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Visual communication images play a central role in commercial advertising and digital
interaction. Multimodal semantic feature fusion is key to enhancing their representation
learning performance. However, traditional associative learning methods struggle to support
the deep needs of causal understanding and interpretability in design fields. Existing
multimodal fusion solutions often suffer from issues such as blind fusion, inadequate
representation robustness, and lack of interpretability. Moreover, they have not achieved
seamless integration of structured domain knowledge injection, causal reasoning, and
generative explanation, making the transition from associative learning to causal
understanding difficult. To address these challenges, this paper proposes an Explainable
Causal Perception Computing Framework (ECPCF), which establishes a Causal Explainable
Representation Learning (CERL) paradigm. The framework builds a domain-specific
conceptual prototype memory bank by structurally injecting visual communication
knowledge and designs a causal intervention mechanism based on a structural causal model
(SCM) to accurately decouple task-related causal factors from irrelevant style factors. It then
integrates generative explanations and retrospective attribution to form a full-link
interpretable system. Experimental results show that the proposed method outperforms
baseline models in multiple tasks, such as design intention classification and defect
detection, on datasets like PosterNet, UI20K, and our custom dataset, achieving optimal
interpretability metrics. Ablation studies validate the necessity of each core module, and
cross-dataset testing demonstrates strong generalization ability, with a performance drop of
only 6.2%. The study demonstrates that ECPCF successfully transitions from associative
learning to causal understanding, offering a high-performance, robust, and interpretable
solution for multimodal semantic fusion in visual communication image representation
learning. This research provides significant insights into the field of interpretable
multimodal learning in image processing.

1. INTRODUCTION

have been validated as effective in multiple visual tasks, but
inherent flaws still exist in visual communication image

Visual communication images are widely applied in key
fields such as commercial promotion, digital interaction, and
public communication. They possess core attributes of both
information transmission and aesthetic perception, and their
automated analysis and optimization are of great significance
for improving communication efficiency and optimizing user
experience [1-3]. The deep involvement of image processing
technologies provides new technical paths for this field [4, 5],
and related research has become a hot direction at the
intersection of computer vision and design. However, the
information carrier of visual communication images exhibits
significant multimodal characteristics, encompassing visual
images, embedded text, design metadata, and other diverse
information [6, 7]. Single-modal features are insufficient to
fully capture their core value and design intentions. Thus,
multimodal semantic fusion [8, 9] has become a key path for
improving representation learning performance. In recent
years, cross-modal alignment methods based on Transformer
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analysis.

More importantly, the demands in the design field have
moved beyond simply accurate predictions, toward a deeper
understanding of the causal relationships between design
features and communication effects [10]. This understanding
forms the basis for supporting design optimization, defect
localization, and other practical needs. However, traditional
associative learning methods can only capture statistical
associations between features and labels and cannot remove
confounding biases from the data, making them inadequate to
meet the core demands of causal understanding.

Although much research has accumulated in the fields of
multimodal fusion and explainable learning, existing methods
still face three core limitations. First, multimodal fusion lacks
guidance. Existing cross-modal fusion methods, such as
attention mechanisms and modality concatenation strategies,
lack structured guidance from visual communication domain
knowledge. This can lead to ineffective interactions between
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irrelevant features, resulting in insufficient discriminability
and relevance of the fused features [11-13]. Second, the lack
of robustness in representations and causality. Current
methods do not fully consider style biases in the data, making
model representations easily interfered with by surface style
changes, and they only learn associative relationships rather
than causal logic, limiting their generalization ability [14-16].
Third, insufficient explainability and domain adaptability.
Existing explainability methods, such as gradient-weighted
visualizations and local interpretable models, are mostly post
hoc attributions with coarse granularity, disconnected from the
concepts in the visual communication domain, making them
difficult for designers to understand and apply [17, 18]. In
summary, existing research has not constructed a seamless
integration framework for structured domain knowledge
injection, causal reasoning, and generative explanation, and
has not achieved the paradigm shift from associative learning
to causal understanding. This key gap severely limits the deep
application of visual communication image analysis
technologies.

The goal of this study is to construct a CERL framework
based on structured domain knowledge injection, achieving
efficient fusion and explainability analysis of multimodal
semantic features in visual communication images, while
balancing model performance, representation robustness, and
causal interpretability. Around this goal, the core academic
contributions of this paper are as follows:

(1) Propose an ECPCF, establishing the CERL paradigm,
and for the first time realizing the seamless integration of
structured domain knowledge injection, counterfactual
reasoning, and generative explanation, promoting the
paradigm shift in visual communication image analysis from
associative learning to causal understanding.

(2) Design a causal intervention mechanism based on a
SCM, formally defining intervention variables and causal
factor conservation objectives, realizing the precise
decoupling of task-related causal factors from irrelevant style
factors, and providing a strict theoretical guarantee for
representation robustness.

(3) Build a domain-specific conceptual prototype memory
bank and bidirectional interpretability system for visual
communication, combining concept activation heatmaps and
generative examples to achieve full-link quantitative
traceability of perception-concept-decision, significantly
improving the domain adaptability and practical value of the
explanation results.

(4) Verify the effectiveness of the framework through
multidimensional  experiments, including performance
comparison with existing optimal models, human expert
evaluation, cross-dataset generalization testing, and
explainability quantification, providing a new paradigm and
methodological reference for research on interpretable
multimodal fusion in image processing.

The structure of the subsequent chapters is as follows:
Chapter 2 provides a detailed explanation of the overall design
of the proposed framework and the technical details of each
core module, including the construction of the conceptual
prototype memory bank, design of the causal intervention
mechanism, and implementation of the interpretability system.
Chapter 3 verifies the effectiveness of the method through
multiple comparison experiments, covering performance
evaluation, robustness testing, explainability verification, and
cross-dataset generalization analysis. Chapter 4 discusses the
research  findings, typical failure cases, universal
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methodologies, and future research directions. Chapter 5
summarizes the core conclusions and academic contributions
of the paper.

2. METHODS
2.1 Problem formalization

The multimodal semantic features of visual communication
images stem from three core information carriers. First, the
formal definitions of each modality’s features are provided.
Let the visual semantic features of the input visual
communication image be VER?T"C where H and W are the
height and width of the image, and C is the number of visual
feature channels, encoded by convolutional neural networks or
visual Transformers, encompassing low-level textures, color
distribution, and high-level semantic information; the text
semantic features TERY*P correspond to the embedded textual
content in the image, where L is the text sequence length, and
D is the text encoding dimension, generated by pre-trained
language models, merging textual semantics with visual layout
attributes; the design metadata semantic features MERK are
low-dimensional structured vectors, where K is the metadata
dimension, containing design attributes such as layout type,
color tone, etc. The three types of modality features are
integrated into a multimodal input X={V,T,M}, and subsequent
fusion and representation learning are based on this
multimodal input.

