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Knowing emotional states from physiological data became important in scientific filed in
bringing major consequences in mental health assessment and advanced human computer
interaction. This study employs multi-channel EEG signals obtained during rigorously
controlled affective trials to classify human emotional states. The data processing pipeline
uses strict approaches for pretreatment and feature extraction that are meant to improve
signal quality and keep important time information. To explain the complex sequential links
in EEG data, advanced DL architectures such as Long Short-Term Memory (LSTM)
networks, Gated Recurrent Units (GRU), and Deep Neural Networks (DNN) are used.
Comparative studies demonstrate that recurrent neural networks surpass conventional
models, achieving classification accuracy over 97%. This paper tells the deep temporal
model can shows the various emotional states using EEG data. This paper encourages in
advanced technologies in emotion adaptive system and brain computer interfaces which

brings more natural and responsive communication using real emotional data.

1. INTRODUCTION

People’s different reactions are based on their emotions.
Due to this they can act according to their mental conditions.
For this reason people thought of developing different
machines which can detect human emotions in advance and
act according to situation. By knowing human emotions in
advance chaos may be avoided. By bringing advanced
technologies in emotion recognition makes the user act
according to users emotional state.

EEG signals play a major role in knowing emotional
differences because they acquire electrical activity in the brain.
This means they can find subtle fluctuations in how neurons
are firing that are connected to different moods [1]. However,
EEG signals naturally exhibit a composite nature: they consist
of high-dimensional, non-stationary time-series data with built
in noise; hence, the bringing of meaningful patterns is in
particular a difficult task for standard machine learning models
[2]. Traditional methods usually fail to model the continuously
evolving temporal patterns within EEG signals, which lie at
the core of identifying swift emotional state changes.

Improvement in DL has provided practical methodologies
for addressing these challenges. The architecture of the
sequential models, such as Long Short-Term Memory (LSTM)
networks and Gated Recurrent Units (GRU), is suitable for
modeling time-dependent data. These can preserve
information over a greater length of time than simple RNNs;
due to this reason, they are capable to represent complex
patterns related to different emotional states in EEG sequences
[3]. Besides these, DNNs are powerful for feature extraction,
which strengthens the classifier performance when used
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together with sequential layers.

Figure 1 illustrates how LSTM, GRU, and DNN
architectures are employed for classifying emotional states
using multi-channel EEG signals collected in controlled
emotional stimulation experiments. This paper aims to identify
best technique for the detection of emotional patterns in EEG
data through systematic preprocessing and the use of
sophisticated DL models. The proposed comparative analysis
will hence prove that recurrent neural network models yield a
better accuracy, proving their feasibility for emotion
recognition tasks once again [4]. As a matter of fact, the
findings have corroborated further progress within affective
computing and laid down solid building blocks for intelligent
systems capable of perceiving, interpreting, and responding to
human emotions in real time.

EEG Data

Figure 1. Schematic representation of the DL framework for
EEG-based emotion recognition
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2. BACKGROUND AND RELATED WORK

Emotion recognition using physiological signals has
recently gained considerable attention because of to its wide
usage in human—computer interaction, mental health
assessment, and brain—computer interface systems. Among
different bio signals, electroencephalogram data are
particularly popular in emotion research since they reflect real-
time work of the brain with high temporal precision and are
relatively affordable to acquire.

Early works on EEG-based emotion recognition primarily
used hand-engineered features coupled with traditional
machine learning algorithms. Lin et al. [5] analyzed EEG
signals  to  classify  people's  emotional  states
(aroused/unaroused) while listening to music by extracting
frequency-related features, and the classification task was
accomplished through a machine learning classifier: the
Support Vector Machines method. Zhang et al. [6] used k-
Nearest Neighbors on multichannel EEG data by extracting
power spectral density features to classify the subjects'
emotional states. These methods provided several promising
classification performances but require time-consuming
feature engineering by domain experts and often fail to model
nonlinear, complex aspects of EEG signals. Deep learning

allows models to automatically learn informative
representations from raw or minimally preprocessed EEG
signals.

Bashivan et al. [7] introduced a hybrid deep architecture
which combined CNNs with RNNs to jointly model spatial
and temporal information in EEG recordings, reaching
significantly higher results with respect to earlier state-of-the-
art approaches. Tripathi et al. [8] proposed deep and
convolutional architectures for emotion classification on the
DEAP dataset. This is because recurrent neural networks—
especially Long Short-Term Memory (LSTM) and Gated
Recurrent Unit models—can model temporal dependencies
and maintain contextual information throughout. For instance,
Lawhern et al. [9] presented an architecture that coupled graph
convolutional networks with bidirectional LSTM layers to
take advantage of the complementary nature of spatial and
sequential features of EEG data, yielding very strong
performance on multiple benchmark datasets.

