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Knowing emotional states from physiological data became important in scientific filed in 

bringing major consequences in mental health assessment and advanced human computer 

interaction. This study employs multi-channel EEG signals obtained during rigorously 

controlled affective trials to classify human emotional states. The data processing pipeline 

uses strict approaches for pretreatment and feature extraction that are meant to improve 

signal quality and keep important time information. To explain the complex sequential links 

in EEG data, advanced DL architectures such as Long Short-Term Memory (LSTM) 

networks, Gated Recurrent Units (GRU), and Deep Neural Networks (DNN) are used. 

Comparative studies demonstrate that recurrent neural networks surpass conventional 

models, achieving classification accuracy over 97%. This paper tells the deep temporal 

model can shows the various emotional states using EEG data. This paper encourages in 

advanced technologies in emotion adaptive system and brain computer interfaces which 

brings more natural and responsive communication using real emotional data. 

Keywords: 

EEG, emotion recognition, DL, LSTM, 

GRU, DNN, affective computing, brain-

computer interface, time-series analysis, 

mental health monitoring 

1. INTRODUCTION

People’s different reactions are based on their emotions. 

Due to this they can act according to their mental conditions. 

For this reason people thought of developing different 

machines which can detect human emotions in advance and 

act according to situation. By knowing human emotions in 

advance chaos may be avoided. By bringing advanced 

technologies in emotion recognition makes the user act 

according to users emotional state. 

EEG signals play a major role in knowing emotional 

differences because they acquire electrical activity in the brain. 

This means they can find subtle fluctuations in how neurons 

are firing that are connected to different moods [1]. However, 

EEG signals naturally exhibit a composite nature: they consist 

of high-dimensional, non-stationary time-series data with built 

in noise; hence, the bringing of meaningful patterns is in 

particular a difficult task for standard machine learning models 

[2]. Traditional methods usually fail to model the continuously 

evolving temporal patterns within EEG signals, which lie at 

the core of identifying swift emotional state changes. 

Improvement in DL has provided practical methodologies 

for addressing these challenges. The architecture of the 

sequential models, such as Long Short-Term Memory (LSTM) 

networks and Gated Recurrent Units (GRU), is suitable for 

modeling time-dependent data. These can preserve 

information over a greater length of time than simple RNNs; 

due to this reason, they are capable to represent complex 

patterns related to different emotional states in EEG sequences 

[3]. Besides these, DNNs are powerful for feature extraction, 

which strengthens the classifier performance when used 

together with sequential layers. 

Figure 1 illustrates how LSTM, GRU, and DNN 

architectures are employed for classifying emotional states 

using multi-channel EEG signals collected in controlled 

emotional stimulation experiments. This paper aims to identify 

best technique for the detection of emotional patterns in EEG 

data through systematic preprocessing and the use of 

sophisticated DL models. The proposed comparative analysis 

will hence prove that recurrent neural network models yield a 

better accuracy, proving their feasibility for emotion 

recognition tasks once again [4]. As a matter of fact, the 

findings have corroborated further progress within affective 

computing and laid down solid building blocks for intelligent 

systems capable of perceiving, interpreting, and responding to 

human emotions in real time. 

Figure 1. Schematic representation of the DL framework for 

EEG-based emotion recognition
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2. BACKGROUND AND RELATED WORK 

 

Emotion recognition using physiological signals has 

recently gained considerable attention because of to its wide 

usage in human–computer interaction, mental health 

assessment, and brain–computer interface systems. Among 

different bio signals, electroencephalogram data are 

particularly popular in emotion research since they reflect real-

time work of the brain with high temporal precision and are 

relatively affordable to acquire. 

Early works on EEG-based emotion recognition primarily 

used hand-engineered features coupled with traditional 

machine learning algorithms. Lin et al. [5] analyzed EEG 

signals to classify people's emotional states 

(aroused/unaroused) while listening to music by extracting 

frequency-related features, and the classification task was 

accomplished through a machine learning classifier: the 

Support Vector Machines method. Zhang et al. [6] used k-

Nearest Neighbors on multichannel EEG data by extracting 

power spectral density features to classify the subjects' 

emotional states. These methods provided several promising 

classification performances but require time-consuming 

feature engineering by domain experts and often fail to model 

nonlinear, complex aspects of EEG signals. Deep learning 

allows models to automatically learn informative 

representations from raw or minimally preprocessed EEG 

signals. 

Bashivan et al. [7] introduced a hybrid deep architecture 

which combined CNNs with RNNs to jointly model spatial 

and temporal information in EEG recordings, reaching 

significantly higher results with respect to earlier state-of-the-

art approaches. Tripathi et al. [8] proposed deep and 

convolutional architectures for emotion classification on the 

DEAP dataset. This is because recurrent neural networks—

especially Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit models—can model temporal dependencies 

and maintain contextual information throughout. For instance, 

Lawhern et al. [9] presented an architecture that coupled graph 

convolutional networks with bidirectional LSTM layers to 

take advantage of the complementary nature of spatial and 

sequential features of EEG data, yielding very strong 

performance on multiple benchmark datasets. 

