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Multi-user millimeter-wave (mmWave) massive MIMO systems are essential for next-
generation wireless networks, offering broad bandwidth and elevated data transmission
rates. However, the existing methods face challenges such as signal scattering, interference,
and cross-technology noise. To overcome these challenges, a novel Recurrent Butler Forcing
Attenuators Fourier phase Distortionless Response Network is proposed to improve
beamforming accuracy and performance of the system. Moreover, multi-path fading in
advanced beamforming causes Inter-Symbol Interference (ISI), where delayed signals
overlap and lead to decoding errors. To address this, the first Recurrent Neural Network
(RNN) layer uses an Amalgam Butler Zero Forcing Matrix. This optimized beamforming
matrix, combined with zero-forcing algorithms, mitigates out-of-phase signals and improves
demodulation accuracy. In the second RNN layer, Debauched Attenuators Fourier
Transform (DAFT) dynamically adjusts signal amplitudes using attenuators and applies Fast
Fourier Transform (FFT) for frequency analysis. This enhances the system's ability to detect
and mitigate interference. Further, the presence of multiple wireless technologies in the same
environment introduces cross-technology interference (CTI), disrupting beamforming
accuracy. To combat this, the Phase Tiniest Variance Signal Response (PTVSR) strategy is
developed, which is integrated into the third layer of the RNN, it dynamically adjusts signal
phases and optimally combines signals using the Minimum Variance Distortionless
Response (MVDR) algorithm. This approach reduces CTI-induced errors and creates more
accurate beam patterns in complex environments. As a result, the proposed model
outperforms existing methods, achieving higher accuracy, spectral efficiency, and sum rate.

1. INTRODUCTION

While the transmitter generates a signal, the surroundings
contain barriers such as buildings and trees, causing the signal

The backbone of today's communication systems is made
up of mobile networks, sometimes referred to as cellular
networks, which provide voice and data services on portable
electronics, including smartphones and tablets. Through
several generations, each characterized by advancements in
technology and capacities, these networks have undergone
substantial evolution throughout time. Massive MIMO
beamforming is essential for improving performance in
modern mobile networks. By using a wide range of antennas
at the base station, these methods may connect with several
users at once and make use of spatial diversity to boost spectral
efficiency and signal quality. Popular beamforming
techniques include maximum ratio transmission and zero-
forcing, which seek to maximize signal power and eliminate
interference, respectively. However, massive MIMO faces
challenges like hardware complexity and energy use, which
demand advanced signal processing. Other key challenges are
the need for accurate channel data and the effect of user
mobility on beamforming performance. To fully reap the
benefits of massive MIMO and facilitate the future rollout of
dependable and efficient mobile communication systems,
these obstacles need to be overcome [1-4].
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to bounce around and follow multiple pathways before
reaching the receiver. This bouncing about is known as multi-
path fading, and it results in Inter-Symbol Interference (ISI).
Various approaches are used to precisely demodulate and
recover original symbols in the presence of ISI. Equalization
methods, such as linear equalizers and decision feedback
equalizers, are widely used to reduce ISI effects by altering the
incoming signal. Another technique is the maximum
likelihood sequence estimate, which searches for the most
probable broadcast sequence based on the received signal.
Furthermore, filter settings are continually adjusted using
adaptive equalization algorithms in response to shifting
channel circumstances. Notwithstanding these techniques,
problems still exist, such as the requirement for precise
channel status data, sensitivity to noise and interference, and
the difficulty of putting adaptive algorithms into practice.
Moreover, obtaining the best demodulation and symbol
recovery can be severely hampered by time-varying features
and non-linearities in the communication channel. Improving
communication system performance in the context of multi-
path fading and ISI continues to be a focus of developing
reliable and computationally efficient solutions to solve these
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issues [5-8].

Another component that has to be considered to further
enhance the quality of signal transmission is angular resolution,
since it is necessary to minimize undesired signal transmission
in other directions. The capacity to discern between sources
that are closely spaced in the angular domain is referred to as
angular resolution in beamforming. An array of sensors with
separated components is a popular way to acquire angular
resolution. Spatial diversity is used to differentiate between
incoming signals originating from wvarious directions. A
different strategy is to use shorter wavelengths or higher
frequencies, which by definition have a smaller beam width
and hence offer superior angular resolution. Nevertheless,
actual implementations face difficulties, such as the
requirement for higher hardware costs and computational
complexity when using dense sensor arrays. In addition,
angular resolution can be deteriorated by problems such as
multipath propagation, mistakes in data processing, and
mutual coupling between sensors. In beamforming
applications, finding the ideal angular resolution continues to
be a constant problem of balancing system complexity and
performance [9-12].

Additionally, to the aforementioned factors, another
dynamic aspect that affects the effective transmission of
signals across diverse wirelessly connected devices is cross-
technology interference (CTI). When signals from many
technologies interfere with one another, particularly in the
millimeter-wave (mmWave) band, this phenomenon is
referred to as CTI. Several techniques are used to reduce CTI
in mmWave communications. To concentrate signals and
lessen interference, one method uses sophisticated signal
processing techniques like beamforming and beam steering.
Using sophisticated coding and modulation techniques to
increase signal resilience in the face of interference is another
tactic. Furthermore, approaches for allocating resources in the
frequency and temporal domains are utilized to maximize the
utilization of available spectrum and reduce interference.
Nevertheless, there are drawbacks to these techniques, such as
higher computing complexity, power consumption, and the
requirement for complicated gear. Moreover, the dynamic
character of wireless environments and the cohabitation of
many technologies present continuous difficulties in the
development of adaptive and successful CTI mitigation
techniques for mmWave communication networks. To fully
utilize mmWave technology in the future wireless
communication networks, these issues need to be resolved [ 13-
15].

Despite significant progress in improving the efficiency and
simplifying multi-user mmWave massive MIMO systems,
numerous enhancements are still needed to achieve a better
propagation path through efficient angular resolution,
avoiding inference, and other research limitations.

1.1 Main contribution of this study

The following methodological and
contributions have been achieved by this paper:

* To overcome overlapping symbols and decoding problems
due to ISI, an Amalgam Butler Zero Forcing Matrix in the
RNN's first layer is introduced, in which Butler matrix
optimizes beamforming and zero-forcing algorithms to
minimize ISI and mitigate, thereby enhancing signal
demodulation in heavily scattered environments.

* To effectively handle varying angular resolutions, DAFT

experimental
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is introduced in RNN's second layer. In which attenuators
dynamically adjust signal amplitudes and FFT performs
frequency-domain analysis, ensuring consistent performance
in mmWave communication systems amidst interference.

* To mitigate the CTI from coexisting wireless technologies,
the Phase Tiniest Variance Signal Response (PTVSR) is
utilized in RNN's third layer. This combines phase shifters and
the MVDR algorithm to suppress noise and enhance
beamforming accuracy, resulting in precise beamforming and
improved performance in environments with diverse wireless
technologies.

