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The demand for medicinal herbs, especially Curcuma longa (Turmeric), has surged because 

to the COVID-19 pandemic, with study increasingly depending on AYUSH-based therapies. 

India, a prominent producer of Curcuma longa, is witnessing a reduction in crop yield due 

to climate factors. This requires early disease diagnosis for both veterinary and therapeutic 

applications. Deep learning, an advanced image-based object detection method, attains 

100% accuracy on three disease datasets: leaf blotch, Colletotrichum leaf spot, and 

Cercospora leaf spot images. Three varieties of Deep Learning networks, SqueezeNet, 

GoogLeNet, and ResNet-50, are employed for parameter training, optimization techniques, 

and vector distance methodologies. The experiments demonstrated that all three Deep 

Learning techniques attained 100% training accuracy over many instances. The total 

performance of ResNet-50 with SDGM and ADAM surpassed that of SqueezeNet and 

GoogLeNet. GoogLeNet is recommended to surpass SqueezeNet in the majority of 

instances. The research underscores the necessity for enhanced training and validation 

techniques to attain elevated training accuracy in Curcuma longa. 
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1. INTRODUCTION

In the current global climate change scenario, we prefer 

technology-based solutions for the highest crop yielding rate. 

Current advanced technocratic approaches such as Artificial 

Intelligence and IoT are two popular areas that help traditional 

agriculture practices for food security and health informatics. 

Especially agriculture-based countries like India, China, the 

USA, and Brazil need efficient, smart mechanisms for 

sustainable food and medicinal production. Promoting health 

and well-being is identified as one of the seventeen global 

goals of the 2030 Agenda for Sustainable Development [1], as 

stated in Sustainable Development Goal (SDG) 3 of the United 

Nations. SDG #3. which pertains to health aims to establish 

universal health and well-being [2]. This includes a resolute 

dedication to eliminating epidemics of infectious diseases 

such as AIDS, tuberculosis, and malaria by the year 2030. 

Furthermore, it strives to establish Universal Health Coverage 

(UCH) and guarantee universal access to safe and efficacious 

vaccines and medications [3]. 

It is essential to support vaccine research and development 

and provide affordable medication access for this process to 

function. To achieve SDG3, currently, there is a need to 

introduce advanced technological practices for higher 

medicinal crop production. So far, many researchers and 

technocrats invented smart technology for easy agriculture 

practices such as precision agriculture, Crop Health Analysis, 

Climate-smart advisories, Yield forecast, Crop Damage 

Assessment, Supply Chain Management, Seed Production, 

Agro-Big Data Analytics, and smart farming practices. In 

addition to natural disasters and irregular weather patterns, 

medicinal plant diseases are another major cause of 

insufficient medicine production in the world [4]. The World 

Health Organization reports that 80% of the global population 

uses botanical remedies to fulfill at least a portion of their 

fundamental healthcare needs. Approximately 21,000 plant 

species have the potential to be utilized in medicinal 

applications, per the WHO [5]. It is a known fact that India and 

China largely depend on herbal treatment. Recently the Indian 

Govt. has proposed the concept of ‘Integrated Medicine’, 

where the Allopathic and AYUSH departments will work 

together to provide the best treatment that can be offered in 

one place [6]. At present the world is moving towards the 

usage of herbal medicines due to the less side-effect. 

Moreover, herbal medicines have become very popular in 

recent times due to wide usage in the treatment of COVID-19 

(SARS-CoV-2). Especially the usage of Phyllanthus emblica, 

solanum indicum, Solanum surattense, Terminalia bellirica, 

Ficus religiosa, Piper longum, Curcuma longa Alhagi 

camelorum etc., are a few herbal medicinal plant species that 

are very frequent in COVID-19 treatment [7]. Among all other 

medicinal plants, Curcuma longa (Turmeric) is one of the 

herbal medicines that is used extensively in antibiotic 

preparation [8]. Cancer, rheumatoid arthritis, dermatitis, skin 

cancer, wound healing, urinary tract infections, and liver 

diseases are just some of the things that it can help with, 

Curcuma longa (Turmeric) is also employed in the treatment 

of these conditions [9, 10]. India is the leading producer and 

exporter of Curcuma longa (Turmeric) globally and shares 

86% of global production. Among the Indian states, the state 

of Telangana stands first place for the Curcuma longa 

(Turmeric) [11, 12]. The state of Andhra Pradesh is one of the 
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foremost contributors to the overall production of Curcuma 

longa (Turmeric) in the country after Telangana state. Among 

the 24 finest varieties in the countries, the Duggirala variety 

has a special purpose with rich medicinal values. Figure 1 

shows the production and average price of the Duggirala 

variety in the state of Andhra Pradesh. The statistical results 

show the demand for Curcuma longa (Turmeric) is very high 

irrespective of the production. The production of Curcuma 

longa (Turmeric) is reduced due to COVID-19 on the global 

export and import of goods and unfavorable climatic 

conditions. This study focuses on the early detection of 

diseases in Curcuma longa leaves. This study aimed to 

determine the most effective Deep Learning (DL) training 

network that can achieve 100% accuracy when applied to the 

disease dataset of Curcuma longa (Turmeric- Duggirala 

variant). The collection consists of photographs depicting leaf 

blotch, Colletotrichum leaf spot, and Cercospora leaf spot. The 

deep learning mechanism is one of the most advanced 

technologies that can accurately identify items based on how 

they appear in photographs. Two stages are included in the 

deep learning approaches, which are training and validation. It 

is generally accepted that the impact of the correctness of the 

data training would be reflected in the validation metric, which 

is known as the mean correctness Precision (mAP). For the 

most part, when the accuracy of the training is lower, the 

validation accuracy scores are significantly lower. Therefore, 

achieving a training accuracy of one hundred percent is a 

challenging challenge for increased mAP. Typically, the 

performance of the training method is categorized into Gain 

and loss functions. When the Gain achieves 100% accuracy, it 

enables the classifier to identify objects with greater 

confidence levels. When working with smaller datasets that 

are balanced, it can be especially challenging to determine the 

appropriate values for training parameters, such as the learning 

rate and the number of epochs. This study also examined the 

most effective training optimizers for training the smaller 

diseased Duggirala Curcuma longa (Turmeric) leaf dataset, 

including Stochastic Gradient Descent (SGDM), Root Mean 

Squared Propagation (RMSProp), and Adaptive Moment 

Estimation (ADAM), along with vector distance (L2Norm, 

Global-L2Norm, and Absolute) to achieve higher levels of 

accuracy. 

 

 
 

Figure 1. Duggirala turmeric variant production and average 

price during 2017-2023 
Data Source: AP-Turmeric yard, Duggirala 

 

The present study investigated the optimal Deep Learning 

(DL) training network for attaining 100% accuracy on the 

illness dataset of Curcuma longa (Turmeric-Duggirala 

variation). The collection comprises photos of leaf blotch, 

Colletotrichum leaf spot, and Cercospora leaf spot. Training 

parameters such as Learning Rate, Epochs, Gradient 

Threshold Method, etc., play a crucial role in object detection 

for deep learning architectures. In most of the cases, the 

dataset is segregated into 70% for training and 30% for testing. 

During classification, the performance of the algorithm is 

based on trained data by specifying a Gain function. The 

nature of datasets is always dynamic and it is very difficult for 

the researcher to identify the right parameters to train and 

classify the datasets. Moreover, choosing the right parametric 

values for higher classification training and classification is 

always a challenging task. The discussion in more depth can 

be found in the sections that follow.  

Duggirala Curcuma longa (Turmeric) Dataset: A novel, 

custom-balanced Duggirala Curcuma longa (Turmeric) 

dataset collected 885 raw images that contain three classes of 

diseased leaves, such as leaf blotch, Colletotrichum leaf spot, 

and Cercospora leaf spot. Later dataset size was increased to 

6,584 using pre-processing annotation techniques like image 

flip, rotation etc. and generated with balanced classes. The 

Duggirala Curcuma longa (Turmeric) Dataset is distinct and 

has not been previously available. 

• Higher Training Accuracy: The results produced a higher 

training accuracy on smaller and balanced Duggirala Curcuma 

longa (Turmeric) Dataset with limited classes by tuning hyper 

parameters such as Learning rate, Epochs etc. This work 

achieved improved accuracy by systematically adjusting the 

hyperparameters of the optimizer and architecture. 

• Impact of Optimizer on Training Accuracy: This work 

presents fresh findings on the influence of an optimizer on 

different widely-used deep learning approaches when applied 

to smaller, balanced datasets. This task is particularly tough, 

especially when dealing with damaged leaf data. This study 

specifically examines the performance of optimizers, 

including SGDM, RMSProp, and ADAM, in training neural 

networks. Our findings indicate that utilizing the RMSProp 

optimizer yields the highest classification accuracy among all 

designs while using lower learning rates and higher epochs. 

• Impact of Vector Distance Methods on Classification 

Accuracy: This study presents a unique technical analysis by 

combining deep learning architectures with hyperparameters 

and optimizers on the Duggirala Curcuma longa (Turmeric) 

Dataset concerning the vector distance methods (L2Norm, 

Global-L2Norm, and Absolute) The study demonstrates the 

effectiveness of this approach by achieving higher accuracies 

on various common deep learning architectures and presenting 

multi-dimensional results. Based on vector distance methods 

the technical examination, defines that the ResNet-50 is the 

most suitable deep learning architecture for smaller datasets 

such as Duggirala Curcuma longa (Turmeric). 

This work mostly concentrated on training-related concerns 

exclusively. Training the dataset is crucial for attaining 

superior test accuracy. The majority of research emphasizes 

end classification accuracy; however, if lesser test accuracy is 

achieved, a primary reason may be insufficient training 

accuracy resulting from suboptimal optimizer selection and 

hyperparameter configuration. Training accuracy is the 

paramount idea essential for achieving superior categorization 

in deep learning architectures. However, most research did not 

tackle the problem of inadequate training concerns. This paper 

examines training challenges with widely-used optimizers, 

including SGDM, ADAM, and RMSProp. 

The current study focuses on conducting a comprehensive 
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comparative analysis of deep learning architecture, optimizers, 

and hyper-parameters to determine the most effective training 

classification method, particularly for smaller datasets such as 

Duggirala Curcuma longa (Turmeric), which is distinct. These 

types of research are scarce in the data science literature, 

which typically examines a broad variety of characteristics and 

provides concise discussions. The current work just focuses on 

training accuracy and does not address validation accuracy in 

relation to the suggested dataset. Although the training 

accuracy hits 100%, there is uncertainty on whether the test 

accuracy can achieve 99%. The ultimate goal is to detect 

diseases in the leaf dataset; hence validation is a crucial aspect 

of the performance evaluation. 

The subsequent sections of this study are structured as 

follows. Background research in the fields of agriculture and 

deep learning architectures is detailed in Section 2, early 

disease detection and training issues, and a novel image 

dataset of the Duggirala Curcuma longa (Turmeric) variant is 

prepared and discussed in Section 3. Similarly, Section 4 

describes the mathematical notations and assumptions 

regarding explains details regarding methodology with the 

mathematical representation of gradient methods like 

RMSProp, ADAM, and L2 Regularization. Then section 5 

describes the experimentation environment setup and section 

6 explains the deep learning architecture. Then section 7 

discusses the experiments of the models, Section 8 represents 

the results. Similarly, Section 9 detailed the performance 

evaluation metrics, then Section 10 represents the Anova test 

for the optimizers and then discussion. Lastly, the paper is 

summarized and suggests for best training classification 

methods in conclusions. 
 

 

2. RELATED WORKS 
 

Early disease detection is one of the important research 

areas, where researchers are trying to achieve 100% 

classification accuracy in disease detection. Orchi et al. [13] 

presented a detailed study on the AI and IoT approaches for 

crop disease detection and the survey revealed 97% as the 

highest classification accuracy. Thangaraj et al. [14] worked 

the disease detection on the Tomato leaf disease dataset and 

their investigation showed that 52% of present leaf disease 

detection techniques classification accuracy is 90% and 48% 

of present studies area less than 90%. The study also revealed 

that AlexNet disease detection resulted in 98.6% classification 

accuracy and also investigated on GoogLeNet (99.18%), 

ResNet-50 (98.8%), Xception (98.13%), and VGG16 

(99.25%) as maximum classification accuracy. However, it is 

observed that none of the deep learning architecture achieves 

a cent percent accuracy. Math and Dharwadkar [15] used a 

deep convolution network for early disease detection on grape 

disease datasets and the classification model resulted in 

99.34%. Naeem et al. [16] identified medicinal plant leaves 

based on multispectral and textural characteristics using 

machine learning; they obtained the following percentages: 

98.40% for Catnip, 99.80% for Peppermint, 99.10% for Tulsi, 

98.40% for Bael and 99.20% for Stevia, 99.90% for Lemon 

balm. Arunaggiri Pandian et al. [17] have proposed disease 

detection in medicinal plants using Convolutional Neural 

Network (CNN) approaches such as ResNet101, InceptionV3, 

and VGG16 and resulted in 97.32% classification accuracy by 

InceptionV3 on the Ayur Bharat dataset. In collaboration with 

the Central Council for Research in Ayurvedic Sciences 

(CCRAS), and Indian Council of Medical Research (ICMR) 

the Ministry of AYUSH, and GoI, this CTRI Ayurveda 

Dataset was compiled. Based on the Deep Herb dataset, 

Roopashree and Anitha suggested an autonomous medicinal 

plant identification system employing several neural network 

approaches in computer vision and deep learning. The Deep 

Herb contains 2515 leaf photos from 40 different Indian herb 

species. The Deep Herb model learned by Xception and ANN 

outperformed the research by 97.5% [18]. Kuricheti and 

Supriya [19] examined the necessity and application of 

intelligent agricultural technologies by detecting and 

classifying turmeric leaf diseases via computer vision. Gogoi 

et al. [20] constructed a novel Curcuma longa (Turmeric) 

dataset for leaf detection. Chen et al. [21] applied a unique 

AgriTalk technique on a Turmeric smaller dataset that predicts 

the quantity of Bacillus based on modern IoT and machine 

learning technologies with mean absolute percentage errors 

(MAPEs) ranging from 6.73% to 19.76%. Devisurya et al. [22] 

used deep learning approaches like YOLOv3 methods and 

Faster R-CNN with the VGG16 model on the turmeric dataset 

for early disease detection and achieved 83.4% classification 

accuracy. To obtain 100% accuracy the training parameters 

must contain the Learning rate, Epochs, Gradient Threshold 

method, batch learning method, and gain and loss of dataset 

play a crucial role, where training parameters like the gradient 

techniques, such as, ADAM, Root Mean Square Propagation 

(RMSProp) and Stochastic Gradient Descent with Momentum 

(SGDM) are widely used algorithms for mini-batch 

processing. 

