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Ficus variegata Blume is a species that has the prospect of being developed for forest
plantation. Its wood products can be used for woodworking, furniture, and light
construction materials. This study aimed to develop models of height and diameter
growth of this species based on age. In this study tree height was measured at 0.5; 1; 2;
3; 4 and 10 years, while stem diameter was measured at breast height (DBH) at 1; 2; 3; 4
and 10 years of age from 2 populations of F. variegata progeny trials with genetic
material from the West Nusa Tenggara (WNT) population (n trees = 395) and the
Cilacap-Pangandaran (C-P) (n trees = 393). Five nonlinear regression models were tested,
with model accuracy verified by 4 criteria: root mean square error (RMSE), coefficient
of determination (R?), adjusted coefficient of determination (adjusted R?), and Akaike
Information Criterion (AIC). The Weibull (R? = 0.881; RMSE =1.034) model was the
best model for tree height estimation for WNT and Chapman Richards (R?= 0.822;
RMSE =1.288) for C-P. Weibull (R?2=0.767; RMSE = 2.853) and Gompertz (R?= 0.767;
RMSE =2.853) models were the best models for tree diameter estimation for the WNT
population, and Weibull (R?>= 0.765; RMSE = 2.834) and Logistic (R>= 0.765; RMSE
=2.835) for the C-P population. Our findings demonstrate that growth models are
population-dependent, necessitating the use of distinct optimal models for reliable growth

prediction and management in different genetic sources of F. variegata.

1. INTRODUCTION

Tree growth models play an important role in forest
management and tree breeding by providing accurate
predictions of tree growth over time. They are particularly
useful in assessing site productivity [1], biomass prediction
[2], and harvest cycle planning [1, 3]. In tree breeding, these
models are useful for identifying ages for selecting superior
genotypes by analyzing how traits at youth correlate with those
at maturity to aid breeding strategies [4-6], guiding the
selection of important traits for productivity improvement,
thereby supporting the long-term sustainability of forest
resources [7, 8].

In forest growth and yield studies, models predicting the
height and diameter growth of individual trees are essential
elements and valuable tools for planning sustainable forest
management [9]. These models can predict forest growth
flexibly [10]. Forest growth models illustrate how tree
dimensions or other tree characteristics, as well as stand-level
factors, change over time with age [3]. Forest managers use
stand growth predictions to determine the optimal timing for
thinning, pruning, and felling and to analyze the economics of
silviculture [11].

Tree height and diameter at breast height (DBH) are
important for developing various growth and yield models
[12]. DBH can be measured quickly, easily, and accurately,
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whereas total tree height measurements are relatively
complex, time-consuming, and expensive. Tree height growth
models are often used as site index indicators, as tree height
tends to be less affected by competition than diameter or
volume [13]. Height growth models can be combined with
diameter growth models to estimate individual tree volume or
total stand volume.

Various growth models have been developed for various
tree species, mainly using nonlinear models, which better
describe biological growth patterns than linear approaches.
These models help quantify the relationship between variables
such as height, diameter, and age, allowing for better forest
management. Commonly used nonlinear models such as
Chapman-Richards [14], Gompertz [15], von Bertalanffy [15],
Weibull [16], and Logistic [15] models describe the growth of
tree height and diameter over time with high accuracy. These
models have been widely applied to commercial species such
as Anthocephalus macrophyllus (Roxb.) Havil. [17], Pinus
merkusii Jungh. et de Vriese [7], Eucalyptus spp. [18],
Peronema canescens [19], Picea mariana (Mill.) B.S.P., and
Pinus banksiana Lamb. [20]. However, despite the many
growth model studies on these species, a similar growth model
for Ficus variegata has not been conducted. The application
of different growth models to different species and
environments is crucial, making this research important.

