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Visual communication images play a central role in commercial advertising and digital 

interaction. Multimodal semantic feature fusion is key to enhancing their representation 

learning performance. However, traditional associative learning methods struggle to support 

the deep needs of causal understanding and interpretability in design fields. Existing 

multimodal fusion solutions often suffer from issues such as blind fusion, inadequate 

representation robustness, and lack of interpretability. Moreover, they have not achieved 

seamless integration of structured domain knowledge injection, causal reasoning, and 

generative explanation, making the transition from associative learning to causal 

understanding difficult. To address these challenges, this paper proposes an Explainable 

Causal Perception Computing Framework (ECPCF), which establishes a Causal Explainable 

Representation Learning (CERL) paradigm. The framework builds a domain-specific 

conceptual prototype memory bank by structurally injecting visual communication 

knowledge and designs a causal intervention mechanism based on a structural causal model 

(SCM) to accurately decouple task-related causal factors from irrelevant style factors. It then 

integrates generative explanations and retrospective attribution to form a full-link 

interpretable system. Experimental results show that the proposed method outperforms 

baseline models in multiple tasks, such as design intention classification and defect 

detection, on datasets like PosterNet, UI20K, and our custom dataset, achieving optimal 

interpretability metrics. Ablation studies validate the necessity of each core module, and 

cross-dataset testing demonstrates strong generalization ability, with a performance drop of 

only 6.2%. The study demonstrates that ECPCF successfully transitions from associative 

learning to causal understanding, offering a high-performance, robust, and interpretable 

solution for multimodal semantic fusion in visual communication image representation 

learning. This research provides significant insights into the field of interpretable 

multimodal learning in image processing. 

Keywords: 
visual communication images, multimodal 

semantic fusion, CERL, SCM, conceptual 

prototype learning, generative explanations 

1. INTRODUCTION

Visual communication images are widely applied in key 

fields such as commercial promotion, digital interaction, and 

public communication. They possess core attributes of both 

information transmission and aesthetic perception, and their 

automated analysis and optimization are of great significance 

for improving communication efficiency and optimizing user 

experience [1-3]. The deep involvement of image processing 

technologies provides new technical paths for this field [4, 5], 

and related research has become a hot direction at the 

intersection of computer vision and design. However, the 

information carrier of visual communication images exhibits 

significant multimodal characteristics, encompassing visual 

images, embedded text, design metadata, and other diverse 

information [6, 7]. Single-modal features are insufficient to 

fully capture their core value and design intentions. Thus, 

multimodal semantic fusion [8, 9] has become a key path for 

improving representation learning performance. In recent 

years, cross-modal alignment methods based on Transformer 

have been validated as effective in multiple visual tasks, but 

inherent flaws still exist in visual communication image 

analysis. 

More importantly, the demands in the design field have 

moved beyond simply accurate predictions, toward a deeper 

understanding of the causal relationships between design 

features and communication effects [10]. This understanding 

forms the basis for supporting design optimization, defect 

localization, and other practical needs. However, traditional 

associative learning methods can only capture statistical 

associations between features and labels and cannot remove 

confounding biases from the data, making them inadequate to 

meet the core demands of causal understanding. 

Although much research has accumulated in the fields of 

multimodal fusion and explainable learning, existing methods 

still face three core limitations. First, multimodal fusion lacks 

guidance. Existing cross-modal fusion methods, such as 

attention mechanisms and modality concatenation strategies, 

lack structured guidance from visual communication domain 

knowledge. This can lead to ineffective interactions between 
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irrelevant features, resulting in insufficient discriminability 

and relevance of the fused features [11-13]. Second, the lack 

of robustness in representations and causality. Current 

methods do not fully consider style biases in the data, making 

model representations easily interfered with by surface style 

changes, and they only learn associative relationships rather 

than causal logic, limiting their generalization ability [14-16]. 

Third, insufficient explainability and domain adaptability. 

Existing explainability methods, such as gradient-weighted 

visualizations and local interpretable models, are mostly post 

hoc attributions with coarse granularity, disconnected from the 

concepts in the visual communication domain, making them 

difficult for designers to understand and apply [17, 18]. In 

summary, existing research has not constructed a seamless 

integration framework for structured domain knowledge 

injection, causal reasoning, and generative explanation, and 

has not achieved the paradigm shift from associative learning 

to causal understanding. This key gap severely limits the deep 

application of visual communication image analysis 

technologies. 

The goal of this study is to construct a CERL framework 

based on structured domain knowledge injection, achieving 

efficient fusion and explainability analysis of multimodal 

semantic features in visual communication images, while 

balancing model performance, representation robustness, and 

causal interpretability. Around this goal, the core academic 

contributions of this paper are as follows: 

(1) Propose an ECPCF, establishing the CERL paradigm, 

and for the first time realizing the seamless integration of 

structured domain knowledge injection, counterfactual 

reasoning, and generative explanation, promoting the 

paradigm shift in visual communication image analysis from 

associative learning to causal understanding. 

(2) Design a causal intervention mechanism based on a 

SCM, formally defining intervention variables and causal 

factor conservation objectives, realizing the precise 

decoupling of task-related causal factors from irrelevant style 

factors, and providing a strict theoretical guarantee for 

representation robustness. 

(3) Build a domain-specific conceptual prototype memory 

bank and bidirectional interpretability system for visual 

communication, combining concept activation heatmaps and 

generative examples to achieve full-link quantitative 

traceability of perception-concept-decision, significantly 

improving the domain adaptability and practical value of the 

explanation results. 

(4) Verify the effectiveness of the framework through 

multidimensional experiments, including performance 

comparison with existing optimal models, human expert 

evaluation, cross-dataset generalization testing, and 

explainability quantification, providing a new paradigm and 

methodological reference for research on interpretable 

multimodal fusion in image processing. 

The structure of the subsequent chapters is as follows: 

Chapter 2 provides a detailed explanation of the overall design 

of the proposed framework and the technical details of each 

core module, including the construction of the conceptual 

prototype memory bank, design of the causal intervention 

mechanism, and implementation of the interpretability system. 

Chapter 3 verifies the effectiveness of the method through 

multiple comparison experiments, covering performance 

evaluation, robustness testing, explainability verification, and 

cross-dataset generalization analysis. Chapter 4 discusses the 

research findings, typical failure cases, universal 

methodologies, and future research directions. Chapter 5 

summarizes the core conclusions and academic contributions 

of the paper. 
 

 

2. METHODS 

 

2.1 Problem formalization 
 

The multimodal semantic features of visual communication 

images stem from three core information carriers. First, the 

formal definitions of each modality’s features are provided. 

Let the visual semantic features of the input visual 

communication image be V∈RH×W×C, where H and W are the 

height and width of the image, and 𝐶 is the number of visual 

feature channels, encoded by convolutional neural networks or 

visual Transformers, encompassing low-level textures, color 

distribution, and high-level semantic information; the text 

semantic features T∈RL×D correspond to the embedded textual 

content in the image, where L is the text sequence length, and 

D is the text encoding dimension, generated by pre-trained 

language models, merging textual semantics with visual layout 

attributes; the design metadata semantic features M∈RK are 

low-dimensional structured vectors, where K is the metadata 

dimension, containing design attributes such as layout type, 

color tone, etc. The three types of modality features are 

integrated into a multimodal input X={V,T,M}, and subsequent 

fusion and representation learning are based on this 

multimodal input. 