 
 

3. DUGGIRALA CURCUMALONGA DATA SET 
 

This study collects unique images of medicinal plant leaves 

of Curcuma longa of Duggirala variant. The Curcuma longa 

medicinal plant leaf dataset contains the Curcuma longa leaf 

blotch, the Colletotrichum leaf spot, and the Cercospora leaf 

spot. Three types of diseased leaves are gathered from the 

field, and the images of Curcuma longa are divided into three 

different classes. The Ayur Bharat and Deepherb is popular 

Indian medicinal plants databases which is open soruce This 

database establishes a comprehensive database encompassing 

6,959 medicinal plants distributed across 28 states and 8 union 

territories, detailing their phytochemical properties and 

geographical distribution. It derives information from 

traditional knowledge, geographical indications, 

phytochemicals, and chemoinformatics. 

The Ayur Bharat and Deepherb databases have limited 

turmeric images, and the Duggirala variation is unavailable. 

This study experiments on the innovative leave dataset 

obtained during fieldwork at the Crop area and Turmeric 

Board in Duggirala, Guntur District, Andhra Pradesh, India. 

HD 1024×768 pixels are used in the experiment. Clean the 

picture dataset for better categorization. Segmentation, picture 

scaling, contrast improvement, color correction, noise 

reduction, and feature extraction were used to preprocess the 

dataset. 

To improve the classification analysis, the current Curcuma 

longa leaf dataset is analyzed using several color band indices 

that enhance ambient light conditions for color correction. 

Color band indices are commonly employed in crop image 

processing studies and are calculated by assessing the ratio of 

light intensity across different radiation bands. Light intensity 

is often averaged throughout the entire image or a designated 

segment of it. 

The computation of the ratio of color band intensities 
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functions as a normalization step to adjust for variations in 

ambient light conditions. This current Curcuma longa leaf 

picture dataset is analyzed using multiple Excess Red Index 

and Excess Green Minus Index (ERIEGMI) [23], Excess Blue 

color index (EBI), Excess Red Index (ERI) and Excess Green 

Index (EGI). ERI, EBI and EGI are improved the 

Classification analysis for Curcuma longa leaf images dataset 

samples. 

 

 
 

Figure 2. (A) Original image; (B) Flip (Horizantal); (C) 

Rotate (-15˚); (D) Rotate (15˚); (E) Grayscale (15%); (F) 

Saturation (25%); (G) Brightness (15%); (H) Blur (Upto 

2.5px); (I) Noise (Upto 0.1% of pixels) 

 

Mainly three categories of sick leaves are included. 

Curcuma longa plant, popularly known as the Turmeric plant, 

is particularly subject to three diseases that greatly harm its 

rhizomes. The collection includes 6584 annotated photographs 

of leaf blotch, Colletotrichum leaf spot, and Cercospora leaf 

spot. The data is obtained using a high-resolution camera 

(Canon EOS 5DS R with 50.6 megapixels) from a specific area 

of land in Duggirala Mandal, Guntur District, Andhra Pradesh, 

India. Subsequently, the data undergoes picture pre-processing 

processes to create a dataset of superior quality. Pre-

processing eliminates unwanted distortions and boosts 

important features necessary for the intended purpose. The 

noise data eliminated from the raw photos, categorized by 

class. In the production of the dataset, we utilize the following 

pre-processing techniques: (i) Data Profiling: The Curcuma 

longa dataset underwent profiling stages, which involved 

analyzing the distribution of colors, sizes, brightness, and 

shuffling. The open-source tool 'Data Gradients' is used to 

examine the Curcuma longa dataset. The analysis focuses on 

many criteria related to picture quality, such as convexity, fine 

features, segments, brightness, color distribution, aspect 

ratios, and resolution of leaf photographs. Figure 2 illustrates 

the Augmented techniques together with their parameters, 

while the distribution of three classes within the dataset, 

indicating that the dataset consists of 885 raw photographs 

classified into three categories, which were then increased to 

6,585 images after annotation. (ii) Data Cleaning: We 

eliminated erroneous, corrupted, improperly formatted, 

redundant, or unfinished photos of Curcuma longa from the 

dataset. A total of 292 images of Leaf blotch were acquired, 

with 18 photographs being excluded from the collection. 

Similarly, I captured 305 shots of Colletotrichum leaf spot and 

then removed 29 of them. The majority of the discarded 

images were duplicates, while just a small number were found 

to be blurry. Following the same pattern as the previous 

instance, I gather a total of 288 photographs of Cercospora leaf 

spot. However, I exclude 15 of them as they possess 

inadequate resolution and brightness. We remove 62 

anomalous data points from the original sample of 885, 

resulting in a balanced dataset of 885 photographs [24]. (iii) 

Balanced Dataset: Classifying balanced datasets yields much 

higher accuracy and reduces bias compared to imbalanced 

datasets. For the current research, a selection of 885 high-

quality photos of pests was meticulously picked and resized to 

a resolution of 640 by 640 pixels in each category. 

Subsequently, these images undergo amplification [25]. (iv) 

Augmentation: Each pest class image undergoes a five-fold 

augmentation process, which involves rotation (four times), 

blurring (once), adding salt-pepper noise, and flipping (twice). 

This results in a total of 6584 augmented images across all 

three classes. The dataset is partitioned into three groups, 

allocating 20% for validation, 10% for testing, and 70% for 

training. The dataset distribution chart displays the distribution 

of Curcuma longa (Turmeric) leaf disease classes, which 

include three variants: Duggirala variation Leaf blotch (2192), 

Colletotrichum leaf spot (2208), and Cercospora leaf spot 

(2184). 

 

Dataset 

A total of 885 raw images of all classes were collected from 

the field. Among collected Colletotrichum leaf spot image 

took major portion (305) and followed by Leaf blotch (292), 

Cercospora leaf spot (288). A Data Training experimentation 

also conducted on imbalanced dataset and obtain 38 percent 

training accuracy for Squeeznet,29 percent for GoogLeNet 

and 42 percent for ResNet-50, when Hyper-parameters such as 

Learning rate (0.01), Epochs (25), Optimizers is SGDM and 

vector distance method is L2norm performs low accuracy with 

imbalance dataset. So, the rest of the work is discussed only 

on balanced datasets rather than imbalanced data set that 

resulted poor accuracy for all three training networks 

 

 

4. METHODOLOGY 

 

The methodology comprises the popular deep learning 

architectures SqueezeNet, GoogLeNet, and ResNet-50 to train 

turmeric leaf data, which helps to attain higher testing 

accuracy in early warning of diseases. With the addition of the 

turmeric image dataset, the dataset has undergone a data 

cleaning process. The dataset is separately subjected to a deep 

learning architecture. Compute the training classification 

accuracy by adjusting the training parameters, such as learning 

rate, epochs, gradient threshold methods, and other parameters 

as constants. Table 1 shows the Deep Learning Layer 

Architecture Comparative Analysis of SqueezeNet, 

GoogLeNet, and ResNet-50. 

By adjusting the parameters and altering the training 

methods, we calculate the accuracy gain or loss values, 

ultimately determining the training accuracy. Similarly, we 
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calculate and suggest all three architecture training accuracies, 

aiming for the best accuracy and specified training parameter 

values. Layered structure is shown in Figure 3. 

 

Table 1. Deep learning layer architecture comparative analysis 

 

S. No. Layer Name 
SqueezeNet GoogLeNet ResNet-50 

No. Y/N No. Y/N No. Y/N 

1 Input 1 √ 1 √ 1 √ 

2 SoftMax 1 √ 1 √ 1 √ 

3 Global Average Pooling 2D 1 √ 1 √ 1 √ 

4 Dropout 1 √ 1 √ 0 X 

5 ReLU 26 √ 57 √ 48 √ 

6 Fully Connected 1 √ 1 √ 1 √ 

7 Max Pooling 2D 3 √ 14 √ 1 √ 

8 Convolution 2D 26 √ 57 √ 53 √ 

9 Depth Concatenation 8 √ 9 √ 0 X 

10 Inception 0 X 1 √ 0 X 

11 Flattening 0 X 0 X 1 √ 

12 Classification 1 √ 1 √ 1 √ 

13 Cross Channel Normalization Layer 0 X 2 √ 0 X 

14 Batch Normalization Layer 0 X 0 X 53 √ 

15 Addition layer 0 X 0 X 16 √ 

 

 
 

Figure 3. Methodology of training issues to extract best classification accuracy using deep learning architectures 
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5. ASSUMPTIONS AND MATHEMATICAL 

NOTATIONS 

 

Although we chose and adjusted the optimal 

hyperparameters based on a uniform probability distribution 

function (Epochs and Learning rate with equal intervals), the 

final findings were accepted using the Poisson distribution to 

suggest the most effective classifier. 

 

5.1 SGDM  

 

The SGDM algorithm exhibits the ability to oscillate in a 

direction that is most direct to the desired outcome. This 

oscillation can be mitigated through the incorporation of a 

momentum term into the parameter update. SGDM has been 

modified. 

 

𝜃𝑙+1 = 𝜃𝑙 − 𝛼∇𝐸(𝜃𝑙) + 𝛾(𝜃𝑙 − 𝜃𝑙−1) (1) 

 

The symbol γ represents the contribution to the current 

iteration from the previous gradient step. Momentum training 

is a method that may be used to determine this worth. Utilize 

the SGDM input option under the training options and use 

SGDM to train a neural network. The initial value for the 

learning rate should be provided using the initial learning rate 

training parameter. In addition, different layers and parameters 

may have different learning rates specified. While using 

SGDM with momentum, all parameters are learned at the same 

pace. Through the use of learning rates that change according 

to parameters and may automatically adapt to the loss function 

being improved, other optimization techniques seek to 

enhance network training. 

 

5.2 RMSProp 

 

The RMSProp calculates the moving average by 

considering the square of each parameter gradient and then 

averaging them. 

 

𝑣𝑙 = 𝛽2𝑣𝑙−1 + (1 − 𝛽2)[∇𝐸(𝜃𝑙)]2 (2) 

 

The moving average decay rate is shown as β2. There are 

three standard decay rates: 0, 9, and 0,999. Averaging the 

squared gradients over durations of 10, 100 or 1/(1-β2) and 

1000 parameter updates is required. By using the Squared 

Gradient Decay Factor (SGDF) training settings, you may pick 

β2. This moving average is used by the RMSProp method to 

normalize the updates of each parameter separately. 

 

𝜃𝜄+1 = 𝜃𝜄 −
𝛼∇𝐸(𝜃𝜄)

√𝑣𝜄+𝜖
  (3) 

 

where, each part is divided separately. A small constant ɛ has 

been added to prevent division by zero and it successfully 

reduces learning rates for parameters with strong gradients 

while enhancing learning rates for values with mild gradients. 

While customization is possible via the Epsilon training 

option, the default configuration generally functions 

satisfactorily. 

 

5.3 ADAM 

 

The ADAM employs a parameter update method that bears 

a resemblance to RMSProp (whereas it is derived from 

ADAM) and incorporates a momentum factor. The parameter 

gradients and their squared values are monitored through the 

utilization of an element-wise moving average. 

 

𝑚𝑙 = 𝛽1𝑚𝑙−1 + (1 − 𝛽1)∇𝐸(𝜃𝑙) (4) 

 

𝑣𝑙 = 𝛽2𝑣𝑙−1 + (1 − 𝛽2)[∇𝐸(𝜃𝑙)]2 (5) 

 

The Squared Gradient Decay Factor (SGDF) and Gradient 

Decay Factor training parameters, respectively, let you choose 

the β1 and β2 decay rates. Moving averages are used by 

ADAM to change the network's settings as necessary. 

 

𝜃𝑙+1 = 𝜃𝑙 −
𝑎𝑚𝑙

√𝑣𝑙+𝜖
  (6) 

 

Parameter adjustments can gain momentum in one direction 

by employing a moving average of the gradient, provided that 

the gradients remain equivalent over multiple iterations. A 

significant portion of the gradient moving average is 

consumed by noise, leading to a corresponding decrease in 

parameter updates. One may specify through the utilization of 

the Epsilon training option. For some issues, a value as large 

as 1 is more effective than the default value, which is 

frequently adequate. If you wish to train a neural network 

using ADAM, the training choice for initial input is ADAM. 

In addition, the ADAM enhancement as a whole incorporates 

a method for reversing a bias that manifests itself during 

training. Utilizing the initial learn rate training parameter, 

configure the learning rate for every optimization technique. 

Learning rates that are suitable for a given optimization 

strategy are also dependent on how that rate influences that 

strategy. It is also possible to specify distinct learning rates for 

various layers and parameters. 

 

5.4 Gradient clipping 

 

The training process is characterized by instability and will 

deviate significantly after a few iterations if the magnitude of 

the gradient increases exponentially. A training loss that is 

NaN (Not a Number) or Inf (Infinity) indicates a "gradient 

explosion". Gradient pruning stabilizes training in the 

presence of anomalies and at higher learning rates, thereby 

mitigating the issue of gradient explosion. Gradient clipping 

enhances the efficiency of network training while preserving 

the correctness of the learned task. Norm-based gradient 

clipping adjusts the magnitude of the gradient while 

preserving its direction. The parameters 'l2norm' and 'global-

l2norm' in the Gradient Threshold Method refer to gradient 

clipping techniques based on norms that partial derivative 

exceeding the threshold is subjected to value-based gradient 

cropping, leading to an arbitrary alteration in the gradient's 

direction. Although the behavior of value-based gradient 

clipping may appear counterintuitive, the network remains 

stable even when changes are of a negligible magnitude. The 

Gradient Threshold Method determines the absolute value of 

the gradient by employing a value-based gradient reduction 

strategy. 

 

5.5 L2 regularization 

 

An approach to mitigate overfitting involves incorporating 

a regularization term into the loss function E(θ) for the weights 

Eqs. (1)-(2). The weight decay term is also used in 
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regularization terms. The form of the loss function including 

the regularization term is as follows: 

 

𝐸𝑅(𝜃) = 𝐸(𝜃) + 𝜆Ω(𝑤) (7) 

 

The regularization function Ω(w) is denoted by where w 

signifies the weight vector and λ represents the regularization 

factor (coefficient). 

 

Ω(𝑤) =
1

2
𝑤𝑇𝑤  (8) 

 

 

6. DEEP LEARNING ARCHITECTURE 

 

The study mainly focuses on popular SqueezeNet, 

GoogLeNet, and ResNet-50 deep learning architectures that 

result in 100 percent training classification accuracy. 

 

6.1 SqueezeNet 

 

SqueezeNet balances precision and simplicity, making it 

ideal for mobiles and embedded systems with limited 

resources. Fire modules—specialized convolutional layers 

that combine 1 × 1 and 3 × 3 filters—set SqueezeNet apart. 