1.2 Organization of the paper

This work is divided into the following sections. Section 2
discusses the existing literature on mmWave communication
systems and summarizes the available approaches. Section 3
explains the suggested approach and workflow for this work.
Section 4 explains the datasets, as well as the experimental
methodology, the analytical results, and the comparison to
previous investigations. Finally, Section 5 sums up the study.

2. LITERATURE SURVEY

This literature review examines existing research efforts
focused on improving the performance of large MIMO
systems, given the complexity and quick improvements in
mmWave communication systems. To overcome issues like
inter-user  interference, hybrid  beamforming, and
computational complexity, the study explores creative
solutions put forth by different researchers. This provides an
understanding of how mmWave communication technologies
are developing.

Carrera et al. [16] examined the concept of improving multi-
user millimeter wave (mmWave) communications
performance in three stages. The first is achieved by applying
a revised pilot mapping to minimize inter-user interference
and achieve more precise channel estimations. The second step
involved designing a hybrid receiver that, depending on the
accuracy of the Channel State Information (CSI), selected
between the multi-user regularized zero-forcing beamforming
(RZFBF) and the minimum mean square error (MMSE)
receivers to combine/precode the massive multiple-input
multiple-output (MIMO) signal. To enhance multi-user
efficiency and lessen inter-user interference, it was suggested
that, during the third phase of uplink communications, the
beam direction be enhanced with a little change in azimuth
angle. However, this kind of structure's computational
complexity and hardware design are now too costly for
widespread use.

Dilli [17] developed a downlink hybrid beamforming
communication system for multiple users that was multi-user
mMIMO and had several independent data streams per user as
well as accurate channel status information. It focused on the
mmWave MU-mIMO hybrid beamforming system's hybrid
precoding at the transmitter and combining at the receiver. The
study's conclusions illustrate the trade-off between the number
of BS antennas required and the number of data streams per
user. To achieve higher order throughputs in mmWave MU-
mMIMO systems, it was highly suggested to employ more
parallel data streams per user. On the other hand, more data
streams per user result in increased interference and possible
user crosstalk.



Zhang et al. [18] examined a multiuser, sub-connected,
mmWave large MIMO system with a hybrid (analog/digital)
beamforming architecture. Focus on this system's sum-rate
maximization problem. The receiver and transmitter were
jointly designed using a two-stage design method. The
proposed piecewise dual joint iterative approximation (PDJIA)
approach was used to construct the analogue beamformer and
combiner. This method provided both closed-form solutions
and linear properties. By using the baseband piecewise
successive approximation approach, the problem of digital
beamforming was addressed and the number of consumers
serviced can be efficiently increased. Furthermore, the
proposed techniques result in sensitivity to changes in the
channel conditions.

Huang et al. [19] presented a framework for extreme
learning machines (ELMs) to simultaneously optimize
beamformers for transmission and reception. Initially,
describe an HBF approach based on fractional programming
and majorization-minimization to provide precise labels for
training. Then, to increase beamformer resilience, an ELM-
based HBF (ELM-HBF) design was offered. In comparison to
traditional methods, higher system sum rates were achieved
with both FP-MM-HBF and ELM-HBF. Moreover, ELM-
HBEF required incredibly little time to calculate and had good
HBF performance. It is necessary to evaluate the proposed
framework's scalability to bigger and more intricate
communication networks.

Zhang et al. [20] focused on the full-connected topology-
based hybrid beamforming design of a downlink mmWave
massive multi-user MIMO (MU-MIMO) system, with the
target function of system sum rate optimization. In the
piecewise successive iterative approximation (PSIA)
technique, the analogue beamformer and combiner were
constructed during the analogue beamforming step. This
approach produced closed-form answers in addition to its
linear characteristic. The piecewise successive approximation
approach, which was simple to implement and helped reduce
computation complexity, was used in the digital beamforming
stage to design the digital beamforming based on the necessity
to prevent information loss. However, the massive MIMO
systems are designed to handle a large number of antennas, so
the scalability of the PSIA approach should be carefully
evaluated.

Zhang et al. [21] investigated the hybrid beamforming
technique for the big MIMO relay system with mixed and full-
connected structures in the decode-and-forward (DF)
milliwave. Maximize the aggregate rate of the entire system to
optimize hybrid beamforming in relay systems as an objective
function. Then, to minimize computing complexity,
reformulate the original problem into two single-hop
mmWave MIMO sum-rate maximization sub problems. The
piecewise successive approximation technique is then
provided, based on the criterion that simultaneously designs
the analogue and digital beamforming stages while trying to
prevent information loss at each level. Nevertheless, there are
difficulties in reaching convergence using the sequential
approximation approach since it requires repeated
optimization at every level.

Lizarraga et al. [22] proposed a hybrid beamforming
technique for a multiuser huge MIMO system that is based on
deep reinforcement learning (DRL). This approach allows the
analogue beamforming matrix to be updated iteratively while
scheduling individual users. In addition to this approach, a
Singular Value Decomposition operation in a reduced-size
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channel matrix was employed to determine the hybrid
beamforming scheme's most practical digital precoder matrix.
The DRL processing was centralized in the receiver to service
the scheduled user. It used a low-rate feedback channel to
determine the most wuseful update of the analogue
beamforming matrix coefficient. It is necessary to evaluate the
proposed framework's scalability to bigger and more intricate
communication networks.

Jafri et al. [23] designed a hybrid beamformer for a multi-
user multi-cell (MUMC) mmWave system that utilized
transmit power reduction and BS coordination, subject to
realistic limitations on the signal-to-interference-plus-noise
ratio (SINR) at each mobile station. In the beginning, a
centralized MUMC system's completely digital beamformer
with flawless CSI was identified using a semidefinite
relaxation-based method. Next, the fully-digital (FD) solution
was divided into its analogue and digital components using a
Bayesian learning approach to build a hybrid transceiver. To
eliminate the substantial signalling overheads required by the
centralized approach, a distributed hybrid beamformer based
on the alternating direction method of multipliers was devised
for the same system. This beamformer only required local CSI
and minimal information transmission across the BSs. In
dynamic situations, the performance of coordinated hybrid
beamforming solutions for MUMC mmWave MIMO systems
is affected by the dependence on precise CSI.

Zhan and Dong [24] analysed the downlink multi-user
massive MIMO system operating at mmWave and provided an
interference cancellation (IC) framework for hybrid
beamforming design. Three successive interference
cancellation (SIC) assisted hybrid beamforming techniques
were offered based on the proposed structure to handle intra-
and inter-user interference. In particular, the first suggested
technique employs SIC to cancel intra-user interference and
zero-forcing (ZF) to cancel inter-user interference. In the
second, intra-user interference was cancelled using ZF, and
inter-user interference was cancelled using SIC. The third
technique used SIC to decrease intra-user interference as well
as inter-user interference. Moreover, the post-detection SINR
determined the ideal detection sequence for data streams.
However, the proposed algorithms are designed for flat fading
mmWave channels and fully connected structures, which
limits their applicability in wideband mmWave channels.