The core goal of CERL is to learn a structured 

representation R from the multimodal input X, and decouple it 

into task-related causal factors 𝑅𝑐 and task-independent style 

factors 𝑅𝑠 , i.e., 𝑅 = (𝑅𝑐 , 𝑅𝑠) . This goal can be formalized 

through two key constraints: First, the causal factors must 

retain the core information of task decisions, satisfying 𝑃(𝑌 ∣
𝑅𝑐 , 𝑅𝑠) = 𝑃(𝑌 ∣ 𝑅𝑐), which indicates that the task label 𝑌 is 

determined only by the causal factor; second, the causal 

factors must remain invariant under style interventions, i.e., 

𝑃(𝑅𝑐 ∣ do(𝑅𝑠 = 𝑟𝑠
′)) = 𝑃(𝑅𝑐), where do( ) is an intervention 

operation and 𝑟𝑠
′  is any style factor value. This constraint 

ensures the robustness of the representation to style changes. 

At the same time, the model must output concept attribution 

weights α∈RN and generative explanation examples S, where 

the former quantifies the contribution of each concept to task 

decisions, and the latter visually presents the core concepts, 

jointly supporting the interpretability analysis. 

To rigorously characterize the above causal relationships, a 

SCM M=⟨U,V,F,P(U)⟩ is introduced as the theoretical basis. 

Here, 𝑈  is the set of exogenous variables, representing 

unobservable noise and confounding factors; 𝑉 =
{𝑋, 𝑅𝑐 , 𝑅𝑠, 𝑌}  is the set of endogenous variables, including 

multimodal input, the two types of factors, and task labels; 

𝐹 = {𝑓𝑋, 𝑓𝑅𝑐 , 𝑓𝑅𝑠 , 𝑓𝑌} is the set of causal mechanisms, which 

defines the mappings 𝑈 → 𝑋, 𝑋 → 𝑅𝑐 , 𝑋 → 𝑅𝑠, and 𝑅𝑐 → 𝑌; 

𝑃(𝑈)  is the prior probability distribution of exogenous 

variables. The causal flow between variables satisfies: the 

multimodal input 𝑋 is a common cause of 𝑅𝑐 and 𝑅𝑠, while 𝑅𝑠 
has no direct causal link with 𝑌. This structure provides a strict 

theoretical boundary for subsequent causal intervention and 

factor decoupling. 
 

2.2 CERL framework and CERL paradigm 
 

To address the issues of blind fusion, inadequate robustness, 
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and lack of interpretability in multimodal semantic fusion of 

visual communication images, this paper proposes the CERL 

paradigm. The core idea of this paradigm is to guide structured 

domain knowledge injection, constrain the process with causal 

reasoning, and aim for interpretability, systematically 

realizing the paradigm shift from traditional associative 

learning to causal understanding. This paradigm breaks 

through the limitations of existing methods, which only rely 

on data statistical associations, by transforming visual 

communication domain expertise into computable conceptual 

prototypes, providing directed guidance for multimodal fusion 

and avoiding irrelevant feature interactions. At the same time, 

it constrains the representation learning process with causal 

reasoning to ensure that the model captures task-core causal 

logic rather than superficial style associations. Finally, 

through a full-link interpretable system, it transforms the 

learning results into domain-understandable knowledge, 

achieving a virtuous cycle of "learning - explanation - 

validation," aligning with the deep needs of the design field 

for causal understanding and practical guidance. 

 

 
 

Figure 1. The ECPCF 

 

The ECPCF is the specific implementation carrier of the 

CERL paradigm. It adopts a hierarchical modular design, 

clearly distinguishing the information transmission and logical 

control paths by using solid lines to mark the data flow and 

dashed lines to mark the control flow. The core innovative 

modules are highlighted with differentiated colors to 

emphasize design priorities. The framework follows a five-

phase closed-loop logic, with each phase progressing 

incrementally and providing mutual feedback: the Multimodal 

Semantic Feature Preprocessing and Alignment phase 

standardizes and cross-modally calibrates the three types of 

features (visual, textual, and design metadata), providing a 

high-quality feature foundation for subsequent fusion; the 

Construction of Domain-Specific Concept Prototype Memory 

Bank phase structurally injects domain knowledge into the 

model, generating a concept prototype set with domain 

discriminative power to provide directional guidance for the 

fusion process; the concept-guided multimodal semantic 

fusion phase uses concept prototypes as intermediaries to 

achieve precise interaction and structured fusion of 

multimodal features, generating fusion features rich in domain 

semantics; the SCM-based Causal Intervention and 

Representation Learning phase decouples the fusion features 

into causal and style factors through factor decomposition and 

intervention operations, ensuring the robustness and causal 

validity of the representations; the Task Prediction and 

Bidirectional Explainability Analysis phase completes 

downstream task prediction based on causal factors, while also 

outputting interpretable results through retrospective 

attribution and generative explanation. The explanation 

information can be fed back to the concept prototype memory 

bank for optimization, forming a complete closed loop. This 

framework achieves the organic unity of multimodal semantic 

fusion and CERL through the collaborative function of all 

modules, fully embodying the guiding-constraint-target core 

logic of the CERL paradigm. Figure 1 intuitively demonstrates 

the ECPCF. 
 

2.3 Multimodal semantic feature preprocessing and 

alignment 

 

The core of multimodal semantic feature preprocessing is to 

precisely extract the core information of each modality and 

complete the preliminary standardization to provide high-

quality input for subsequent fusion. The visual semantic 

features adopt a fusion strategy of low-level and high-level 

features: low-level features include the HSV histogram, LBP 

texture descriptor, and spatial layout matrix. The HSV 

histogram quantizes the image color space into 16×16×16 

intervals, generating a 4096-dimensional vector. The LBP 

texture descriptor uses a 3 × 3 neighborhood calculation to 

generate a 256-dimensional vector. The spatial layout matrix 

divides the image into 16 × 16 grids and generates a 256-

dimensional vector by calculating the average pixel values 

within each grid. The three features are concatenated to obtain 

the low-level visual feature Vlow∈R4608; high-level semantic 

features are generated by encoding with a pre-trained Swin 

Transformer. The input image is normalized to 224 × 224 and 

passed through the Swin-Tiny model to output a 768-

dimensional feature vector Vhigh∈R768. The final visual 

semantic feature V is obtained by concatenating Vlow and Vhigh 

after layer normalization (LN): V=LN([Vlow;Vhigh])∈R5376. The 

text semantic features adopt joint encoding of semantics and 

visual attributes: the text content is encoded by the BERT-base 

model to obtain a 768-dimensional semantic vector Tsem∈R768, 

and the text’s visual attributes are one-hot encoded and 

normalized to generate a 64-dimensional vector Tvis∈R64. The 

final text feature T is obtained through attention-weighted 
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fusion: T=α·Tsem+(1−α)·Tvis, where α∈[0,1] is the attention 

weight learned adaptively based on feature correlation. The 

design metadata semantic features are encoded structurally: 

the objective design labels are one-hot encoded to generate a 

128-dimensional vector, and the subjective user perception 

feedback is generated by statistical heatmap peak positions 

and score distributions to form a 32-dimensional feature. The 

two are concatenated and standardized to obtain M∈R160. 

To solve the semantic gap caused by the heterogeneity of 

multimodal features, a cross-modal semantic calibration 

alignment strategy based on contrastive learning is used. The 

core idea is to map features from different modalities into a 

unified semantic space through concept consistency 

contrastive loss. Let the multimodal feature set of the i-th 

sample in a batch be {Vi,Ti,Mi}, where the positive sample pair 

corresponds to different modality features of the same image, 

and the negative sample pair corresponds to either same-

modality or cross-modality features from different images. 