This combination reduces parameters without sacrificing 

accuracy, making it ideal for low-resource devices. It may 

achieve excellent precision with a small fraction of the 

processing resources of other convolutional neural networks. 

SqueezeNet uses channel squeezing, a technology 

breakthrough. By lowering the number of channels in the 

model's convolutional layers, this method minimizes network 

computational load while retaining accuracy. SqueezeNet 

improves efficiency via channel squeezing, fire modules, and 

deep compression.  

 

6.2 GoogLeNet 

 

The architecture-building inception module is GoogLeNet 

main invention. Concatenated convolutional layers with 

varying kernel sizes capture features of different scales in an 

inception module. This parallelism lets GoogLeNet capture 

fine-grained details and high-level information, making it 

great at picture identification. Before applying larger 

convolutional kernels, each inception module reduces the 

computational cost by reducing dimensionality with 1 × 1 

convolutions. 

 

6.3 ResNet-50 
 

ResNet50 has four main components: convolutional layers, 

an identification block, and fully connected layers. The 

identity block and convolutional block process and alter input 

picture features extracted by the convolutional layers. The 

final categorization uses fully connected layers. Max pooling 

layers reduce feature map spatial dimensions while keeping 

the most important characteristics after convolutional layers. 

The identification and convolutional blocks comprise 

ResNet50's core. The identity block simply applies 

convolutional layers to its input. It then merges input and 

output. This lets the network learn residual functions that 

convert input to output. The convolutional block is similar to 

the identity block, but it has a 1 × 1 convolutional layer to 

reduce filters before the 3 × 3 layer. Fully connected layers are 

ResNet50's final component. The final classification falls 

between these levels. The last fully connected layer output is 

passed via a SoftMax activation function to generate class 

probabilities. 

In all three architectures a few are common layers such as 

Input, SoftMax, Global Average Pooling 2D, ReLU, Fully 

Connected, Max Pooling Layer 2D, Convolution 2D, and 

Classification layers. 
 

6.4 Input layer 
 

The input layer is the most common in all three deep 

learning architectures and consists of only one. The principal 

function of the Input layer is to receive RGB images supplied 

by artificial input neurons in the input layer of a neural 

network. This data is processed by artificial neurons in 

subsequent layers. 

 

6.5 SoftMax layer 

 

SoftMax is operationalized just before the output layer via 

a neural network layer. The number of nodes in the SoftMax 

layer should be equivalent to that of the output layer. It is 

primarily utilized during the classification of training objects 

and is an activation function. As that of the Input layer, the 

SoftMax layer count is also only one in all three architectures. 

 

𝑆(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝑛

𝑗=1

  (9) 

 

where, x is the vector of raw output from the neural network, 

the e value is 2.718 and i represents the output vector of x with 

a predicted probability of ith class. 

 

6.6. Global average pooling 2D layer 

 

To perform down sampling, the 2-D global average pooling 

layer computes the mean of the input's height and width 

dimensions using the integer factor method. Integer factor 

down sampling is also known as compression. Integer factor 

can be achieved by reducing high-frequency signal using a 

low-pass filter and decimating the filtered signal at M. By 

using the Finite Impulse Response (FIR) filter is efficient in 

filtering to decimate Mth output for signal. Therefore, the FIR 

nth out samples is articulated as: 

 

𝑦(𝑛) = ∑ 𝑥[𝑛𝑀 − 𝑘] . ℎ[𝑛
𝑘=0 𝑘]  (10) 

 

where, x vector represents the down samples input signals and 

h vector is impulse response signals of k length. 

The layer pools over the spatial dimensions for 2-D picture 

input comprises four dimensions they are single channel and 

single observation with two spatial dimensions. Whereas the 

dimensionality is different for a sequence of images, in 

addition to the previous four dimensions time steps dimension 

is added to existing data. The Global Average Pooling 2D 

layer is common in all three deep learns architectures 

represented only once in architecture. 

 

6.7 Dropout layer 
 

The Dropout layer plays a crucial role in setting input 

elements to zero randomly and the probability value is 0.05 by 

default. 
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𝐸𝐷 = 0.5(𝑡 − ∑ 𝛿𝑖𝑤𝑖𝐼𝑖
𝑛
𝑖=1 )2  (11) 

 

Here t represents time, I is the input feature, w is weights 

and δ is defined as the dropout rate, where the probability 

equals 1 or zero. 

The Dropout layer is presented only once in SqueezeNet and 

GoogLeNet architectures and this layer is not available in 

ResNet-50. In ResNet-50 the random values for input values 

are not assigned as zero. 

 

6.8 Rectified liner unit (ReLU) layer 

 

ReLU layer's each input element is subjected to a threshold 

operation, which is less than zero to zero. The layer's max 

value, threshold value, and negative slope values are all larger 

than or equal to zero in this instance. The ReLU function and 

its derivative exhibit a monotonic nature. Negative input 

results in the function returning 0. Positive input, however, 

causes the function to return x. Thus, the spectrum of the 

output is infinite to zero. 

 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (12) 

 

All three (SqueezeNet, GoogLeNet and ResNet-50) contain 

the ReLU layer and it is one of the important layers for 

classification in deep learning architectures. The SqueezeNet 

architecture contains 26 layers, then GoogLeNet comprises 57 

layers and ResNet-50 has 48 layers. 

 

6.9 Fully connected layer 

 

In the FCL layer, the output size is fixed at two and the input 

size is initialized to auto. Additionally, the values given for 

Weight Learn Factor, Weight L2Factor, and Bias Learn Rate 

Factor are all taken into account as 1, whereas only 

BiasL2Factor is taken into account as 0. Weights Initializer 

and Bias Initializer were then utilized to initiate the zeros and 

Glo rot procedures, respectively. The mathematical 

formulation denoted as Eq. (13) is utilized to represent a single 

hidden layer of a feed-forward neural network. 

 

𝑦̂ = 𝜎(𝑥𝑊1)𝑊2 (13) 

 

where, the hidden layer is linked to the output layer and the 

input layer is linked to the connected layer. If there are N real-

valued features and L hidden units and M output units, then 𝑦̂ 

can be articulated as: 

 

𝑦̂ = ∑ 𝜎(〈𝑥, 𝑊1,𝑖〉) . 𝑊2,𝑖

𝐿

𝑖=1

 (14) 

 

where, 𝜎 is the activation function, x is the feature vector, W1 

and W2 are weights of the hidden layers. All features and 

weights are represented by a set of real numbers with a specific 

range (𝑥 ∈ ℝ1𝑋𝑁 , 𝑊1 ∈ ℝ𝑁 𝑋 𝐿 , 𝑊2 ∈ ℝ𝐿 𝑋 𝑀). 

 

6.10 Max pooling 2D layer 

 

Padding, Pool Size, and Strides comprise the Max Pooling 

2Dlayer. To maximize the number of steps taken when 

training an integer or tuple of three numbers, a window size is 

utilized. By dividing (3, 3) by 3, the utmost value within a 

pooling window of size 3 × 3 is obtained. An integer, a pair of 

integers, or None after that. The worth of bounds. Defines 

Padding as (0, 0, 0, 0) and Strides as (2, 2), and specifies the 

distance covered by the pooling window during each pooling 

step. 

 

𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋)𝑖,𝑗,𝑘

= 𝑚𝑎𝑥𝑚,𝑛𝑋𝑖.𝑠𝑥
+ 𝑚, 𝑗. 𝑠𝑦 + 𝑛, 𝑘 

(15) 

 

where, X denotes the input, (i, j) the output indexes, k the 

channel index, and (i, j) the horizontal and vertical stride 

values. The pooling window is established by the filter sizes fx 

and fy that are centered at the output index (i, j). The Max 

Pooling 2D layer is common in all three training networks that 

were incorporated with different ratios. The SqueezeNet 

comprises of 3 layers and ResNet-50 contains only in this 

layer, a 7 × 7 feature map is averaged down to a 1 × 1 

dimension. Furthermore, this approach decreases the quantity 

of trainable parameters to zero and improves the accuracy of 

the top one by 0.6%. In contrast, GoogLeNet utilizes fourteen 

layers of MaxPooling to achieve a higher degree of accuracy. 

The extent of the feature filter in Google Net is determined by 

the Inception layer, which is responsible for filtering the data 

(56 × 56 × 1). 

 

6.11 Convolution 2D layer 

 

The Convolution 2D plays a crucial role in all three 

architectures, where the filter size differs in each architecture. 

For SqueezeNet, there are twenty-six layers, the filter size is 

(3, 3), the stride is (2, 2), and the padding value is set to zero. 

The GoogLeNet is 57, the filter size varies from (3, 3) to (7, 

7), the padding value ranges from (0, 0) to (3, 3), and the stride 

is (2, 2). The ResNet-50 consists of 53 convolution layers, 

whose filter size ranges from (1, 1) to (14, 14), and padding 

and stride values are (3, 3) and (2, 2). For instance, the basic 

characteristics of the Convolution 2D Layer are the number of 

strides (2, 2), the dilation factor (1, 1), the filter size (3, 3), and 

the filters (64). Furthermore, we set the Weight2Factor Bias 

Learn Rate Factor and Weight Learn Rate Factor to 1, the 

remainder BaseL2Factor to '0', the Base Initializer to zeros, 

and the Weights Initializer to glorot, among other weight 

parameters. The convolution filters can be described. The 

convolution can be defined as 

 

𝐶𝑜𝑛𝑣 =
(𝑊 − 𝐹 + 2𝑃)

𝑆
 (16) 

 

6.12 Depth concatenation layer 
 

Inputs with the same height and breadth are concatenated 

along the channel dimension by a depth concatenation layer. 

The concatenation layer is available only in SqueezeNet and 

GoogLeNet. 

 

6.13 Output layer 

 

Only two leaf disease classes, Gemini and Keriting Mosaic 

are present in the designated output layer for classification, 

known as the classification layer. Cross entropy ex is used as 

a loss function and the output size is two.
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7. EXPERIMENTATION 

 

This study examines three prominent Deep Learning (DL) 

architectures: SqueezeNet, GoogLeNet, and Bayesian Deep 

Learning (BDL)-based ResNet-50. The experiments were 

conducted using MATLAB 2022A, employing the 'Uniform 

Probability Distribution' function to optimize 

hyperparameters, ranging from 30 to 50 epochs and 0.01 to 1 

for learning rate, with equal frequency. The specific 

characteristics of each architecture are delineated in Table 2. 

 

Table 2. Training classification performance analysis of l2norm optimizer on Curcuma longa dataset 

 
S. No. DL Net Optimizer Lowest Accuracy Epochs Highest Accuracy Epochs Overall Average 

1 SQUEEZENET 

SGDM 

51.35 25 51.35 50 51.35 

51.35 25 51.35 50 51.35 

48.65 25 51.35 30 50.9 

51.35 25 51.35 40 51.35 

51.35 25 51.35 45 51.35 

48.65 25 51.35 30 50.9 

ADAM 

97.3 25 100 50 99.55 

48.65 25 51.35 35 49.1 

51.35 25 54.05 50 51.8 

48.65 25 51.35 35 50.9 

48.65 25 51.35 50 50.9 

48.65 40 51.35 25 50 

RMSPROP 

48.65 30 100 50 85.58 

48.65 35 100 30 61.26 

48.65 30 70.27 35 53.15 

48.65 50 51.35 30 50 

48.65 25 51.35 50 50.45 

48.65 25 51.35 40 49.55 

2 GOOGLENET 

SGDM 

97.3 40 100 50 99.55 

97.3 25 100 45 99.55 

97.3 35 100 50 99.55 

51.35 25 51.35 45 51.35 

51.35 30 51.35 35 51.35 

51.35 25 51.35 40 51.35 

ADAM 

100 25 100 40 100 

100 30 100 45 100 

48.65 25 51.35 45 50.9 

48.65 25 51.35 50 50.9 

51.35 30 51.35 45 51.35 

48.65 30 51.35 40 50.9 

RMSPROP 

48.65 25 100 50 59.91 

51.35 30 97.3 25 66.66 

48.65 40 51.35 25 50.45 

48.65 50 51.35 25 49.1 

48.65 30 51.35 35 50.45 

48.65 45 51.35 25 50.9 

3 RESNET-50 

SGDM 

100 25 100 45 100 

100 30 100 50 100 

100 25 100 45 100 

100 30 100 40 100 

100 25 100 40 100 

100 25 100 45 100 

ADAM 

94.59 25 100 45 97.74 

89.19 35 100 30 96.84 

89.19 30 100 50 95.45 

89.19 35 100 25 94.19 

89.19 35 100 30 94.59 

89.19 30 100 25 94.29 

RMSPROP 

89.19 50 100 25 96.39 

89.19 50 100 35 96.84 

89.19 35 100 25 95.94 

89.19 50 100 30 93.69 

89.19 50 100 25 93.84 

91.89 40 100 25 96.09 

 

7.1 Image data acquisition 

 

Images of plant leaf diseases were acquired from the 

Customs Dataset, specifically from agricultural fields. The 

images were subsequently categorized into three distinct 

categories. The collection portrays Leaf Bloch and Spots, two 

prevalent leaf diseases that have the potential to affect the 

plant as mentioned above commodities. The diseases affecting 

turmeric leaves were selected for the compilation due to their 

global and Indian recognition, respectively. By default, each 
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image is converted to a unique JPG file, which adheres to the 

RGB color space. A dataset has been collected from the field 

of research Area in Duggirala, Andhra Pradesh. The dataset 

contains three categories of disease leaf, which have leaf 

blotch, Colletotrichum leaf spot, and Cercospora leaf spot, 

respectively. The researcher collected private data from the 

field of Duggirala, Andhra Pradesh. 

 

 

8. RESULTS 

 

8.1 SqueezeNet 

 

The present study, carried out on turmeric leaf disease data, 

was subjected to the SqueezeNet DL model. The training 

results are concentrated by varying learning rates and ephods. 

Two categories of results were presented in this section to 

evaluate the performance of SGDM on SqueezeNet: LR values 

were held constant while varying epochs, and vice versa. In 

the experimentation, epochs were considered from 25 to 50, 

with 5 as an interval, and LR ranges from 0.01 to 0.05 and 1. 

Along with LR and epochs, the performance is measured on 

three types of vector norms, such as L2Norm, Global-

L2Norm, and absolute value. In general, norms are used to 

measure the error rate in the training process in DL model. 

 

8.1.1 SGDM 

Gradient descent is an iterative optimization technique that 

seeks the optimal value (minimum or maximum) of an 

objective function. Finding the model parameters that offer the 

highest accuracy on both training and test datasets is the main 

objective of gradient descent. The SDGM is a popular 

optimizer that plays an important role in achieving 100 percent 

training accuracy by adjusting bias and weights at each layer. 

