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Multi-user millimeter-wave (mmWave) massive MIMO systems are essential for next-

generation wireless networks, offering broad bandwidth and elevated data transmission 

rates. However, the existing methods face challenges such as signal scattering, interference, 

and cross-technology noise. To overcome these challenges, a novel Recurrent Butler Forcing 

Attenuators Fourier phase Distortionless Response Network is proposed to improve 

beamforming accuracy and performance of the system. Moreover, multi-path fading in 

advanced beamforming causes Inter-Symbol Interference (ISI), where delayed signals 

overlap and lead to decoding errors. To address this, the first Recurrent Neural Network 

(RNN) layer uses an Amalgam Butler Zero Forcing Matrix. This optimized beamforming 

matrix, combined with zero-forcing algorithms, mitigates out-of-phase signals and improves 

demodulation accuracy. In the second RNN layer, Debauched Attenuators Fourier 

Transform (DAFT) dynamically adjusts signal amplitudes using attenuators and applies Fast 

Fourier Transform (FFT) for frequency analysis. This enhances the system's ability to detect 

and mitigate interference. Further, the presence of multiple wireless technologies in the same 

environment introduces cross-technology interference (CTI), disrupting beamforming 

accuracy. To combat this, the Phase Tiniest Variance Signal Response (PTVSR) strategy is 

developed, which is integrated into the third layer of the RNN, it dynamically adjusts signal 

phases and optimally combines signals using the Minimum Variance Distortionless 

Response (MVDR) algorithm. This approach reduces CTI-induced errors and creates more 

accurate beam patterns in complex environments. As a result, the proposed model 

outperforms existing methods, achieving higher accuracy, spectral efficiency, and sum rate. 
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1. INTRODUCTION

The backbone of today's communication systems is made 

up of mobile networks, sometimes referred to as cellular 

networks, which provide voice and data services on portable 

electronics, including smartphones and tablets. Through 

several generations, each characterized by advancements in 

technology and capacities, these networks have undergone 

substantial evolution throughout time. Massive MIMO 

beamforming is essential for improving performance in 

modern mobile networks. By using a wide range of antennas 

at the base station, these methods may connect with several 

users at once and make use of spatial diversity to boost spectral 

efficiency and signal quality. Popular beamforming 

techniques include maximum ratio transmission and zero-

forcing, which seek to maximize signal power and eliminate 

interference, respectively. However, massive MIMO faces 

challenges like hardware complexity and energy use, which 

demand advanced signal processing. Other key challenges are 

the need for accurate channel data and the effect of user 

mobility on beamforming performance. To fully reap the 

benefits of massive MIMO and facilitate the future rollout of 

dependable and efficient mobile communication systems, 

these obstacles need to be overcome [1-4]. 

While the transmitter generates a signal, the surroundings 

contain barriers such as buildings and trees, causing the signal 

to bounce around and follow multiple pathways before 

reaching the receiver. This bouncing about is known as multi-

path fading, and it results in Inter-Symbol Interference (ISI). 

Various approaches are used to precisely demodulate and 

recover original symbols in the presence of ISI. Equalization 

methods, such as linear equalizers and decision feedback 

equalizers, are widely used to reduce ISI effects by altering the 

incoming signal. Another technique is the maximum 

likelihood sequence estimate, which searches for the most 

probable broadcast sequence based on the received signal. 

Furthermore, filter settings are continually adjusted using 

adaptive equalization algorithms in response to shifting 

channel circumstances. Notwithstanding these techniques, 

problems still exist, such as the requirement for precise 

channel status data, sensitivity to noise and interference, and 

the difficulty of putting adaptive algorithms into practice. 

Moreover, obtaining the best demodulation and symbol 

recovery can be severely hampered by time-varying features 

and non-linearities in the communication channel. Improving 

communication system performance in the context of multi-

path fading and ISI continues to be a focus of developing 

reliable and computationally efficient solutions to solve these 
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issues [5-8]. 

Another component that has to be considered to further 

enhance the quality of signal transmission is angular resolution, 

since it is necessary to minimize undesired signal transmission 

in other directions. The capacity to discern between sources 

that are closely spaced in the angular domain is referred to as 

angular resolution in beamforming. An array of sensors with 

separated components is a popular way to acquire angular 

resolution. Spatial diversity is used to differentiate between 

incoming signals originating from various directions. A 

different strategy is to use shorter wavelengths or higher 

frequencies, which by definition have a smaller beam width 

and hence offer superior angular resolution. Nevertheless, 

actual implementations face difficulties, such as the 

requirement for higher hardware costs and computational 

complexity when using dense sensor arrays. In addition, 

angular resolution can be deteriorated by problems such as 

multipath propagation, mistakes in data processing, and 

mutual coupling between sensors. In beamforming 

applications, finding the ideal angular resolution continues to 

be a constant problem of balancing system complexity and 

performance [9-12]. 

Additionally, to the aforementioned factors, another 

dynamic aspect that affects the effective transmission of 

signals across diverse wirelessly connected devices is cross-

technology interference (CTI). When signals from many 

technologies interfere with one another, particularly in the 

millimeter-wave (mmWave) band, this phenomenon is 

referred to as CTI. Several techniques are used to reduce CTI 

in mmWave communications. To concentrate signals and 

lessen interference, one method uses sophisticated signal 

processing techniques like beamforming and beam steering. 

Using sophisticated coding and modulation techniques to 

increase signal resilience in the face of interference is another 

tactic. Furthermore, approaches for allocating resources in the 

frequency and temporal domains are utilized to maximize the 

utilization of available spectrum and reduce interference. 

Nevertheless, there are drawbacks to these techniques, such as 

higher computing complexity, power consumption, and the 

requirement for complicated gear. Moreover, the dynamic 

character of wireless environments and the cohabitation of 

many technologies present continuous difficulties in the 

development of adaptive and successful CTI mitigation 

techniques for mmWave communication networks. To fully 

utilize mmWave technology in the future wireless 

communication networks, these issues need to be resolved [13-

15]. 

Despite significant progress in improving the efficiency and 

simplifying multi-user mmWave massive MIMO systems, 

numerous enhancements are still needed to achieve a better 

propagation path through efficient angular resolution, 

avoiding inference, and other research limitations. 

 

1.1 Main contribution of this study 

 

The following methodological and experimental 

contributions have been achieved by this paper: 

• To overcome overlapping symbols and decoding problems 

due to ISI, an Amalgam Butler Zero Forcing Matrix in the 

RNN's first layer is introduced, in which Butler matrix 

optimizes beamforming and zero-forcing algorithms to 

minimize ISI and mitigate, thereby enhancing signal 

demodulation in heavily scattered environments. 

• To effectively handle varying angular resolutions, DAFT 

is introduced in RNN's second layer. In which attenuators 

dynamically adjust signal amplitudes and FFT performs 

frequency-domain analysis, ensuring consistent performance 

in mmWave communication systems amidst interference. 

• To mitigate the CTI from coexisting wireless technologies, 

the Phase Tiniest Variance Signal Response (PTVSR) is 

utilized in RNN's third layer. This combines phase shifters and 

the MVDR algorithm to suppress noise and enhance 

beamforming accuracy, resulting in precise beamforming and 

improved performance in environments with diverse wireless 

technologies. 

 

1.2 Organization of the paper 

 

This work is divided into the following sections. Section 2 

discusses the existing literature on mmWave communication 

systems and summarizes the available approaches. Section 3 

explains the suggested approach and workflow for this work. 

Section 4 explains the datasets, as well as the experimental 

methodology, the analytical results, and the comparison to 

previous investigations. Finally, Section 5 sums up the study. 