F. variegata is a fast-growing tree species whose wood is
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used for woodworking, furniture, and light construction
materials [21-23]. The natural distribution of this species
covers tropical and subtropical regions [24]. Its rapid growth
in height and diameter gives it high potential for plantation
forest development. Despite this potential, until now, no
growth model has been developed to describe the development
of height and diameter with age. Qirom and Supriyadi [25]
have developed a model to estimate the volume of F. variegata
based on height and diameter variables, without knowing the
age of the tree. The absence of such a model limits accurate
predictions of growth performance, thus affecting breeding
efforts and other silvicultural measures to maximize economic
benefits.

This study aimed to (1) develop and compare nonlinear
growth models for height and diameter, and (2) identify the
best-fitting models for two distinct populations of F.
variegata.

2. MATERIALS AND METHODS
2.1 Location and sample

Data were obtained from two open-pollinated F. variegata
progeny trials established in 2012 in the area of Forestry
Service Agency, Yogyakarta Special Province, Indonesia
(Figure 1). Geographical location, site conditions, and climate
were described by Haryjanto et al. [26]. The trials consisted of
genetic materials from two populations: (1) 17 families from
West Nusa Tenggara (WNT) and (2) 19 families from Cilacap-
Pangandaran (C-P), with a plant spacing of 5 X 5 m. The trial
was established in a randomized complete block design with
six replications. Each family was represented by two types of
non-contiguous plot (NCP): a five-tree plot for WNT and a
four-tree plot for C-P. NCP has multiple trees from the same
family randomized within each block [6].
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Figure 1. Study area (marked by arrow)

Table 1. Statistical characteristics of tree height and DBH of F. variegata for the WNT and C-P populations

WNT
Height/ Age (year) (N = 2358)
0.5 1 2 3 4 10

Mean (m) 1.44 1.79 3.46 4.93 5.92 9.74
Min (m) 0.50 0.65 1.80 2.36 2.77 5.34
Max (m) 2.56 3.10 5.56 7.97 9.04 14.13

SD 0.41 0.49 0.62 1.03 1.19 1.76
DBH/ Age (year) (N = 1965)

Mean (cm) - 2.76 4.58 8.21 10.25 17.61
Min (cm) - 0.90 1.13 2.23 2.87 6.05
Max (cm) - 5.00 8.76 14.95 18.47 39.49

SD - 0.77 1.38 2.59 2.98 4.72
C-p
Height/Age (year) (N =2370)
0.5 1 2 3 4 10

Mean (m) 0.94 1.26 3.20 4.57 5.77 9.05

Min (m) 0.19 0.25 0.73 1.10 1.75 5.04

Max (m) 2.54 3.39 6.75 9.33 11.50 16.10

SD 0.43 0.54 0.93 1.42 1.60 1.99
DBH/Age (year) (N =1975)

Mean (cm) - 1.91 3.40 6.27 8.96 16.10
Min (cm) - 0.63 0.86 0.95 2.55 7.17
Max (cm) - 4.59 8.65 14.64 19.27 34.71

SD - 0.74 1.53 2.86 3.28 4.29

Note: N = Number of observations
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Periodic measurements were taken of tree height (in meters)
measured from ground level to the top of the tree at ages 0.5,
1,2, 3,4, and 10 years using a measuring pole. Stem diameter
(in cm) at 1.3 m above ground level (diameter at breast height,
DBH) at ages 1, 2, 3, 4, and 10 years using a phi-band meter.
A total of 393 plants from the WNT population and 395 plants
from the C-P population were measured. Periodic
measurements were taken of tree height in meters, measured
from ground level to the top of the tree, at ages 0.5, 1, 2, 3, 4,
and 10 years, using a measuring pole. Stem diameter (in
centimeters) at 1.3 meters above ground level (diameter at
breast height, DBH) was measured at ages 1, 2, 3, 4, and 10
using a phi-band meter. A total of 393 plants from the WNT
population and 395 plants from the C-P population were
measured. These trees were observed from initial observation
until 10 years later, and the statistical characteristics of the data
are summarized in Table 1.

2.2 Model

The growth models employed in this study are summarized
in Table 2. These models represent sigmoid curves, which are
commonly used to describe asymptotic biological growth [8].
A sigmoid model characterizes growth that begins slowly,
accelerates rapidly, and then gradually slows as it approaches
a maximum value.

