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In recent times, many people have been affected by a brain tumour which increases the
mortality rate day by day. To reduce this mortality, Brain tumor classification is performed
for an earlier diagnosis and treatment planning for patients with neurological conditions. In
this proposed system, an advanced brain tumor classification is presented by integrating
hybrid methodologies such as Multi-Branch Multi-Scale Attention Transformer Network
(MB-MSAT-Net) for feature extraction, Electric Fish Optimization (EFO) for feature
selection, and TabNet for classification. The proposed MB-MSAT-Net is designed to
capture spatial and contextual information at multiple scales that effectively extract
discriminative features from medical imaging data. The EFO technique is an optimization
method that is used to select relevant and significant features to improve model performance
and minimise computational complexity. At last, the classification is done by TabNet which
is used to classify the tumor types based on the selected features. This enhanced
classification achieved higher accuracy and transparency. The result was evaluated using
publicly available brain tumor datasets that were used to validate both the proposed and
conventional methods. This proposed hybrid model attained a better classification accuracy
and robustness in brain tumor classification than the existing methods. For future
enhancement, this method can hold greater promising tool to automate a brain tumor

diagnosis for medical professionals.

1. INTRODUCTION

In recent years, brain tumors have been a major deadly
disease occurring in large numbers with an enormous
mortality rate [1]. These tumors are abnormal growths of cells
in the brain. They can lead to neurological symptoms such as
headaches, seizures, cognitive dysfunction, and motor
impairments. These tumors are classified into two types,
benign and malignant, and they are also categorized based on
their cellular structure, location, and aggressiveness [2, 3]. The
main cause of these tumors is not fully understood, but some
of the reasons behind them include genetic mutations,
environmental factors, and family history.

To overcome these tumors, early detection is vital which
can improve patient outcomes significantly to enable timely
treatment and intervention. However, brain tumors prediction
is performed manually in traditional methods which consumes
more time and is error-prone. Advanced computational
methods are used to predict the brain tumor types that can
streamline diagnosis, improve accuracy, and personalized
treatment planning.

Mostly, Image-based brain tumor detection plays a
significant role among the various detection methods. Because
image detection has a non-invasive behaviour and the ability
to capture high-resolution images of brain structures. A few

3187

Image modalities like Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), and Positron Emission
Tomography (PET) are common methods used to visualize
and diagnose brain tumors [4]. However, among the three
modalities, MRI is the most used imaging modality because of
its superior soft-tissue contrast. It can be able to capture
detailed images of brain tissue, and the absence of harmful
ionizing radiation to attain a safer and more effective modality
in tumor.

The process of brain tumor detection using imaging data
typically involves several key steps: Preprocessing that
involves skull stripping, normalization, and resizing. Feature
Extraction is used to extract a relevant feature to represent the
tumor’s texture, shape, intensity, and spatial relationships
within the image [5]. Next, Classification is used to classify
the tumor as benign or malignant or to identify specific tumor
types. To process a feature extraction and classification,
machine learning (ML) or deep learning (DL) models like
convolutional neural networks (CNNs) and transformer-based
models are employed [6, 7]. It has shown exceptional
performance in complex medical image classification to learn
data hierarchical representations.

Moreover, many existing approaches failed to consider the
interpretability in a clinical setting where decisions need to be
explained to medical professionals [8]. The previous method


https://orcid.org/0009-0000-0858-4379
https://orcid.org/0000-0002-8568-600x
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420613&domain=pdf

also provided an inefficiency in feature selection where a large
number of extracted features often leads to redundancy that
increases complexity and overfitting. Some Feature selection
techniques like statistical methods do not address the complex
relationships between features effectively. It caused a lack of
adaptive and intelligent feature selection to hinder the
optimization of the model. It seems that current methods have
several limitations that limit their practical utility in real-world
medical diagnosis.

To address all these limitations, this research presented an
advanced brain tumor classification with three innovative
models. Firstly, the Multi-Branch Multi-Scale Attention
Transformer Network (MB-MSAT-Net) is used as a feature
extraction that has multiple convolutional blocks with varied
kernel sizes to capture both local and global features. It also
has an attention mechanism at different scales where MB-
MSAT-Net is used to focus on the most critical regions in
brain images. Secondly, Electric Fish Optimization (EFO) is
used for selecting features that are inspired by the electric fish
character. It minimised the computational complexity and
mitigated overfitting by improving the model's ability. Finally,
TabNet is employed for classification to handle tabular data by
offering high interpretability. This TabNet contains a decision
tree mechanism to process an accurate prediction for medical
applications. This research attained greater accuracy, reduced
computational demands, and enhanced transparency in brain
tumor diagnosis for healthcare professionals.

2. RELATED WORK

Islam et al. [9] developed a multifractional Brownian
motion (mBm) which is a stochastic model that used to extract
multifractal features and contains an enhanced AdaBoost
algorithm for patient-independent tumor segmentation.
Experimental results demonstrate an improved performance
using the BRATS2012 dataset with superior segmentation
robustness and accuracy.

Sacedi et al. [10] presented an Inception-v3 and
DenseNet201 models for feature extraction. These
Concatenated features are classified using a softmax classifier.
This method achieved a higher accuracy of 99.34% and
99.51%, respectively. Gumaei et al. [I1] explored a
Regularized Extreme Learning Machine (RELM) to classify
brain tumor. The result showed that this method utilised a new
public dataset to improve classification accuracy from 91.51%
to 94.23% than an existing approach.