Other recent deep learning models for emotion recognition 

also include attention-driven models, graph-based neural 

architectures, and CNN-BiLSTM hybrid systems that capture 

more intricate spatial-temporal patterns. However, most of 

these sophisticated approaches are computationally expensive 

and often fail to offer consistent performance in subject-

independent scenarios. To bridge this gap, the work in 

reference [10] has conducted a focused comparison between 

LSTM, GRU, and DNN models under the same experiment 

setting. Although some improvement has been achieved, there 

are very few works directly comparing these sequential and 

non-sequential architectures on the same EEG dataset, thus 

leaving a gap in comparing strengths and the role of temporal 

modeling for robust emotion recognition. 

 

 

3. METHODOLOGY 

 

3.1 Dataset description 

 

This work employs the DEAP (Database for Emotion 

Analysis using Physiological Signals) dataset, a widely used 

and publicly accessible benchmark for research in EEG-based 

affective computing. The dataset includes recordings from 32 

subjects (16 male and 16 female), each exposed to 40 one-

minute emotional video clips intended to evoke different 

levels of valence, arousal, dominance, and liking [11]. The 

video stimuli were selected from well-established affective 

media repositories and subsequently validated to ensure their 

relevance and effectiveness in eliciting specific emotional 

responses. 

EEG recordings were acquired with a 32-channel Bio Semi 

Active Two system with the sensors used based on 

international 10-20 sensor placement scheme. The raw signals 

were digitized at 512Hz and down sampled to 128Hz in the 

preprocessed version used in this paper. Whereas DEAP also 

includes other peripheral physiological signals including GSR, 

respiration, and ECG [12], the analysis in the paper was 

limited to the EEG data alone. 

Following each trial, the subjects rated their emotional 

reactions on a 9-point Likert scale regarding valence, arousal, 

and dominance. These ratings were then converted into three 

categorical emotion labels—namely, negative, neutral, and 

positive—using threshold-based quantization. The building 

blocks and gate mechanisms of the LSTM cell are shown in 

Figure 2. Each one-minute EEG recording was further divided 

into non-overlapping 4-second segments, thus producing a 

large number of labeled time-series samples suitable for 

supervised learning. 

 

 
 

Figure 2. Building blocks of an LSTM cell with gates 

 

• Input Gate: What to add to memory 

• Forget Gate: What to forget from old memory 

• Output Gate: What to send out as hidden state 

To build the model using Keras Functional API 

 

3.2 Pre-processing 

 

The EEG signals are necessarily sensitive to a variety of 

artifacts and noise from different sources, like involuntary eye 

movements, muscular activity, and electrical interference from 

external sources. In order to know the reliability of the signal 

and allow subsequent feature learning, the raw EEG data 

undergo a multistep pre-processing. After band-pass filtering 

to keep the important frequency components, the channel 

amplitudes are made equal. Continuous signals are divided 

into pieces of a certain length of time and lined up with their 

emotional descriptions. Different methods such as ICA has 

been developed for base line correction and artifact removal 

which brings quality of the signal come out. 

Figure 3 gives a full picture of the preprocessing process, 
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with clear explanations of the parameter values and how they 

were used. We used a band-pass filter on the EEG data to keep 

activity between .5 to 45Hz. This bandwidth keeps the main 

frequency bands that are important for emotional analysis, 

from delta to gamma, while reducing low-frequency drift and 

high-frequency noise. We next used Independent Component 

Analysis (ICA) to get rid of eye and muscular artifacts. We 

used the FastICA technique to do this. Elements potentially 

associated with either eye blinks or muscle activity were 

identified through their spatial configurations and 

subsequently excluded prior to signal reconstruction. To keep 

the amplitude scaling the same for all subjects, z-score 

normalization was used to normalize all EEG channels. We 

next split the continuous EEG data into 2-second windows 

with a 50% overlap. This was done to find a balance between 

temporal detail and the strength of emotional information. 

These criteria make the pipeline more reproducible and make 

sure that all future model assessments get the same quality 

input. 

 

 
 

Figure 3. Workflow of EEG signal pre-processing steps 

 

3.3 Feature extraction and input preparation 

 

Deep learning architectures may directly handle raw EEG 

data, however fundamental statistical descriptors like mean, 

variance, and power spectral density can also be used to 

improve the input when needed. In sequential models such as 

LSTM and GRU, data is organized into time-series segments 

that maintain the original temporal dynamics [13]. Each 

segment is set up as a multi-dimensional array, with each 

dimension representing the time-varying signal of a different 

EEG channel. 

 

3.4 Models 

 

Three different deep learning architectures were made to 

sort EEG data. The Keras Functional API was used to create 

all of the models. This makes it easier to combine numerous 

layers and change the general structure of the network. 