The concept consistency contrastive loss Lcc is defined as: 

 

Lcc=-
1

3N
∑ ∑

Fi∈{Vi,Ti,Mi},F
i
+∈{Vi,Ti,Mi},Fi≠Fi

+

N

i=1

 

log
exp ( sim(Fi,Fi

+)/τ)

∑ exp (Fj∈Ni
sim(Fi,Fj)/τ)

 

(1) 

 

where, N is the batch size, Fi
+ is the positive sample feature, Ni 

is the set of negative sample features, sim(,) is the cosine 

similarity function, and τ is the temperature parameter. The 

optimization objective of this loss is to minimize the distance 

between different modality features of the same image while 

maximizing the distance between features from different 

images. Additionally, the introduction of domain concept prior 

constraints in the similarity calculation ensures that the aligned 

features fit the semantic logic of the visual communication 

domain, laying the foundation for subsequent concept-guided 

fusion. Figure 2 shows the process of multimodal semantic 

feature preprocessing and concept prototype memory bank 

construction. 

 

 
 

Figure 2. Multimodal semantic feature preprocessing and concept prototype memory bank construction process 

 

2.4 Visual communication domain-specific concept 

prototype memory bank construction 

 

The core of constructing the visual communication domain-

specific concept prototype memory bank is to build a 

structured concept system that fits domain needs and generate 

learnable concept prototypes. The concept set definition 

follows both the consensus of domain experts and the practical 

requirements of design, covering three core categories: 

information transmission, aesthetic perception, and user 

experience. Information transmission concepts focus on the 

core information delivery function of design, including 

information hierarchy clarity, theme prominence, and text 

readability; aesthetic perception concepts rely on visual design 

aesthetics principles, covering color harmony, layout balance, 

and style consistency; user experience concepts relate to 

audience perception feedback, including visual appeal, 

information retrieval efficiency, and emotional resonance. The 

concept screening process is completed collaboratively by 

three visual communication domain experts and two computer 

vision researchers, with multiple rounds of discussion to 

eliminate ambiguous concepts. Ultimately, 60 core concepts 

form the concept set, ensuring the domain adaptability, 

discriminative power, and operability of the concepts. 

Concept prototype initialization is completed based on an 

expert-labeled sample set, using a strategy combining 

clustering and feature averaging. First, an expert-labeled 

sample set is constructed. For each concept ck (k = 1,2,...,K, K 
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= 60), the expert selects 100 representative visual 

communication image samples to form the labeled set Sck; for 

each sample, the aligned multimodal semantic features are 

extracted. The K-means clustering algorithm is used to cluster 

the feature set corresponding to Sck , and the initial concept 

prototype pk is obtained by averaging the features. The 

initialization formula for the concept prototype vector set 

P=[p1,p2,...,pK]∈RD×K is: 

 

p
k
=

1

|Sck |
∑ Feat

x∈Sck

(x) (2) 

 

where, Feat(x) denotes the multimodal semantic features of 

sample x, and |Sck | is the size of the concept ck labeled sample 

set. This initialization method ensures that the prototypes can 

accurately capture the core feature distribution of similar 

concepts. 

To make the concept prototypes adaptive to data 

distribution and dynamically optimized, a prototype-sample 

feature matching loss is designed to enable dynamic updating 

of the memory bank. During training, for each sample's 

multimodal feature fi in the batch, the cosine similarity 

sim(fi,pk) between the sample and each concept prototype pk is 

calculated. The top-3 concept prototypes most matching the 

sample are selected to form the matching prototype set. The 

prototype-sample feature matching loss Lpm is defined as: 

 

Lpm=
1

N
∑ (

N

i=1

1-max
k∈Ki

sim (f
i
,p
k
)) (3) 

 

where, N is the batch size, and Ki is the matching prototype set 

for sample i. This loss minimizes the distance between the 

sample features and matching prototypes, and during training, 

each iteration updates the concept prototypes based on the 

current batch features: 

 

p
k
←η⋅p

k
+(1-η)⋅

1

|Bk|
∑ f

i

f
i
∈Bk

 (4) 

 

where, η∈(0,1) is the update weight, and Bk is the set of sample 

features in the batch that match prototype pk, ensuring that the 

prototypes dynamically adapt to the data distribution during 

training and improve the precision of concept-guided fusion. 

 

2.5 Concept-guided multimodal semantic fusion 

 

Concept-guided multimodal semantic fusion uses domain-

specific concept prototypes as intermediaries and achieves 

precise interaction of multimodal features through a cross-

attention mechanism. The core idea is to avoid ineffective 

fusion by relying on domain concepts, enhancing the semantic 

relevance of features to the domain. First, feature-concept 

prototype matching is performed. For the preprocessed and 

aligned visual, textual, and design metadata features V∈RD, 

T∈RD, M∈RD, the cosine similarity with each prototype in the 

concept prototype set P∈RD×K is calculated, and the top-5 most 

similar concepts are selected to form the active concept set 

Pact=[p1
act,…,p

5
act]. The cosine similarity calculation formula is: 

 

sim(f,p
k
)=

f⋅p
k
⊥

||f||2⋅||p
k
||

2

 (5) 

where, f is any modality feature, and pk is the k-th concept 

prototype. This process ensures that only domain concepts 

related to the current sample's semantics are activated, 

providing directional guidance for subsequent fusion. 

The concept-guided cross-attention mechanism is 

constructed based on the active concept set to achieve cross-

modal feature interaction. The core idea is to calculate the 

attention weights between modalities through concept 

prototypes. First, the modality features are associated with the 

active concept prototypes, yielding modality-concept 

associated features Vrel=V·Pact, Trel=T·Pact, Mrel=M·Pact. Then, 

using modality-concept associated features as a bridge, the 

cross-modal attention weights between visual and text, visual 

and metadata, and text and metadata are calculated. Taking the 

visual-text attention weight calculation as an example: 

 

AV→T=softmax(
Vrel⋅Trel

⊤

√Dact

) (6) 

 

where, Dact=5 is the number of active concepts, and the 

attention weight AV→T quantifies the guidance weight of visual 

features on text features. Similarly, other modality attention 

weights AT→V, AV→M, etc., can be obtained. Finally, the fused 

feature F is obtained by concatenating the weighted features 

from each modality: 

 

F=LN([AT→VT+AM→VM+V,AV→TV+AM→TM+T]) (7) 

 

where, LN ensures stable feature distribution. This fusion 

method achieves precise semantic alignment and interaction of 

multimodal features through concept mediation. 

To ensure semantic consistency between the fused features 

and domain concepts, a concept consistency loss Lcon is 

defined to constrain the fusion process. The average cosine 

similarity between the fused feature F and the active concept 

set Pact is computed, and the loss function is defined as: 

 

Lcon=1-
1

5
∑ sim

5

k=1

(F,p
k
act) (8) 

 

The optimization objective of this loss is to maximize the 

semantic similarity between the fused features and the active 

concepts, forcing the fused features to encode domain-related 

information and enhance their structure and explainability. 

During training, the concept consistency loss is jointly 

optimized with the prototype-sample matching loss and task 

loss to ensure that the fused features meet both task 

requirements and domain concept constraints. Figure 3 

presents the complete process of concept-guided multimodal 

semantic fusion. 