The core goal of CERL is to learn a structured
representation R from the multimodal input X, and decouple it
into task-related causal factors R, and task-independent style
factors Ry, i.e., R = (R;, R;). This goal can be formalized
through two key constraints: First, the causal factors must
retain the core information of task decisions, satisfying P(Y |
R.,Ry) = P(Y | R.), which indicates that the task label Y is
determined only by the causal factor; second, the causal
factors must remain invariant under style interventions, i.c.,
P(R. | do(Rs = 1)) = P(R,), where do( ) is an intervention
operation and 7y is any style factor value. This constraint
ensures the robustness of the representation to style changes.
At the same time, the model must output concept attribution
weights a€R" and generative explanation examples S, where
the former quantifies the contribution of each concept to task
decisions, and the latter visually presents the core concepts,
jointly supporting the interpretability analysis.

To rigorously characterize the above causal relationships, a
SCM M=(U,V,F,P(U)) is introduced as the theoretical basis.
Here, U is the set of exogenous variables, representing
unobservable noise and confounding factors; V =
{X,R., R, Y} is the set of endogenous variables, including
multimodal input, the two types of factors, and task labels;
F = {fx, fr. fry fr} 1s the set of causal mechanisms, which
defines the mappings U - X, X > R., X > R;, and R, = Y}
P(U) is the prior probability distribution of exogenous
variables. The causal flow between variables satisfies: the
multimodal input X is a common cause of R, and R, while R;
has no direct causal link with Y. This structure provides a strict
theoretical boundary for subsequent causal intervention and
factor decoupling.

2.2 CERL framework and CERL paradigm

To address the issues of blind fusion, inadequate robustness,



and lack of interpretability in multimodal semantic fusion of
visual communication images, this paper proposes the CERL
paradigm. The core idea of this paradigm is to guide structured
domain knowledge injection, constrain the process with causal
reasoning, and aim for interpretability, systematically
realizing the paradigm shift from traditional associative
learning to causal understanding. This paradigm breaks
through the limitations of existing methods, which only rely
on data statistical associations, by transforming visual
communication domain expertise into computable conceptual

(b) Phase 2: Construction of Domain-Specific Concept Prototype Memory Bank

prototypes, providing directed guidance for multimodal fusion
and avoiding irrelevant feature interactions. At the same time,
it constrains the representation learning process with causal
reasoning to ensure that the model captures task-core causal
logic rather than superficial style associations. Finally,
through a full-link interpretable system, it transforms the
learning results into domain-understandable knowledge,
achieving a virtuous cycle of "learning - explanation -
validation," aligning with the deep needs of the design field
for causal understanding and practical guidance.
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Figure 1. The ECPCF

The ECPCF is the specific implementation carrier of the
CERL paradigm. It adopts a hierarchical modular design,
clearly distinguishing the information transmission and logical
control paths by using solid lines to mark the data flow and
dashed lines to mark the control flow. The core innovative
modules are highlighted with differentiated colors to
emphasize design priorities. The framework follows a five-
phase closed-loop logic, with each phase progressing
incrementally and providing mutual feedback: the Multimodal
Semantic Feature Preprocessing and Alignment phase
standardizes and cross-modally calibrates the three types of
features (visual, textual, and design metadata), providing a
high-quality feature foundation for subsequent fusion; the
Construction of Domain-Specific Concept Prototype Memory
Bank phase structurally injects domain knowledge into the
model, generating a concept prototype set with domain
discriminative power to provide directional guidance for the
fusion process; the concept-guided multimodal semantic
fusion phase uses concept prototypes as intermediaries to
achieve precise interaction and structured fusion of
multimodal features, generating fusion features rich in domain
semantics; the SCM-based Causal Intervention and
Representation Learning phase decouples the fusion features
into causal and style factors through factor decomposition and
intervention operations, ensuring the robustness and causal
validity of the representations; the Task Prediction and
Bidirectional Explainability Analysis phase completes
downstream task prediction based on causal factors, while also
outputting interpretable results through retrospective
attribution and generative explanation. The explanation
information can be fed back to the concept prototype memory
bank for optimization, forming a complete closed loop. This
framework achieves the organic unity of multimodal semantic
fusion and CERL through the collaborative function of all
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modules, fully embodying the guiding-constraint-target core
logic of the CERL paradigm. Figure 1 intuitively demonstrates
the ECPCF.

2.3 Multimodal semantic feature preprocessing and
alignment

The core of multimodal semantic feature preprocessing is to
precisely extract the core information of each modality and
complete the preliminary standardization to provide high-
quality input for subsequent fusion. The visual semantic
features adopt a fusion strategy of low-level and high-level
features: low-level features include the HSV histogram, LBP
texture descriptor, and spatial layout matrix. The HSV
histogram quantizes the image color space into 16x16x16
intervals, generating a 4096-dimensional vector. The LBP
texture descriptor uses a 3 X 3 neighborhood calculation to
generate a 256-dimensional vector. The spatial layout matrix
divides the image into 16 x 16 grids and generates a 256-
dimensional vector by calculating the average pixel values
within each grid. The three features are concatenated to obtain
the low-level visual feature ¥V, €R*%; high-level semantic
features are generated by encoding with a pre-trained Swin
Transformer. The input image is normalized to 224 x 224 and
passed through the Swin-Tiny model to output a 768-
dimensional feature vector Vg€R7. The final visual
semantic feature V' is obtained by concatenating Vi, and Vg,
after layer normalization (LN): V=LN([Viow;Viign])ER6. The
text semantic features adopt joint encoding of semantics and
visual attributes: the text content is encoded by the BERT-base
model to obtain a 768-dimensional semantic vector Ty, ER®,
and the text’s visual attributes are one-hot encoded and
normalized to generate a 64-dimensional vector T,;ER. The
final text feature T is obtained through attention-weighted



fusion: 7=a Tyen+(1—a) Tyis, where a€[0,1] is the attention
weight learned adaptively based on feature correlation. The
design metadata semantic features are encoded structurally:
the objective design labels are one-hot encoded to generate a
128-dimensional vector, and the subjective user perception
feedback is generated by statistical heatmap peak positions
and score distributions to form a 32-dimensional feature. The
two are concatenated and standardized to obtain MER160.

