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CT imaging technology is a crucial tool for revealing the dynamic evolution of gas-water
displacement interfaces within porous media. However, challenges such as insufficient
segmentation accuracy, poor robustness in 3D reconstruction, and a lack of systematic
morphological quantification hinder deeper understanding of gas-water flow mechanisms.
To address these challenges, this paper proposes an integrated technical solution: 1) An
improved 3D Attention U-Net segmentation model, which introduces a projection attention
module (PAM) before the attention-guided AG module to enhance the effective feature
representation of the encoder layer. This enables accurate integration of low-level surface
features with high-level abstract features. Additionally, a hybrid loss function with a weight
parameter A is designed to balance class imbalance and boundary segmentation accuracy. 2)
A multi-feature fusion-Transformer matching strategy for reconstruction, which integrates
dense feature point clouds of the gas-water interface extracted by Oriented FAST and
Rotated BRIEF (ORB), Harris corners, and Speeded Up Robust Features (SURF). The
global attention mechanism of Transformer is applied to achieve scale-invariant feature
point matching from coarse to fine, thus improving the precision of 3D reconstruction. 3) A
multi-dimensional morphological quantification index system is developed for quantitative
representation of the interface's geometric and dynamic features. Experiments based on real
core CT gas-water data demonstrate that the improved 3D Attention U-Net achieves a Dice
coefficient of 0.92, IoU of 0.86, mean surface distance of 2.1 um, and Hausdorff distance
(HD) of 5.3 um, providing pixel-level overlap and submicron boundary restoration. The
segmentation results show a high consistency with measured cross-sectional X/Y/Z half-
variance curves, with precise matching of local morphology, inflection points, and
displacement features. The 3D reconstruction point cloud has an RMSE of 0.021 mm, with
relative deviations of 2.3%, 1.8%, and 3.1% in surface area, enclosed volume, and average
curvature, respectively. The core morphological parameters have a deviation of less than 2%
from measured values, successfully capturing the "expansion-filling-stabilization" three-
phase displacement pattern, supporting the analysis of the relationship between "interface
morphology and displacement efficiency." This method provides reliable technical support
for the quantitative study of gas-water processes in porous media and can be extended to
engineering fields such as oil and gas development and CO: geological sequestration.

1. INTRODUCTION

mainstream technology for real-time observation of the spatial
distribution of gas-water displacement interfaces. By

The gas-water displacement process in porous media is a
core physical mechanism in engineering fields such as oil and
gas extraction, CO: geological sequestration, and groundwater
pollution remediation. The dynamic evolution of the interface
directly determines fluid migration efficiency and resource
utilization efficiency [1-3]. X-ray CT, with its high resolution
and non-invasive advantages [4, 5], has become the
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continuous CT scanning, two-dimensional slice images of the
interface at different time steps can be obtained, providing a
data basis for three-dimensional structural analysis and
mechanism revealing.

However, CT gas-water images face three major technical
bottlenecks: 1) Insufficient interface segmentation accuracy:
The gas-water interface is affected by noise, gray-scale
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inhomogeneity, and fluid diffusion effects, resulting in blurred
boundaries with small gray-scale differences from the
background core matrix [6, 7]. Although the existing 3D
Attention U-net enhances interface features through attention
mechanisms, it is easily disturbed by irrelevant signals when
merging low-level features from the encoding area with high-
level features from the decoding area, leading to boundary
shifts [8, 9]; 2) Poor robustness in three-dimensional
reconstruction: Traditional feature point extraction methods
struggle to balance "density" and "robustness." Although ORB
has strong real-time performance, its feature points are sparse
in regions with few textures. Harris corners are sensitive to
noise, and SURF, though resistant to scale variations, has high
computational complexity [10, 11]. Moreover, feature point
matching is easily influenced by scale changes in CT images,
leading to point cloud misalignment and decreased
reconstruction accuracy [12, 13]; 3) Unsystematic
morphological quantification: Existing studies mainly focus
on a single metric, lacking the integration of multi-
dimensional features such as interface curvature, migration
rate, and stability, and are unable to fully characterize the
physical essence of interface evolution [14-16]. Therefore,
developing an integrated method for high-accuracy
segmentation, high-robustness reconstruction, and multi-
dimensional quantification is of significant theoretical and
practical value for revealing the gas-water seepage mechanism
and optimizing engineering design.