 

 

2. LITERATURE SURVEY 

 

This literature review examines existing research efforts 

focused on improving the performance of large MIMO 

systems, given the complexity and quick improvements in 

mmWave communication systems. To overcome issues like 

inter-user interference, hybrid beamforming, and 

computational complexity, the study explores creative 

solutions put forth by different researchers. This provides an 

understanding of how mmWave communication technologies 

are developing. 

Carrera et al. [16] examined the concept of improving multi-

user millimeter wave (mmWave) communications 

performance in three stages. The first is achieved by applying 

a revised pilot mapping to minimize inter-user interference 

and achieve more precise channel estimations. The second step 

involved designing a hybrid receiver that, depending on the 

accuracy of the Channel State Information (CSI), selected 

between the multi-user regularized zero-forcing beamforming 

(RZFBF) and the minimum mean square error (MMSE) 

receivers to combine/precode the massive multiple-input 

multiple-output (MIMO) signal. To enhance multi-user 

efficiency and lessen inter-user interference, it was suggested 

that, during the third phase of uplink communications, the 

beam direction be enhanced with a little change in azimuth 

angle. However, this kind of structure's computational 

complexity and hardware design are now too costly for 

widespread use. 

Dilli [17] developed a downlink hybrid beamforming 

communication system for multiple users that was multi-user 

mMIMO and had several independent data streams per user as 

well as accurate channel status information. It focused on the 

mmWave MU-mIMO hybrid beamforming system's hybrid 

precoding at the transmitter and combining at the receiver. The 

study's conclusions illustrate the trade-off between the number 

of BS antennas required and the number of data streams per 

user. To achieve higher order throughputs in mmWave MU-

mMIMO systems, it was highly suggested to employ more 

parallel data streams per user. On the other hand, more data 

streams per user result in increased interference and possible 

user crosstalk. 
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Zhang et al. [18] examined a multiuser, sub-connected, 

mmWave large MIMO system with a hybrid (analog/digital) 

beamforming architecture. Focus on this system's sum-rate 

maximization problem. The receiver and transmitter were 

jointly designed using a two-stage design method. The 

proposed piecewise dual joint iterative approximation (PDJIA) 

approach was used to construct the analogue beamformer and 

combiner. This method provided both closed-form solutions 

and linear properties. By using the baseband piecewise 

successive approximation approach, the problem of digital 

beamforming was addressed and the number of consumers 

serviced can be efficiently increased. Furthermore, the 

proposed techniques result in sensitivity to changes in the 

channel conditions. 

Huang et al. [19] presented a framework for extreme 

learning machines (ELMs) to simultaneously optimize 

beamformers for transmission and reception. Initially, 

describe an HBF approach based on fractional programming 

and majorization-minimization to provide precise labels for 

training. Then, to increase beamformer resilience, an ELM-

based HBF (ELM-HBF) design was offered. In comparison to 

traditional methods, higher system sum rates were achieved 

with both FP-MM-HBF and ELM-HBF. Moreover, ELM-

HBF required incredibly little time to calculate and had good 

HBF performance. It is necessary to evaluate the proposed 

framework's scalability to bigger and more intricate 

communication networks. 

Zhang et al. [20] focused on the full-connected topology-

based hybrid beamforming design of a downlink mmWave 

massive multi-user MIMO (MU-MIMO) system, with the 

target function of system sum rate optimization. In the 

piecewise successive iterative approximation (PSIA) 

technique, the analogue beamformer and combiner were 

constructed during the analogue beamforming step. This 

approach produced closed-form answers in addition to its 

linear characteristic. The piecewise successive approximation 

approach, which was simple to implement and helped reduce 

computation complexity, was used in the digital beamforming 

stage to design the digital beamforming based on the necessity 

to prevent information loss. However, the massive MIMO 

systems are designed to handle a large number of antennas, so 

the scalability of the PSIA approach should be carefully 

evaluated. 

Zhang et al. [21] investigated the hybrid beamforming 

technique for the big MIMO relay system with mixed and full-

connected structures in the decode-and-forward (DF) 

milliwave. Maximize the aggregate rate of the entire system to 

optimize hybrid beamforming in relay systems as an objective 

function. Then, to minimize computing complexity, 

reformulate the original problem into two single-hop 

mmWave MIMO sum-rate maximization sub problems. The 

piecewise successive approximation technique is then 

provided, based on the criterion that simultaneously designs 

the analogue and digital beamforming stages while trying to 

prevent information loss at each level. Nevertheless, there are 

difficulties in reaching convergence using the sequential 

approximation approach since it requires repeated 

optimization at every level. 

Lizarraga et al. [22] proposed a hybrid beamforming 

technique for a multiuser huge MIMO system that is based on 

deep reinforcement learning (DRL). This approach allows the 

analogue beamforming matrix to be updated iteratively while 

scheduling individual users. In addition to this approach, a 

Singular Value Decomposition operation in a reduced-size 

channel matrix was employed to determine the hybrid 

beamforming scheme's most practical digital precoder matrix. 

The DRL processing was centralized in the receiver to service 

the scheduled user. It used a low-rate feedback channel to 

determine the most useful update of the analogue 

beamforming matrix coefficient. It is necessary to evaluate the 

proposed framework's scalability to bigger and more intricate 

communication networks. 

Jafri et al. [23] designed a hybrid beamformer for a multi-

user multi-cell (MUMC) mmWave system that utilized 

transmit power reduction and BS coordination, subject to 

realistic limitations on the signal-to-interference-plus-noise 

ratio (SINR) at each mobile station. In the beginning, a 

centralized MUMC system's completely digital beamformer 

with flawless CSI was identified using a semidefinite 

relaxation-based method. Next, the fully-digital (FD) solution 

was divided into its analogue and digital components using a 

Bayesian learning approach to build a hybrid transceiver. To 

eliminate the substantial signalling overheads required by the 

centralized approach, a distributed hybrid beamformer based 

on the alternating direction method of multipliers was devised 

for the same system. This beamformer only required local CSI 

and minimal information transmission across the BSs. In 

dynamic situations, the performance of coordinated hybrid 

beamforming solutions for MUMC mmWave MIMO systems 

is affected by the dependence on precise CSI. 

Zhan and Dong [24] analysed the downlink multi-user 

massive MIMO system operating at mmWave and provided an 

interference cancellation (IC) framework for hybrid 

beamforming design. Three successive interference 

cancellation (SIC) assisted hybrid beamforming techniques 

were offered based on the proposed structure to handle intra- 

and inter-user interference. In particular, the first suggested 

technique employs SIC to cancel intra-user interference and 

zero-forcing (ZF) to cancel inter-user interference. In the 

second, intra-user interference was cancelled using ZF, and 

inter-user interference was cancelled using SIC. The third 

technique used SIC to decrease intra-user interference as well 

as inter-user interference. Moreover, the post-detection SINR 

determined the ideal detection sequence for data streams. 

However, the proposed algorithms are designed for flat fading 

mmWave channels and fully connected structures, which 

limits their applicability in wideband mmWave channels. 

Muthukumaran [25] provided innovative techniques for 

efficient hybrid precoding and channel estimation in mmWave 

communication systems. Convolutional neural networks 

(CNNs) were used to solve the problems associated with 

channel estimation, and the Enhanced Whale Optimization 

Algorithm (EWOA) was used to optimize the network 

parameters. The suggested CNN-based channel estimating 

technique helped more effectively and simply estimate the 

channel in mmWave systems. Through the use of the EWOA 

optimization method during CNN training, the network 

parameters were adjusted to enhance the channel estimation 

process's precision and capacity for generalization. Moreover, 

adaptive RBFNN was used to produce hybrid precoding, 

which allowed for effective precoding while reducing 

complexity. However, this limits their applicability in 

wideband mmWave channels. 