The learning rate, which is a hyperparameter, dictates the 

extent to which the model is modified whenever the predicted 

error causes a weight adjustment. Figure 4 describes the loss 

and gain function of the training data based on the SGDM 

optimizer. 

8.1.2 Impact of learning rate on SGDM 

A low learning rate may cause the algorithm to converge 

slowly in SGDM, whereas a high learning rate may cause it to 

overshoot the minimum. The performance of SqueezeNet on 

SGDM based on LR at a constant rate in various epochs is 

notably shown in Figure 4. SqueezeNet obtained 51.4 percent 

training accuracy for all epochs and optimizers during LR at 

0.02. However, the performance differed between optimizers 

in varying epochs. However, as compared to the absolute value 

and global L2 norm, the L2Norm optimizer is high. The 

SGDM's L2Norm peak performance training accuracy is 51.4, 

with 48.4 being the lowest. 

In Global-L2Norm, where training accuracy is high (51.4) 

and observed accuracy is low (48.5), the scenario persisted as 

well. Comparing the Global-L2Norm to the absolute-value 

optimizer in comparison to the other two in SGDM, the 

performance of the absolute-value optimizer is minimal. Table 

2 shows that the higher epochs, those between 45 and 50 are 

gaining greater success in SGDM. Overall, SqueezeNet 

SGDM training accuracy performance is rather poor, and 

using L2Norm will increase accuracy at all levels of LR and 

epochs. 

 

8.1.3 Impact of epochs on SGDM 
Secondly, to measure the performance of SqueezeNet on 

SGDM while epochs are constant and varying for different 
learning rates that vary from 0.01 to 0.05 and 1. The training 
accuracy on the turmeric dataset is unstable, and it varies 
according to the learning rate. The training accuracy of the 
‘Absolute-Value’ optimizer showed a peak performance that 
resulted in 100 percent. Then L2Norm and global-L2Norm 
performance are almost similar, with 41.2 percent where 
epochs are at 25 (Table 2). The training accuracy ranged from 
48.1 to 55.8 when epochs ranged from 30 to 50, which is lower 
(Table 2). Thus, it is interpreted that SDGM is very low when 
epochs are constant. Also, the below results clearly state that 
LR and Epochs have a lower impact on SDGM in SqueezeNet 
on the current Turmeric Leaf Diseased dataset. 

 

 
 

Figure 4. Deep learning SGDM training data gain and loss graphs 
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8.1.4 ADAM 

The ADAM optimizer is incredibly effective when dealing 

with complex problems involving numerous variables or data, 

because it is a combination of SGDM and RSMPROP. As per 

DL literature the ADAM performance is good compared with 

rest. The presented results show the performance variance by 

considering three vector norms i.e., L2Norms, Global-

L2Norm and Absolute-Value. The section focuses on the 

ADAM optimizer in SqueezeNet performance analysis on 

various vectors that yield higher training accuracy for the 

Turmeric dataset.  

 
8.1.5 Impact of learning rate on ADAM 

The performance of ADAM is fairly good (training 

accuracy = 100 percent) when the LR is at 0.01 for all epochs 

that range from 25 to 50. However, a gradual decline is 

observed in accuracy whenever the learning rate reaches from 

0.02 to 1. So, it is interpreted that the ADAM results in higher 

accuracy with a lower learning rate. It was observed that the 

accuracy resulted differently for each vector norm, where the 

L2 norm and absolute-value performance were higher than the 

global L2 norm the global L2 norm for SqueezeNet using the 

ADAM the ADAM optimizer (Table 2). Even though training 

accuracy is achieved at a lower rate with a higher learning rate, 

the absolute value and global L2 norm are stable while using 

ADAM (SGDM). At the same time, the performance of 

L2Norm varied from 100 percent to 48.5 percent. From this 

observation, it is understood that lower learning isn’t suitable 

for attaining higher training accuracy. 

 

 
 

Figure 5. Performance analysis of SqueezeNet on SGDM by making EPOCH as constant 
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8.1.6 Impact of epochs rate on ADAM 

The Epochs have shown lesser impact in improving training 

accuracy using SqueezeNet (ADAM). For all the six cases the 

only at lower LR (0.01) has shown greater impact irrespective 

of Epochs (Figure 5). At every epoch that ranges from 25 to 

50 the training accuracy attained 100 percent. In all six cases 

the L2Norm, Global-L2Norm and Absolute-value have shown 

a similar behavior except in a few cases, which is negligible 

accuracy. From the above two observations, it is concluded 

that ADAM in more concern with the DL rather than Epochs 

in SqueezeNet. The higher LR may result in overfitting 

because of lower training accuracies in ADAM (SGDM). The 

results on SqueezeNet (ADAM) interpret that lower LR is 

efficient in training the Turmeric diseased dataset. 

 

Table 3. Training classification performance analysis of globall2norm optimizer on Curcuma longa dataset 

 
S.No. DL Net Optimizer Lowest Accuracy Epochs Highest Accuracy Epochs Over All Average 

1 SQUEEZENET 

SGDM 

48.65 35 51.35 50 50.9 

51.35 25 51.35 45 51.35 

48.65 50 51.35 25 50.9 

48.65 30 51.35 45 50.9 

48.63 25 51.35 50 50.4 

48.65 30 51.35 50 50.4 

ADAM 

97.30 35 100 50 99.1 

48.65 30 51.35 50 49.55 

48.65 50 51.35 25 50.9 

48.65 25 51.35 45 50 

48.65 30 51.35 35 50.9 

48.65 50 51.35 30 50.45 

RMSPROP 

48.65 25 100 50 81.53 

48.65 25 100 30 58.1 

48.65 25 91.89 45 61.7 

48.65 30 100 45 66.21 

48.65 25 75.68 30 53.15 

48.65 25 51.35 35 50 

2 GoogLeNet 

SGD 

97.3 25 100 45 99.55 

97.3 35 100 50 99.55 

100 25 100 40 100 

51.35 30 51.35 50 51.35 

51.35 25 51.35 45 51.35 

51.35 25 51.35 35 51.35 

ADAM 

97.3 25 100 45 99.55 

97.3 25 100 45 99.1 

48.65 25 51.35 45 50 

51.35 30 51.35 40 51.35 

48.65 30 51.35 50 50 

51.35 25 51.35 40 51.35 

RMSPROP 

48.65 25 100 45 74.32 

48.65 35 100 50 67.56 

48.65 50 51.35 45 50.9 

48.65 50 51.35 45 50.9 

48.65 25 51.35 50 49.55 

51.35 25 51.35 50 51.35 

3 ResNet-50 

SGDM 

100 25 100 50 100 

100 25 100 50 100 

100 25 100 50 100 

100 25 100 50 100 

100 25 100 50 100 

100 25 100 50 100 

ADAM 

100 25 100 50 100 

94.59 30 100 50 99.09 

89.89 40 100 45 95.49 

89.19 50 100 25 95.69 

91.59 35 100 25 95.49 

89.19 40 100 25 94.89 

RMSPROP 

89.19 45 100 30 95.94 

89.19 45 100 25 93.69 

89.19 50 100 25 93.69 

89.19 45 100 30 94.59 

89.19 50 100 30 94.14 

85.59 40 98.19 25 92.34 

 
8.1.7 RMSProp 

As stated in the literature, RMSProp is one of the popular 

optimizers for deep learning architectures. The 

experimentation results confirm that RMSProp performance is 

much lower than SGDM and ADAM because the RMSProp 

method is ineffective for mini-batches. when the learning rate 
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is insufficient. The experimentation was performed by 

considering the mini-batch size of 128, which is lower, and 

that resulted in lower accuracy.  
 
8.1.8 Impact of learning rate on RMSProp 

The LR impact is very limited on RMSProp in the SGDM 
optimizer. But RMSProp will achieve higher training accuracy 
rates (100%) at lower LR and higher epochs. Among the three 
vector distance methods, Global-L2Norm performance is 
good, followed by ‘Absolute- Value’ (Table 3). The overall 
L2Norm training accuracy performance is lower for LR and at 
epochs except in the first case (Table 4). 

 

8.1.9 Impact of epochs rate on RMSProp 

The change in epochs has shown a significant impact on 

RMSProp (SqueezeNet). The results show that whenever there 

is a change in epochs, that reflects on training accuracy. The 

spikes are high in ‘Global-L2Norm and ‘Absolute-Value’ 

compared with ‘L2Norm’. The lower epochs have more 

spikes, and at higher epochs, the accuracy is constantly 

decreased according to LR. The spikes are more observed in 

‘Absolute- Value’ and ‘Global L2Norm’. The ‘L2Norm’ 

performance training accuracy is lower and linear in most of 

the cases and shows less accuracy compared with the rest. 

 

8.1.10 SqueezeNet performance analysis 

Tables 2-4 show the performance analysis of various 

distance vector methods on epochs that vary from 25 to 50. 

The SqueezeNet (SGDM-L2Norm) DL model results in the 

lowest training accuracy at LR of 0.03 and 1 with 48.65, and 

at all other LR rates, the training accuracy is moderate, i.e., 

51.35. The average training accuracy of SqueezeNet (SGDM-

L2Norm) on the Turmeric Leaf dataset is 51.2% for all epochs 

(25-50). Next, the SqueezeNet (ADAM-L2Norm) DL model 

resulted in the lowest training accuracy at LR = 0.04, 0.05, and 

1 with 48.65 and a reported 100% where LR = 0.01 and epochs 

= 50. The average training accuracy of SqueezeNet (ADAM-

L2Norm) on the Turmeric Leaf dataset is 58.7% for all epochs 

(25–50). Next, the SqueezeNet (RMSProp-L2Norm) DL 

model resulted in the lowest training accuracy at LR of 0.01-1 

with 48.65 and reported 100% at LR of 0.01-0.02. The average 

training accuracy of SqueezeNet (RMSProp-L2Norm) on the 

Turmeric Leaf dataset is 58.33% for all epochs (25-50). Based 

on the result statistics, it was concluded that the SqueezeNet 

DL model showed a moderate performance on the Turmeric 

dataset with three diseased classes. 

It is also observed from RMSProp that the higher learning 

and lower epoch rates resulted in very lower accuracy, which 

is not suggestive of higher accuracy because of mini-batch 

(overfitting) issues in SqueezeNet. Compared with the rest the 

two optimizers presented, the RMSProp training accuracy is 

much lower due to the failure to address the mini-batch 

processing problems. It is also observed that RMSProp also 

attains higher accuracies in a few cases where epochs are 35-

50 and LR is 0.01. The overall training performance (mean 

epochs (25-50) and mean LR (0.01-1)) of SqueezeNet 

(ADAM) is 7.5% higher than SqueezeNet (SGDM) and 

0.037% higher than SqueezeNet (RMSProp). In addition, 

SqueezeNet (RMSProp) training accuracy is 7.13% higher 

than SqueezeNet (SGDM) when the ‘L2Norm’ vector distance 

method is applied. The overall training performance (Mean 

Epochs (25-50) and Mean LR (0.01-1)) of SqueezeNet 

(ADAM) is 7.67% higher than SqueezeNet (SGDM) and 

3.29% lower than SqueezeNet (RMSProp). In addition, 

SqueezeNet (RMSProp) training accuracy is 10.97% higher 

than SqueezeNet (SGDM) when the ‘Global_L2Norm’ vector 

distance method is applied. 

The overall training performance (Mean Epochs (25-50) 

and Mean LR (0.01-1)) of SqueezeNet (ADAM) is 7.95% 

higher than SqueezeNet (SGDM) and 7.65% lower than 

SqueezeNet (RMSProp). In addition, SqueezeNet (RMSProp) 

training accuracy is 15.61% higher than SqueezeNet (SGDM) 

when subjected to the ‘Absolute’ vector distance method. 
 

8.2 GoogLeNet 
 

8.2.1 SGDM 

Gradient descent is an iterative optimization technique that 

seeks the optimal value (minimum or maximum) of an 

objective function. Finding the model parameters that offer the 

highest accuracy on both training and test datasets is the main 

objective of gradient descent. The SDGM is a popular 

optimizer that plays an important role in achieving 100 percent 

training accuracy by adjusting bias and weights at each layer. 

 

8.2.2 Impact of learning rate on SGDM 

In SGDM, a low learning rate can result in slow 

convergence of the algorithm, while a high learning rate can 

cause it to exceed the minimum value. The performance of 

GoogLeNet on (SGDM) based on the Learning Rate (LR) at a 

consistent rate across different epochs. According to Table 4, 

GoogLeNet achieved a training accuracy of 100 percent for 

smaller epochs and optimizers when the learning rate (LR) was 

set to 1. Nevertheless, there was a variation in the performance 

of the optimizers in different vectors. However, as compared 

to the absolute value and global L2 norm, the L2Norm 

optimizer is elevated. The SGDM's L2Norm peak 

performance training accuracy is 100, while the lowest 

accuracy recorded is 50. The scenario of persistently low 

observed accuracy (51.5) despite high training accuracy (100) 

continued in Global-L2Norm. Figure 6 shows the varied 

epochs performance under the constant learning rate. 

Contrasting the Global-L2Norm optimizer with the 

absolute-value optimizer. The absolute-value optimizer has 

the lowest performance among the other two optimizers in 

SGDM. The epochs between 45 and 50 exhibit higher levels 

of success in SGDM. In general, the training accuracy 

performance of Google Net SGDM is quite unsatisfactory. 

However, by employing Global-L2Norm, accuracy can be 

enhanced across all LR and epoch levels. 
 

8.2.3 Impact of epochs rate on SGDM 

Second, to assess Google Net performance on SGDM while 

keeping epochs constant and varied for different learning rates 

ranging from 0.01 to 0.05 and 1. The training accuracy on the 

turmeric dataset is inconsistent and varies with learning pace. 