Bibi et al. [12] developed an InceptionV4 model for precise
and efficient brain tumor classification. It used a 7,022 MRI
dataset that categorised tumours into three classes. The result
validated a higher accuracy of 98.7% with greater
computational efficiency in medical decision-making. To
address sensitivity to background variations in MRI images,
Afshar et al. [13] presented a modified Capsule Network
(CapsNet). By including tumor boundary data, the architecture
is used to enhance the classification significantly by handling
MRI image variability. Farzamnia et al. [14] implemented a
contourlet transform and whale optimization model that was
used to enhance a self-organizing map for a brain benign or
malignant classification. This method attains a higher
classification accuracy of 98.5% by maintaining
computational efficiency with reliable diagnostic support for
medical practitioners.

Zaitoon and Syed [15] presented a hybrid DL model for
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brain tumors using the BraTS dataset. This method had a DBT-
CNN and RU-Net2+ model to attain 99% accuracy in
classification and segmentation. The proposed model attained
an accurate survival rate with a revolutionizing patient care
and diagnostic automation. Rahman et al. [16] proposed a
CNN-based random graph generation (CNNBCN) model that
has a modified activation functions with an accuracy of
95.49% in brain tumor classification.

Bhimavarapu et al. [17] explored a semi-supervised
learning approach (SSBTCNet) model that combined both
Autoencoders and supervised networks to classify brain
tumor. The proposed method enhanced with fuzzy-logic-based
data augmentation that attains a higher accuracy with effective
robustness and efficiency. Ramprasad et al. [18] presented a
model called secured brain tumor classification network
(SBTC-Net) for MRI-based brain tumor classification. This
model uses secure image watermarking and transfer learning
for MRI image processing. Gomez-Guzman et al. [19]
implemented an InceptionV3 using a dataset of 7,023 MRIs
with an accuracy of 97.12% for classification in brain tumor.

In their study, Kokkalla et al. [20] developed a deep dense
inception residual network using customized Inception ResNet
v2 model. This method attains a highest accuracy of 99.69%
than other models.

Kesav and Jibukumar [21] proposed a region-based CNN
(RCNN) that combines a Two-Channel CNN and bounding
box detection for classification. The RCNN achieves 98%
accuracy with reduced execution time, effectively handling
Glioma, Meningioma, and Pituitary tumors. Wankhede et al.
[22] presented a Transfer learning with CNN architectures like
ResNet50-152 for brain tumor classification using open-
source datasets. The model achieves up to 96% accuracy using
pre-trained weights.

Ali et al. [23] developed an attention-based UNET model
that includes VGG layers in UNET for accurate segmentation.
Results on BRATS"20 dataset shows that the model achieves
high dice coefficients (up to 0.90) across tumor subtypes.
Albalawi et al. [24] presented a federated learning-based CNN
model for medical image processing. This model uses VGG16
for brain tumor localization.

In their study, Hong et al. [25] proposed a 3D-Feature Map
Reconstruction Network (FRN)-ResNet model for brain tumor
analysis. The FRN-ResNet model achieves higher accuracy by
considering spatial details in diagnosing tumors. Hencya et al.
[26] proposed using the Xception model to detect brain
tumors. Also, the attention-based layers added in the learning
model to process the more relevant features selectively.

Alietal. [27] developed pre-trained GoogleNet, ShuffleNet,
and NasNet-Mobile with ML classifiers of KNN, SVM, and
LDA for brain tumor detection. Using MRI images of four
tumor types, ShuffleNet with SVM achieved the best results
with 98.40% accuracy.

Krishnasamy and Ponnusamy [28] developed hybrid FCN-
ResNet and SegNet-MobileNet for classification. These
models achieved high accuracies of 93.9% and 91.3% for two
different publicly available datasets. Zahid et al. [29] used
differential evolution and particle swarm optimization to find
optimal feature vectors for brain tumor classification. This
method achieved a speedup of 25.5x in prediction time by
maintaining  94.4% accuracy. It attains significant
computational efficiency and is also a viable approach for
faster and more efficient tumor detection.

Krishnan et al. [30] introduced a Rotation Invariant Vision
Transformer (RViT) designed with a rotated patch



embeddings with 98.6% of accuracy. The model achieves
rotation invariance to enhance its robustness in detecting brain
tumors. Rahman et al. [31] presented a dilated parallel deep
CNN (PDCNN) to handle gridding artefacts and extract
detailed features from MRI images. Using multiple dilation
rates, the model attains both coarse and fine details with an
accuracy of 98.67%.

Ullah et al. [32] proposed transfer learning (TL) based
models that were fine-tuned to process a classification task by
maintaining  top-tier  performance. @ The  TL-based
InceptionResNetV2 achieved the best performance with an
accuracy of 98.91% accuracy to attain an automated medical
diagnostic. Wang et al. [33] presented a new module called
RanMerFormer to reduce the computational complexity of
classification. This module can be combined with vision
transformers (ViT) to increase computational efficiency. It
removes redundant tokens in transformers and uses
randomized vector functional links for swift training.

A hybrid CNN-SVM model is proposed by Bansal et al.
[34] for multi-class classification. The CNN extracts features
and SVM ensures high classification with an accuracy of up to
99%. This approach attains the potential of hybrid methods by
improving diagnostic accuracy and speed. Tummala et al. [35]
validated an ensemble of ViT models using MRI scans. It
works by multi head attention technique to increase the feature
learning capacity of the model. This method achieved a test
accuracy of 98.2% for Kaggle dataset images.