To solve the semantic gap caused by the heterogeneity of
multimodal features, a cross-modal semantic calibration
alignment strategy based on contrastive learning is used. The
core idea is to map features from different modalities into a
unified semantic space through concept consistency
contrastive loss. Let the multimodal feature set of the i-th
sample in a batch be {V;,T;,M;}, where the positive sample pair
corresponds to different modality features of the same image,
and the negative sample pair corresponds to either same-
modality or cross-modality features from different images.
The concept consistency contrastive loss L. is defined as:

Multimodal Semantic Feature Preprocessing and Alignment
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where, N is the batch size, F; is the positive sample feature, N;
is the set of negative sample features, sim(,) is the cosine
similarity function, and 7 is the temperature parameter. The
optimization objective of this loss is to minimize the distance
between different modality features of the same image while
maximizing the distance between features from different
images. Additionally, the introduction of domain concept prior
constraints in the similarity calculation ensures that the aligned
features fit the semantic logic of the visual communication
domain, laying the foundation for subsequent concept-guided
fusion. Figure 2 shows the process of multimodal semantic
feature preprocessing and concept prototype memory bank
construction.
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Figure 2. Multimodal semantic feature preprocessing and concept prototype memory bank construction process

2.4 Visual communication domain-specific
prototype memory bank construction

concept

The core of constructing the visual communication domain-
specific concept prototype memory bank is to build a
structured concept system that fits domain needs and generate
learnable concept prototypes. The concept set definition
follows both the consensus of domain experts and the practical
requirements of design, covering three core categories:
information transmission, aesthetic perception, and user
experience. Information transmission concepts focus on the
core information delivery function of design, including
information hierarchy clarity, theme prominence, and text
readability; aesthetic perception concepts rely on visual design
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aesthetics principles, covering color harmony, layout balance,
and style consistency; user experience concepts relate to
audience perception feedback, including visual appeal,
information retrieval efficiency, and emotional resonance. The
concept screening process is completed collaboratively by
three visual communication domain experts and two computer
vision researchers, with multiple rounds of discussion to
eliminate ambiguous concepts. Ultimately, 60 core concepts
form the concept set, ensuring the domain adaptability,
discriminative power, and operability of the concepts.
Concept prototype initialization is completed based on an
expert-labeled sample set, using a strategy combining
clustering and feature averaging. First, an expert-labeled
sample set is constructed. For each concept i (k= 1,2,...,K, K



60), the expert selects 100 representative visual
communication image samples to form the labeled set S, ; for
each sample, the aligned multimodal semantic features are
extracted. The K-means clustering algorithm is used to cluster
the feature set corresponding to S, , and the initial concept
prototype pi is obtained by averaging the features. The
initialization formula for the concept prototype vector set

P=[p1,p2,....pk]ERP K is:
Z Feat (x)

k

1
pk_‘S_

el

2

where, Feaf(x) denotes the multimodal semantic features of
sample x, and |S,, | is the size of the concept ¢k labeled sample
set. This initialization method ensures that the prototypes can
accurately capture the core feature distribution of similar
concepts.

To make the concept prototypes adaptive to data
distribution and dynamically optimized, a prototype-sample
feature matching loss is designed to enable dynamic updating
of the memory bank. During training, for each sample's
multimodal feature f; in the batch, the cosine similarity
sim(fi,px) between the sample and each concept prototype py is
calculated. The top-3 concept prototypes most matching the
sample are selected to form the matching prototype set. The
prototype-sample feature matching loss L, is defined as:

N
1
=— E . im (f, 3
Lon=w ) (1 max sim () A3)

where, N is the batch size, and K; is the matching prototype set
for sample i. This loss minimizes the distance between the
sample features and matching prototypes, and during training,
each iteration updates the concept prototypes based on the
current batch features:

1
Py, H(1-n): Bl Z f; (4)

f,:EBk

where, #€(0,1) is the update weight, and By is the set of sample
features in the batch that match prototype pi, ensuring that the
prototypes dynamically adapt to the data distribution during
training and improve the precision of concept-guided fusion.

2.5 Concept-guided multimodal semantic fusion

Concept-guided multimodal semantic fusion uses domain-
specific concept prototypes as intermediaries and achieves
precise interaction of multimodal features through a cross-
attention mechanism. The core idea is to avoid ineffective
fusion by relying on domain concepts, enhancing the semantic
relevance of features to the domain. First, feature-concept
prototype matching is performed. For the preprocessed and
aligned visual, textual, and design metadata features VERP,
TERP, MERP, the cosine similarity with each prototype in the
concept prototype set PERP*K is calculated, and the top-5 most

similar concepts are selected to form the active concept set
act

P..= [p;‘”,. P ] The cosine similarity calculation formula is:
fry
SIm(fp )= ®)
A2l
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where, f is any modality feature, and py is the k-th concept
prototype. This process ensures that only domain concepts
related to the current sample's semantics are activated,
providing directional guidance for subsequent fusion.

The concept-guided cross-attention mechanism is
constructed based on the active concept set to achieve cross-
modal feature interaction. The core idea is to calculate the
attention weights between modalities through concept
prototypes. First, the modality features are associated with the
active concept prototypes, yielding modality-concept
associated features V,e=V"Puct, Tre=T" Pact, Mye=M- P4 Then,
using modality-concept associated features as a bridge, the
cross-modal attention weights between visual and text, visual
and metadata, and text and metadata are calculated. Taking the
visual-text attention weight calculation as an example:

Vrel'T;Tel>
Dact

where, D,=5 is the number of active concepts, and the
attention weight A,y quantifies the guidance weight of visual
features on text features. Similarly, other modality attention
weights A7y, Ay_u, etc., can be obtained. Finally, the fused

feature F is obtained by concatenating the weighted features
from each modality:

Ay_7=softmax (

(6)

F=LN(( A7y T+ Ay yMAV Ay pVIAyeM+T)) - (7)
where, LN ensures stable feature distribution. This fusion
method achieves precise semantic alignment and interaction of
multimodal features through concept mediation.

To ensure semantic consistency between the fused features
and domain concepts, a concept consistency loss Lcon is
defined to constrain the fusion process. The average cosine
similarity between the fused feature F' and the active concept
set P, is computed, and the loss function is defined as:

5

1 .
Lconzl' g Z s1m (FapZC[
k=1

®)

The optimization objective of this loss is to maximize the
semantic similarity between the fused features and the active
concepts, forcing the fused features to encode domain-related
information and enhance their structure and explainability.
During training, the concept consistency loss is jointly
optimized with the prototype-sample matching loss and task
loss to ensure that the fused features meet both task
requirements and domain concept constraints. Figure 3
presents the complete process of concept-guided multimodal
semantic fusion.

2.6 Causal intervention and representation learning based
on SCM

Based on the structure causal model defined earlier, this
section formalizes the dependencies between variables using
causal graphs and constructs causal constraints based on
intervention theory to provide strict theoretical support for
representation learning. The causal graph clearly depicts the
causal flow between exogenous variables, multimodal inputs,
causal factors, style factors, and task labels: multimodal inputs
directly drive the generation of causal and style factors, task
labels are only determined by causal factors, and style factors



have no direct causal relation with task labels. Exogenous
variables provide noise disturbances to the endogenous
variables. Based on this structure, the intervention operation
do(Rs=ry') is defined, meaning fixing the causal factor R, while
replacing the style factor R, with any value 7,'. Combining the

stability assumption of the causal mechanism in SCM, the core
theoretical guarantee under intervention is derived:

P(Y|do(Ry=r"s),R.)=P(YIR.)
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Figure 3. Concept-guided multimodal semantic fusion process

The derivation process is as follows: since the causal
mechanism of Y'is only determined by R, the intervention only
changes the value of R without disrupting the causal
mechanism from R. to Y, so the conditional probability
remains unchanged. This conclusion provides a theoretical
basis for representation robustness, meaning that as long as the
learned representation can accurately decouple R, and R, task
predictions will remain stable during style changes.