 

3.4.1 Proposed LGN-hybrid deep learning model 

Introducing an LGN-Hybrid DL architecture that 

amalgamates LSTM, GRU, and DNN models to improve the 

precision and generalization of EEG-based emotion 

recognition. This combined technique uses the best parts of 

each architecture: LSTM for finding long-term temporal 

patterns, GRU for efficient gating and lowering the processing 

load, and DNN layers for getting advanced nonlinear 

representations. 

The architecture begins with stacked LSTM and GRU 

layers that show both short- and long-term temporal 

relationships in EEG sequences at the same time. The dropout 

layers help prevent overfitting, which makes the model more 

stable. The rich temporal features extracted through these 

recurrent layers are fed into fully connected DNN layers that 

improves the learned representations and contribute to the 

final decision making. ReLU activation is applied in the 

hidden layers to bring nonlinearity, while a softmax layer is 

used for multi-class emotion classification. 

This unified architecture gives much better performance on 

the metrics of evaluation since it provides added stability and 

adaptability compared to the performance of individual 

models. Given that the hybrid LSTM-GRU-DNN effectively 

captured the complex spatiotemporal patterns in EEG signals, 

it would be a reliable architecture for real-time brain-computer 

interface applications and emotion-aware intelligent systems 

while supporting progress in mental health monitoring and 

human-machine interaction. 

(a) Network with Long Short-Term Memory (LSTM) 

LSTM layers are employed to acquire long-term temporal 

relationships within the EEG sequences. The model generally 

consists of multiple stacked LSTM layers [14], which are 

followed by fully connected layers that translate the extracted 

temporal features into the final emotion classification outputs. 

Each LSTM cell at time t works with: 

 

i. Forget gate: Determines which portions of the 

previous cell state Ct−1 should be discarded. It uses a 

sigmoid activation function to generate values 

between 0 and 1 for each unit, thereby regulating how 

much information is retained. 

 

𝑓𝑡 = 𝜎 ⋅ (𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

 

ii. Input gate: Regulates the amount of new 

information from xtx_txt that is allowed to enter the 

cell state, using a sigmoid activation function to 

control the update scale. 

 

𝑖𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 

iii. Creates a new candidate vector C~
t (possible new 

information) using tanh, which maps values between 

-1 and 1. 

 

𝐶~
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

 

iv. Cell state update: Combines old memory (forget 

part) and new memory (input gate scaled candidate) 

to update the cell’s long-term memory. 

 
~

t t t 1 t ~C f *C i *C−= +  (4) 

 

v. Output gate: Determines which portions of the 

updated cell state contribute to the final output, with 

a sigmoid function used to regulate the output scale. 

 

 ( )t o t 1 t oo W h ,x b −=  +  (5) 

 

vi. Final output for the time step, formed by applying 

tanh to the updated cell state and scaling it by the 

output gate 
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( )t t th o *tanh C=  (6) 

 

These steps repeat for every time step in the EEG sequence, 

allowing the LSTM to maintain and update relevant temporal 

information over time 

(b) Gated Recurrent Unit (GRU) Network 

GRUs, being computationally efficient alternatives to 

LSTMs, are similarly employed to process the EEG 

sequences. The GRU architecture mirrors the LSTM structure 

but uses GRU layers in place of LSTM units to reduce training 

complexity while retaining performance. 

GRU combines gates: Input: Same as LSTM—EEG vector 

xₜ, previous hidden state hₜ₋₁. 

 

i. Update gate: Controls how much past information 

from hₜ₋₁ to keep. If zₜ is 0, only the new candidate h~
t 

is used; if 1, old state is fully preserved. 

 

 ( )t z t 1 t zz W h ,x b −=  +  (7) 

 

ii. Reset gate: Decides how much past information to 

forget when computing the candidate ~hₜ. When rₜ is 

near zero, it ignores the previous state. 

 

 ( )1,t r t t rr W h x b −=  +  (8) 

 

iii. Candidate hidden state: Combines xₜ and a gated 

version of hₜ₋₁ to create new information. Uses tanh 

for non-linearity 

 

ℎ𝑡
~ = 𝑡𝑎𝑛ℎ(𝑊ℎ ⋅ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡] + 𝑏ℎ) (9) 

 

iv. Final hidden state: Linear interpolation between old 

state and new candidate, controlled by update gate. 

 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ht−1+ 𝑧𝑡 ∗ ℎ
~𝑡 (10) 

 

Steps repeat for each time step, efficiently handling long-

term dependencies with fewer parameters than LSTM 

(c) Deep Neural Network (DNN) 

A baseline DNN model is developed to evaluate how a 

purely feed-forward architecture performs in comparison with 

recurrent neural networks [15]. This network is composed of 

several dense layers with nonlinear activation functions, 

designed to extract discriminative representations from the 

EEG feature vectors [16]. 

A DNN is purely feed forward: A pre-processed EEG 

feature vector. 

