 Comparative analysis 

A comparative analysis is a methodical process that 

compares and contrasts various approaches, models, or 

systems according to predetermined standards or performance 

indicators. A thorough comparison with current state-of-the-

art models was carried out to determine the efficacy and 
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inventiveness of the suggested DeepFake detection method. 

The study can successfully highlight the advantages, 

disadvantages, and improvements of the proposed strategy by 

examining a number of performance metrics, including 

accuracy, precision, recall, F1-score, AUC, and model 

complexity. Comparing several methods makes it simpler to 

illustrate the benefits or enhancements that the system offers, 

such as improved generalization, reduced model complexity, 

or increased accuracy. This comparison supports the selected 

technique and shows the resilience and efficacy of the 

developed system. The comparison may uncover areas where 

existing models underperform, suggesting future directions for 

improvement or research. In comparison, this research is 

integrating a hybrid model that combines CNN, EfficientNet, 

LSTM, and MTCNN. On both image and video datasets, it 

achieves a superior accuracy of 97.9%. The analysis 

emphasizes our system's improved performance, 

generalizability, and decreased complexity, highlighting its 

role in the development of reliable and scalable DeepFake 

detection solutions. Table 1 summarizes the key aspects of 

each study. 

The suggested hybrid MTCNN–EfficientNet-B0–LSTM 

framework performs better than XceptionNet, ResNet50, and 

CapsuleNet in both image and video classification accuracy 

when compared directly to cutting-edge DeepFake detection 

techniques Table 2. The model's advantage for real-time or 

resource-constrained contexts is highlighted by the fact that it 

delivers higher accuracy while using much fewer parameters 

and faster inference. 

Table 1. Various DeepFake method comparison 

Sl No. Paper Model Used Modality Accuracy (%) 

1. Alnaim et al. [13] Multiple CNNs on DFFMD Image 95.40 

2. Cunha et al. [14] PSO-improved Deep Neural Network Video 94.60 

3. Karaköse et al. [15] Medical DeepFake Detection DL Model Image 91.30 

4. Preeti et al. [16] GAN-based Detection Image + Video 89.80 

5. Theerthagiri and Nagaladinne [19] Deep InceptionNet Video 93.00 

6. Suratkar and Kazi [18] Autoencoder + CNN + LSTM(RNN) Video 85.84 

7. Mcuba et al. [20] Chromagram, Spectrogram + VGG-16 Audio 86.90 

8. Proposed System CNN + EfficientNet + LSTM + MTCNN Image + Video 97.9 

Table 2. Model comparison 

Model / Algorithm Accuracy (%) Precision (%) 
Recall 

(%) 
F1-Score (%) Reason 

ResNet50 91.3 90.8 91.0 90.9 Popular CNN, good accuracy, but heavier model 

XceptionNet 93.5 93.0 93.3 93.1 High accuracy, effective feature extraction 

CapsuleNet 89.7 88.9 89.4 89.1 Captures spatial relationships, moderate performance 

5.4 Results 

Based on the model's output confidence score, the proposed 

method uses a threshold-based decision strategy to improve 

the interpretability and dependability of the classification 

results. After the deep learning model has processed an input, 

which could be a face image or a sequence of video frames, a 

probabilistic score typically ranging from 0 to 1 indicates 

whether the input is authentic or fraudulent. Inputs are 

categorized as genuine or fraudulent using a binary threshold-

based decision logic. The deep learning model generates a 

confidence score for each input that indicates the possibility 

that the input is authentic. If the expected threshold value is 

higher than 0.5, the input is considered real. On the other hand, 

if the value is less than or equal to 0.5, the input is deemed 

fraudulent. This thresholding process ensures a clear and 

intelligible decision border and enables robust and dependable 

classification of both images and video frames. After 

processing an uploaded image or video frame, a trained deep 

learning pipeline is deployed on a backend server. For 

temporal analysis and feature extraction, the system uses a 

hybrid model that combines EfficientNet and LSTM after first 

detecting and cropping faces using MTCNN.  

Figure 5 shows the image-based prediction workflow from 

input to output in real-time, demonstrating the essential 

features of the DeepFake Detection web interface. integrating 

real-time prediction with image analysis and visualizing 

predictions with confidence scores. With a focus on useful 

usability and insightful decision feedback, it demonstrates the 

last phase of the DeepFake detection process. 