 

2.6 Causal intervention and representation learning based 

on SCM 

 

Based on the structure causal model defined earlier, this 

section formalizes the dependencies between variables using 

causal graphs and constructs causal constraints based on 

intervention theory to provide strict theoretical support for 

representation learning. The causal graph clearly depicts the 

causal flow between exogenous variables, multimodal inputs, 

causal factors, style factors, and task labels: multimodal inputs 

directly drive the generation of causal and style factors, task 

labels are only determined by causal factors, and style factors 
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have no direct causal relation with task labels. Exogenous 

variables provide noise disturbances to the endogenous 

variables. Based on this structure, the intervention operation 

do(Rs=rₛ') is defined, meaning fixing the causal factor Rc while 

replacing the style factor Rs with any value rₛ'. Combining the 

stability assumption of the causal mechanism in SCM, the core 

theoretical guarantee under intervention is derived: 

 

P(Y|do(Rs=r's),Rc)=P(Y|Rc) (9) 

 

 
 

Figure 3. Concept-guided multimodal semantic fusion process 

 

The derivation process is as follows: since the causal 

mechanism of Y is only determined by Rc, the intervention only 

changes the value of R without disrupting the causal 

mechanism from Rc to Y, so the conditional probability 

remains unchanged. This conclusion provides a theoretical 

basis for representation robustness, meaning that as long as the 

learned representation can accurately decouple Rc and Rs, task 

predictions will remain stable during style changes. 

Variational inference is used to perform factorization of the 

fused feature F, decoupling it into task-relevant causal factors 

Rc∈ℝDc and task-independent style factors Rs∈ℝDs, where 

Dc+Ds=D and D is the dimension of the fused features. A 

variational encoder qφ(Rc,Rs|F) is introduced to approximate 

the posterior distribution, aiming to approach the true posterior 

P(Rc,Rs|F). The prior distribution is defined as 

p(Rc,Rs)=p(Rc)p(Rs), assuming that Rc and Rs are independent. 

Based on the variational inference principle, the evidence 

lower bound (ELBO) is maximized to optimize the encoder 

parameters. The ELBO objective function is derived as: 

 
log P (F)≥Eqϕ(Rc,Rs|F)[ log P (F|Rc,Rs)] 

-KL(q
ϕ
(Rc,Rs|F)∥p(Rc)p(Rs)) 

(10) 

 

where, the first term is the reconstruction loss, which 

constrains the decoder to accurately reconstruct the fused 

features from the decoupled factors. The second term is the KL 

divergence, which ensures that the approximate posterior 

approximates the prior distribution and ensures the 

effectiveness of factor decoupling. A decoder pθ(F|Rc,Rs) is 

introduced to implement feature reconstruction. The final 

factorization is completed by jointly optimizing the ELBO, 

resulting in decoupled representations (Rc,Rs). 

To strengthen the factor decoupling effect and verify the 

validity of the intervention theory, a counterfactual training 

strategy is designed, integrating the do operation into the 

training process. Counterfactual samples are generated based 

on the principle "causal factors remain unchanged, style 

factors are replaced": for the decoupled factors (Rc
i ,Rs

j ) of the 

original sample, a style factor Rs
j  from another sample in the 

batch is randomly selected as a replacement, generating a 

counterfactual factor pair (Rc
i ,Rs

j ), and then the counterfactual 

fused feature Fcf=pθ(F|Rc
i ,Rs

j ) is generated through the decoder. 

The generation process must satisfy the constraint: the cosine 

similarity between the counterfactual factor pair Rc
i  and the 

original Rc
i  should not be lower than 0.95, ensuring that the 

causal factor is unaffected. To constrain the consistency of 

model predictions, a counterfactual consistency loss is defined: 
 

Lcf=
1

N
∑ ‖

N

i=1

Pred(Fi)-Pred(Fcf,i)‖2
2
 (11) 
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where, Pred( ) represents the model's task prediction output, 

and N is the batch size. This loss minimizes the prediction 

difference between the original and counterfactual samples, 

forcing the model to rely solely on causal factors for decision-

making, further strengthening the task relevance of Rc and the 

irrelevance of Rs, ultimately improving representation 

robustness and causal validity. During training, this loss is 

optimized together with the variational inference ELBO and 

concept consistency loss, forming a complete causal constraint 

system. Figure 4 shows the principles of causal intervention 

and representation learning based on SCM. 

 

 
 

Figure 4. Causal intervention and representation learning based on SCM 

 

2.7 Task prediction and bidirectional interpretability 

analysis 

 

Task prediction is implemented through hierarchical 

decomposition of the causal purified representation, with the 

core idea of further decoupling the causal factor Rc into three 

sub-representations to adapt to different downstream task 

requirements: core communication intention representation 

Rcl∈R
Dcl , aesthetic perception representation Rc2∈R

D2 , and 

style-independent representation Rc3∈R
Dc3 , such that 

Dc1+Dc2+Dc3=Dc, where Rc1 encodes the core information 

delivery target of the design, Rc2 characterizes aesthetic-related 

features, and Rc3 retains general structural information 

unrelated to style. To avoid overfitting, lightweight task heads 

are designed for different tasks: for the design intention 

classification task, a two-layer fully connected layer is used to 

build the task head, with the prediction formula: 

 

Ŷcls=softmax(W2⋅ReLU(W1 ⋅ Rc1)+b2) (12) 

 

where, W1∈R
256×Dc1 , W2∈R

256×Dc2are learnable weights, C is 

the number of categories, and b2∈R
256  is the bias. For the 

defect detection task, a 3×3 convolutional layer and global 

average pooling are used to construct the task head, outputting 

the defect probability map: 

 

Ŷdet=sigmoid(Conv(Rc3)+bdet) (13) 

 

where, Conv( ) is a single-channel convolution operation that 

achieves pixel-level defect localization. 

The bidirectional concept attribution interpreter constructs 

a full-link explainable system through forward generation and 

backward tracing. The forward-generation path is based on a 

conditional diffusion model, with the model input being the 

activated concept prototype set Pact and random noise, and the 

output being visual examples fitting the concept semantics. 

The training strategy uses real sample-concept prototype 

pairing data, optimized with reconstruction loss and concept 

consistency loss, ensuring that the generated examples 

accurately match the target concepts. The backward-tracing 

path quantifies the decision contribution of each concept and 

semantic feature using a gradient-weighted method. The 

contribution calculation formula is defined as: 

 

αk=
(∇FPred(F)⋅F)⋅sim(F,p

k
act)

∑ sim5
k=1 (F,p

k
act)

 (14) 

 

where, ∇FPred(F) is the gradient of the prediction output with 

respect to the fused feature F, representing the sensitivity of 

the feature to the decision, and the similarity between the 

feature and concept prototype is used to weight the 

contribution. Based on this contribution, a cross-channel 

concept propagation graph is constructed, with nodes 

representing each modality feature and concept, and edges 

representing the contribution transmission coefficients, clearly 

showing the interaction paths between concepts and features. 

The interpretability report is designed in two versions: 

academic analysis and design practice, covering both 

theoretical analysis and application guidance. The academic 

analysis version includes a quantitative attribution matrix, 

gradient heatmaps, cross-channel propagation graphs, and 

statistical significance analysis results, presented in the form 

of charts, supporting the academic verification of the method's 

effectiveness. The design practice version includes a core 

concept matching list, defect localization annotations, 

generative optimized examples, and targeted improvement 

suggestions, presented through a visual comparison interface. 