Variational inference is used to perform factorization of the
fused feature F, decoupling it into task-relevant causal factors
R.ERP¢ and task-independent style factors R,ERP*, where
DA+Dy=D and D is the dimension of the fused features. A
variational encoder g,(R.,R,|F) is introduced to approximate
the posterior distribution, aiming to approach the true posterior
P(R:,R(|F). The prior distribution is defined as
P(Re,Rs)=p(R:)p(Rs), assuming that R, and R, are independent.
Based on the variational inference principle, the evidence
lower bound (ELBO) is maximized to optimize the encoder
parameters. The ELBO objective function is derived as:

log P (F)2E, 5, x| 10g P(FIR..R,)]

KL(g,(RooRF)IpRP(R,)) (10

where, the first term is the reconstruction loss, which
constrains the decoder to accurately reconstruct the fused

3544

features from the decoupled factors. The second term is the KL
divergence, which ensures that the approximate posterior
approximates the prior distribution and ensures the
effectiveness of factor decoupling. A decoder po(F|R.,R;) is
introduced to implement feature reconstruction. The final
factorization is completed by jointly optimizing the ELBO,
resulting in decoupled representations (R,R;).

To strengthen the factor decoupling effect and verify the
validity of the intervention theory, a counterfactual training
strategy is designed, integrating the do operation into the
training process. Counterfactual samples are generated based
on the principle "causal factors remain unchanged, style
factors are replaced": for the decoupled factors (R.,R)) of the
original sample, a style factor R, from another sample in the
batch is randomly selected as a replacement, generating a
counterfactual factor pair (R.,R.), and then the counterfactual
fused feature F¥ ¥pg(F |R.,R.) is generated through the decoder.
The generation process must satisfy the constraint: the cosine
similarity between the counterfactual factor pair R, and the
original R’ should not be lower than 0.95, ensuring that the
causal factor is unaffected. To constrain the consistency of
model predictions, a counterfactual consistency loss is defined:

N
1 | )
Ly NZ | Pred(F')-Pred(F")12 (11

i=1



where, Pred( ) represents the model's task prediction output,
and N is the batch size. This loss minimizes the prediction
difference between the original and counterfactual samples,
forcing the model to rely solely on causal factors for decision-
making, further strengthening the task relevance of R. and the
irrelevance of R,, ultimately improving representation

robustness and causal validity. During training, this loss is
optimized together with the variational inference ELBO and
concept consistency loss, forming a complete causal constraint
system. Figure 4 shows the principles of causal intervention
and representation learning based on SCM.
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Figure 4. Causal intervention and representation learning based on SCM

2.7 Task prediction and bidirectional interpretability
analysis

Task prediction is implemented through hierarchical
decomposition of the causal purified representation, with the
core idea of further decoupling the causal factor R, into three
sub-representations to adapt to different downstream task
requirements: core communication intention representation
R4ERP | aesthetic perception representation R.,€R”?, and
style-independent ~ representation R _;ERPS such that
Da+Do+tDs=D., where R. encodes the core information
delivery target of the design, R.; characterizes aesthetic-related
features, and Rc3 retains general structural information
unrelated to style. To avoid overfitting, lightweight task heads
are designed for different tasks: for the design intention
classification task, a two-layer fully connected layer is used to
build the task head, with the prediction formula:

Y i=softmax(Wy-ReLU(W, - R.1)+b,) (12)
where, W, €R?*Pe1 | w,eR*¥%P2are learnable weights, C is
the number of categories, and b,ER*® is the bias. For the
defect detection task, a 3x3 convolutional layer and global
average pooling are used to construct the task head, outputting
the defect probability map:

Y ger=sigmoid(Conv(R 3)+b ;) (13)
where, Conv( ) is a single-channel convolution operation that
achieves pixel-level defect localization.

The bidirectional concept attribution interpreter constructs
a full-link explainable system through forward generation and
backward tracing. The forward-generation path is based on a
conditional diffusion model, with the model input being the
activated concept prototype set P, and random noise, and the
output being visual examples fitting the concept semantics.
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The training strategy uses real sample-concept prototype
pairing data, optimized with reconstruction loss and concept
consistency loss, ensuring that the generated examples
accurately match the target concepts. The backward-tracing
path quantifies the decision contribution of each concept and
semantic feature using a gradient-weighted method. The
contribution calculation formula is defined as:

(VpPred(F)-F)-sim(F.pi")
=
k Y sim (F.pg

(14)

where, VrPred(F) is the gradient of the prediction output with
respect to the fused feature F, representing the sensitivity of
the feature to the decision, and the similarity between the
feature and concept prototype is used to weight the
contribution. Based on this contribution, a cross-channel
concept propagation graph is constructed, with nodes
representing each modality feature and concept, and edges
representing the contribution transmission coefficients, clearly
showing the interaction paths between concepts and features.

The interpretability report is designed in two versions:
academic analysis and design practice, covering both
theoretical analysis and application guidance. The academic
analysis version includes a quantitative attribution matrix,
gradient heatmaps, cross-channel propagation graphs, and
statistical significance analysis results, presented in the form
of charts, supporting the academic verification of the method's
effectiveness. The design practice version includes a core
concept matching list, defect localization annotations,
generative optimized examples, and targeted improvement
suggestions, presented through a visual comparison interface.
Both versions support interactive viewing, allowing users to
click on attribution matrix elements to jump to corresponding
heatmaps and generated examples, enhancing the explorability
of the explanation results.



2.8 Model training strategy

The model training uses a multi-objective collaborative
optimization strategy, combining the weighted losses of
various tasks to construct a total loss function, ensuring the
collaborative optimization of task performance, concept
adaptability, and causal decoupling effects. The total loss
function is defined as:

Ltotal:ilem+}~2Lcon+}~3qu (15)

The core role and weight settings of each loss term are as
follows: the task loss L is the core loss. For the design
intention classification task, cross-entropy loss is used, and for
the defect detection task, Focal loss is used to directly
constrain the model's task prediction accuracy, with a weight
of 1.0. The prototype-sample matching loss L, constrains the
semantic alignment between sample features and concept
prototypes, ensuring the effectiveness of concept guidance,
with a medium gradient magnitude and a weight of 0.3. The
concept consistency loss L.,, enhances the semantic relevance
between fused features and domain concepts and collaborates
with L,, to support the concept-guided mechanism, with a
weight of 0.2. The counterfactual consistency loss L. is a key
constraint for causal decoupling, requiring balancing with the
optimization priority of task loss. After experimental
verification of its gradient sensitivity, its weight is set to 0.5.
The weight parameters are determined through grid search
with a search range of {0.1,0.2,0.3, 0.5, 1.0}, and the optimal
combination is selected based on the performance of the
validation set.