For all models, ® = dependent variable (height, diameter), t

independent variable (age in years), o, B, k, and m are
estimated parameters, exp = an exponential function, and & =
random error.

2.3 Data analysis

The nonlinear least squares method was used to obtain the
best-fitting model. Model selection, aimed at describing the
relationship between tree height, diameter, and age, was based
on four criteria presented in Table 3. The F-test was used to
evaluate the significance of the nonlinear regression model at
a 95% confidence level. The best model is the one with the
lowest average values of root mean square error (RMSE) and
Akaike information criterion (AIC), and the highest average
values of coefficients of determination (R?) and adjusted
coefficient of determination (adjusted R?) [19, 27, 28]. AIC is
a commonly used metric for comparing models of varying
complexity based on a given dataset [29]. R? values range from
0 to 1, with higher values indicating that a greater proportion
of the variance in the data is explained by the model [30].
Since the model is nonlinear, RMSE is a useful additional
measure of accuracy alongside R? [29]. If two or more models
have identical values for a given criterion, they are considered
to have the same ranking [31]. Data were analyzed using
nonlinear regression with the NLIN procedure in SAS On
Demand for Academics [32].

Table 2. Nonlinear mathematical models used in the study

No. Model Equation Source
1 Chapman-Richards o(t) = a(l — B exp(—kt))"0-m + ¢ [14, 33]
2 Weibull o(t) = (o.— B exp(-kt™) + ¢ [16]

3 von Bertalanffy o(t) = (a™— B exp(—kt))"™ + ¢ [15]
4 Gompertz o(t) = a exp(—p exp(-kt)) + & [15,33]
5 Logistic ot)=a/( +Bexp(-kt)) +¢ [15]
Table 3. Best model criteria
No. Function Name Equation

5.2

1 Root mean square error (RMSE) RMSE = Z M
n
2 Coefficient of determination (R?) R?=1- M
Xvi—)
-1

3 Adjusted Coefficient of determination (adjusted R?) adjusted R2 =1 — (1 — R?) gll k;

L —9.)?

4 Akaike information criterion (AIC) AIC =2k +n lnM

n

where, y;, ¥;, ¥ =y measured, estimated, and mean values of the dependent variables, respectively, k = number of parameters of the estimated models, and 7 is the
number of observations.

A key methodological limitation of this study is that the data
were analyzed using standard nonlinear regression, which
does not account for the hierarchical structure of the data (trees
nested within families and blocks) or the temporal
autocorrelation inherent in repeated measurements from the
same individuals. This approach may lead to underestimated
standard errors of the parameter estimates and, consequently,
an overstatement of their statistical precision and significance.

3. RESULTS AND DISCUSSION
3.1 Tree height and diameter correlation

The relationship between tree height and DBH is widely
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applied in forest inventory analyses [34, 35]. In this study, the
correlation between tree height and DBH was very strong,
with coefficients of determination (R?) of 0.921 and 0.863 for
the WNT and C-P populations, respectively (Figure 2). This
strong correlation is useful for indirectly estimating tree height
by measuring only DBH [36]. Measuring tree height is often
difficult and prone to large errors, especially in forests with
tall trees and dense crowns [2], and it generally requires more
time [35]. In contrast, DBH is easier to measure, offers high
precision, and involves lower costs. In the context of tree
breeding, a strong correlation between tree height and DBH is
valuable for assigning trait weights during genetic selection
using a multi-trait selection index [17]. Because of this
correlation, selecting for DBH will also positively affect tree



height, making the breeding program more efficient.
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Figure 2. Tree height and DBH correlation for F. variegata
3.2 Growth curve

Growth curves are usually divided into four stages:
exponential, linear, logarithmic, and asymptotic, which depict
accelerating rates, constant rates, slowing rates, and no
significant increase [19].

