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DeepFake technology, which uses deep learning to create highly accurate fake images and
videos, is posing a growing threat to the integrity of digital media. Available detection
methods frequently struggle with real-time flexibility and lack robustness under a variety
of manipulations. In order to bridge this gap, this work proposes a hybrid multimodal
DeepFake detection system that makes use of a multi-task cascaded convolutional
network (MTCNN) for precise facial localization EfficientNet-B0 for efficient spatial
feature extraction, and long short-term memory (LSTM) networks for temporal anomalies
in videos. The suggested approach outperforms well-known baselines like XceptionNet
and CapsuleNet, achieving 97.9% accuracy and computing efficiency. These results
confirm that the system is resilient and scalable for real-world applications. All things
considered, this work offers a lightweight high-performance DeepFake detection pipeline
that maintains confidence in visual content and improves the reliability of digital

forensics.

1. INTRODUCTION

Recent developments in deep generative models,
particularly generative adversarial networks (GANSs), have
facilitated the creation of remarkably lifelike synthetic media
or DeepFakes. These edited films and images, which closely
resemble the appearance and behavior of real people, pose a
serious threat to digital authenticity, public trust, and
information integrity. In sensitive industries like politics, the
media, and cybersecurity, where spreading fake or
impersonated content can have serious social, legal, and
ethical repercussions, the risks are especially apparent. This
problem is exacerbated by the widespread use of DeepFake
generating technologies and the large volume of publicly
accessible multimedia content, especially that of public
figures. In particular, social media plays a significant role in
the rapid dissemination of this type of content. Despite the fact
that there are numerous DeepFake detection methods, the ones
that are currently in use frequently have serious drawbacks,
such as poor generalization to invisible manipulation
techniques, high computational complexity, and inadequate
performance in real-world scenarios like low-resolution
inputs, video compression, and occlusion. Additionally, a lot
of systems aren't able to function in real-time, which restricts
their application in real-world scenarios like surveillance or
live media analysis. Even though DeepFake detection has
made notable progress, current research still faces significant
obstacles with regard to real- time performance, computational
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economy, and generalization. Many convolutional neural
network (CNN)-based methods ignore the temporal
discrepancies seen in edited videos in favor of concentrating
only on spatial information. Despite their strength, transformer
and GAN-based models are frequently computationally
demanding and unsuitable for real-time implementation.
Furthermore, low-quality situations, including compression,
occlusion, and fluctuating illumination, are likely to cause
current approaches to deteriorate. These drawbacks highlight
the necessity for a powerful yet lightweight hybrid system that
can satisfactorily detect picture and video forgeries in real-
world settings. In order to tackle these problems offers a strong
and effective DeepFake detection system that integrates
temporal and spatial analysis. The suggested approach models
temporal inconsistencies across video frames using long short-
term memory (LSTM) networks, extracts high-resolution
spatial features using EfficientNet, and accurately localizes
faces using a multi-task cascaded convolutional network
(MTCNN). Furthermore, the integration of adversarial
training and attention mechanisms enhances generalization
and robustness across a variety of DeepFake generating
methods. After being trained on a sizable and a variety of
datasets, including both real and altered media, the system's
overall detection accuracy was about 97.9%. End users can do
real- time analysis and visualization on both image and video
inputs thanks to the framework's integration into a web-based
interface, which facilitates practical deployment. The main
goal of this work is to create a hybrid DeepFake detection


https://orcid.org/0009-0000-4860-0433
https://orcid.org/0000-0003-4186-9071
https://orcid.org/0000-0002-8853-2065
https://orcid.org/0000-0002-0312-4530
https://orcid.org/0000-0002-7647-7433
https://orcid.org/0000-0003-3864-9983
https://crossmark.crossref.org/dialog/?doi=https://doi.org/10.18280/ijsse.151002&domain=pdf

system that combines LSTM for temporal video analysis,
EfficientNet for compact and effective spatial feature
extraction, and MTCNN for precise face localization. This
work is motivated by the concept that detection accuracy and
generalization can be greatly enhanced while retaining real-time
performance by integrating spatial and temporal modeling inside a
lightweight architecture. In order to improve resilience against
various DeepFake creation strategies, the system also integrates
adversarial training and attention processes. This study highlights
the significance of responsible development, regulation, and
distribution of detection technologies while also addressing the
wider ethical implications of synthetic media, in addition to its
technological contributions.