Muthukumaran [25] provided innovative techniques for
efficient hybrid precoding and channel estimation in mmWave
communication systems. Convolutional neural networks
(CNNs) were used to solve the problems associated with
channel estimation, and the Enhanced Whale Optimization
Algorithm (EWOA) was used to optimize the network
parameters. The suggested CNN-based channel estimating
technique helped more effectively and simply estimate the
channel in mmWave systems. Through the use of the EWOA
optimization method during CNN training, the network
parameters were adjusted to enhance the channel estimation
process's precision and capacity for generalization. Moreover,
adaptive RBFNN was used to produce hybrid precoding,
which allowed for effective precoding while reducing
complexity. However, this limits their applicability in
wideband mmWave channels.

Previous studies have highlighted several limitations. First,
the hardware design and computational complexity for this
structure are prohibitively expensive [16]. Second, increasing
the number of data streams per user raises interference levels
and may cause crosstalk between users [17]. Third, the



proposed approaches are sensitive to channel condition
variations [18]. Fourth, the scalability of the framework must
be assessed for larger and more sophisticated communication
systems [19]. Fifth, although massive MIMO systems are
designed to support a large number of antennas, the scalability
of the PSIA technique remains a concern [20]. Sixth, the
sequential approximation approach requires iterative
optimization at each level, and convergence is often difficult
to achieve [21]. Additionally, scalability to more complex
networks must be evaluated [22]. Moreover, reliance on
accurate CSI limits beamforming performance in dynamic
scenarios [23] and restricts applicability in wideband
mmWave channels [24, 25]. Therefore, an innovative method
is needed to address these issues and to systematically evaluate
the performance of the proposed beamforming technique.

3. RECURRENT FORCING FOURIER PHASE
DISTORTIONLESS RESPONSE NETWORK FOR
MODERN MOBILE NETWORKS

mmWave communication systems, which operate at
frequencies ranging from 30 to 300 GHz, have higher data
speed and greater bandwidth, making them innovators for
fifth-generation (5G) wireless networks. However, problems
develop in situations with dense scatters, where multi-path
fading causes destructive interference. To overcome these
issues in multi-user mmWave massive MIMO Systems, a
unique solution named Recurrent Butler Forcing Attenuators
Fourier phase Distortionless Response Network is proposed.
In advanced beamforming techniques, overcoming the impact
of out-of-phase dispersed signals remains difficult. Multi-path
fading generates delayed signal versions, resulting in ISI
Varying signal arrival delays worsen interference between
signals, resulting in overlapping symbols at the receiver. These
distortions impede proper demodulation, resulting in decoding
errors and a considerable performance impact. The Amalgam
Butler Zero Forcing Matrix is intended to address the issues
caused by multi-path fading and destructive interference in
extensively distributed situations. In this, the Butler matrix
improves beamforming by integrating signals from several
antennas, and the zero-forcing method decreases ISI by
removing delayed versions of transmitted signals, which
improves the changes in signal arrival timings induced by
multi-path fading. Incorporating this matrix into the RNN's
first layer enables the network to adapt to dynamic interference
patterns, enhancing accurate demodulation and reducing
decoding errors.

Also, effective angular resolution is necessary for reducing
interference by steering beams away from undesirable
directions. However, varying angular resolution with signal
frequency complicates maintaining consistent performance
across a wide band. This fluctuation results in inconsistent
performance across different frequency components, affecting
overall system reliability. Thus, DAFT is introduced to
address varying angular resolution. It uses attenuators to adjust
signal amplitudes, mitigating multi-path fading and
interference. FFT is then used to analyse the signals for
frequency-domain analysis. The DAFT technique is integrated
into the RNN’s second layer. It allows the network to learn
spatial-temporal features and adapt to interference patterns.
This ensures consistent performance across the full bandwidth

Moreover, beamforming algorithms are interfered with and
noise is added by CTI, which is caused by the coexistence of
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numerous wireless technologies in one area. This interference
results in beamforming systems generating inaccurate patterns.
To tackle CTI in environments with multiple wireless
technologies, the PTVSR is introduced. This method uses
RNN's temporal dependencies to dynamically adapt to the
changing wireless landscape. The phase shifter is introduced
to adjust incoming signal phases and the MVDR algorithm
optimally combines these adjusted signals, the system
suppresses noise and enhances beamforming accuracy.
Embedding this solution into the third RNN layer allows the
system to effectively learn and adapt to complex signal
interactions, mitigating CTI-induced inaccuracies and
producing precise beam patterns in multi-technology
environments.

Figure 1 illustrates the overall architecture of the proposed
model. Three essential elements are included across the
architecture's levels to improve system performance overall.
First, the Amalgam Butler Zero Forcing Matrix addresses
multi-path fading and destructive interference by maximizing
beamforming and reducing ISI. It is included in the RNN's first
layer and allows for dynamic response to interference patterns.
Second, the second RNN layer incorporates the DAFT
approach, which dynamically modifies signal amplitudes to
reduce angular resolution fluctuations between frequencies.
This makes it easier to learn spatial-temporal features, which
is essential for reliable performance over the bandwidth.
Lastly, the PTVSR in the third RNN layer uses the MVDR
algorithm to combine signals optimally and modify the phases
of the signals to solve CTI.

3.1 Amalgam Butler Zero Forcing Matrix

A unique technique called the Amalgam Butler Zero
Forcing Matrix is intended to tackle the problems that arise in
mmWave communication systems, especially in high-scatterer
situations where destructive interference and multi-path fading
are prevalent. The Butler matrix and the zero-forcing method
are the two essential elements combined in the Amalgam
Butler Zero-forcing matrix.