Both versions support interactive viewing, allowing users to 

click on attribution matrix elements to jump to corresponding 

heatmaps and generated examples, enhancing the explorability 

of the explanation results. 
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2.8 Model training strategy 
 

The model training uses a multi-objective collaborative 

optimization strategy, combining the weighted losses of 

various tasks to construct a total loss function, ensuring the 

collaborative optimization of task performance, concept 

adaptability, and causal decoupling effects. The total loss 

function is defined as: 
 

Ltotal=λ1Lpm+λ2Lcon+λ3Lcf (15) 

 

The core role and weight settings of each loss term are as 

follows: the task loss Ltask is the core loss. For the design 

intention classification task, cross-entropy loss is used, and for 

the defect detection task, Focal loss is used to directly 

constrain the model's task prediction accuracy, with a weight 

of 1.0. The prototype-sample matching loss Lpm constrains the 

semantic alignment between sample features and concept 

prototypes, ensuring the effectiveness of concept guidance, 

with a medium gradient magnitude and a weight of 0.3. The 

concept consistency loss Lcon enhances the semantic relevance 

between fused features and domain concepts and collaborates 

with Lpm to support the concept-guided mechanism, with a 

weight of 0.2. The counterfactual consistency loss Lcf is a key 

constraint for causal decoupling, requiring balancing with the 

optimization priority of task loss. After experimental 

verification of its gradient sensitivity, its weight is set to 0.5. 

The weight parameters are determined through grid search 

with a search range of {0.1, 0.2, 0.3, 0.5, 1.0}, and the optimal 

combination is selected based on the performance of the 

validation set. 

The training process uses the AdamW optimizer for 

parameter updates. This optimizer effectively suppresses 

overfitting through weight decay mechanisms, with parameter 

settings: β₁=0.9, β₂=0.999, weight decay coefficient of 1e-4, 

and epsilon=1e-8. The learning rate schedule uses cosine 

annealing, with an initial learning rate set to 1e-4, balancing 

model convergence speed and stability. A higher learning rate 

in the initial stage accelerates parameter updates, while 

gradually decaying the learning rate in the later stage avoids 

gradient oscillations. To further improve the model's 

generalization ability, multiple regularization measures are 

introduced: Dropout layers with a dropout probability of 0.1 

are inserted into the multimodal fusion layer and task head; L2 

regularization is applied to the weights of all fully connected 

layers; data augmentation strategies such as random cropping, 

horizontal flipping, and color jittering are applied to the input 

images during training. The training batch size is set to 32, 

adapting to the memory capacity of a single NVIDIA A100 

GPU. The total training iterations are set to 200, and an early 

stopping strategy is employed. If the performance of the 

validation set does not improve for 20 consecutive rounds, 

training stops and the model parameters with the best 

performance are saved. During training, gradient clipping is 

applied with a gradient norm threshold of 1.0 to prevent 

gradient explosion. Each modality feature is standardized 

before being input into the model, ensuring consistent feature 

distribution and improving training stability. 
 

 

3. EXPERIMENT 
 

3.1 Experimental setup 
 

The experiment adopts a combination of public datasets, 

self-built datasets, and cross-dataset generalization test sets to 

ensure comprehensive data coverage and objective evaluation. 

The public datasets selected are the mainstream PosterNet and 

UI20K in the field of visual communication. PosterNet 

contains 50,000 commercial poster images, covering 10 core 

categories, with a multimodal annotation completeness rate of 

98%, including visual, text, and design style metadata. UI20K 

contains 20,000 mobile UI interface images, divided into 15 

functional categories, with annotated information such as 

widget positions and text attributes. The self-built dataset 

focuses on the visual communication needs in multiple scenes, 

constructed through three steps: collection, screening, and 

annotation, with a total of 30,000 valid samples. The dataset 

covers 6 core fields, with annotations including multimodal 

semantic features, design intention labels, and subjective 

perception ratings. The annotation consistency Kappa 

coefficient is 0.87, and after validation for diversity and 

domain coverage, it is considered to have good 

representativeness. The cross-dataset generalization test set 

selects 10,000 public service advertisement posters, which 

differ significantly in style from the training set, to verify the 

model's adaptability in unfamiliar domains. 

The baseline models select 8 representative methods within 

8 domains, categorized into five types for multidimensional 

fair comparison. Traditional multimodal fusion methods 

include CNN+BERT feature concatenation and Cross-

Attention Fusion, covering classic cross-modal fusion 

paradigms. The visual communication domain-specific 

methods include DesignNet and VCD-Net, matching the 

domain characteristics of the experimental tasks. 

Explainability/causal learning models include Grad-CAM 

enhanced fusion models and CF-VAE causal debiasing 

models to compare explainability and causal decoupling 

effects. Additional human expert comparison groups and an 

SVM classifier based on manually designed features are 

included, with the former as the subjective performance 

benchmark and the latter representing the performance upper 

limit of traditional design analysis methods. All baseline 

models use the official recommended parameters, some of 

which are fine-tuned according to the experimental datasets to 

ensure fairness in comparison. 

The evaluation metric system covers three core dimensions 

to comprehensively quantify model performance. 

Representation learning performance metrics are designed for 

different tasks: classification tasks use accuracy, macro F1 

score, and confusion matrix to balance the class imbalance 

issue; regression tasks use mean absolute error and root mean 

square error; retrieval tasks use mean average precision and 

NDCG@10. Robustness and causality metrics include 

performance degradation rate under style perturbations, cosine 

similarity between causal factors of original and perturbed 

samples, and counterfactual validity scores based on expert 

ratings. Explainability metrics are quantified through concept 

attribution accuracy, explanation readability scores, concept 

fidelity, and representation-concept relevance to ensure 

comprehensive and targeted evaluation. 

The experimental environment and hyperparameter settings 

follow the reproducibility principle. The hardware used 

includes an Intel Xeon Gold 6330 CPU, four NVIDIA A100 

GPUs (80GB memory each), and 512GB of RAM. The 

software is based on the PyTorch 1.12.1 framework and 

CUDA 11.6, running on an Ubuntu 20.04 LTS system. Key 

hyperparameters are optimized through grid search: batch size 

32, initial learning rate of 1e-4, using a cosine annealing 
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schedule with a total of 200 iterations and a 20-iteration early 

stopping threshold. The loss function weights are λ1=0.3, 

λ2=0.2, λ3=0.5, with a dropout probability of 0.1, weight decay 

coefficient of 1e-4, and gradient clipping threshold of 1.0. All 

experiments are independently repeated 3 times, with the 

average value taken to ensure the reliability and statistical 

significance of the results. 

 

3.2 Core experimental results and analysis 

 

3.2.1 Representation learning performance comparison 

Table 1 presents a comparison of the representation learning 

performance of the proposed method and various baseline 

models on the PosterNet, UI20K, and self-built datasets, 

covering four core tasks: design intention classification, defect 

detection, attractiveness score prediction, and similar design 

retrieval. The results show that the proposed method achieves 

optimal performance in all tasks and datasets. Specifically, the 

design intention classification task on the self-built dataset 

achieves an accuracy of 89.7%, which is 5.3% higher than the 

second-best baseline CF-VAE, and the macro F1 score reaches 

88.9%, 6.1% higher than Cross-Attention Fusion. For the 

defect detection task on UI20K, the F1 score reaches 87.3%, 

significantly outperforming DesignNet, which achieves 81.5%. 

The attractiveness score prediction task on PosterNet shows a 

MAE of 0.32 and an RMSE of 0.45, both lower than any of 

the baseline models. The similar design retrieval task achieves 

MAP and NDCG@10 values above 85% across all three 

datasets, demonstrating excellent representation 

discrimination ability. 