They evaluate models including CNNs, RNNs, and transfer
learning frameworks, and divide detection techniques into image-
based, video-based, and hybrid approaches. Preprocessing
techniques that are necessary to improve detection performance,
such as face alignment and frame selection, are also included in the
review. draws attention to the main issues facing the area, such as
the absence of defined benchmarks, real-time performance limits,
and generalization across datasets. Their study emphasizes the
necessity of advanced, adaptable detection methods to deal with
temporal and spatial irregularities in synthetic media [1]. The
multi-modal, multi-scale transformer framework (M2TR) detects
differences in transformed information by using visual and aural
cues. The model enhances generalizability and resilience across
various DeepFake manipulation methods by combining audio-
visual fusion with multi-scale Vision Transformers, which provide
features at various resolutions [2]. By highlighting the need for
more diverse and richer datasets and the use of transfer learning it
tackles the persistent problem of the rapid advancement of
DeepFake generation techniques, which outpace detection
advances and accelerate the development of safe generalized
models [3]. To enhance the ability to identify temporal and spatial
disparities in DeepFake content, the dual attention network (DAN)
for facial forgery detection in movies was introduced. The
technique makes it easier to identify traits unique to forgeries in a
variety of video clips [4]. By increasing feature reuse and CNN
structure depth, the model aims to capture fine-grained face
manipulation information, especially in high-resolution images.
By emphasizing localized facial artifacts and improving feature
reuse, it is possible to demonstrate increased accuracy and
efficiency. The study highlights the significance of preprocessing
methods that assist the model in focusing on the most pertinent
facial regions, such as face cropping and alignment [5]. Models
can now concentrate on perceptually important facial regions
thanks to Cyborg, a technique that integrates human saliency maps
into the training loss. The basic idea is that when evaluating a face's
legitimacy, people frequently concentrate on particular facial
features like the lips, eyes, and forehead. By integrating these
saliency-based attention maps into the model's loss function, the
detection network is encouraged to learn features from regions that
are crucial for human perceptible and forgery recognition [6].

2. RELATED WORK

CNN hybrid models, which combine temporal and spatial
data processing, are one type of deep learning architecture that
has gained popularity due to recent advancements in
DeepFake detection. Numerous studies have suggested
innovative methods that use face landmarks frequency domain
data and attention mechanisms to differentiate between real
and fake faces. The growing complexity of generative models
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and the widespread dissemination of fake content on digital
platforms have made deepfake detection a significant area of
study. El-Gayar et al. [7] modeled facial landmarks as graph
structures. Geometric flaws and subtle manipulation patterns
that pixel-based models occasionally missed could be found
using a graph neural network-based framework. Zhang et al.
[8] reported that optimization techniques like Particle Swarm
Optimization (PSO) have also been used to improve temporal
consistency and model generalization under dynamic video
settings. Similar to the studies in the audio domain that used
the PartialSpoof dataset, focused on segment-level and frame-
level speech analysis to identify DeepFakes in artificial audio.

Wagas et al. [9] showed that adding GAN-generated
synthetic images to training pipelines increased model
resilience to unobserved manipulation strategies, improving
robustness and generalization. A thorough analysis of
DeepFake detection techniques for photos and videos was
carried out by Malik et al. [10], who divided the techniques
into feature-based, model-driven, and hybrid frameworks. In a
similar vein, Rana et al. [11] offered a comprehensive
assessment of the literature emphasizing the necessity of
explainable Al, cross-modal fusion, and defined standards to
enhance deployment reliability in the real world.

Numerous investigations revealed serious issues with
generalization and processing efficiency despite encouraging
outcomes. According to Patel et al. [12], many high-accuracy
models saw performance loss when subjected to real-time
limitations, noise, and compression. Additionally, Alnaim et
al. [13] showed that occlusions, such as face masks,
significantly decreased the efficacy of traditional CNN-based
detectors by concealing important facial features like the
mouth and nose.

Cunha et al. [14] suggested a temporal DeepFake detection
system that integrated deep neural networks with PSO to
enhance temporal consistency and generalization under
dynamic video situations in order to combat video-based
manipulation. Karak&e et al. [15] investigated DeepFake
detection in medical photos in specialized domains and
demonstrated that, despite the need for high reliability and
resilience, CNN-based techniques were crucial for preserving
diagnostic integrity.

Attention has also been drawn to hybrid and adversarial
methods. A GAN-based detection method was presented by
Preeti et al. [16], and adversarial training enhanced the model's
capacity to generalize to previously unseen forgeries on social
media platforms. A systematic review by Abbas and Taeihagh
[17] demonstrated that whereas temporal and multimodal
approaches increased robustness, they frequently resulted in
increased processing overhead and latency.

The effectiveness of transfer learning-based spatial models
has kept them in widespread usage. In video-based DeepFake
detection tasks, Suratkar and Kazi [18] showed that pre-trained
CNNs performed competitively. Fine-grained face aberrations
in modified photos were successfully caught by InceptionNet-
based architectures, as demonstrated by Theerthagiri and
Nagaladinne [19]. In the field of audio forensics, Mcuba et al.
[20] examined how deep learning models affected the
identification of DeepFake audio and identified issues with
recording variability and noise sensitivity.

Overall, earlier research showed a definite trade-off
between generalization, computing cost, and accuracy.
Temporal-based techniques captured motion irregularities at a
greater computational cost, spatial-based techniques were
effective but less reliable, and hybrid or multimodal systems



increased complexity while improving detection reliability.
Inspired by these results, the current work suggests a
lightweight hybrid CNN-LSTM framework that combines
LSTM for temporal modeling, EfficientNet-BO for efficient
spatial feature extraction, and MTCNN for face localization to
achieve high accuracy while retaining real-time viability.