The training accuracy of the 'Global-L2Norm ' optimizer has 

reached a high of 100 percent. When Epochs are set to 25, 

L2Norm and Absolute-value performance are nearly identical 

(Table 3). When the epochs ranged from 30 to 50, the training 

accuracy was 50 to 55.1. As a result, it is assumed that SDGM 

is very low when epochs remain constant. Also, the results 

show that LR and Epochs have a reduced influence on SDGM 

in GoogLeNet on the current Turmeric leaf sick dataset. 
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Table 4. Training classification performance analysis of absolute value optimizer on Curcuma longa dataset 
 

S.No. DL Net Optimizer Lowest Accuracy Epochs Highest Accuracy Epochs Average 

1 SQUEEZENET 

SGDM 

48.65 35 51.35 50 50.9 

51.35 25 51.35 40 51.35 

51.35 30 51.35 45 51.35 

48.65 25 51.35 45 50 

48.65 30 51.35 50 50.45 

48.65 35 51.35 25 50 

ADAM 

100 25 100 45 100 

48.65 25 51.35 40 50.45 

48.65 30 51.35 50 50.45 

48.65 25 51.35 45 50.45 

48.65 30 51.35 50 50.45 

48.65 35 51.35 25 50 

RMSPROP 

48.65 30 100 45 85.12 

51.35 50 100 30 82.42 

51.35 25 100 50 73.42 

48.65 50 100 30 58.1 

48.65 25 51.35 40 49.1 

48.65 30 51.35 45 49.55 

2 GoogLeNet 

SGDM 

100 25 100 50 100 

100 30 100 45 100 

51.35 25 51.35 40 51.35 

51.35 30 51.35 50 51.35 

48.65 25 51.35 40 50.9 

51.35 35 51.35 50 51.35 

ADAM 

97.3 35 100 25 99.55 

94.59 25 100 40 98.19 

48.65 25 51.35 45 50 

48.65 30 51.35 50 50.9 

48.65 30 51.35 45 50 

51.35 35 51.35 50 51.35 

RMSPROP 

48.65 35 51.35 45 50.9 

48.65 30 91.89 40 68.91 

48.65 25 51.35 40 50.45 

48.65 25 51.35 35 49.55 

48.65 30 51.35 45 50 

48.65 25 51.35 45 50 

3 ResNet-50 

SGDM 

100 30 100 45 100 

100 25 100 35 100 

100 35 100 25 100 

100 25 100 45 100 

100 30 100 45 100 

100 25 100 50 100 

ADAM 

100 30 100 25 100 

91.89 30 100 25 98.64 

89.19 40 100 30 94.74 

89.19 35 100 25 94.14 

89.19 35 100 30 93.69 

89.19 35 100 25 92.79 

RMSPROP 

91.89 25 100 40 97.29 

91.89 35 100 30 95.49 

91.89 50 100 25 95.04 

91.89 35 100 25 96.39 

91.89 35 100 25 94.74 

89.19 35 98.19 30 92.49 
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Figure 6. Performance analysis of GoogLeNet on SGDM by making LR as constant 

 

8.2.4 ADAM 

The ADAM is one finest optimizer, where the training 

accuracy is achieved 100%. the gain and loss training accuracy 

shows the performance measure of the Turmeric Dataset using 

ADAM. 

 

8.2.5 Impact of learning rate on ADAM 

ADAM exhibits a respectable level of performance 

(training accuracy = 100 percent) across all epochs in the range 

of 25 to 50 when the LR is set to 0.01. However, an accuracy 

decline is observed gradually as the learning rate increases 

from 0.02 to 1. Thus, it was deduced that ADAM yields greater 

precision at a reduced learning rate. Additionally, it was noted 

that the accuracy outcomes varied among the vector norms, 

with absolute-value and global-l2norm performance 

surpassing that of L2Norm for GoogLeNet when the ADAM 

optimizer was utilized (Table 3). Even though training 

accuracy decreases as the learning rate increases, the 

performance of the Global-L2Norm and absolute value remain 

consistent when ADAM is utilized. Global-l2norm 

performance, on the other hand, varied between 51.5 and 100 

percent. It is evident from this observation that lower learning 

algorithms are not optimal for achieving higher training 

accuracy. The performance of varied epochs with constant 

learning rate is shown in Figure 7. 
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Figure 7. Performance analysis of GoogLeNet on ADAM by making LR as constant 

 

8.2.6 Impact of epochs rate on ADAM 

ADAM exhibits a respectable level of performance 

(training accuracy = 100 percent) across all epochs in the range 

of 25 to 50 when the LR is set to 0.01. However, an accuracy 

decline is observed gradually as the learning rate increases 

from 0.02 to 1. Thus, it was deduced that ADAM yields greater 

precision at a reduced learning rate. Additionally, it was noted 

that the accuracy outcomes varied among the vector norms, 

with absolute-value and global-l2norm performance 

surpassing that of L2Norm for GoogLeNet when the ADAM 

optimizer was utilized. 

Even though training accuracy decreases as the learning rate 

increases, the performance of the Global-L2Norm and 

absolute value remain consistent when ADAM is utilized. 

Global-l2norm performance, on the other hand, varied 

between 51.5 and 100 percent. It is evident from this 

observation that lower learning algorithms are not optimal for 

achieving higher training accuracy. 

 

8.2.7 RMSProp 

According to the literature, one of the common optimizers 

for deep learning systems is RMSProp. Because the RMSProp 

method is unsuccessful for mini batches, its performance is 

substantially lower than that of SGDM and ADAM.  
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8.2.8 Impact of learning rate on RMSProp 

The LR impact is very limited on RMSProp in the SGDM 

optimizer. But RMSProp will achieve higher training accuracy 

rates (97.3%), at lower LR and higher Epochs (Table 4). 

Among the three vector distance methods, Global-L2Norm 

performance is Average, followed by ‘Absolute-value’ (Table 

4). The overall global-L2Norm training accuracy performance 

is lower for LR and at Epochs except in the third. 

 

8.2.9 Impact of epochs rate on RMSProp 

The change in Epochs has shown a significant impact on 

RMSProp (GoogLeNet). The results show that whenever there 

is a change in Epochs and that reflects on training accuracy. 

The spikes are high in ‘Global-L2Norm and ‘L2Norm’ 

compared with ‘absolute value (Table 4). The lower epochs 

have more spikes and at higher epochs, the accuracy is 

constantly decreased according to LR. 

The Spikes are more observed in ‘Absolute-value’ and 

‘Global-L2Norm’. The ‘L2Norm’ performance training 

accuracy is lower and linear in most of the cases and shows 

less accuracy compared with the rest. 

 

8.2.10 GoogLeNet performance analysis 

The performance analysis of various distance vector 

methods on epochs that vary from 25 to 50. The GoogLeNet 

(SGDM-L2Norm) DL model results in the lowest training 

accuracy as 51.35% at LR is 0.03-1and the rest of the all LR 

rates the training accuracy is achieved high accuracy i.e., 

100%. The average training accuracy of GoogLeNet (SGDM-

L2Norm) on the Turmeric leaf dataset is 75.45% for all epochs 

(25-50). Next, the GoogLeNet (ADAM-L2Norm) DL model 

resulted in the lowest training accuracy at LR of 0.03-1with 

48.65% and reported 100% where LR is 0.01-0.02 and Epochs 

are between 40-45. GoogLeNet (ADAM-L2Norm) has 

67.34% training accuracy on the Turmeric leaf dataset for all 

epochs (25-50). GoogLeNet (RMSProp-L2Norm) DL model 

has the lowest training accuracy at 48.65% (except at LR = 

0.02) and 100% at LR = 0.01. GoogLeNet (RMSProp-

L2Norm) has 54.57% training accuracy on the Turmeric leaf 

dataset for all epochs (25-50). GoogLeNet DL performed high 

to moderate on the Turmeric dataset, according to the result 

statistics. Total training performance (Mean Epochs (25-50) 

and Mean LR (0.01-1)) of GoogLeNet (SGDM) is 8.10% 

higher than ADAM and 12.76% higher than RMSProp.  

The ‘L2Norm’ vector distance method improves 

GoogLeNet (SGDM) training accuracy by 20.87% over 

RMSProp. GoogLeNet (SGDM) has 8.63% training 

performance (Mean Epochs (25-50) and Mean LR (0.01-1). 

greater than GoogLeNet (ADAM) and 9.46% higher than 

RMSProp. The ‘Global_L2Norm’ vector distance approach 

improves GoogLeNet (SGDM) training accuracy by 18.09% 

over RMSProp. GoogLeNet (SGDM) outperforms 

GoogLeNet (RMSProp) by 0.82% and 13.36% in training 

performance (Mean Epochs (25-50) and Mean LR (0.01-1). 

The ‘Absolute’ vector distance method improves GoogLeNet 

(SGDM) training accuracy by 14.19% over RMSProp. 

 

8.3 Resnet-50 

 

8.3.1 SGDM 

Gradient descent is an iterative optimization method that 

finds the best value (the lowest or highest point) for a goal 

function. The basic goal of gradient descent is to find the 

model parameters that give the best results on both the training 

and test datasets. By changing bias and weights at each layer, 

the SDGM is a well-known optimizer that is a key part of 

getting 100% training accuracy.  

 

8.3.2 Impact of learning rate on SGDM 

In SGDM, a low learning rate may lead the algorithm to 

converge slowly, whereas a high learning rate may cause it to 

overshoot the minimum. Table 3 depicts the performance of 

ResNet-50 on SGDM based on LR at a rate throughout many 

epochs. ResNet-50 got 100 percent training accuracy for all 

epochs and optimizers for each LR. The performance of 

optimizers varied. However, the absolute value, global L2 

norm, and L2Norm optimizers are all high. The SGDM's peak 

performance training accuracy is 100. In SGDM; a low 

learning rate may lead the algorithm to converge slowly, 

whereas a high learning rate may cause it to overshoot the 

minimum. 

Table 3 depicts the performance of ResNet-50 on SGDM 

based on LR at a constant rate throughout many epochs. 

According to Table 3, ResNet-50 got 100 percent training 

accuracy for all epochs and optimizers for each LR. however, 

the performance of optimizers varied the absolute value, 

global L2 norm, and L2Norm optimizers are all high. The 

SGDM's peak performance training accuracy is 100. Figure 8 

shows the performance of constant Learning Rate of ADAM. 

 

8.3.3 Impact of epochs rate on SGDM 

To assess the performance of ResNet-50 on SGDM with 

constant and variable epochs for different learning rates 

ranging from 0.01 to 0.05 and 1. The training accuracy on the 

turmeric dataset is consistent and steady concerning the 

learning rate. 

The training accuracy of the 'Absolute-Value','global-

l2norm', and'l2norm'optimizer reached a high of 100 percent. 

The performance of L2Nor, Global-L2Norm, and l2norm is 

virtually the same to 100 percent where Epochs are 25-50. 

When the epochs ranged from 30 to 50, the training 

accuracy was 100, which is higher (Table 4). As a result, it is 

assumed that SDGM is quite high when epochs remain 

constant. Also, the results show that LR and Epochs have a 

greater influence on SDGM in ResNet-50 on the current 

Turmeric leaf-infected data. 

 

8.3.4 ADAM 

It is a combination of SGDM and RSMPROP, which makes 

the ADAM optimizer very good at solving hard problems with 

lots of factors or data. It has been said in DL writings that 

ADAM works better than the rest. This part is all about the 

ADAM optimizer in ResNet-50 and how well it works with 

different vectors to make training more accurate for the 

Turmeric dataset.  

 

8.3.5 Impact of learning rate on ADAM 

The performance of ADAM is fairly good (Training 

accuracy = 100 percent for absolute value and global-l2norm) 

when the LR is at 0.01 for all epochs that range from 25 to 50. 

But a gradual decline is observed in accuracy whenever the 

Learning Rate reaches from 0.03 to 1. So, it is interpreted that 

the ADAM results in higher accuracy with a lower learning 

rate. It also observed that the accuracy resulted differently for 

each vector norms, where global-L2norm and absolute-value 

performance were higher than L2Norm for ResNet-50 using 

the ADAM optimizer (Table 2). Even though training 

accuracy resulted at a lower rate with a higher learning rate, 
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the performance of Absolute-value and Global-L2 Norm 

resulted is stable while using ADAM. At the same time, the 

performance of global-l2Norm varied from 100 percent to 

89.19 percent. From this observation, it is understood that 

higher learning rates aren’t suitable for attaining higher train 

accuracy. 

 

 
 

Figure 8. Performance analysis of ResNet-50 on SGDM by making LR as constant 

 

8.3.6 Impact of epochs rate on ADAM 

A higher influence of Epochs on ResNet-50 (ADAM) 

training accuracy has been demonstrated. Regardless of 

Epoch, Table 2 shows that the instance with the lowest LR 

(0.01) has the most effect. Between epochs 25 and 50, the 

training accuracy was perfect every time. After being 

compared against Global-L2Norm and Absolute-value, 

L2Norm was shown to be significantly less accurate in all six 

scenarios. 

In light of these two facts, we may conclude that in ResNet-

50, ADAM is more concerned with the DL than the Epochs. 

With lesser training accuracies in ADAM, the larger LR may 

lead to overfitting. The results of ResNet-50 (ADAM) on the 

Turmeric diseased dataset show that lower LR is effective in 

training. 
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8.3.7 RMSProp 

RMSProp is a well-known way to improve deep learning 

systems. It was proven through experiments that RMSProp 

doesn't work as well as SGDM and ADAM because it's not 

good for small epochs. When the experiment was done, the 

mini-batch size of 128 was used.  

 

8.3.8 Impact of learning rate on RMSProp 

When using the SGDM optimizer, the effect of LR on 

RMSProp is negligible. However, RMSProp will become 

closer to 100% training accuracy for lower LR and longer 

Epochs (Table 4). Good results are shown with the 'Absolute-

value' approach, followed by the 'l2-norm' and the 'global-

l2norm', among the three vector distance methods. Except for 

the first scenario, LR and Epochs result in worse absolute-

value training accuracy performance. 
 

8.3.9 Impact of epochs rate on RMSProp 

Epochs have been proven to significantly affect RMSProp 

(ResNet-50). The findings demonstrate that the accuracy of 

training is affected anytime there is a shift in Epochs. While 

'Global-L2Norm' and 'L2Norm' show lower spikes, 'Absolute-

Value' has high performance. (Table 4).  

There are more spikes in the earlier epochs, and the 

accuracy steadily declines in later ones, as shown by Learning 

Rate. The Spikes are more noted in 'Absolute-value'. In most 

instances, the 'L2Norm' performance training accuracy is 

lower and linear, and it has proven less accurate than the 

others. 
 

8.3.10 Resnet-50 performance analysis 

Table 4 shows the performance analysis of various distance 

vector methods on epochs that vary from 25 to 50. The 

ResNet-50 (SGDM-L2Norm) DL model achieved high 

accuracy i.e., 100% irrespective of LR and Epochs. The 

average training accuracy of ResNet-50 (SGDM-L2Norm) on 

the Turmeric leaf dataset is 100% for all epochs (25-50). Next, 

the ResNet-50 (ADAM-L2Norm) DL model resulted in the 

lowest training accuracy at LR is 0.02-1with 89.19% (Epochs 

are 30-35) and reported 100% where LR is 0.01-1 and Epochs 

are between 25-50. The average training accuracy of ResNet-

50 (ADAM-L2Norm) on the Turmeric leaf dataset is 95.44% 

for all epochs (25-50). Then the ResNet-50 (RMSProp-

L2Norm) DL model resulted in the lowest training accuracy of 

89.19% for all LR (except at LR is 1) and reported 100%, 

where, LR of 0.01-1 for all epochs. The average training 

accuracy of ResNet-50 (RMSProp-L2Norm) on the Turmeric 

leaf dataset is 95.46% for all epochs (25-50). Based on the 

result statistics, it was concluded that the ResNet-50 DL model 

gave a high performance on the Turmeric dataset. 