3.2.1 Height curve

The height-age curve shown in Figure 3 is a sigmoid curve
(resembling the letter S). It begins with a rapid growth phase,
resulting in an exponential shape, followed by a constant
growth rate forming a linear pattern. Eventually, the growth
slows down, taking on a logarithmic shape, and nearly stops
as it approaches its maximum limit (asymptotic), causing the
curve to level off horizontally.

During the early growth (ages 0.5-2 years) phase, the
models diverge significantly in their portrayal of initial growth
vigor. For the WNT population, the Logistic model (with the
highest k value of 0.629) predicts the most aggressive early
height accumulation, followed closely by the Gompertz. In
contrast, the Weibull and von Bertalanffy models depict a
more gradual initial ascent. This divergence is critical for
managers assessing early survival and weed competition, as
the choice of model would lead to different conclusions about
first-year growth performance. For the C-P population, a
similar pattern is observed, where the Logistic model shows
the steepest initial slope, but the overall predicted heights in
this phase are lower than for WNT across all models, aligning
with the observed data in Table 1.

Mid-rotation growth and inflection (ages 2—5 years), this
period encompasses the inflection point (point of maximum
growth rate) and is where the biological interpretation of
parameters 3 and m becomes visually apparent. For WNT, the
Chapman-Richards model (with m = 0.587) shows an
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inflection point occurring at a greater proportion of the final
asymptotic height compared to other models, leading to a more
sustained period of rapid growth. The Weibull model,
identified as the best-fit, presents a slightly more symmetric S-
shape. For C-P, the Chapman-Richards model (best-fit) has a
lower m value (0.552), visually shifting its inflection point
slightly earlier relative to its asymptote compared to the WNT
Chapman-Richards curve. The Logistic model curves for both
populations exhibit their characteristic symmetric inflection
around the midpoint, which appears less representative of the
data spread shown in Figure 3.
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Figure 3. Height—age growth model curves of F. variegata
for the WNT and C-P populations

Approaching the asymptote (ages 5—10 years), all models
converge towards their respective asymptotes (a), but at
different rates. The von Bertalanffy model, with its very small
m parameter, approaches its asymptote (which is notably
higher than other models) most gradually, whereas the
Logistic model tends to level off more abruptly after its
inflection. The best-performing models (Weibull for WNT,
Chapman-Richards for C-P) show a steady, realistic
deceleration, which is ecologically realistic for a light-
demanding species approaching canopy closure and resource
limitation [37].

The parameter a is defined in some literature [38, 39] as the
maximum value attainable by the dependent variable,
influenced by site productivity. Therefore, when modeling the
relationship between peak height and age, o is set as the
maximum value of the response variable observed in the data.
In this study, a represents the maximum achievable height at
the study site. For the WNT population, a ranged from 9.831
to 12.193 m across the five models, while for the C-P
population, it ranged from 9.068 to 10.623 m (Table 4).

The shape and rate parameters (B, k, and m) control how
quickly growth occurs and when the maximum growth rate
occurs. The parameter f§ is a shape or scaling parameter that
influences the inflection point, or when the maximum growth



rate occurs, and sometimes the initial size relative to the
asymptote. In the Logistic model (Table 4), the WNT
population (B = 7.260) reached the inflection point earlier than
the C-P population (f =9.715), meaning the C-P trees reached
the maximum growth rate later. In the Chapman-Richards
model, f <1 (here, 0.668—0.787) affects curvature, and a lower
B often indicates a longer, slower growth phase after the
inflection point. For the von Bertalanffy model, a value of 8
near o (11.871 versus 10.930 in the C-P model) indicates that
inflection occurs earlier in the WNT model for height growth.
A higher B value in the logistic model (C-P > WNT) aligns
with a later inflection point in the C-P population.

The parameter k is generally related to the intrinsic growth
rate, or the rate at which the tree approaches its asymptotic
height. Biological meaning: a larger k value indicates faster
early growth and an earlier slowdown. k values are generally

higher in C-P models than in WNT models (e.g., 0.289 vs.
0.341 in the Chapman-Richards model) (Table 4), indicating
slightly faster early growth in C-P.