3. PROPOSED SYSTEM

The proposed DeepFake detection system, which can
analyze inputs that are both images and videos, is presented in
this section. Excellent detection accuracy and generalizability
across a variety of manipulated information types are achieved
by the suggested method, which employs a hybrid deep
learning framework intended to detect false material in both
images and videos. The CNN, MTCNN, LSTM, and
EfficientNet networks are all combined. This work proposes a
hybrid face forensics framework that combines CNN-based
facial analysis with general-purpose photo forensics to
improve manipulation detection across different DeepFake
generating techniques. Accurate and real-time classification of
manipulated data is made possible by the suggested DeepFake
detection system, which uses a hybrid deep learning pipeline
that combines temporal and spatial modeling. The design's
scalable and effective modules can handle both image-based
and video-based inputs, which makes it appropriate for use in
practical situations like media verification and forensic
investigation. Face detection, spatial feature extraction,
temporal modeling, and classification are the four key
components of the system's modular, multi-stage design,
which is coordinated to maintain high detection accuracy
(97.9%) with minimal computing affordability.

Figure 1 illustrates how the system is set up as a multi-stage
pipeline, with data collection and preparation arriving before
feature extraction, classification, and real-time inference.
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Figure 1. Proposed system architecture

Using the MTCNN, which detects faces reliably in a variety
of scenarios, such as changing illumination, poses, and
occlusions, the process starts with facial region localization.
MTCNN provides precise bounding boxes and facial
landmarks that enable accurate cropping of the face regions
from pictures or video frames. Frames are extracted at a
predetermined rate from visual inputs in order to preserve
temporal coherence and offer consistent temporal sampling
across sequences. Every recognized face is scaled and
normalized to ensure consistency across the dataset and
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compatibility with the convolutional network downstream.
These preprocessing procedures also involve pixel value
normalization and standard scaling to get the data ready for
feature extraction while preserving manipulation artifacts that
can be important for detection. The EfficientNet-B0
architecture, which was selected because it strikes the perfect
balance between accuracy and efficiency, is used to process
the cropped face regions after preprocessing. Using compound
scaling to continuously modify network depth, width, and
resolution, EfficientNet-BO generates a compact yet
expressive model that is perfect for resource constrained real-
time inference scenarios. Convolutional layers frequently
extract hierarchical spatial data from DeepFake material,
capturing subtle manipulation indicators such as anomalies in
texture, blurring of edges, or strange lighting patterns. To
enhance the detection performance of video data, an LSTM
network is fed the spatial information that is extracted from
sequential frames. The LSTM component helps the system
identify abnormalities in facial behavior, such as anomalous
blinking, unpredictable changes in expression, or strange head
motions, which are signs of changed video information. It does
this by modeling temporal dependencies and motion dynamics
across frames. Because of this sequential learning, the
framework is able to distinguish between real and synthetic
content even when individual frames appear visually realistic.
Using the binary cross-entropy loss function, the entire
network is trained end- to-end, and effective convergence is
facilitated by the Adam optimizer. During training, several
data augmentation techniques are used, including brightness
modification, Gaussian noise addition, random cropping, and
horizontal flipping, to enhance model generalization and lower
the danger of overfitting. These additions mimic aberrations
found in the actual world and improve the model's resistance
to various modification methods and outside noise. The
detection pipeline is included in a web-based user interface
that accepts both image and video inputs to make the user's
accessibility and practical application. To preserve modularity
and scalability, the frontend interface is separated from the
central backend detection mechanism. The entire system is
optimized for implementation on general-purpose computing
devices or edge platforms with constrained computational
resources, and it offers real-time inference with low latency.
The hyperparameters of the suggested hybrid model were
empirically adjusted using grid search and validation-based
optimization. Because they offered the optimum balance
between model complexity and temporal representation, 128
hidden units were selected for the LSTM layer. A 0.3 dropout
rate was used to avoid overfitting without sacrificing
performance. With a batch size of 32, binary cross-entropy
loss, and a learning rate, the model was trained using the Adam
optimizer. In order to prevent overfitting, early stopping was
used based on validation accuracy. Because of its better
efficiency-to-accuracy ratio, the EfficientNet-BO backbone
was chosen over its larger counterparts (B1-B7). Compared to
heavier alternatives, its compound scaling technique
minimizes parameters while maintaining accuracy, making it
ideal for resource-constrained situations and real-time
deployment.

3.1 Algorithm
To detect fake facial information in images and videos, the

proposed DeepFake detection system combines face detection
with deep learning-based categorization. For precise face



localization, it uses MTCNN. A refined EfficientNet-BO
model is then used for preprocessing and classification. The
workflow allows for automated annotation of predictions on
the processed outputs and guarantees consistent detection
across a variety of media formats.

Algorithm
Input: file path, input size, prediction_threshold. Output:
Annotated images/videos.