 

Table 1. Representation learning performance comparison table 

 

Model Dataset 

Design Intention 

Classification Defect Detection F1 

Score 

Attractiveness Score 

Prediction 

Similar Design 

Retrieval 

Accuracy 

(%) 

Macro F1 

(%) 
MAE RMSE 

MAP 

(%) 

NDCG@10 

(%) 

CNN+BERT 

Concatenation 

PosterNet 76.2 74.8 75.3 0.58 0.72 72.5 75.1 

UI20K 78.5 76.9 77.8 0.61 0.75 74.3 76.8 

Self-built 

Dataset 
77.1 75.6 76.5 0.55 0.69 73.8 76.2 

Cross-Attention Fusion 

PosterNet 80.3 79.2 79.6 0.51 0.65 78.6 80.2 

UI20K 82.1 80.8 81.2 0.53 0.67 80.1 81.9 

Self-built 

Dataset 
83.6 82.8 80.9 0.48 0.62 81.5 83.1 

DesignNet 

PosterNet 81.7 80.3 79.1 0.52 0.66 77.8 79.5 

UI20K 83.2 81.7 81.5 0.54 0.68 79.3 81.2 

Self-built 

Dataset 
82.5 81.1 80.2 0.50 0.63 80.2 82.3 

VCD-Net 

PosterNet 82.4 81.0 80.5 0.49 0.63 79.5 81.3 

UI20K 84.1 82.6 82.8 0.51 0.65 81.2 83.0 

Self-built 

Dataset 
84.5 83.2 82.1 0.46 0.59 82.6 84.3 

Grad-CAM Enhanced 

Fusion 

PosterNet 83.1 81.8 81.3 0.47 0.61 80.3 82.1 

UI20K 84.8 83.4 83.2 0.49 0.63 82.0 83.8 

Self-built 

Dataset 
85.2 83.9 82.7 0.44 0.57 83.1 84.9 

CF-VAE 

PosterNet 85.7 84.5 83.6 0.42 0.55 82.8 84.6 

UI20K 86.9 85.6 84.9 0.44 0.57 83.7 85.5 

Self-built 

Dataset 
86.4 85.1 84.2 0.40 0.53 84.3 85.8 

Handcrafted Features 

SVM 

PosterNet 75.8 74.2 74.9 0.62 0.76 71.8 74.3 

UI20K 77.3 75.7 76.5 0.64 0.78 73.2 75.9 

Self-built 

Dataset 
78.3 76.9 77.1 0.59 0.71 72.9 75.6 

Human Expert 

PosterNet 90.5 89.8 88.7 0.30 0.42 86.7 88.5 

UI20K 91.8 90.7 89.5 0.31 0.43 87.5 89.2 

Self-built 

Dataset 
91.2 90.3 89.1 0.29 0.40 87.2 88.9 

Proposed Method 

PosterNet 88.6 87.5 85.9 0.34 0.48 85.6 87.3 

UI20K 89.2 88.1 87.3 0.35 0.49 86.4 88.1 

Self-built 

Dataset 
89.7 88.9 86.8 0.32 0.45 86.1 87.8 

 

In comparison with the special baseline groups, the 

classification accuracy of the proposed method is close to the 

human expert level of 91.2%, with only a 1.5% gap, indicating 

that the proposed causal explainable representation has 

approached the human design cognition dimension. It also 

significantly outperforms the SVM classifier based on 

manually designed features, proving that data-driven 

multimodal fusion and causal learning strategies outperform 

traditional handcrafted feature engineering. The statistical 

significance test shows that the performance differences 

between the proposed method and all baseline models are 

verified through t-tests, confirming the reliability of the results. 

The performance advantage comes from two core mechanisms: 

the concept-guided multimodal fusion, which directs feature 

interactions through domain knowledge constraints, avoids 

interference from invalid information, and improves the 

discriminability of the fused features; and the causal 

intervention mechanism, which accurately decouples causal 
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factors from style factors, removes style bias from the data, 

and enhances the task relevance and stability of the 

representations. 

 

3.2.2 Robustness experimental results 

Figure 5 shows the change in design intention classification 

accuracy for different levels of style perturbation, from level 0 

(no perturbation) to level 5 (severe perturbation), comparing 

the proposed method with three baseline models. As seen, the 

accuracy curve of the proposed method is always the highest 

and decreases the most gradually: its accuracy at level 0 

reaches 89.7%, and under the most severe perturbation at level 

5, it only drops to 85.5%, with a decrease of only 4.2%. In 

contrast, the accuracy of CF-VAE, Cross-Attention Fusion, 

and DesignNet decreases from 86.4%, 83.6%, and 82.5% to 

78.6%, 73.1%, and 70.2%, respectively, with decreases of 

7.8%, 10.5%, and 12.3%, and the slope of the curve is 

significantly larger than that of the proposed method. 

The core of this difference lies in the causal intervention 

mechanism of the proposed method: by constraining through 

the SCM, the fused features are decoupled into task-related 

causal factors and style factors unrelated to the task. The do 

operation ensures that the causal factors remain stable under 

style perturbations. The stability of the accuracy in the 

proposed method directly reflects the fact that the causal 

factors are unaffected by style perturbations—the cosine 

similarity of the causal factors between the original and 

perturbed samples stays above 0.92, far higher than the 0.75-

0.85 range of the baseline models, which allows the model's 

decision to rely only on core causal information, rather than 

style features that are susceptible to perturbations. Traditional 

multimodal fusion methods do not decouple style and causal 

information, and decisions rely on mixed features containing 

style noise, resulting in rapid performance degradation under 

style perturbations.

 

 
 

Figure 5. Comparison of design intent classification accuracy for different models under varying levels of style disturbance 

 

Table 2. Comparison of interpretability metrics 

 

Model 
Concept Attribution 

Accuracy (Score) 

Explanation Readability 

(Score) 
Concept Fidelity (%) 

Representation-Concept 

Correlation (%) 

CNN+BERT Concatenation 2.3 2.1 12.5 65.3 

Cross-Attention Fusion 2.7 2.5 10.8 68.7 

DesignNet 3.1 2.9 9.2 72.5 

VCD-Net 3.3 3.2 8.5 74.8 

Grad-CAM Enhanced Fusion 3.5 3.4 7.6 76.2 

CF-VAE 3.8 3.6 6.2 80.5 

Proposed Method 4.7 4.5 3.1 89.3 

 

3.2.3 Interpretability experimental results 

Table 2 presents the quantitative comparison of 

interpretability metrics for each model. The proposed method 

outperforms all baseline models in all metrics: concept 

attribution accuracy reaches 4.7, explanation readability 

reaches 4.5, significantly higher than the baseline models; 

concept fidelity is only 3.1%, meaning the difference in 

classification performance between Top-K concept features 

and full features is very small, proving that the extracted 

domain concepts have strong representativeness; the 

representation-concept correlation, measured by linear probe 

accuracy, reaches 89.3%, validating the strong association 

between causal representations and domain concepts. 

Compared to the baseline models, the proposed method's 

explanation results have three major advantages: first, it has 

stronger domain adaptability, with explanations based on the 

visual communication-specific concept library more aligned 

with designers' cognition; second, it has finer-grained 

explanations, with a bidirectional explanation system that 

enables full-link tracing from features to concepts, and from 

decisions to prototypes; third, it has higher practical value, 

with generative explanations and defect annotations directly 

providing directions for design optimization. Traditional 

interpretability methods such as Grad-CAM can only provide 
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post-hoc gradient heatmaps, lacking domain concept 

associations, and the explanation results are difficult for 

designers to understand; although CF-VAE achieves factor 

decoupling, it does not build a structured concept system, so it 

cannot provide concrete, actionable explanation results. 