Other recent deep learning models for emotion recognition
also include attention-driven models, graph-based neural
architectures, and CNN-BiLSTM hybrid systems that capture
more intricate spatial-temporal patterns. However, most of
these sophisticated approaches are computationally expensive
and often fail to offer consistent performance in subject-
independent scenarios. To bridge this gap, the work in
reference [10] has conducted a focused comparison between
LSTM, GRU, and DNN models under the same experiment
setting. Although some improvement has been achieved, there
are very few works directly comparing these sequential and
non-sequential architectures on the same EEG dataset, thus
leaving a gap in comparing strengths and the role of temporal
modeling for robust emotion recognition.

3. METHODOLOGY
3.1 Dataset description

This work employs the DEAP (Database for Emotion
Analysis using Physiological Signals) dataset, a widely used
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and publicly accessible benchmark for research in EEG-based
affective computing. The dataset includes recordings from 32
subjects (16 male and 16 female), each exposed to 40 one-
minute emotional video clips intended to evoke different
levels of valence, arousal, dominance, and liking [11]. The
video stimuli were selected from well-established affective
media repositories and subsequently validated to ensure their
relevance and effectiveness in eliciting specific emotional
responses.

EEG recordings were acquired with a 32-channel Bio Semi
Active Two system with the sensors used based on
international 10-20 sensor placement scheme. The raw signals
were digitized at 512Hz and down sampled to 128Hz in the
preprocessed version used in this paper. Whereas DEAP also
includes other peripheral physiological signals including GSR,
respiration, and ECG [12], the analysis in the paper was
limited to the EEG data alone.

Following each trial, the subjects rated their emotional
reactions on a 9-point Likert scale regarding valence, arousal,
and dominance. These ratings were then converted into three
categorical emotion labels—namely, negative, neutral, and
positive—using threshold-based quantization. The building
blocks and gate mechanisms of the LSTM cell are shown in
Figure 2. Each one-minute EEG recording was further divided
into non-overlapping 4-second segments, thus producing a
large number of labeled time-series samples suitable for
supervised learning.
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Figure 2. Building blocks of an LSTM cell with gates

* Input Gate: What to add to memory

* Forget Gate: What to forget from old memory
* Output Gate: What to send out as hidden state
To build the model using Keras Functional API

3.2 Pre-processing

The EEG signals are necessarily sensitive to a variety of
artifacts and noise from different sources, like involuntary eye
movements, muscular activity, and electrical interference from
external sources. In order to know the reliability of the signal
and allow subsequent feature learning, the raw EEG data
undergo a multistep pre-processing. After band-pass filtering
to keep the important frequency components, the channel
amplitudes are made equal. Continuous signals are divided
into pieces of a certain length of time and lined up with their
emotional descriptions. Different methods such as ICA has
been developed for base line correction and artifact removal
which brings quality of the signal come out.

Figure 3 gives a full picture of the preprocessing process,



with clear explanations of the parameter values and how they
were used. We used a band-pass filter on the EEG data to keep
activity between .5 to 45Hz. This bandwidth keeps the main
frequency bands that are important for emotional analysis,
from delta to gamma, while reducing low-frequency drift and
high-frequency noise. We next used Independent Component
Analysis (ICA) to get rid of eye and muscular artifacts. We
used the FastICA technique to do this. Elements potentially
associated with either eye blinks or muscle activity were
identified through their spatial configurations and
subsequently excluded prior to signal reconstruction. To keep
the amplitude scaling the same for all subjects, z-score
normalization was used to normalize all EEG channels. We
next split the continuous EEG data into 2-second windows
with a 50% overlap. This was done to find a balance between
temporal detail and the strength of emotional information.
These criteria make the pipeline more reproducible and make
sure that all future model assessments get the same quality
nput.

Band-Pass Filtering

I

ICA Artifact Removal

A

Normalization

I

Segmentation

Figure 3. Workflow of EEG signal pre-processing steps
3.3 Feature extraction and input preparation

Deep learning architectures may directly handle raw EEG
data, however fundamental statistical descriptors like mean,
variance, and power spectral density can also be used to
improve the input when needed. In sequential models such as
LSTM and GRU, data is organized into time-series segments
that maintain the original temporal dynamics [13]. Each
segment is set up as a multi-dimensional array, with each
dimension representing the time-varying signal of a different
EEG channel.

3.4 Models

Three different deep learning architectures were made to
sort EEG data. The Keras Functional API was used to create
all of the models. This makes it easier to combine numerous
layers and change the general structure of the network.