Also, Cinar et al. [36] developed a hybrid of UNet and
DenseNet121 models for tumor detection. The model focuses
on tumor sub-regions and achieved superior results on the
BRATS 2019 dataset in terms of memory requirements and
inference times.

Haque et al. [37] proposed a model called NeuroNet19
which integrates VGG19 with an Inverted Pyramid Pooling
Module (iPPM) for multi-scale feature extraction. Compared
to U-Net models, the pyramid network achieves a higher
accuracy of 97.86%. Stephe et al. [38] presented an Osprey
Optimization Algorithm-based DL model (OOA-DL) for brain
tumor classification. Initially, this model uses MobileNetV2
for feature extraction. Then, Osprey Optimization is used for
feature selection. Finally, a Graph Convolutional Network is
applied for classification.

The DeepTumorNet model is proposed by Raza et al. [39]

for multi-class brain tumor categorization. This model is built
using a modified GoogleNet architecture to increase
classification accuracy. In the modified GoogLeNet, the last
five layers are replaced with 15 new ones using leaky ReLU
activations. Results show that DeepTumorNet achieves
99.67% accuracy for validation sets. Haque et al. [40]
presented a ViT model paired with a DCGAN-based data
augmentation technique. It achieved a 99.33% accuracy that
reduces training loss and enhances robustness with an
advanced tumor diagnosis.

Nag et al. [41] used a TumorGANet that combines
ResNet50 and GANs for feature extraction and data
augmentation with 99.53% accuracy in brain tumor
classification.

Hosny et al. [42] implemented an ensemble model that has
seven DL models for deeper feature learning and brain tumors
classification. Sahu et al. [43] presented a Cumulative
Learning (CL) model and Multi-Rated New Loss (MRNL) that
integrates DropOut, DropBlock, and Modified RandAugment,
respectively. The method balanced the data limitations and
increased 99.70% of accuracy effectively.

A hybrid model is proposed by Yoon [44] to classify the
brain tumor. At first, the adaptive Wiener filtering hybrid with
neural networks for preprocessing. Then, the SVM
classification is used to achieve a 98.9% accuracy with high
sensitivity.

3. PROPOSED MODEL

The proposed model has presented a feature extraction,
feature selection, and classification for brain tumor. In the
feature extraction stage, the MB-MSAT-Net processes input
brain MRI images. MB-MSAT-Net uses multi-branch
convolutional architecture and attention mechanisms to
capture spatial and contextual information across multiple
scales. Then, the extracted features are optimized using EFO.
EFO selects the most discriminative features in order to reduce
the dimensionality and improves computational efficiency.
Finally, the refined features are fed into a TabNet classifier.
This classifier accurately categorizing the input images into
glioma, pituitary, meningioma, or no tumor. The overall
workflow is given in Figure 1.

Features

Feature extraction

(MB-MSAT-Net)

Performance analysis

Classification

(TabNet)

Feature selection
(EFO)

~—

——

Figure 1. Proposed system
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Figure 2. MB-MSAT-Net architecture

3.1 MB-MSAT-Net model

The MB-MSAT-Net DL architecture is used as a multi-
branch and multi-scale architecture. Also, to improve feature
learning capacity, the MB-MSAT-Net model is hybridised
with attention mechanisms and transformer modules to capture
both local and global features from MRI images.

Multi-Branch Multi-Scale Architecture: it has several
branches with various kernel sizes like 3 x 3, 5 x 5, etc. These
processes are used to extract both fine-grained details and
contextual features to handle different tumor structures.

Collaboration among Branches: extracted Features of
various branches are fused to merge both local and global
information. The branches work in parallel to capture
complementary features.

Attention Mechanisms and Transformers: A spatial
attention mechanism prioritizes relevant regions of the image.
It mainly focuses on important areas like tumor boundaries.
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The Transformer modules are used to capture long-range
dependencies and model complex global relationships across
the image.

The architecture is shown in Figure 2.

MB-MSAT-Net Architecture

Here, the input layer fetched an image with dimensions
HxWxC respectively. where H denotes the height, W indicates
the width and C represents the number of channels. This layer
used to prepare the input data for further processing by the
network.

input: X € RA*WxC

(1)
Multi-Scale Convolutional Blocks
The multi-scale convolutional block applies multiple
convolution operations with varying kernel sizes (e.g., 3 x 3,
5 x 5,7 x7) to capture features at different spatial scales. This
helps the network learn fine-grained details (using small



kernels) and broader contextual information (using larger
kernels). For each scale i, the convolution operations are
performed, and the results are concatenated to capture multi-
scale features. For a kernel of size kxk with FFF filters, the
convolution operation is defined as:
conv;(X) = conv2D(X,F,k X k) 2)
where, X is the input feature map, F is the number of filters,
and k x k is the kernel size. After applying convolutions with

different kernel sizes, the outputs from all scales are
concatenated:

Scale; =
concatenate (conv1 (X), conv,(X), ..., conv, (X))

3)

MaxPooling is then applied to reduce spatial dimensions:

Scale; = MaxPool2D(scale;) 4
Thus, the output from the multi-scale block is:
Scale; = MaxPool2D
&)

(concatenate (conv, (X), convy (X)), ...., convn(X)))

Spatial Attention Mechanism

This mechanism is used to focus on significant spatial
regions in the feature map by assigning higher weights to
relevant areas. This is achieved using a learned attention map
that is generated from the input feature map. The mechanism
amplifies the features in important spatial locations while
suppressing irrelevant ones. After the multi-scale fusion is
passed to a Global Average Pooling (GAP) layer is expressed
as:

gap = GlobalAvgPool2D (multi scale features) (6)
Uisng a fully connected layer and the attention weights are
the GAP output is given as.