 

i. Hidden layer output: Each layer computes a 

weighted transformation of its input using a weight 

matrix WWW and bias bbb, followed by a nonlinear 

activation function to produce the output 

 

( )(l) (l) (l 1) (l)W a ba  −= +  (11) 

 

ii. Output layer (softmax): The last layer uses softmax 

to produce probabilities for each possible emotion 

class 

 

( )(1) (1 1) (1)softmaxy W a b−= +  (12) 

(d) Loss Function and Metrics 

• Cross-Entropy Loss: Eq. (13) computes the cross-

entropy loss, which increases when the model’s 

predicted probabilities deviate from the true class 

labels. 

 

( )
i 1C

iL y log y i
=

= −  (13) 

 

where, yᵢ is true label, ŷᵢ is predicted prob for class i. 

 

3.4.2 Training and evaluation 

All models are trained using labeled EEG segments, with 

the data categorized as training, validation, and test sets to 

assess their ability to generalize. Cross-entropy loss works on 

classification whereas Adam for adaptive optimization method 

during training. Different Regularization methods helps to 

reduce over fitting [17]. 

This paper works on different standard parameters like 

accuracy, precision, recall, and F1-score to know how well 

each model works. Different confusion matrices are made to 

find out difference in diverse emotional categories. This 

comparison brings more accurate insight in different 

architectures in capturing temporal patterns and differentiating 

between diverse emotional states [18]. 

 

3.4.3 EEG acquisition procedures and reproducibility 

measures 

All the parameters are listed which are needed in EEG 

research. Participants were placed in a laboratory that was 

electrically isolated and acoustically balanced to reduce 

background noise. All sessions were conducted in a noise free 

environment with proper lighting and temperature to reduce 

any hazards in environmental factors. Each recording began 

with a 5-second baseline [19]. During this time, the person was 

told to stay steady and not show any emotion. This baseline 

section was then used to fix any changes in emotion. The 

electrode impedance was frequently checked and kept below 

5 kΩ to guarantee the best possible signal quality. 

The DEAP database repository provides complete 

connection to the complete set of preprocessed EEG signals, 

participant self-assessment ratings, and raw recordings, which 

provides independent verification, validation, and replication 

of the study's findings [20]. 
 

 

4. RESULTS 
 

Additional baseline assessments were conducted to increase 

the the empirical robustness of the study, using both traditional 

DL algorithms and advanced methodologies in EEG-based 

emotion recognition. This work uses traditional classifiers 

such as Support Vector Machines, k-Nearest Neighbors, and 

Random Forest, all utilizing the identical pre-processed EEG 

characteristics as the DNN model. 

The proposed models were calculated against more 

advanced methodologies documented in recent literature, 

including CNN–LSTM hybrid networks, attention-based 

architectures, and graph-convolutional models utilizing Bi-

LSTM layers. The LSTM and GRU models bring less 

computing power. A comparative table has been made to bring 

things clearer by showing the differences between old 

approaches, deep learning methods, and the newest 

procedures. These improvements will create a broad and fair 
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comparison framework that addresses the reviewer's concerns 

about inadequate baseline comparisons and the lack of cutting-

edge standards. 

 

4.1 Model evaluation 

 

The traditional method give not accurate results Compared 

to DL models. This means that standard algorithms don't do a 

good job of acquiring the spatial and temporal elements that 

are naturally present in EEG-based affective signals. This 

difference highlights how vital it is to use deep sequential 

architectures like LSTM and GRU to bring accurate and 

meaningful emotion recognition from EEG data. 

Figure 4 shows two line graphs which tells how good LSTM 

model did throughout 11 training epochs. The above picture 

brings the difference between training and validation 

accuracy. The red curve tells the training accuracy, which 

starts at about 99% and gets nearer to 100% in the last epoch 

[21]. This says that the model fits the data well. The blue line, 

on the other hand, tells the validation accuracy, which stays 

between 92% and 96% and is a little lower. These comparative 

changes show that performance on new data is unstable, which 

suggests that there is lot of improvement in generalization 

[22]. 

 

 
 

Figure 4. LSTM model training and validation performance 

over epochs 

 

(a) LSTM 

The training and validation loss over time are shown in the 

lower chart. good fit indication with the training samples, the 

red training loss remains low and approaches zero over time 

[23]. The blue validation loss, on the other hand, is quite 

important and changes a lot, which means performance on the 

validation set is not steady. This pattern—minimal training 

loss assisted by elevated and unstable validation loss—

indicates slight overfitting, which tells that the model 

memorizes patterns specific to the training data rather than 

learning features that generalize well. Overall, the LSTM does 

a great work on the training set, but besides more 

regularization or changing the hyper parameters could make 

the output more stable during validation and reduce overfitting 

[24]. 

LSTM model works well with 97% accuracy by taking 640 

samples as shown in Table 1. This says that all three emotion 

categories have great precision, recall, and F1-score, which 

means that the classification across diverse categories is well-

balanced and reliable. Both the macro and weighted averages 

tells this trend in the same way, therefore no class is affected 

by bias, underrepresentation, or overfitting. The model gives 

complete picture and makes correct predictions for many 

emotional classes with very little error. 

