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Ficus variegata Blume is a species that has the prospect of being developed for forest 

plantation. Its wood products can be used for woodworking, furniture, and light 

construction materials. This study aimed to develop models of height and diameter 

growth of this species based on age. In this study tree height was measured at 0.5; 1; 2; 

3; 4 and 10 years, while stem diameter was measured at breast height (DBH) at 1; 2; 3; 4 

and 10 years of age from 2 populations of F. variegata progeny trials with genetic 

material from the West Nusa Tenggara (WNT) population (n trees = 395) and the 

Cilacap-Pangandaran (C-P) (n trees = 393). Five nonlinear regression models were tested, 

with model accuracy verified by 4 criteria: root mean square error (RMSE), coefficient 

of determination (R2), adjusted coefficient of determination (adjusted R2), and Akaike 

Information Criterion (AIC). The Weibull (R2 = 0.881; RMSE =1.034) model was the 

best model for tree height estimation for WNT and Chapman Richards (R2 = 0.822; 

RMSE =1.288) for C-P. Weibull (R2 = 0.767; RMSE = 2.853) and Gompertz (R2 = 0.767; 

RMSE =2.853) models were the best models for tree diameter estimation for the WNT 

population, and Weibull (R2 = 0.765; RMSE = 2.834) and Logistic (R2 = 0.765; RMSE 

=2.835) for the C-P population. Our findings demonstrate that growth models are 

population-dependent, necessitating the use of distinct optimal models for reliable growth 

prediction and management in different genetic sources of F. variegata.  
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1. INTRODUCTION

Tree growth models play an important role in forest 

management and tree breeding by providing accurate 

predictions of tree growth over time. They are particularly 

useful in assessing site productivity [1], biomass prediction 

[2], and harvest cycle planning [1, 3]. In tree breeding, these 

models are useful for identifying ages for selecting superior 

genotypes by analyzing how traits at youth correlate with those 

at maturity to aid breeding strategies [4-6], guiding the 

selection of important traits for productivity improvement, 

thereby supporting the long-term sustainability of forest 

resources [7, 8]. 

In forest growth and yield studies, models predicting the 

height and diameter growth of individual trees are essential 

elements and valuable tools for planning sustainable forest 

management [9]. These models can predict forest growth 

flexibly [10]. Forest growth models illustrate how tree 

dimensions or other tree characteristics, as well as stand-level 

factors, change over time with age [3]. Forest managers use 

stand growth predictions to determine the optimal timing for 

thinning, pruning, and felling and to analyze the economics of 

silviculture [11].  

Tree height and diameter at breast height (DBH) are 

important for developing various growth and yield models 

[12]. DBH can be measured quickly, easily, and accurately, 

whereas total tree height measurements are relatively 

complex, time-consuming, and expensive. Tree height growth 

models are often used as site index indicators, as tree height 

tends to be less affected by competition than diameter or 

volume [13]. Height growth models can be combined with 

diameter growth models to estimate individual tree volume or 

total stand volume. 

Various growth models have been developed for various 

tree species, mainly using nonlinear models, which better 

describe biological growth patterns than linear approaches. 

These models help quantify the relationship between variables 

such as height, diameter, and age, allowing for better forest 

management. Commonly used nonlinear models such as 

Chapman-Richards [14], Gompertz [15], von Bertalanffy [15], 

Weibull [16], and Logistic [15] models describe the growth of 

tree height and diameter over time with high accuracy. These 

models have been widely applied to commercial species such 

as Anthocephalus macrophyllus (Roxb.) Havil. [17], Pinus 

merkusii Jungh. et de Vriese [7], Eucalyptus spp. [18], 

Peronema canescens [19], Picea mariana (Mill.) B.S.P., and 

Pinus banksiana Lamb. [20]. However, despite the many 

growth model studies on these species, a similar growth model 

for Ficus variegata has not been conducted. The application 

of different growth models to different species and 

environments is crucial, making this research important. 

F. variegata is a fast-growing tree species whose wood is
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used for woodworking, furniture, and light construction 

materials [21-23]. The natural distribution of this species 

covers tropical and subtropical regions [24]. Its rapid growth 

in height and diameter gives it high potential for plantation 

forest development. Despite this potential, until now, no 

growth model has been developed to describe the development 

of height and diameter with age. Qirom and Supriyadi [25] 

have developed a model to estimate the volume of F. variegata 

based on height and diameter variables, without knowing the 

age of the tree. The absence of such a model limits accurate 

predictions of growth performance, thus affecting breeding 

efforts and other silvicultural measures to maximize economic 

benefits. 