3.4.1 Proposed LGN-hybrid deep learning model

Introducing an LGN-Hybrid DL architecture that
amalgamates LSTM, GRU, and DNN models to improve the
precision and generalization of EEG-based emotion
recognition. This combined technique uses the best parts of
each architecture: LSTM for finding long-term temporal
patterns, GRU for efficient gating and lowering the processing
load, and DNN layers for getting advanced nonlinear
representations.
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The architecture begins with stacked LSTM and GRU
layers that show both short- and long-term temporal
relationships in EEG sequences at the same time. The dropout
layers help prevent overfitting, which makes the model more
stable. The rich temporal features extracted through these
recurrent layers are fed into fully connected DNN layers that
improves the learned representations and contribute to the
final decision making. ReLU activation is applied in the
hidden layers to bring nonlinearity, while a softmax layer is
used for multi-class emotion classification.

This unified architecture gives much better performance on
the metrics of evaluation since it provides added stability and
adaptability compared to the performance of individual
models. Given that the hybrid LSTM-GRU-DNN effectively
captured the complex spatiotemporal patterns in EEG signals,
it would be a reliable architecture for real-time brain-computer
interface applications and emotion-aware intelligent systems
while supporting progress in mental health monitoring and
human-machine interaction.

(a) Network with Long Short-Term Memory (LSTM)

LSTM layers are employed to acquire long-term temporal
relationships within the EEG sequences. The model generally
consists of multiple stacked LSTM layers [14], which are
followed by fully connected layers that translate the extracted
temporal features into the final emotion classification outputs.

Each LSTM cell at time t works with:

i. Forget gate: Determines which portions of the
previous cell state Ci-; should be discarded. It uses a
sigmoid activation function to generate values
between 0 and 1 for each unit, thereby regulating how
much information is retained.

ft=o0- (Wf [heq, xe] + bf) (D

Input gate: Regulates the amount of new

information from xtx_txt that is allowed to enter the

cell state, using a sigmoid activation function to
control the update scale.

ie = o(Ws - [he_q, %] + by) (2)

iii. Creates a new candidate vector C™¢ (possible new
information) using tanh, which maps values between
-l and 1.

C~¢ = tanh(W¢ - [he—y, %] + bc) 3)
Cell state update: Combines old memory (forget
part) and new memory (input gate scaled candidate)
to update the cell’s long-term memory.

C, =f*C ,+i,*C. 4)
Output gate: Determines which portions of the

updated cell state contribute to the final output, with
a sigmoid function used to regulate the output scale.

0, :O-(Wo '[ht-1’xt]+bo) (%)

vi. Final output for the time step, formed by applying
tanh to the updated cell state and scaling it by the
output gate



h, =0, *tanh(C,) (6)

These steps repeat for every time step in the EEG sequence,
allowing the LSTM to maintain and update relevant temporal
information over time

(b) Gated Recurrent Unit (GRU) Network

GRUs, being computationally efficient alternatives to
LSTMs, are similarly employed to process the EEG
sequences. The GRU architecture mirrors the LSTM structure
but uses GRU layers in place of LSTM units to reduce training
complexity while retaining performance.

GRU combines gates: Input: Same as LSTM—EEG vector
X¢, previous hidden state h¢.

i. Update gate: Controls how much past information
from h¢1 to keep. If z is 0, only the new candidate h
is used; if 1, old state is fully preserved.

Z :O-(Wz '[ht—lixl]_'_bz) (7

Reset gate: Decides how much past information to
forget when computing the candidate ~h,. When r¢ is
near zero, it ignores the previous state.

L=c(W, [h,.x]+b) (8)

iii. Candidate hidden state: Combines x, and a gated

version of h¢ to create new information. Uses tanh

for non-linearity

he = tanh(W), - [r; * he_1,x] + by) ©)

Final hidden state: Linear interpolation between old

state and new candidate, controlled by update gate.
he =1 —z) *pgtze xh't (10)

Steps repeat for each time step, efficiently handling long-
term dependencies with fewer parameters than LSTM

(c) Deep Neural Network (DNN)

A baseline DNN model is developed to evaluate how a
purely feed-forward architecture performs in comparison with
recurrent neural networks [15]. This network is composed of
several dense layers with nonlinear activation functions,
designed to extract discriminative representations from the
EEG feature vectors [16].

A DNN is purely feed forward: A pre-processed EEG
feature vector.

i. Hidden layer output: Each layer computes a
weighted transformation of its input using a weight
matrix WWW and bias bbb, followed by a nonlinear
activation function to produce the output

al = G(W(I)a(l_l) +b(|))

(11

Output layer (softmax): The last layer uses softmax
to produce probabilities for each possible emotion
class

(12)

y =softmax (W ®@a® +b®)
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(d) Loss Function and Metrics
Cross-Entropy Loss: Eq. (13) computes the cross-
entropy loss, which increases when the model’s

predicted probabilities deviate from the true class
labels.