The parameter m is an additional shape parameter that
allows for greater flexibility in the location of inflection
relative to the asymptotic height. In the Chapman-Richards
model, parameter m is 0.587 and 0.552 for WNT and C-P,
respectively (Table 4). This means that inflection occurs
earlier in the C-P model than in the WNT model.

Differences between WNT and C-P populations in these
parameters suggest different growth strategies or
environmental adaptations. C-P shows somewhat faster early
growth (higher k) but may reach inflection later in age (higher
B in Logistic), whereas WNT inflects at a greater proportion
of final height (Chapman-Richards m closer to 0.6).

Table 4. Parameter estimates and reliability values for each height growth model of F. variegata for the WNT and C-P

population
Model o B k m R? Adjusted R®? RMSE AIC Sig. Rank
Height/WNT
Chapman- 10.669  0.668  0.289 0.587 0.881 0.880 1.034 165.556 2
Richards *k
Weibull 10431 9556  0.123 1329 0.881 0.881 1.034 164514 o 1
von Bertalanffy ~ 12.193  11.871  0.158 1.293E-04  0.880 0.879 1.039  187.340 o 4
Gompertz 10237 2415 0.384 - 0.880 0.880 1.036  171.816 o 3
Logistic 9.831 7260 0.629 - 0.877 0.877 1.049  231.195 o 5
Height/C-P
Chapman- 9.615 0.787 0341 0.552 0.822 0.822 1288  1209.346 1
Richards *k
Weibull 9.411 9.021  0.137 1377 0.822 0.822 1289 1209.969  ** 2
von Bertalanffy ~ 10.623 10930  0.197  1.04E-04  0.820 0.820 1295 1233732 ** 4
Gompertz 9.305 2.856  0.461 - 0.821 0.821 1291 1218296  ** 3
Logistic 9.068 9.715  0.742 - 0.816 0.816 1.308  1280.063  ** 5

** Significant at p < 0.01

All five models successfully fitted the height data curves in
both populations over time, showing high coefficients of
determination and adjusted coefficients of determination (R?
and adjusted R? = 0.816-0.881) for both the four- and three-
parameter models. This indicates that more than 81% of the
variation in tree height can be explained by tree age, with the
remaining variation attributed to other factors. The RMSE for
the WNT population ranged from 1.034 to 1.049, while the C-
P population was higher, between 1.288 and 1.308 (Table 4).
In general, the WNT population's height data had a smaller
standard deviation than that of the C-P population (Table 1).
These two metrics are closely related, as both measure the
dispersion of data relative to the mean: standard deviation
reflects the spread of the original data, while RMSE indicates
the dispersion of prediction errors relative to the true values.
All models tested had p-values < 0.01 (Table 4), indicating a
less than 1% probability that the model outcomes occurred by
chance. In other words, tree height growth models can be used
with high confidence for prediction. Furthermore, the
parameters of the nonlinear models had a significant effect on
the response variable—tree height—in this study.

Based on overall model performance criteria, the Weibull
model was identified as the best-fitting model for the WNT
population, whereas the Chapman-Richards model performed
best for the C-P population (Table 4). In contrast, the Logistic
model ranked lowest in predictive accuracy for tree height in
both the WNT and C-P populations. A separate study [1] found
that the Gompertz and Meyer growth models were the most
accurate for predicting teak (Tectona grandis) height in
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Nigeria. The selection of the best model is influenced by
species-specific traits and site characteristics.

3.2.2 Diameter curve

The diameter based on DBH is widely used in tree
measurements to estimate tree volume, assuming the base area
is circular [19]. The diameter-age curve is presented in Figure
4. The shape of the diameter growth curve is similar to that of
the height growth curve—sigmoidal.

Early growth phase (ages 1-3 years), predicting time to
merchantable size. The early DBH growth trajectories are
crucial for scheduling the first thinning or assessing wood
quality in short-rotation cycles. The Logistic model again
predicts the most rapid initial diameter expansion. However,
the Weibull model (best-fit for both populations) depicts a
much slower start, particularly for C-P (k=0.035). This
profound difference has direct operational consequences:
using the Logistic model would predict an earlier attainment
of a minimum pulpwood or pole diameter than the Weibull
model, potentially leading to premature and uneconomic
harvest plans [11].