Attention map = o(dense(gap)) (7)
where, o indicates a sigmoid.

The attention map is then reshaped and multiplied with the
feature map:

enhanced features
= multi — scale features X attention map

(®)

where, x indicates an element-wise multiplication.

Transformer block

The transformer block is used to attain a long-range
dependency within the feature map using multi-head self-
attention. It is used to understand relationships among distant
regions of the input to process a complex task. Initially, the
enhanced feature map is flattened with an expression:

flattened features = )
flatten(enhanced features)

These are passed with an expand dimension operation to
present a sequence dimension that is given in equation below.
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transformer_input =
expland_dims(flattened features, axis = 1)

(10)

transformery,,,; € R™*HW

(1D

Now, the attention mechanism is used to process an input
and then the multi-head self-attention is applied. It used to
compute an attention for each part of the sequence based on
the other parts:

kT

Selfattention(Q: K, V) = softmax (ﬁ) v (12)

where, O, K, and V are queries, keys, and values, and dx is the
dimension of the keys. The transformer block output is passed
through a Layer Normalization layer, and a skip connection is
added:

mhaoutput =
LayerNormalization(transformer input + (13)
Selfattention)
The transformer block output is expressed as:
MhQoyepye = Flatten(mhagyepye) (14)

Adaptive Feature Fusion

After obtaining the features from both the CNN (multi-
scale) and the transformer (long-range dependencies), these
features are fused adaptively to create a comprehensive feature
representation. This step ensures that both local and global
information are combined effectively. The features from CNN
and transformer are flattened and combined:

CONVfoqryres = Flatten(enhanced features)

(15)

adaptivefusion = Convfeatures + mhaoutput (16)
where, the Add () operation denotes element-wise addition.

Final Dense Layer

This layer can aggregate the fused features for a final output.
It attained class probabilities for classification tasks or
regression values. The fused features are forwarded through a
Dense layer with a ReLU activation to learn a non-linear
transformation:

finaloutput = (17)
Dense (adpativefusion, 512, activation = ’relu’)
The above expression provides extracted features and then
the softmax layer processes a classification.

3.2 EFO model

This model is a metaheuristic algorithm that is inspired by
the electrolocation mechanism of electric fish [45]. These
electric fields can navigate into murky waters, can also detect
objects, and interact with their surroundings. Based on this
biological feature, this method processes both exploration
(global search) and exploitation (local search) mechanisms. It
helps to balance diversity and convergence in the search to
attain an optimal solution. The EFO model is explained with
objectives and mathematical formulations are given as



follows:

Initialization

Initially, the population of candidate solutions is generated
randomly within the search space bounds. Every candidate
solution is used to represent a potential solution to overcome
an optimization problem. The i-th candidate solution at
iteration t is expressed as:

Xi(®) = [x;2 (1), x;2(1), oo oy p (1] (18)
where, D indicates the dimensionality of the problem and
x; j(t) indicates a j th variable of the i-th solution.

(19)

Xij (O) = x].mm + r(xjfmax — xjmln)

where, xjmi” and x;"** represents bounds for the j-th variable

and also R indicates uniform random number in [0,1].

Passive Electrolocation (Exploration)

Passive electrolocation is used to detect an external electric
field without generating new signals. This enables fish to
broadly sense their environment. In EFO, passive
electrolocation corresponds to global exploration, where new
solutions are generated to probe unexplored regions of the
search space. This phase prevents premature convergence
where new solutions are generated by perturbing existing
ones:

where, a denotes the Control parameter regulating
perturbation magnitude and R,(f) indicates Random vector for
perturbation.
The random vector is defined as:
Ri(t) = U.(X;(8) = X, () 1)

where, U denotes a Uniform random distribution. X;(t) and
X, (t) indicates a random solution in population.

Active Electrolocation (Exploitation)

Active electrolocation is used to emit electric signals and
analyse distortions caused by objects. It helps the fish to refine
their perception. In EFO, this exploitation mainly focused on
promising regions of the search space. It is used to improve the
quality of the solution by refining the best solutions. The local
refinement is performed as:

Xt +1) = X; () + B. (Kpese (6) — Xi()) (22)
where, £ indicates a scaling factor and X, (t) represents the
best solution.

Fitness-Based Frequency Calculation

This calculation was used to validate the fish's ability to
modulate electric signal strength based on environmental
feedback. The frequency f;(t) for the i-th solution is
expressed in equation below.

fi(tl)

= (23)
1+exp (=¥.(fitbest(t)=fit;(1))

where, fity.s:(t) indicates the best fitnes solution, fit;(t)
denotes a i-th fitness solution and I' denotes the scaling
parameter.
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Evaluation and Selection
Here, the fitness of every candidate solution is validated
using the objective function f{X) that is expressed as:

f(X;(t)) = Objective Function Value (24)
Selection rule:
{Xl-(t +1),iff(X:(t+ D) < F(X: (D)) (25)
X;(t) otherwise

It repeats its iterations until a termination condition is met,
whereas maximum number of iterations 7 or attain a desired
fitness threshold.