3.1.1 Butler matrix

To provide an optimized beamforming Butler matrix is used,
which produces constructive interference at the intended
receiver position by adjusting the phase and amplitude of
signals from each antenna element. It is well-suited for this
research because of its effective nature for integrating signals
from various antennas while providing spatial beamforming,
which is essential for increasing signal quality and minimizing
interference. Figure 2 shows the architecture of the butler
matrix. A uniform rectangular array is used here. The Butler
matrix is a beamforming network that consists of crossover,
phase shifters, and hybrid couplers. The Butler matrix contains
input ports and output ports. The system receives signals from
multiple antennas. The input signals are fed into hybrid
couplers, passive devices that split the incoming signals into
two equal parts. Each path corresponds to a specific beam
direction. Each of the split signals goes through phase shifters.
The signals originating from various antennas are subjected to
controlled phase shifts due to these phase shifters. In the
desired direction, signals from various antennas are
constructively (in-phase) aligned to reinforce each other by
controlling these phase shifts suitably, while signals from
other directions diminish because of destructive interference
(out-of-phase).
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After passing through the phase shifters, the signals are
combined using a crossover network. The signals are
combined in such a way that they reinforce each other in the
desired direction and cancel out in other directions, thereby
forming a directive radiation pattern. The Butler Matrix
efficiently combines signals from multiple beams, allowing
simultaneous transmission to multiple users. By controlling
the phase and amplitude of the signals from each antenna
element, the Butler matrix optimizes beamforming to mitigate
the impact of out-of-phase scattered signals. This helps in
focusing the transmitted energy towards the desired receiver
and reducing interference from other directions.

3.1.2. Zero-forcing algorithm

To further enhance performance, the Butler matrix output is
further processed using a zero-forcing algorithm. The zero-
forcing technique is used to reduce ISI by cancelling out the
interference created by delayed replays of the transmitted
signal. The zero-forcing algorithm, due to its simplicity and
effectiveness in nullifying interference in environments with
heavy scatters, is most suitable for this research. It works by
creating an inverse filter that causes the received signal to
match the transmitted signal at precise times, thereby wiping
out interference from previous signals. Let denote the received
signal (y) be represented as in Eq. (1), which is the
convolution of the transmitted signal (x) and the channel
impulse response (h), corrupted by additive noise n. The zero-
forcing beamforming matrix is derived by inverting the
channel matrix to eliminate inter-user interference. The
received signal is,

y=hxx+n €]

Then zero-forcing equalizer estimates the transmitted signal
x from the received signal y. This channel response includes
the effects of multi-path fading and delays.

=Wy 2
where, X is the estimated transmitted symbol vector. Using the
estimated interference, the Zero Forcing algorithm designs a
filter that nullifies the interference while preserving the
desired signal. It does this by applying a filter matrix (Zero
Forcing matrix) Wy to the received signal, which is expressed
in the following Eq. (3). To null interference, ZF finds a
weight matrix W such that HW = [ Using the Moore-Penrose
pseudo-inverse:

Wyp = (H'H) 'H* 3)
where, H is the channel matrix. By applying the zero-forcing
matrix Wy to the received signal vector y. This ensures
HW,= 1, perfectly decoupling user streams under ideal
conditions. The filter is made to reverse the channel matrix's
effects on the received signal, effectively cancelling out
interference from delayed transmissions. By doing so,
interference from previous signals is also effectively
eliminated, lowering ISI and increasing the receiver's ability
to detect signals accurately.

To enhance the system's adaptability to dynamic
interference patterns, the Amalgam Butler Zero-Forcing
Matrix is incorporated into the first layer of an RNN. Each
neuron in the first layer of the RNN corresponds to an element
in the Butler Zero Forcing Matrix. The hidden state of this first
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layer is expressed in the following Eq. (4)

K = o(Wyk' Key ' + W' Wy + Bh) “4)
The RNN's capacity to keep a memory of previous inputs
allows it to lessen the effects of ISI by learning to recognize
and correct delayed transmissions. By processing sequential
data representing received signals over time, the RNN
effectively captures the temporal variations caused by multi-
path fading and interference. This is essential for correctly
demodulating and retrieving original signals from distorted
waveforms under challenging propagation conditions.

3.2 Debauched Attenuators Fourier Transform (DAFT)
for consistent angular resolution

In mmWave communication systems, the problems caused
by differing angular resolution across a wide frequency range
are tackled using the DAFT, which is incorporated in the
RNN’s second layer. The RNN first layer output is given to
the DAFT.

In DAFT initially, attenuators are used, which dynamically
adjust the amplitudes of incoming signals. The attenuators
continuously monitor the incoming signals to identify their
characteristics, such as signal intensity and interference. Based
on the detected signal characteristics, the attenuators are
dynamically adjusted to modify the amplitudes of the signals.
The attenuator reduces the amplitude of a signal that is too
strong, while allowing more of the signal to pass through
without attenuation.

As the signals travel through attenuators, their amplitudes
are changed in real-time. This dynamic attenuation reduces the
impacts of multi-path fading by adjusting for signal variations
generated by reflections and diffraction. Attenuators also
assist in mitigating the effects of destructive interference by
altering signal intensities. This adjustment reduces
interference produced by signals from unexpected directions
or other sources operating in the same frequency range.
Attenuators improve the overall quality of signals received by
dynamically changing their amplitudes. By dynamically
adjusting signal amplitudes, DAFT helps in maintaining more
consistent angular resolutions across different frequency
components.

After signal amplitude adjustment by attenuators, the
signals are processed using the Fast Fourier Transform (FFT).
FFT converts the time-domain signals into the frequency
domain, allowing for frequency-domain analysis. The ability
of FFT to efficiently compute the DFT of a sequence makes it
suited for this research, especially in scenarios where a high
number of frequency components need to be analysed at the
same time.

The input to the FFT is a sequence of N complex
numbers x[n], where n =0,1,..,N —1. This sequence
represents sampled signal values in the time domain. FFT
employs a divide-and-conquer strategy to efficiently compute
the frequency components of the input signal. Divide the
sequence x(n) into two smaller sequences, one for the even-
indexed items x,[m] = x[2m] and the other for the odd-
indexed elements x,[m] = x[2m + 1]. Recursively apply the
FFT to the even-indexed and odd-indexed sequences, which
are expressed in the following Egs. (5) and (6)

31 - jEgem (5)
Xelk] = xe(m)e "N/

m=0



N
-1
m=0

. 2T
Xolk] = X2z (mye W72 ©
After recursively computing the FFTs of the smaller
sequences (denote the results as (X, [k], X.[k]), combine them
to get the FFT of the original sequence. Combine the results of
the smaller FFTs to form the FFT of the original sequence,
using the following Egs. (7) and (8).

X(k) = X [k] + W¥ - X, [K] (7)

(k + N/2) = X,[k] = W - X, [k] @®)

The FFT algorithm calculates the frequency-domain
representation of the signal. The formula for the FFT is given
by the following Eq. (9)

X() = g x(nye ©
where, x(n) is the time-domain signal, X (k) is the frequency-
domain representation, N is the number of points in FFT, and j
is the imaginary unit. Then the results to obtain the overall
frequency spectrum. The resulting sequence X[k] represents
the frequency-domain transformation of the original sequence
x[n]. It reveals how different frequency components are
distributed in the signal. FFT provides a frequency-domain
representation that allows for the analysis of different
frequency components. Using FFT to analyse the data in the
frequency domain allows for the capture of the various angular
resolutions since different angular resolutions correlate to
distinct frequency components in the received signal. The
algorithm for FFT is given below in Algorithm 1.