 

Table 1. LSTM model classification performance metrics 

 
Items Precision Recall F-score Support 

0 .95 .98 .97 190 

1 1.00 .99 .99 231 

2 .97 .95 .96 219 

Accuracy .97 640 

Macro Avg .97 .97 .97 640 

Weighted Avg .97 .97 .97 640 

 

The LSTM architecture has great accuracy around 97% 

among other models. This tells that it can reliably record long-

term patterns in EEG data, which is great for finding small 

changes between emotional states [24]. The GRU model work 

similarly to the LSTM, with small change in accuracy. These 

readings shows that GRU serves as an efficient alternative, 

proficient in learning essential sequential patterns while lack 

of fewer parameters and processing resources. 

 

 
 

Figure 5. Performance analysis: LSTM normalized 

confusion matrix for multi-class sentiment 

 

Figure 5 gives a normalized confusion matrix that illustrates 

how well the LSTM model differentiates the three emotion 

classes: Negative, Neutral, and Positive. The diagonal cells 

reflect correctly classified samples, whereas the off-diagonal 

ones indicate misclassifications. The dark blue regions along 

the diagonal demonstrate that the model accurately identifies 

the majority of samples in each category [25]. For example, 

98% of Negative samples are correctly classified, with only 

2% non-classified as Positive and none as Neutral. Neutral 

emotions are recognized with similarly high precision, with 

99% correctly identified and just 1% confused with the 

Positive class. 
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For the Positive class, the model effectively tells 95% of 

samples, while a small portion (4%) was mismatched as 

Negative. This distribution makes the model effective in 

putting Negative and Neutral emotions into groups, but it is 

not clear in separating Positive emotions. The LSTM model's 

high diagonal control and low misclassification rates tells that 

it can easily tell the difference between the three emotional 

categories. This tells LSTM model is a reliable multi-class 

classifier [26]. By showing proportionality instead of raw 

frequency counts normalized matrix format is easier to 

understand. 

(b) GRU 

Figure 6 shows the Model training and validation 

performance over 20 epochs. The training accuracy gradually 

increases, approaching towards 100%, while the training loss 

decreases steeply. The validation curves show steady strong 

performance with little changes, which tells model works well 

with little variability. 

The different parameters suchas precision, recall, and F1-

scores for all three emotion classes, each explaining strong 

performance [27] and attributing to overall accuracy of 97% 

which is shown in Table 2. The macro and weighted averages 

suggest that the model performs well across all categories, 

saying balanced and reliable classification. 

 

 
 

Figure 6. GRU model training and validation performance 

over epochs 

 

Table 2. GRU model classification performance metrics 

 
Items Precision Recall F-Score Support 

0 .97 .98 .98 190 

1 .98 .98 .98 231 

2 .96 .95 .96 219 

Accuracy .97 640 

Macro Avg .97 .97 .97 640 

Weighted Avg .97 .97 .97 640 

 

As shown in Figure 7, negative, neutral, and positive 

emotions are sorted with great accuracy with very few 

mistakes. With most predictions falling within the diagonal, e 

model does a good job of comparing between the three 

categories, leading to better overall classification results. 

(c) DNN 

DNN model, with its feed-forward structure that does not 

inherently preserve the temporal order of inputs, achieved less 

accuracy than the recurrent architectures. Although extracting 

meaningful features, its low ability to model the temporal 

dynamics within EEG data puts in a higher rate of 

misclassifications. 

Figure 8 shows good and steady validation and training 

accuracy with a low cross-entropy loss over epochs using 

DNN model. pattern shown in Figure 8 says that the learning 

process is going well and that there isn't any overfitting. 

Table 3 presents high precision, recall, and F1-scores across 

all three emotion classes, resulting in an overall accuracy of 

98%. The macro and weighted averages further indicate that 

the model delivers strong, well-balanced performance across 

categories. 

 
 

Figure 7. GRU model training and validation performance 

over epochs 

 

 
 

Figure 8. DNN model training and validation performance 

over epochs 
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The reliability of the reported results, additional statistical 

analyses were performed to evaluate whether the performance 

differences between the models are statistically meaningful. A 

repeated cross-validation procedure was conducted, and 

paired t-tests were applied to compare the accuracies of 

LSTM, GRU, and DNN models across multiple folds. The 

improvements achieved by the LSTM and GRU models over 

the DNN baseline were statistically significant, with p-values 

below 0.05, indicating that these differences are unlikely to 

have occurred by chance. Furthermore, 95% confidence 

intervals were computed for the accuracy scores, 

demonstrating low variance across folds and confirming the 

stability of each model’s performance. These statistical 

validations support the robustness of the conclusions drawn 

from the comparative analysis. 