In the mid-late rotation phase (ages 4-10 years), the
dominance of the near-linear increment is observed. This is the
most critical phase for volumetric yield accumulation. The
most striking visual feature is the near-linear growth trajectory
of the Chapman-Richards model, a direct mathematical
consequence of its shape parameter m being extremely close
to 1 (0.963 for WNT, 0.974 for C-P). In growth analysis, an m
value of 1 in the Chapman-Richards function simplifies to a



monomolecular curve with no inflection, explaining the linear
appearance [39]. This indicates that, according to this model,
diameter increment remains strong and relatively constant, a
highly desirable trait for sustained biomass production. The
Weibull model curves also show strong, sustained increases
but with a gentle, concave-down shape, indicating a very slow
decline in growth rate. This pattern suggests that radial growth
in F. variegata is highly persistent and does not exhibit a
classic, pronounced sigmoidal slowdown until very late,
aligning with the growth strategy of fast-growing pioneer
species that prioritize structural expansion [40]. The von
Bertalanffy model is a clear outlier, its curve failing to capture
the data's central tendency and predicting an implausibly high
asymptote, which corroborates its consistently poor statistical
ranking (highest AIC).
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Figure 4. DBH-age growth model curves of F. variegata for
the WNT and C-P populations

The parameter a represents the maximum average DBH that
the population approaches. In the WNT population, it ranges
from 17.774 cm (Logistic) to 22.227 cm (von Bertalanfty), and
in the C-P population, it ranges from 16.532 cm

(Weibull/Logistic) to 23.323 cm (von Bertalanffy). Consistent
models (Chapman-Richards and Gompertz) suggest that the
WNT population reaches a slightly larger DBH than the C-P
population (18.528 cm vs. 17.417 cm), indicating potentially
better growing conditions or genetic potential at WNT.

In the Logistic model, the parameter B is the inflection age,
which is equal to In(B)’k. For the WNT population,
In(10.391)/0.683 =~ 3.47. For the C-P population, B =
In(15.802)/0.742 = 3.68. In the Gompertz model, inflection
occurs at age = In(In(B))/k. Higher B values delay inflection.
For the Chapman-Richards model, a very small B value
(approximately 0.09-0.105) indicates that the curve starts very
low relative to o and has a long, slow initial phase. For the
Weibull and von Bertalanffy models, B near a indicates that
inflection occurs after a delay. The C-P model generally has a
slightly higher B than the Logistic and Gompertz models,
meaning inflection occurs at a later age.

For the Chapman-Richards model, the inflection point is the
parameter m, which is the proportion of o = m"('™. For the
WNT model, m = 0.963 showed that the inflection point
occurred at ~0.963%, which is greater than 90% of a. This
indicates a very late inflection point relative to the final size.
For the C-P model, m = 0.974 showed that the inflection point
occurred at >95% of a, meaning it occurred even later. These
results suggest that DBH grows slowly for the curve, with the
maximum growth rate occurring very close to the asymptote.
For the Weibull model, m > 1 (1.738 for WNT and 2.173 for
C-P), and a larger m reflects a later inflection point. The C-P
model seems to have a later inflection point and a slightly
smaller asymptotic DBH, possibly due to site conditions or
genetic resources. The WNT curve reaches a larger DBH
asymptote and may have an earlier inflection point, indicating
better growing conditions for diameter development.

All five models fitted the diameter data well in both
populations over the time series, with high coefficients of
determination and adjusted coefficients of determination (R?
and adjusted R? = 0.764-0.767) for both the 4- and 3-
parameter models. This indicates that more than 76% of the
variation in diameter can be explained by tree age, with the
remaining variation attributed to other factors. The RMSE was
relatively high in both populations (RMSE = 2.834-2.870).
Since RMSE squares the differences, it gives greater weight to
larger errors, making it more sensitive to outliers. Similar to
the height models, all diameter growth models showed
statistical significance with p < 0.01 (Table 4). Therefore, the
tree diameter growth models can be used with high confidence
for prediction purposes.

