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The demand for medicinal herbs, especially Curcuma longa (Turmeric), has surged because
to the COVID-19 pandemic, with study increasingly depending on AYUSH-based therapies.
India, a prominent producer of Curcuma longa, is witnessing a reduction in crop yield due
to climate factors. This requires early disease diagnosis for both veterinary and therapeutic
applications. Deep learning, an advanced image-based object detection method, attains
100% accuracy on three disease datasets: leaf blotch, Colletotrichum leaf spot, and
Cercospora leaf spot images. Three varieties of Deep Learning networks, SqueezeNet,
GoogLeNet, and ResNet-50, are employed for parameter training, optimization techniques,
and vector distance methodologies. The experiments demonstrated that all three Deep
Learning techniques attained 100% training accuracy over many instances. The total
performance of ResNet-50 with SDGM and ADAM surpassed that of SqueezeNet and
GoogLeNet. GoogLeNet is recommended to surpass SqueezeNet in the majority of
instances. The research underscores the necessity for enhanced training and validation

techniques to attain elevated training accuracy in Curcuma longa.

1. INTRODUCTION

In the current global climate change scenario, we prefer
technology-based solutions for the highest crop yielding rate.
Current advanced technocratic approaches such as Artificial
Intelligence and IoT are two popular areas that help traditional
agriculture practices for food security and health informatics.
Especially agriculture-based countries like India, China, the
USA, and Brazil need efficient, smart mechanisms for
sustainable food and medicinal production. Promoting health
and well-being is identified as one of the seventeen global
goals of the 2030 Agenda for Sustainable Development [1], as
stated in Sustainable Development Goal (SDG) 3 of the United
Nations. SDG #3. which pertains to health aims to establish
universal health and well-being [2]. This includes a resolute
dedication to eliminating epidemics of infectious diseases
such as AIDS, tuberculosis, and malaria by the year 2030.
Furthermore, it strives to establish Universal Health Coverage
(UCH) and guarantee universal access to safe and efficacious
vaccines and medications [3].

It is essential to support vaccine research and development
and provide affordable medication access for this process to
function. To achieve SDG3, currently, there is a need to
introduce advanced technological practices for higher
medicinal crop production. So far, many researchers and
technocrats invented smart technology for easy agriculture
practices such as precision agriculture, Crop Health Analysis,
Climate-smart advisories, Yield forecast, Crop Damage
Assessment, Supply Chain Management, Seed Production,
Agro-Big Data Analytics, and smart farming practices. In
addition to natural disasters and irregular weather patterns,
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medicinal plant diseases are another major cause of
insufficient medicine production in the world [4]. The World
Health Organization reports that 80% of the global population
uses botanical remedies to fulfill at least a portion of their
fundamental healthcare needs. Approximately 21,000 plant
species have the potential to be utilized in medicinal
applications, per the WHO [5]. It is a known fact that India and
China largely depend on herbal treatment. Recently the Indian
Govt. has proposed the concept of ‘Integrated Medicine’,
where the Allopathic and AYUSH departments will work
together to provide the best treatment that can be offered in
one place [6]. At present the world is moving towards the
usage of herbal medicines due to the less side-effect.
Moreover, herbal medicines have become very popular in
recent times due to wide usage in the treatment of COVID-19
(SARS-CoV-2). Especially the usage of Phyllanthus emblica,
solanum indicum, Solanum surattense, Terminalia bellirica,
Ficus religiosa, Piper longum, Curcuma longa Alhagi
camelorum etc., are a few herbal medicinal plant species that
are very frequent in COVID-19 treatment [7]. Among all other
medicinal plants, Curcuma longa (Turmeric) is one of the
herbal medicines that is used extensively in antibiotic
preparation [8]. Cancer, rheumatoid arthritis, dermatitis, skin
cancer, wound healing, urinary tract infections, and liver
diseases are just some of the things that it can help with,
Curcuma longa (Turmeric) is also employed in the treatment
of these conditions [9, 10]. India is the leading producer and
exporter of Curcuma longa (Turmeric) globally and shares
86% of global production. Among the Indian states, the state
of Telangana stands first place for the Curcuma longa
(Turmeric) [11, 12]. The state of Andhra Pradesh is one of the
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foremost contributors to the overall production of Curcuma
longa (Turmeric) in the country after Telangana state. Among
the 24 finest varieties in the countries, the Duggirala variety
has a special purpose with rich medicinal values. Figure 1
shows the production and average price of the Duggirala
variety in the state of Andhra Pradesh. The statistical results
show the demand for Curcuma longa (Turmeric) is very high
irrespective of the production. The production of Curcuma
longa (Turmeric) is reduced due to COVID-19 on the global
export and import of goods and unfavorable climatic
conditions. This study focuses on the early detection of
diseases in Curcuma longa leaves. This study aimed to
determine the most effective Deep Learning (DL) training
network that can achieve 100% accuracy when applied to the
disease dataset of Curcuma longa (Turmeric- Duggirala
variant). The collection consists of photographs depicting leaf
blotch, Colletotrichum leaf spot, and Cercospora leaf spot. The
deep learning mechanism is one of the most advanced
technologies that can accurately identify items based on how
they appear in photographs. Two stages are included in the
deep learning approaches, which are training and validation. It
is generally accepted that the impact of the correctness of the
data training would be reflected in the validation metric, which
is known as the mean correctness Precision (mAP). For the
most part, when the accuracy of the training is lower, the
validation accuracy scores are significantly lower. Therefore,
achieving a training accuracy of one hundred percent is a
challenging challenge for increased mAP. Typically, the
performance of the training method is categorized into Gain
and loss functions. When the Gain achieves 100% accuracy, it
enables the classifier to identify objects with greater
confidence levels. When working with smaller datasets that
are balanced, it can be especially challenging to determine the
appropriate values for training parameters, such as the learning
rate and the number of epochs. This study also examined the
most effective training optimizers for training the smaller
diseased Duggirala Curcuma longa (Turmeric) leaf dataset,
including Stochastic Gradient Descent (SGDM), Root Mean
Squared Propagation (RMSProp), and Adaptive Moment
Estimation (ADAM), along with vector distance (L2Norm,
Global-L2Norm, and Absolute) to achieve higher levels of
accuracy.
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Figure 1. Duggirala turmeric variant production and average
price during 2017-2023

Data Source: AP-Turmeric yard, Duggirala

The present study investigated the optimal Deep Learning
(DL) training network for attaining 100% accuracy on the
illness dataset of Curcuma longa (Turmeric-Duggirala
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variation). The collection comprises photos of leaf blotch,
Colletotrichum leaf spot, and Cercospora leaf spot. Training
parameters such as Learning Rate, Epochs, Gradient
Threshold Method, etc., play a crucial role in object detection
for deep learning architectures. In most of the cases, the
dataset is segregated into 70% for training and 30% for testing.
During classification, the performance of the algorithm is
based on trained data by specifying a Gain function. The
nature of datasets is always dynamic and it is very difficult for
the researcher to identify the right parameters to train and
classify the datasets. Moreover, choosing the right parametric
values for higher classification training and classification is
always a challenging task. The discussion in more depth can
be found in the sections that follow.

Duggirala Curcuma longa (Turmeric) Dataset: A novel,
custom-balanced Duggirala Curcuma longa (Turmeric)
dataset collected 885 raw images that contain three classes of
diseased leaves, such as leaf blotch, Colletotrichum leaf spot,
and Cercospora leaf spot. Later dataset size was increased to
6,584 using pre-processing annotation techniques like image
flip, rotation etc. and generated with balanced classes. The
Duggirala Curcuma longa (Turmeric) Dataset is distinct and
has not been previously available.

* Higher Training Accuracy: The results produced a higher
training accuracy on smaller and balanced Duggirala Curcuma
longa (Turmeric) Dataset with limited classes by tuning hyper
parameters such as Learning rate, Epochs etc. This work
achieved improved accuracy by systematically adjusting the
hyperparameters of the optimizer and architecture.

 Impact of Optimizer on Training Accuracy: This work
presents fresh findings on the influence of an optimizer on
different widely-used deep learning approaches when applied
to smaller, balanced datasets. This task is particularly tough,
especially when dealing with damaged leaf data. This study
specifically examines the performance of optimizers,
including SGDM, RMSProp, and ADAM, in training neural
networks. Our findings indicate that utilizing the RMSProp
optimizer yields the highest classification accuracy among all
designs while using lower learning rates and higher epochs.

» Impact of Vector Distance Methods on Classification
Accuracy: This study presents a unique technical analysis by
combining deep learning architectures with hyperparameters
and optimizers on the Duggirala Curcuma longa (Turmeric)
Dataset concerning the vector distance methods (L2Norm,
Global-L2Norm, and Absolute) The study demonstrates the
effectiveness of this approach by achieving higher accuracies
on various common deep learning architectures and presenting
multi-dimensional results. Based on vector distance methods
the technical examination, defines that the ResNet-50 is the
most suitable deep learning architecture for smaller datasets
such as Duggirala Curcuma longa (Turmeric).

This work mostly concentrated on training-related concerns
exclusively. Training the dataset is crucial for attaining
superior test accuracy. The majority of research emphasizes
end classification accuracy; however, if lesser test accuracy is
achieved, a primary reason may be insufficient training
accuracy resulting from suboptimal optimizer selection and
hyperparameter configuration. Training accuracy is the
paramount idea essential for achieving superior categorization
in deep learning architectures. However, most research did not
tackle the problem of inadequate training concerns. This paper
examines training challenges with widely-used optimizers,
including SGDM, ADAM, and RMSProp.

The current study focuses on conducting a comprehensive



comparative analysis of deep learning architecture, optimizers,
and hyper-parameters to determine the most effective training
classification method, particularly for smaller datasets such as
Duggirala Curcuma longa (Turmeric), which is distinct. These
types of research are scarce in the data science literature,
which typically examines a broad variety of characteristics and
provides concise discussions. The current work just focuses on
training accuracy and does not address validation accuracy in
relation to the suggested dataset. Although the training
accuracy hits 100%, there is uncertainty on whether the test
accuracy can achieve 99%. The ultimate goal is to detect
diseases in the leaf dataset; hence validation is a crucial aspect
of the performance evaluation.

The subsequent sections of this study are structured as
follows. Background research in the fields of agriculture and
deep learning architectures is detailed in Section 2, early
disease detection and training issues, and a novel image
dataset of the Duggirala Curcuma longa (Turmeric) variant is
prepared and discussed in Section 3. Similarly, Section 4
describes the mathematical notations and assumptions
regarding explains details regarding methodology with the
mathematical representation of gradient methods like
RMSProp, ADAM, and L2 Regularization. Then section 5
describes the experimentation environment setup and section
6 explains the deep learning architecture. Then section 7
discusses the experiments of the models, Section 8 represents
the results. Similarly, Section 9 detailed the performance
evaluation metrics, then Section 10 represents the Anova test
for the optimizers and then discussion. Lastly, the paper is
summarized and suggests for best training classification
methods in conclusions.