The training process uses the AdamW optimizer for
parameter updates. This optimizer effectively suppresses
overfitting through weight decay mechanisms, with parameter
settings: Bi1=0.9, P2=0.999, weight decay coefficient of 1e*,
and epsilon=1e®. The learning rate schedule uses cosine
annealing, with an initial learning rate set to 1e*, balancing
model convergence speed and stability. A higher learning rate
in the initial stage accelerates parameter updates, while
gradually decaying the learning rate in the later stage avoids
gradient oscillations. To further improve the model's
generalization ability, multiple regularization measures are
introduced: Dropout layers with a dropout probability of 0.1
are inserted into the multimodal fusion layer and task head; L2
regularization is applied to the weights of all fully connected
layers; data augmentation strategies such as random cropping,
horizontal flipping, and color jittering are applied to the input
images during training. The training batch size is set to 32,
adapting to the memory capacity of a single NVIDIA A100
GPU. The total training iterations are set to 200, and an early
stopping strategy is employed. If the performance of the
validation set does not improve for 20 consecutive rounds,
training stops and the model parameters with the best
performance are saved. During training, gradient clipping is
applied with a gradient norm threshold of 1.0 to prevent
gradient explosion. Each modality feature is standardized
before being input into the model, ensuring consistent feature
distribution and improving training stability.

3. EXPERIMENT
3.1 Experimental setup

The experiment adopts a combination of public datasets,
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self-built datasets, and cross-dataset generalization test sets to
ensure comprehensive data coverage and objective evaluation.
The public datasets selected are the mainstream PosterNet and
UI20K in the field of visual communication. PosterNet
contains 50,000 commercial poster images, covering 10 core
categories, with a multimodal annotation completeness rate of
98%, including visual, text, and design style metadata. UI20K
contains 20,000 mobile UI interface images, divided into 15
functional categories, with annotated information such as
widget positions and text attributes. The self-built dataset
focuses on the visual communication needs in multiple scenes,
constructed through three steps: collection, screening, and
annotation, with a total of 30,000 valid samples. The dataset
covers 6 core fields, with annotations including multimodal
semantic features, design intention labels, and subjective
perception ratings. The annotation consistency Kappa
coefficient is 0.87, and after validation for diversity and
domain coverage, it is considered to have good
representativeness. The cross-dataset generalization test set
selects 10,000 public service advertisement posters, which
differ significantly in style from the training set, to verify the
model's adaptability in unfamiliar domains.

The baseline models select 8 representative methods within
8 domains, categorized into five types for multidimensional
fair comparison. Traditional multimodal fusion methods
include CNN+BERT feature concatenation and Cross-
Attention Fusion, covering classic cross-modal fusion
paradigms. The visual communication domain-specific
methods include DesignNet and VCD-Net, matching the
domain characteristics of the experimental tasks.
Explainability/causal learning models include Grad-CAM
enhanced fusion models and CF-VAE causal debiasing
models to compare explainability and causal decoupling
effects. Additional human expert comparison groups and an
SVM classifier based on manually designed features are
included, with the former as the subjective performance
benchmark and the latter representing the performance upper
limit of traditional design analysis methods. All baseline
models use the official recommended parameters, some of
which are fine-tuned according to the experimental datasets to
ensure fairness in comparison.

The evaluation metric system covers three core dimensions
to  comprehensively quantify model performance.
Representation learning performance metrics are designed for
different tasks: classification tasks use accuracy, macro F1
score, and confusion matrix to balance the class imbalance
issue; regression tasks use mean absolute error and root mean
square error; retrieval tasks use mean average precision and
NDCG@10. Robustness and causality metrics include
performance degradation rate under style perturbations, cosine
similarity between causal factors of original and perturbed
samples, and counterfactual validity scores based on expert
ratings. Explainability metrics are quantified through concept
attribution accuracy, explanation readability scores, concept
fidelity, and representation-concept relevance to ensure
comprehensive and targeted evaluation.

The experimental environment and hyperparameter settings
follow the reproducibility principle. The hardware used
includes an Intel Xeon Gold 6330 CPU, four NVIDIA A100
GPUs (80GB memory each), and 512GB of RAM. The
software is based on the PyTorch 1.12.1 framework and
CUDA 11.6, running on an Ubuntu 20.04 LTS system. Key
hyperparameters are optimized through grid search: batch size
32, initial learning rate of le™, using a cosine annealing



schedule with a total of 200 iterations and a 20-iteration early
stopping threshold. The loss function weights are 1,=0.3,
4:=0.2, 15=0.5, with a dropout probability of 0.1, weight decay
coefficient of 1, and gradient clipping threshold of 1.0. All
experiments are independently repeated 3 times, with the
average value taken to ensure the reliability and statistical
significance of the results.

3.2 Core experimental results and analysis

3.2.1 Representation learning performance comparison

Table 1 presents a comparison of the representation learning
performance of the proposed method and various baseline
models on the PosterNet, UI20K, and self-built datasets,
covering four core tasks: design intention classification, defect

detection, attractiveness score prediction, and similar design
retrieval. The results show that the proposed method achieves
optimal performance in all tasks and datasets. Specifically, the
design intention classification task on the self-built dataset
achieves an accuracy of 89.7%, which is 5.3% higher than the
second-best baseline CF-VAE, and the macro F1 score reaches
88.9%, 6.1% higher than Cross-Attention Fusion. For the
defect detection task on UI20K, the F1 score reaches 87.3%,
significantly outperforming DesignNet, which achieves 81.5%.
The attractiveness score prediction task on PosterNet shows a
MAE of 0.32 and an RMSE of 0.45, both lower than any of
the baseline models. The similar design retrieval task achieves
MAP and NDCG@]10 values above 85% across all three
datasets, demonstrating excellent representation
discrimination ability.