3.3 EFO-based feature selection

Pseudocode for EFO-Based Feature Selection

# Initialize parameters and population

population_size = 50 # Number of candidate solutions
num_features = len(features) # Total number of features
max_iterations = 100 # Maximum number of iterations
alpha = 0.5 # Control parameter for exploration

beta = 0.5 # Scaling factor for exploitation

gamma = 0.1 # Sensitivity parameter

# Step 1: Initialize population randomly
population initialize population(population_size,
num_features)

# Step 2: Evaluate fitness for each solution
fitness_values = evaluate_fitness(population)

# Step 3: Iterate for a maximum number of iterations
for t in range(max_iterations):
# Step 4: Exploration (Passive Electrolocation)
for i in range(population_size):
random_solution = random_selection(population)
perturbation alpha * (random_solution -
population][i])
new_solution = population[i] + perturbation
fitness_new = evaluate fitness([new_solution])
if fitness_new < fitness_values[i]:
population[i] = new_solution
fitness_values[i] = fitness_new

# Step 5: Exploitation (Active Electrolocation)
for i in range(population_size):
best_solution select best_solution(population,
fitness_values)
attraction = beta * (best_solution - population[i])
population[i] = population[i] + attraction

# Step 6: Update frequencies based on fitness
frequencies update frequencies(fitness_values,
gamma)

# Step 7: Evaluate and select the best solution
best_solution select best solution(population,
fitness_values)

# Step 8: Stopping criteria (e.g., max iterations or desired
fitness)




if stopping_condition_met(fitness_values):
break
# Return the best feature subset
return best solution

The feature optimisation is used to improve the
classification accuracy and reduce computational complexity.
It helps to choose the specific and most relevant features for
an accurate classification. In this work, the EFO model is used
for feature selection to attain an effective classification
performance. It is particularly suitable for high-dimensional
medical image feature selection due to its unique balance
between exploration and exploitation. The EFO focuses on
navigating a large search space and avoiding local optima.
With the comparison of Genetic Algorithms (GA) [46] and
Particle Swarm Optimisation (PSO) [47], EFO used the natural
electrolocation mechanism of electric fish to refine solutions

adaptively and select the most discriminative features for
classification.

EFO-based feature optimisation selects the most relevant
features by reducing the data dimensionality. This EFO model
is used to increase its performance and reduce computational
complexity.

3.4 TabNet for brain tumor classification

TabNet is a DL architecture designed to handle tabular data
efficiently. Compared to other models, TabNet can
automatically select important features and generate
explainable decisions. In this work, the TabNet is used for
classification based on the optimized features from EFO.

TabNet Architecture

TabNet uses a novel architecture that combines decision
trees with DL model for both local and global data that is given
in Figure 3.
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Figure 3. TabNet architecture

This architecture consists of a series of decision steps. In
each step, a D-dimensional vector is executed by a Feature
Transformer Module for classification. This module contains
multiple layers for accurate learning. This learned knowledge
is shared with other connections for final decision making. To
handle non-linearity, the module consists of a Gated Linear
Unit as an activation function. In addition, the residual
connections are used to reduce network variations. The multi-
layer design of the block increases feature selection and
optimizes the network’s parameter efficiency. The overall
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architecture is given in Figure 3.

Input Layer and Embedding

Initially, the TabNet embedds the raw input features. For
each input feature, the architecture applies an embedding layer
to transform the raw data into dense vectors. This
transformation is used for the model to capture feature
relationships effectively.

Let the input data be represented as:
(26)

X = [Xl, X3, ...,xD]



where, D is the number of features in the dataset. These
features are passed through an embedding layer, where each
feature x; is embedded into a dense vector e;. If E is the
embedding matrix, then the transformation can be written as:
e; = fempea(x), foralli=1,2,..,D 27
The embedded vectors are concatenated to form the
embedding of the entire input:
Xembea = [€1, €2, ..., €p] (28)
Attention Blocks
The attention mechanism in TabNet is a sparse mechanism,
meaning at each decision step, the model selects only a subset
of features to focus on. Each attention block consists of two
key components: Sparse Attention and Decision Layer.
Sparse Attention Mechanism
The sparse attention mechanism is implemented using the
following steps:

e The input embeddings are first passed through a
shared feature transformer which produces query (Q),
key (K), and value (V) vectors:

Q = WoXembear K = Wi Xempea, V = Wy Xempea (29)
where, Wp, Wk, Wy represents the learnable weight matrices
for the query, key, and value transformations, respectively.
The attention scores are calculated using below
expression:

T
Attention (Q,K,V) = softmax (%) % (30)

Jax

where, d, indicates key vector’s dimensionality.

The attention scores decide which features (or parts of the
input) are important at each decision step. In TabNet, the
attention is sparse, meaning only a small subset of features is
attended to at each decision step.

Masking for Sparse Attention

A mask is applied to ensure the attention mechanism
focuses only on a limited subset of features at each decision
step:

m, = softmax(QKT).mask(t) (31)
where, mask(f) is a learned mask that helps the network select
which features to focus on at step .

Decision Layer

After the attention mechanism, the selected features are
passed through a decision layer to make predictions. This layer
involves a feed-forward neural network (FFNN) applied to the
attended features. The decision layer is defined as:

2y = 0(WeXattendea + br) (32)
where, Xanendea represents the attended features. ¢ as ReLU
activation. W; and b, are learnable parameters for the #-th
decision layer. This step helps refine the feature representation
and prepares the model for the final output layer.

Update and Aggregation

The output of the decision layer is passed through the update
and aggregation mechanism. The model updates its parameters
and aggregates the attended features across all decision steps.