2. RELATED WORKS

Early disease detection is one of the important research
areas, where researchers are trying to achieve 100%
classification accuracy in disease detection. Orchi et al. [13]
presented a detailed study on the Al and IoT approaches for
crop disease detection and the survey revealed 97% as the
highest classification accuracy. Thangaraj et al. [14] worked
the disease detection on the Tomato leaf disease dataset and
their investigation showed that 52% of present leaf disease
detection techniques classification accuracy is 90% and 48%
of present studies area less than 90%. The study also revealed
that AlexNet disease detection resulted in 98.6% classification
accuracy and also investigated on GoogLeNet (99.18%),
ResNet-50 (98.8%), Xception (98.13%), and VGGI16
(99.25%) as maximum classification accuracy. However, it is
observed that none of the deep learning architecture achieves
a cent percent accuracy. Math and Dharwadkar [15] used a
deep convolution network for early disease detection on grape
disease datasets and the classification model resulted in
99.34%. Naeem et al. [16] identified medicinal plant leaves
based on multispectral and textural characteristics using
machine learning; they obtained the following percentages:
98.40% for Catnip, 99.80% for Peppermint, 99.10% for Tulsi,
98.40% for Bael and 99.20% for Stevia, 99.90% for Lemon
balm. Arunaggiri Pandian et al. [17] have proposed disease
detection in medicinal plants using Convolutional Neural
Network (CNN) approaches such as ResNet101, InceptionV3,
and VGG16 and resulted in 97.32% classification accuracy by
InceptionV3 on the Ayur Bharat dataset. In collaboration with
the Central Council for Research in Ayurvedic Sciences
(CCRAS), and Indian Council of Medical Research (ICMR)
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the Ministry of AYUSH, and Gol, this CTRI Ayurveda
Dataset was compiled. Based on the Deep Herb dataset,
Roopashree and Anitha suggested an autonomous medicinal
plant identification system employing several neural network
approaches in computer vision and deep learning. The Deep
Herb contains 2515 leaf photos from 40 different Indian herb
species. The Deep Herb model learned by Xception and ANN
outperformed the research by 97.5% [18]. Kuricheti and
Supriya [19] examined the necessity and application of
intelligent agricultural technologies by detecting and
classifying turmeric leaf diseases via computer vision. Gogoi
et al. [20] constructed a novel Curcuma longa (Turmeric)
dataset for leaf detection. Chen et al. [21] applied a unique
AgriTalk technique on a Turmeric smaller dataset that predicts
the quantity of Bacillus based on modern IoT and machine
learning technologies with mean absolute percentage errors
(MAPES) ranging from 6.73% to 19.76%. Devisurya et al. [22]
used deep learning approaches like YOLOv3 methods and
Faster R-CNN with the VGG16 model on the turmeric dataset
for early disease detection and achieved 83.4% classification
accuracy. To obtain 100% accuracy the training parameters
must contain the Learning rate, Epochs, Gradient Threshold
method, batch learning method, and gain and loss of dataset
play a crucial role, where training parameters like the gradient
techniques, such as, ADAM, Root Mean Square Propagation
(RMSProp) and Stochastic Gradient Descent with Momentum
(SGDM) are widely used algorithms for mini-batch
processing.

3. DUGGIRALA CURCUMALONGA DATA SET

This study collects unique images of medicinal plant leaves
of Curcuma longa of Duggirala variant. The Curcuma longa
medicinal plant leaf dataset contains the Curcuma longa leaf
blotch, the Colletotrichum leaf spot, and the Cercospora leaf
spot. Three types of diseased leaves are gathered from the
field, and the images of Curcuma longa are divided into three
different classes. The Ayur Bharat and Deepherb is popular
Indian medicinal plants databases which is open soruce This
database establishes a comprehensive database encompassing
6,959 medicinal plants distributed across 28 states and 8 union
territories, detailing their phytochemical properties and
geographical distribution. It derives information from
traditional knowledge, geographical indications,
phytochemicals, and chemoinformatics.

The Ayur Bharat and Deepherb databases have limited
turmeric images, and the Duggirala variation is unavailable.
This study experiments on the innovative leave dataset
obtained during fieldwork at the Crop area and Turmeric
Board in Duggirala, Guntur District, Andhra Pradesh, India.
HD 1024x768 pixels are used in the experiment. Clean the
picture dataset for better categorization. Segmentation, picture
scaling, contrast improvement, color correction, noise
reduction, and feature extraction were used to preprocess the
dataset.

To improve the classification analysis, the current Curcuma
longa leaf dataset is analyzed using several color band indices
that enhance ambient light conditions for color correction.
Color band indices are commonly employed in crop image
processing studies and are calculated by assessing the ratio of
light intensity across different radiation bands. Light intensity
is often averaged throughout the entire image or a designated
segment of it.

The computation of the ratio of color band intensities



functions as a normalization step to adjust for variations in
ambient light conditions. This current Curcuma longa leaf
picture dataset is analyzed using multiple Excess Red Index
and Excess Green Minus Index (ERIEGMI) [23], Excess Blue
color index (EBI), Excess Red Index (ERI) and Excess Green
Index (EGI). ERI, EBI and EGI are improved the
Classification analysis for Curcuma longa leaf images dataset
samples.
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Figure 2. (A) Original image; (B) Flip (Horizantal); (C)

Rotate (-15°); (D) Rotate (15°); (E) Grayscale (15%); (F)

Saturation (25%); (G) Brightness (15%); (H) Blur (Upto
2.5px); (I) Noise (Upto 0.1% of pixels)

Mainly three categories of sick leaves are included.
Curcuma longa plant, popularly known as the Turmeric plant,
is particularly subject to three diseases that greatly harm its
rhizomes. The collection includes 6584 annotated photographs
of leaf blotch, Colletotrichum leaf spot, and Cercospora leaf
spot. The data is obtained using a high-resolution camera
(Canon EOS 5DS R with 50.6 megapixels) from a specific area
of land in Duggirala Mandal, Guntur District, Andhra Pradesh,
India. Subsequently, the data undergoes picture pre-processing
processes to create a dataset of superior quality. Pre-
processing eliminates unwanted distortions and boosts
important features necessary for the intended purpose. The
noise data eliminated from the raw photos, categorized by
class. In the production of the dataset, we utilize the following
pre-processing techniques: (i) Data Profiling: The Curcuma
longa dataset underwent profiling stages, which involved
analyzing the distribution of colors, sizes, brightness, and
shuffling. The open-source tool 'Data Gradients' is used to
examine the Curcuma longa dataset. The analysis focuses on
many criteria related to picture quality, such as convexity, fine
features, segments, brightness, color distribution, aspect
ratios, and resolution of leaf photographs. Figure 2 illustrates
the Augmented techniques together with their parameters,
while the distribution of three classes within the dataset,
indicating that the dataset consists of 885 raw photographs
classified into three categories, which were then increased to
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6,585 images after annotation. (ii) Data Cleaning: We
eliminated erroneous, corrupted, improperly formatted,
redundant, or unfinished photos of Curcuma longa from the
dataset. A total of 292 images of Leaf blotch were acquired,
with 18 photographs being excluded from the collection.
Similarly, I captured 305 shots of Colletotrichum leaf spot and
then removed 29 of them. The majority of the discarded
images were duplicates, while just a small number were found
to be blurry. Following the same pattern as the previous
instance, I gather a total of 288 photographs of Cercospora leaf
spot. However, I exclude 15 of them as they possess
inadequate resolution and brightness. We remove 62
anomalous data points from the original sample of 885,
resulting in a balanced dataset of 885 photographs [24]. (iii)
Balanced Dataset: Classifying balanced datasets yields much
higher accuracy and reduces bias compared to imbalanced
datasets. For the current research, a selection of 885 high-
quality photos of pests was meticulously picked and resized to
a resolution of 640 by 640 pixels in each category.
Subsequently, these images undergo amplification [25]. (iv)
Augmentation: Each pest class image undergoes a five-fold
augmentation process, which involves rotation (four times),
blurring (once), adding salt-pepper noise, and flipping (twice).
This results in a total of 6584 augmented images across all
three classes. The dataset is partitioned into three groups,
allocating 20% for validation, 10% for testing, and 70% for
training. The dataset distribution chart displays the distribution
of Curcuma longa (Turmeric) leaf disease classes, which
include three variants: Duggirala variation Leaf blotch (2192),
Colletotrichum leaf spot (2208), and Cercospora leaf spot
(2184).

Dataset

A total of 885 raw images of all classes were collected from
the field. Among collected Colletotrichum leaf spot image
took major portion (305) and followed by Leaf blotch (292),
Cercospora leaf spot (288). A Data Training experimentation
also conducted on imbalanced dataset and obtain 38 percent
training accuracy for Squeeznet,29 percent for GoogLeNet
and 42 percent for ResNet-50, when Hyper-parameters such as
Learning rate (0.01), Epochs (25), Optimizers is SGDM and
vector distance method is L2norm performs low accuracy with
imbalance dataset. So, the rest of the work is discussed only
on balanced datasets rather than imbalanced data set that
resulted poor accuracy for all three training networks

4. METHODOLOGY

The methodology comprises the popular deep learning
architectures SqueezeNet, GoogLeNet, and ResNet-50 to train
turmeric leaf data, which helps to attain higher testing
accuracy in early warning of diseases. With the addition of the
turmeric image dataset, the dataset has undergone a data
cleaning process. The dataset is separately subjected to a deep
learning architecture. Compute the training classification
accuracy by adjusting the training parameters, such as learning
rate, epochs, gradient threshold methods, and other parameters
as constants. Table 1 shows the Deep Learning Layer
Architecture  Comparative  Analysis of  SqueezeNet,
GoogLeNet, and ResNet-50.

By adjusting the parameters and altering the training
methods, we calculate the accuracy gain or loss values,
ultimately determining the training accuracy. Similarly, we



calculate and suggest all three architecture training accuracies,
aiming for the best accuracy and specified training parameter

values. Layered structure is shown in Figure 3.

Table 1. Deep learning layer architecture comparative analysis

SqueezeNet GoogleNet ResNet-50
S. No. Layer Name No. YN _No. YN _No. YN
1 Input 1 N 1 N 1 N
2 SoftMax 1 V 1 V 1 ol
3 Global Average Pooling 2D 1 S 1 S 1 \
4 Dropout 1 \ 1 \ 0 X
5 ReLU 26 N 517 N 48 A
6 Fully Connected 1 \/ 1 \/ 1 v
7 Max Pooling 2D 3 \ 14 \ 1 v
8 Convolution 2D 26 N 57 AN 530 A
9 Depth Concatenation 8 S 9 S 0 X
10 Inception 0 X 1 S 0 X
11 Flattening 0 X 0 X 1 \
12 Classification 1 S 1 \/ 1 v
13 Cross Channel Normalization Layer 0 X 2 S 0 X
14 Batch Normalization Layer 0 X 0 X 53 N
15 Addition layer 0 X 0 X 16 Y
: . .
TURMERIC LEAF DATA SET
v
SQUEEZENET conv RESNET-50
_comvt | s [ome )
96 Ej Inception (.14
maxpool/2 fire7 layer Size 224
X9 1X1 conv 512/2
384 3X3 conv 512
l P 1X1 conv 2048
3 fire8 | LRM Average 2X2 Pool \
fire3 Pool S
512 TXT+1v Size 112
maxpool/2
v v co‘r:v FC ‘ 2%z Poot
fire ureQ | GD L_J
1X1 conv 64
256 512 A 3X3 conv 64
maxpool/2 1X1 conv 256
v convi :g?: SoftMax
Activation Size 28 \
fi 1000
[—E global avgpool C' | FC 1000
256 LRCN I -
4 I Softmax 1X1 conv 12812
| fire6 I softmax OUTPUT 3X3 conv 128
1X1 conv 512
v Size 14
Training Training y .
Classification l Classification I 1X1 conv 256/2 m
3X3 conv 1256 Classification
v 1X1 conv 1024 v
| Accuracy l |

l Accuracy I

| Accuracy I
v

BEST
ACCURACY

Figure 3. Methodology of training issues to extract best classification accuracy using deep learning architectures
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5. ASSUMPTIONS AND MATHEMATICAL
NOTATIONS
Although we chose and adjusted the optimal

hyperparameters based on a uniform probability distribution
function (Epochs and Learning rate with equal intervals), the
final findings were accepted using the Poisson distribution to
suggest the most effective classifier.

5.1 SGDM

The SGDM algorithm exhibits the ability to oscillate in a
direction that is most direct to the desired outcome. This
oscillation can be mitigated through the incorporation of a
momentum term into the parameter update. SGDM has been
modified.

0141 =6, —aVE(O) +y(0, — 6,_1) (1

The symbol y represents the contribution to the current
iteration from the previous gradient step. Momentum training
is a method that may be used to determine this worth. Utilize
the SGDM input option under the training options and use
SGDM to train a neural network. The initial value for the
learning rate should be provided using the initial learning rate
training parameter. In addition, different layers and parameters
may have different learning rates specified. While using
SGDM with momentum, all parameters are learned at the same
pace. Through the use of learning rates that change according
to parameters and may automatically adapt to the loss function
being improved, other optimization techniques seek to
enhance network training.

5.2 RMSProp

The RMSProp calculates the moving average by
considering the square of each parameter gradient and then
averaging them.

v = Bovp—q + (1= B,)[VE(6)]? (2)

The moving average decay rate is shown as 2. There are
three standard decay rates: 0, 9, and 0,999. Averaging the
squared gradients over durations of 10, 100 or 1/(1-52) and
1000 parameter updates is required. By using the Squared
Gradient Decay Factor (SGDF) training settings, you may pick
2. This moving average is used by the RMSProp method to
normalize the updates of each parameter separately.

aVE(6,)

Joite

9L+1 = HL - (3)

where, each part is divided separately. A small constant € has
been added to prevent division by zero and it successfully
reduces learning rates for parameters with strong gradients
while enhancing learning rates for values with mild gradients.
While customization is possible via the Epsilon training
option, the default configuration generally functions
satisfactorily.