Total training performance (Mean Epochs (25-50) and 

Mean LR (0.01-1)) of ResNet-50 (SGDM) is 4.55% higher 

than ADAM and 4.53% higher than RMSProp. The ‘L2Norm’ 

vector distance approach improves ResNet-50 (RMSProp) 

training accuracy by 0.01% over ResNet-50 (ADAM). The 

total training performance (Mean Epochs (25-50) and Mean 

LR (0.01-1)) of ResNet-50 (SGDM) is 3.22% higher than 

ADAM and 5.93% higher than RMSProp. The 

‘Global_L2Norm’ vector distance approach improves ResNet-

50 (ADAM) training accuracy by 2.71% over RMSProp. The 

ResNet-50 (SGDM) outperforms the ResNet-50 (RMSProp) 

by 4.33% and 4.76%, respectively, in training performance 

(Mean Epochs (25-50) and Mean LR (0.01-1). The ‘Absolute’ 

vector distance method improves ResNet-50 (ADAM) training 

accuracy by 14.19% over RMSProp. 

9. PERFORMANCE EVALUATION METRICS 

 

The objective of this study was to find the best classification 

training method for smaller datasets such as Duggirala 

Curcuma longa (Turmeric), which is a one-of-a-kind plant. 

Data science literature normally covers many attributes and 

provides concise explanations, hence these studies are rare. 

This section compares three architectures—SqueezeNet, 

GoogLeNet, and ResNet-50—based on three optimizers 

(SDGM, ADAM, RMSProp) for turmeric leaf disease 

detection. All three deep learning architectures are applied to 

Duggirala variant turmeric data's three damaged leaf classes 

(Leaf Blotch, Colletotrichum leaf spot, and Cercospora leaf 

spot). Nine comparison evaluations using LR and vector 

distance measuring methods were provided to find the best 

deep learning network for higher training classification 

accuracy. Superimposed line plots show all three network 

analysis types. 

The results show that SqueezeNet balances precision and 

computational resources well. Traditional CNNs like 

GoogLeNet and ResNet-50 are accurate but require a lot of 

computational power to train and deploy. This disqualifies 

them for embedded and mobile systems. As a feature extractor, 

SqueezeNet may allow other machine learning pipelines to 

access its learned features. GoogLeNet deep architecture, 

accurate network uses many inception modules. This lowers 

processing and overfitting. The researchers fixed the vanishing 

gradient problem during training with intermediate layer 

auxiliary classifiers. Before using larger convolutions, these 

layers use 1 × 1 convolutions to reduce input channels. This 

drastically reduces the computational load while maintaining 

network capacity. Deep neural network development 

increasingly uses bottleneck layers. ResNet50 has many 

convolutional layers, batch normalization, and ReLU 

activation. Most of these layers extract edges, textures, and 

forms from the image. ResNet-50 is particularly advantageous 

for tasks that need very complex architectures, such as the 

identification of diseases in leaves and the segmentation of 

images. The performance of the GoogLeNet, SqueezeNet and 

ResNet-50 is showing lower accuracy on three classes of 

turmeric diseased leaf data while subjected to the RMSProp 

optimizer at all epochs. SqueezeNet, GoogLeNet and ResNet-

50 are giving peak performance in training the turmeric data 

when ADAM is applied. The average training accuracy is 

observed in the SGDM model based on LR and Epochs as 

mentioned in Tables 2-4. The current study solely emphasizes 

training accuracy and does not consider validation accuracy 

concerning the proposed dataset. While the training accuracy 

reaches a perfect score of 100%, there is uncertainty regarding 

the ability of the test accuracy to reach a high level of 99%. 

The primary objective is to identify diseases in the leaf dataset; 

hence, validation plays a critical role in assessing its 

performance. 
 

9.1 Impact of learning rate 
 

Learning Rate (LR) affects training parameters. It shows the 

varies of three performance types. Figure 9 displays the mean 

epochs (25-50) and LR (0.01) performance. Using the 

'L2Norm' vector measurement method, ResNet-50 (SGDM) 

outperforms SqueezeNet (SGDM) by 48.2% and GoogLeNet 

by 0.045%. GoogLeNet (SGDM) has 48.2% training accuracy 

compared to SqueezeNet. In ADAM usage, ResNet-50 

(ADAM) has 0.045% higher training accuracy than 

SqueezeNet and 2.26% lower than GoogLeNet. The 
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performance analysis of ResNet-50 (RMSProp) is 10.81% 

greater than SqueezeNet and 36.48% higher than GoogLeNet. 

Using the 'Global_L2Norm' vector measurement method, 

ResNet-50 (SGDM) outperforms SqueezeNet (SGDM) by 

49.1% and GoogLeNet by 0.045%. ResNet-50 (ADAM) has 

0.9% higher training accuracy than SqueezeNet and 0.045% 

higher than GoogLeNet for ADAM use. Finally, ResNet-50 

(RMSProp) outperforms SqueezeNet (14.41%) and 

GoogLeNet (21.62%). ResNet-50 (SGDM) outperforms 

SqueezeNet (SGDM) by 49.1% and equals GoogLeNet 

(SGDM) using the ‘Absolute’ vector measurement approach. 

ResNet-50 (ADAM) has a training accuracy that is equal to 

SqueezeNet and 0.045% greater than GoogLeNet when using 

ADAM. Finally, ResNet-50 (RMSProp) outperforms 

SqueezeNet (12.17%) and GoogLeNet (46.39%). 

Figure 10 shows the mean epochs and LR (0.02) average 

performance. Using the 'L2Norm' vector measuring technique, 

ResNet-50 (SGDM) surpasses SqueezeNet (SGDM) by 48.65 

and GoogLeNet (SGDM) by 0.045%. The training accuracy of 

GoogLeNet (SGDM) is 48.25%, somewhat higher than 

SqueezeNet. ResNet-50's ADAM training accuracy is 47.74% 

higher than SqueezeNet's and 3.16% lower than GoogLeNet's. 

Finally, ResNet-50 (RMSProp) surpasses SqueezeNet and 

GoogLeNet by 35.58% and 30.018% respectively. The 

'Global_L2Norm' vector measuring technique gives ResNet-

50 (SGDM) a 48.65% higher performance than SqueezeNet 

and 0.045% higher than GoogLeNet. ADAM training 

accuracy for ResNet-50 (ADAM) is 49.54% higher than 

SqueezeNet and 0.01% lower than GoogLeNet. ResNet-50 

(RMSProp) outperforms SqueezeNet (35.59%) and 

GoogLeNet (26.13%). ResNet-50 performance is analyzed 

using absolute vector measurements. ResNet-50 (SGDM) 

outperforms SqueezeNet (SGDM) by 48.65% and matches 

GoogLeNet. The training accuracy of ResNet-50 (ADAM) 

utilizing ADAM is 48.19% higher than SqueezeNet and 

0.045% higher than GoogLeNet. Finally, ResNet-50 

(RMSProp) outperforms SqueezeNet (13-07%) and 

GoogLeNet (26.58%). 

Figure 11 shows the average epochs (25-50) and learning 

rate (0.03) performance. ResNet-50 (SGDM) performance is 

analyzed using L2Norm vector measuring. The performance 

of ResNet-50 (SGDM) is 49.1% higher than SqueezeNet and 

0.045% higher than GoogLeNet. GoogLeNet (SGDM) has 

48.65% training accuracy, higher than SqueezeNet. The 

training accuracy of ResNet-50 (ADAM) utilizing ADAM is 

43.24% higher than SqueezeNet and 44.14% higher than 

GoogLeNet. The Final performance evaluation of ResNet-50 

(RMSProp) is 42.79% lower than SqueezeNet and 45.49% 

higher than GoogLeNet.ResNet-50 (SGDM) outperforms 

SqueezeNet (SGDM) by 49.1% using the 'Global_L2Norm' 

vector measurement technique and is comparable to 

GoogLeNet.  

The training accuracy of ResNet-50 (ADAM) utilizing 

ADAM is 44.59% higher than SqueezeNet and 45.49% higher 

than GoogLeNet. Finally, ResNet-50-RMSProp outperforms 

SqueezeNet by 31.99% and GoogLeNet by 42.79%. ResNet-

50 (SGDM) outperforms SqueezeNet (SGDM) and 

GoogLeNet (SGDM) utilizing the 'Absolute' vector measuring 

technique by 48.65%. The training accuracy of ResNet-50 

(ADAM) utilizing ADAM is 44.29% higher than SqueezeNet 

and 44.74% higher than GoogLeNet. Performance research 

shows ResNet-50 (RMSProp) outperforms SqueezeNet 

(21.62%) and GoogLeNet (44.59%). 

Figure 12 shows the average epochs (25-50) and learning 

rate (0.04) performance. ResNet-50 (SGDM) outperforms 

SqueezeNet and GoogLeNet by 48.65% using L2Norm vector 

measurement. SqueezeNet and GoogLeNet (SGDM) have 

similar training accuracy. ResNet-50 (ADAM) outperforms 

SqueezeNet and GoogLeNet in ADAM training accuracy by 

43.29%. The Final performance evaluation of ResNet-50 

(RMSProp) is 43.69% lower than SqueezeNet and 44.59% 

higher than GoogLeNet. ResNet-50 (SGDM) performance is 

tested using 'Global_L2Norm' vector measurement. It's 49.1% 

higher than SqueezeNet (SGDM) and 48.65% higher than 

GoogLeNet. ResNet-50's training accuracy using ADAM is 

45.69% higher than SqueezeNet's and 44.34% higher than 

GoogLeNet's. In conclusion, ResNet-50 (RMSProp) 

outperforms SqueezeNet (RMSProp) by 28.38% and 

GoogLeNet by 43.69%. The 'Absolute' vector measuring 

method shows that ResNet-50 (SGDM) outperforms 

SqueezeNet (SGDM) by 50% and GoogLeNet (SGDM) by 

48.65%. ResNet-50's training accuracy using ADAM is 

43.69% higher than SqueezeNet's and 43.24% higher than 

GoogLeNet's. Performance investigation shows ResNet-50 

(RMSProp) surpasses SqueezeNet (RMSProp) by 38.29% and 

GoogLeNet by 46.84%. 

Figure 13 shows the mean epochs (25-50) and LR (0.05) 

performance. ResNet-50 (SGDM) outperforms SqueezeNet 

and GoogLeNet by 48.65% using the 'L2Norm' vector 

measurement method. Additionally, GoogLeNet (SGDM) has 

the same training accuracy as SqueezeNet. ResNet-50 

(ADAM) has 43.69% higher training accuracy than 

SqueezeNet and 43.24% lower than GoogLeNet while using 

ADAM. In conclusion, ResNet-50 (RMSProp) performs 

43.39% lower than SqueezeNet and 43.39% higher than 

GoogLeNet. The 'Global_L2Norm' vector measuring method 

is used to evaluate ResNet-50 (SGDM), which outperforms 

SqueezeNet and GoogLeNet by 49.6% and 48.65%, 

respectively. When ADAM is used, ResNet-50 (ADAM) has 

44.59% higher training accuracy than SqueezeNet and 45.49% 

higher than GoogLeNet. Finally, ResNet-50 (RMSProp) 

outperforms SqueezeNet (43.39%) and GoogLeNet by the 

same margin. ResNet-50 (SGDM) performance investigation 

shows that the 'Absolute' vector measurement approach is 

49.1% higher than GoogLeNet and 49.55% higher than 

SqueezeNet. When ADAM is used, ResNet-50 (ADAM) has 

43.24% higher training accuracy than SqueezeNet and 43.69% 

higher than GoogLeNet. In conclusion, ResNet-50 (RMSProp) 

outperforms SqueezeNet (45.64%) and GoogLeNet (44.74%). 

Figure 14 shows the mean epochs (25-50) and LR (1) 

performance. ResNet-50 (SGDM) outperforms GoogLeNet 

(SGDM) by 48.65% and SqueezeNet by 49.1% using the 

'L2Norm' vector measurement method. Compared to 

SqueezeNet, GoogLeNet (SGDM) has 0.045% training 

accuracy. When ADAM is used, ResNet-50 (ADAM) has 

43.29% higher training accuracy than SqueezeNet and 43.39% 

higher than GoogLeNet. Finally, ResNet-50 (RMSProp) 

outperforms SqueezeNet (46.54%) and GoogLeNet (45.19%). 

The 'Global_L2Norm' vector measurement method shows that 

ResNet-50 (SGDM) outperforms GoogLeNet (SGDM) by 

48.65% and SqueezeNet by 49.6%. ResNet-50 (ADAM) has 

43.54% higher training accuracy than SqueezeNet and 

GoogLeNet when ADAM is implemented. The performance 

of ResNet-50 (RMSProp) is 42.34% higher than SqueezeNet 

and 40.99% higher than GoogLeNet. The 'Absolute' vector 

measuring approach gives ResNet-50 (SGDM) a performance 

rating 50% higher than SqueezeNet and 48.65% higher than 

GoogLeNet. Using ADAM, ResNet-50 (ADAM) improves 
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training accuracy by 42.79% over SqueezeNet and 41.44% 

over GoogLeNet.ResNet-50 (RMSProp) outperforms 

SqueezeNet (42.94%) and GoogLeNet.  

 

 
 

Figure 9. Performance analysis of DL vector distance (a) L2Norm (b) Global-L2Norm (c) Absolute-Value where LR = 0.01 

 

 
 

Figure 10. Performance analysis of DL vector distance (a) L2Norm (b) Global-L2Norm (c) Absolute-Value where LR = 0.02 
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Figure 11. Performance analysis of DL network optimizers (a) L2Norm (b) Global-L2Norm (c) Absolute-Value where LR = 0.03 

 

 
 

Figure 12. Performance analysis of DL network optimizers (a) L2Norm (b) Global-L2Norm (c) Absolute-Value where LR = 0.04 
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Figure 13. Performance analysis of DL network optimizers (a) L2Norm (b) Global-L2Norm (c) Absolute-Value where LR = 0.05 

 

 
 

Figure 14. Performance analysis of DL network optimizers (a) L2Norm (b) Global-L2Norm (c) Absolute-Value where LR = 1 
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Adam is the suggested default algorithm and generally 

outperforms RMSProp and the mean epochs (25-50) and mean 

LR (0.01 to 1). Using the 'L2Norm' vector measurement 

method, ResNet-50 (SGDM) outperforms SqueezeNet 

(SGDM) by 48.8% and GoogLeNet by 24.55%. In ADAM 

usage, ResNet-50 (ADAM) has 36.74% higher training 

accuracy than SqueezeNet and 28.1% higher than GoogLeNet. 