This study aimed to (1) develop and compare nonlinear 

growth models for height and diameter, and (2) identify the 

best-fitting models for two distinct populations of F. 

variegata. 

2. MATERIALS AND METHODS 

 

2.1 Location and sample 

 

Data were obtained from two open-pollinated F. variegata 

progeny trials established in 2012 in the area of Forestry 

Service Agency, Yogyakarta Special Province, Indonesia 

(Figure 1). Geographical location, site conditions, and climate 

were described by Haryjanto et al. [26]. The trials consisted of 

genetic materials from two populations: (1) 17 families from 

West Nusa Tenggara (WNT) and (2) 19 families from Cilacap-

Pangandaran (C-P), with a plant spacing of 5 × 5 m. The trial 

was established in a randomized complete block design with 

six replications. Each family was represented by two types of 

non-contiguous plot (NCP): a five-tree plot for WNT and a 

four-tree plot for C-P. NCP has multiple trees from the same 

family randomized within each block [6]. 

 

 
 

Figure 1. Study area (marked by arrow) 
 

Table 1. Statistical characteristics of tree height and DBH of F. variegata for the WNT and C-P populations 
 

WNT 

Height/ Age (year) (N = 2358) 

 0.5 1 2 3 4 10 

Mean (m) 1.44 1.79 3.46 4.93 5.92 9.74 

Min (m) 0.50 0.65 1.80 2.36 2.77 5.34 

Max (m) 2.56 3.10 5.56 7.97 9.04 14.13 

SD 0.41 0.49 0.62 1.03 1.19 1.76 

DBH/ Age (year) (N = 1965) 

Mean (cm) - 2.76 4.58 8.21 10.25 17.61 

Min (cm) - 0.90 1.13 2.23 2.87 6.05 

Max (cm) - 5.00 8.76 14.95 18.47 39.49 

SD - 0.77 1.38 2.59 2.98 4.72 

C-P 

Height/Age (year) (N = 2370) 

 0.5 1 2 3 4 10 

Mean (m) 0.94 1.26 3.20 4.57 5.77 9.05 

Min (m) 0.19 0.25 0.73 1.10 1.75 5.04 

Max (m) 2.54 3.39 6.75 9.33 11.50 16.10 

SD 0.43 0.54 0.93 1.42 1.60 1.99 

DBH/Age (year) (N = 1975) 

Mean (cm) - 1.91 3.40 6.27 8.96 16.10 

Min (cm) - 0.63 0.86 0.95 2.55 7.17 

Max (cm) - 4.59 8.65 14.64 19.27 34.71 

SD - 0.74 1.53 2.86 3.28 4.29 
Note: N = Number of observations 

2508



Periodic measurements were taken of tree height (in meters) 

measured from ground level to the top of the tree at ages 0.5, 

1, 2, 3, 4, and 10 years using a measuring pole. Stem diameter 

(in cm) at 1.3 m above ground level (diameter at breast height, 

DBH) at ages 1, 2, 3, 4, and 10 years using a phi-band meter. 

A total of 393 plants from the WNT population and 395 plants 

from the C-P population were measured. Periodic 

measurements were taken of tree height in meters, measured 

from ground level to the top of the tree, at ages 0.5, 1, 2, 3, 4, 

and 10 years, using a measuring pole. Stem diameter (in 

centimeters) at 1.3 meters above ground level (diameter at 

breast height, DBH) was measured at ages 1, 2, 3, 4, and 10 

using a phi-band meter. A total of 393 plants from the WNT 

population and 395 plants from the C-P population were 

measured. These trees were observed from initial observation 

until 10 years later, and the statistical characteristics of the data 

are summarized in Table 1. 

 

2.2 Model 

 

The growth models employed in this study are summarized 

in Table 2. These models represent sigmoid curves, which are 

commonly used to describe asymptotic biological growth [8]. 

A sigmoid model characterizes growth that begins slowly, 

accelerates rapidly, and then gradually slows as it approaches 

a maximum value. 