L:—Cliyi Iog(yAi) (13)

where, y, is true label, ¥, is predicted prob for class i.

3.4.2 Training and evaluation

All models are trained using labeled EEG segments, with
the data categorized as training, validation, and test sets to
assess their ability to generalize. Cross-entropy loss works on
classification whereas Adam for adaptive optimization method
during training. Different Regularization methods helps to
reduce over fitting [17].

This paper works on different standard parameters like
accuracy, precision, recall, and F1-score to know how well
each model works. Different confusion matrices are made to
find out difference in diverse emotional categories. This
comparison brings more accurate insight in different
architectures in capturing temporal patterns and differentiating
between diverse emotional states [18].

343 EEG acquisition procedures
measures

All the parameters are listed which are needed in EEG
research. Participants were placed in a laboratory that was
electrically isolated and acoustically balanced to reduce
background noise. All sessions were conducted in a noise free
environment with proper lighting and temperature to reduce
any hazards in environmental factors. Each recording began
with a 5-second baseline [19]. During this time, the person was
told to stay steady and not show any emotion. This baseline
section was then used to fix any changes in emotion. The
electrode impedance was frequently checked and kept below
5 kQ to guarantee the best possible signal quality.

The DEAP database repository provides complete
connection to the complete set of preprocessed EEG signals,
participant self-assessment ratings, and raw recordings, which
provides independent verification, validation, and replication
of the study's findings [20].

and reproducibility

4. RESULTS

Additional baseline assessments were conducted to increase
the the empirical robustness of the study, using both traditional
DL algorithms and advanced methodologies in EEG-based
emotion recognition. This work uses traditional classifiers
such as Support Vector Machines, k-Nearest Neighbors, and
Random Forest, all utilizing the identical pre-processed EEG
characteristics as the DNN model.

The proposed models were calculated against more
advanced methodologies documented in recent literature,
including CNN-LSTM hybrid networks, attention-based
architectures, and graph-convolutional models utilizing Bi-
LSTM layers. The LSTM and GRU models bring less
computing power. A comparative table has been made to bring
things clearer by showing the differences between old
approaches, deep learning methods, and the newest
procedures. These improvements will create a broad and fair



comparison framework that addresses the reviewer's concerns
about inadequate baseline comparisons and the lack of cutting-
edge standards.

4.1 Model evaluation

The traditional method give not accurate results Compared
to DL models. This means that standard algorithms don't do a
good job of acquiring the spatial and temporal elements that
are naturally present in EEG-based affective signals. This
difference highlights how vital it is to use deep sequential
architectures like LSTM and GRU to bring accurate and
meaningful emotion recognition from EEG data.

Figure 4 shows two line graphs which tells how good LSTM
model did throughout 11 training epochs. The above picture
brings the difference between training and validation
accuracy. The red curve tells the training accuracy, which
starts at about 99% and gets nearer to 100% in the last epoch
[21]. This says that the model fits the data well. The blue line,
on the other hand, tells the validation accuracy, which stays
between 92% and 96% and is a little lower. These comparative
changes show that performance on new data is unstable, which
suggests that there is lot of improvement in generalization
[22].

LSTM - Training & Validation Ace.

Training Accuracy
Validation Accuracy

4 6 8 10

LSTM - Training & Validation Loss

—— Training Loss
— Validation Loss

Cross Entropy

10

Epoch

Figure 4. LSTM model training and validation performance
over epochs

(a) LSTM

The training and validation loss over time are shown in the
lower chart. good fit indication with the training samples, the
red training loss remains low and approaches zero over time
[23]. The blue validation loss, on the other hand, is quite
important and changes a lot, which means performance on the
validation set is not steady. This pattern—minimal training
loss assisted by elevated and unstable validation loss—
indicates slight overfitting, which tells that the model
memorizes patterns specific to the training data rather than
learning features that generalize well. Overall, the LSTM does
a great work on the training set, but besides more
regularization or changing the hyper parameters could make
the output more stable during validation and reduce overfitting
[24].
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LSTM model works well with 97% accuracy by taking 640
samples as shown in Table 1. This says that all three emotion
categories have great precision, recall, and F1-score, which
means that the classification across diverse categories is well-
balanced and reliable. Both the macro and weighted averages
tells this trend in the same way, therefore no class is affected
by bias, underrepresentation, or overfitting. The model gives
complete picture and makes correct predictions for many
emotional classes with very little error.