3194

This is done using the following equation:

Xupdated = Xattended + Zt (33)
where, Xuuensea are the features selected by the attention
mechanism, and z; are the decision layer outputs.
Output Layer
The final output is generated through a fully connected layer
that has a softmax activation which is given as follows:
y= Softmax(Wouthpdated + bout) (34)
where, W, and b, are the weights and bias for the output
layer and y is the output vector. It gives the class probabilities.

4. RESULT AND DISCUSSION

To validate the MB-MSAT-Net, the data set is collected
from the Mendeley Data Repository
(https://data.mendeley.com/datasets/w4sw3s9f59/1). The
dataset contains labelled MRI images of brain tumors. The
dataset includes four distinct classes: glioma, meningioma, no
tumor, and pituitary that used for both training set and the
testing set. The training dataset consists of 1321 glioma
images, 1339 meningioma images, 1595 no-tumour images,
and 1457 pituitary images. The testing dataset is composed of
300 glioma images, 306 meningioma images, 405 no-tumour
images, and 300 pituitary images. The visualization of the
dataset images is shown in Figure 4.
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N\
Tr-me_0038 Tr-me_0039 Tr-me_0041
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Figure 4. Dataset visualization

The MB-MSAT-Net model is coded in Python and
simulated using IDLE 3.12 version. The packages like
TensorFlow 3.10 are installed to implement model layers. The
metrics like Sensitivity, Accuracy, F1 Score and Precision are
calculated for evaluation. It can be calculated as follows:

TP+TN

Accuracy = ——
y (TP + TN+FP + FN’)

(35)



TP

Recall = m (36)

.. TP
Precision = P +5P) (37)
F1 score = 2. Precision .Recall (38)

(Precision + Recall)

where, TN is a True Negatives, TP is True Positives, FN is
False Negatives and FP is False Positives. The optimization is
carried out over 200 iterations. For each iteration, the fitness
of each solution is evaluated by training the model using
selected features with its classification error on the test set. The
fitness function computed the error score using the categorical
cross-entropy loss. Following the EFO optimization, the
TabNet classifier is used as the final model. The features
selected by EFO are used to train the TabNet model. It uses
decision trees and attention mechanisms to model the
relationships between the features. The TabNet classifier is
trained using a batch size of 256, patience of 5 epochs, and

early stopping to prevent overfitting. The virtual batch size of
128 is used to stabilize training.

The EFO-based feature selection is shown in Figure 5 where
the fitness value steadily decreases. Initially, the fitness value
fluctuates as the optimizer explores various features. Over
time, it converges toward a stable and lower classification
error where it refines the feature set and increases feature
selection effectively.

The performance of the model is given in Table 1. The
proposed MB-MSAT-Net model achieves a higher accuracy
of 99.2%. Also, EFO supports optimising feature selection in
a better way, and TabNet also integrates tabular data
effectively.

The confusion matrix of the proposed model is given in
Figure 6. The large values along the main diagonal (294 for
glioma, 304 for meningioma, 405 for no tumor, and 297 for
pituitary) indicate that the model performs very well at
correctly classifying instances into their respective classes.
These are the true positives for each class.
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Figure 5. Feature selection fitness plot

Table 1. Ablation study of the model

Model Class Precision Recall F1-Score Accuracy
glioma 99.7% 98% 98.8%
meningioma 97.7% 99.7% 98.7%
MB-MSAT-Net + EFO+ TabNet otumor 99.8% 100% 99.9% 99.2
pituitary 100% 99.7% 99.9%
glioma 99.3% 97.3% 98.3%
E : . . meningioma 97.1% 99.3% 98.2%
MB-MSAT-Net (Multi-Branch + Multi-Scale, No EFO) notumor 99.5% 100% 99.8% 98.7
pituitary 100% 99.0% 99.5%
glioma 98.3% 95.7% 97.0%
MB-MSAT-Net (Multi-Branch only, No Multi-Scale, No meningioma 93.4% 98.0% 95.7% 976
EFO) notumor 98.8% 98.8% 98.8% ’
pituitary 100% 99.7% 99.9%
glioma 97.6% 95.0% 96.3%
MB-MSAT-Net (Multi-Scale only, No Multi-Branch, No meningioma 92.9% 98.0% 95.4% 974
EFO) notumor 99.0% 98.8% 98.9% ’
pituitary 100% 99.3% 99.7%
glioma 95.5% 90.7% 93.0%
. meningioma 88.8% 94.1% 91.4%
Simple CNN + TabNet, No EFO notumor 97.6% 98.8% 98.2% 95.5
pituitary 99.7% 98.6% 99.2%
glioma 94.2% 87.1% 90.5%
. meningioma 82.9% 92.1% 87.3%
Simple cnn+catboost notumor 96.8% 98.0% 97.4% 932
pituitary 99.6% 94.3% 96.9%
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Figure 6. Confusion matrix analysis of the models

The ablation study provides the impact of various
components integrated in the proposed EFO-based MB-
MSAT-Net architecture. It highlighted the performance of the
multi-branch, multi-scale, and EFO components. In the
ablation study, the 'Multi-Branch Only' and 'Multi-Scale Only'
configurations are used to simplify the full model by reducing
a few key modules where both maintain functional
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architectures. But, it occurs a performance degradation due to
the loss of important feature extraction capabilities. In Multi-
Branch Only, the model captures various local features but
lacks multi-scale resolution. In Multi-Scale Only, it captures
broad spatial context but loses feature diversity. It shows the
need to hybrid both modules for optimal performance in brain
tumor classification.