Algorithm 1: FFT
Input: A sequence x[n] of length N

1.  Initialization: Start with a sequence x[n] of length
N.
2.  Divide the Sequence
Separate the sequence x into two sub-sequences
X.[m] containing the elements at even indices.
X,[m] containing the elements at odd indices
3.  Recursive FFT:
Recursively compute the FFT of the even-
indexed elements (X,[k])
Recursively compute the FFT of the odd-
indexed elements (X, [k])
4. Combine the Results:
Initialize an empty array X[k] of length N to
store the final FFT results.
Combine the results
5. Return the Result:

Return the array X[k] containing the frequency-
domain representation of the input sequence x[n].
Output: The frequency-domain representation X [k] of
the input sequence x[n].

Figure 3 presents the flow diagram of DAFT. The process
starts with acquiring the raw input signal, which is fed into the
first layer of a Recurrent Neural Network (RNN) to capture
temporal dependencies. This initial processing prepares the
data for refinement. Next, the signal undergoes dynamic
amplitude adjustments to enhance relevant features and
suppress noise. The conditioned signal is then passed to the
FFT module. The FFT operates using a divide-and-conquer
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strategy, recursively breaking the signal into smaller parts.
Each segment is transformed individually, and the results are
efficiently combined. This yields a complete frequency
domain representation. The output reveals essential frequency
components for further analysis. The process integrates RNN-
based temporal modelling with FFT-based spectral analysis.

Input Signal to
RNN

i

First Layer RNN
Processing

}

Dynamiec Amplitude
Adjustments

|

Attenuated Signal
(FFT Input)

l

FFT Divide and
Conquer Strategy

!

Combine FFT
Qutputs

l

Final Frequency
Domain Outputs

Figure 3. Flow diagram of DAFT

This DAFT is integrated into the second layer of the RNN,
this layer captures spatial-temporal features and mitigates
interference patterns due to varying angular resolutions. RNN's
learn to recognize and adapt to spatial and temporal patterns in
signal data. Spatial patterns include the direction of signal
arrival, whereas temporal patterns comprise variations in
signal amplitude or interference over time. The RNN's hidden
states encode these patterns, allowing the network to
discriminate between various signal sources and reduce
interference. The RNN hidden state can be expressed as in Eq.
(10):

K? = o(Wi’Ke* + Wi *X (k) + Bic?) (10)

The RNN adjusts its hidden state depending on the input
signal at each time step, taking into account the previous
hidden state as well as details about the received signals, such
as their frequencies and angular resolutions. The adaptive
nature of the RNN ensures consistent performance across the
entire bandwidth. It continuously learns and adapts to
changing conditions, maintaining optimal signal quality.

With the use of dynamic attenuators and FFT, along with an
RNN for beamforming, the DAFT approach efficiently
manages wide frequency spectrums and different angular
resolutions. This hybrid approach improves the system's



capacity to adjust to intricate interference patterns while
simultaneously reducing destructive interference and multi-
path fading, guaranteeing reliable and steady operation.

3.3 PTVSR for CTI

The PTVSR is an innovative method for addressing in
environments where various wireless technologies coexist,
such as Wi-Fi and Bluetooth. This method uses an advanced
phase shifter and MVDR beamforming inside an RNN’s third
layer

In PTVSR, initially phase shifter is introduced to adjust the
phase of incoming signals. The system first examines the
presence of interference in the received signals. When signals
from various wireless technologies operate in the same
environment, they can interfere with one another due to
mismatches in their frequencies, amplitudes, and phases.
Interfering signals vary in strength and amplitude compared to
the desired signals. By measuring the strength of received
signals across different frequency bands, the system identifies
the presence of interference. When interference is identified,
the phase shifter dynamically modifies the incoming signal’s
phase. The purpose of this adjustment is to minimize the effect
of conflicting signals while optimizing the signal's alignment
with the intended beamforming direction. This phase
adjustment process is mathematically represented in Eq. (11).

x'(t) = x(t) x eJ® (11)
where, x'(t) represents the phase-shifted signal, x(t) is the
incoming signal, and ¢ denotes the phase shift angle. The
phase shifter applies a controlled delay to the incoming signal
to ensure proper operation. This delay changes the phase of the
signal waveform and alters the phase of the signals. Further,
the phase shifter helps to spatially separate the desired signal
from interfering signals, thereby enhancing the signal-to-
interference ratio.

Phase Tiniest Variance Signal Response

Phase shifter
Minimum
Variance
-l @ | - Distortionless
i Response

Output

RNN

Hidden layers

Figure 4. Block diagram of PTVSR

Figure 4 illustrates the block diagram of PVSR. After phase
adjustment, the signals are fed into the MVDR beamformer.
The adaptability and noise suppression properties of WVDR
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are discussed in this section. The MVDR algorithm optimally
combines the phase-adjusted signals to form a beam that
minimizes interference and noise while maintaining the
integrity of the desired signal. Let y(t) denote the received
signal vector at the time t. The first step in the MVDR
algorithm is to compute the covariance matrix C from the
received signals. The statistical correlations between the
received signals at various sensor components are represented
mathematically by the covariance matrix. The covariance
matrix C is calculated as follows in Eq. (12):

1

TN

C === %' (O)x7 () (12)
where, N is the number of signals, x'® is the vector of
received signals at a time t, and H is the hermitian transpose.
Following that, the optimal beamforming weights w,,, are
calculated using the MVDR algorithm.
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Phase Shifter

l

MVDR

l
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}
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Network

Output Layer

Figure 5. Flowchart of PTVSR

The flowchart of PTVSR is depicted in Figure 5. The
process begins by adjusting the input signal's phase using a
phase shifter. It then passes through the MVDR filter, which
minimizes noise while preserving essential features. The
refined signal is formatted and delivered to a RNN. The
RNN’s hidden layers learn and analyse the signal’s temporal
patterns. Ultimately, the output layer generates the final
prediction or response, represented as Y (t).

To minimize the array output power P, while ensuring
unity gain in the direction of the desired signal, the
corresponding steering vector is used, and the optimal weight
vector is selected accordingly. The MVDR problem minimizes
output power while preserving gain in the desired direction.
The following is a possible syntax for the MVDR adaptive
algorithm:

min, {wfCw}  subject tow"a() =1 (13)
where, a(0) is the steering vector. The next step involves
calculating the spatial filter weights that optimize the
beamforming performance. Mathematically, the MVDR
weights vector wy, is given by the following Eq. (14):

()
WM = al(6)c~1a(8)

(14)



Finally, Multiplying the spatial filter vector wy, by the
received signal vector yields the MVDR beamformer's output,
represented as Y, which is shown in Eq. (15)

Y = whx'(t) (15)

MVDR dynamically adjusts to environmental changes by

updating the beamformer weights using the spatial covariance

matrix. By applying Lagrange multipliers, the solution is
derived as follows:

c~1a(6)
aH(@)c1a()

(16)

WmyDR =

This allows it to mitigate interference from coexisting
wireless technologies and produce more accurate beam
patterns. In the PTVSR module, the phase shift angle ¢ is
varied in the range [—m, ], with a resolution of 0.17 radians.
This dynamic range allows precise phase steering to mitigate
CTL. In the DAFT module, the attenuators dynamically adapt
within a 0-30 dB range. If the SNR falls below 20 dB, the

attenuation is proportionally decreased based on the SNR level.