For all models, ω = dependent variable (height, diameter), t 

= independent variable (age in years), α, β, k, and m are 

estimated parameters, exp = an exponential function, and ε = 

random error. 

 

2.3 Data analysis  

 

The nonlinear least squares method was used to obtain the 

best-fitting model. Model selection, aimed at describing the 

relationship between tree height, diameter, and age, was based 

on four criteria presented in Table 3. The F-test was used to 

evaluate the significance of the nonlinear regression model at 

a 95% confidence level. The best model is the one with the 

lowest average values of root mean square error (RMSE) and 

Akaike information criterion (AIC), and the highest average 

values of coefficients of determination (R2) and adjusted 

coefficient of determination (adjusted R2) [19, 27, 28]. AIC is 

a commonly used metric for comparing models of varying 

complexity based on a given dataset [29]. R2 values range from 

0 to 1, with higher values indicating that a greater proportion 

of the variance in the data is explained by the model [30]. 

Since the model is nonlinear, RMSE is a useful additional 

measure of accuracy alongside R2 [29]. If two or more models 

have identical values for a given criterion, they are considered 

to have the same ranking [31]. Data were analyzed using 

nonlinear regression with the NLIN procedure in SAS On 

Demand for Academics [32].  

 

Table 2. Nonlinear mathematical models used in the study 
 

No. Model Equation Source 

1 Chapman-Richards ω(t) = α(1 – β exp(–kt))1/(1–m) + ε [14, 33] 

2 Weibull ω(t) = (α – β exp(–ktm)) + ε [16] 

3 von Bertalanffy ω(t) = (α1–m – β exp(–kt))1/(1–m) + ε [15] 

4 Gompertz ω(t) = α exp(–β exp(–kt)) + ε [15, 33] 

5 Logistic ω(t) = α / (1 + β exp(–kt)) + ε [15] 
 

Table 3. Best model criteria 
 

No. Function Name Equation 

1 Root mean square error (RMSE) 𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦̂𝑖)2

𝑛
 

2 Coefficient of determination (R2) 𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)2

∑(𝑦𝑖 − 𝑦̄)2  

3 Adjusted Coefficient of determination (adjusted R2) 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑅2 = 1 − (1 − 𝑅2)
(𝑛 − 1)

(𝑛 − 𝑘)
 

4 Akaike information criterion (AIC) 𝐴𝐼𝐶 = 2𝑘 + 𝑛 𝑙𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛
 

where, 𝑦𝑖, 𝑦̂𝑖, 𝑦̅ = y measured, estimated, and mean values of the dependent variables, respectively, k = number of parameters of the estimated models, and n is the 

number of observations. 

 

A key methodological limitation of this study is that the data 

were analyzed using standard nonlinear regression, which 

does not account for the hierarchical structure of the data (trees 

nested within families and blocks) or the temporal 

autocorrelation inherent in repeated measurements from the 

same individuals. This approach may lead to underestimated 

standard errors of the parameter estimates and, consequently, 

an overstatement of their statistical precision and significance. 
 

 

3. RESULTS AND DISCUSSION 
 

3.1 Tree height and diameter correlation 
 

The relationship between tree height and DBH is widely 

applied in forest inventory analyses [34, 35]. In this study, the 

correlation between tree height and DBH was very strong, 

with coefficients of determination (R²) of 0.921 and 0.863 for 

the WNT and C-P populations, respectively (Figure 2). This 

strong correlation is useful for indirectly estimating tree height 

by measuring only DBH [36]. Measuring tree height is often 

difficult and prone to large errors, especially in forests with 

tall trees and dense crowns [2], and it generally requires more 

time [35]. In contrast, DBH is easier to measure, offers high 

precision, and involves lower costs. In the context of tree 

breeding, a strong correlation between tree height and DBH is 

valuable for assigning trait weights during genetic selection 

using a multi-trait selection index [17]. Because of this 

correlation, selecting for DBH will also positively affect tree 
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height, making the breeding program more efficient. 

 

 

 
 

Figure 2. Tree height and DBH correlation for F. variegata 

 

3.2 Growth curve 

 

Growth curves are usually divided into four stages: 

exponential, linear, logarithmic, and asymptotic, which depict 

accelerating rates, constant rates, slowing rates, and no 

significant increase [19].  