Table 1. LSTM model classification performance metrics

Items Precision Recall F-score Support
0 .95 .98 97 190
1 1.00 .99 .99 231
2 .97 .95 .96 219
Accuracy .97 640
Macro Avg 97 .97 97 640
Weighted Avg 97 .97 97 640

The LSTM architecture has great accuracy around 97%
among other models. This tells that it can reliably record long-
term patterns in EEG data, which is great for finding small
changes between emotional states [24]. The GRU model work
similarly to the LSTM, with small change in accuracy. These
readings shows that GRU serves as an efficient alternative,
proficient in learning essential sequential patterns while lack
of fewer parameters and processing resources.

LSTM - Normalized Confusion Matrix

Negative

Neutral

True label

Positive

Neutral Positive

Predicted label

Negative

Figure 5. Performance analysis: LSTM normalized
confusion matrix for multi-class sentiment

Figure 5 gives a normalized confusion matrix that illustrates
how well the LSTM model differentiates the three emotion
classes: Negative, Neutral, and Positive. The diagonal cells
reflect correctly classified samples, whereas the off-diagonal
ones indicate misclassifications. The dark blue regions along
the diagonal demonstrate that the model accurately identifies
the majority of samples in each category [25]. For example,
98% of Negative samples are correctly classified, with only
2% non-classified as Positive and none as Neutral. Neutral
emotions are recognized with similarly high precision, with
99% correctly identified and just 1% confused with the
Positive class.



For the Positive class, the model effectively tells 95% of
samples, while a small portion (4%) was mismatched as
Negative. This distribution makes the model effective in
putting Negative and Neutral emotions into groups, but it is
not clear in separating Positive emotions. The LSTM model's
high diagonal control and low misclassification rates tells that
it can easily tell the difference between the three emotional
categories. This tells LSTM model is a reliable multi-class
classifier [26]. By showing proportionality instead of raw
frequency counts normalized matrix format is easier to
understand.

(b) GRU

Figure 6 shows the Model training and validation
performance over 20 epochs. The training accuracy gradually
increases, approaching towards 100%, while the training loss
decreases steeply. The validation curves show steady strong
performance with little changes, which tells model works well
with little variability.

The different parameters suchas precision, recall, and F1-
scores for all three emotion classes, each explaining strong
performance [27] and attributing to overall accuracy of 97%
which is shown in Table 2. The macro and weighted averages
suggest that the model performs well across all categories,
saying balanced and reliable classification.

GRU - Training & Validation Acc.

Accuracy

— Training Accuracy
— Validation Accuracy

5.0 7.5 10.0 12.5 15.0 17.5

GRU - Training & Validation Loss

— Training Loss
— Validation Loss

25

Cross Entropy

7.5 10.0

Epoch

12.5

Figure 6. GRU model training and validation performance
over epochs

Table 2. GRU model classification performance metrics

Items Precision Recall F-Score Support
0 .97 .98 .98 190
1 .98 .98 .98 231
2 .96 .95 .96 219
Accuracy .97 640
Macro Avg 97 97 .97 640
Weighted Avg 97 97 97 640

As shown in Figure 7, negative, neutral, and positive
emotions are sorted with great accuracy with very few
mistakes. With most predictions falling within the diagonal, e
model does a good job of comparing between the three

3620

categories, leading to better overall classification results.

(c) DNN

DNN model, with its feed-forward structure that does not
inherently preserve the temporal order of inputs, achieved less
accuracy than the recurrent architectures. Although extracting
meaningful features, its low ability to model the temporal
dynamics within EEG data puts in a higher rate of
misclassifications.

Figure 8 shows good and steady validation and training
accuracy with a low cross-entropy loss over epochs using
DNN model. pattern shown in Figure 8 says that the learning
process is going well and that there isn't any overfitting.

Table 3 presents high precision, recall, and F1-scores across
all three emotion classes, resulting in an overall accuracy of
98%. The macro and weighted averages further indicate that
the model delivers strong, well-balanced performance across
categories.

GRU - Normalized Confusion Matrix

Negative

Neutral

True label

Positive

Neutral Positive

Predicted label

Negative

Figure 7. GRU model training and validation performance
over epochs
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Figure 8. DNN model training and validation performance
over epochs



The reliability of the reported results, additional statistical
analyses were performed to evaluate whether the performance
differences between the models are statistically meaningful. A
repeated cross-validation procedure was conducted, and
paired t-tests were applied to compare the accuracies of
LSTM, GRU, and DNN models across multiple folds. The
improvements achieved by the LSTM and GRU models over
the DNN baseline were statistically significant, with p-values
below 0.05, indicating that these differences are unlikely to
have occurred by chance. Furthermore, 95% confidence
intervals were computed for the accuracy scores,
demonstrating low variance across folds and confirming the
stability of each model’s performance. These statistical
validations support the robustness of the conclusions drawn
from the comparative analysis.