Table 5. Parameter estimates and reliability values for each DBH growth model of F. variegata for the WNT and C-P population

Model a B k m R? Adjusted R? RMSE AIC Sig.  Rank

DBH/WNT

Chapman-Richards 18.528 0.105 0.402 0.963 0.767 0.766 2.854 4128.863 sk 2

Weibull 17.945 16.428 0.071 1.738 0.767 0.767 2.853 4128414 ok 1

von Bertalanffy 22.227 23.342 0.163 2.032E-08 0.764 0.764 2.870 4150.904 ok 4

Gompertz 18.477 2.974 0.412 - 0.767 0.767 2.853 4126.726 *x 1

Logistic 17.774 10.391 0.683 - 0.766 0.766 2.859 4134.583 ** 3
DBH/C-P

Chapman-Richards 17.417 0.090 0.412 0.974 0.764 0.764 2.839 4129.424 sk 3

Weibull 16.532 15.145 0.035 2.173 0.765 0.765 2.834 4123.018 ok 1

von Bertalanffy 23.323 24.788 0.129 1.54E-08 0.760 0.759 2.867 4168.56 *x 4

Gompertz 17.379 3.544 0.419 - 0.764 0.764 2.838 4126.934 *x 2

Logistic 16.602 15.802 0.742 - 0.765 0.765 2.835 4122.503 ** 1

** Significant at p < 0.01
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Based on model goodness-of-fit criteria, the Weibull and
Gompertz models were the best for predicting tree diameter in
the WNT population, while the Weibull and Logistic models
performed best in the C-P population. In contrast, the von
Bertalanffy model ranked lowest in both the WNT and C-P
populations (Table 5). A previous study also found that the
Gompertz, von Bertalanffy, and Chapman-Richards models
performed well for predicting diameter growth in sungkai
(Peronema canescens Jack) [19].

3.2.3 Differences in growth models between populations

The difference in growth models between the WNT and C-
P populations is likely due to differences in genetic adaptation
associated with their origin, as stated in studies by Klop¢i¢ et
al. [37] and Wondimneh et al. [41]. The geographic origin of
tree seed sources strongly influences tree growth due to
genetic adaptations to local climates, soils, and elevations.
This leads to differences in height and diameter when planted
elsewhere. The results of the study [26] also indicate that the
WNT population has a higher coefficient of additive genetic
variation (CV,) than the C-P population. CV 4 is an indicator
used to assess the long-term evolution of a trait and its
potential for adaptation under changing environmental
conditions. Thus, the WNT population is better adapted than
the C-P population. This is evident in the optimal height
growth models for the WNT (Weibull) and C-P (Chapman-
Richards) populations. The maximum value (o) of WNT tree
height is greater than that of C-P, at 10.431 m and 9.615 m,
respectively. Similarly, the maximum value (a) of the WNT
tree diameter is greater than that of the C-P population for the
best diameter growth model of the WNT (Weibull) and C-P
(Weibull) populations, namely 17.945 c¢cm and 16.532 cm,
respectively (Table 5).

3.2.4 Biological implications of the growth model

Each species has a different biological growth pattern
influenced by its life strategy (shade-tolerant vs. light-
demanding) [37], biomass allocation [40], response to the
environment [42], early growth dynamics (juvenility phase),
and rate of approach to the asymptote [37]. Therefore, an
empirical model that is suitable for one species is not
automatically suitable for another species. For F. variegata,
the growth pattern shows a slow start (lag phase), strong
acceleration in middle age, and then a more gradual approach
to the maximum value. This pattern is very consistent with
Weibull or Chapman—Richards.

All sigmoidal models have asymptotic parameters (o),
theoretical maximum height, and diameter. The implication is
that different models produce different predictions of a,
thereby affecting estimates of optimal harvest age, rotation, or
long-term volume predictions, as well as affecting genetic
rankings, because different families may approach the
asymptote at different rates.