5.3 ADAM

The ADAM employs a parameter update method that bears
a resemblance to RMSProp (whereas it is derived from
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ADAM) and incorporates a momentum factor. The parameter
gradients and their squared values are monitored through the
utilization of an element-wise moving average.

my = pym_y + (1 = B)VE(E) “4)
v = Bovig + (1= B)[VE(6)]? %)

The Squared Gradient Decay Factor (SGDF) and Gradient
Decay Factor training parameters, respectively, let you choose
the 1 and f2 decay rates. Moving averages are used by
ADAM to change the network's settings as necessary.

am;

0141 =0, — N

(6)

Parameter adjustments can gain momentum in one direction
by employing a moving average of the gradient, provided that
the gradients remain equivalent over multiple iterations. A
significant portion of the gradient moving average is
consumed by noise, leading to a corresponding decrease in
parameter updates. One may specify through the utilization of
the Epsilon training option. For some issues, a value as large
as 1 is more effective than the default value, which is
frequently adequate. If you wish to train a neural network
using ADAM, the training choice for initial input is ADAM.
In addition, the ADAM enhancement as a whole incorporates
a method for reversing a bias that manifests itself during
training. Utilizing the initial learn rate training parameter,
configure the learning rate for every optimization technique.
Learning rates that are suitable for a given optimization
strategy are also dependent on how that rate influences that
strategy. It is also possible to specify distinct learning rates for
various layers and parameters.

5.4 Gradient clipping

The training process is characterized by instability and will
deviate significantly after a few iterations if the magnitude of
the gradient increases exponentially. A training loss that is
NaN (Not a Number) or Inf (Infinity) indicates a "gradient
explosion". Gradient pruning stabilizes training in the
presence of anomalies and at higher learning rates, thereby
mitigating the issue of gradient explosion. Gradient clipping
enhances the efficiency of network training while preserving
the correctness of the learned task. Norm-based gradient
clipping adjusts the magnitude of the gradient while
preserving its direction. The parameters '12norm' and 'global-
I2norm' in the Gradient Threshold Method refer to gradient
clipping techniques based on norms that partial derivative
exceeding the threshold is subjected to value-based gradient
cropping, leading to an arbitrary alteration in the gradient's
direction. Although the behavior of value-based gradient
clipping may appear counterintuitive, the network remains
stable even when changes are of a negligible magnitude. The
Gradient Threshold Method determines the absolute value of
the gradient by employing a value-based gradient reduction
strategy.

5.5 L2 regularization
An approach to mitigate overfitting involves incorporating

aregularization term into the loss function E(6) for the weights
Egs. (1)-(2). The weight decay term is also used in



regularization terms. The form of the loss function including
the regularization term is as follows:
Er(6) = E(6) + 1Q(w) (7
The regularization function Q(w) is denoted by where w
signifies the weight vector and A represents the regularization
factor (coefficient).

Qw) = %WTW

®)

6. DEEP LEARNING ARCHITECTURE

The study mainly focuses on popular SqueezeNet,
GoogLeNet, and ResNet-50 deep learning architectures that
result in 100 percent training classification accuracy.

6.1 SqueezeNet

SqueezeNet balances precision and simplicity, making it
ideal for mobiles and embedded systems with limited
resources. Fire modules—specialized convolutional layers
that combine 1 x 1 and 3 x 3 filters—set SqueezeNet apart.
This combination reduces parameters without sacrificing
accuracy, making it ideal for low-resource devices. It may
achieve excellent precision with a small fraction of the
processing resources of other convolutional neural networks.
SqueezeNet uses channel squeezing, a technology
breakthrough. By lowering the number of channels in the
model's convolutional layers, this method minimizes network
computational load while retaining accuracy. SqueezeNet
improves efficiency via channel squeezing, fire modules, and
deep compression.

6.2 GoogLeNet

The architecture-building inception module is GoogLeNet
main invention. Concatenated convolutional layers with
varying kernel sizes capture features of different scales in an
inception module. This parallelism lets GoogLeNet capture
fine-grained details and high-level information, making it
great at picture identification. Before applying larger
convolutional kernels, each inception module reduces the
computational cost by reducing dimensionality with 1 x 1
convolutions.

6.3 ResNet-50

ResNet50 has four main components: convolutional layers,
an identification block, and fully connected layers. The
identity block and convolutional block process and alter input
picture features extracted by the convolutional layers. The
final categorization uses fully connected layers. Max pooling
layers reduce feature map spatial dimensions while keeping
the most important characteristics after convolutional layers.
The identification and convolutional blocks comprise
ResNet50's core. The identity block simply applies
convolutional layers to its input. It then merges input and
output. This lets the network learn residual functions that
convert input to output. The convolutional block is similar to
the identity block, but it has a 1 X 1 convolutional layer to
reduce filters before the 3 x 3 layer. Fully connected layers are
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ResNet50's final component. The final classification falls
between these levels. The last fully connected layer output is
passed via a SoftMax activation function to generate class
probabilities.

In all three architectures a few are common layers such as
Input, SoftMax, Global Average Pooling 2D, ReLU, Fully
Connected, Max Pooling Layer 2D, Convolution 2D, and
Classification layers.

6.4 Input layer

The input layer is the most common in all three deep
learning architectures and consists of only one. The principal
function of the Input layer is to receive RGB images supplied
by artificial input neurons in the input layer of a neural
network. This data is processed by artificial neurons in
subsequent layers.

6.5 SoftMax layer

SoftMax is operationalized just before the output layer via
a neural network layer. The number of nodes in the SoftMax
layer should be equivalent to that of the output layer. It is
primarily utilized during the classification of training objects
and is an activation function. As that of the Input layer, the
SoftMax layer count is also only one in all three architectures.

xi

SG) = 5o

j=1 e’ ©)
where, x is the vector of raw output from the neural network,
the e value is 2.718 and i represents the output vector of x with
a predicted probability of ith class.

6.6. Global average pooling 2D layer

To perform down sampling, the 2-D global average pooling
layer computes the mean of the input's height and width
dimensions using the integer factor method. Integer factor
down sampling is also known as compression. Integer factor
can be achieved by reducing high-frequency signal using a
low-pass filter and decimating the filtered signal at M. By
using the Finite Impulse Response (FIR) filter is efficient in
filtering to decimate Mth output for signal. Therefore, the FIR
nth out samples is articulated as:

y(n) = Xx-ox[nM — k] .h[k] (10)
where, x vector represents the down samples input signals and
h vector is impulse response signals of k length.

The layer pools over the spatial dimensions for 2-D picture
input comprises four dimensions they are single channel and
single observation with two spatial dimensions. Whereas the
dimensionality is different for a sequence of images, in
addition to the previous four dimensions time steps dimension
is added to existing data. The Global Average Pooling 2D
layer is common in all three deep learns architectures
represented only once in architecture.

6.7 Dropout layer

The Dropout layer plays a crucial role in setting input
elements to zero randomly and the probability value is 0.05 by
default.



Ep = 0.5(t — XiL, §;wil;)? (11)

Here ¢ represents time, [ is the input feature, w is weights
and ¢ is defined as the dropout rate, where the probability
equals 1 or zero.

The Dropout layer is presented only once in SqueezeNet and
GoogLeNet architectures and this layer is not available in
ResNet-50. In ResNet-50 the random values for input values
are not assigned as zero.

6.8 Rectified liner unit (ReLU) layer

ReLU layer's each input element is subjected to a threshold
operation, which is less than zero to zero. The layer's max
value, threshold value, and negative slope values are all larger
than or equal to zero in this instance. The ReL U function and
its derivative exhibit a monotonic nature. Negative input
results in the function returning 0. Positive input, however,
causes the function to return x. Thus, the spectrum of the
output is infinite to zero.

f(x) = max(0,x) (12)

All three (SqueezeNet, GoogLeNet and ResNet-50) contain
the ReLU layer and it is one of the important layers for
classification in deep learning architectures. The SqueezeNet
architecture contains 26 layers, then GoogLeNet comprises 57
layers and ResNet-50 has 48 layers.

6.9 Fully connected layer

In the FCL layer, the output size is fixed at two and the input
size is initialized to auto. Additionally, the values given for
Weight Learn Factor, Weight L2Factor, and Bias Learn Rate
Factor are all taken into account as 1, whereas only
BiasL2Factor is taken into account as 0. Weights Initializer
and Bias Initializer were then utilized to initiate the zeros and
Glo rot procedures, respectively. The mathematical
formulation denoted as Eq. (13) is utilized to represent a single
hidden layer of a feed-forward neural network.

y=o(xW)W, (13)
where, the hidden layer is linked to the output layer and the
input layer is linked to the connected layer. If there are N real-
valued features and L hidden units and M output units, then ¥
can be articulated as:

L
y= Z o((x, W) Wo, (14)
i=1

where, o is the activation function, x is the feature vector, ¥,
and W, are weights of the hidden layers. All features and
weights are represented by a set of real numbers with a specific
range (x € RN W, € RV¥L, W, € REX M),

6.10 Max pooling 2D layer
Padding, Pool Size, and Strides comprise the Max Pooling

2Dlayer. To maximize the number of steps taken when
training an integer or tuple of three numbers, a window size is
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utilized. By dividing (3, 3) by 3, the utmost value within a
pooling window of size 3 x 3 is obtained. An integer, a pair of
integers, or None after that. The worth of bounds. Defines
Padding as (0, 0, 0, 0) and Strides as (2, 2), and specifies the
distance covered by the pooling window during each pooling
step.

MaxPooling (X); j x 15
= MaxmnXis, + M, j.Sy + N,k (15)
where, X denotes the input, (7, j) the output indexes, k the
channel index, and (i, j) the horizontal and vertical stride
values. The pooling window is established by the filter sizes fx
and fy that are centered at the output index (i, j). The Max
Pooling 2D layer is common in all three training networks that
were incorporated with different ratios. The SqueezeNet
comprises of 3 layers and ResNet-50 contains only in this
layer, a 7 x 7 feature map is averaged down to a 1 x 1
dimension. Furthermore, this approach decreases the quantity
of trainable parameters to zero and improves the accuracy of
the top one by 0.6%. In contrast, GoogLeNet utilizes fourteen
layers of MaxPooling to achieve a higher degree of accuracy.
The extent of the feature filter in Google Net is determined by
the Inception layer, which is responsible for filtering the data
(56 x 56 x 1).

6.11 Convolution 2D layer

The Convolution 2D plays a crucial role in all three
architectures, where the filter size differs in each architecture.
For SqueezeNet, there are twenty-six layers, the filter size is
(3, 3), the stride is (2, 2), and the padding value is set to zero.
The GooglLeNet is 57, the filter size varies from (3, 3) to (7,
7), the padding value ranges from (0, 0) to (3, 3), and the stride
is (2, 2). The ResNet-50 consists of 53 convolution layers,
whose filter size ranges from (1, 1) to (14, 14), and padding
and stride values are (3, 3) and (2, 2). For instance, the basic
characteristics of the Convolution 2D Layer are the number of
strides (2, 2), the dilation factor (1, 1), the filter size (3, 3), and
the filters (64). Furthermore, we set the Weight2Factor Bias
Learn Rate Factor and Weight Learn Rate Factor to 1, the
remainder BaseLL.2Factor to '0', the Base Initializer to zeros,
and the Weights Initializer to glorot, among other weight
parameters. The convolution filters can be described. The
convolution can be defined as

(W — F +2P)

5 (16)

Conv =

6.12 Depth concatenation layer

Inputs with the same height and breadth are concatenated
along the channel dimension by a depth concatenation layer.
The concatenation layer is available only in SqueezeNet and
GoogLeNet.

6.13 Output layer

Only two leaf disease classes, Gemini and Keriting Mosaic
are present in the designated output layer for classification,
known as the classification layer. Cross entropy ex is used as
a loss function and the output size is two.