 

3.2.1 Height curve 

The height-age curve shown in Figure 3 is a sigmoid curve 

(resembling the letter S). It begins with a rapid growth phase, 

resulting in an exponential shape, followed by a constant 

growth rate forming a linear pattern. Eventually, the growth 

slows down, taking on a logarithmic shape, and nearly stops 

as it approaches its maximum limit (asymptotic), causing the 

curve to level off horizontally. 

During the early growth (ages 0.5–2 years) phase, the 

models diverge significantly in their portrayal of initial growth 

vigor. For the WNT population, the Logistic model (with the 

highest k value of 0.629) predicts the most aggressive early 

height accumulation, followed closely by the Gompertz. In 

contrast, the Weibull and von Bertalanffy models depict a 

more gradual initial ascent. This divergence is critical for 

managers assessing early survival and weed competition, as 

the choice of model would lead to different conclusions about 

first-year growth performance. For the C-P population, a 

similar pattern is observed, where the Logistic model shows 

the steepest initial slope, but the overall predicted heights in 

this phase are lower than for WNT across all models, aligning 

with the observed data in Table 1. 

Mid-rotation growth and inflection (ages 2–5 years), this 

period encompasses the inflection point (point of maximum 

growth rate) and is where the biological interpretation of 

parameters β and m becomes visually apparent. For WNT, the 

Chapman-Richards model (with m = 0.587) shows an 

inflection point occurring at a greater proportion of the final 

asymptotic height compared to other models, leading to a more 

sustained period of rapid growth. The Weibull model, 

identified as the best-fit, presents a slightly more symmetric S-

shape. For C-P, the Chapman-Richards model (best-fit) has a 

lower m value (0.552), visually shifting its inflection point 

slightly earlier relative to its asymptote compared to the WNT 

Chapman-Richards curve. The Logistic model curves for both 

populations exhibit their characteristic symmetric inflection 

around the midpoint, which appears less representative of the 

data spread shown in Figure 3.  

 

 

 
 

Figure 3. Height–age growth model curves of F. variegata 

for the WNT and C-P populations 

 

Approaching the asymptote (ages 5–10 years), all models 

converge towards their respective asymptotes (α), but at 

different rates. The von Bertalanffy model, with its very small 

m parameter, approaches its asymptote (which is notably 

higher than other models) most gradually, whereas the 

Logistic model tends to level off more abruptly after its 

inflection. The best-performing models (Weibull for WNT, 

Chapman-Richards for C-P) show a steady, realistic 

deceleration, which is ecologically realistic for a light-

demanding species approaching canopy closure and resource 

limitation [37]. 

The parameter α is defined in some literature [38, 39] as the 

maximum value attainable by the dependent variable, 

influenced by site productivity. Therefore, when modeling the 

relationship between peak height and age, α is set as the 

maximum value of the response variable observed in the data. 

In this study, α represents the maximum achievable height at 

the study site. For the WNT population, α ranged from 9.831 

to 12.193 m across the five models, while for the C-P 

population, it ranged from 9.068 to 10.623 m (Table 4). 

The shape and rate parameters (β, k, and m) control how 

quickly growth occurs and when the maximum growth rate 

occurs. The parameter β is a shape or scaling parameter that 

influences the inflection point, or when the maximum growth 
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rate occurs, and sometimes the initial size relative to the 

asymptote. In the Logistic model (Table 4), the WNT 

population (β = 7.260) reached the inflection point earlier than 

the C-P population (β = 9.715), meaning the C-P trees reached 

the maximum growth rate later. In the Chapman-Richards 

model, β < 1 (here, 0.668–0.787) affects curvature, and a lower 

β often indicates a longer, slower growth phase after the 

inflection point. For the von Bertalanffy model, a value of β 

near α (11.871 versus 10.930 in the C-P model) indicates that 

inflection occurs earlier in the WNT model for height growth. 

A higher β value in the logistic model (C-P > WNT) aligns 

with a later inflection point in the C-P population. 

The parameter k is generally related to the intrinsic growth 

rate, or the rate at which the tree approaches its asymptotic 

height. Biological meaning: a larger k value indicates faster 

early growth and an earlier slowdown. k values are generally 

higher in C-P models than in WNT models (e.g., 0.289 vs. 