1. Load Required Libraries

2. Model Initialization & Pre-processing Setup
-Load the MTCNN for face detection.
-Load pre-trained Model.
-Define the input size.
File Acquisition
-If input is an image, read it from file.
-If input is a video, open video stream and
initialize a video writer for annotated output.
Frame Extraction & Processing Loop
-If input is an image > Process it as a single
frame.
-If input is a video = Process each frame
sequentially.
Face Detection
-Apply MTCNN to detect the face region in
the frame.
-For each detected face, extract the bounding
box & detected confidence.
Pre-processing & Feature Extraction
For each detected face,
-Crop the facial patch using bounding box.
-Resize the patch to the input size.
-Pre-process the image.
Classification & Confidence
-Pass the pre-processed face patch to the
trained model.
-Obtain the prediction probability (P).
-If P > prediction_threshold, label as ‘Real’
else ‘Fake’.
-Compute confidence score as either ‘P’ for
Fake else ‘1-P’.
Annotation
-Draw a bounding box around the detected
face.
-Annotate
prediction
score.
Output Generation
-If input is an image - save annotated image
to output path.
-If input is a video = write annotated frame
to video writer until all frames are processed.
Post-processing (For video)
-Release the video capture.
-Close all windows.

the
label

box with the
& confidence

10.

4. METHODOLOGY

For reliable categorization of synthetic media, the suggested
methodology offers an end-to-end DeepFake detection system
that integrates temporal analysis, hybrid deep learning models,
and image preprocessing. In order to distinguish between
authentic and modified content, the detection system uses
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sophisticated feature extraction and classification techniques
to process both pictures and video sequences. The system
starts by acquiring datasets that include samples of both
DeepFake and real videos. MTCNNSs are utilized for facial
recognition and cropping after these films have been
preprocessed by being divided into frames. By concentrating
just on the areas of the face that are most vulnerable to
manipulation, this stage guarantees the elimination of
extraneous background features. After the face-cropped
frames are arranged, a processed dataset is created and split
into training and testing sets. In order to ensure uniformity in
input dimensions and format, a data loader module efficiently
handles the entry of batch samples to the model during
training. DeepFake Detection Model is a hybrid detection
model comprising two elements, which are Feature Extraction
and Video Classification. CNN- based architectures, such as
ResNet or EfficientNet, are used to implement feature
extraction, which takes advantage of the facial images to
extract high-level spatial characteristics. The convolution
operation is mathematically represented as:

F=f

cnn

(I)=ReLUW*I +b) @)

Eq. (1) uses CNN to analyze visual features in facial images
or frames. This equation represents the core operation in each
convolutional layer. This is essential for detecting tampering
artifacts like pixel inconsistencies, blending edges, or color
mismatches, and helps to learn the hierarchical features.

For video inputs, sequential dependencies across frames are
modeled using LSTM networks. The LSTM computes hidden
states over time as:

h =LSTM (%, hy,Ca) )

Eq. (2) represents the functioning of an LSTM network,
which is a type of Recurrent Neural Network (RNN)
particularly effective for sequence modeling. It plays a critical
role, especially when analyzing video data. Preprocessing and
face detection using MTCNN,

I‘MTCNN = Al'LcIs +ﬂ’2'|‘bbox +ZG'L|andmark (3)

Eq. (3) ensures consistent input across all videos and
images. Facial regions are extracted using MTCNN. The total
loss used for face localization is a blend of classification,
bounding box regression, and landmark detection. Binary
cross entropy (BCE) loss function, which is used in
classification tasks like real and DeepFake,

LBCE z_%iz’\‘l:[yi'log(yi)+(1_yi)'|og(1_ yi ):' “4)

Eq. (4) Sigmoid Activation is used in the final output layer
to squeeze predictions between 0 and 1. Helps the model to
discover the correct probability distribution over two classes
(Real/Fake). Accuracy metrics and a confusion matrix are used
to evaluate the classification performance of the trained model.
The model is used for real-time detection after training and
evaluation. Users provide preprocessed media samples, which
the trained model uses to generate predictions and classify the
input as either Real or Deepfake. Our technology ensures a
scalable and precise detection pipeline to handle the evolving
issues brought on by DeepFake content by integrating



geographical and temporal data. Images and video frames are
categorized as Real or Fake using a deep learning-based binary
classification technique. In order to eliminate facial regions
from every picture or video frame, the MTCNN face detection
algorithm is first used. These cropped face areas are then fed
into a trained CNN-based classifier such as EfficientNet.
LSTM could be used for temporal learning in videos. The
possibility that the input face is authentic is indicated by the
model's confidence score, which ranges from 0 to 1. The input
is classified as Real if the projected confidence score is greater
than 0.5 and as Fake otherwise, using a thresholding
technique. This procedure is carried out frame-by-frame for
video inputs, and the predictions are visualized by
superimposing them on the video frames. Each recognized
face is surrounded by a bounding box, and labels with the
corresponding confidence percentages are shown on the
frame. To ensure a guaranteed consistent classification output
that can be used for analysis and reporting, this technique
enables automatic, interpretable, and real-time labeling of both
pictures and videos.