Below is an analysis based on the provided results:

MB-MSAT-Net + EFO + TabNet

This is the full-fledged model which incorporates multi-
branch, multi-scale processing, EFO, and TabNet. It achieves
the best overall performance across all classes, with an
impressive accuracy of 99.2% and F1 scores nearing or
exceeding 99% for all tumor types. The inclusion of EFO is
used to optimize the feature set which enhances precision and
recall.

MB-MSAT-Net (Multi-Branch + Multi-Scale, No EFO)

Removing EFO slightly reduces accuracy to 98.7%. It
proves the importance of EFO in fine-tuning the feature
representation. However, the multi-branch and multi-scale
components still deliver strong results with balanced
precision, recall, and F1 scores across all classes.

MB-MSAT-Net (Multi-Branch only, No Multi-Scale, No
EFO)

When the multi-scale component is excluded, the
performance declines further with an accuracy of 97.6%. The
F1 scores for glioma and meningioma classes drop more
significantly. This version highlights the importance of multi-
scale features in improving model performance.

MB-MSAT-Net (Multi-Scale only, No Multi-Branch, No
EFO)

Similarly, excluding the multi-branch component and
relying solely on multi-scale processing results in an accuracy
of 97.4%. The absence of a multi-branch design limits the
model’s ability to integrate diverse feature representations. It
showed that the multi-branch complements multi-scale
processing by attaining a higher feature set.

Simple CNN + TabNet, No EFO

Without the multi-branch or multi-scale components, the
accuracy drops to 95.5%. Although the model still benefits
from TabNet's tabular data integration. But it cannot capture
hierarchical and spatial features results in lower precision and
recall rates.

Simple CNN + XGBoost

This configuration, with a simpler CNN backbone and
XGBoost, exhibits the lowest performance, with an accuracy
of 93.2%. The reduced capability to model complex
interactions between features leads to significant drops in
precision and recall for glioma and meningioma.

Figure 7 shows the ROC plot of the MB-MSAT-Net model.
The True Positive Rate (TPR) represents the proportion of
actual positives that are correctly identified. A TPR of 1 means
all actual positives are correctly classified. The False Positive
Rate (FPR) represents the proportion of actual negatives that
are incorrectly classified as positives. An FPR of 0 means no
actual negatives are misclassified. The curves for "notumor"
and "pituitary" are very close to the top-left corner. It denotes
the near-perfect performance for these classes. They both have
an AUC of 1.0. The curve for "meningioma" is also very close
to the top-left corner, with an AUC of 0.99 which indicates
excellent performance of the model.The curve for "glioma" is
slightly lower, with an AUC of 0.98, but it still represents very
good performance.

Table 2 presents a direct comparison of the proposed model
with existing state-of-the-art models under identical
experimental settings. All models are assessed on the dataset
using the same preprocessing steps, training parameters.
Compared to all models and recently proposed models, the
MB-MSAT-Net achieves the highest accuracy of 99.2%. This
architecture's ability to extract different and multi-resolution
features, coupled with optimal feature selection.

The analysis of the feature selection capability of EFO with
other optimizers is given in Table 3. The EFO-based feature
selection achieves the highest classification accuracy of 99.2%
when compared to GA (96.7%) and PSO (97.5%). The
convergence rate is represented as a numerical value to
compare how fast the algorithm reaches a stable optimal
solution. EFO has the highest convergence rate (0.9) among
other optimizers. EFO converges quickly to the optimal
solution.

Receiver Operating Characteristic (ROC) Curve
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Figure 7. Receiver Operating Characteristic (ROC) analysis
Table 2. Comparison with other models
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Author(s) Method Accuracy
Bhimavarapu et al. [17] SSBTCNet 92.4%
Ramprasad et al. [18] SBTC-Net 91.5%
Gomez-Guzman et al. [19] CNN, EfficientNet B1 90.8%
Kokkalla et al. [20] Deep Inception ResNet v2 91.0%
Kesav and Jibukumar [21] RCNN based model 88.3%
Wankhede et al. [22] Inception v3 89.5%
Ali et al. [23] UNET with pre-trained VGG19 90.0%
Albalawi et al. [24] ResNet50, ResNet152 91.8%
Hong et al. [25] 3D FRN-ResNet 89.6%
Hencya [26] Xception 90.4%
Ali [27] ShuffleNet with SVM 87.2%
Krishnasamy and Ponnusamy [28] FCN+ResNet 88.0%
Zahid et al. [29] PCA + DRNN 84.5%
Krishnan [30] Rotation Invariant Vision Transformer (RViT) 92.0%
Rahman [31] Dilated Parallel Deep Convolutional Neural Network (PDCNN) 89.7%
Ullah [32] Inception GoogLeNet 97.8%
Wang et al. [33] RanMerFormer 97.9%
Bansal et al. [34] CNN+SVM 97.5%
Tummala et al. [35] Ensemble ViT models 98.0%
Cinar et al. [36] Hybrid DenseNet121-UNet model 97.7%
Haque et al. [37] NeuroNet19 97.6%
Stephe et al. [38] OOA-DL 97.4%
Raza et al. [39] DeepTumorNet 97.8%
Haque et al. [40] DCGAN 97.6%
Nag et al. [41] TumorGANet 98.4%
Hosny et al. [42] GoogLeNet, Xception, MobileNetV2, ResNet50V2 Ensemble 98.3%
Sahu et al. [43] CLA + MRNL 97.2%
Yoon [44] Wiener Filtering + SVM 97.0%
Proposed MB-MSAT-Net with EFO (accuracy of 99.2%) 99.2%
Table 3. Comparison of feature selection performance
Optimization Algorithm Accuracy  Convergence Rate
EFO 99.2% 0.9
GA (Genetic Algorithm) 96.7% 0.8
PSO (Particle Swarm 97.5% 0.6
Optimization)
Table 4. Statistical analysis of the model
Model Precision Recall F1-Score Accuracy p-value
(%) (%) (%) (%) (paired t-test)
Proposed MB-MSAT-Net + EFO + TabNet 99.7 98.0 98.8 99.2 -
SSBTCNet 92.4 90.7 91.5 92.4 0.0001
SBTC-Net 91.5 89.2 90.3 91.5 0.0003
CNN, EfficientNet B1 90.8 89.4 90.0 90.8 0.0002
Deep Inception ResNet v2 91.0 89.8 90.4 91.0 0.0001
RCNN-based model 88.3 85.7 86.9 88.3 0.0015
ResNet50 91.8 90.5 91.1 91.8 0.0004
GoogLeNet, Xception, MobileNetV2, ResNet50V2 Ensemble 98.3 97.6 97.9 98.3 0.0002
TumorGANe 98.4 97.9 98.1 98.4 0.0001
MB-MSAT-Net with EFO 99.7 98.0 98.8 99.2 -
Table 5. Computational complexity analysis of MB-MSAT-Net
Metric MB-MSAT-Net Ensemble Deﬁ‘;;ﬁg:‘:’gon TumorGANet ResNet50 + XGBoost Simple CNN
Training Time 13.5 hours 14 hours 12.8 hours 13.8 hours 6.3 hours 4.2 hours
Inference Time 0.45 seconds 0.48 seconds 0.42 seconds 0.46 seconds 0.25 seconds 0.18 seconds
Memory 4.8 GB 5GB 4.5GB 4.8 GB 2.5GB 1.5GB