The adjustment is governed by:

A(t) = A(t = 1) + a(Srer — Smeasurea )> With (17)
a = 0.05

where, S,..f is the reference signal strength. The algorithm for
PTVSR is given in algorithm 2.

Algorithm 2: PTVSR
Input: Received signal vector x(t) at time t, number of
signals N, steering vector a(6),

1. Initialization: Set phase shift angle ¢ = 0.

2. Phase adjustment:
For each incoming signal x(t) do
Calculate interference  presence by
measuring signal strength across frequency
bands.

Adjust the phase of incoming signals
using x'(t) = x(t) x /¢
End for
3. Compute Covariance Matrix:
Calculate the covariance matrix (C) of the phase-shifted
signals using Eq. (12)
4. Calculate Optimal Beamforming Weights:
Using Eq. (14)
5. Apply Beamforming Weights:

Multiply the optimal weights by the received signal
vector to form the beamformed output using Eq. (15)
Output: Produce the final beamformed signal (Y) with

minimized interference and noise.

The combined solution, comprising the phase shifter
adjustment and MVDR-based beamforming, is embedded into
the third layer of the RNN. This integration allows the system

to learn and adapt to the complex interplay of signals over time.

The third layer of the RNN will receive this combined solution

if the hidden state update equation is modified as follows in
Eq. (18):

KZ = oWy *K:? + WY + Bi®) (18)

The system makes use of the RNN's capacity to record

temporal dependencies, allowing it to dynamically adapt to
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changing wireless sceneries. Finally, the RNN’s output is
generated based on the hidden state of the third layer, which is
expressed in the following Eq. (19):

The output layer of the RNN generates demodulated
symbols based on the learned representations from the hidden
layers. These symbols represent the recovered information
transmitted by different users, with reduced distortion and
interference effects. Through the use of the RNN's capacity to
acquire consecutive patterns, the network efficiently reduces
errors caused by CTI and generates more accurate beam
patterns. The RNN architecture's incorporation of the phase
adjustment procedure and the MVDR algorithm improves the
network's capacity to reduce interference and boost
beamforming accuracy in situations with a variety of wireless
technologies, such as Wi-Fi and Bluetooth, which improves
performance in contexts with a variety of wireless
technologies.

Overall, the proposed hybrid beamforming approach
increased signal quality by lowering ISI effects, assuring
constant performance over the whole spectrum, and mitigating
interference from other wireless technologies.

4. RESULT AND DISCUSSION

This section contains a full description of the
implementation findings and the proposed system's
performance, as well as a comparison section to ensure that the
proposed approach is appropriate for multi-user mmWave
massive MIMO systems.

4.1 Experimental setup

The "Recurrent Butler Forcing Attenuators Fourier phase
Distortionless Response Network" experimental setup for
multi-user mmWave massive MIMO systems involves
utilizing a uniform rectangular array configuration with 108
transmitting antennas and Number of RF chains is 54. In the
hybrid beamforming setup, the number of RF chains is less
than the number of transmitting antennas. The CSI is
considered imperfect, reflecting real-world conditions. Speech
signal samples, generated using a standard generator, are
employed for training the neural network model. The dataset
comprises 1000 different speech samples, which are split into
a 9:1 ratio for training and testing, respectively. The proposed
system is simulated in MATLAB, and this section includes an
extensive discussion of the implementation results and
performance, as well as a comparison section to confirm that
the proposed setup functions properly. Table 1 represents the
system configurations which are used to design the proposed
model.

4.2 Simulated output of the proposed model

In this section, examine the analysis of simulation output
from the proposed Recurrent Butler Forcing Attenuators
Fourier phase Distortionless Response Network. This aims to
provide constructive insights and interpretation of the
simulation output.

DAFT results of magnitude and phase of the proposed
model is shown in Figure 6. The magnitude of the signals
varies significantly across the frequency index for each user.



The variations in amplitude indicate that the system
dynamically adjusts the signal amplitudes to manage
interference and optimize beamforming. The diverse
amplitude responses suggest that DAFT effectively mitigates
multi-path fading and destructive interference, enhancing
spectral efficiency. The phase responses for each user vary
widely across the frequency index. This indicates that the
system is adjusting the phase of incoming signals dynamically
to mitigate the impact of interference. The phase adjustments
show the system's ability to handle varying angular resolutions

DAFT Results (Magnitude)

across the frequency spectrum, crucial for maintaining high
spectral efficiency.

Table 1. System configurations

Components Specifications
Software MATLAB
(N} Windows 10 (64-bit)
Processor Intel i5
RAM 8GB RAM
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Figure 7. Adjusted and received signals
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Figure 9. Original and decoded speech signal

Adjusted and received signals of the proposed model are
expressed in Figure 7. The top plot shows the received signal.
The signal amplitude fluctuates widely, indicating the

presence of various out-of-phase components and interference.

The next plot depicts the signal after applying the PTVSR
technique. This method adjusts the signal phases to reduce
interference effects. As a result, the amplitude variations are
more confined, and the signal appears to be less distorted,
demonstrating a reduction in CTI and noise. The last plot
shows the signal after additional phase shifting. This phase
adjustment aligns the signal components to further mitigate the
effects of multi-path fading. The amplitude variations are
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smoother and more uniform, indicating improved signal
coherence and reduced destructive interference.

Figure 8 illustrates the transmission and reception of signals
for eight users in a multi-user mmWave massive MIMO
system, depicting the effects of multi-path fading and
interference. The transmitted signals for all users are uniform
and consistent, showing that the system can handle multiple
users transmitting simultaneously without initial interference.
The real part of the received signals for each user is shown,
demonstrating substantial amplitude variations and noise. The
imaginary part of the received signals is also significantly
distorted and noisy. The variations indicate the complex nature



of the received signals due to channel effects.

The above Figure 9 shows the original and decoded speech
signal of the proposed model. The top plot illustrates the
original speech signals, which fluctuate within the amplitude
range of approximately -5 to 5 over a time of 4x10*. These
signals contain various frequencies and amplitudes,
representing the natural variability in speech. The bottom plot
shows the decoded speech signals at the receiver, also
fluctuating within the same amplitude range of about -5 to 5
over the same time. This indicates that the RNN has
successfully demodulated and reconstructed the speech signals
with high fidelity, preserving the integrity and quality of the
original audio.