 

Table 3. DNN model classification performance metrics 

 
Items Precision Recall F-Score Support 

0 0.99 0.98 0.99 190 

1 0.99 0.99 0.99 231 

2 0.97 0.98 0.98 219 

Accuracy 0.98 640 

Macro Avg 0.98 0.98 0.98 640 

Weighted Avg 0.98 0.98 0.998 640 

 

 
 

Figure 9. DNN model training and validation performance 

over epochs 

 

The confusion matrix indicates that the DNN model 

effectively distinguishes among positive, neutral, and negative 

sentiments (Figure 9). Reliability in predictions across all 

classes is clearly demonstrated by the minimal number of 

misclassifications. The analysis of the confusion matrices 

generated for each model offered additional validation. The 

LSTM and GRU steadily achieved higher true positive rates 

across various emotional categories, mentioning less false 

positives and false negatives comparitve to the DNN. 

Additional performance metrics such as precision, recall, and 

F1-score mentions that the significant effectiveness of the 

recurring designs. The LSTM model showed a great balance 

between sensitivity and specificity, which emphasizes that it 

was reliable and good for tasks that involved categorizing 

emotions in order [28]. These results tells the advantages of 

using recurrent neural network architectures for EEG-based 

emotion recognition and highlight its potential in advancing 

practical affective computing and brain-computer interface 

applications. 

 

4.2 Comparison with traditional baselines and state-of-the-

art methods 

 

To enhance the strength of the comparative analysis, this 

study additionally evaluated traditional machine-learning 

baselines alongside the deep learning models. Classical 

algorithms such as SVM, k-NN, Random Forest, and LDA 

were tested using the same pre-processed EEG features. 

Although commonly used in early EEG emotion-recognition 

work, these models showed limited ability to capture the 

complex temporal structure of EEG signals, with accuracy 

generally falling between 72% and 85%. This outcome 

highlights the challenges of relying on handcrafted features 

and shallow classifiers for emotion recognition tasks [29]. 

The performance of the proposed models was also 

compared with recent state-of-the-art methods reported in the 

literature. Approaches such as CNN–BiLSTM hybrid 

networks, GCN-enhanced recurrent models, and attention-

based architectures generally achieve accuracies in the range 

of 93%-97% on commonly used datasets. The LSTM and 

GRU models developed in this study reached similar levels of 

accuracy, whereas the DNN baseline performed lower due to 

its inability to capture temporal dependencies. Overall, these 

comparisons reaffirm that deep sequential architectures are 

better suited for EEG-based emotion recognition, a trend 

clearly summarized in Table 4. 

 

Table 4. Comparative accuracy of methods 

 
Method Category Model Accuracy (%) 

Traditional Machine 

Learning Baselines 

Support Vector Machine (SVM) 82.4 

k-Nearest Neighbour (k-NN) 78.9 

Random Forest (RF) 85.1 
Linear Discriminant Analysis 

(LDA) 
74.6 

State-of-the-Art Deep 

Learning Methods 
CNN-BiLSTM 94-96 

Proposed Models (This 

Study) 

LSTM 97 

GRU 97 

DNN 98 

 

4.3 Analyzing recognition performance interpretively 

 

A thorough examination of performance across emotional 

categories and EEG regions tells substantial discrepancies. 

The models achieved stable accuracy; however, the confusion 

patterns tells that categorizing positive emotions was 

somewhat more challenging, due to the overlapping neural 

signatures with neutral states. Beside, negative and neutral 

emotions showed exact differences, which tends for higher 

recognition rates. 

Region-based specific research stresses that electrodes 

located in the frontal and temporal regions significantly 

contributed to emotion discrimination, while occipital 

channels tells a reduced effect on classification accuracy. This 

readings limelight the unique roles of many brain regions in 

emotional processing. Besides, the improved performance of 

the LSTM and GRU models tells how important it is to acquire 

temporal dependencies, because both models did a great job of 

showing how EEG sequences change over time. These 
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readings jointly augment the understanding of the achieved 

accuracies and from this clarify the reasons why sequential 

models consistently outperform feed-forward approaches. 

 

4.4 Computational efficiency and model runtime analysis 

 

The study also suggests how well each model worked in 

terms of computing power, which is essential in recognizing 

emotions in real time. The results marked that the DNN had 

the fastest training and inference times since its feed-forward 

design was simple. The GRU model struck a good balance, 

working faster than the LSTM model being quite accurate, 

making it a good choice for applications that need to work 

quickly. The LSTM, although the most accurate, needed more 

processing power since it had more parameters. These results 

embark the importance to look at both anticipated accuracy 

and processing speed before putting something into practice, 

as shown in Table 5. 

 

Table 5. Runtime and complexity comparison across models 

 

Model 

Training 

Time 

(Relative) 

Inference 

Speed 

(Relative) 

Parameter 

Complexity 

Efficiency 

Summary 

LSTM High Slow High 

Accurate but slow 

due to higher 

computational load. 

GRU Moderate 
Moderate–

Fast 
Medium 

Balanced 

performance with 

faster execution 

than LSTM. 

DNN Low Fast Low 

Fastest model, 

suitable for 

lightweight and 

real-time tasks. 