 

3.3 Ablation experiment 

 

To verify the necessity and collaborative effect of each core 

module, five ablation models were constructed for comparison, 

with results shown in Table 3. The full model maintains 

optimal performance, robustness, and interpretability, while 

the drop in metrics for each ablation model intuitively reflects 

the contribution of the corresponding module: after removing 

the concept guidance module, the design intention 

classification accuracy decreases by 5.8%, and concept fidelity 

increases to 9.4%, indicating that concept-guided multimodal 

fusion effectively enhances feature discrimination and concept 

representativeness, avoiding blind fusion; after removing the 

causal intervention module, the performance drop rate under 

style perturbation increases to 11.3%, and the counterfactual 

effectiveness score drops to 3.1, proving that causal 

intervention is the core mechanism for ensuring robustness 

and causality; after removing the generative explanation 

module, explanation readability drops by 1.2 points, and 

concept attribution accuracy drops by 0.8 points, indicating 

that the synergy of generative explanations and retrospective 

attribution significantly improves explanation effectiveness; 

after removing the perceptual feature calibration module, the 

average performance of all tasks drops by 4.2%, validating the 

foundational role of cross-modal semantic alignment for 

multimodal fusion; after removing the domain knowledge 

injection module, the concept attribution accuracy drops by 

1.1 points, and the representation-concept correlation 

decreases to 75.6%, highlighting the key value of the domain-

specific concept library in enhancing domain adaptability in 

explanations. 

The synergy analysis shows that the core advantage of the 

proposed framework comes from the organic integration of 

each module: perceptual feature calibration provides high-

quality, semantically aligned multimodal input for subsequent 

fusion; domain knowledge injection builds a dedicated 

concept system, providing directional guidance for fusion and 

explanation; concept-guided fusion achieves precise 

interaction between multimodal features, generating fusion 

features rich in domain semantics; causal intervention 

achieves factor decoupling, ensuring representation robustness 

and causality; the bidirectional explanation system, based on 

structured concepts and decoupled representations, generates 

high-quality explanation results. Each module progresses step-

by-step, supporting each other, forming a closed-loop logic of 

"input preprocessing - fusion guidance - causal constraint - 

explanation output," which is indispensable. 

 

Table 3. Ablation experiment results 

 

Model Configuration 

Design Intention 

Classification Accuracy 

(%) 

Style Perturbation 

Performance Drop Rate 

(%) 

Counterfactual 

Effectiveness Score 

(Score) 

Concept 

Attribution 

Accuracy (Score) 

Concept 

Fidelity (%) 

Full Model (Proposed Method) 89.7 4.2 4.6 4.7 3.1 

Without Concept Guidance 83.9 8.5 4.0 4.1 9.4 

Without Causal Intervention 85.3 11.3 3.1 4.5 4.2 

Without Generative 

Explanation 
88.9 4.5 4.4 3.9 3.5 

Without Perceptual Feature 

Calibration 
85.5 6.8 4.3 4.6 5.7 

Without Domain Knowledge 

Injection (Generic Concept 

Library) 

86.2 5.1 4.2 3.6 6.8 

 

3.4 Hyperparameter sensitivity and cross-dataset 

generalization analysis 

 

Figure 6 presents the impact of core hyperparameters on the 

model's overall accuracy, clearly indicating the optimal range 

and effect mechanism of each parameter. In Figure 6(a), as the 

number of concepts K increases from 20 to 60, the model's 

overall accuracy steadily increases from 82.3% to 89.7%, and 

only shows slight fluctuations when K increases to 80. The 

core reason for this trend is that when K is too small, the 

concept prototype library cannot cover the core concepts of 

visual communication, making it difficult to form effective 

directional guidance for multimodal fusion. When K=60, the 

library’s concepts have fully encapsulated the key semantics 

of the domain, and increasing K further introduces redundant 

concepts that cannot improve feature discriminability. 

Therefore, the optimal range for K is determined to be 50–70. 

In Figure 6(b), when the loss weight combination 

(λ1,λ2,λ3)=(0.3,0.2,0.5), the model's overall accuracy reaches 

89.7%. Deviating from this combination results in 

performance decline. For example, when λ3 is decreased to 0.3, 

the accuracy drops to 85.8% because λ3 is the core constraint 

for causal factor decoupling, and insufficient weight weakens 

the effect of counterfactual training. When λ2 is reduced to 0.1, 

the accuracy drops to 87.5%, due to λ2 constraining the 

semantic alignment of fused features with domain concepts, 

and a too-low weight decreases the effectiveness of concept 

guidance. This result verifies that balancing the weights of 

each loss function is key to coordinating concept guidance, 

causal decoupling, and task performance. In Figure 6(c), when 

the initial learning rate ranges from 10−5 to 10−3, the model 

accuracy follows an initial increase and then a decrease trend: 

it reaches the optimal value of 89.7% at 10−4, drops to 83.6% 

at 10−5, and falls to 82.1% at 10−3. This indicates that an initial 

learning rate of 10−4 balances convergence speed and training 

stability. 

Table 4 presents the performance comparison of various 

models on the cross-dataset test set of public welfare posters. 

The proposed method still maintains optimal performance, 

with the design intention classification accuracy reaching 

83.5%, an improvement of 4.8% over the second-best baseline 

CF-VAE. The macro F1 value reaches 82.7%, significantly 
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higher than other baseline models. The defect detection F1 

value reaches 80.6%, the attractiveness score prediction MAE 

is 0.39, and the similar design retrieval MAP value reaches 

81.2%. Compared to the performance on the training set, the 

accuracy of the proposed method only drops by 6.2% on the 

cross-dataset test, while CF-VAE drops by 9.5%, Cross-

Attention Fusion drops by 13.8%, and DesignNet drops by 

15.2%, demonstrating stronger generalization capability.

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 6. Sensitivity analysis of core hyperparameters: (a) The effect of number of concepts K on model overall accuracy; (b) 

The effect of loss weights λ1-λ3 on model overall accuracy; (c) The effect of initial learning rate on model overall accuracy 
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Table 4. Cross-dataset generalization performance comparison (Public welfare poster dataset) 

 

Model 

Design Intention 

Classification Defect Detection F1 

Score 

Attractiveness Score 

Prediction 

Similar Design 

Retrieval 

Accuracy (%) Macro F1 (%) MAE RMSE 
MAP 

(%) 
NDCG@10 (%) 

CNN+BERT Concatenation 68.3 66.7 67.5 0.69 0.83 65.2 67.8 

Cross-Attention Fusion 72.4 71.1 70.8 0.63 0.76 70.3 72.5 

DesignNet 71.8 70.5 69.9 0.65 0.78 68.9 71.3 

VCD-Net 73.6 72.3 72.1 0.61 0.73 71.8 73.9 

Grad-CAM Enhanced 

Fusion 
74.9 73.5 73.4 0.58 0.70 73.2 75.6 

CF-VAE 78.7 77.9 76.5 0.52 0.64 76.4 78.2 

Handcrafted Features SVM 67.5 65.9 66.8 0.73 0.87 64.5 66.9 

Proposed Method 83.5 82.7 80.6 0.39 0.51 81.2 83.1 

 

The generalization advantage stems from two core factors: 

first, the causal interpretable representation isolates task-

unrelated style factors and retains core causal information, and 

causal information has universality across visual 

communication images in different styles/domains. Second, 

the core concepts covered by the visual communication-

specific concept prototype library have domain universality, 

and their transferability ensures the model’s adaptability in 

unfamiliar domains. This result verifies the practical value of 

the proposed method, showing that it can be effectively 

applied to visual communication image analysis tasks in 

different scenarios, overcoming the traditional models' 

dependence on specific datasets. 