5. EXPERIMENTAL AND RESULTS ANALYSIS

This section evaluates the DeepFake detection system's
effectiveness, robustness, and generalizability. The
performance is assessed using a variety of datasets, advanced
metrics, and comparison with existing models.

5.1 Datasets

The study's dataset, which includes 2,500 images and 400
videos, is in line with dataset scales frequently utilized in
DeepFake detection literature. Similar numbers of altered
samples per class are used in earlier studies like
FaceForensics++ and Celeb-DF, proving that datasets of this
size are adequate for training and assessing lightweight hybrid
models. In order to provide sufficient variability between
subjects, lighting settings, and manipulation methods, the
collection contains balanced genuine and fake examples.

A thorough dataset of both authentic and modified material
was gathered and processed using a methodical workflow in
order to efficiently train and assess the suggested DeepFake
detection algorithm. Datasets were divided 80:10:10 for
testing, validation, and training, accordingly. The DeepFake
video data (in.mp4 format) was divided into distinct image
frames using OpenCV. Several DeepFake generation
approaches, including identity switching, expression
reenactment, and GAN-based synthesis, are used in the
modified samples in our dataset to guarantee reproducibility.
The model's ability to generalize to both low-level and high-
level facial alterations is evaluated thanks to this diversity. To
ascertain whether the video labels were authentic or
fraudulent, the metadata related to each film was extracted
from a file. Every video had a frame rate of five frames per
second. Area- based interpolation was used to resize the video
frames in order to obtain the best downsampling. The
extracted frames were saved as. png files in folders with
distinct names for every movie. All video frames were
recovered using a uniform temporal sampling technique to
avoid temporal bias. A predetermined number of five frames
per film was selected by splitting the entire video duration into
equal intervals and sampling one frame from each segment.
This ensures that the selected frames reflect different phases
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of facial movement and prevents the model from identifying
patterns specific to any one segment of the video. When
utilized for order-based cropping and facial identification,
MTCNN guarantees consistency and concentrates on
particular face regions. To find one or more faces, each frame
was first converted from BGR to RGB before being run
through MTCNN. All cropped faces were categorized as real
or fake using the metadata labels. The dataset was balanced to
maintain an equal percentage of real and fake samples in order
to prevent model bias. A balanced, well-labeled, and superior
dataset for model training and assessment was guaranteed by
this configuration.

5.2 Evaluation metrics

Designing any machine learning or deep learning system
starts with model training. Adding a large set of labeled images
or frames to a neural network is obligatory to train it to
recognize discriminative patterns that can distinguish altered
data from authentic information in light of DeepFake
detection. In this study, both real and DeepFake images and
videos were included in the training dataset. The first step in
the preparation process is frame extraction, which creates a
collection of picture frames from each video using OpenCV.
Depending on the frame rate of the video, a frame is extracted
every second to maximize data relevance and storage. To
ensure uniformity in proportions throughout the dataset, these
extracted frames go through dynamic resizing, where each
frame's width is changed in accordance with the original
resolution. The MTCNN method, which precisely identifies
facial regions, is then used to recognize faces. The bounding
boxes surrounding each identified face are expanded to
guarantee the preservation of every facial feature. To provide
a more focused dataset of facial inputs for later model training,
the trimmed faces are then saved as separate images in the
pertinent face’s subfolder. For the DeepFake detection model
to be effectively trained, data must be structured during the
label assignment and dataset structuring phases. Following the
extraction of the labels, ground truth annotations classifying
each video as REAL or FAKE are applied. A down-sampling
strategy is used to address any potential class imbalance that
might result in biased model learning. This procedure ensures
a balanced distribution of classes by randomly decreasing the
number of fake face samples to match the number of real face
samples. The dataset is separated into training, validation, and
test subsets after it has been balanced and arranged in an 80-
10-10 ratio. This demonstrates that 80% of the data is used for
training, 10% is used for validation to adjust the model’s
performance during training, and the final 10% is used for
testing and assessment. During training, real-time data
augmentation techniques are used to improve the model’s
generalization and resilience to various real-world events. By
simulating different facial characteristics and environmental
conditions, these augmentation techniques strengthen the
model’s resistance to noise and hidden patterns. The
augmentation pipeline uses rotation (+ 10°) to simulate
different head orientations, width and height shifts to account
for off-centered faces, shearing to handle affine distortions,
zooming for different distances, horizontal flipping to prepare
the model for mirrored inputs, and rescaling pixel values to
[0,1] for improved convergence. Global Max Pooling is used
as a feature extractor in the proposed model, which comes after
EfficientNet-B0, which was trained on ImageNet. Between the
thick layers with ReLLU activation, there is a Dropout layer