Previous studies have highlighted several limitations. First, 

the hardware design and computational complexity for this 

structure are prohibitively expensive [16]. Second, increasing 

the number of data streams per user raises interference levels 

and may cause crosstalk between users [17]. Third, the 
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proposed approaches are sensitive to channel condition 

variations [18]. Fourth, the scalability of the framework must 

be assessed for larger and more sophisticated communication 

systems [19]. Fifth, although massive MIMO systems are 

designed to support a large number of antennas, the scalability 

of the PSIA technique remains a concern [20]. Sixth, the 

sequential approximation approach requires iterative 

optimization at each level, and convergence is often difficult 

to achieve [21]. Additionally, scalability to more complex 

networks must be evaluated [22]. Moreover, reliance on 

accurate CSI limits beamforming performance in dynamic 

scenarios [23] and restricts applicability in wideband 

mmWave channels [24, 25]. Therefore, an innovative method 

is needed to address these issues and to systematically evaluate 

the performance of the proposed beamforming technique. 

 

 

3. RECURRENT FORCING FOURIER PHASE 

DISTORTIONLESS RESPONSE NETWORK FOR 

MODERN MOBILE NETWORKS 

 

mmWave communication systems, which operate at 

frequencies ranging from 30 to 300 GHz, have higher data 

speed and greater bandwidth, making them innovators for 

fifth-generation (5G) wireless networks. However, problems 

develop in situations with dense scatters, where multi-path 

fading causes destructive interference. To overcome these 

issues in multi-user mmWave massive MIMO Systems, a 

unique solution named Recurrent Butler Forcing Attenuators 

Fourier phase Distortionless Response Network is proposed. 

In advanced beamforming techniques, overcoming the impact 

of out-of-phase dispersed signals remains difficult. Multi-path 

fading generates delayed signal versions, resulting in ISI. 

Varying signal arrival delays worsen interference between 

signals, resulting in overlapping symbols at the receiver. These 

distortions impede proper demodulation, resulting in decoding 

errors and a considerable performance impact. The Amalgam 

Butler Zero Forcing Matrix is intended to address the issues 

caused by multi-path fading and destructive interference in 

extensively distributed situations. In this, the Butler matrix 

improves beamforming by integrating signals from several 

antennas, and the zero-forcing method decreases ISI by 

removing delayed versions of transmitted signals, which 

improves the changes in signal arrival timings induced by 

multi-path fading. Incorporating this matrix into the RNN's 

first layer enables the network to adapt to dynamic interference 

patterns, enhancing accurate demodulation and reducing 

decoding errors. 

Also, effective angular resolution is necessary for reducing 

interference by steering beams away from undesirable 

directions. However, varying angular resolution with signal 

frequency complicates maintaining consistent performance 

across a wide band. This fluctuation results in inconsistent 

performance across different frequency components, affecting 

overall system reliability. Thus, DAFT is introduced to 

address varying angular resolution. It uses attenuators to adjust 

signal amplitudes, mitigating multi-path fading and 

interference. FFT is then used to analyse the signals for 

frequency-domain analysis. The DAFT technique is integrated 

into the RNN’s second layer. It allows the network to learn 

spatial-temporal features and adapt to interference patterns. 

This ensures consistent performance across the full bandwidth 

Moreover, beamforming algorithms are interfered with and 

noise is added by CTI, which is caused by the coexistence of 

numerous wireless technologies in one area. This interference 

results in beamforming systems generating inaccurate patterns. 

To tackle CTI in environments with multiple wireless 

technologies, the PTVSR is introduced. This method uses 

RNN's temporal dependencies to dynamically adapt to the 

changing wireless landscape. The phase shifter is introduced 

to adjust incoming signal phases and the MVDR algorithm 

optimally combines these adjusted signals, the system 

suppresses noise and enhances beamforming accuracy. 

Embedding this solution into the third RNN layer allows the 

system to effectively learn and adapt to complex signal 

interactions, mitigating CTI-induced inaccuracies and 

producing precise beam patterns in multi-technology 

environments. 

Figure 1 illustrates the overall architecture of the proposed 

model. Three essential elements are included across the 

architecture's levels to improve system performance overall. 

First, the Amalgam Butler Zero Forcing Matrix addresses 

multi-path fading and destructive interference by maximizing 

beamforming and reducing ISI. It is included in the RNN's first 

layer and allows for dynamic response to interference patterns. 

Second, the second RNN layer incorporates the DAFT 

approach, which dynamically modifies signal amplitudes to 

reduce angular resolution fluctuations between frequencies. 

This makes it easier to learn spatial-temporal features, which 

is essential for reliable performance over the bandwidth. 

Lastly, the PTVSR in the third RNN layer uses the MVDR 

algorithm to combine signals optimally and modify the phases 

of the signals to solve CTI. 

 

3.1 Amalgam Butler Zero Forcing Matrix 

 

A unique technique called the Amalgam Butler Zero 

Forcing Matrix is intended to tackle the problems that arise in 

mmWave communication systems, especially in high-scatterer 

situations where destructive interference and multi-path fading 

are prevalent. The Butler matrix and the zero-forcing method 

are the two essential elements combined in the Amalgam 

Butler Zero-forcing matrix. 

 

3.1.1 Butler matrix 

To provide an optimized beamforming Butler matrix is used, 

which produces constructive interference at the intended 

receiver position by adjusting the phase and amplitude of 

signals from each antenna element. It is well-suited for this 

research because of its effective nature for integrating signals 

from various antennas while providing spatial beamforming, 

which is essential for increasing signal quality and minimizing 

interference. Figure 2 shows the architecture of the butler 

matrix. A uniform rectangular array is used here. The Butler 

matrix is a beamforming network that consists of crossover, 

phase shifters, and hybrid couplers. The Butler matrix contains 

input ports and output ports. The system receives signals from 

multiple antennas. The input signals are fed into hybrid 

couplers, passive devices that split the incoming signals into 

two equal parts. Each path corresponds to a specific beam 

direction. Each of the split signals goes through phase shifters. 

The signals originating from various antennas are subjected to 

controlled phase shifts due to these phase shifters. In the 

desired direction, signals from various antennas are 

constructively (in-phase) aligned to reinforce each other by 

controlling these phase shifts suitably, while signals from 

other directions diminish because of destructive interference 

(out-of-phase). 
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Figure 1. Overall architecture diagram of the proposed model 

 

 
 

Figure 2. Architecture of Butler matrix 
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After passing through the phase shifters, the signals are 

combined using a crossover network. The signals are 

combined in such a way that they reinforce each other in the 

desired direction and cancel out in other directions, thereby 

forming a directive radiation pattern. The Butler Matrix 

efficiently combines signals from multiple beams, allowing 

simultaneous transmission to multiple users. By controlling 

the phase and amplitude of the signals from each antenna 

element, the Butler matrix optimizes beamforming to mitigate 

the impact of out-of-phase scattered signals. This helps in 

focusing the transmitted energy towards the desired receiver 

and reducing interference from other directions. 