Table 1. Representation learning performance comparison table

Design Intention

Attractiveness Score Similar Design

Model Dataset Classification Defect Detection F1 Prediction Retrieval
Accuracy Macro F1 Score MAE RMSE MAP NDCG@10
(%) (%) (%) (%)
PosterNet 76.2 74.8 75.3 0.58 0.72 72.5 75.1
CNN+BERT UIRROK 78.5 76.9 77.8 0.61 0.75 74.3 76.8
Concatenation Self-built 77.1 75.6 76.5 0.55 0.69 73.8 76.2
Dataset
PosterNet 80.3 79.2 79.6 0.51 0.65 78.6 80.2
Cross-Attention Fusion Sl{]fZé)]{lt 82.1 80.8 81.2 0.53 0.67 80.1 81.9
ci-bul 83.6 82.8 80.9 0.48 0.62 81.5 83.1
Dataset
PosterNet 81.7 80.3 79.1 0.52 0.66 77.8 79.5
. UIRROK 83.2 81.7 81.5 0.54 0.68 79.3 81.2
DesignNet Self-built
82.5 81.1 80.2 0.50 0.63 80.2 82.3
Dataset
PosterNet 82.4 81.0 80.5 0.49 0.63 79.5 81.3
VCD-Net sgﬁ())]?]t 84.1 82.6 82.8 0.51 0.65 81.2 83.0
U 84.5 83.2 82.1 0.46 0.59 82.6 84.3
Dataset
PosterNet 83.1 81.8 81.3 0.47 0.61 80.3 82.1
Grad-CAM Enhanced UIRROK 84.8 83.4 83.2 0.49 0.63 82.0 83.8
Fusion Self-built 85.2 83.9 82.7 0.44 0.57 83.1 84.9
Dataset
PosterNet 85.7 84.5 83.6 0.42 0.55 82.8 84.6
CF-VAE Sijlﬁ())lflt 86.9 85.6 84.9 0.44 0.57 83.7 85.5
ou 86.4 85.1 84.2 0.40 0.53 84.3 85.8
Dataset
PosterNet 75.8 74.2 74.9 0.62 0.76 71.8 74.3
Handcrafted Features UROK 77.3 75.7 76.5 0.64 0.78 73.2 75.9
SVM Self-built 78.3 76.9 77.1 0.59 0.71 72.9 75.6
Dataset
PosterNet 90.5 89.8 88.7 0.30 0.42 86.7 88.5
UROK 91.8 90.7 89.5 0.31 0.43 87.5 89.2
Human Expert Self-built
U 91.2 90.3 89.1 0.29 0.40 87.2 88.9
Dataset
PosterNet 88.6 87.5 85.9 0.34 0.48 85.6 87.3
Proposed Method sgfggh 89.2 88.1 87.3 0.35 0.49 86.4 88.1
89.7 88.9 86.8 0.32 0.45 86.1 87.8
Dataset

In comparison with the special baseline groups, the
classification accuracy of the proposed method is close to the
human expert level of 91.2%, with only a 1.5% gap, indicating
that the proposed causal explainable representation has
approached the human design cognition dimension. It also
significantly outperforms the SVM classifier based on
manually designed features, proving that data-driven
multimodal fusion and causal learning strategies outperform
traditional handcrafted feature engineering. The statistical
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significance test shows that the performance differences
between the proposed method and all baseline models are
verified through t-tests, confirming the reliability of the results.
The performance advantage comes from two core mechanisms:
the concept-guided multimodal fusion, which directs feature
interactions through domain knowledge constraints, avoids
interference from invalid information, and improves the
discriminability of the fused features; and the causal
intervention mechanism, which accurately decouples causal



factors from style factors, removes style bias from the data,
and enhances the task relevance and stability of the
representations.

3.2.2 Robustness experimental results

Figure 5 shows the change in design intention classification
accuracy for different levels of style perturbation, from level 0
(no perturbation) to level 5 (severe perturbation), comparing
the proposed method with three baseline models. As seen, the
accuracy curve of the proposed method is always the highest
and decreases the most gradually: its accuracy at level O
reaches 89.7%, and under the most severe perturbation at level
5, it only drops to 85.5%, with a decrease of only 4.2%. In
contrast, the accuracy of CF-VAE, Cross-Attention Fusion,
and DesignNet decreases from 86.4%, 83.6%, and 82.5% to
78.6%, 73.1%, and 70.2%, respectively, with decreases of
7.8%, 10.5%, and 12.3%, and the slope of the curve is
significantly larger than that of the proposed method.

Proposed method Accuracy (%)

Cross-Attention Fusion Accuracy (%)

95
90
86.4
83 — 842
82.5
— 81.9
80 79.8
77.1
75
70
65
Level 0 Level 1 Level 2

The core of this difference lies in the causal intervention
mechanism of the proposed method: by constraining through
the SCM, the fused features are decoupled into task-related
causal factors and style factors unrelated to the task. The do
operation ensures that the causal factors remain stable under
style perturbations. The stability of the accuracy in the
proposed method directly reflects the fact that the causal
factors are unaffected by style perturbations—the cosine
similarity of the causal factors between the original and
perturbed samples stays above 0.92, far higher than the 0.75-
0.85 range of the baseline models, which allows the model's
decision to rely only on core causal information, rather than
style features that are susceptible to perturbations. Traditional
multimodal fusion methods do not decouple style and causal
information, and decisions rely on mixed features containing
style noise, resulting in rapid performance degradation under
style perturbations.

CF-VAE Accuracy (%)

DesignNet Accuracy (%)

O
- 78.6
774
74.3
73.1
T71.5
70.2
Level 3 Level 4 Level 5

Style Disturbance Level

Figure 5. Comparison of design intent classification accuracy for different models under varying levels of style disturbance

Table 2. Comparison of interpretability metrics

Concept Attribution

Explanation Readability

Representation-Concept

Model Accuracy (Score) (Score) Concept Fidelity (%) Correlation (%)
CNN+BERT Concatenation 2.3 2.1 12.5 65.3
Cross-Attention Fusion 2.7 2.5 10.8 68.7
DesignNet 3.1 2.9 9.2 72.5
VCD-Net 33 3.2 8.5 74.8
Grad-CAM Enhanced Fusion 3.5 34 7.6 76.2
CF-VAE 3.8 3.6 6.2 80.5
Proposed Method 4.7 4.5 3.1 89.3

3.2.3 Interpretability experimental results

Table 2 presents the quantitative comparison of
interpretability metrics for each model. The proposed method
outperforms all baseline models in all metrics: concept
attribution accuracy reaches 4.7, explanation readability
reaches 4.5, significantly higher than the baseline models;
concept fidelity is only 3.1%, meaning the difference in
classification performance between Top-K concept features
and full features is very small, proving that the extracted
domain concepts have strong representativeness; the
representation-concept correlation, measured by linear probe
accuracy, reaches 89.3%, validating the strong association
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between causal representations and domain concepts.
Compared to the baseline models, the proposed method's
explanation results have three major advantages: first, it has
stronger domain adaptability, with explanations based on the
visual communication-specific concept library more aligned
with designers' cognition; second, it has finer-grained
explanations, with a bidirectional explanation system that
enables full-link tracing from features to concepts, and from
decisions to prototypes; third, it has higher practical value,
with generative explanations and defect annotations directly
providing directions for design optimization. Traditional
interpretability methods such as Grad-CAM can only provide



post-hoc gradient heatmaps, lacking domain concept
associations, and the explanation results are difficult for
designers to understand; although CF-VAE achieves factor
decoupling, it does not build a structured concept system, so it
cannot provide concrete, actionable explanation results.