To address the above challenges, this paper aims to solve
the bottlenecks in CT gas-water interface analysis. The
specific objectives include: 1) Proposing an improved 3D
Attention U-net segmentation model that enhances the
accuracy and robustness of interface segmentation by
embedding a PAM and designing a hybrid loss function; 2)
Constructing a "multi-feature fusion extraction-Transformer
precise  matching"  three-dimensional  reconstruction
framework to achieve accurate reconstruction of the gas-water
interface’s dense point cloud; 3) Establishing a multi-
dimensional morphological quantification index system to
achieve quantitative representation of the interface's geometric
and dynamic features.

The main contributions of this paper include the following
three aspects: 1) Innovation in the segmentation model:
Embedding a PAM before the AG module in the 3D Attention
U-net, strengthening the feature representation of the encoding
area by feature re-projection and attention weighting, and
suppressing irrelevant signals. A hybrid loss function with a
weight parameter A is introduced to balance cross-entropy loss
and Dice loss; 2) Innovation in the reconstruction method:
Fusing ORB, Harris, and SURF to extract dense feature points

of the gas-water interface, and using the global attention
mechanism of Transformer to achieve "coarse-to-fine" scale-
invariant matching, improving point cloud matching accuracy
and reconstruction robustness; 3) Innovation in the
quantification system: Integrating interface geometric features
and dynamic features to build a multi-dimensional
quantification index system for the quantitative representation
of gas-water interface evolution and its physical significance
correlation.

The structure of the paper is arranged as follows: Chapter 2
provides a detailed explanation of the proposed segmentation,
reconstruction, and quantification methods; Chapter 3 verifies
the effectiveness of the methods through experiments and
analyzes the results; Chapter 4 discusses the advantages,
limitations, and application value of the methods, summarizes
the paper, and outlines future directions.

2. METHODOLOGY

This chapter details the segmentation-reconstruction-
quantification integrated method for CT gas-water interfaces.
The method description is as follows: 1) Preprocess the CT
sequence images and improve the 3D Attention U-net
segmentation to obtain binary images of the gas-water
interface; 2) Extract a dense point cloud using multi-feature
fusion from the segmented interface images, and perform
three-dimensional reconstruction using Transformer matching;
3) Calculate multi-dimensional morphological quantification
indices based on the reconstructed 3D model.

2.1 CT gas-water interface segmentation based on the
improved 3D Attention U-net

2.1.1 Improved 3D Attention U-net network structure

The improved 3D Attention U-net follows the classic U-
shaped architecture, with encoding, decoding, and skip
connections as the basic framework. The core innovation lies
in the introduction of the PAM and the optimization of the skip
connection mechanism, which enhances segmentation
accuracy of the gas-water interface by feature enhancement
and cross-scale fusion. This architecture extracts abstract
features through downsampling in the encoding area, restores
spatial resolution through upsampling in the decoding area,
and compensates for detail loss caused by downsampling via
skip connections. PAM and the optimized connection
mechanism specifically address the issue of weak features in
the gas-water interface, which are prone to interference from
the core matrix background.

ReAUN-3)
. Upsamplingtn2

& (Com33xa

. Mas-pocliogiby2)
4 Skp Coanection

> Gatieg SenakQuesy

®

SProjection Anentica Sdadele

Ammnion Giste

Figure 1. Improved 3D Attention U-net network structure for CT gas-water interface segmentation

3592



Figure 1 shows the improved 3D Attention U-net network
structure suitable for CT gas-water interface segmentation.
The encoding area consists of four 3D convolution blocks and
three 3D max-pooling layers alternately. Each convolution
block contains two 3x3x3 convolution layers, a batch
normalization (BN) layer, and a ReL.U activation function. In
the figure, the BN layers are simplified and omitted. The
convolution blocks gradually enhance the texture and
morphological features of the gas-water interface by extracting
local features. The max-pooling layers perform downsampling
with a 2x2x2 kernel size and a stride of 2, which compresses
the feature map size while preserving key structural
information. The final output feature map size from the
encoding area is 1/8 of the input, effectively extracting high-
level abstract features. The decoding area consists of four 3D
deconvolution blocks, each consisting of a 2x2x2
deconvolution layer, two 3x3x3 convolution layers, a BN
layer, and a ReLU activation function. The deconvolution
gradually upsamples to restore the spatial resolution of the
feature map and provide structural support for precise
segmentation.