0.341 in the Chapman-Richards model) (Table 4), indicating 

slightly faster early growth in C-P. 

The parameter m is an additional shape parameter that 

allows for greater flexibility in the location of inflection 

relative to the asymptotic height. In the Chapman-Richards 

model, parameter m is 0.587 and 0.552 for WNT and C-P, 

respectively (Table 4). This means that inflection occurs 

earlier in the C-P model than in the WNT model. 

Differences between WNT and C-P populations in these 

parameters suggest different growth strategies or 

environmental adaptations. C-P shows somewhat faster early 

growth (higher k) but may reach inflection later in age (higher 

β in Logistic), whereas WNT inflects at a greater proportion 

of final height (Chapman-Richards m closer to 0.6). 

 

Table 4. Parameter estimates and reliability values for each height growth model of F. variegata for the WNT and C-P 

population 

 
Model α β k m R2 Adjusted R2 RMSE AIC Sig. Rank 

Height/WNT 

Chapman-

Richards 
10.669 0.668 0.289 0.587 0.881 0.880 1.034 165.556 

 

** 
2 

Weibull 10.431 9.556 0.123 1.329 0.881 0.881 1.034 164.514 ** 1 

von Bertalanffy 12.193 11.871 0.158 1.293E-04 0.880 0.879 1.039 187.340 ** 4 

Gompertz 10.237 2.415 0.384 - 0.880 0.880 1.036 171.816 ** 3 

Logistic 9.831 7.260 0.629 - 0.877 0.877 1.049 231.195 ** 5 

Height/C-P 

Chapman-

Richards 
9.615 0.787 0.341 0.552 0.822 0.822 1.288 1209.346 

 

** 
1 

Weibull 9.411 9.021 0.137 1.377 0.822 0.822 1.289 1209.969 ** 2 

von Bertalanffy 10.623 10.930 0.197 1.04E-04 0.820 0.820 1.295 1233.732 ** 4 

Gompertz 9.305 2.856 0.461 - 0.821 0.821 1.291 1218.296 ** 3 

Logistic 9.068 9.715 0.742 - 0.816 0.816 1.308 1280.063 ** 5 
** Significant at p < 0.01 

 

All five models successfully fitted the height data curves in 

both populations over time, showing high coefficients of 

determination and adjusted coefficients of determination (R² 

and adjusted R² = 0.816–0.881) for both the four- and three-

parameter models. This indicates that more than 81% of the 

variation in tree height can be explained by tree age, with the 

remaining variation attributed to other factors. The RMSE for 

the WNT population ranged from 1.034 to 1.049, while the C-

P population was higher, between 1.288 and 1.308 (Table 4). 

In general, the WNT population's height data had a smaller 

standard deviation than that of the C-P population (Table 1). 

These two metrics are closely related, as both measure the 

dispersion of data relative to the mean: standard deviation 

reflects the spread of the original data, while RMSE indicates 

the dispersion of prediction errors relative to the true values. 

All models tested had p-values < 0.01 (Table 4), indicating a 

less than 1% probability that the model outcomes occurred by 

chance. In other words, tree height growth models can be used 

with high confidence for prediction. Furthermore, the 

parameters of the nonlinear models had a significant effect on 

the response variable—tree height—in this study. 

Based on overall model performance criteria, the Weibull 

model was identified as the best-fitting model for the WNT 

population, whereas the Chapman-Richards model performed 

best for the C-P population (Table 4). In contrast, the Logistic 

model ranked lowest in predictive accuracy for tree height in 

both the WNT and C-P populations. A separate study [1] found 

that the Gompertz and Meyer growth models were the most 

accurate for predicting teak (Tectona grandis) height in 

Nigeria. The selection of the best model is influenced by 

species-specific traits and site characteristics. 

 

3.2.2 Diameter curve 

The diameter based on DBH is widely used in tree 

measurements to estimate tree volume, assuming the base area 

is circular [19]. The diameter-age curve is presented in Figure 

4. The shape of the diameter growth curve is similar to that of 

the height growth curve—sigmoidal.  