with a rate of 0.5 to avoid overfitting. Binary classification is
made possible by an additional Sigmoid-activated dense layer
(Real/Fake). The Adam optimizer, which was chosen for its
quicker convergence and adaptable learning capabilities, is
used to optimize the model. Binary cross-entropy is the loss
function, accuracy is the main evaluation metric, and the
learning rate is set at 0.0001. This design guarantees resilience,
generalization, and effective training. The model is trained
using RGB face photos with a batch size of 32 for a maximum
of 20 epochs. While ModelCheckpoint preserves the top
performing model, EarlyStopping stops training if validation
loss doesn't improve after five epochs in order to prevent
overfitting. Accuracy and loss are tracked for every epoch for
both training and validation sets after the training data is fed
into ImageDataGenerator. Two essential performance plots,
Training vs. Validation Accuracy and Training vs. Validation
Loss, are utilized to depict training outcomes so as to evaluate
the learning behavior of the suggested DeepFake detection
model. These charts offer insightful information about the
learning dynamics of the model over each epoch.

The accuracy curve can be utilized to evaluate how well the
model is learning to differentiate between authentic and
fraudulent inputs. Good generalization is shown by an
accuracy that increases continuously, and the training and
validation curves' gaps are small. By highlighting underfitting,
overfitting, and convergence patterns, these graphs assist make
sure the model learns efficiently and generalizes well.

Figure 2 shows the trends in training and validation
accuracy for the suggested DeepFake detection model.
Indicating that the model is successfully learning and fitting
the training data, the training accuracy, which is displayed in
yellow, gradually rises with each epoch until it reaches
roughly 97%. Concurrently, the red-colored validation
accuracy increases in tandem and reaches a peak of roughly
93%, indicating that the model works effectively when used
with unidentified data.

Over 20 epochs, the training and validation loss trends are
depicted in Figure 3. The model appears to be maintaining its
generalization capacity and not overfitting, as indicated by the
moderate and consistent difference between the training and
validation losses. All things considered, the model has been
trained effectively, striking a balance between learning from
the training data and delivering consistent results on unseen
validation data. These metrics help evaluate not only accuracy
but also the reliability of the model in imbalanced or
ambiguous cases.

TP+TN

Accuracy =
TP+TN +FP+FN

©)

Eq. (5) is utilized to decide the accuracy, which indicates
correctness in overall classification, to guarantee that the
performance review was thorough. With a 97.9% accuracy
rate, the suggested model outperformed baseline models.

The execution of the proposed DeepFake detection model
on the test dataset is summed up in the confusion matrix shown
in Figure 4. The program correctly identified four real
occurrences as real and four phony instances as fake,
according to the data. Minor misclassifications did occur,
though: one fake occurrence was mistakenly forecasted as real
(false negative), and one actual instance was mistakenly
predicted as fake (false positive). This balanced distribution
demonstrates the model's excellent ability to discriminate
between authentic and fraudulent inputs, attaining high recall
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and precision. The matrix is an essential tool for assessing the
efficacy of classification and offers information about areas
where minor adjustments could increase accuracy even more.
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Figure 2. Training and validation accuracy plot
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Figure 3. Training and validation loss plot
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Figure 4. Confusion matrix visualization
5.3 Comparative analysis

A comparative analysis is a methodical process that
compares and contrasts various approaches, models, or
systems according to predetermined standards or performance
indicators. A thorough comparison with current state-of-the-
art models was carried out to determine the efficacy and



inventiveness of the suggested DeepFake detection method.
The study can successfully highlight the advantages,
disadvantages, and improvements of the proposed strategy by
examining a number of performance metrics, including
accuracy, precision, recall, Fl-score, AUC, and model
complexity. Comparing several methods makes it simpler to
illustrate the benefits or enhancements that the system offers,
such as improved generalization, reduced model complexity,
or increased accuracy. This comparison supports the selected
technique and shows the resilience and efficacy of the
developed system. The comparison may uncover areas where
existing models underperform, suggesting future directions for
improvement or research. In comparison, this research is
integrating a hybrid model that combines CNN, EfficientNet,
LSTM, and MTCNN. On both image and video datasets, it

achieves a superior accuracy of 97.9%. The analysis
emphasizes our system's improved performance,
generalizability, and decreased complexity, highlighting its
role in the development of reliable and scalable DeepFake
detection solutions. Table 1 summarizes the key aspects of
each study.

The suggested hybrid MTCNN-EfficientNet-BO—LSTM
framework performs better than XceptionNet, ResNet50, and
CapsuleNet in both image and video classification accuracy
when compared directly to cutting-edge DeepFake detection
techniques Table 2. The model's advantage for real-time or
resource-constrained contexts is highlighted by the fact that it
delivers higher accuracy while using much fewer parameters
and faster inference.