3.3 Ablation experiment

To verify the necessity and collaborative effect of each core
module, five ablation models were constructed for comparison,
with results shown in Table 3. The full model maintains
optimal performance, robustness, and interpretability, while
the drop in metrics for each ablation model intuitively reflects
the contribution of the corresponding module: after removing
the concept guidance module, the design intention
classification accuracy decreases by 5.8%, and concept fidelity
increases to 9.4%, indicating that concept-guided multimodal
fusion effectively enhances feature discrimination and concept
representativeness, avoiding blind fusion; after removing the
causal intervention module, the performance drop rate under
style perturbation increases to 11.3%, and the counterfactual
effectiveness score drops to 3.1, proving that causal
intervention is the core mechanism for ensuring robustness
and causality; after removing the generative explanation
module, explanation readability drops by 1.2 points, and
concept attribution accuracy drops by 0.8 points, indicating
that the synergy of generative explanations and retrospective

attribution significantly improves explanation effectiveness;
after removing the perceptual feature calibration module, the
average performance of all tasks drops by 4.2%, validating the
foundational role of cross-modal semantic alignment for
multimodal fusion; after removing the domain knowledge
injection module, the concept attribution accuracy drops by
1.1 points, and the representation-concept -correlation
decreases to 75.6%, highlighting the key value of the domain-
specific concept library in enhancing domain adaptability in
explanations.

The synergy analysis shows that the core advantage of the
proposed framework comes from the organic integration of
each module: perceptual feature calibration provides high-
quality, semantically aligned multimodal input for subsequent
fusion; domain knowledge injection builds a dedicated
concept system, providing directional guidance for fusion and
explanation; concept-guided fusion achieves precise
interaction between multimodal features, generating fusion
features rich in domain semantics; causal intervention
achieves factor decoupling, ensuring representation robustness
and causality; the bidirectional explanation system, based on
structured concepts and decoupled representations, generates
high-quality explanation results. Each module progresses step-
by-step, supporting each other, forming a closed-loop logic of
"input preprocessing - fusion guidance - causal constraint -
explanation output,”" which is indispensable.

Table 3. Ablation experiment results

Design Intention Style Perturbation Counterfactual Concept Concept
Model Configuration Classification Accuracy Performance Drop Rate Effectiveness Score Attribution Fidelity (%)
(%) (%) (Score) Accuracy (Score)
Full Model (Proposed Method) 89.7 4.2 4.6 4.7 3.1
Without Concept Guidance 83.9 8.5 4.0 4.1 9.4
Without Causal Intervention 85.3 11.3 3.1 4.5 4.2
Without Generative 88.9 45 44 3.9 35
Explanation
Without Per.cept.ual Feature 85.5 6.8 43 46 57
Calibration
Without Domain Knowledge
Injection (Generic Concept 86.2 5.1 4.2 3.6 6.8
Library)
3.4 Hyperparameter sensitivity and cross-dataset the accuracy drops to 85.8% because s is the core constraint

generalization analysis

Figure 6 presents the impact of core hyperparameters on the
model's overall accuracy, clearly indicating the optimal range
and effect mechanism of each parameter. In Figure 6(a), as the
number of concepts K increases from 20 to 60, the model's
overall accuracy steadily increases from 82.3% to 89.7%, and
only shows slight fluctuations when K increases to 80. The
core reason for this trend is that when K is too small, the
concept prototype library cannot cover the core concepts of
visual communication, making it difficult to form effective
directional guidance for multimodal fusion. When K=60, the
library’s concepts have fully encapsulated the key semantics
of the domain, and increasing K further introduces redundant
concepts that cannot improve feature discriminability.
Therefore, the optimal range for X is determined to be 50-70.
In Figure 6(b), when the loss weight combination
(41,42,43)=(0.3,0.2,0.5), the model's overall accuracy reaches
89.7%. Deviating from this combination results in
performance decline. For example, when 43 is decreased to 0.3,
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for causal factor decoupling, and insufficient weight weakens
the effect of counterfactual training. When /, is reduced to 0.1,
the accuracy drops to 87.5%, due to A, constraining the
semantic alignment of fused features with domain concepts,
and a too-low weight decreases the effectiveness of concept
guidance. This result verifies that balancing the weights of
each loss function is key to coordinating concept guidance,
causal decoupling, and task performance. In Figure 6(c), when
the initial learning rate ranges from 107> to 1073, the model
accuracy follows an initial increase and then a decrease trend:
it reaches the optimal value of 89.7% at 107, drops to 83.6%
at 1075, and falls to 82.1% at 1073. This indicates that an initial
learning rate of 10~ balances convergence speed and training
stability.

Table 4 presents the performance comparison of various
models on the cross-dataset test set of public welfare posters.
The proposed method still maintains optimal performance,
with the design intention classification accuracy reaching
83.5%, an improvement of 4.8% over the second-best baseline
CF-VAE. The macro F1 value reaches 82.7%, significantly



higher than other baseline models. The defect detection F1 accuracy of the proposed method only drops by 6.2% on the
value reaches 80.6%, the attractiveness score prediction MAE cross-dataset test, while CF-VAE drops by 9.5%, Cross-
is 0.39, and the similar design retrieval MAP value reaches Attention Fusion drops by 13.8%, and DesignNet drops by
81.2%. Compared to the performance on the training set, the 15.2%, demonstrating stronger generalization capability.
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Figure 6. Sensitivity analysis of core hyperparameters: (a) The effect of number of concepts K on model overall accuracy; (b)
The effect of loss weights 4,-43 on model overall accuracy; (c) The effect of initial learning rate on model overall accuracy
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Table 4. Cross-dataset generalization performance comparison (Public welfare poster dataset)

Design Intention

Attractiveness Score Similar Design

Classification Defect Detection F1 Prediction Retrieval
Model Score MAP
Accuracy (%) Macro F1 (%) MAE RMSE %) NDCG@10 (%)
CNN+BERT Concatenation 68.3 66.7 67.5 0.69 0.83 65.2 67.8
Cross-Attention Fusion 72.4 71.1 70.8 0.63 0.76 70.3 72.5
DesignNet 71.8 70.5 69.9 0.65 0.78 68.9 71.3
VCD-Net 73.6 72.3 72.1 0.61 0.73 71.8 73.9
Grad-CAM Enhanced 74.9 73.5 73.4 0.58 0.70 732 75.6
Fusion

CF-VAE 78.7 77.9 76.5 0.52 0.64 76.4 78.2
Handcrafted Features SVM 67.5 65.9 66.8 0.73 0.87 64.5 66.9
Proposed Method 83.5 82.7 80.6 0.39 0.51 81.2 83.1

The generalization advantage stems from two core factors:
first, the causal interpretable representation isolates task-
unrelated style factors and retains core causal information, and
causal information has universality across visual
communication images in different styles/domains. Second,
the core concepts covered by the visual communication-
specific concept prototype library have domain universality,
and their transferability ensures the model’s adaptability in
unfamiliar domains. This result verifies the practical value of
the proposed method, showing that it can be effectively
applied to visual communication image analysis tasks in
different scenarios, overcoming the traditional models'
dependence on specific datasets.