Early growth phase (ages 1–3 years), predicting time to 

merchantable size. The early DBH growth trajectories are 

crucial for scheduling the first thinning or assessing wood 

quality in short-rotation cycles. The Logistic model again 

predicts the most rapid initial diameter expansion. However, 

the Weibull model (best-fit for both populations) depicts a 

much slower start, particularly for C-P (k=0.035). This 

profound difference has direct operational consequences: 

using the Logistic model would predict an earlier attainment 

of a minimum pulpwood or pole diameter than the Weibull 

model, potentially leading to premature and uneconomic 

harvest plans [11]. 

In the mid-late rotation phase (ages 4–10 years), the 

dominance of the near-linear increment is observed. This is the 

most critical phase for volumetric yield accumulation. The 

most striking visual feature is the near-linear growth trajectory 

of the Chapman-Richards model, a direct mathematical 

consequence of its shape parameter m being extremely close 

to 1 (0.963 for WNT, 0.974 for C-P). In growth analysis, an m 

value of 1 in the Chapman-Richards function simplifies to a 
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monomolecular curve with no inflection, explaining the linear 

appearance [39]. This indicates that, according to this model, 

diameter increment remains strong and relatively constant, a 

highly desirable trait for sustained biomass production. The 

Weibull model curves also show strong, sustained increases 

but with a gentle, concave-down shape, indicating a very slow 

decline in growth rate. This pattern suggests that radial growth 

in F. variegata is highly persistent and does not exhibit a 

classic, pronounced sigmoidal slowdown until very late, 

aligning with the growth strategy of fast-growing pioneer 

species that prioritize structural expansion [40]. The von 

Bertalanffy model is a clear outlier, its curve failing to capture 

the data's central tendency and predicting an implausibly high 

asymptote, which corroborates its consistently poor statistical 

ranking (highest AIC). 

 

 
 

Figure 4. DBH–age growth model curves of F. variegata for 

the WNT and C-P populations 
 

The parameter α represents the maximum average DBH that 

the population approaches. In the WNT population, it ranges 

from 17.774 cm (Logistic) to 22.227 cm (von Bertalanffy), and 

in the C-P population, it ranges from 16.532 cm 

(Weibull/Logistic) to 23.323 cm (von Bertalanffy). Consistent 

models (Chapman-Richards and Gompertz) suggest that the 

WNT population reaches a slightly larger DBH than the C-P 

population (18.528 cm vs. 17.417 cm), indicating potentially 

better growing conditions or genetic potential at WNT. 

In the Logistic model, the parameter β is the inflection age, 

which is equal to ln(β)/k. For the WNT population, 

ln(10.391)/0.683 ≈ 3.47. For the C-P population, β = 

ln(15.802)/0.742 ≈ 3.68. In the Gompertz model, inflection 

occurs at age = ln(ln(β))/k. Higher β values delay inflection. 

For the Chapman-Richards model, a very small β value 

(approximately 0.09–0.105) indicates that the curve starts very 

low relative to α and has a long, slow initial phase. For the 

Weibull and von Bertalanffy models, β near α indicates that 

inflection occurs after a delay. The C-P model generally has a 

slightly higher β than the Logistic and Gompertz models, 

meaning inflection occurs at a later age. 

For the Chapman-Richards model, the inflection point is the 

parameter m, which is the proportion of α = m1/(1−m). For the 

WNT model, m = 0.963 showed that the inflection point 

occurred at ~0.963²⁷, which is greater than 90% of α. This 

indicates a very late inflection point relative to the final size. 

For the C-P model, m = 0.974 showed that the inflection point 

occurred at >95% of α, meaning it occurred even later. These 

results suggest that DBH grows slowly for the curve, with the 

maximum growth rate occurring very close to the asymptote. 

For the Weibull model, m > 1 (1.738 for WNT and 2.173 for 

C-P), and a larger m reflects a later inflection point. The C-P 

model seems to have a later inflection point and a slightly 

smaller asymptotic DBH, possibly due to site conditions or 

genetic resources. The WNT curve reaches a larger DBH 

asymptote and may have an earlier inflection point, indicating 

better growing conditions for diameter development. 

All five models fitted the diameter data well in both 

populations over the time series, with high coefficients of 

determination and adjusted coefficients of determination (R² 

and adjusted R² = 0.764–0.767) for both the 4- and 3-

parameter models. This indicates that more than 76% of the 

variation in diameter can be explained by tree age, with the 

remaining variation attributed to other factors. The RMSE was 

relatively high in both populations (RMSE = 2.834–2.870). 