Table 1. Various DeepFake method comparison

S| No. Paper Model Used Modality Accuracy (%)

1. Alnaim et al. [13] Multiple CNNs on DFFMD Image 95.40

2. Cunha et al. [14] PSO-improved Deep Neural Network Video 94.60

3. Karak&se et al. [15] Medical DeepFake Detection DL Model Image 91.30

4, Preeti et al. [16] GAN-based Detection Image + Video 89.80

5. Theerthagiri and Nagaladinne [19] Deep InceptionNet Video 93.00

6. Suratkar and Kazi [18] Autoencoder + CNN + LSTM(RNN) Video 85.84

7. Mcuba et al. [20] Chromagram, Spectrogram + VGG-16 Audio 86.90

8. Proposed System CNN + EfficientNet + LSTM + MTCNN  Image + Video 97.9

Table 2. Model comparison
. .. Recall
Model / Algorithm Accuracy (%) Precision (%) (%) F1-Score (%) Reason
0
ResNet50 91.3 90.8 91.0 90.9 Popular CNN, good accuracy, but heavier model
XceptionNet 935 93.0 93.3 93.1 High accuracy, effective feature extraction
CapsuleNet 89.7 88.9 89.4 89.1 Captures spatial relationships, moderate performance
5.4 Results last phase of the DeepFake detection process.

Based on the model's output confidence score, the proposed
method uses a threshold-based decision strategy to improve
the interpretability and dependability of the classification
results. After the deep learning model has processed an input,
which could be a face image or a sequence of video frames, a
probabilistic score typically ranging from 0 to 1 indicates
whether the input is authentic or fraudulent. Inputs are
categorized as genuine or fraudulent using a binary threshold-
based decision logic. The deep learning model generates a
confidence score for each input that indicates the possibility
that the input is authentic. If the expected threshold value is
higher than 0.5, the input is considered real. On the other hand,
if the value is less than or equal to 0.5, the input is deemed
fraudulent. This thresholding process ensures a clear and
intelligible decision border and enables robust and dependable
classification of both images and video frames. After
processing an uploaded image or video frame, a trained deep
learning pipeline is deployed on a backend server. For
temporal analysis and feature extraction, the system uses a
hybrid model that combines EfficientNet and LSTM after first
detecting and cropping faces using MTCNN.

Figure 5 shows the image-based prediction workflow from
input to output in real-time, demonstrating the essential
features of the DeepFake Detection web interface. integrating
real-time prediction with image analysis and visualizing
predictions with confidence scores. With a focus on useful
usability and insightful decision feedback, it demonstrates the
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The proposed system's video-based detection module is
shown in Figure 6. Users can upload video files (such as MP4
files) using a file input field on the left panel. Once Submit is
clicked, the video is sent to the backend and processed through
a multi-phase DeepFake detection pipeline. The Input panel in
the center displays a preview of the uploaded video. The
system internally extracts frames on a regular basis, utilizes a
face detection algorithm like MTCNN after that (every nth
frame). The Output panel on the right displays the processed
video frame with the detection results superimposed. The
green masks on both faces most likely indicate that the model
has identified them as Real or authentic based on the
classification result in this instance. The system may be using
OpenCV or similar libraries to rebuild the annotated video and
generate masks or bounding boxes. The user is then presented
with the combined annotated frames. From upload and face
tracking to classification and output rendering, it shows that
the system can manage whole video pipelines.

Figure 7 shows how the proposed detection model processes
a single frame taken from a DeepFake video. For precise face
detection, the system initially uses MTCNN, making sure that
only pertinent facial regions are sent on for additional
examination. A CNN-LSTM-based detection pipeline is then
fed the identified face. The bounding box draws attention to
the recognized face, and the confidence score and the
categorization label "Fake" or "Real" are superimposed. This
graphic depicts how the system would be used in real-time or
almost real-time situations. In dynamic, media-rich settings



where modified content can spread quickly, such as social
media platforms, advertising networks, or digital journalism,
this kind of functionality is essential.
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Figure 6. Video classification results

Figure 7. DeepFake detection output from video input

Figure 8. Frame-level face classification result
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A video-based detection system's real-time output is shown
in Figure 8, which also demonstrates the model's capacity to
precisely identify and categorize several faces in a single video
frame. Two people are shown in a frame that the system has
processed; each is surrounded by a bounding box, indicating
successful face detection. As evidence of the model's
confidence in recognizing the faces as genuine, the
categorization labels "Real" for the individual on the left and
"Real" for the one on the right are displayed. Face localization
starts the detection pipeline, which then moves on to cropping
and preprocessing. After a softmax layer determines the final
classification, OpenCV renders the results frame by frame
before sending them back to the frontend. The system's ability
to handle many facial regions at once and produce high-
confidence predictions is seen in this figure, which also
showcases the system's end-to-end detection process.