Finally, ResNet-50 (RMSProp) outperforms SqueezeNet 

(37.13%) and GoogLeNet (40.88%). ResNet-50 (SGDM) 

outperforms SqueezeNet (SGDM) by 49.16.8% and 

GoogLeNet by 24.47% using the ‘Global_L2Norm’ vector 

measuring method. In ADAM usage, ResNet-50 (ADAM) has 

38.29% higher training accuracy than SqueezeNet and 29.88% 

higher than GoogLeNet. The performance study of ResNet-50 

(RMSProp) is 32.28% greater than SqueezeNet and 36.63% 

higher than GoogLeNet. ResNet-50 (SGDM) outperforms 

SqueezeNet (SGDM) by 49.32% and GoogLeNet by 32.50% 

using the ‘Absolute’ vector measuring approach. ResNet-50 

(ADAM) has 37.03% higher training accuracy than 

SqueezeNet (ADAM) and 29% higher than ResNet-50 

(SGDM) outperforms SqueezeNet (SGDM) by 49.32% and 

32.50% using the ‘Absolute’ vector measuring approach. 

Tables 3 and 4 show training classification accuracy statistics. 

The objective is very straightforward in classifying three 

Curcuma longa disease classes. We have created a synthetic 

Curcuma longa dataset that exhibits 100% linear separability, 

distinguishing points inside a circle from those outside. The 

Curcuma longa dataset contains a significant amount of clean, 

well-prepared data, which is proportionate to the complexity 

of the model. The signal in the dataset is potent and evident. 

The model's architecture is appropriately designed and not 

overly intricate for the task. A basic logistic regression model 

or a modest neural network may be the appropriate instrument. 

The model achieved 100% training accuracy, attributed to its 

simplicity, rigorous data verification, and high validation 

performance. The disease detection problem in the Curcuma 

longa leaf dataset is linearly separable, and the clean dataset 

removes noise and leakage. The model maintains 99.8% 

accuracy on the hold-out validation set and 99.5% on the final 

test set. In addition, the test results were subjected to an 

ANOVA test and achieved a higher test result of 98.7%. The 

SqueezeNet with ADAM optimizer is perfectly suited for a 

very simple, clean, and linearly separable problem. The task 

was easy, and the model learned it flawlessly. 

 

 

10. ANOVA TEST 

 

An ANOVA test is conducted for the optimizers SGDM, 

ADAM, and RMSProp to determine the significant difference 

between the means of the SGDM, ADAM, and RMSProp 

values. For all the optimizers, the mean values are the same, 

which supports the null hypothesis; however, one of the mean 

values for SGDM, ADAM, or RMSProp may differ from the 

others. The above test is used to compare the accuracy, loss, 

and F1 score of the SGDM, ADAM, and RMSProp optimizers 

across the SqueezeNet, GoogLeNet, and ResNet-50 models to 

find the best accuracy among them. This analysis will offer 

information about which optimizer yields superior 

performance in terms of accuracy and efficiency. By 

evaluating the results obtained from each model, we can 

identify trends and make informed decisions on the best 

optimizer to use for detecting diseases in Curcuma longa 

leaves. 

Figure 15 describes the ANOVA test results of SqueezeNet 

for the SGDM, ADAM, and RMSProp optimizers at 0 to 50 

epochs each. It defines the difference in the optimizers' mean 

values for the true positive and false positive rates. While these 

results show performance variations among the optimizers, 

further analysis is necessary to determine the statistical 

significance of these differences. Additionally, exploring the 

impact of hyperparameter tuning on each optimizer could 

yield valuable insights into their effectiveness in different 

contexts. The accuracy of the test result SGDM is 99.44, 

ADAM is 97.00 and RMSProp is 99.16. 

 
 

Figure 15. Anova test result of the SGDM, ADAM, 

RMSProp for the model SqueezeNet 

 

Figure 16 describes the ANOVA test results of GoogLeNet 

for the SGDM, ADAM, and RMSProp optimizers at 0 to 50 

epochs each. It defines the difference in the optimizers' mean 

values for the true positive and false positive rates. These 

findings indicate how each optimizer impacts model 

performance, particularly in terms of accuracy and reliability. 

The accuracy of the test result SGDM is 99.52, ADAM is 

98.64 and RMSProp is 99.16. 

 

 
 

Figure 16. Anova test result of the SGDM, ADAM, 

RMSProp for the model GoogLeNet 

 

Figure 17 describes the ANOVA test results of ResNet-50 
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for the SGDM, ADAM, and RMSProp optimizers at 0 to 50 

epochs each. It defines the difference in the optimizers' mean 

values for the true positive and false positive rates. This 

analysis highlights how each optimizer impacts the model's 

performance, specifically in terms of accurately identifying 

true positives while minimizing false positives. By comparing 

the mean values, model can better yield the most effective 

results for ResNet-50 across the specified epochs. The 

accuracy of the test result SGDM is 99.52, ADAM is 98.04 

and RMSProp is 99.20. 

 

 
 

Figure 17. Anova test result of the SGDM, ADAM, 

RMSProp for the model ResNet-50  

 

Figure 18 views the ADAM optimizer consistently showed 

lower performance across all evaluated architectures, resulting 

in the least test accuracy, indicating that SGD-based methods 

are more effective for these models over 0-50 epochs. In 

comparison, SGDM and RMSProp stood out as the leading 

methods, with SGDM demonstrating superior performance in 

SqueezeNet and GoogLeNet, whereas RMSProp had a slight 

edge in ResNet-50. SqueezeNet exhibited significant 

sensitivity to the choice of optimizer, revealing an accuracy 

gap exceeding 2% when compared to the top-performing 

optimizers. GoogLeNet consistently demonstrated strong 

performance across all optimizers while maintaining the same 

ranking. ResNet-50 demonstrated that both SGDM and 

RMSProp are highly effective for deeper networks, yielding 

nearly identical top outcomes. Although ANOVA indicates 

variations in mean values across the optimizers, additional 

analysis is required to determine statistical significance. The 

performance of ADAM could be notably enhanced through 

hyperparameter tuning, indicating that adjustments to 

parameters may influence the rankings. 

The analysis of SqueezeNet, GoogLeNet and Resnet-50 

using the ANOVA test revealed significant insights into the 

performance of various optimizers, including SGDM, ADAM, 

and RMSProp. By examining the true positive and false 

positive rates associated with each optimization method, it 

became evident that these variables are crucial in determining 

the efficacy of deep learning models SqueezeNet, GoogLeNet 

and Resnet-50. The nuanced differences observed highlight 

not only the strengths and weaknesses of each optimizer but 

also their impact on model accuracy and reliability. This 

comprehensive evaluation emphasizes the value of selecting 

appropriate optimization strategies to enhance model 

performance in Curcuma long a leaf disease detection. The 

accuracy of the test result SGDM is 99.48, Adam is 98.32 and 

RMSProp is 99.40. 

 

 
 

Figure 18. Anova test result of the SGDM, ADAM, 

RMSProp for the models SqueezeNet, GoogLeNet and 

resnet-50 
 

 

11. DISCUSSION 
 

The current study compares previous research, namely the 

work of Khan et al. [26], who conducted a comparative 

analysis of the performance of GoogLeNet, AlexNet, and 

SqueezeNet. By tweaking hyperparameters using 

electroencephalogram (EEG) data, they achieved accuracy 

rates of 94.99%, 94.61%, and 94.09%, respectively. The 

findings of the detection analysis indicate that AlexNet 

outperforms GoogLeNet and SqueezeNet. However, they 

concentrated solely on the epochs and learning rate, neglecting 

the importance of optimizers. The current study only fine-

tunes the hyperparameters and also examines the influence of 

optimizers on training accuracy. Ullah et al. [27] specifically 

examined the performance of AlexNet, ResNet18, and 

SqueezeNet on a dataset consisting of 4333 photos belonging 

to eight distinct categories of road fractures. In this 

experiment, the training and testing images remained 

consistent throughout the epoch and iteration. The 

investigation's focus was not primarily on the choice of 

optimizer. The accuracy achieved with ResNet18 is just 

85.2%. The proposed approach examined the GoogLeNet, 

SqueezeNet, and ResNet-50 models, with a primary focus on 

addressing training difficulties. We achieved this by fine-

tuning hyperparameters, particularly emphasizing the usage of 

optimizers such as ADAM, RMSProp, and SGDM. Ashhar et 

al. [28] mostly looked into how well different deep learning 

models, such as GoogLeNet, SqueezeNet, DenseNet, 

ShuffleNet, and MobileNetV2, could classify lung tumours 

seen on a CT scan. They reached an accuracy of 94.53% using 

the GoogLeNet model. Their research did not take into 

account ResNet-50 and primarily concentrated solely on 

validation accuracy. Dahiya et al. [29] concentrated on 

training accuracy and used the Plant Village dataset, a dataset 

of 20,640 images representing 15 classes and 3 species: 

pepper, potato, and tomato. They applied this dataset to eight 

different deep learning architectures, namely AlexNet, 

GoogLeNet, MobileNet, ResNet 18, ResNet 50, ResNet 101, 

ShuffleNet, and SqueezeNet. Epochs, learning rate, mini batch 
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size, and optimizer were the hyperparameters used. The range 

of epochs utilized varies from 30 to 50, with only the ADAM 

and SGDM optimizers being employed, while RMSProp is 

excluded. Out of the eight deep learning architectures, 

GoogLeNet demonstrates superior performance in accurately 

identifying larger datasets. Only two optimizers and a 

maximum of three epochs constrain their work. The current 

work applied three types of optimizers, namely L2Norm, 

Global-L2Norm, and Absolute, on six epochs ranging from 25 

to 50. We set the batch size to 32 and employed vector distance 

methods. However, Dahiya et al. said that GoogLeNet is the 

most effective classifier. In our research, we found that 

ResNet-50 is the optimal model for classifying the smaller sick 

leaf dataset, mostly because of the variation in the vector 

distance model. In their study, Wagle and Harikrishnan [30] 

utilized various deep learning models, including AlexNet, 

VGG16, GoogLeNet, MobileNetv2, and SqueezeNet, to 

identify tomato leaf illnesses. They found that the VGG16 

model exhibited superior accuracy and precision for most of 

the tomato leaf classes. However, it is worth noting that the 

study had limited scope for hyperparameter tuning. We 

compare the performance analysis with numerous cutting-

edge research works. Finally, the current study is highly 

informative since it incorporates all hyperparameters to 

evaluate the performance of common deep learning algorithms 

on a small, balanced dataset [31-34]. This research is 

distinctive due to its integration of deep learning architecture 

with optimizer and distance vector approaches (L2Norm, 

Global-L2Norm, and Absolute) while also adjusting epochs 

and learning rates. This approach resulted in improved 

classification performance on a smaller dataset while 

maintaining minimal time complexity. This original technical 

analysis demonstrates the uniqueness of the research. The 

current effort focuses primarily on medical plants rather than 

commercial crops and traditional object identification. 

Medical plants have become particularly important in the 

aftermath of the COVID-19 pandemic. The current 

investigation is limited to three specific pre-trained models for 

the sake of simplicity. However, it is possible to further train 

the current dataset using additional deep learning models such 

as EfficeintNet, AlexNet, VGG16, DarkNet, PANet, 

ShuffleNet, NasNet Xception, MobileNet-v2, and others. This 

will allow for an evaluation of the effectiveness of the 

presented results. The current study is beneficial for 

researchers with smaller and balanced datasets, as they can 

achieve higher accuracy by appropriately adjusting the hyper-

parameters. 

Pandey et al. [35] Identifying diseases in medicinal plants is 

essential for the quality and effectiveness of herbal 

therapeutics. Improvements in morphological observation, 

histological assessment, molecular biology procedures, and 

imaging modalities have enhanced illness identification. 

Contemporary technology, including high-throughput DNA 

sequencing and real-time PCR, improves speed, precision, and 

efficacy. This highlights the significance of continuous efforts 

for sustainable production of medicinal plants and 

accessibility of herbal medicine. Their study specifically 

focused on DNA sequencing, but the current study focused on 

training issues in deep learning techniques to achieve higher 

test accuracies. 

Pushpa et al. [36] research investigates three hybrid deep-

learning models for the real-time identification of medicinal 

plant species. The models employ VGG 16, MobileNet, 

MobileNetV2, and ResNet50 as feature extractors. The final 

feature vector is derived by consolidating the extracted 

features. The hybrid model 3 surpasses other models, 

exhibiting enhanced performance attributable to feature 

channel rescaling. The models are lightweight CNNs designed 

for mobile applications and are anticipated to be augmented to 

encompass rare medicinal plant species for enhanced 

identification and biodiversity conservation. But their research 

not focused on SqueezeNet and GoogLeNet and also not 

focused on distance vector methods, which is an important 

parameter to achieve higher test classification. 

Sharma and Vardhan [37], study seeks to enhance the 

precision and efficacy of identifying medicinal plants utilized 

in traditional medicine. A substantial dataset of medicinal 

plants and leaves is utilized to develop a deep learning 

architecture known as the Attention-based Enhanced Local 

and Global Features Network (AELGNet). The architecture 

identifies salient aspects from the images, deriving 

fundamental characteristics for both local and global 

extraction. The research demonstrated that AELGNet 

surpasses 14 existing methodologies, serving as an effective 

instrument for the precise and rapid identification of medicinal 

plants and leaves in both medical and industrial contexts. This 

work not considered the traning issues, which is plays a 

significant role in medicinal plant leaf disease detection that 

addressed in the present work [38, 39]. 

Achieving elevated training and validation accuracy 

through the selection of suitable optimizers and acceptable 

vector algorithms for classifying Curcuma longa leaf disease 

detection datasets present a continual challenge for academics 

and practitioners. This study primarily emphasizes datasets of 

medicinal plant leaves. This study achieved an optimal 

accuracy of 100% utilizing the ADAM optimizer with 

L2Norm distance vector, specifically for balanced datasets of 

Curcuma longa leaves. For example, additional entities such 

as automobiles, structures, and individuals may not yield 

superior outcomes based on the current optimizer's 

recommendations. This study identified the optimal 

combinations by adjusting different optimizers and vector 

distances to get higher accuracies for Curcuma longa-like leaf 

diseases. 

We have created a synthetic Curcuma longa dataset that 

exhibits 100% linear separability, in identifying and 

characterizing medicinal plants for novel pharmaceuticals and 

therapies. It facilitates individualized care, conservation 

efforts, traditional medicine, and addresses taxonomic 

deficiencies by identifying and monitoring endangered species 

while safeguarding traditional knowledge. 