PAM is the core enhancement module of the network,
embedded between the outputs of the encoding area and the
attention-guided AG module. It strengthens target feature
representation and suppresses background interference
through feature re-projection and attention weighting. The
specific process is as follows: First, the 3D feature map
FencERCHMD output by the encoding area, where C is the
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number of channels, and H, W, and D are the spatial
dimensions, is subjected to A/Z/Y/X multi-dimensional 3D
average pooling to extract feature information from different
spatial dimensions. Then, the pooled features from each
dimension are concatenated into a multi-dimensional 3D
pooled feature map, which is projected to a lower-dimensional
space using a 1x1x1 3D convolution to reduce computational
complexity. After BN and ReLU activation function
processing, the feature representation ability is enhanced. The
processed features are then separated into multiple branches
through 3D feature separation, and each branch generates the
corresponding attention weights for each dimension through a
1x1x1 3D convolution and a Sigmoid activation function.
Finally, the attention weights from each branch are element-
wise multiplied with the 3D feature map of the CT gas-water
interface output from the original encoding block, resulting in
Fa€ERCHPD_ The AG module aligns F,, with the upsampled
feature map Fu. from the decoding area through channel
alignment, focusing on the target region via attention weight
allocation and outputting the fused feature Fjion. The
optimized skip connection no longer directly transmits the
original features from the encoding area but fuses them with
the features from the decoding area after enhancement via
PAM. This effectively reduces interference from background
noise during the fusion process and enhances the effectiveness
of cross-scale feature fusion. Figure 2 shows the structure of
the PAM for CT gas-water interface 3D segmentation.
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Figure 2. Structure of the PAM for CT gas-water interface 3D segmentation

2.1.2 Improved hybrid loss function

Gas-water interface segmentation faces two core challenges:
1) The significant pixel ratio difference between the interface
region and the core matrix in CT images [17], resulting in
severe class imbalance; 2) The small number of boundary
pixels and the gradual gray-scale variation [18], making it
difficult for traditional loss functions to accurately capture
boundary features. To address these two issues simultaneously,
a hybrid loss function L,; with a weight parameter A is
designed, which combines cross-entropy loss and Dice loss
through weighted fusion to balance class distribution and
boundary segmentation accuracy.

The cross-entropy loss Lcr primarily addresses the class
imbalance issue by penalizing misclassified pixels through
logarithmic probability. It assigns a higher misclassification
cost to the interface pixels, which occupy a very small
proportion. The calculation formula is as follows:

N

1
Leg= Nz [, log (p)+(1-3) log (1-p))]
i=1

(M
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where, NV is the total number of pixels, y; is the true label of the
i-th pixel, and p; is the model's predicted probability that the
pixel belongs to the interface. The Dice loss Lpice enhances
boundary segmentation accuracy by measuring the overlap
between the predicted and true regions, effectively focusing on
the subtle features of the interface boundary. The calculation
formula is as follows:

2Z§i1y,‘pi+€

N N
AR R I P} +e

LDicezl_ (2)

where, =107 is a smoothing term to avoid division by zero in
extreme cases.

The final form of the hybrid loss function is:
Lni=A-Lce+(1=4)  Lpice, where the weight parameter A is used
to adjust the contribution of the two types of losses. The
optimal A value is determined by performing a 5-fold cross-
validation over the range 1€[0,1], with the final optimal value
set to A = 0.3. This value allows the cross-entropy loss to
sufficiently suppress the bias caused by class imbalance while



enabling the Dice loss to fully optimize boundary features,
achieving the best balance between interface pixel recognition
and boundary morphology characterization.