4.3 Performance analysis of the proposed model

This section provides an extensive investigation of the
proposed multi-user mmWave massive MIMO systems,
focusing on its robustness, accuracy, and efficiency. The
performance of the approach is measured using a range of
metrics and benchmarks, which allows for a comprehensive
examination and confirmation of its efficacy in beamforming.
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Figure 10. Propagation delays vs users
The Figure 10 illustrates the propagation delays

experienced by different users in the system, as the number of
users increases. For 1 user, the proposed approach has a delay
of 0.2 seconds, and as the number of users increases to 8 the
delay of the proposed system increases to 1.3 seconds. The
PTVSR approach dynamically adjusts the phase of incoming
signals to reduce interference and propagation delays.
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Figure 11. Actual distance vs users

The actual distances between the users are shown in Figure
11, which increases linearly as the number increases. For user
1, the proposed approach has an exact distance of 5 meters,
and when the number of users increases to 8, the actual
distance of the proposed system rises to 40 meters. As the
number of user’s changes or as users move, the PTVSR
adaptively mitigates interference, leading to more precise
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beam patterns and different

distances.

improved performance across
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Figure 12. Accuracy of the proposed model

The above Figure 12 illustrates the accuracy of the proposed
model. When the SNR value is -10db, the proposed approach
achieves a minimum accuracy of 40%, whereas when the SNR
value is 20db, it achieves a maximum accuracy of 99.2%. The
phase shifter and MVDR algorithm improve accuracy by
dynamically adapting to changing wireless landscapes and
optimally combining adjusted signals to suppress noise,
enhancing the accuracy of beamforming.
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Figure 13. Spectral efficiency vs SNR

Figure 13 depicts the spectral efficiency of the proposed
model vs SNR. The proposed approach has a low spectrum
efficiency of -7.5 bps/Hz at -10db SNR, however, it achieves
its best spectral efficiency value of 37 bps/Hz at 20db SNR.
DAFT enhances spectral efficiency by dynamically adjusting
signal amplitudes to mitigate the impact of multi-path fading
and destructive interference.

Figure 14 shows the spectral efficiency (in bits/s/Hz) versus
the number of users (ranging from 1 to 8) in the proposed
system. The spectral efficiency remains constant at
approximately 9.25 bits/s/Hz across all users from 1 to 8. The
adaptive spatial-temporal features learned by the RNN further
support consistent performance by capturing and mitigating
interference patterns across different user scenarios.
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Figure 15. Throughput of the proposed model

The above Figure 15 illustrates the throughput of the
proposed model. When the SNR value increases the
throughput of the proposed model also, increases. When the
SNR value is -10db the proposed model achieves a minimum
throughput value of 50bps/Hz, whereas the proposed model
achieves a maximum throughput value of 290bps/Hz when the
SNR value is 20db. FFT allows for better frequency-domain
analysis, leading to more efficient data processing and higher
throughput
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Figure 16. Bit error rate of the proposed model

Figure 16 illustrates the bit error rate of the proposed model.
When the SNR value is -10db the proposed model achieves a
maximum bit error rate value of 0.35, whereas the proposed
model achieves a minimum bit error rate of 0.01, when the

SNR value is 20db.The zero-forcing algorithm minimizes ISI,
reducing BER by defeating delayed versions of the transmitted
signal and improving variations in signal arrival times induced
by multi-path fading.
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Figure 17. Latency of the proposed model

The latency performance of the proposed model is shown in
Figure 17. The proposed approach achieves a minimum
latency value of 2 when the SNR value is 20db, and a
maximum latency value of 10 when the SNR value is -10db.
The adaptive learning capabilities of the RNN in handling CTI
reduce latency by ensuring quick adaptation to changing
interference patterns.
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Figure 18. Energy efficiency of the proposed model
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Figure 19. Sum rate of the proposed model

The above Figure 18 illustrates the energy efficiency of the
proposed model. The proposed model achieves a minimum
energy efficiency of 1 bps/J and a maximum energy efficiency



of 7.5 bps/J when the SNR value is -10 and 20 dB respectively.
By mitigating interference and distortion more effectively, the
DAFT system can transmit data more reliably using less
energy, leading to improved energy efficiency.

The proposed model sum rate is expressed in the Figure 19.
The proposed model attains a maximum sum rate of 140
bits/s/Hz when the SNR value is as high as 20 dB. Also,
achieves a minimum sum rate of 20 bits/s/Hz, when the SNR
value is as low as -10dB. By suppressing interference and
noise, the PTVSR increases the effective capacity of the
system and thus improves the sum rate.
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Figure 20. Training time of the proposed model

Figure 20 illustrates how Signal-to-Noise Ratio (SNR)
affects model training time. When the SNR is low, such as -10
dB, the training time is highest, reaching around 45
milliseconds. As the SNR increases, the training time
decreases steadily, indicating that the model trains more
efficiently with cleaner signals. Around 10 dB, the training
time falls below 20 milliseconds, and it continues to decrease
slightly as SNR reaches 20 dB. This trend highlights the
significant impact of signal quality on training performance,
showing that higher SNRs lead to faster convergence and
reduced computational effort.
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Figure 21. Inference time of the proposed model

Figure 21 demonstrates that inference time decreases as the
SNR increases. At low SNR levels, such as -10 dB, the
inference time is highest, around 3.2 milliseconds. As the
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signal becomes clearer with increasing SNR, the inference
time steadily drops, reaching approximately 2.1 milliseconds
at 20 dB. This trend indicates that higher signal quality reduces
the computational burden during inference, allowing the
model to process inputs more efficiently and quickly. The
improvement is especially noticeable between -10 dB and 10
dB, where inference time drops sharply. This suggests that
optimizing signal conditions can significantly enhance real-
time model performance.

Performance Metrics Across User Density Scenarios
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Figure 22. Performance metrices across high density users
scenario

The performance metric under a high-density user scenario
is represented in Figure 22. In contrast, low-density users
achieve a higher throughput of approximately 290 bits/Hz and
an accuracy close to 100%, compared to high-density users.
Spectral efficiency shows a slight decline, decreasing from
around 35 bps/Hz to 30 bps/Hz as user density increases. The
performance drop in high-density environments is attributed
to intensified inter-user interference. Despite this, the
proposed method demonstrates resilience and maintains robust
performance across varying user densities. This robustness
highlights its adaptability for future high-capacity networks.
Additionally, latency remains within acceptable limits,
ensuring quality of service is preserved even under load.

4.4 Comparative analysis of the proposed model

This section highlights the proposed method’s performance
by comparing it to the outcomes of existing approaches
showing their results based on various metrics such as
accuracy, spectral efficiency, throughput, BER, sum rate, and
energy consumption.