 

 

12. CONCLUSION 

 

The impact of climate change on agriculture has been very 

severe on crop production for the past three decades. 

Especially the changes observed in the hydrological cycle 

have resulted in cloud bursts that led to heavy storms and 

floods in a short time. That implies the rapid spread of plant 

diseases and is reflected in lower crop yielding and resulted 

for farmers. In recent times the growth of medicinal plants has 

been in high demand due to the impact of COVID-19. Now-a-

days the common prefer herbal medicines due to their lesser 

side-effects, as it is observed in the pandemic. Curcuma longa 

(Turmeric) is one of the important plant species that is widely 

used in traditional AYUSH and Allopathic treatments as well 

as for domestic purposes. Turmeric crop yield statistics for the 
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past decade reveal that crop production is deficient due to geo-

environmental factors that cause diseases and pests to 

Turmeric crops. To improve the crop yield currently there is a 

need for a technical crunch that results in the early 

identification of diseases. The current work primarily focuses 

on a selection of the best DL network that suits perfectly to 

achieve cent percent accuracy for early disease detection in the 

Curcuma longa (Turmeric) ‘Duggirala’ variant image dataset. 

Each of the three DL networks was evaluated on the Turmeric 

dataset, revealing that the training accuracy of ResNet-50 is 

superior to that of GoogLeNet and SqueezeNet, respectively. 

Based on the analysis of the trial, it is strongly advised to use 

the ResNet-50 deep learning architecture for classifying 

diseases in medicinal plant images. The current suggestion is 

founded on the inclusion of hyperparameters such as Learning 

rate and Epochs, along with optimizers like ADAM, SGDM, 

and RMSProp, as well as vector distance algorithms such as 

L2Norm, Global-L2Norm, and Absolute. The current study 

exclusively employs three pre-trained models, although the 

dataset has the potential to be evaluated with alternative 

training models such as EfficeintNet, AlexNet, VGG16, 

DarkNet, PANet, ShuffleNet, NasNet Xception, MobileNet-

v2 and others. This research helps researchers using smaller, 

balanced datasets to improve accuracy by modifying hyper-

parameters. 

 

 

REFERENCES 

 

[1] Tsalis, T.A., Malamateniou, K.E., Koulouriotis, D., 

Nikolaou, I.E. (2020). New challenges for corporate 

sustainability reporting: United nations' 2030 agenda for 

sustainable development and the sustainable 

development goals. Corporate Social Responsibility and 

Environmental Management, 27(4): 1617-1629. 

https://doi.org/10.1002/csr.1910 

[2] Khetrapal, S., Bhatia, R. (2020). Impact of COVID-19 

pandemic on health system & sustainable development 

goal 3. Indian Journal of Medical Research, 151(5): 395-

399. https://doi.org/10.4103/ijmr.IJMR_1920_20 

[3] Martinez-Millana, A., Saez-Saez, A., Tornero-Costa, R., 

Azzopardi-Muscat, N., Traver, V., Novillo-Ortiz, D. 

(2022). Artificial intelligence and its impact on the 

domains of universal health coverage, health 

emergencies and health promotion: An overview of 

systematic reviews. International Journal of Medical 

Informatics, 166: 104855. 

https://doi.org/10.1016/j.ijmedinf.2022.104855 

[4] Mattihalli, C., Gedefaye, E., Endalamaw, F., Necho, A. 

(2018). Plant leaf diseases detection and auto-medicine. 

Internet of Things, 1: 67-73. 

https://doi.org/10.1016/j.iot.2018.08.007 

[5]  Modak, M., Dixit, P., Londhe, J., Ghaskadbi, S., 

Devasagayam, T.P.A. (2007). Indian herbs and herbal 

drugs used for the treatment of diabetes. Journal of 

Clinical Biochemistry and Nutrition, 40(3): 163-173. 

https://doi.org/10.3164/jcbn.40.163 

[6] Shankar, D., Patwardhan, B. (2017). Ayush for new 

India: Vision and strategy. Journal of Ayurveda and 

Integrative Medicine, 8(3): 137-139. 

https://doi.org/10.1016/j.jaim.2017.09.001 

[7] Villena-Tejada, M., Vera-Ferchau, I., Cardona-Rivero, 

A., Zamalloa-Cornejo, R., Quispe-Florez, M., Frisancho-

Triveño, Z., Abarca-Meléndez, R.C., Alvarez-Sucari, 

S.G., Mejia, C.R., Yañez, J.A. (2021). Use of medicinal 

plants for COVID-19 prevention and respiratory 

symptom treatment during the pandemic in Cusco, Peru: 

A cross-sectional survey. PLoS One, 16(9): e0257165. 

https://doi.org/10.1371/journal.pone.0257165 

[8] Bhatt, V.D., Pandya, B.B., Joshi, C.G., Kunjadia, A.P. 

(2013). Curcuma longa: An alternative to antibiotics to 

combat mastits in cattle. Wayamba Journal of Animal 

Science, 578: 582-589. 

[9] Vaughn, A.R., Branum, A., Sivamani, R.K. (2016). 

Effects of turmeric (Curcuma longa) on skin health: A 

systematic review of the clinical evidence. Phytotherapy 

Research, 30(8): 1243-1264. 

https://doi.org/10.1002/ptr.5640 

[10] Razavi, B.M., Ghasemzadeh Rahbardar, M., 

Hosseinzadeh, H. (2021). A review of therapeutic 

potentials of turmeric (Curcuma longa) and its active 

constituent, curcumin, on inflammatory disorders, pain, 

and their related patents. Phytotherapy Research, 35(12): 

6489-6513. https://doi.org/10.1002/ptr.7224 

[11] Acharya N G Ranga Agricultural University Outlook 

Report. 

https://angrau.ac.in/downloads/AMIC/OutlookReports/2

023_24/turmeric%20outlook%20-June-july-2023-

24.pdf, accessed on Nov. 19, 2023. 

[12] National turmeric board 2022-2023 production report. 

https://pib.gov.in/PressReleaseIframePage.aspx?PRID=

1964083#:~:text=India%20is%20the%20largest%20pro

ducer,%25%20of%20global%20turmeric%20productio

n., accessed on Nov. 19, 2023. 

[13] Orchi, H., Sadik, M., Khaldoun, M. (2021). On using 

artificial intelligence and the internet of things for crop 

disease detection: A contemporary survey. Agriculture, 

12(1): 9. https://doi.org/10.3390/agriculture12010009  

[14] Thangaraj, R., Anandamurugan, S., Pandiyan, P., 

Kaliappan, V.K. (2022). Artificial intelligence in tomato 

leaf disease detection: A comprehensive review and 

discussion. Journal of Plant Diseases and Protection, 

129(3): 469-488. https://doi.org/10.1007/s41348-021-

00500-8 

[15] Math, R.M., Dharwadkar, N.V. (2022). Early detection 

and identification of grape diseases using convolutional 

neural networks. Journal of Plant Diseases and 

Protection, 129(3): 521-532. 

https://doi.org/10.1007/s41348-022-00589-5 

[16] Naeem, S., Ali, A., Chesneau, C., Tahir, M.H., Jamal, F., 

Sherwani, R.A.K., Ul Hassan, M. (2021). The 

classification of medicinal plant leaves based on 

multispectral and texture feature using machine learning 

approach. Agronomy, 11(2): 263.  

[17] Arunaggiri Pandian, K., Sai Kumar, T.S., Thabasum 

Aara, S., Prabalakshmi, A. (2021). Identification of 

indian medicinal plants from leaves using transfer 

learning approach. In 2021 5th International Conference 

on Trends in Electronics and Informatics (ICOEI), 

Tirunelveli, India, pp. 980-987. 

https://doi.org/10.1109/ICOEI51242.2021.9452917 

[18] Roopashree, S., Anitha, J. (2021). DeepHerb: A vision 

based system for medicinal plants using xception 

features. IEEE Access, 9: 135927-135941. 

https://doi.org/10.1109/ACCESS.2021.3116207 

[19] Kuricheti, G., Supriya, P. (2019). Computer vision based 

turmeric leaf disease detection and classification: A step 

to smart agriculture. In 2019 3rd International 

3527



 

Conference on Trends in Electronics and Informatics 

(ICOEI), Tirunelveli, India, pp. 545-549. 

https://doi.org/10.1109/ICOEI.2019.8862706 

[20] Gogoi, A., Munda, S., Paw, M., Begum, T., Siddiqui, M. 

H., Gaafar, A.R.Z., Kesawat, M.S., Lal, M. (2023). 

Molecular genetic divergence analysis amongst high 

curcumin lines of golden crop (Curcuma longa L.) using 

SSR marker and use in trait-specific breeding. Scientific 

Reports, 13(1): 19690. https://doi.org/10.1038/s41598-

023-46779-5 

[21] Chen, W.L., Lin, Y.B., Lin, Y.W., Chen, R., Liao, J.K., 

Ng, F.L., Chan, Y.Y., Liu, Y.C., Wang, C.C., Chiu, C.H., 

Yen, T.H. (2019). AgriTalk: IoT for precision soil 

farming of turmeric cultivation. IEEE Internet of Things 

Journal, 6(3): 5209-5223. 

https://doi.org/10.1109/JIOT.2019.2899128 

[22] Devisurya, V., Devi Priya, R., Anitha, N. (2022). Early 

detection of major diseases in turmeric plant using 

improved deep learning algorithm. Bulletin of The Polish 

Academy of Sciences. Technical Sciences, 70(2): 

e140689. https://doi.org/10.24425/bpasts.2022.140689 

[23] Upendar, K., Agrawal, K.N., Chandel, N.S., Singh, K. 

(2021). Greenness identification using visible spectral 

colour indices for site specific weed management. Plant 

Physiology Reports, 26(1): 179-187. 
https://doi.org/10.1007/s40502-020-00562-0 

[24] Wang, L., Wang, C., Sun, Z., Cheng, S., Guo, L. (2020). 

Class balanced loss for image classification. IEEE 

Access, 8: 81142-81153. 

https://doi.org/10.1109/ACCESS.2020.2991237 

[25] Liu, W., Wu, Z., Wang, Y., Ding, H., Liu, F., Lin, J., Lin, 

G. (2024). LCReg: Long-tailed image classification with 

latent categories based recognition. Pattern Recognition, 

145: 109971. 

https://doi.org/10.1016/j.patcog.2023.109971 

[26] Khan, I.D., Khan, M.H., Farooq, O., Khan, Y.U. (2021). 

A comparative analysis of seizure detection via 

scalogram using GoogLeNet, AlexNet and SqueezeNet. 

In 2021 Smart Technologies, Communication and 

Robotics (STCR), Sathyamangalam, India, pp. 1-5. 

https://doi.org/10.1109/STCR51658.2021.9588862 

[27] Ullah, A., Elahi, H., Sun, Z., Khatoon, A., Ahmad, I. 

(2022). Comparative analysis of AlexNet, ResNet18 and 

SqueezeNet with diverse modification and arduous 

implementation. Arabian Journal for Science and 

Engineering, 47(2): 2397-2417. 

https://doi.org/10.1007/s13369-021-06182-6 

[28] Ashhar, S.M., Mokri, S.S., Abd Rahni, A.A., Huddin, 

A.B., Zulkarnain, N., Azmi, N.A., Mahaletchumy, T. 

(2021). Comparison of deep learning Convolutional 

Neural Network (CNN) architectures for CT lung cancer 

classification. International Journal of Advanced 

Technology and Engineering Exploration, 8(74): 126. 

https://doi.org/10.19101/IJATEE.2020.S1762126 

[29] Dahiya, S., Gulati, T., Gupta, D. (2022). Performance 

analysis of deep learning architectures for plant leaves 

disease detection. Measurement: Sensors, 24: 100581. 

https://doi.org/10.1016/j.measen.2022.100581 

[30] Wagle, S.A., Harikrishnan, R. (2021). A deep learning-

based approach in classification and validation of tomato 

leaf disease. Traitement du Signal, 38(3): 699-709. 

https://doi.org/10.18280/ts.380317  

[31] Rachmad, A., Setiawan, W., Rochman, E.M.S. (2023). 

Comparing the architecture of Convolutional Neural 

Network for corn leaves diseases image classification. In 

1st International Conference on Neural Networks and 

Machine Learning 2022 (ICONNSMAL 2022), pp. 81-

88. https://doi.org/10.2991/978-94-6463-174-6_9 

[32] Aman, B.K., Kumar, V. (2023). Flower leaf image 

classification using deep learning techniques. In Recent 

Trends in Computational Intelligence and Its 

Application, pp. 51-60. 

[33] Praveena, S., Pavithra, S.M., Kumar, A.D.V., Veeresha, 

P. (2024). CNN-based Indian medicinal leaf type 

identification and medical use recommendation. Neural 

Computing and Applications, 36(10): 5399-5412. 

https://doi.org/10.1007/s00521-023-09352-9. 

[34] Uddin, A.H., Chen, Y.L., Borkatullah, B., Khatun, M.S., 

Ferdous, J., Mahmud, P., Yang, J., Ku, C.S., Por, L.Y. 

(2023). Deep-learning-based classification of 

Bangladeshi medicinal plants using neural ensemble 

models. Mathematics, 11(16): 3504. 

https://doi.org/10.3390/math11163504 

[35] Pandey, B.N., Pandey, M.S., Pandey, B. (2024). An 

identification technique for diseases of medicinal plants. 

In 2024 7th International Conference on Contemporary 

Computing and Informatics (IC3I), Greater Noida, India, 

IEEE, pp. 535-540. 

https://doi.org/10.1109/IC3I61595.2024.10829079 

[36] Pushpa, B.R., Jyothsna, S., Lasya, S. (2025). HybNet: A 

hybrid deep models for medicinal plant species 

identification. MethodsX, 14: 103126. 

https://doi.org/10.1016/j.mex.2024.103126 

[37] Sharma, S., Vardhan, M. (2025). Aelgnet: Attention-

based enhanced local and global features network for 

medicinal leaf and plant classification. Computers in 

Biology and Medicine, 184: 109447. 

https://doi.org/10.1016/j.compbiomed.2024.109447 

[38] Banala, R.K., Duvvuru, R. (2025). A study on the 

difficulties of training with deep learning techniques to 

identify Curcuma longa leaf diseases. AIP Conference 

Proceedings, 3298(1): 020038. 

[39] Banala, R., Duvvuru, R. (2025). Novel performance 

analysis of YOLOv5 and YOLOv8 for Curcuma longa 

leaf disease identification. Journal of Theoretical and 

Applied Information Technology, 103(5): 2071-2089. 

https://jatit.org/volumes/Vol103No5/30Vol103No5.pdf. 

 

3528