7. EXPERIMENTATION

This study examines three prominent Deep Learning (DL)
architectures: SqueezeNet, GoogleNet, and Bayesian Deep
Learning (BDL)-based ResNet-50. The experiments were

conducted using MATLAB 2022A, employing the "Uniform
Probability Distribution' function to optimize
hyperparameters, ranging from 30 to 50 epochs and 0.01 to 1
for learning rate, with equal frequency. The specific
characteristics of each architecture are delineated in Table 2.

Table 2. Training classification performance analysis of 12norm optimizer on Curcuma longa dataset

S. No. DL Net

Optimizer Lowest Accuracy Epochs Highest Accuracy Epochs Overall Average

51.35
51.35
48.65
51.35
51.35
48.65
973
48.65
51.35
48.65
48.65
48.65
48.65
48.65
48.65
48.65
48.65
48.65
973
97.3
97.3
51.35
51.35
51.35
100
100
48.65
48.65
51.35
48.65
48.65
51.35
48.65
48.65
48.65
48.65
100
100
100
100
100
100
94.59
89.19
89.19
89.19
89.19
89.19
89.19
89.19
89.19
89.19
89.19
91.89

SGDM

1 SQUEEZENET

ADAM

RMSPROP

SGDM

2 GOOGLENET

ADAM

RMSPROP

SGDM

3 RESNET-50

ADAM

RMSPROP

25 51.35 50 51.35
25 51.35 50 51.35
25 51.35 30 50.9
25 51.35 40 51.35
25 51.35 45 51.35
25 51.35 30 50.9
25 100 50 99.55
25 51.35 35 49.1

25 54.05 50 51.8
25 51.35 35 50.9
25 51.35 50 50.9
40 51.35 25 50

30 100 50 85.58
35 100 30 61.26
30 70.27 35 53.15
50 51.35 30 50

25 51.35 50 50.45
25 51.35 40 49.55
40 100 50 99.55
25 100 45 99.55
35 100 50 99.55
25 51.35 45 51.35
30 51.35 35 51.35
25 51.35 40 51.35
25 100 40 100

30 100 45 100

25 51.35 45 50.9
25 51.35 50 50.9
30 51.35 45 51.35
30 51.35 40 50.9
25 100 50 59.91
30 97.3 25 66.66
40 51.35 25 50.45
50 51.35 25 49.1

30 51.35 35 50.45
45 51.35 25 50.9
25 100 45 100

30 100 50 100

25 100 45 100

30 100 40 100

25 100 40 100

25 100 45 100

25 100 45 97.74
35 100 30 96.84
30 100 50 95.45
35 100 25 94.19
35 100 30 94.59
30 100 25 94.29
50 100 25 96.39
50 100 35 96.84
35 100 25 95.94
50 100 30 93.69
50 100 25 93.84
40 100 25 96.09

7.1 Image data acquisition

Images of plant leaf diseases were acquired from the
Customs Dataset, specifically from agricultural fields. The
images were subsequently categorized into three distinct

categories. The collection portrays Leaf Bloch and Spots, two
prevalent leaf diseases that have the potential to affect the
plant as mentioned above commodities. The diseases affecting
turmeric leaves were selected for the compilation due to their
global and Indian recognition, respectively. By default, each



image is converted to a unique JPG file, which adheres to the
RGB color space. A dataset has been collected from the field
of research Area in Duggirala, Andhra Pradesh. The dataset
contains three categories of disease leaf, which have leaf
blotch, Colletotrichum leaf spot, and Cercospora leaf spot,
respectively. The researcher collected private data from the
field of Duggirala, Andhra Pradesh.

8. RESULTS
8.1 SqueezeNet

The present study, carried out on turmeric leaf disease data,
was subjected to the SqueezeNet DL model. The training
results are concentrated by varying learning rates and ephods.
Two categories of results were presented in this section to
evaluate the performance of SGDM on SqueezeNet: LR values
were held constant while varying epochs, and vice versa. In
the experimentation, epochs were considered from 25 to 50,
with 5 as an interval, and LR ranges from 0.01 to 0.05 and 1.
Along with LR and epochs, the performance is measured on
three types of vector norms, such as L2Norm, Global-
L2Norm, and absolute value. In general, norms are used to
measure the error rate in the training process in DL model.

8.1.1 SGDM

Gradient descent is an iterative optimization technique that
seeks the optimal value (minimum or maximum) of an
objective function. Finding the model parameters that offer the
highest accuracy on both training and test datasets is the main
objective of gradient descent. The SDGM is a popular
optimizer that plays an important role in achieving 100 percent
training accuracy by adjusting bias and weights at each layer.
The learning rate, which is a hyperparameter, dictates the
extent to which the model is modified whenever the predicted
error causes a weight adjustment. Figure 4 describes the loss
and gain function of the training data based on the SGDM
optimizer.

Accuracy

Training ( smoothed)

Training

— -@ — Validation

Accuracy (%)
g
T T T 1T T3 T

8.1.2 Impact of learning rate on SGDM

A low learning rate may cause the algorithm to converge
slowly in SGDM, whereas a high learning rate may cause it to
overshoot the minimum. The performance of SqueezeNet on
SGDM based on LR at a constant rate in various epochs is
notably shown in Figure 4. SqueezeNet obtained 51.4 percent
training accuracy for all epochs and optimizers during LR at
0.02. However, the performance differed between optimizers
in varying epochs. However, as compared to the absolute value
and global L2 norm, the L2Norm optimizer is high. The
SGDM's L2Norm peak performance training accuracy is 51.4,
with 48.4 being the lowest.

In Global-L2Norm, where training accuracy is high (51.4)
and observed accuracy is low (48.5), the scenario persisted as
well. Comparing the Global-L2Norm to the absolute-value
optimizer in comparison to the other two in SGDM, the
performance of the absolute-value optimizer is minimal. Table
2 shows that the higher epochs, those between 45 and 50 are
gaining greater success in SGDM. Overall, SqueezeNet
SGDM training accuracy performance is rather poor, and
using L2Norm will increase accuracy at all levels of LR and
epochs.

8.1.3 Impact of epochs on SGDM

Secondly, to measure the performance of SqueezeNet on
SGDM while epochs are constant and varying for different
learning rates that vary from 0.01 to 0.05 and 1. The training
accuracy on the turmeric dataset is unstable, and it varies
according to the learning rate. The training accuracy of the
‘Absolute-Value’ optimizer showed a peak performance that
resulted in 100 percent. Then L2Norm and global-L2Norm
performance are almost similar, with 41.2 percent where
epochs are at 25 (Table 2). The training accuracy ranged from
48.1 to 55.8 when epochs ranged from 30 to 50, which is lower
(Table 2). Thus, it is interpreted that SDGM is very low when
epochs are constant. Also, the below results clearly state that
LR and Epochs have a lower impact on SDGM in SqueezeNet
on the current Turmeric Leaf Diseased dataset.

Loss

Training ( smoothed)
Training
— @ — Validation

Iteration

5
Iteration

Figure 4. Deep learning SGDM training data gain and loss graphs
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8.1.4 ADAM

The ADAM optimizer is incredibly effective when dealing
with complex problems involving numerous variables or data,
because it is a combination of SGDM and RSMPROP. As per
DL literature the ADAM performance is good compared with
rest. The presented results show the performance variance by
considering three vector norms i.e., L2Norms, Global-
L2Norm and Absolute-Value. The section focuses on the
ADAM optimizer in SqueezeNet performance analysis on
various vectors that yield higher training accuracy for the
Turmeric dataset.

8.1.5 Impact of learning rate on ADAM
The performance of ADAM is fairly good (training
accuracy = 100 percent) when the LR is at 0.01 for all epochs

that range from 25 to 50. However, a gradual decline is
observed in accuracy whenever the learning rate reaches from
0.02 to 1. So, it is interpreted that the ADAM results in higher
accuracy with a lower learning rate. It was observed that the
accuracy resulted differently for each vector norm, where the
L2 norm and absolute-value performance were higher than the
global L2 norm the global L2 norm for SqueezeNet using the
ADAM the ADAM optimizer (Table 2). Even though training
accuracy is achieved at a lower rate with a higher learning rate,
the absolute value and global L2 norm are stable while using
ADAM (SGDM). At the same time, the performance of
L2Norm varied from 100 percent to 48.5 percent. From this
observation, it is understood that lower learning isn’t suitable
for attaining higher training accuracy.
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8.1.6 Impact of epochs rate on ADAM

The Epochs have shown lesser impact in improving training
accuracy using SqueezeNet (ADAM). For all the six cases the
only at lower LR (0.01) has shown greater impact irrespective
of Epochs (Figure 5). At every epoch that ranges from 25 to
50 the training accuracy attained 100 percent. In all six cases
the L2Norm, Global-L2Norm and Absolute-value have shown

a similar behavior except in a few cases, which is negligible
accuracy. From the above two observations, it is concluded
that ADAM in more concern with the DL rather than Epochs
in SqueezeNet. The higher LR may result in overfitting
because of lower training accuracies in ADAM (SGDM). The
results on SqueezeNet (ADAM) interpret that lower LR is
efficient in training the Turmeric diseased dataset.

Table 3. Training classification performance analysis of globall2norm optimizer on Curcuma longa dataset

S.No. DL Net Optimizer Lowest Accuracy Epochs Highest Accuracy Epochs Over All Average
48.65 35 51.35 50 50.9
51.35 25 51.35 45 51.35
48.65 50 51.35 25 50.9
SGDM 48.65 30 51.35 45 50.9
48.63 25 51.35 50 50.4
48.65 30 51.35 50 50.4
97.30 35 100 50 99.1
48.65 30 51.35 50 49.55
48.65 50 51.35 25 50.9
! SQUEEZENET ADAM 48.65 25 51.35 45 50
48.65 30 51.35 35 50.9
48.65 50 51.35 30 50.45
48.65 25 100 50 81.53
48.65 25 100 30 58.1
48.65 25 91.89 45 61.7
RMSPROP 48.65 30 100 45 66.21
48.65 25 75.68 30 53.15
48.65 25 51.35 35 50
97.3 25 100 45 99.55
97.3 35 100 50 99.55
100 25 100 40 100
SGD 51.35 30 51.35 50 51.35
51.35 25 51.35 45 51.35
51.35 25 51.35 35 51.35
97.3 25 100 45 99.55
97.3 25 100 45 99.1
48.65 25 51.35 45 50
2 GoogleNet ADAM 51.35 30 5135 40 5135
48.65 30 51.35 50 50
51.35 25 51.35 40 51.35
48.65 25 100 45 74.32
48.65 35 100 50 67.56
48.65 50 51.35 45 50.9
RMSPROP 48.65 50 51.35 45 50.9
48.65 25 51.35 50 49.55
51.35 25 51.35 50 51.35
100 25 100 50 100
100 25 100 50 100
100 25 100 50 100
SGDM 100 25 100 50 100
100 25 100 50 100
100 25 100 50 100
100 25 100 50 100
94.59 30 100 50 99.09
89.89 40 100 45 95.49
3 ResNet-30 ADAM 89.19 50 100 25 95.69
91.59 35 100 25 95.49
89.19 40 100 25 94.89
89.19 45 100 30 95.94
89.19 45 100 25 93.69
89.19 50 100 25 93.69
RMSPROP 89.19 45 100 30 94.59
89.19 50 100 30 94.14
85.59 40 98.19 25 92.34

8.1.7 RMSProp
As stated in the literature, RMSProp is one of the popular
optimizers for deep learning architectures. The

experimentation results confirm that RMSProp performance is
much lower than SGDM and ADAM because the RMSProp
method is ineffective for mini-batches. when the learning rate



is insufficient. The experimentation was performed by
considering the mini-batch size of 128, which is lower, and
that resulted in lower accuracy.

8.1.8 Impact of learning rate on RMSProp

The LR impact is very limited on RMSProp in the SGDM
optimizer. But RMSProp will achieve higher training accuracy
rates (100%) at lower LR and higher epochs. Among the three
vector distance methods, Global-L2Norm performance is
good, followed by ‘Absolute- Value’ (Table 3). The overall
L2Norm training accuracy performance is lower for LR and at
epochs except in the first case (Table 4).

8.1.9 Impact of epochs rate on RMSProp

The change in epochs has shown a significant impact on
RMSProp (SqueezeNet). The results show that whenever there
is a change in epochs, that reflects on training accuracy. The
spikes are high in ‘Global-L2Norm and ‘Absolute-Value’
compared with ‘L2Norm’. The lower epochs have more
spikes, and at higher epochs, the accuracy is constantly
decreased according to LR. The spikes are more observed in
‘Absolute- Value’ and ‘Global L2Norm’. The ‘L2Norm’
performance training accuracy is lower and linear in most of
the cases and shows less accuracy compared with the rest.