6. DISCUSSION

The suggested DeepFake detection framework, which
includes MTCNN for facial localization, EfficientNet-BO for
spatial feature extraction, and LSTM for temporal modeling,
has demonstrated remarkable efficacy, achieving an accuracy
on benchmark datasets. Due to the combination of temporal
and spatial cues, the system is able to detect a wide range of
modification artifacts in both images and videos. However,
despite its effectiveness, there are still a number of
technological limitations and practical application challenges.
To further validate the performance reliability of the proposed
model, statistical significance tests were performed over five
different runs. With an average accuracy of 97.9% and a low
standard deviation, the model showed consistent learning. A
paired t-test comparing the model with baselines such as
XceptionNet and CapsuleNet revealed p < 0.05, suggesting
that the observed improvements are statistically significant
rather than the result of random variability. Difficult visual
conditions, such as low light levels, strange head postures or
large facial occlusions from objects or accessories, may have
a detrimental effect on the model's performance. An
incomplete feature extraction could result from MTCNN's
inability to provide precise bounding boxes and facial
landmarks in such circumstances. Second, CNN-based feature
extractors may struggle to identify manipulation artifacts
because social media sites frequently employ downsampling
noise or excessive video compression. The bias of the dataset
is the third limitation. The model's capacity to generalize to
unfamiliar domains may be hampered if a training dataset is
biased toward particular demographics, lighting conditions, or
modification techniques, which could result in integrity issues.
Lastly, the LSTM module's contribution to the final
classification decision is limited because although it is good at
identifying motion irregularities in longer video sequences, it
performs poorly in brief clips with few temporal cues. The
small dataset size increases the risk of overfitting, even with
the model's high accuracy. Training accuracy stabilizes later
than validation accuracy in certain training patterns. Although
this was mitigated by extensive data augmentation,
regularization, and dropout, a more comprehensive cross-
dataset evaluation is required to fully validate generalization.
Future studies will employ larger-scale datasets and cross-
domain validation techniques to further reduce the possibility
of overfitting. To boost robustness, the framework might
incorporate Swin Transformers or Vision Transformers (ViTs)



for the extraction of spatial characteristics. This would
enhance the capacity to describe global connections and long-
range interdependence within an image. LSTMs have
sequential bottlenecks. 3D CNNs or temporal attention
mechanisms could be used instead to better capture spatio-
temporal dynamics for temporal modeling. Adaptive
thresholding based on prediction confidence may improve
classification under uncertain conditions. To reduce dataset
bias and improve generalization, domain adaptation and
adversarial training strategies could be employed, ensuring
resistance to covert manipulation methods and a variety of
demographic distributions. Multimodal analysis, which
combines visual cues and audio data, can also be used to detect
lip-speech synchronization discrepancies, improving detection
for videos where both modalities may be altered.

7. CONCLUSIONS

This study offers a reliable and effective DeepFake
detection system that reliably makes a distinction between real
and DeepFake facial images and videos by utilizing CNNs.
While real-time performance and an intuitive web interface
facilitate practical implementation. The suggested system
offers a theoretically solid, scalable, and interpretable
DeepFake image detection method, making a significant
contribution to the fields of digital content authentication and
multimedia forensics. The proposed method combines the
advantages of multiple deep learning architectures, CNN for
spatial feature extraction, MTCNN for precise facial region
localization, EfficientNet, and Long Short-Term networks for
temporal sequence Memory modeling in videos. With this
hybrid architecture, subtle manipulation artifacts from a
variety of DeepFake generating approaches may be robustly
detected. With a high detection accuracy of roughly 97.9%, the
model keeps computational complexity low while performing
noticeably better than conventional single architecture
methods. Because the system is modular, it is easy to deploy
and integrate into real-time applications, which makes it ideal
for processes including digital forensics, social media
monitoring, and media verification. This study significantly
advances secure and trustworthy multimedia settings by
offering a dependable and useful DeepFake detection method.

The DeepFake detection system has certain drawbacks that
restrict its use, even though it is reliable and efficient in
controlled settings. The system's heavy reliance on the caliber
and variety of the dataset is one of the primary problems. The
pipelines' preprocessing stages, such as frame extraction, face
detection with MTCNN, and deep learning model training
with LSTM and EfficientNet, demand a significant amount of
processing power. This restricts its use on low-resource
devices and may have an impact on the performance of real-
time detection. The model's reliance on face-swapping and
facial duplication, DeepFakes for training, is another
drawback. When exposed to other forms of counterfeit, like
full-body DeepFakes audio manipulation or synthetic voice
synthesis, it might not function properly. Inaccurate
classifications may result from the LSTMs' temporal modeling
failing to detect minute variations in short or still video. Lastly,
there are issues with generalization across various video
formats, compression settings, and new processing tools. The
system might not be able to withstand the most recent sneaky
DeepFake generation techniques employed by contemporary
social media platforms in the absence of regular updates.
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Moreover, the model's reliance on facial-region data limits its
capacity to identify manipulations, including non-facial cues
or full-body movements. More lightweight architectures are
required since the computational cost of frame extraction,
MTCNN-based face localization, and LSTM-based temporal
modeling restricts deployment on low-power or mobile
devices.

Future studies will expand the system to address further
types of manipulations, such as reenactment-based forgeries,
full- body DeepFakes, and audio-visual irregularities like lip-
sync incompatibilities. Generalization will be strengthened by
testing the system on multimodal datasets and investigating
transformer-based spatiotemporal topologies. Additionally,
the pipeline's practical deployment across security, forensic,
and media governance applications will be improved by
optimizing it for low-resource devices and real-time streaming
contexts.
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