 

3.1.2. Zero-forcing algorithm 

To further enhance performance, the Butler matrix output is 

further processed using a zero-forcing algorithm. The zero-

forcing technique is used to reduce ISI by cancelling out the 

interference created by delayed replays of the transmitted 

signal. The zero-forcing algorithm, due to its simplicity and 

effectiveness in nullifying interference in environments with 

heavy scatters, is most suitable for this research. It works by 

creating an inverse filter that causes the received signal to 

match the transmitted signal at precise times, thereby wiping 

out interference from previous signals. Let denote the received 

signal (𝑦)  be represented as in Eq. (1), which is the 

convolution of the transmitted signal ( 𝑥)  and the channel 

impulse response (ℎ), corrupted by additive noise 𝑛. The zero-

forcing beamforming matrix is derived by inverting the 

channel matrix to eliminate inter-user interference. The 

received signal is, 

 

𝑦 = ℎ ∗ 𝑥 + 𝑛 (1) 

 

Then zero-forcing equalizer estimates the transmitted signal 

𝑥 from the received signal 𝑦. This channel response includes 

the effects of multi-path fading and delays.  

 

𝑥̂ = 𝑊𝑦 (2) 

 

where, 𝑥̂ 𝑖s the estimated transmitted symbol vector. Using the 

estimated interference, the Zero Forcing algorithm designs a 

filter that nullifies the interference while preserving the 

desired signal. It does this by applying a filter matrix (Zero 

Forcing matrix) 𝑊𝑍𝐹 to the received signal, which is expressed 

in the following Eq. (3). To null interference, 𝑍𝐹  finds a 

weight matrix W such that 𝐻𝑊 = 𝐼 Using the Moore-Penrose 

pseudo-inverse: 

 

𝑊𝑍𝐹 = (𝐻∗𝐻)−1𝐻∗ (3) 

 

where, 𝐻 is the channel matrix. By applying the zero-forcing 

matrix 𝑊𝑍𝐹  to the received signal vector 𝑦 . This ensures 

𝐻𝑊𝑍𝐹 = 𝐼 , perfectly decoupling user streams under ideal 

conditions. The filter is made to reverse the channel matrix's 

effects on the received signal, effectively cancelling out 

interference from delayed transmissions. By doing so, 

interference from previous signals is also effectively 

eliminated, lowering ISI and increasing the receiver's ability 

to detect signals accurately. 

To enhance the system's adaptability to dynamic 

interference patterns, the Amalgam Butler Zero-Forcing 

Matrix is incorporated into the first layer of an RNN. Each 

neuron in the first layer of the RNN corresponds to an element 

in the Butler Zero Forcing Matrix. The hidden state of this first 

layer is expressed in the following Eq. (4) 

 

𝐾𝑡
1 = 𝜎(𝑊𝐾𝐾

1𝐾𝑡−1
1 + 𝑊𝑥𝐾

1𝑊𝑍𝐹 + 𝐵𝐾
1) (4) 

 

The RNN's capacity to keep a memory of previous inputs 

allows it to lessen the effects of ISI by learning to recognize 

and correct delayed transmissions. By processing sequential 

data representing received signals over time, the RNN 

effectively captures the temporal variations caused by multi-

path fading and interference. This is essential for correctly 

demodulating and retrieving original signals from distorted 

waveforms under challenging propagation conditions. 

 

3.2 Debauched Attenuators Fourier Transform (DAFT) 

for consistent angular resolution 

 

In mmWave communication systems, the problems caused 

by differing angular resolution across a wide frequency range 

are tackled using the DAFT, which is incorporated in the 

RNN’s second layer. The RNN first layer output is given to 

the DAFT.  

In DAFT initially, attenuators are used, which dynamically 

adjust the amplitudes of incoming signals. The attenuators 

continuously monitor the incoming signals to identify their 

characteristics, such as signal intensity and interference. Based 

on the detected signal characteristics, the attenuators are 

dynamically adjusted to modify the amplitudes of the signals. 

The attenuator reduces the amplitude of a signal that is too 

strong, while allowing more of the signal to pass through 

without attenuation. 

As the signals travel through attenuators, their amplitudes 

are changed in real-time. This dynamic attenuation reduces the 

impacts of multi-path fading by adjusting for signal variations 

generated by reflections and diffraction. Attenuators also 

assist in mitigating the effects of destructive interference by 

altering signal intensities. This adjustment reduces 

interference produced by signals from unexpected directions 

or other sources operating in the same frequency range. 

Attenuators improve the overall quality of signals received by 

dynamically changing their amplitudes. By dynamically 

adjusting signal amplitudes, DAFT helps in maintaining more 

consistent angular resolutions across different frequency 

components. 

After signal amplitude adjustment by attenuators, the 

signals are processed using the Fast Fourier Transform (FFT). 

FFT converts the time-domain signals into the frequency 

domain, allowing for frequency-domain analysis. The ability 

of FFT to efficiently compute the DFT of a sequence makes it 

suited for this research, especially in scenarios where a high 

number of frequency components need to be analysed at the 

same time.  

The input to the FFT is a sequence of 𝑁  complex 

numbers  𝑥[𝑛] , where 𝑛 = 0,1, … , 𝑁 − 1 . This sequence 

represents sampled signal values in the time domain. FFT 

employs a divide-and-conquer strategy to efficiently compute 

the frequency components of the input signal. Divide the 

sequence 𝑥(𝑛) into two smaller sequences, one for the even-

indexed items 𝑥𝑒[𝑚] = 𝑥[2𝑚] and the other for the odd-

indexed elements 𝑥𝑜[𝑚] = 𝑥[2𝑚 + 1]. Recursively apply the 

FFT to the even-indexed and odd-indexed sequences, which 

are expressed in the following Eqs. (5) and (6) 

 

𝑋𝑒[𝑘] = ∑ 𝑥𝑒(𝑚)𝑒
−𝑗

2𝜋

𝑁/2
𝑘𝑚

𝑁

2
−1

𝑚=0   (5) 
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𝑋𝑜[𝑘] = ∑ 𝑥𝑜(𝑚)𝑒
−𝑗

2𝜋

𝑁/2
𝑘𝑚

𝑁

2
−1

𝑚=0   (6) 

 

After recursively computing the FFTs of the smaller 

sequences (denote the results as (𝑋𝑜[𝑘], 𝑋𝑒[𝑘]), combine them 

to get the FFT of the original sequence. Combine the results of 

the smaller FFTs to form the FFT of the original sequence, 

using the following Eqs. (7) and (8). 

 

𝑋(𝑘) = 𝑋𝑒[𝑘] + 𝑊𝑁
𝑘 ∙ 𝑋𝑜[𝑘] (7) 

 

(𝑘 + 𝑁/2) = 𝑋𝑒[𝑘] − 𝑊𝑁
𝑘 ∙ 𝑋𝑜[𝑘] (8) 

 

The FFT algorithm calculates the frequency-domain 

representation of the signal. The formula for the FFT is given 

by the following Eq. (9) 

 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗
2𝜋

𝑛
𝑘𝑛𝑁−1

𝑛=0   (9) 

 

where, 𝑥(𝑛) is the time-domain signal, 𝑋(𝑘) is the frequency-

domain representation, 𝑁 is the number of points in FFT, and 𝑗 

is the imaginary unit. Then the results to obtain the overall 

frequency spectrum. The resulting sequence 𝑋[𝑘] represents 

the frequency-domain transformation of the original sequence 

𝑥[𝑛] . It reveals how different frequency components are 

distributed in the signal. FFT provides a frequency-domain 

representation that allows for the analysis of different 

frequency components. Using FFT to analyse the data in the 

frequency domain allows for the capture of the various angular 

resolutions since different angular resolutions correlate to 

distinct frequency components in the received signal. The 

algorithm for FFT is given below in Algorithm 1.  
 