8.1.10 SqueezeNet performance analysis

Tables 2-4 show the performance analysis of various
distance vector methods on epochs that vary from 25 to 50.
The SqueezeNet (SGDM-L2Norm) DL model results in the
lowest training accuracy at LR of 0.03 and 1 with 48.65, and
at all other LR rates, the training accuracy is moderate, i.c.,
51.35. The average training accuracy of SqueezeNet (SGDM-
L2Norm) on the Turmeric Leaf dataset is 51.2% for all epochs
(25-50). Next, the SqueezeNet (ADAM-L2Norm) DL model
resulted in the lowest training accuracy at LR = 0.04, 0.05, and
1 with 48.65 and a reported 100% where LR = 0.01 and epochs
= 50. The average training accuracy of SqueezeNet (ADAM-
L2Norm) on the Turmeric Leaf dataset is 58.7% for all epochs
(25-50). Next, the SqueezeNet (RMSProp-L2Norm) DL
model resulted in the lowest training accuracy at LR of 0.01-1
with 48.65 and reported 100% at LR 0f 0.01-0.02. The average
training accuracy of SqueezeNet (RMSProp-L2Norm) on the
Turmeric Leaf dataset is 58.33% for all epochs (25-50). Based
on the result statistics, it was concluded that the SqueezeNet
DL model showed a moderate performance on the Turmeric
dataset with three diseased classes.

It is also observed from RMSProp that the higher learning
and lower epoch rates resulted in very lower accuracy, which
is not suggestive of higher accuracy because of mini-batch
(overfitting) issues in SqueezeNet. Compared with the rest the
two optimizers presented, the RMSProp training accuracy is
much lower due to the failure to address the mini-batch
processing problems. It is also observed that RMSProp also
attains higher accuracies in a few cases where epochs are 35-
50 and LR is 0.01. The overall training performance (mean
epochs (25-50) and mean LR (0.01-1)) of SqueezeNet
(ADAM) is 7.5% higher than SqueezeNet (SGDM) and
0.037% higher than SqueezeNet (RMSProp). In addition,
SqueezeNet (RMSProp) training accuracy is 7.13% higher
than SqueezeNet (SGDM) when the ‘L2Norm’ vector distance
method is applied. The overall training performance (Mean
Epochs (25-50) and Mean LR (0.01-1)) of SqueezeNet
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(ADAM) is 7.67% higher than SqueezeNet (SGDM) and
3.29% lower than SqueezeNet (RMSProp). In addition,
SqueezeNet (RMSProp) training accuracy is 10.97% higher
than SqueezeNet (SGDM) when the ‘Global L2Norm’ vector
distance method is applied.

The overall training performance (Mean Epochs (25-50)
and Mean LR (0.01-1)) of SqueezeNet (ADAM) is 7.95%
higher than SqueezeNet (SGDM) and 7.65% lower than
SqueezeNet (RMSProp). In addition, SqueezeNet (RMSProp)
training accuracy is 15.61% higher than SqueezeNet (SGDM)
when subjected to the ‘Absolute’ vector distance method.

8.2 GoogLeNet

8.2.1 SGDM

Gradient descent is an iterative optimization technique that
seeks the optimal value (minimum or maximum) of an
objective function. Finding the model parameters that offer the
highest accuracy on both training and test datasets is the main
objective of gradient descent. The SDGM is a popular
optimizer that plays an important role in achieving 100 percent
training accuracy by adjusting bias and weights at each layer.

8.2.2 Impact of learning rate on SGDM

In SGDM, a low learning rate can result in slow
convergence of the algorithm, while a high learning rate can
cause it to exceed the minimum value. The performance of
GoogLeNet on (SGDM) based on the Learning Rate (LR) at a
consistent rate across different epochs. According to Table 4,
GooglLeNet achieved a training accuracy of 100 percent for
smaller epochs and optimizers when the learning rate (LR) was
set to 1. Nevertheless, there was a variation in the performance
of the optimizers in different vectors. However, as compared
to the absolute value and global L2 norm, the L2Norm
optimizer is elevated. The SGDM's L2Norm peak
performance training accuracy is 100, while the lowest
accuracy recorded is 50. The scenario of persistently low
observed accuracy (51.5) despite high training accuracy (100)
continued in Global-L2Norm. Figure 6 shows the varied
epochs performance under the constant learning rate.

Contrasting the Global-L2Norm optimizer with the
absolute-value optimizer. The absolute-value optimizer has
the lowest performance among the other two optimizers in
SGDM. The epochs between 45 and 50 exhibit higher levels
of success in SGDM. In general, the training accuracy
performance of Google Net SGDM is quite unsatisfactory.
However, by employing Global-L2Norm, accuracy can be
enhanced across all LR and epoch levels.

8.2.3 Impact of epochs rate on SGDM

Second, to assess Google Net performance on SGDM while
keeping epochs constant and varied for different learning rates
ranging from 0.01 to 0.05 and 1. The training accuracy on the
turmeric dataset is inconsistent and varies with learning pace.
The training accuracy of the 'Global-L2Norm ' optimizer has
reached a high of 100 percent. When Epochs are set to 25,
L2Norm and Absolute-value performance are nearly identical
(Table 3). When the epochs ranged from 30 to 50, the training
accuracy was 50 to 55.1. As a result, it is assumed that SDGM
is very low when epochs remain constant. Also, the results
show that LR and Epochs have a reduced influence on SDGM
in GoogLeNet on the current Turmeric leaf sick dataset.



Table 4. Training classification performance analysis of absolute value optimizer on Curcuma longa dataset

S.No. DL Net Optimizer Lowest Accuracy Epochs Highest Accuracy Epochs  Average
48.65 35 51.35 50 50.9
51.35 25 51.35 40 51.35
SGDM 51.35 30 51.35 45 51.35
48.65 25 51.35 45 50
48.65 30 51.35 50 50.45
48.65 35 51.35 25 50
100 25 100 45 100
48.65 25 51.35 40 50.45
48.65 30 51.35 50 50.45
1 SQUEEZENET ADAM
48.65 25 51.35 45 50.45
48.65 30 51.35 50 50.45
48.65 35 51.35 25 50
48.65 30 100 45 85.12
51.35 50 100 30 82.42
51.35 25 100 50 73.42
RMSPROP
48.65 50 100 30 58.1
48.65 25 51.35 40 49.1
48.65 30 51.35 45 49.55
100 25 100 50 100
100 30 100 45 100
51.35 25 51.35 40 51.35
SGDM
51.35 30 51.35 50 51.35
48.65 25 51.35 40 50.9
51.35 35 51.35 50 51.35
97.3 35 100 25 99.55
94.59 25 100 40 98.19
5 GoogLeNet ADAM 48.65 25 51.35 45 50
48.65 30 51.35 50 50.9
48.65 30 51.35 45 50
51.35 35 51.35 50 51.35
48.65 35 51.35 45 50.9
48.65 30 91.89 40 68.91
RMSPROP 48.65 25 51.35 40 50.45
48.65 25 51.35 35 49.55
48.65 30 51.35 45 50
48.65 25 51.35 45 50
100 30 100 45 100
100 25 100 35 100
SGDM 100 35 100 25 100
100 25 100 45 100
100 30 100 45 100
100 25 100 50 100
100 30 100 25 100
91.89 30 100 25 98.64
3 ResNet-50 ADAM 89.19 40 100 30 94.74
89.19 35 100 25 94.14
89.19 35 100 30 93.69
89.19 35 100 25 92.79
91.89 25 100 40 97.29
91.89 35 100 30 95.49
RMSPROP 91.89 50 100 25 95.04
91.89 35 100 25 96.39
91.89 35 100 25 94.74
89.19 35 98.19 30 92.49
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Figure 6. Performance analysis of GooglL.eNet on SGDM by making LR as constant

8.2.4 ADAM
The ADAM is one finest optimizer, where the training
accuracy is achieved 100%. the gain and loss training accuracy

shows the performance measure of the Turmeric Dataset using
ADAM.

8.2.5 Impact of learning rate on ADAM

ADAM exhibits a respectable level of performance
(training accuracy = 100 percent) across all epochs in the range
of 25 to 50 when the LR is set to 0.01. However, an accuracy
decline is observed gradually as the learning rate increases
from 0.02 to 1. Thus, it was deduced that ADAM yields greater
precision at a reduced learning rate. Additionally, it was noted

3515

that the accuracy outcomes varied among the vector norms,
with  absolute-value and global-I2norm  performance
surpassing that of L2Norm for GoogLeNet when the ADAM
optimizer was utilized (Table 3). Even though training
accuracy decreases as the learning rate increases, the
performance of the Global-L2Norm and absolute value remain
consistent when ADAM is utilized. Global-12norm
performance, on the other hand, varied between 51.5 and 100
percent. It is evident from this observation that lower learning
algorithms are not optimal for achieving higher training
accuracy. The performance of varied epochs with constant
learning rate is shown in Figure 7.
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Figure 7. Performance analysis of Googl.eNet on ADAM by making LR as constant

8.2.6 Impact of epochs rate on ADAM

ADAM exhibits a respectable level of performance
(training accuracy = 100 percent) across all epochs in the range
of 25 to 50 when the LR is set to 0.01. However, an accuracy
decline is observed gradually as the learning rate increases
from 0.02 to 1. Thus, it was deduced that ADAM yields greater
precision at a reduced learning rate. Additionally, it was noted
that the accuracy outcomes varied among the vector norms,
with  absolute-value and global-I2norm performance
surpassing that of L2Norm for GoogLeNet when the ADAM
optimizer was utilized.

Even though training accuracy decreases as the learning rate
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increases, the performance of the Global-L2Norm and
absolute value remain consistent when ADAM is utilized.
Global-I12norm performance, on the other hand, varied
between 51.5 and 100 percent. It is evident from this
observation that lower learning algorithms are not optimal for
achieving higher training accuracy.

8.2.7 RMSProp

According to the literature, one of the common optimizers
for deep learning systems is RMSProp. Because the RMSProp
method is unsuccessful for mini batches, its performance is
substantially lower than that of SGDM and ADAM.



8.2.8 Impact of learning rate on RMSProp

The LR impact is very limited on RMSProp in the SGDM
optimizer. But RMSProp will achieve higher training accuracy
rates (97.3%), at lower LR and higher Epochs (Table 4).
Among the three vector distance methods, Global-L2Norm
performance is Average, followed by ‘Absolute-value’ (Table
4). The overall global-L2Norm training accuracy performance
is lower for LR and at Epochs except in the third.

8.2.9 Impact of epochs rate on RMSProp

The change in Epochs has shown a significant impact on
RMSProp (GoogLeNet). The results show that whenever there
is a change in Epochs and that reflects on training accuracy.
The spikes are high in ‘Global-L2Norm and ‘L2Norm’
compared with ‘absolute value (Table 4). The lower epochs
have more spikes and at higher epochs, the accuracy is
constantly decreased according to LR.

The Spikes are more observed in ‘Absolute-value’ and
‘Global-L2Norm’. The ‘L2Norm’ performance training
accuracy is lower and linear in most of the cases and shows
less accuracy compared with the rest.

8.2.10 GoogLeNet performance analysis

The performance analysis of various distance vector
methods on epochs that vary from 25 to 50. The GoogLeNet
(SGDM-L2Norm) DL model results in the lowest training
accuracy as 51.35% at LR is 0.03-1and the rest of the all LR
rates the training accuracy is achieved high accuracy i.e.,
100%. The average training accuracy of GooglLeNet (SGDM-
L2Norm) on the Turmeric leaf dataset is 75.45% for all epochs
(25-50). Next, the GoogLeNet (ADAM-L2Norm) DL model
resulted in the lowest training accuracy at LR of 0.03-1with
48.65% and reported 100% where LR is 0.01-0.02 and Epochs
are between 40-45. GooglLeNet (ADAM-L2Norm) has
67.34% training accuracy on the Turmeric leaf dataset for all
epochs (25-50). GoogLeNet (RMSProp-L2Norm) DL model
has the lowest training accuracy at 48.65% (except at LR =
0.02) and 100% at LR = 0.01. GoogLeNet (RMSProp-
L2Norm) has 54.57% training accuracy on the Turmeric leaf
dataset for all epochs (25-50). GoogLeNet DL performed high
to moderate on the Turmeric dataset, according to the result
statistics. Total training performance (Mean Epochs (25-50)
and Mean LR (0.01-1)) of GoogLeNet (SGDM) is 8.10%
higher than ADAM and 12.76% higher than RMSProp.