Meanwhile, the inflection point is the age at which
height/diameter growth reaches its maximum rate. The
implication for F. variegata, for which Weibull/Chapman-
Richards was selected as the best model, is that this model
shows asymmetrical growth, which means that the maximum
growth phase occurs earlier. This is important for determining
genetic selection age and rotation.
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3.3 Implications for breeding programs and plantation
management of F. variegata

3.3.1 Breeding programs: Accelerating selection

A primary challenge in perennial tree breeding is the long
generation time. Early selection—predicting mature trait
performance from measurements at a juvenile age—is
essential to accelerate genetic gain [6, 43]. The fitted nonlinear
models provide the precise mathematical framework to
implement this strategy.

The strong correlation between tree height and DBH allows
selection based on just one trait—such as diameter—since
diameter is highly correlated with height. This approach can
save time and resources during measurement and selection.
Using diameter as the primary selection trait can lead to a dual
response by also improving tree height due to the strong inter-
trait relationship. In indirect selection, it is important to choose
a trait that is easier or more cost-effective to measure while
still achieving improvements in other related traits. Indirect
selection is feasible when the two traits share a high genetic
correlation [6]. In the case of F. variegata, the genetic
correlation between height and diameter is strong, indicating
that selecting for diameter will positively affect tree height.

Accurately modeling height growth is essential for
constructing growth curves and estimating the optimal age for
selection. One of the main challenges in forest tree breeding is
the lengthy selection cycle, which can span several years due
to long rotation periods [43]. Growth models can support the
development of age—age correlation models for estimating
genetic parameters, enabling early selection [44] and thereby
accelerating the breeding cycle.

For the WNT population, the Weibull height model
indicates the rapid growth phase concludes around age 2-3
years (inflection point ~2.1 years). Therefore, measuring and
selecting superior genotypes at age 3-4 years is recommended.
At this age, tree rankings for height are largely stabilized,
allowing the prediction of mature (age-10) performance with
high confidence. This approach can reduce the selection cycle
by 6-7 years, significantly accelerating genetic gain per unit
time [4]. Breeders can apply these population-specific models
to create early selection indices, weighting early height or
DBH based on their genetic correlation with target mature
volume.

3.3.2 Plantation management: Predicting yield and scheduling
operations

For silvicultural management, the models enable dynamic
yield forecasting. By integrating the best population-specific
models for DBH and height (e.g., Weibull for H and Gompertz
for DBH in WNT) into a standard tree volume equation,
managers can project stand volume at any age. For example, a
WNT plantation with 340 trees/ha at year 10 is estimated to
yield approximately 41 m*ha. Furthermore, the DBH model
parameters reveal that radial growth is sustained and near-
linear for most of the rotation (inflection >90% of a). This
informs critical interventions: a first thinning at age 3-4 is
advised to release future crop trees precisely as height growth
slows and resource allocation shifts to maximizing their
diameter increment during the long linear growth phase [13].
Finally, comparing the mean annual increment curves derived
from these yield projections for each population will identify
the site-specific rotation age that maximizes volumetric yield,
providing a scientific basis for harvest scheduling.



4. CONCLUSIONS

The main conclusions of this study are as follows: (1) Tree
height and diameter are very strongly correlated, with
coefficients of determination (R?) of 0.921 for the WNT
population and 0.863 for the C-P population. This is especially
valuable for breeding programs, where selecting for diameter
traits can positively influence height traits; (2) The Weibull
model is the best for estimating tree height parameters in the
WNT population, while the Chapman-Richards model
performs best for the C-P population; (3) For tree diameter
estimation, the Weibull and Gompertz models are most
suitable for the WNT population, while the Weibull and
Logistic models are best for the C-P population. The use of
different models for the WNT and C-P populations
underscores the critical need for adopting population-specific
approaches in forest breeding and management programs.
Future research should validate these models across diverse
sites and incorporate stand density competition factors to
enhance their general applicability for plantation management.
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