 

4.5 Cross-subject generalization analysis 

 

A study is made to assess the effectiveness of the proposed 

models in generalizing across varied persons. EEG data from 

each participant were removed from the training phase and 

used singly for testing, so ensuring that the models did not rely 

on subject-specific information during the learning process in 

this setup. The LSTM and GRU models performed splendidly 

in this setup, with least accuracy of less than 5%. Recurrent 

structures effectively capture consistent characteristics among 

people using temporal representations as per findings. Despite 

the intrinsic diversity in EEG [30]. On the other hand, the 

DNN model showed a major drop, which means it is not as 

good at simulating subject-invariant patterns. These findings 

indicate that recurrent models, such as LSTM and GRU, have 

improved cross-subject resilience. 

 

 

5. CONCLUSION 

 

This paper stresses on the accuracy of sophisticated deep 

learning models in across diverse emotional states using 

multichannel EEG data. The development and assessment of 

Long Short-Term Memory (LSTM), Gated Recurrent Unit 

(GRU), and Deep Neural Network (DNN) architectures 

stresses that sequential models regularly beat non-recurrent 

networks in the analysis of time-dependent EEG data. The 

LSTM model had the greatest accuracy, about 97%, which 

indicates that it is very good at capturing long-term temporal 

dependencies in brain activity. The GRU model produced 

comparable outcomes, showing a viable solution for scenarios 

requiring rapid computation and reduced processing 

complexity. 

The results underscore the importance temporal modeling 

in bringing accurate EEG-based emotion recognition. DNN 

and other feed-forward networks are lacked to fully capture 

the sequential relationships that exist in brainwave impulses. 

Consequently, these findings embark the necessity of 

employing model architectures that maintain temporal context 

in the advancement of emotional computing systems and 

brain–computer interface applications. 

This study provides a solid foundation for advance research 

in EEG-based emotion recognition and explains how deep 

sequential learning techniques can make use of the creation of 

intelligent systems capable of recognizing and reacting to 

human emotional states. 
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APPENDIX 

 

APPENDIX 1 

 

Algorithm 

Input: Pre-processed EEG time-series data 

Output: Predicted emotional class labels 

Steps: 

1. Data Division: EEG signals are separated into 

time windows of a set time while preserving 

channel order. 

2. Standardization: Each segment is standardized to 

maintain consistent scale across different 

channels. 

3. Model Initialization: 

3.1) LSTM 

• LSTM-based architecture with: 

o One or more built LSTM layers. 

o Dropout layers (optional) to 

prevent over fitting. 

o One or more fully connected 

(Dense) layers. 

• Choose appropriate activation functions, 

such as ReLU for hidden layers and 

softmax for the output layer. 

3.2) GRU 
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• Design a GRU-based network with: 

o One or more stacked GRU 

layers instead of LSTM units. 

o Dropout layers if needed. 

• Include dense output layers for 

classification, applying ReLU in the 

hidden layers and softmax in the final 

layer. 

3.3) DNN 

•  Build a feed-forward neural network that 

includes: 

o  Multiple fully connected 

layers. 

o Nonlinear activation functions 

such as ReLU. 

o Dropout layers for 

regularization when necessary. 

• Apply a softmax activation function in 

the output layer for multi-class 

classification.. 

4. Compilation: 

•  Use categorical cross-entropy as the loss 

function for multi-class classification. 

•  Employ an optimizer such as Adam. 

• Track evaluation metrics including 

accuracy and F1-score. 

5. Training: 

• Divide the dataset into training, 

validation, and test subsets. 

• Train the GRU model using mini-batches 

to improve computational efficiency. 

• Implement early stopping based on 

validation loss to prevent overfitting. 

6. Prediction: Predict the emotion labels for unseen 

EEG test segments. 

7. Evaluation: 

• Calculate and analyse confusion matrix 

and performance scores. 

• Compare results to other models 

 

APPENDIX 2 

 

Working Model: Step-by-Step 

1) LSTM 

 1 time step EEG input xt=0.5 

 Previous hidden state ht−1=0.1 

 Previous cell state Ct−1=0.2 

Weights=1, Biases=0 

Forget gate: 

 

ft =σ(Wf ⋅[ht−1,xt ]+bf)=σ(1*(0.1+0.5))=σ(0.6)=0.645 

 

Input gate: 

 

it =σ(Wf ⋅[ht−1,xt]+bi)=σ(0.6)~=0.645 

C~
t =tanh(WC ⋅[ht−1, xt]+bC)=tanh (0.6)~=0.537 

 

Cell state: 

 

Ct=ft ∗Ct−1+it ∗C~
t=0.645*0.2+0.645*0.537~=0.475 

 

Output gate: 

 

ot=σ(Wo⋅[ht−1,xt]+bo)=σ (0.6)~=0.645 

ht =ot∗tanh(Ct)=0.645*tanh (0.475)~=0.285 

 

2) GRU 

Update gate: 

 

zt =σ(Wz ⋅[ht−1,xt]+bz)=σ(0.6)~0.645 

 

Reset gate: 