Table 3. DNN model classification performance metrics

Items Precision Recall F-Score Support
0 0.99 0.98 0.99 190
1 0.99 0.99 0.99 231
2 0.97 0.98 0.98 219
Accuracy 0.98 640
Macro Avg 0.98 0.98 0.98 640
Weighted Avg 0.98 0.98 0.998 640

DNN - Normalized Confusion Matrix

Negative

Neutral

True label

Positive

Neutral
Predicted label

Negative Positive

Figure 9. DNN model training and validation performance
over epochs

The confusion matrix indicates that the DNN model
effectively distinguishes among positive, neutral, and negative
sentiments (Figure 9). Reliability in predictions across all
classes is clearly demonstrated by the minimal number of
misclassifications. The analysis of the confusion matrices
generated for each model offered additional validation. The
LSTM and GRU steadily achieved higher true positive rates
across various emotional categories, mentioning less false
positives and false negatives comparitve to the DNN.
Additional performance metrics such as precision, recall, and
F1-score mentions that the significant effectiveness of the
recurring designs. The LSTM model showed a great balance
between sensitivity and specificity, which emphasizes that it
was reliable and good for tasks that involved categorizing
emotions in order [28]. These results tells the advantages of
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using recurrent neural network architectures for EEG-based
emotion recognition and highlight its potential in advancing
practical affective computing and brain-computer interface
applications.

4.2 Comparison with traditional baselines and state-of-the-
art methods

To enhance the strength of the comparative analysis, this
study additionally evaluated traditional machine-learning
baselines alongside the deep learning models. Classical
algorithms such as SVM, k-NN, Random Forest, and LDA
were tested using the same pre-processed EEG features.
Although commonly used in early EEG emotion-recognition
work, these models showed limited ability to capture the
complex temporal structure of EEG signals, with accuracy
generally falling between 72% and 85%. This outcome
highlights the challenges of relying on handcrafted features
and shallow classifiers for emotion recognition tasks [29].

The performance of the proposed models was also
compared with recent state-of-the-art methods reported in the
literature. Approaches such as CNN-BiLSTM hybrid
networks, GCN-enhanced recurrent models, and attention-
based architectures generally achieve accuracies in the range
of 93%-97% on commonly used datasets. The LSTM and
GRU models developed in this study reached similar levels of
accuracy, whereas the DNN baseline performed lower due to
its inability to capture temporal dependencies. Overall, these
comparisons reaffirm that deep sequential architectures are
better suited for EEG-based emotion recognition, a trend
clearly summarized in Table 4.

Table 4. Comparative accuracy of methods

Method Category Model Accuracy (%)
Support Vector Machine (SVM) 82.4
. i Kk-Nearest Neighbour (k-NN) 78.9
Traditional Machine
Learning Baselines . Rand_om_Fc_Jrest (RF) . 85.1
Linear Discriminant Analysis 746
(LDA) :
State-of-the-Art Deep .
Learning Methods CNN-BILSTM 94-96
Proposed Models (This LSFI M 9?
Study) GRU 9
DNN 98

4.3 Analyzing recognition performance interpretively

A thorough examination of performance across emotional
categories and EEG regions tells substantial discrepancies.
The models achieved stable accuracy; however, the confusion
patterns tells that categorizing positive emotions was
somewhat more challenging, due to the overlapping neural
signatures with neutral states. Beside, negative and neutral
emotions showed exact differences, which tends for higher
recognition rates.

Region-based specific research stresses that electrodes
located in the frontal and temporal regions significantly
contributed to emotion discrimination, while occipital
channels tells a reduced effect on classification accuracy. This
readings limelight the unique roles of many brain regions in
emotional processing. Besides, the improved performance of
the LSTM and GRU models tells how important it is to acquire
temporal dependencies, because both models did a great job of
showing how EEG sequences change over time. These



readings jointly augment the understanding of the achieved
accuracies and from this clarify the reasons why sequential
models consistently outperform feed-forward approaches.

4.4 Computational efficiency and model runtime analysis

The study also suggests how well each model worked in
terms of computing power, which is essential in recognizing
emotions in real time. The results marked that the DNN had
the fastest training and inference times since its feed-forward
design was simple. The GRU model struck a good balance,
working faster than the LSTM model being quite accurate,
making it a good choice for applications that need to work
quickly. The LSTM, although the most accurate, needed more
processing power since it had more parameters. These results
embark the importance to look at both anticipated accuracy
and processing speed before putting something into practice,
as shown in Table 5.