 

 

4. DISCUSSION 

 

The core research findings in this paper confirm the 

effectiveness of the ECPCF and the CERL paradigm, 

achieving a key shift in visual communication image 

representation learning from associative learning to causal 

understanding. The experimental results show that this 

paradigm, through the synergistic effect of structured domain 

knowledge injection and causal reasoning, significantly 

improves the model's performance, robustness, and 

explainability: the domain knowledge-based proprietary 

concept prototype library provides directional guidance for 

multimodal fusion, avoiding the blind fusion of traditional 

methods; the causal intervention mechanism accurately 

decouples causal factors from style factors, enhancing the 

representation's stability against style changes; the organic 

synergy of the two resolves the industry challenge of balancing 

high performance with high explainability. Meanwhile, the 

results generated by the bidirectional explainable system align 

with the visual communication domain's cognition, providing 

quantitative concept-decision association evidence for 

academic research and tangible guidance for design practice 

optimization, highlighting the practical value of technology 

implementation. 

In contrast to existing research, the approach in this paper is 

significantly innovative in terms of both the technical path and 

the paradigm. Regarding the fusion guidance mechanism, 

unlike the indiscriminate interaction of general cross-modal 

fusion, this method achieves precise fusion via domain 

concepts as intermediaries; in terms of robustness 

enhancement strategy, it relies on strict constraints from SCM 

rather than empirical data augmentation, theoretically 

ensuring stability; in terms of explainability design, it 

constructs a bidirectional full-link system, breaking through 

the limitations of traditional post-hoc explanations; and in 

terms of causal support, it ensures the causal validity of the 

representation through counterfactual training and 

intervention theory verification. In terms of the trade-off 

between performance and explainability, the method in this 

paper achieves classification accuracy close to human expert 

levels, while the explainability metrics significantly 

outperform existing models, solving the challenge of 

balancing the two in existing methods. In terms of domain 

adaptability and generalization, it is specifically designed for 

the multimodal characteristics and design needs of visual 

communication images, making it more targeted than general 

methods; in the cross-dataset experiment, the performance 

drop is significantly smaller than the baseline models, 

verifying its excellent generalization ability. 

The structured domain knowledge injection, causal 

intervention, and bidirectional explainable fusion framework 

refined in this paper has universal methodological value and 

can provide insights for other image processing-related fields 

such as medical image report interpretation, remote sensing 

image interpretation, and robotic scene understanding. These 

fields all involve multimodal semantic fusion, robustness 

needs, and explainability demands, and the core logic of this 

framework—domain knowledge-driven guidance, causal 

constraints ensuring stability, and full-link explanations 

enhancing trustworthiness—can effectively transfer to these 

scenarios, promoting the common development of multimodal 

perception and explainability analysis. Meanwhile, the CERL 

paradigm provides new ideas for explainable multimodal 

learning research in the image processing field, enriching the 

technical system of causal learning in visual tasks. However, 

there are still limitations in this research: in small sample 

scenarios, concept prototype initialization can be biased due to 

insufficient annotated samples, leading to a decrease in model 

accuracy. For example, in a niche public welfare design 

classification task, performance drops by 12% when the 

sample size is less than 500; the current method is only suitable 

for static images and struggles to handle the temporal 

multimodal semantics of dynamic visual communication 

content like short video ads; concept set selection depends on 

expert consensus, which can have subjective differences. For 

example, different definitions of "layout balance" might affect 

the model's generalization effect. 

To address these limitations, future research could proceed 

in four directions: First, introduce a meta-learning mechanism 

to optimize the concept prototype initialization and dynamic 

update in small sample scenarios, exploring few-shot concept 

learning methods to reduce data dependency; second, expand 

the temporal multimodal semantic fusion framework by 
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introducing temporal causal intervention mechanisms to adapt 

to the temporal feature association analysis of dynamic visual 

communication images; third, design an unsupervised/weakly 

supervised concept discovery module to automate the 

generation and updating of concept sets, reducing reliance on 

expert knowledge and improving the objectivity of the concept 

system; fourth, build an "analysis-optimization-generation" 

closed-loop system, combining diffusion models and other 

generative technologies, to intelligently optimize and 

automatically generate visual communication images based on 

explainability analysis results, further expanding the 

application boundaries of the research. These directions not 

only extend the core research logic of this paper but also 

provide feasible pathways for the in-depth development of 

visual communication image analysis and intelligent design 

fields. 

 

 

5. CONCLUSION 

 

This paper addresses the issues of fusion blindness, 

insufficient robustness, and lack of explainability in 

multimodal semantic fusion representation learning for visual 

communication images. It proposes an ECPCF and a CERL 

paradigm, constructing a complete technical system that 

covers five core modules. The multimodal semantic feature 

preprocessing and alignment module achieves cross-modal 

semantic calibration, providing high-quality input for fusion; 

the domain-specific concept prototype memory library 

construction module structurally injects domain knowledge, 

laying the foundation for directional guidance; the concept-

guided multimodal semantic fusion module uses concepts as 

intermediaries to achieve precise feature interaction; the causal 

intervention and representation learning module based on the 

SCM decouples causal factors from style factors, ensuring 

representation robustness and causality; the task prediction 

and bidirectional explainability analysis module achieves 

precise task prediction and full-link explainable output. These 

modules build upon each other, working in synergy to form a 

closed-loop technical logic. 

Experimental validation fully proves the superiority of the 

proposed framework and paradigm. On the PosterNet, UI20K, 

and self-built datasets, the method in this paper significantly 

outperforms existing mainstream methods in core tasks such 

as design intention classification, defect detection, 

attractiveness score prediction, and similar design retrieval, 

with classification accuracy approaching human expert 

cognition levels. Style disturbance experiments and 

counterfactual verification show that the model has stronger 

robustness and causal validity. The explainability metrics 

quantification and visualization results verify the domain 

adaptability and practical value of the bidirectional 

explainability system. Cross-dataset generalization 

experiments further demonstrate that the method in this paper 

can effectively adapt to visual communication image analysis 

tasks of different styles and domains, breaking through the 

dependency limitations of traditional models on specific 

datasets. 

The core theoretical contribution of this paper is the 

establishment of the CERL paradigm, achieving a key 

paradigm shift from associative learning to causal 

understanding in visual communication image representation 

learning. The structured domain knowledge injection, causal 

intervention, and bidirectional explainable fusion framework 

not only provides a new technical solution for multimodal 

semantic fusion tasks in visual communication images but also 

offers domain-adapted solutions and universal methodologies 

for the common pain points of explainable multimodal 

learning in image processing. This paradigm breaks through 

the limitations of traditional methods that rely on statistical 

associations, establishing a collaborative mechanism between 

domain knowledge and causal reasoning at the theoretical 

level, enriching the technical system of causal learning in 

visual tasks, and offering new insights for related field 

research. 

The method in this paper has significant application value 

and broad domain impact. In the field of visual communication 

design, the precise analysis tools and explainability guidance 

provided can effectively support concept-decision association 

analysis in academic research and design optimization in 

practical scenarios, promoting the intelligent transformation of 

the design field. Additionally, the refined universal 

methodology can be transferred to other image processing-

related fields such as medical image interpretation, remote 

sensing image interpretation, and robotic scene understanding, 

providing important insights for multimodal perception and 

explainability analysis in these fields. This further expands the 

application boundaries of causal explainable learning, 

promoting the collaborative development of cross-domain 

multimodal intelligent analysis technologies. 
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