The ‘L2Norm’ vector distance method improves
GoogLeNet (SGDM) training accuracy by 20.87% over
RMSProp. GoogLeNet (SGDM) has 8.63% training
performance (Mean Epochs (25-50) and Mean LR (0.01-1).
greater than GoogLeNet (ADAM) and 9.46% higher than
RMSProp. The ‘Global L2Norm’ vector distance approach
improves GooglLeNet (SGDM) training accuracy by 18.09%
over RMSProp. GoogLeNet (SGDM) outperforms
GoogLeNet (RMSProp) by 0.82% and 13.36% in training
performance (Mean Epochs (25-50) and Mean LR (0.01-1).
The ‘Absolute’ vector distance method improves GoogLeNet
(SGDM) training accuracy by 14.19% over RMSProp.

8.3 Resnet-50

8.3.1 SGDM

Gradient descent is an iterative optimization method that
finds the best value (the lowest or highest point) for a goal
function. The basic goal of gradient descent is to find the
model parameters that give the best results on both the training
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and test datasets. By changing bias and weights at each layer,
the SDGM is a well-known optimizer that is a key part of
getting 100% training accuracy.

8.3.2 Impact of learning rate on SGDM

In SGDM, a low learning rate may lead the algorithm to
converge slowly, whereas a high learning rate may cause it to
overshoot the minimum. Table 3 depicts the performance of
ResNet-50 on SGDM based on LR at a rate throughout many
epochs. ResNet-50 got 100 percent training accuracy for all
epochs and optimizers for each LR. The performance of
optimizers varied. However, the absolute value, global L2
norm, and L2Norm optimizers are all high. The SGDM's peak
performance training accuracy is 100. In SGDM; a low
learning rate may lead the algorithm to converge slowly,
whereas a high learning rate may cause it to overshoot the
minimum.

Table 3 depicts the performance of ResNet-50 on SGDM
based on LR at a constant rate throughout many epochs.
According to Table 3, ResNet-50 got 100 percent training
accuracy for all epochs and optimizers for each LR. however,
the performance of optimizers varied the absolute value,
global L2 norm, and L2Norm optimizers are all high. The
SGDM's peak performance training accuracy is 100. Figure 8
shows the performance of constant Learning Rate of ADAM.

8.3.3 Impact of epochs rate on SGDM

To assess the performance of ResNet-50 on SGDM with
constant and variable epochs for different learning rates
ranging from 0.01 to 0.05 and 1. The training accuracy on the
turmeric dataset is consistent and steady concerning the
learning rate.

The training accuracy of the 'Absolute-Value','global-
[2norm’, and'12norm'optimizer reached a high of 100 percent.
The performance of L2Nor, Global-L2Norm, and 12norm is
virtually the same to 100 percent where Epochs are 25-50.

When the epochs ranged from 30 to 50, the training
accuracy was 100, which is higher (Table 4). As a result, it is
assumed that SDGM is quite high when epochs remain
constant. Also, the results show that LR and Epochs have a
greater influence on SDGM in ResNet-50 on the current
Turmeric leaf-infected data.

8.3.4 ADAM

It is a combination of SGDM and RSMPROP, which makes
the ADAM optimizer very good at solving hard problems with
lots of factors or data. It has been said in DL writings that
ADAM works better than the rest. This part is all about the
ADAM optimizer in ResNet-50 and how well it works with
different vectors to make training more accurate for the
Turmeric dataset.

8.3.5 Impact of learning rate on ADAM

The performance of ADAM is fairly good (Training
accuracy = 100 percent for absolute value and global-12norm)
when the LR is at 0.01 for all epochs that range from 25 to 50.
But a gradual decline is observed in accuracy whenever the
Learning Rate reaches from 0.03 to 1. So, it is interpreted that
the ADAM results in higher accuracy with a lower learning
rate. It also observed that the accuracy resulted differently for
each vector norms, where global-L2norm and absolute-value
performance were higher than L2Norm for ResNet-50 using
the ADAM optimizer (Table 2). Even though training
accuracy resulted at a lower rate with a higher learning rate,



the performance of Absolute-value and Global-L2 Norm
resulted is stable while using ADAM. At the same time, the
performance of global-12Norm varied from 100 percent to

89.19 percent. From this observation, it is understood that
higher learning rates aren’t suitable for attaining higher train
accuracy.
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Figure 8. Performance analysis of ResNet-50 on SGDM by making LR as constant

8.3.6 Impact of epochs rate on ADAM

A higher influence of Epochs on ResNet-50 (ADAM)
training accuracy has been demonstrated. Regardless of
Epoch, Table 2 shows that the instance with the lowest LR
(0.01) has the most effect. Between epochs 25 and 50, the
training accuracy was perfect every time. After being
compared against Global-L2Norm and Absolute-value,
L2Norm was shown to be significantly less accurate in all six
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scenarios.

In light of these two facts, we may conclude that in ResNet-
50, ADAM is more concerned with the DL than the Epochs.
With lesser training accuracies in ADAM, the larger LR may
lead to overfitting. The results of ResNet-50 (ADAM) on the
Turmeric diseased dataset show that lower LR is effective in
training.



8.3.7 RMSProp

RMSProp is a well-known way to improve deep learning
systems. It was proven through experiments that RMSProp
doesn't work as well as SGDM and ADAM because it's not
good for small epochs. When the experiment was done, the
mini-batch size of 128 was used.

8.3.8 Impact of learning rate on RMSProp

When using the SGDM optimizer, the effect of LR on
RMSProp is negligible. However, RMSProp will become
closer to 100% training accuracy for lower LR and longer
Epochs (Table 4). Good results are shown with the 'Absolute-
value' approach, followed by the '12-norm' and the 'global-
12norm', among the three vector distance methods. Except for
the first scenario, LR and Epochs result in worse absolute-
value training accuracy performance.

8.3.9 Impact of epochs rate on RMSProp

Epochs have been proven to significantly affect RMSProp
(ResNet-50). The findings demonstrate that the accuracy of
training is affected anytime there is a shift in Epochs. While
'Global-L2Norm' and 'L2Norm' show lower spikes, 'Absolute-
Value' has high performance. (Table 4).

There are more spikes in the earlier epochs, and the
accuracy steadily declines in later ones, as shown by Learning
Rate. The Spikes are more noted in 'Absolute-value'. In most
instances, the 'L2Norm' performance training accuracy is
lower and linear, and it has proven less accurate than the
others.

8.3.10 Resnet-50 performance analysis

Table 4 shows the performance analysis of various distance
vector methods on epochs that vary from 25 to 50. The
ResNet-50 (SGDM-L2Norm) DL model achieved high
accuracy i.e., 100% irrespective of LR and Epochs. The
average training accuracy of ResNet-50 (SGDM-L2Norm) on
the Turmeric leaf dataset is 100% for all epochs (25-50). Next,
the ResNet-50 (ADAM-L2Norm) DL model resulted in the
lowest training accuracy at LR is 0.02-1with 89.19% (Epochs
are 30-35) and reported 100% where LR is 0.01-1 and Epochs
are between 25-50. The average training accuracy of ResNet-
50 (ADAM-L2Norm) on the Turmeric leaf dataset is 95.44%
for all epochs (25-50). Then the ResNet-50 (RMSProp-
L2Norm) DL model resulted in the lowest training accuracy of
89.19% for all LR (except at LR is 1) and reported 100%,
where, LR of 0.01-1 for all epochs. The average training
accuracy of ResNet-50 (RMSProp-L2Norm) on the Turmeric
leaf dataset is 95.46% for all epochs (25-50). Based on the
result statistics, it was concluded that the ResNet-50 DL model
gave a high performance on the Turmeric dataset.

Total training performance (Mean Epochs (25-50) and
Mean LR (0.01-1)) of ResNet-50 (SGDM) is 4.55% higher
than ADAM and 4.53% higher than RMSProp. The ‘L2Norm’
vector distance approach improves ResNet-50 (RMSProp)
training accuracy by 0.01% over ResNet-50 (ADAM). The
total training performance (Mean Epochs (25-50) and Mean
LR (0.01-1)) of ResNet-50 (SGDM) is 3.22% higher than
ADAM and 5.93% higher than RMSProp. The
‘Global_L2Norm’ vector distance approach improves ResNet-
50 (ADAM) training accuracy by 2.71% over RMSProp. The
ResNet-50 (SGDM) outperforms the ResNet-50 (RMSProp)
by 4.33% and 4.76%, respectively, in training performance
(Mean Epochs (25-50) and Mean LR (0.01-1). The ‘Absolute’
vector distance method improves ResNet-50 (ADAM) training
accuracy by 14.19% over RMSProp.
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9. PERFORMANCE EVALUATION METRICS

The objective of this study was to find the best classification
training method for smaller datasets such as Duggirala
Curcuma longa (Turmeric), which is a one-of-a-kind plant.
Data science literature normally covers many attributes and
provides concise explanations, hence these studies are rare.
This section compares three architectures—SqueezeNet,
GoogLeNet, and ResNet-50—based on three optimizers
(SDGM, ADAM, RMSProp) for turmeric leaf disease
detection. All three deep learning architectures are applied to
Duggirala variant turmeric data's three damaged leaf classes
(Leaf Blotch, Colletotrichum leaf spot, and Cercospora leaf
spot). Nine comparison evaluations using LR and vector
distance measuring methods were provided to find the best
deep learning network for higher training classification
accuracy. Superimposed line plots show all three network
analysis types.

The results show that SqueezeNet balances precision and
computational resources well. Traditional CNNs like
GoogLeNet and ResNet-50 are accurate but require a lot of
computational power to train and deploy. This disqualifies
them for embedded and mobile systems. As a feature extractor,
SqueezeNet may allow other machine learning pipelines to
access its learned features. GoogleNet deep architecture,
accurate network uses many inception modules. This lowers
processing and overfitting. The researchers fixed the vanishing
gradient problem during training with intermediate layer
auxiliary classifiers. Before using larger convolutions, these
layers use 1 % 1 convolutions to reduce input channels. This
drastically reduces the computational load while maintaining
network capacity. Deep neural network development
increasingly uses bottleneck layers. ResNet50 has many
convolutional layers, batch normalization, and ReLU
activation. Most of these layers extract edges, textures, and
forms from the image. ResNet-50 is particularly advantageous
for tasks that need very complex architectures, such as the
identification of diseases in leaves and the segmentation of
images. The performance of the GoogLeNet, SqueezeNet and
ResNet-50 is showing lower accuracy on three classes of
turmeric diseased leaf data while subjected to the RMSProp
optimizer at all epochs. SqueezeNet, GoogLeNet and ResNet-
50 are giving peak performance in training the turmeric data
when ADAM is applied. The average training accuracy is
observed in the SGDM model based on LR and Epochs as
mentioned in Tables 2-4. The current study solely emphasizes
training accuracy and does not consider validation accuracy
concerning the proposed dataset. While the training accuracy
reaches a perfect score of 100%, there is uncertainty regarding
the ability of the test accuracy to reach a high level of 99%.
The primary objective is to identify diseases in the leaf dataset;
hence, validation plays a critical role in assessing its
performance.

9.1 Impact of learning rate

Learning Rate (LR) affects training parameters. It shows the
varies of three performance types. Figure 9 displays the mean
epochs (25-50) and LR (0.01) performance. Using the
'L2Norm' vector measurement method, ResNet-50 (SGDM)
outperforms SqueezeNet (SGDM) by 48.2% and GoogLeNet
by 0.045%. GoogLeNet (SGDM) has 48.2% training accuracy
compared to SqueezeNet. In ADAM usage, ResNet-50
(ADAM) has 0.045% higher training accuracy than
SqueezeNet and 2.26% lower than GoogleNet. The



performance analysis of ResNet-50 (RMSProp) is 10.81%
greater than SqueezeNet and 36.48% higher than GoogLeNet.
Using the 'Global L2Norm' vector measurement method,
ResNet-50 (SGDM) outperforms SqueezeNet (SGDM) by
49.1% and GooglLeNet by 0.045%. ResNet-50 (ADAM) has
0.9% higher training accuracy than SqueezeNet and 0.045%
higher than GoogLeNet for ADAM use. Finally, ResNet-50
(RMSProp) outperforms SqueezeNet (14.41%) and
GoogLeNet (21.62%). ResNet-50 (SGDM) outperforms
SqueezeNet (SGDM) by 49.1% and equals GooglLeNet
(SGDM) using the ‘Absolute’ vector measurement approach.
ResNet-50 (ADAM) has a training accuracy that is equal to
SqueezeNet and 0.045% greater than GoogLeNet when using
ADAM. Finally, ResNet-50 (RMSProp) outperforms
SqueezeNet (12.17%) and GoogLeNet (46.39%).