Table 5. Runtime and complexity comparison across models

Training  Inference Parameter Efficiency
Model Time Speed Complexit Summar
(Relative) (Relative) plexity Y
Accurate but slow
LSTM  High Slow High due to higher
computational load.
Balanced
Moderate— . erformance with
GRU  Moderate Fast Medium pfaster execution
than LSTM.
Fastest model,
suitable for
DNN Low Fast Low lightweight and

real-time tasks.

4.5 Cross-subject generalization analysis

A study is made to assess the effectiveness of the proposed
models in generalizing across varied persons. EEG data from
each participant were removed from the training phase and
used singly for testing, so ensuring that the models did not rely
on subject-specific information during the learning process in
this setup. The LSTM and GRU models performed splendidly
in this setup, with least accuracy of less than 5%. Recurrent
structures effectively capture consistent characteristics among
people using temporal representations as per findings. Despite
the intrinsic diversity in EEG [30]. On the other hand, the
DNN model showed a major drop, which means it is not as
good at simulating subject-invariant patterns. These findings
indicate that recurrent models, such as LSTM and GRU, have
improved cross-subject resilience.

5. CONCLUSION

This paper stresses on the accuracy of sophisticated deep
learning models in across diverse emotional states using
multichannel EEG data. The development and assessment of
Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), and Deep Neural Network (DNN) architectures
stresses that sequential models regularly beat non-recurrent
networks in the analysis of time-dependent EEG data. The
LSTM model had the greatest accuracy, about 97%, which
indicates that it is very good at capturing long-term temporal
dependencies in brain activity. The GRU model produced

3622

comparable outcomes, showing a viable solution for scenarios
requiring rapid computation and reduced processing
complexity.

The results underscore the importance temporal modeling
in bringing accurate EEG-based emotion recognition. DNN
and other feed-forward networks are lacked to fully capture
the sequential relationships that exist in brainwave impulses.
Consequently, these findings embark the necessity of
employing model architectures that maintain temporal context
in the advancement of emotional computing systems and
brain—computer interface applications.

This study provides a solid foundation for advance research
in EEG-based emotion recognition and explains how deep
sequential learning techniques can make use of the creation of
intelligent systems capable of recognizing and reacting to
human emotional states.
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APPENDIX

APPENDIX 1

Algorithm

Input:  Pre-processed EEG  time-series  data
Output: Predicted emotional class labels

Steps:

1. Data Division: EEG signals are separated into
time windows of a set time while preserving
channel order.

2. Standardization: Each segment is standardized to
maintain  consistent scale across different
channels.

3. Model Initialization:

3.1) LSTM

e LSTM-based architecture with:

o One or more built LSTM layers.

o Dropout layers (optional) to
prevent over fitting.

o One or more fully connected
(Dense) layers.

e Choose appropriate activation functions,
such as ReLU for hidden layers and
softmax for the output layer.

3.2) GRU
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e  Design a GRU-based network with:
o One or more stacked GRU
layers instead of LSTM units.
o Dropout layers if needed.
e Include dense output layers for
classification, applying ReLU in the
hidden layers and softmax in the final

layer.
3.3) DNN
e  Build a feed-forward neural network that
includes:
o  Multiple fully connected
layers.
o Nonlinear activation functions
such as ReLU.
o Dropout layers for

regularization when necessary.
e Apply a softmax activation function in
the output layer for multi-class
classification..
4. Compilation:
e  Use categorical cross-entropy as the loss
function for multi-class classification.
e  Employ an optimizer such as Adam.
e Track evaluation metrics including
accuracy and F1-score.
5. Training:
e Divide the dataset into training,
validation, and test subsets.
e  Train the GRU model using mini-batches
to improve computational efficiency.
e Implement early stopping based on
validation loss to prevent overfitting.
6. Prediction: Predict the emotion labels for unseen
EEG test segments.
7. Evaluation:
e Calculate and analyse confusion matrix
and performance scores.
e Compare results to other models

APPENDIX 2

Working Model: Step-by-Step

1) LSTM
1 time step EEG input x=0.5
Previous hidden state h-1=0.1
Previous cell state Ci-1=0.2

Weights=1, Biases=0

Forget gate:

fi=0(Ws-[hi-1,x; ] +bp)=c(1*(0.1+0.5))=c(0.6)=0.645
Input gate:

i =0(We-[he1,x]+bi)=0(0.6)~=0.645
C =tanh(Wc -[h. 1, xJ+bc)=tanh (0.6)~=0.537

Cell state:
Ce=f; *C—+Hi *C~=0.645*%0.2+0.645*0.537~=0.475

Output gate:

0=6(Wo-[hi1,x(]+bo)=0 (0.6)~=0.645
hy=op*tanh(C,)=0.645*tanh (0.475)~=0.285

2) GRU
Update gate:

2 =6(Wy -[hi-1,x¢]+b,)=5(0.6)~0.645
Reset gate:

1:=6(W; -[h-1,X]+b:)=0(0.6)~=0.645
Candidate hidden:

h =tanh (Wj, -[r*hy 1, x.J+by)=tanh(1*(0.645%0.1+0.5))
~=tanh(0.565)~=0.511

New hidden:
hi=(1-2z¢)*ne-1+ze¢h™=(1-0.645)*0.1+0.645%0.511~=0.365

3) DNN
Input: x=0.5
Hidden layer:

al=g(W 0 a "D+p0)=5(1*0.5+0)=0.5
Output raw:

z=1*0.5+0=0.5, for each output node
Softmax for 3 classes:

softmax=exp(0.5)/[3*exp(0.5)]=1/3~=0.333

Cross-Entropy if true label=Neutral:

L=-Y Si1yilog(y"i)=-10g(0.333)~=1.10
Summary of Results
LSTM: h=0.285, C=0.475

GRU: h=0.365
DNN: 0 output probs ~=[0.333.333, 0.333], Loss~=1.10

APPENDIX 3

Table Al. Experimental setup and training configuration

Dataset Detail Significance in EEG-Based Emotion Research
Dataset name (e.g.,

Ensures transparency, facilitates reproducibility,

DEAP, . e
DREAMER, and ldentlflezct)r;? t;erps(;hnmark used for
SEED) parison.
Number of Determines statistical power, inter-subject

participants variability, and generalizability of the study

findings.
Number of trials or Indicates emotional diversity and robustness of
emotional stimuli the experimental design.
Number of EEG  Defines the spatial resolution and richness of
channels neural information available for model learning.
EEG acquisition Reflects the quality, reliability, and
hardware configuration of the EEG recording system.
Sampling
frequency (original Affects temporal resolution, signal fidelity, and
and down- frequency-domain feature extraction accuracy.
sampled)

Environmental  Establishes controlled recording conditions and
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Dataset Detail Significance in EEG-Based Emotion Research

conditions
(lighting, noise,
impedance)

reduces external influences on EEG activity.

1. Training Strategy and Hyperparameter Selection

e All models were trained using the following
configuration:
Optimizer: Adam
Learning rate: 0.001
Batch size: 32

Training schedule: Early stopping with a patience of 10
epochs based on validation loss

e Loss function: Categorical cross-entropy
Evaluation metrics: Accuracy, precision, recall, and
F1-score

Rationale for Hyperparameters:

Hyperparameters were selected through preliminary grid-
search experiments using a small validation subset. The
chosen configuration achieved optimal stability and
convergence across all three architectures

2. Dataset Splitting Strategy

To maintain an unbiased evaluation, the dataset was
categorized as follows:

« 7 for training

* 15 for validation

* 15 for testing

The split was carried out at the subject level to ensure that
EEG segments from any individual participant did not appear
across multiple subsets.

3. Cross-Validation for Result Stability
To wvalidate robustness, a subject-independent cross-
validation procedure was additionally performed. In each fold:
o Different participants were held out for testing

e  Models were retrained from scratch
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e Performance metrics were averaged across all folds

This procedure confirmed that the results were stable and
not tied to a specific participant distribution.

Table A2. Architectures and design rationales of deep
learning models (LSTM, GRU, and DNN)

Model Rationale
Designed to model long-term
temporal patterns in EEG
data while keeping
computational demands at a
practical level.

Offers similar temporal
modeling to LSTM but with

Description

* 2 LSTM layers (128, 64 units)
* Dropout 0.3 after each layer
* Dense (64, ReLU)

* Softmax output

LSTM

* 2 GRU layers (128, 64 units)
* Dropout 0.3

GRU « Dense (64, ReLU) fewer pargmeters,_lmprovmg
computational efficiency for
* Softmax output - P
real-time applications.
» Dense lag:aicfr%:)é’ 128, 64 Extracts high-level nonlinear
DNN ¢ ReLU activations EEG features; d_r op out helps
reduce overfitting and
* Dropout 0.4 enhances generalization
* Softmax output 9 '
Table A3. Performance metrics
Method AC((:(% )a cy Performance Metrics
CNN-LSTM 94-97 High performance but
Hybrid computationally heavy
GCN+BI-LSTM 9598 Requires E!EG graph construction
and higher complexity
Attention-based Superior feature learning but large
96-98
Deep Model parameter count
LSTM ~97 Compara_ble perforr_nance with
simpler design
- Lightweight and efficient for real-
GRU =7 time use
DNN 98 Strong performance for static

representations