Consumption

The statistical result of a paired t-test on the performance
between the MB-MSAT-Net + EFO + TabNet model and the
baseline methods is presented. The obtained results are given
in Table 4. A p-value of less than 0.05 indicates that the
performance difference between the two models is statistically

significant. The p-values for all comparisons are below 0.05,
which denotes that the performance improvements of the MB-
MSAT-Net + EFO + TabNet model over the baseline models
are statistically significant.

The computational analysis of the MB-MSAT-Net is given
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in Table 5. The computational complexity of MB-MSAT-Net
is higher than simpler models like Simple CNN and ResNet50
+ XGBoost, However, these trade-offs are acceptable for real-
time applications with their highest accuracy.

The performance of the model for varying clinical
conditions is given in Table 6. The outcomes denote that MB-
MSAT-Net maintains strong accuracy even under noisy or
low-resolution conditions. It is observed that only a moderate
reduction in performance for extreme noise or very low
resolution. In misdiagnosis risk assessment, the model
performance is evaluated with an additional layer of
uncertainty. It simulates a scenario where the model's
predictions are flagged for misdiagnosis risk. The model
shows a slight drop in performance.

The Grad-CAM outputs of MB-MSAT-Net are given in
Figure 8. It denotes that the model successfully learned to

localize pathology in the brain MRIs. For healthy scans, it
shows low activation. For scans with tumors, it points to the
tumor which influences its diagnostic classification. To
analyse the feature importance, the SHAP (SHapley Additive
exPlanations) feature importance plot is generated as shown in
Figure 9. These plots identify specific radiomics features like
GLRLM Feature 04828 as the most critical drivers of the
model's predictions. The highest values of this feature strongly
contribute to the "positive" prediction.

To analyse model generalization and real-time applicability,
the MB-MSAT-Net is applied for the other brain tumor
datasets like BraTS 2020, Kaggle and the TCIA brain tumor
dataset. The measured results are given in Table 7. The MB-
MSAT-Net show better results in terms of all metrics for
different datasets. This cross-validation proves the model's
ability to work in different datasets.

Table 6. Performance of the model for varying clinical conditions

Test Scenario Accuracy (%) Precision Recall F1-Score
Original Test Set 99.2 0.997 0.998 0.997
Low-Quality Image (Gaussian Noise 6 =0.01) 97.8 0.974 0.976 0.975
High-Noise Image (Gaussian Noise ¢ = 0.05) 96.5 0.962 0.961 0.961
Very High Noise (Gaussian Noise 6 = 0.1) 93.4 0.937 0.938 0.937
Resolution 112 x 112 98.4 0.985 0.986 0.985
Low Resolution 56 x 56 94.6 0.948 0.946 0.947
Misdiagnosis Risk Assessment (Model Uncertainty) 92.5 0.925 0.923 0.924

Table 7. Performance of MB-MSAT-Net for other datasets

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%)
BraTS 2020 Dataset 99.2 99.7 98.0 98.8
Brain MRI Kaggle Dataset 98.5 98.0 97.5 97.8
TCIA brain tumor dataset 99.1 99.0 98.5 98.7

Figure 8. Grad-CAM visulization of the model
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5. CONCLUSION

The proposed MB-MSAT-Net for brain tumor classification
integrates the MB-MSAT-Net, EFO, and TabNet for medical
image analysis. By using the strengths of advanced feature
extraction and optimized feature selection, the framework
significantly increases the accuracy and efficiency.
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Experimental results on publicly available brain tumor
datasets confirm that this integrated approach outperforms
traditional methods. Future work could explore additional
optimization techniques and extend the approach to other
medical imaging tasks. In addition, different MRI scanning
parameters and multiple image modalities will be applied to
increase detection reliability.
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