Algorithm 1: FFT 

Input: A sequence 𝑥[𝑛] of length N 

1. Initialization: Start with a sequence 𝑥[𝑛] of length 

N. 

2. Divide the Sequence 

 Separate the sequence x into two sub-sequences 

 𝑥𝑒[𝑚] containing the elements at even indices. 

 𝑥𝑜[𝑚] containing the elements at odd indices 

3. Recursive FFT: 

 Recursively compute the FFT of the even-

indexed elements (𝑋𝑒[𝑘]) 

 Recursively compute the FFT of the odd-

indexed elements (𝑋𝑜[𝑘]) 

4. Combine the Results: 

 Initialize an empty array 𝑋[𝑘]  of length N to 

store the final FFT results. 

 Combine the results  

5. Return the Result: 

 Return the array 𝑋[𝑘] containing the frequency-

domain representation of the input sequence 𝑥[𝑛]. 
Output: The frequency-domain representation 𝑋[𝑘] of 

the input sequence 𝑥[𝑛]. 
 

Figure 3 presents the flow diagram of DAFT. The process 

starts with acquiring the raw input signal, which is fed into the 

first layer of a Recurrent Neural Network (RNN) to capture 

temporal dependencies. This initial processing prepares the 

data for refinement. Next, the signal undergoes dynamic 

amplitude adjustments to enhance relevant features and 

suppress noise. The conditioned signal is then passed to the 

FFT module. The FFT operates using a divide-and-conquer 

strategy, recursively breaking the signal into smaller parts. 

Each segment is transformed individually, and the results are 

efficiently combined. This yields a complete frequency 

domain representation. The output reveals essential frequency 

components for further analysis. The process integrates RNN-

based temporal modelling with FFT-based spectral analysis. 
 

 
Figure 3. Flow diagram of DAFT 

 

This DAFT is integrated into the second layer of the RNN, 

this layer captures spatial-temporal features and mitigates 

interference patterns due to varying angular resolutions. RNNs 

learn to recognize and adapt to spatial and temporal patterns in 

signal data. Spatial patterns include the direction of signal 

arrival, whereas temporal patterns comprise variations in 

signal amplitude or interference over time. The RNN's hidden 

states encode these patterns, allowing the network to 

discriminate between various signal sources and reduce 

interference. The RNN hidden state can be expressed as in Eq. 

(10): 

 

𝐾𝑡
2 = 𝜎(𝑊𝐾𝐾

2𝐾𝑡
1 + 𝑊𝑥𝐾

2𝑋(𝑘) + 𝐵𝐾
2) (10) 

 

The RNN adjusts its hidden state depending on the input 

signal at each time step, taking into account the previous 

hidden state as well as details about the received signals, such 

as their frequencies and angular resolutions. The adaptive 

nature of the RNN ensures consistent performance across the 

entire bandwidth. It continuously learns and adapts to 

changing conditions, maintaining optimal signal quality. 

With the use of dynamic attenuators and FFT, along with an 

RNN for beamforming, the DAFT approach efficiently 

manages wide frequency spectrums and different angular 

resolutions. This hybrid approach improves the system's 
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capacity to adjust to intricate interference patterns while 

simultaneously reducing destructive interference and multi-

path fading, guaranteeing reliable and steady operation. 

 

3.3 PTVSR for CTI 

 

The PTVSR is an innovative method for addressing in 

environments where various wireless technologies coexist, 

such as Wi-Fi and Bluetooth. This method uses an advanced 

phase shifter and MVDR beamforming inside an RNN’s third 

layer 

In PTVSR, initially phase shifter is introduced to adjust the 

phase of incoming signals. The system first examines the 

presence of interference in the received signals. When signals 

from various wireless technologies operate in the same 

environment, they can interfere with one another due to 

mismatches in their frequencies, amplitudes, and phases. 

Interfering signals vary in strength and amplitude compared to 

the desired signals. By measuring the strength of received 

signals across different frequency bands, the system identifies 

the presence of interference. When interference is identified, 

the phase shifter dynamically modifies the incoming signal’s 

phase. The purpose of this adjustment is to minimize the effect 

of conflicting signals while optimizing the signal's alignment 

with the intended beamforming direction. This phase 

adjustment process is mathematically represented in Eq. (11). 

 

𝑥′(𝑡) = 𝑥(𝑡) × 𝑒𝑗𝜙 (11) 

 

where, 𝑥′(𝑡) represents the phase-shifted signal, 𝑥(𝑡) is the 

incoming signal, and 𝜙 denotes the phase shift angle. The 

phase shifter applies a controlled delay to the incoming signal 

to ensure proper operation. This delay changes the phase of the 

signal waveform and alters the phase of the signals. Further, 

the phase shifter helps to spatially separate the desired signal 

from interfering signals, thereby enhancing the signal-to-

interference ratio. 

 

 
 

Figure 4. Block diagram of PTVSR 

 

Figure 4 illustrates the block diagram of PVSR. After phase 

adjustment, the signals are fed into the MVDR beamformer. 

The adaptability and noise suppression properties of WVDR 

are discussed in this section. The MVDR algorithm optimally 

combines the phase-adjusted signals to form a beam that 

minimizes interference and noise while maintaining the 

integrity of the desired signal. Let 𝑦(𝑡) denote the received 

signal vector at the time 𝑡 . The first step in the MVDR 

algorithm is to compute the covariance matrix 𝐶  from the 

received signals. The statistical correlations between the 

received signals at various sensor components are represented 

mathematically by the covariance matrix. The covariance 

matrix 𝐶 is calculated as follows in Eq. (12): 

 

𝐶 =
1

𝑁
∑ 𝑥′(𝑡)𝑥′𝐻(𝑡)𝑁

𝑛=1   (12) 

 

where, 𝑁  is the number of signals, 𝑥′(𝑡)  is the vector of 

received signals at a time 𝑡, and 𝐻 is the hermitian transpose. 
Following that, the optimal beamforming weights 𝑤𝑀 , are 

calculated using the MVDR algorithm. 

 
Figure 5. Flowchart of PTVSR 

 

The flowchart of PTVSR is depicted in Figure 5. The 

process begins by adjusting the input signal's phase using a 

phase shifter. It then passes through the MVDR filter, which 

minimizes noise while preserving essential features. The 

refined signal is formatted and delivered to a RNN. The 

RNN’s hidden layers learn and analyse the signal’s temporal 

patterns. Ultimately, the output layer generates the final 

prediction or response, represented as Y(t). 

To minimize the array output power 𝑃𝑤  while ensuring 

unity gain in the direction of the desired signal, the 

corresponding steering vector is used, and the optimal weight 

vector is selected accordingly. The MVDR problem minimizes 

output power while preserving gain in the desired direction. 

The following is a possible syntax for the MVDR adaptive 

algorithm: 

 

𝑚𝑖𝑛𝑤{𝑤𝐻𝐶𝑤}       𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝐻𝑎(𝜃) = 1 (13) 

 

where, 𝑎(𝜃)  is the steering vector. The next step involves 

calculating the spatial filter weights that optimize the 

beamforming performance. Mathematically, the MVDR 

weights vector 𝑤𝑀 is given by the following Eq. (14): 

 

𝑤𝑀 =
𝐶−1𝑎(𝜃)

𝑎𝐻(𝜃)𝐶−1𝑎(𝜃)
  (14) 
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Finally, Multiplying the spatial filter vector 𝑤𝑀  by the 

received signal vector yields the MVDR beamformer's output, 

represented as 𝑌, which is shown in Eq. (15) 

 

𝑌 =  𝑤𝐻 𝑥′(𝑡) (15) 

 

MVDR dynamically adjusts to environmental changes by 

updating the beamformer weights using the spatial covariance 

matrix. By applying Lagrange multipliers, the solution is 

derived as follows: 

 

𝑤𝑀𝑉𝐷𝑅 =  
𝐶−1𝑎(𝜃)

𝑎𝐻(𝜃)𝐶−1𝑎(𝜃)
  (16) 

 

This allows it to mitigate interference from coexisting 

wireless technologies and produce more accurate beam 

patterns. In the PTVSR module, the phase shift angle 𝜙  is 

varied in the range [−𝜋, 𝜋], with a resolution of 0.1𝜋 radians. 