Figure 10 shows the mean epochs and LR (0.02) average
performance. Using the 'L2Norm' vector measuring technique,
ResNet-50 (SGDM) surpasses SqueezeNet (SGDM) by 48.65
and GoogLeNet (SGDM) by 0.045%. The training accuracy of
GoogLeNet (SGDM) is 48.25%, somewhat higher than
SqueezeNet. ResNet-50's ADAM training accuracy is 47.74%
higher than SqueezeNet's and 3.16% lower than GoogLeNet's.
Finally, ResNet-50 (RMSProp) surpasses SqueezeNet and
GoogLeNet by 35.58% and 30.018% respectively. The
'Global_L2Norm' vector measuring technique gives ResNet-
50 (SGDM) a 48.65% higher performance than SqueezeNet
and 0.045% higher than GoogleNet. ADAM training
accuracy for ResNet-50 (ADAM) is 49.54% higher than
SqueezeNet and 0.01% lower than GoogLeNet. ResNet-50
(RMSProp) outperforms SqueezeNet (35.59%) and
GoogLeNet (26.13%). ResNet-50 performance is analyzed
using absolute vector measurements. ResNet-50 (SGDM)
outperforms SqueezeNet (SGDM) by 48.65% and matches
GoogLeNet. The training accuracy of ResNet-50 (ADAM)
utilizing ADAM is 48.19% higher than SqueezeNet and

0.045% higher than GoogLeNet. Finally, ResNet-50
(RMSProp) outperforms SqueezeNet (13-07%) and
GoogLeNet (26.58%).

Figure 11 shows the average epochs (25-50) and learning
rate (0.03) performance. ResNet-50 (SGDM) performance is
analyzed using L2Norm vector measuring. The performance
of ResNet-50 (SGDM) is 49.1% higher than SqueezeNet and
0.045% higher than GoogLeNet. GoogleNet (SGDM) has
48.65% training accuracy, higher than SqueezeNet. The
training accuracy of ResNet-50 (ADAM) utilizing ADAM is
43.24% higher than SqueezeNet and 44.14% higher than
GoogLeNet. The Final performance evaluation of ResNet-50
(RMSProp) is 42.79% lower than SqueezeNet and 45.49%
higher than GoogLeNet.ResNet-50 (SGDM) outperforms
SqueezeNet (SGDM) by 49.1% using the 'Global L2Norm'
vector measurement technique and is comparable to
GoogLeNet.

The training accuracy of ResNet-50 (ADAM) utilizing
ADAM is 44.59% higher than SqueezeNet and 45.49% higher
than GoogLeNet. Finally, ResNet-50-RMSProp outperforms
SqueezeNet by 31.99% and GooglLeNet by 42.79%. ResNet-
50 (SGDM) outperforms SqueezeNet (SGDM) and
GoogLeNet (SGDM) utilizing the 'Absolute' vector measuring
technique by 48.65%. The training accuracy of ResNet-50
(ADAM) utilizing ADAM is 44.29% higher than SqueezeNet
and 44.74% higher than GoogLeNet. Performance research
shows ResNet-50 (RMSProp) outperforms SqueezeNet
(21.62%) and GoogLeNet (44.59%).

Figure 12 shows the average epochs (25-50) and learning
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rate (0.04) performance. ResNet-50 (SGDM) outperforms
SqueezeNet and GooglLeNet by 48.65% using L2Norm vector
measurement. SqueezeNet and GoogLeNet (SGDM) have
similar training accuracy. ResNet-50 (ADAM) outperforms
SqueezeNet and GoogleNet in ADAM training accuracy by
43.29%. The Final performance evaluation of ResNet-50
(RMSProp) is 43.69% lower than SqueezeNet and 44.59%
higher than GoogLeNet. ResNet-50 (SGDM) performance is
tested using 'Global L2Norm' vector measurement. It's 49.1%
higher than SqueezeNet (SGDM) and 48.65% higher than
GoogLeNet. ResNet-50's training accuracy using ADAM is
45.69% higher than SqueezeNet's and 44.34% higher than
GoogLeNet's. In conclusion, ResNet-50 (RMSProp)
outperforms SqueezeNet (RMSProp) by 28.38% and
GoogLeNet by 43.69%. The 'Absolute’ vector measuring
method shows that ResNet-50 (SGDM) outperforms
SqueezeNet (SGDM) by 50% and GoogLeNet (SGDM) by
48.65%. ResNet-50's training accuracy using ADAM is
43.69% higher than SqueezeNet's and 43.24% higher than
GoogLeNet's. Performance investigation shows ResNet-50
(RMSProp) surpasses SqueezeNet (RMSProp) by 38.29% and
GooglLeNet by 46.84%.

Figure 13 shows the mean epochs (25-50) and LR (0.05)
performance. ResNet-50 (SGDM) outperforms SqueezeNet
and GoogleNet by 48.65% using the 'L2Norm' vector
measurement method. Additionally, GooglLeNet (SGDM) has
the same training accuracy as SqueezeNet. ResNet-50
(ADAM) has 43.69% higher training accuracy than
SqueezeNet and 43.24% lower than GoogleNet while using
ADAM. In conclusion, ResNet-50 (RMSProp) performs
43.39% lower than SqueezeNet and 43.39% higher than
GoogLeNet. The 'Global L2Norm' vector measuring method
is used to evaluate ResNet-50 (SGDM), which outperforms
SqueezeNet and GoogLeNet by 49.6% and 48.65%,
respectively. When ADAM is used, ResNet-50 (ADAM) has
44.59% higher training accuracy than SqueezeNet and 45.49%
higher than GoogLeNet. Finally, ResNet-50 (RMSProp)
outperforms SqueezeNet (43.39%) and GoogLeNet by the
same margin. ResNet-50 (SGDM) performance investigation
shows that the 'Absolute' vector measurement approach is
49.1% higher than GoogleNet and 49.55% higher than
SqueezeNet. When ADAM is used, ResNet-50 (ADAM) has
43.24% higher training accuracy than SqueezeNet and 43.69%
higher than GoogLeNet. In conclusion, ResNet-50 (RMSProp)
outperforms SqueezeNet (45.64%) and GoogLeNet (44.74%).

Figure 14 shows the mean epochs (25-50) and LR (1)
performance. ResNet-50 (SGDM) outperforms GoogLeNet
(SGDM) by 48.65% and SqueezeNet by 49.1% using the
'L2Norm' vector measurement method. Compared to
SqueezeNet, GoogLeNet (SGDM) has 0.045% training
accuracy. When ADAM is used, ResNet-50 (ADAM) has
43.29% higher training accuracy than SqueezeNet and 43.39%
higher than GoogLeNet. Finally, ResNet-50 (RMSProp)
outperforms SqueezeNet (46.54%) and GoogLeNet (45.19%).
The 'Global L2Norm' vector measurement method shows that
ResNet-50 (SGDM) outperforms GoogleNet (SGDM) by
48.65% and SqueezeNet by 49.6%. ResNet-50 (ADAM) has
43.54% higher training accuracy than SqueezeNet and
GooglLeNet when ADAM is implemented. The performance
of ResNet-50 (RMSProp) is 42.34% higher than SqueezeNet
and 40.99% higher than GoogLeNet. The 'Absolute' vector
measuring approach gives ResNet-50 (SGDM) a performance
rating 50% higher than SqueezeNet and 48.65% higher than
GoogLeNet. Using ADAM, ResNet-50 (ADAM) improves



training accuracy by 42.79% over SqueezeNet and 41.44% SqueezeNet (42.94%) and GoogLeNet.
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Adam is the suggested default algorithm and generally
outperforms RMSProp and the mean epochs (25-50) and mean
LR (0.01 to 1). Using the 'L2Norm' vector measurement
method, ResNet-50 (SGDM) outperforms SqueezeNet
(SGDM) by 48.8% and GoogLeNet by 24.55%. In ADAM
usage, ResNet-50 (ADAM) has 36.74% higher training
accuracy than SqueezeNet and 28.1% higher than GoogLeNet.
Finally, ResNet-50 (RMSProp) outperforms SqueezeNet
(37.13%) and GooglLeNet (40.88%). ResNet-50 (SGDM)
outperforms SqueezeNet (SGDM) by 49.16.8% and
GoogLeNet by 24.47% using the ‘Global L2Norm’ vector
measuring method. In ADAM usage, ResNet-50 (ADAM) has
38.29% higher training accuracy than SqueezeNet and 29.88%
higher than GoogLeNet. The performance study of ResNet-50
(RMSProp) is 32.28% greater than SqueezeNet and 36.63%
higher than GooglLeNet. ResNet-50 (SGDM) outperforms
SqueezeNet (SGDM) by 49.32% and GoogLeNet by 32.50%
using the ‘Absolute’ vector measuring approach. ResNet-50
(ADAM) has 37.03% higher training accuracy than
SqueezeNet (ADAM) and 29% higher than ResNet-50
(SGDM) outperforms SqueezeNet (SGDM) by 49.32% and
32.50% using the ‘Absolute’ vector measuring approach.
Tables 3 and 4 show training classification accuracy statistics.

The objective is very straightforward in classifying three
Curcuma longa disease classes. We have created a synthetic
Curcuma longa dataset that exhibits 100% linear separability,
distinguishing points inside a circle from those outside. The
Curcuma longa dataset contains a significant amount of clean,
well-prepared data, which is proportionate to the complexity
of the model. The signal in the dataset is potent and evident.
The model's architecture is appropriately designed and not
overly intricate for the task. A basic logistic regression model
or a modest neural network may be the appropriate instrument.
The model achieved 100% training accuracy, attributed to its
simplicity, rigorous data verification, and high validation
performance. The disease detection problem in the Curcuma
longa leaf dataset is linearly separable, and the clean dataset
removes noise and leakage. The model maintains 99.8%
accuracy on the hold-out validation set and 99.5% on the final
test set. In addition, the test results were subjected to an
ANOVA test and achieved a higher test result of 98.7%. The
SqueezeNet with ADAM optimizer is perfectly suited for a
very simple, clean, and linearly separable problem. The task
was easy, and the model learned it flawlessly.

10. ANOVA TEST

An ANOVA test is conducted for the optimizers SGDM,
ADAM, and RMSProp to determine the significant difference
between the means of the SGDM, ADAM, and RMSProp
values. For all the optimizers, the mean values are the same,
which supports the null hypothesis; however, one of the mean
values for SGDM, ADAM, or RMSProp may differ from the
others. The above test is used to compare the accuracy, loss,
and F1 score of the SGDM, ADAM, and RMSProp optimizers
across the SqueezeNet, GoogLeNet, and ResNet-50 models to
find the best accuracy among them. This analysis will offer
information about which optimizer yields superior
performance in terms of accuracy and efficiency. By
evaluating the results obtained from each model, we can
identify trends and make informed decisions on the best
optimizer to use for detecting diseases in Curcuma longa
leaves.
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Figure 15 describes the ANOVA test results of SqueezeNet
for the SGDM, ADAM, and RMSProp optimizers at 0 to 50
epochs each. It defines the difference in the optimizers' mean
values for the true positive and false positive rates. While these
results show performance variations among the optimizers,
further analysis is necessary to determine the statistical
significance of these differences. Additionally, exploring the
impact of hyperparameter tuning on each optimizer could
yield valuable insights into their effectiveness in different
contexts. The accuracy of the test result SGDM is 99.44,
ADAM is 97.00 and RMSProp is 99.16.