The proposed method's accuracy is contrasted with that of
other approaches, as shown in Figure 23. The various methods
such as OMP, LMS, and CNN achieve an accuracy value of
79%, 80%, and 98.7% respectively, when the SNR value is
20dB. The accuracy values of the RNN are 99.2%,
respectively. This suggests that RNN outperforms CNN in
terms of accuracy.

The spectral efficiency achieved by the proposed technique
is compared with other approaches illustrated in Figure 24.
The other approaches such as OMP, LMS, and CNN achieve
a low spectral efficiency value of 30 bps/Hz, 34 bps/Hz, and
33.8 bps/Hz. Also, compared with existing models the
proposed model RNN achieves the highest spectral efficiency
value of 37 bps/Hz, when the SNR value is 20dB. This
indicates that RNN has a significantly greater spectral
efficiency than CNN.
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The BER achieved by the proposed technique is compared
with other approaches illustrated in Figure 25. The other
approaches such as OMP [28], LMS [29], and CNN achieve a
low BER value 0f0.19, 0.2, and 0.15, and RNN has a low BER
value of 0.01 when the SNR is 20 dB Also, compared with
existing models the proposed model RNN achieves the lowest
BER value.

The energy efficiency comparison of the proposed model
with existing models is shown in Figure 26. The existing
models such as OMP, CNN, and LMS achieve energy
efficiency of 1.6 bits/J, 6.3 bits/J, and 2 bits/J respectively,
when the high SNR of 20dB. The proposed RNN model
outperforms existing models, this achieves an energy

3569

efficiency value of 7.5 bits/J.
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Figure 27. Comparison of throughput

The throughput comparison of the proposed model is
illustrated in the Figure 27. The existing models OMP, CNN,
and LMS attain a throughput value of 165 bits/Hz, 275 bits/Hz,
and 185 bits/Hz, respectively. Compared with existing
beamforming techniques the proposed RNN method achieves
a high throughput value of 290 bits/Hz.

Table 2 provides a comparative analysis of the proposed
RNN model against traditional methods such as OMP, LMS,
and CNN across five performance metrics, namely accuracy,
BER, spectral efficiency, throughput, and energy efficiency.
The OMP method shows the lowest accuracy at 79% with high
BER (0.19), while LMS marginally improves on both. CNN
demonstrates significant improvements, achieving 98.7%
accuracy and reduced BER (0.15). However, the proposed
RNN surpasses all methods, achieving the highest accuracy of
99.2%, the lowest BER of 0.01, and superior spectral
efficiency (37 bps/Hz) and throughput (290 bits/Hz). It also
leads in energy efficiency at 7.5 bits/J, highlighting its
robustness and practical efficiency in high-performance
mmWave communication scenarios.

Overall, the proposed approach demonstrates that it is more
effective and accurate when compared to previous. The
proposed model attains a high accuracy of 99.2%, spectral
efficiency of 37 bps/Hz, and throughput of 290 bits/Hz.
Compared with existing models the proposed model achieves
aless and a BER of 0.01. This proves that the proposed system
performed well when compared to other existing techniques.



Table 2. Comparison of proposed models with existing

methods
Spectral Energy
Method Acf;r)acy BER Efficiency Tl(‘l:;’t‘s‘/g;{‘;’)“t Efficiency
° (bps/Hz) (bits/J)
OMP 79.0 0.19 30 165 1.6
LMS 80.0  0.20 34 185 2.0
CNN 987 0.15 3338 275 6.3
RNN
(Proposed) 02 001 37 290 75

4.5 Discussion

Unlike traditional Butler matrices that offer fixed beam
directions, the proposed Recurrent Butler Forcing Attenuators
Fourier Phase Distortionless Response Network introduces a
dynamic adaptation mechanism through recurrent layers that
learn and adjust beam directions over time. This is particularly
effective in handling multipath fading, where temporal
correlations in the channel state are exploited to stabilize the
beamform. In contrast to zero-forcing methods, which suffer
under imperfect CSI and cannot compensate for CTI, the
modelled network uses an RNN-based structure with forcing
attenuators to suppress interference by learning CTI signatures
across time. The incorporation of Fourier Phase Distortionless
Response ensures minimal phase error, leading to higher
spectral efficiency compared to LMS and CNN-based
beamformers. Additionally, the use of adaptive phase-shifting
ensures real-time alignment of signal paths, maintains
coherent beam output under mobility. The system also benefits
from the phase tiniest variance control, which further sharpens
the beam pattern by reducing unwanted side lobes. Overall, the
network offers a scalable, interference-resilient solution
tailored for ultra-dense mmWave environments.

5. CONCLUSION AND FUTURE WORK

Conclusively, the "Recurrent Butler Forcing Attenuators
Fourier phase Distortionless Response Network" that has been
presented for multi-user mmWave massive MIMO Systems
offers a thorough resolution to the issue of existing systems.
Initially, an Amalgam Butler Zero Forcing Matrix addresses
multi-path fading and destructive interference by increasing
signal combining efficiency and reducing ISI effects, resulting
in improved system performance. Then, DAFT overcomes
angular resolution changes across frequencies, resulting in
consistent performance and scalability to a wide range of
propagation settings.

Finally, the PTVSR significantly reduces CTI, improving
beamforming accuracy despite the complications of coexisting
wireless technologies. By incorporating these strategies into
an RNN architecture, the system exhibits exceptional
flexibility and resilience, opening the path for improved
performance and reliability in complex propagation scenarios.
At an SNR of 20dB, the model achieves a remarkable sum rate
of 140 bits/s/Hz, high accuracy of 99.2%, spectral efficiency
of 37 bps/Hz, throughput of 290 bits/Hz, and low BER of 0.01.
This results in improved system performance reduced
decoding errors, and enhanced adaptability to complex
wireless environments. The proposed approach represents a
significant advancement in the field of mmWave
communication systems, offering a promising pathway toward
overcoming the limitations posed by challenging propagation
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conditions and diverse wireless technologies.
5.1 Future scope

Future research will focus on reducing the computational
overhead associated with the multi-layered RNN and hybrid
modules by employing model compression techniques such as
pruning, quantization, and knowledge distillation.
Additionally, transitioning from MATLAB-based simulation
to FPGA or GPU-accelerated environments will support real-
time deployment. Further expansion of the model will target
operation across wider mm Wave frequency bands (e.g., 30-
100 GHz), with dynamic sub-band assignment mechanisms to
handle spectrum fragmentation. The adaptation of the
framework to support user mobility and rapid beam tracking
will be investigated using lightweight attention mechanisms.
Finally, field testing in hardware testbeds (e.g., 5G NR or
WiGig platforms) will validate the real-world feasibility and
robustness of the proposed system.
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