This dynamic range allows precise phase steering to mitigate 

CTI. In the DAFT module, the attenuators dynamically adapt 

within a 0-30 dB range. If the SNR falls below 20 dB, the 

attenuation is proportionally decreased based on the SNR level. 

The adjustment is governed by:  

 

𝐴(𝑡) = 𝐴(𝑡 − 1) +  𝛼(𝑆𝑟𝑒𝑓  −  𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  ), with 

𝛼 = 0.05 
(17) 

 

where, 𝑆𝑟𝑒𝑓 is the reference signal strength. The algorithm for 

PTVSR is given in algorithm 2.  

 

Algorithm 2: PTVSR  

Input: Received signal vector 𝑥(𝑡) at time 𝑡, number of 

signals N, steering vector 𝑎(𝜃), 
1. Initialization: Set phase shift angle 𝜙 = 0. 

2. Phase adjustment: 

 For each incoming signal 𝑥(𝑡) do 

  Calculate interference presence by 

measuring signal strength across frequency 

bands. 

  Adjust the phase of incoming signals 

using 𝑥′(𝑡) = 𝑥(𝑡) × 𝑒𝑗𝜙  

 End for  

3. Compute Covariance Matrix: 

 Calculate the covariance matrix (𝐶) of the phase-shifted 

signals using Eq. (12) 

4. Calculate Optimal Beamforming Weights:  

 Using Eq. (14) 

5. Apply Beamforming Weights: 

 Multiply the optimal weights by the received signal 

vector to form the beamformed output using Eq. (15) 

Output: Produce the final beamformed signal (𝑌 ) with 

minimized interference and noise. 

 

The combined solution, comprising the phase shifter 

adjustment and MVDR-based beamforming, is embedded into 

the third layer of the RNN. This integration allows the system 

to learn and adapt to the complex interplay of signals over time. 

The third layer of the RNN will receive this combined solution 

if the hidden state update equation is modified as follows in 

Eq. (18): 

𝐾𝑡
3 = 𝜎(𝑊𝐾𝐾

3𝐾𝑡
2 + 𝑊𝑥𝐾

3𝑌 + 𝐵𝐾
3) (18) 

 

The system makes use of the RNN's capacity to record 

temporal dependencies, allowing it to dynamically adapt to 

changing wireless sceneries. Finally, the RNN’s output is 

generated based on the hidden state of the third layer, which is 

expressed in the following Eq. (19): 
 

𝑌(𝑡) = 𝜎(𝑊𝑌𝐾𝑡
3 + 𝐵𝑌) (19) 

 

The output layer of the RNN generates demodulated 

symbols based on the learned representations from the hidden 

layers. These symbols represent the recovered information 

transmitted by different users, with reduced distortion and 

interference effects. Through the use of the RNN's capacity to 

acquire consecutive patterns, the network efficiently reduces 

errors caused by CTI and generates more accurate beam 

patterns. The RNN architecture's incorporation of the phase 

adjustment procedure and the MVDR algorithm improves the 

network's capacity to reduce interference and boost 

beamforming accuracy in situations with a variety of wireless 

technologies, such as Wi-Fi and Bluetooth, which improves 

performance in contexts with a variety of wireless 

technologies. 

Overall, the proposed hybrid beamforming approach 

increased signal quality by lowering ISI effects, assuring 

constant performance over the whole spectrum, and mitigating 

interference from other wireless technologies. 

 

 

4. RESULT AND DISCUSSION 

 

This section contains a full description of the 

implementation findings and the proposed system's 

performance, as well as a comparison section to ensure that the 

proposed approach is appropriate for multi-user mmWave 

massive MIMO systems. 

 

4.1 Experimental setup 

 

The "Recurrent Butler Forcing Attenuators Fourier phase 

Distortionless Response Network" experimental setup for 

multi-user mmWave massive MIMO systems involves 

utilizing a uniform rectangular array configuration with 108 

transmitting antennas and Number of RF chains is 54. In the 

hybrid beamforming setup, the number of RF chains is less 

than the number of transmitting antennas. The CSI is 

considered imperfect, reflecting real-world conditions. Speech 

signal samples, generated using a standard generator, are 

employed for training the neural network model. The dataset 

comprises 1000 different speech samples, which are split into 

a 9:1 ratio for training and testing, respectively. The proposed 

system is simulated in MATLAB, and this section includes an 

extensive discussion of the implementation results and 

performance, as well as a comparison section to confirm that 

the proposed setup functions properly. Table 1 represents the 

system configurations which are used to design the proposed 

model. 
 

4.2 Simulated output of the proposed model 
 

In this section, examine the analysis of simulation output 

from the proposed Recurrent Butler Forcing Attenuators 

Fourier phase Distortionless Response Network. This aims to 

provide constructive insights and interpretation of the 

simulation output. 

DAFT results of magnitude and phase of the proposed 

model is shown in Figure 6. The magnitude of the signals 

varies significantly across the frequency index for each user. 
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The variations in amplitude indicate that the system 

dynamically adjusts the signal amplitudes to manage 

interference and optimize beamforming. The diverse 

amplitude responses suggest that DAFT effectively mitigates 

multi-path fading and destructive interference, enhancing 

spectral efficiency. The phase responses for each user vary 

widely across the frequency index. This indicates that the 

system is adjusting the phase of incoming signals dynamically 

to mitigate the impact of interference. The phase adjustments 

show the system's ability to handle varying angular resolutions 

across the frequency spectrum, crucial for maintaining high 

spectral efficiency. 

 

Table 1. System configurations 
 

Components Specifications 

Software MATLAB 

OS Windows 10 (64-bit) 

Processor Intel i5 

RAM 8GB RAM 

 

 
 

Figure 6. DAFT results of magnitude and phase 

 

 
 

Figure 7. Adjusted and received signals 
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Figure 8. Transmitted and received signals 

 

 
 

Figure 9. Original and decoded speech signal 

 

Adjusted and received signals of the proposed model are 

expressed in Figure 7. The top plot shows the received signal. 

The signal amplitude fluctuates widely, indicating the 

presence of various out-of-phase components and interference. 

The next plot depicts the signal after applying the PTVSR 

technique. This method adjusts the signal phases to reduce 

interference effects. As a result, the amplitude variations are 

more confined, and the signal appears to be less distorted, 

demonstrating a reduction in CTI and noise. The last plot 

shows the signal after additional phase shifting. This phase 

adjustment aligns the signal components to further mitigate the 

effects of multi-path fading. The amplitude variations are 

smoother and more uniform, indicating improved signal 

coherence and reduced destructive interference. 

Figure 8 illustrates the transmission and reception of signals 

for eight users in a multi-user mmWave massive MIMO 

system, depicting the effects of multi-path fading and 

interference. The transmitted signals for all users are uniform 

and consistent, showing that the system can handle multiple 

users transmitting simultaneously without initial interference. 

The real part of the received signals for each user is shown, 

demonstrating substantial amplitude variations and noise. The 

imaginary part of the received signals is also significantly 

distorted and noisy. The variations indicate the complex nature 
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of the received signals due to channel effects. 