Since RMSE squares the differences, it gives greater weight to 

larger errors, making it more sensitive to outliers. Similar to 

the height models, all diameter growth models showed 

statistical significance with p < 0.01 (Table 4). Therefore, the 

tree diameter growth models can be used with high confidence 

for prediction purposes. 
 

Table 5. Parameter estimates and reliability values for each DBH growth model of F. variegata for the WNT and C-P population 
 

Model α β k m R2 Adjusted R2 RMSE AIC Sig. Rank 

DBH/WNT 

Chapman-Richards 18.528 0.105 0.402 0.963 0.767 0.766 2.854 4128.863 
 

** 
2 

Weibull 17.945 16.428 0.071 1.738 0.767 0.767 2.853 4128.414 ** 1 

von Bertalanffy 22.227 23.342 0.163 2.032E-08 0.764 0.764 2.870 4150.904 ** 4 

Gompertz 18.477 2.974 0.412 - 0.767 0.767 2.853 4126.726 ** 1 

Logistic 17.774 10.391 0.683 - 0.766 0.766 2.859 4134.583 ** 3 

DBH/C-P 

Chapman-Richards 17.417 0.090 0.412 0.974 0.764 0.764 2.839 4129.424 
 

** 
3 

Weibull 16.532 15.145 0.035 2.173 0.765 0.765 2.834 4123.018 ** 1 

von Bertalanffy 23.323 24.788 0.129 1.54E-08 0.760 0.759 2.867 4168.56 ** 4 

Gompertz 17.379 3.544 0.419 - 0.764 0.764 2.838 4126.934 ** 2 

Logistic 16.602 15.802 0.742 - 0.765 0.765 2.835 4122.503 ** 1 
** Significant at p < 0.01 
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Based on model goodness-of-fit criteria, the Weibull and 

Gompertz models were the best for predicting tree diameter in 

the WNT population, while the Weibull and Logistic models 

performed best in the C-P population. In contrast, the von 

Bertalanffy model ranked lowest in both the WNT and C-P 

populations (Table 5). A previous study also found that the 

Gompertz, von Bertalanffy, and Chapman-Richards models 

performed well for predicting diameter growth in sungkai 

(Peronema canescens Jack) [19]. 

 
3.2.3 Differences in growth models between populations 

The difference in growth models between the WNT and C-

P populations is likely due to differences in genetic adaptation 

associated with their origin, as stated in studies by Klopčič et 

al. [37] and Wondimneh et al. [41]. The geographic origin of 

tree seed sources strongly influences tree growth due to 

genetic adaptations to local climates, soils, and elevations. 

This leads to differences in height and diameter when planted 

elsewhere. The results of the study [26] also indicate that the 

WNT population has a higher coefficient of additive genetic 

variation (CVA) than the C-P population. CVA is an indicator 

used to assess the long-term evolution of a trait and its 

potential for adaptation under changing environmental 

conditions. Thus, the WNT population is better adapted than 

the C-P population. This is evident in the optimal height 

growth models for the WNT (Weibull) and C-P (Chapman-

Richards) populations. The maximum value (α) of WNT tree 

height is greater than that of C-P, at 10.431 m and 9.615 m, 

respectively. Similarly, the maximum value (α) of the WNT 

tree diameter is greater than that of the C-P population for the 

best diameter growth model of the WNT (Weibull) and C-P 

(Weibull) populations, namely 17.945 cm and 16.532 cm, 

respectively (Table 5). 

 
3.2.4 Biological implications of the growth model 

Each species has a different biological growth pattern 

influenced by its life strategy (shade-tolerant vs. light-

demanding) [37], biomass allocation [40], response to the 

environment [42], early growth dynamics (juvenility phase), 

and rate of approach to the asymptote [37]. Therefore, an 

empirical model that is suitable for one species is not 

automatically suitable for another species. For F. variegata, 

the growth pattern shows a slow start (lag phase), strong 

acceleration in middle age, and then a more gradual approach 

to the maximum value. This pattern is very consistent with 

Weibull or Chapman–Richards.  

All sigmoidal models have asymptotic parameters (α), 

theoretical maximum height, and diameter. The implication is 

that different models produce different predictions of α, 

thereby affecting estimates of optimal harvest age, rotation, or 

long-term volume predictions, as well as affecting genetic 

rankings, because different families may approach the 

asymptote at different rates. 