4. DISCUSSION

The core research findings in this paper confirm the
effectiveness of the ECPCF and the CERL paradigm,
achieving a key shift in visual communication image
representation learning from associative learning to causal
understanding. The experimental results show that this
paradigm, through the synergistic effect of structured domain
knowledge injection and causal reasoning, significantly
improves the model's performance, robustness, and
explainability: the domain knowledge-based proprietary
concept prototype library provides directional guidance for
multimodal fusion, avoiding the blind fusion of traditional
methods; the causal intervention mechanism accurately
decouples causal factors from style factors, enhancing the
representation's stability against style changes; the organic
synergy of the two resolves the industry challenge of balancing
high performance with high explainability. Meanwhile, the
results generated by the bidirectional explainable system align
with the visual communication domain's cognition, providing
quantitative concept-decision association evidence for
academic research and tangible guidance for design practice
optimization, highlighting the practical value of technology
implementation.

In contrast to existing research, the approach in this paper is
significantly innovative in terms of both the technical path and
the paradigm. Regarding the fusion guidance mechanism,
unlike the indiscriminate interaction of general cross-modal
fusion, this method achieves precise fusion via domain
concepts as intermediaries; in terms of robustness
enhancement strategy, it relies on strict constraints from SCM
rather than empirical data augmentation, theoretically
ensuring stability; in terms of explainability design, it
constructs a bidirectional full-link system, breaking through
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the limitations of traditional post-hoc explanations; and in
terms of causal support, it ensures the causal validity of the
representation  through  counterfactual training and
intervention theory verification. In terms of the trade-off
between performance and explainability, the method in this
paper achieves classification accuracy close to human expert
levels, while the explainability metrics significantly
outperform existing models, solving the challenge of
balancing the two in existing methods. In terms of domain
adaptability and generalization, it is specifically designed for
the multimodal characteristics and design needs of visual
communication images, making it more targeted than general
methods; in the cross-dataset experiment, the performance
drop is significantly smaller than the baseline models,
verifying its excellent generalization ability.

The structured domain knowledge injection, causal
intervention, and bidirectional explainable fusion framework
refined in this paper has universal methodological value and
can provide insights for other image processing-related fields
such as medical image report interpretation, remote sensing
image interpretation, and robotic scene understanding. These
fields all involve multimodal semantic fusion, robustness
needs, and explainability demands, and the core logic of this
framework—domain knowledge-driven guidance, causal
constraints ensuring stability, and full-link explanations
enhancing trustworthiness—can effectively transfer to these
scenarios, promoting the common development of multimodal
perception and explainability analysis. Meanwhile, the CERL
paradigm provides new ideas for explainable multimodal
learning research in the image processing field, enriching the
technical system of causal learning in visual tasks. However,
there are still limitations in this research: in small sample
scenarios, concept prototype initialization can be biased due to
insufficient annotated samples, leading to a decrease in model
accuracy. For example, in a niche public welfare design
classification task, performance drops by 12% when the
sample size is less than 500; the current method is only suitable
for static images and struggles to handle the temporal
multimodal semantics of dynamic visual communication
content like short video ads; concept set selection depends on
expert consensus, which can have subjective differences. For
example, different definitions of "layout balance" might affect
the model's generalization effect.

To address these limitations, future research could proceed
in four directions: First, introduce a meta-learning mechanism
to optimize the concept prototype initialization and dynamic
update in small sample scenarios, exploring few-shot concept
learning methods to reduce data dependency; second, expand
the temporal multimodal semantic fusion framework by



introducing temporal causal intervention mechanisms to adapt
to the temporal feature association analysis of dynamic visual
communication images; third, design an unsupervised/weakly
supervised concept discovery module to automate the
generation and updating of concept sets, reducing reliance on
expert knowledge and improving the objectivity of the concept
system; fourth, build an "analysis-optimization-generation"
closed-loop system, combining diffusion models and other
generative technologies, to intelligently optimize and
automatically generate visual communication images based on
explainability analysis results, further expanding the
application boundaries of the research. These directions not
only extend the core research logic of this paper but also
provide feasible pathways for the in-depth development of
visual communication image analysis and intelligent design
fields.

5. CONCLUSION

This paper addresses the issues of fusion blindness,
insufficient robustness, and lack of explainability in
multimodal semantic fusion representation learning for visual
communication images. It proposes an ECPCF and a CERL
paradigm, constructing a complete technical system that
covers five core modules. The multimodal semantic feature
preprocessing and alignment module achieves cross-modal
semantic calibration, providing high-quality input for fusion;
the domain-specific concept prototype memory library
construction module structurally injects domain knowledge,
laying the foundation for directional guidance; the concept-
guided multimodal semantic fusion module uses concepts as
intermediaries to achieve precise feature interaction; the causal
intervention and representation learning module based on the
SCM decouples causal factors from style factors, ensuring
representation robustness and causality; the task prediction
and bidirectional explainability analysis module achieves
precise task prediction and full-link explainable output. These
modules build upon each other, working in synergy to form a
closed-loop technical logic.

Experimental validation fully proves the superiority of the
proposed framework and paradigm. On the PosterNet, UI20K,
and self-built datasets, the method in this paper significantly
outperforms existing mainstream methods in core tasks such
as design intention classification, defect detection,
attractiveness score prediction, and similar design retrieval,
with classification accuracy approaching human expert
cognition levels. Style disturbance experiments and
counterfactual verification show that the model has stronger
robustness and causal validity. The explainability metrics
quantification and visualization results verify the domain
adaptability and practical value of the bidirectional
explainability ~ system. Cross-dataset ~ generalization
experiments further demonstrate that the method in this paper
can effectively adapt to visual communication image analysis
tasks of different styles and domains, breaking through the
dependency limitations of traditional models on specific
datasets.

The core theoretical contribution of this paper is the
establishment of the CERL paradigm, achieving a key
paradigm shift from associative learning to causal
understanding in visual communication image representation
learning. The structured domain knowledge injection, causal
intervention, and bidirectional explainable fusion framework
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not only provides a new technical solution for multimodal
semantic fusion tasks in visual communication images but also
offers domain-adapted solutions and universal methodologies
for the common pain points of explainable multimodal
learning in image processing. This paradigm breaks through
the limitations of traditional methods that rely on statistical
associations, establishing a collaborative mechanism between
domain knowledge and causal reasoning at the theoretical
level, enriching the technical system of causal learning in
visual tasks, and offering new insights for related field
research.

The method in this paper has significant application value
and broad domain impact. In the field of visual communication
design, the precise analysis tools and explainability guidance
provided can effectively support concept-decision association
analysis in academic research and design optimization in
practical scenarios, promoting the intelligent transformation of
the design field. Additionally, the refined universal
methodology can be transferred to other image processing-
related fields such as medical image interpretation, remote
sensing image interpretation, and robotic scene understanding,
providing important insights for multimodal perception and
explainability analysis in these fields. This further expands the
application boundaries of causal explainable learning,
promoting the collaborative development of cross-domain
multimodal intelligent analysis technologies.
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