The above Figure 9 shows the original and decoded speech 

signal of the proposed model. The top plot illustrates the 

original speech signals, which fluctuate within the amplitude 

range of approximately -5 to 5 over a time of 4×104. These 

signals contain various frequencies and amplitudes, 

representing the natural variability in speech. The bottom plot 

shows the decoded speech signals at the receiver, also 

fluctuating within the same amplitude range of about -5 to 5 

over the same time. This indicates that the RNN has 

successfully demodulated and reconstructed the speech signals 

with high fidelity, preserving the integrity and quality of the 

original audio. 

 

4.3 Performance analysis of the proposed model 

 

This section provides an extensive investigation of the 

proposed multi-user mmWave massive MIMO systems, 

focusing on its robustness, accuracy, and efficiency. The 

performance of the approach is measured using a range of 

metrics and benchmarks, which allows for a comprehensive 

examination and confirmation of its efficacy in beamforming. 

 

 
 

Figure 10. Propagation delays vs users 

 

The Figure 10 illustrates the propagation delays 

experienced by different users in the system, as the number of 

users increases. For 1 user, the proposed approach has a delay 

of 0.2 seconds, and as the number of users increases to 8 the 

delay of the proposed system increases to 1.3 seconds. The 

PTVSR approach dynamically adjusts the phase of incoming 

signals to reduce interference and propagation delays. 

 

 
 

Figure 11. Actual distance vs users 

 

The actual distances between the users are shown in Figure 

11, which increases linearly as the number increases. For user 

1, the proposed approach has an exact distance of 5 meters, 

and when the number of users increases to 8, the actual 

distance of the proposed system rises to 40 meters. As the 

number of user’s changes or as users move, the PTVSR 

adaptively mitigates interference, leading to more precise 

beam patterns and improved performance across different 

distances. 

 

 
 

Figure 12. Accuracy of the proposed model 

 

The above Figure 12 illustrates the accuracy of the proposed 

model. When the SNR value is -10db, the proposed approach 

achieves a minimum accuracy of 40%, whereas when the SNR 

value is 20db, it achieves a maximum accuracy of 99.2%. The 

phase shifter and MVDR algorithm improve accuracy by 

dynamically adapting to changing wireless landscapes and 

optimally combining adjusted signals to suppress noise, 

enhancing the accuracy of beamforming. 

 

 
 

Figure 13. Spectral efficiency vs SNR 

 

Figure 13 depicts the spectral efficiency of the proposed 

model vs SNR. The proposed approach has a low spectrum 

efficiency of -7.5 bps/Hz at -10db SNR, however, it achieves 

its best spectral efficiency value of 37 bps/Hz at 20db SNR. 

DAFT enhances spectral efficiency by dynamically adjusting 

signal amplitudes to mitigate the impact of multi-path fading 

and destructive interference. 

Figure 14 shows the spectral efficiency (in bits/s/Hz) versus 

the number of users (ranging from 1 to 8) in the proposed 

system. The spectral efficiency remains constant at 

approximately 9.25 bits/s/Hz across all users from 1 to 8. The 

adaptive spatial-temporal features learned by the RNN further 

support consistent performance by capturing and mitigating 

interference patterns across different user scenarios.
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Figure 14. Spectral efficiency for all users 

 

 
 

Figure 15. Throughput of the proposed model 

 

The above Figure 15 illustrates the throughput of the 

proposed model. When the SNR value increases the 

throughput of the proposed model also, increases. When the 

SNR value is -10db the proposed model achieves a minimum 

throughput value of 50bps/Hz, whereas the proposed model 

achieves a maximum throughput value of 290bps/Hz when the 

SNR value is 20db. FFT allows for better frequency-domain 

analysis, leading to more efficient data processing and higher 

throughput 

 

 
 

Figure 16. Bit error rate of the proposed model 

 
Figure 16 illustrates the bit error rate of the proposed model. 

When the SNR value is -10db the proposed model achieves a 

maximum bit error rate value of 0.35, whereas the proposed 

model achieves a minimum bit error rate of 0.01, when the 

SNR value is 20db.The zero-forcing algorithm minimizes ISI, 

reducing BER by defeating delayed versions of the transmitted 

signal and improving variations in signal arrival times induced 

by multi-path fading. 

 
 

Figure 17. Latency of the proposed model 

 

The latency performance of the proposed model is shown in 

Figure 17. The proposed approach achieves a minimum 

latency value of 2 when the SNR value is 20db, and a 

maximum latency value of 10 when the SNR value is -10db. 

The adaptive learning capabilities of the RNN in handling CTI 

reduce latency by ensuring quick adaptation to changing 

interference patterns. 

 

 
 

Figure 18. Energy efficiency of the proposed model 

 

 
 

Figure 19. Sum rate of the proposed model 
 

The above Figure 18 illustrates the energy efficiency of the 

proposed model. The proposed model achieves a minimum 

energy efficiency of 1 bps/J and a maximum energy efficiency 
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of 7.5 bps/J when the SNR value is -10 and 20 dB respectively. 

By mitigating interference and distortion more effectively, the 

DAFT system can transmit data more reliably using less 

energy, leading to improved energy efficiency. 

The proposed model sum rate is expressed in the Figure 19. 

The proposed model attains a maximum sum rate of 140 

bits/s/Hz when the SNR value is as high as 20 dB. Also, 

achieves a minimum sum rate of 20 bits/s/Hz, when the SNR 

value is as low as -10dB. By suppressing interference and 

noise, the PTVSR increases the effective capacity of the 

system and thus improves the sum rate. 

 

 
 

Figure 20. Training time of the proposed model 

 

Figure 20 illustrates how Signal-to-Noise Ratio (SNR) 

affects model training time. When the SNR is low, such as -10 

dB, the training time is highest, reaching around 45 

milliseconds. As the SNR increases, the training time 

decreases steadily, indicating that the model trains more 

efficiently with cleaner signals. Around 10 dB, the training 

time falls below 20 milliseconds, and it continues to decrease 

slightly as SNR reaches 20 dB. This trend highlights the 

significant impact of signal quality on training performance, 

showing that higher SNRs lead to faster convergence and 

reduced computational effort. 

 

 
 

Figure 21. Inference time of the proposed model 

 

Figure 21 demonstrates that inference time decreases as the 

SNR increases. At low SNR levels, such as -10 dB, the 

inference time is highest, around 3.2 milliseconds. As the 

signal becomes clearer with increasing SNR, the inference 

time steadily drops, reaching approximately 2.1 milliseconds 

at 20 dB. This trend indicates that higher signal quality reduces 

the computational burden during inference, allowing the 

model to process inputs more efficiently and quickly. The 

improvement is especially noticeable between -10 dB and 10 

dB, where inference time drops sharply. This suggests that 

optimizing signal conditions can significantly enhance real-

time model performance. 

 

 
 

Figure 22. Performance metrices across high density users 

scenario 

 

The performance metric under a high-density user scenario 

is represented in Figure 22. In contrast, low-density users 

achieve a higher throughput of approximately 290 bits/Hz and 

an accuracy close to 100%, compared to high-density users. 

Spectral efficiency shows a slight decline, decreasing from 

around 35 bps/Hz to 30 bps/Hz as user density increases. The 

performance drop in high-density environments is attributed 

to intensified inter-user interference. Despite this, the 

proposed method demonstrates resilience and maintains robust 

performance across varying user densities. This robustness 

highlights its adaptability for future high-capacity networks. 

Additionally, latency remains within acceptable limits, 

ensuring quality of service is preserved even under load. 