Meanwhile, the inflection point is the age at which 

height/diameter growth reaches its maximum rate. The 

implication for F. variegata, for which Weibull/Chapman-

Richards was selected as the best model, is that this model 

shows asymmetrical growth, which means that the maximum 

growth phase occurs earlier. This is important for determining 

genetic selection age and rotation. 

 

 

3.3 Implications for breeding programs and plantation 

management of F. variegata 
 

3.3.1 Breeding programs: Accelerating selection 

A primary challenge in perennial tree breeding is the long 

generation time. Early selection—predicting mature trait 

performance from measurements at a juvenile age—is 

essential to accelerate genetic gain [6, 43]. The fitted nonlinear 

models provide the precise mathematical framework to 

implement this strategy. 

The strong correlation between tree height and DBH allows 

selection based on just one trait—such as diameter—since 

diameter is highly correlated with height. This approach can 

save time and resources during measurement and selection. 

Using diameter as the primary selection trait can lead to a dual 

response by also improving tree height due to the strong inter-

trait relationship. In indirect selection, it is important to choose 

a trait that is easier or more cost-effective to measure while 

still achieving improvements in other related traits. Indirect 

selection is feasible when the two traits share a high genetic 

correlation [6]. In the case of F. variegata, the genetic 

correlation between height and diameter is strong, indicating 

that selecting for diameter will positively affect tree height. 

Accurately modeling height growth is essential for 

constructing growth curves and estimating the optimal age for 

selection. One of the main challenges in forest tree breeding is 

the lengthy selection cycle, which can span several years due 

to long rotation periods [43]. Growth models can support the 

development of age–age correlation models for estimating 

genetic parameters, enabling early selection [44] and thereby 

accelerating the breeding cycle. 

For the WNT population, the Weibull height model 

indicates the rapid growth phase concludes around age 2-3 

years (inflection point ~2.1 years). Therefore, measuring and 

selecting superior genotypes at age 3-4 years is recommended. 

At this age, tree rankings for height are largely stabilized, 

allowing the prediction of mature (age-10) performance with 

high confidence. This approach can reduce the selection cycle 

by 6-7 years, significantly accelerating genetic gain per unit 

time [4]. Breeders can apply these population-specific models 

to create early selection indices, weighting early height or 

DBH based on their genetic correlation with target mature 

volume. 
 

3.3.2 Plantation management: Predicting yield and scheduling 

operations 

For silvicultural management, the models enable dynamic 

yield forecasting. By integrating the best population-specific 

models for DBH and height (e.g., Weibull for H and Gompertz 

for DBH in WNT) into a standard tree volume equation, 

managers can project stand volume at any age. For example, a 

WNT plantation with 340 trees/ha at year 10 is estimated to 

yield approximately 41 m³/ha. Furthermore, the DBH model 

parameters reveal that radial growth is sustained and near-

linear for most of the rotation (inflection >90% of α). This 

informs critical interventions: a first thinning at age 3-4 is 

advised to release future crop trees precisely as height growth 

slows and resource allocation shifts to maximizing their 

diameter increment during the long linear growth phase [13]. 

Finally, comparing the mean annual increment curves derived 

from these yield projections for each population will identify 

the site-specific rotation age that maximizes volumetric yield, 

providing a scientific basis for harvest scheduling. 
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4. CONCLUSIONS 

 

The main conclusions of this study are as follows: (1) Tree 

height and diameter are very strongly correlated, with 

coefficients of determination (R²) of 0.921 for the WNT 

population and 0.863 for the C-P population. This is especially 

valuable for breeding programs, where selecting for diameter 

traits can positively influence height traits; (2) The Weibull 

model is the best for estimating tree height parameters in the 

WNT population, while the Chapman-Richards model 

performs best for the C-P population; (3) For tree diameter 

estimation, the Weibull and Gompertz models are most 

suitable for the WNT population, while the Weibull and 

Logistic models are best for the C-P population. The use of 

different models for the WNT and C-P populations 

underscores the critical need for adopting population-specific 

approaches in forest breeding and management programs. 

Future research should validate these models across diverse 

sites and incorporate stand density competition factors to 

enhance their general applicability for plantation management. 
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