ROC CURVES FOR SGDM,ADAM,RMSProp

=
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Figure 15. Anova test result of the SGDM, ADAM,
RMSProp for the model SqueezeNet

Figure 16 describes the ANOVA test results of GoogLeNet
for the SGDM, ADAM, and RMSProp optimizers at 0 to 50
epochs each. It defines the difference in the optimizers' mean
values for the true positive and false positive rates. These
findings indicate how each optimizer impacts model
performance, particularly in terms of accuracy and reliability.
The accuracy of the test result SGDM is 99.52, ADAM is
98.64 and RMSProp is 99.16.
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Figure 16. Anova test result of the SGDM, ADAM,
RMSProp for the model GoogLeNet

Figure 17 describes the ANOVA test results of ResNet-50



for the SGDM, ADAM, and RMSProp optimizers at 0 to 50
epochs each. It defines the difference in the optimizers' mean
values for the true positive and false positive rates. This
analysis highlights how each optimizer impacts the model's
performance, specifically in terms of accurately identifying
true positives while minimizing false positives. By comparing
the mean values, model can better yield the most effective
results for ResNet-50 across the specified epochs. The
accuracy of the test result SGDM is 99.52, ADAM is 98.04
and RMSProp is 99.20.
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Figure 17. Anova test result of the SGDM, ADAM,
RMSProp for the model ResNet-50

Figure 18 views the ADAM optimizer consistently showed
lower performance across all evaluated architectures, resulting
in the least test accuracy, indicating that SGD-based methods
are more effective for these models over 0-50 epochs. In
comparison, SGDM and RMSProp stood out as the leading
methods, with SGDM demonstrating superior performance in
SqueezeNet and GoogLeNet, whereas RMSProp had a slight
edge in ResNet-50. SqueezeNet exhibited significant
sensitivity to the choice of optimizer, revealing an accuracy
gap exceeding 2% when compared to the top-performing
optimizers. GoogLeNet consistently demonstrated strong
performance across all optimizers while maintaining the same
ranking. ResNet-50 demonstrated that both SGDM and
RMSProp are highly effective for deeper networks, yielding
nearly identical top outcomes. Although ANOVA indicates
variations in mean values across the optimizers, additional
analysis is required to determine statistical significance. The
performance of ADAM could be notably enhanced through
hyperparameter tuning, indicating that adjustments to
parameters may influence the rankings.

The analysis of SqueezeNet, GoogLeNet and Resnet-50
using the ANOVA test revealed significant insights into the
performance of various optimizers, including SGDM, ADAM,
and RMSProp. By examining the true positive and false
positive rates associated with each optimization method, it
became evident that these variables are crucial in determining
the efficacy of deep learning models SqueezeNet, GooglLeNet
and Resnet-50. The nuanced differences observed highlight
not only the strengths and weaknesses of each optimizer but
also their impact on model accuracy and reliability. This
comprehensive evaluation emphasizes the value of selecting
appropriate optimization strategies to enhance model
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performance in Curcuma long a leaf disease detection. The
accuracy of the test result SGDM is 99.48, Adam is 98.32 and
RMSProp is 99.40.

ROC Curves for SGDM, Adam, RMSProp
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Figure 18. Anova test result of the SGDM, ADAM,
RMSProp for the models SqueezeNet, GooglLeNet and
resnet-50

11. DISCUSSION

The current study compares previous research, namely the
work of Khan et al. [26], who conducted a comparative
analysis of the performance of GoogLeNet, AlexNet, and
SqueezeNet. By  tweaking  hyperparameters  using
electroencephalogram (EEG) data, they achieved accuracy
rates of 94.99%, 94.61%, and 94.09%, respectively. The
findings of the detection analysis indicate that AlexNet
outperforms GoogLeNet and SqueezeNet. However, they
concentrated solely on the epochs and learning rate, neglecting
the importance of optimizers. The current study only fine-
tunes the hyperparameters and also examines the influence of
optimizers on training accuracy. Ullah et al. [27] specifically
examined the performance of AlexNet, ResNetl8, and
SqueezeNet on a dataset consisting of 4333 photos belonging
to eight distinct categories of road fractures. In this
experiment, the training and testing images remained
consistent throughout the epoch and iteration. The
investigation's focus was not primarily on the choice of
optimizer. The accuracy achieved with ResNetl8 is just
85.2%. The proposed approach examined the GoogleNet,
SqueezeNet, and ResNet-50 models, with a primary focus on
addressing training difficulties. We achieved this by fine-
tuning hyperparameters, particularly emphasizing the usage of
optimizers such as ADAM, RMSProp, and SGDM. Ashhar et
al. [28] mostly looked into how well different deep learning
models, such as GooglLeNet, SqueezeNet, DenseNet,
ShuffleNet, and MobileNetV2, could classify lung tumours
seen on a CT scan. They reached an accuracy of 94.53% using
the GooglLeNet model. Their research did not take into
account ResNet-50 and primarily concentrated solely on
validation accuracy. Dahiya et al. [29] concentrated on
training accuracy and used the Plant Village dataset, a dataset
of 20,640 images representing 15 classes and 3 species:
pepper, potato, and tomato. They applied this dataset to eight
different deep learning architectures, namely AlexNet,
GoogLeNet, MobileNet, ResNet 18, ResNet 50, ResNet 101,
ShuffleNet, and SqueezeNet. Epochs, learning rate, mini batch



size, and optimizer were the hyperparameters used. The range
of epochs utilized varies from 30 to 50, with only the ADAM
and SGDM optimizers being employed, while RMSProp is
excluded. Out of the eight deep learning architectures,
GoogLeNet demonstrates superior performance in accurately
identifying larger datasets. Only two optimizers and a
maximum of three epochs constrain their work. The current
work applied three types of optimizers, namely L2Norm,
Global-L2Norm, and Absolute, on six epochs ranging from 25
to 50. We set the batch size to 32 and employed vector distance
methods. However, Dahiya et al. said that GoogLeNet is the
most effective classifier. In our research, we found that
ResNet-50 is the optimal model for classifying the smaller sick
leaf dataset, mostly because of the variation in the vector
distance model. In their study, Wagle and Harikrishnan [30]
utilized various deep learning models, including AlexNet,
VGG16, GoogleNet, MobileNetv2, and SqueezeNet, to
identify tomato leaf illnesses. They found that the VGG16
model exhibited superior accuracy and precision for most of
the tomato leaf classes. However, it is worth noting that the
study had limited scope for hyperparameter tuning. We
compare the performance analysis with numerous cutting-
edge research works. Finally, the current study is highly
informative since it incorporates all hyperparameters to
evaluate the performance of common deep learning algorithms
on a small, balanced dataset [31-34]. This research is
distinctive due to its integration of deep learning architecture
with optimizer and distance vector approaches (L2Norm,
Global-L2Norm, and Absolute) while also adjusting epochs
and learning rates. This approach resulted in improved
classification performance on a smaller dataset while
maintaining minimal time complexity. This original technical
analysis demonstrates the uniqueness of the research. The
current effort focuses primarily on medical plants rather than
commercial crops and traditional object identification.
Medical plants have become particularly important in the
aftermath of the COVID-19 pandemic. The current
investigation is limited to three specific pre-trained models for
the sake of simplicity. However, it is possible to further train
the current dataset using additional deep learning models such
as EfficeintNet, AlexNet, VGGI16, DarkNet, PANet,
ShuffleNet, NasNet Xception, MobileNet-v2, and others. This
will allow for an evaluation of the effectiveness of the
presented results. The current study is beneficial for
researchers with smaller and balanced datasets, as they can
achieve higher accuracy by appropriately adjusting the hyper-
parameters.

Pandey et al. [35] Identifying diseases in medicinal plants is
essential for the quality and effectiveness of herbal
therapeutics. Improvements in morphological observation,
histological assessment, molecular biology procedures, and
imaging modalities have enhanced illness identification.
Contemporary technology, including high-throughput DNA
sequencing and real-time PCR, improves speed, precision, and
efficacy. This highlights the significance of continuous efforts
for sustainable production of medicinal plants and
accessibility of herbal medicine. Their study specifically
focused on DNA sequencing, but the current study focused on
training issues in deep learning techniques to achieve higher
test accuracies.

Pushpa et al. [36] research investigates three hybrid deep-
learning models for the real-time identification of medicinal
plant species. The models employ VGG 16, MobileNet,
MobileNetV2, and ResNet50 as feature extractors. The final
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feature vector is derived by consolidating the extracted
features. The hybrid model 3 surpasses other models,
exhibiting enhanced performance attributable to feature
channel rescaling. The models are lightweight CNNs designed
for mobile applications and are anticipated to be augmented to
encompass rare medicinal plant species for enhanced
identification and biodiversity conservation. But their research
not focused on SqueezeNet and GooglLeNet and also not
focused on distance vector methods, which is an important
parameter to achieve higher test classification.

Sharma and Vardhan [37], study seeks to enhance the
precision and efficacy of identifying medicinal plants utilized
in traditional medicine. A substantial dataset of medicinal
plants and leaves is utilized to develop a deep learning
architecture known as the Attention-based Enhanced Local
and Global Features Network (AELGNet). The architecture

identifies salient aspects from the images, deriving
fundamental characteristics for both local and global
extraction. The research demonstrated that AELGNet

surpasses 14 existing methodologies, serving as an effective
instrument for the precise and rapid identification of medicinal
plants and leaves in both medical and industrial contexts. This
work not considered the traning issues, which is plays a
significant role in medicinal plant leaf disease detection that
addressed in the present work [38, 39].

Achieving elevated training and validation accuracy
through the selection of suitable optimizers and acceptable
vector algorithms for classifying Curcuma longa leaf discase
detection datasets present a continual challenge for academics
and practitioners. This study primarily emphasizes datasets of
medicinal plant leaves. This study achieved an optimal
accuracy of 100% utilizing the ADAM optimizer with
L2Norm distance vector, specifically for balanced datasets of
Curcuma longa leaves. For example, additional entities such
as automobiles, structures, and individuals may not yield
superior outcomes based on the current optimizer's
recommendations. This study identified the optimal
combinations by adjusting different optimizers and vector
distances to get higher accuracies for Curcuma longa-like leaf
diseases.

We have created a synthetic Curcuma longa dataset that
exhibits 100% linear separability, in identifying and
characterizing medicinal plants for novel pharmaceuticals and
therapies. It facilitates individualized care, conservation
efforts, traditional medicine, and addresses taxonomic
deficiencies by identifying and monitoring endangered species
while safeguarding traditional knowledge.

12. CONCLUSION

The impact of climate change on agriculture has been very
severe on crop production for the past three decades.
Especially the changes observed in the hydrological cycle
have resulted in cloud bursts that led to heavy storms and
floods in a short time. That implies the rapid spread of plant
diseases and is reflected in lower crop yielding and resulted
for farmers. In recent times the growth of medicinal plants has
been in high demand due to the impact of COVID-19. Now-a-
days the common prefer herbal medicines due to their lesser
side-effects, as it is observed in the pandemic. Curcuma longa
(Turmeric) is one of the important plant species that is widely
used in traditional AYUSH and Allopathic treatments as well
as for domestic purposes. Turmeric crop yield statistics for the



past decade reveal that crop production is deficient due to geo-
environmental factors that cause diseases and pests to
Turmeric crops. To improve the crop yield currently there is a
need for a technical crunch that results in the early
identification of diseases. The current work primarily focuses
on a selection of the best DL network that suits perfectly to
achieve cent percent accuracy for early disease detection in the
Curcuma longa (Turmeric) ‘Duggirala’ variant image dataset.
Each of the three DL networks was evaluated on the Turmeric
dataset, revealing that the training accuracy of ResNet-50 is
superior to that of GoogleNet and SqueezeNet, respectively.
Based on the analysis of the trial, it is strongly advised to use
the ResNet-50 deep learning architecture for classifying
diseases in medicinal plant images. The current suggestion is
founded on the inclusion of hyperparameters such as Learning
rate and Epochs, along with optimizers like ADAM, SGDM,
and RMSProp, as well as vector distance algorithms such as
L2Norm, Global-L2Norm, and Absolute. The current study
exclusively employs three pre-trained models, although the
dataset has the potential to be evaluated with alternative
training models such as EfficeintNet, AlexNet, VGGI6,
DarkNet, PANet, ShuffleNet, NasNet Xception, MobileNet-
v2 and others. This research helps researchers using smaller,
balanced datasets to improve accuracy by modifying hyper-
parameters.
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