 

4.4 Comparative analysis of the proposed model 

 

This section highlights the proposed method’s performance 

by comparing it to the outcomes of existing approaches 

showing their results based on various metrics such as 

accuracy, spectral efficiency, throughput, BER, sum rate, and 

energy consumption. 

The proposed method's accuracy is contrasted with that of 

other approaches, as shown in Figure 23. The various methods 

such as OMP, LMS, and CNN achieve an accuracy value of 

79%, 80%, and 98.7% respectively, when the SNR value is 

20dB. The accuracy values of the RNN are 99.2%, 

respectively. This suggests that RNN outperforms CNN in 

terms of accuracy. 

The spectral efficiency achieved by the proposed technique 

is compared with other approaches illustrated in Figure 24. 

The other approaches such as OMP, LMS, and CNN achieve 

a low spectral efficiency value of 30 bps/Hz, 34 bps/Hz, and 

33.8 bps/Hz. Also, compared with existing models the 

proposed model RNN achieves the highest spectral efficiency 

value of 37 bps/Hz, when the SNR value is 20dB. This 

indicates that RNN has a significantly greater spectral 

efficiency than CNN.  
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Figure 23. Comparison of accuracy 

 

 
 

Figure 24. Comparison of spectral efficiency 

 

 
 

Figure 25. Comparison of Bit Error Rate (BER) 

 

The BER achieved by the proposed technique is compared 

with other approaches illustrated in Figure 25. The other 

approaches such as OMP [28], LMS [29], and CNN achieve a 

low BER value of 0.19, 0.2, and 0.15, and RNN has a low BER 

value of 0.01 when the SNR is 20 dB Also, compared with 

existing models the proposed model RNN achieves the lowest 

BER value. 

The energy efficiency comparison of the proposed model 

with existing models is shown in Figure 26. The existing 

models such as OMP, CNN, and LMS achieve energy 

efficiency of 1.6 bits/J, 6.3 bits/J, and 2 bits/J respectively, 

when the high SNR of 20dB. The proposed RNN model 

outperforms existing models, this achieves an energy 

efficiency value of 7.5 bits/J. 

 

 
 

Figure 26. Energy efficiency comparison 

 

 
 

Figure 27. Comparison of throughput 

 

The throughput comparison of the proposed model is 

illustrated in the Figure 27. The existing models OMP, CNN, 

and LMS attain a throughput value of 165 bits/Hz, 275 bits/Hz, 

and 185 bits/Hz, respectively. Compared with existing 

beamforming techniques the proposed RNN method achieves 

a high throughput value of 290 bits/Hz. 

Table 2 provides a comparative analysis of the proposed 

RNN model against traditional methods such as OMP, LMS, 

and CNN across five performance metrics, namely accuracy, 

BER, spectral efficiency, throughput, and energy efficiency. 

The OMP method shows the lowest accuracy at 79% with high 

BER (0.19), while LMS marginally improves on both. CNN 

demonstrates significant improvements, achieving 98.7% 

accuracy and reduced BER (0.15). However, the proposed 

RNN surpasses all methods, achieving the highest accuracy of 

99.2%, the lowest BER of 0.01, and superior spectral 

efficiency (37 bps/Hz) and throughput (290 bits/Hz). It also 

leads in energy efficiency at 7.5 bits/J, highlighting its 

robustness and practical efficiency in high-performance 

mmWave communication scenarios. 

Overall, the proposed approach demonstrates that it is more 

effective and accurate when compared to previous. The 

proposed model attains a high accuracy of 99.2%, spectral 

efficiency of 37 bps/Hz, and throughput of 290 bits/Hz. 

Compared with existing models the proposed model achieves 

a less and a BER of 0.01. This proves that the proposed system 

performed well when compared to other existing techniques.
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Table 2. Comparison of proposed models with existing 

methods 

 

Method 
Accuracy 

(%) 
BER 

Spectral 

Efficiency 

(bps/Hz) 

Throughput 

(bits/Hz) 

Energy 

Efficiency 

(bits/J) 

OMP 79.0 0.19 30 165 1.6 

LMS 80.0 0.20 34 185 2.0 

CNN 98.7 0.15 33.8 275 6.3 

RNN 

(Proposed) 
99.2 0.01 37 290 7.5 

 

4.5 Discussion 

 

Unlike traditional Butler matrices that offer fixed beam 

directions, the proposed Recurrent Butler Forcing Attenuators 

Fourier Phase Distortionless Response Network introduces a 

dynamic adaptation mechanism through recurrent layers that 

learn and adjust beam directions over time. This is particularly 

effective in handling multipath fading, where temporal 

correlations in the channel state are exploited to stabilize the 

beamform. In contrast to zero-forcing methods, which suffer 

under imperfect CSI and cannot compensate for CTI, the 

modelled network uses an RNN-based structure with forcing 

attenuators to suppress interference by learning CTI signatures 

across time. The incorporation of Fourier Phase Distortionless 

Response ensures minimal phase error, leading to higher 

spectral efficiency compared to LMS and CNN-based 

beamformers. Additionally, the use of adaptive phase-shifting 

ensures real-time alignment of signal paths, maintains 

coherent beam output under mobility. The system also benefits 

from the phase tiniest variance control, which further sharpens 

the beam pattern by reducing unwanted side lobes. Overall, the 

network offers a scalable, interference-resilient solution 

tailored for ultra-dense mmWave environments. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

Conclusively, the "Recurrent Butler Forcing Attenuators 

Fourier phase Distortionless Response Network" that has been 

presented for multi-user mmWave massive MIMO Systems 

offers a thorough resolution to the issue of existing systems. 

Initially, an Amalgam Butler Zero Forcing Matrix addresses 

multi-path fading and destructive interference by increasing 

signal combining efficiency and reducing ISI effects, resulting 

in improved system performance. Then, DAFT overcomes 

angular resolution changes across frequencies, resulting in 

consistent performance and scalability to a wide range of 

propagation settings.  

Finally, the PTVSR significantly reduces CTI, improving 

beamforming accuracy despite the complications of coexisting 

wireless technologies. By incorporating these strategies into 

an RNN architecture, the system exhibits exceptional 

flexibility and resilience, opening the path for improved 

performance and reliability in complex propagation scenarios. 

At an SNR of 20dB, the model achieves a remarkable sum rate 

of 140 bits/s/Hz, high accuracy of 99.2%, spectral efficiency 

of 37 bps/Hz, throughput of 290 bits/Hz, and low BER of 0.01. 

This results in improved system performance reduced 

decoding errors, and enhanced adaptability to complex 

wireless environments. The proposed approach represents a 

significant advancement in the field of mmWave 

communication systems, offering a promising pathway toward 

overcoming the limitations posed by challenging propagation 

conditions and diverse wireless technologies. 

 

5.1 Future scope 

 

Future research will focus on reducing the computational 

overhead associated with the multi-layered RNN and hybrid 

modules by employing model compression techniques such as 

pruning, quantization, and knowledge distillation. 

Additionally, transitioning from MATLAB-based simulation 

to FPGA or GPU-accelerated environments will support real-

time deployment. Further expansion of the model will target 

operation across wider mm Wave frequency bands (e.g., 30-

100 GHz), with dynamic sub-band assignment mechanisms to 

handle spectrum fragmentation. The adaptation of the 

framework to support user mobility and rapid beam tracking 

will be investigated using lightweight attention mechanisms. 

Finally, field testing in hardware testbeds (e.g., 5G NR or 

WiGig platforms) will validate the real-world feasibility and 

robustness of the proposed system. 
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