The proposed system's video-based detection module is 

shown in Figure 6. Users can upload video files (such as MP4 

files) using a file input field on the left panel. Once Submit is 

clicked, the video is sent to the backend and processed through 

a multi-phase DeepFake detection pipeline. The Input panel in 

the center displays a preview of the uploaded video. The 

system internally extracts frames on a regular basis, utilizes a 

face detection algorithm like MTCNN after that (every nth 

frame). The Output panel on the right displays the processed 

video frame with the detection results superimposed. The 

green masks on both faces most likely indicate that the model 

has identified them as Real or authentic based on the 

classification result in this instance. The system may be using 

OpenCV or similar libraries to rebuild the annotated video and 

generate masks or bounding boxes. The user is then presented 

with the combined annotated frames. From upload and face 

tracking to classification and output rendering, it shows that 

the system can manage whole video pipelines.  

Figure 7 shows how the proposed detection model processes 

a single frame taken from a DeepFake video. For precise face 

detection, the system initially uses MTCNN, making sure that 

only pertinent facial regions are sent on for additional 

examination. A CNN-LSTM-based detection pipeline is then 

fed the identified face. The bounding box draws attention to 

the recognized face, and the confidence score and the 

categorization label "Fake" or "Real" are superimposed. This 

graphic depicts how the system would be used in real-time or 

almost real-time situations. In dynamic, media-rich settings 
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where modified content can spread quickly, such as social 

media platforms, advertising networks, or digital journalism, 

this kind of functionality is essential. 

Figure 5. Image-based DeepFake detection interface 

Figure 6. Video classification results 

Figure 7. DeepFake detection output from video input 

Figure 8. Frame-level face classification result 

A video-based detection system's real-time output is shown 

in Figure 8, which also demonstrates the model's capacity to 

precisely identify and categorize several faces in a single video 

frame. Two people are shown in a frame that the system has 

processed; each is surrounded by a bounding box, indicating 

successful face detection. As evidence of the model's 

confidence in recognizing the faces as genuine, the 

categorization labels "Real" for the individual on the left and 

"Real" for the one on the right are displayed. Face localization 

starts the detection pipeline, which then moves on to cropping 

and preprocessing. After a softmax layer determines the final 

classification, OpenCV renders the results frame by frame 

before sending them back to the frontend. The system's ability 

to handle many facial regions at once and produce high- 

confidence predictions is seen in this figure, which also 

showcases the system's end-to-end detection process. 

6. DISCUSSION

The suggested DeepFake detection framework, which 

includes MTCNN for facial localization, EfficientNet-B0 for 

spatial feature extraction, and LSTM for temporal modeling, 

has demonstrated remarkable efficacy, achieving an accuracy 

on benchmark datasets. Due to the combination of temporal 

and spatial cues, the system is able to detect a wide range of 

modification artifacts in both images and videos. However, 

despite its effectiveness, there are still a number of 

technological limitations and practical application challenges. 

To further validate the performance reliability of the proposed 

model, statistical significance tests were performed over five 

different runs. With an average accuracy of 97.9% and a low 

standard deviation, the model showed consistent learning. A 

paired t-test comparing the model with baselines such as 

XceptionNet and CapsuleNet revealed p < 0.05, suggesting 

that the observed improvements are statistically significant 

rather than the result of random variability. Difficult visual 

conditions, such as low light levels, strange head postures or 

large facial occlusions from objects or accessories, may have 

a detrimental effect on the model's performance. An 

incomplete feature extraction could result from MTCNN's 

inability to provide precise bounding boxes and facial 

landmarks in such circumstances. Second, CNN-based feature 

extractors may struggle to identify manipulation artifacts 

because social media sites frequently employ downsampling 

noise or excessive video compression. The bias of the dataset 

is the third limitation. The model's capacity to generalize to 

unfamiliar domains may be hampered if a training dataset is 

biased toward particular demographics, lighting conditions, or 

modification techniques, which could result in integrity issues. 