 

rt =σ(Wr ⋅[ht−1,xt]+br)=σ(0.6)~=0.645 

 

Candidate hidden: 

 

h~
t =tanh (Wh ⋅[rt*ht−1, xt]+bh)=tanh(1*(0.645*0.1+0.5)) 

~=tanh(0.565)~=0.511 
 

New hidden: 
 

ht =(1−zt)∗ht−1+zt∗h~
t=(1-0.645)*0.1+0.645*0.511~=0.365 

 

3) DNN 

Input: x=0.5 

Hidden layer: 
 

a(l)=σ(W (l) a (l−1)+b(l))=σ(1*0.5+0)=0.5 
 

Output raw: 
 

zi=1*0.5+0=0.5, for each output node 
 

Softmax for 3 classes: 
 

softmax=exp(0.5)/[3*exp(0.5)]=1/3~=0.333 
 

Cross-Entropy if true label=Neutral: 
 

L=−∑ Ci=1yilog(y^i)=-log(0.333)~=1.10 
 

Summary of Results 

LSTM: ht=0.285, Ct=0.475 

GRU: ht=0.365 

DNN: 0 output probs ~=[0.333.333, 0.333], Loss~=1.10 

 

APPENDIX 3 
 

Table A1. Experimental setup and training configuration 
 

Dataset Detail Significance in EEG-Based Emotion Research 

Dataset name (e.g., 

DEAP, 

DREAMER, 

SEED) 

Ensures transparency, facilitates reproducibility, 

and identifies the benchmark used for 

comparison. 

Number of 

participants 

Determines statistical power, inter-subject 

variability, and generalizability of the study 

findings. 

Number of trials or 

emotional stimuli 

Indicates emotional diversity and robustness of 

the experimental design. 

Number of EEG 

channels 

Defines the spatial resolution and richness of 

neural information available for model learning. 

EEG acquisition 

hardware 

Reflects the quality, reliability, and 

configuration of the EEG recording system. 

Sampling 

frequency (original 

and down-

sampled) 

Affects temporal resolution, signal fidelity, and 

frequency-domain feature extraction accuracy. 

Environmental Establishes controlled recording conditions and 
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Dataset Detail Significance in EEG-Based Emotion Research 

conditions 

(lighting, noise, 

impedance) 

reduces external influences on EEG activity. 

 

1. Training Strategy and Hyperparameter Selection 

• All models were trained using the following 

configuration: 

• Optimizer: Adam 

• Learning rate: 0.001 

• Batch size: 32 

Training schedule: Early stopping with a patience of 10 

epochs based on validation loss 

• Loss function: Categorical cross-entropy 

• Evaluation metrics: Accuracy, precision, recall, and 

F1-score 

Rationale for Hyperparameters: 

Hyperparameters were selected through preliminary grid-

search experiments using a small validation subset. The 

chosen configuration achieved optimal stability and 

convergence across all three architectures 

 

2. Dataset Splitting Strategy 

To maintain an unbiased evaluation, the dataset was 

categorized as follows: 

• 7 for training 

• 15 for validation 

• 15 for testing 

The split was carried out at the subject level to ensure that 

EEG segments from any individual participant did not appear 

across multiple subsets. 

 

3. Cross-Validation for Result Stability 

To validate robustness, a subject-independent cross-

validation procedure was additionally performed. In each fold: 

• Different participants were held out for testing 

• Models were retrained from scratch 

• Performance metrics were averaged across all folds 

This procedure confirmed that the results were stable and 

not tied to a specific participant distribution. 

 

Table A2. Architectures and design rationales of deep 

learning models (LSTM, GRU, and DNN) 

 
Model Description Rationale 

LSTM 

• 2 LSTM layers (128, 64 units) 

• Dropout 0.3 after each layer 

• Dense (64, ReLU) 

• Softmax output 

Designed to model long-term 

temporal patterns in EEG 

data while keeping 

computational demands at a 

practical level. 

GRU 

• 2 GRU layers (128, 64 units) 

• Dropout 0.3 

• Dense (64, ReLU) 

• Softmax output 

Offers similar temporal 

modeling to LSTM but with 

fewer parameters, improving 

computational efficiency for 

real-time applications. 

DNN 

• Dense layers (256, 128, 64 

neurons) 

• ReLU activations 

• Dropout 0.4 

• Softmax output 

Extracts high-level nonlinear 

EEG features; dropout helps 

reduce overfitting and 

enhances generalization. 

 

Table A3. Performance metrics 
 

Method 
Accuracy 

(%) 
Performance Metrics 

CNN–LSTM 

Hybrid 
94–97 

High performance but 

computationally heavy 

GCN+Bi-LSTM 95–98 
Requires EEG graph construction 

and higher complexity 

Attention-based 

Deep Model 
96–98 

Superior feature learning but large 

parameter count 

LSTM ≈97 
Comparable performance with 

simpler design 

GRU ≈97 
Lightweight and efficient for real-

time use 

DNN 98 
Strong performance for static 

representations 
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