Lastly, the LSTM module's contribution to the final 

classification decision is limited because although it is good at 

identifying motion irregularities in longer video sequences, it 

performs poorly in brief clips with few temporal cues. The 

small dataset size increases the risk of overfitting, even with 

the model's high accuracy. Training accuracy stabilizes later 

than validation accuracy in certain training patterns. Although 

this was mitigated by extensive data augmentation, 

regularization, and dropout, a more comprehensive cross-

dataset evaluation is required to fully validate generalization. 

Future studies will employ larger-scale datasets and cross- 

domain validation techniques to further reduce the possibility 

of overfitting. To boost robustness, the framework might 

incorporate Swin Transformers or Vision Transformers (ViTs) 

2002



for the extraction of spatial characteristics. This would 

enhance the capacity to describe global connections and long- 

range interdependence within an image. LSTMs have 

sequential bottlenecks. 3D CNNs or temporal attention 

mechanisms could be used instead to better capture spatio- 

temporal dynamics for temporal modeling. Adaptive 

thresholding based on prediction confidence may improve 

classification under uncertain conditions. To reduce dataset 

bias and improve generalization, domain adaptation and 

adversarial training strategies could be employed, ensuring 

resistance to covert manipulation methods and a variety of 

demographic distributions. Multimodal analysis, which 

combines visual cues and audio data, can also be used to detect 

lip-speech synchronization discrepancies, improving detection 

for videos where both modalities may be altered. 

7. CONCLUSIONS

This study offers a reliable and effective DeepFake 

detection system that reliably makes a distinction between real 

and DeepFake facial images and videos by utilizing CNNs. 

While real-time performance and an intuitive web interface 

facilitate practical implementation. The suggested system 

offers a theoretically solid, scalable, and interpretable 

DeepFake image detection method, making a significant 

contribution to the fields of digital content authentication and 

multimedia forensics. The proposed method combines the 

advantages of multiple deep learning architectures, CNN for 

spatial feature extraction, MTCNN for precise facial region 

localization, EfficientNet, and Long Short-Term networks for 

temporal sequence Memory modeling in videos. With this 

hybrid architecture, subtle manipulation artifacts from a 

variety of DeepFake generating approaches may be robustly 

detected. With a high detection accuracy of roughly 97.9%, the 

model keeps computational complexity low while performing 

noticeably better than conventional single architecture 

methods. Because the system is modular, it is easy to deploy 

and integrate into real-time applications, which makes it ideal 

for processes including digital forensics, social media 

monitoring, and media verification. This study significantly 

advances secure and trustworthy multimedia settings by 

offering a dependable and useful DeepFake detection method. 

The DeepFake detection system has certain drawbacks that 

restrict its use, even though it is reliable and efficient in 

controlled settings. The system's heavy reliance on the caliber 

and variety of the dataset is one of the primary problems. The 

pipelines' preprocessing stages, such as frame extraction, face 

detection with MTCNN, and deep learning model training 

with LSTM and EfficientNet, demand a significant amount of 

processing power. This restricts its use on low-resource 

devices and may have an impact on the performance of real- 

time detection. The model's reliance on face-swapping and 

facial duplication, DeepFakes for training, is another 

drawback. When exposed to other forms of counterfeit, like 

full-body DeepFakes audio manipulation or synthetic voice 

synthesis, it might not function properly. Inaccurate 

classifications may result from the LSTMs' temporal modeling 

failing to detect minute variations in short or still video. Lastly, 

there are issues with generalization across various video 

formats, compression settings, and new processing tools. The 

system might not be able to withstand the most recent sneaky 

DeepFake generation techniques employed by contemporary 

social media platforms in the absence of regular updates. 

Moreover, the model's reliance on facial-region data limits its 

capacity to identify manipulations, including non-facial cues 

or full-body movements. More lightweight architectures are 

required since the computational cost of frame extraction, 

MTCNN-based face localization, and LSTM-based temporal 

modeling restricts deployment on low-power or mobile 

devices. 

Future studies will expand the system to address further 

types of manipulations, such as reenactment-based forgeries, 

full- body DeepFakes, and audio-visual irregularities like lip-

sync incompatibilities. Generalization will be strengthened by 

testing the system on multimodal datasets and investigating 

transformer-based spatiotemporal topologies. Additionally, 

the pipeline's practical deployment across security, forensic, 

and media governance applications will be improved by 

optimizing it for low-resource devices and real-time streaming 

contexts. 
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