2.1.3 Dataset construction and preprocessing

The experimental data are sourced from the Micro-CT
scanning results of sandstone core gas-water displacement
physical simulation experiments. The spatial resolution of the
scanning equipment is 50 um, with a scan step of 1 mm and a
time interval of 30 seconds, resulting in dynamic scan data for
100 time steps. Each time step consists of 200 two-
dimensional CT slices, with each slice having a size of
512%512. The data covers the entire dynamic process of gas-
water displacement from the initial stage to the stable stage,
providing rich dynamic feature samples for the interface
segmentation model. The data labeling was independently
completed by two experts with more than 5 years of
experience in rock mechanics research using the LabelMe3D
tool. The labeled object is the gas-water interface region in
each slice. The intersection of the labeling results from both
experts was taken as the gold standard for segmentation,
ensuring the accuracy and authority of the labeling results.

The purpose of data preprocessing is to improve image
quality, unify data distribution, and increase sample size,
thereby providing high-quality input for model training. First,
Gaussian filtering is applied for denoising. A filter kernel with
0=1.0 is selected to smooth image noise while retaining the
subtle gray-scale changes of the interface. This parameter is
determined by comparing the gray-scale contrast between the
interface and background at different o values, achieving a
balance between denoising and feature preservation.
Subsequently, a gray-scale normalization operation is
performed, linearly mapping the original image's gray-scale
values to the range [0,1] with the mapping formula
Luorm=I—Lnin)/(Imax—Imin), Where I is the original gray-scale
value, and /,i» and qx are the minimum and maximum gray-
scale values of a single image. This operation eliminates the
gray-scale shift between different scan time steps, unifying the
data distribution.

To mitigate the issue of model overfitting, data
augmentation strategies are adopted to increase the training
samples, including random rotation, horizontal and vertical
flipping, and random scaling. The rotation and flipping
operations simulate slight pose changes of the core during
scanning, while the scaling operation enhances the model's
ability to adapt to interface features at different scales. The
augmented dataset is split into training, validation, and test sets
in a 7:2:1 ratio. The training set is used for model parameter
iteration and wupdate, the wvalidation set is used for
hyperparameter tuning and overfitting monitoring during the
training process, and the test set is used for objective
evaluation of the model's final segmentation performance.
This splitting ratio follows the conventional setup in medical
image segmentation and ensures the reliability of the
evaluation results.

2.2 Three-dimensional reconstruction of CT gas-water
interface based on multi-feature fusion and transformer
matching

2.2.1 Dense feature point extraction using multi-feature fusion

Single feature point extraction methods cannot fully cover
the complex characteristics of the gas-water interface. ORB
features are fast in real-time but have weak scale adaptability,
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Harris corner detection is sensitive to edge features but lacks
noise resistance, and SURF has scale invariance but high
computational complexity. Therefore, this paper combines
ORB, Harris, and SURF algorithms to extract dense feature
points from the interface, improving feature point integrity,
stability, and robustness by complementary advantages, which
lays the foundation for subsequent accurate matching.

ORB feature point extraction is based on the FAST
algorithm to detect corner points. After selecting an initial
threshold 7=20, non-maximum suppression is applied to
remove redundant points and ensure a sparse and uniform
distribution of feature points. The centroid of the gray-scale
region is calculated to determine the main direction, and a 256-
dimensional rotation-invariant BRIEF descriptor is generated
based on this direction, providing rotational invariance to the
feature points. Harris feature point extraction is performed by
calculating the second-order moment matrix of the image

gray-scale:
e /@ lxly/
- 2
LI, P

where, I, and I, are the gray-scale gradients in the x and y
directions, respectively. The response value is calculated as
R=det(M)—k-(trace(M))?, where (k=0.04). Points with a
response value greater than R,.»<0.01 are selected as corner
points. This threshold is experimentally validated and
effectively selects key feature points along the interface
boundary. SURF feature point extraction detects scale-space
extrema using the Hessian matrix, and sub-pixel level feature
point localization is achieved through interpolation. The main
direction is determined by calculating the Haar wavelet
response in the feature point neighborhood, and finally, a 64-
dimensional SURF descriptor is generated, ensuring scale
invariance.

Multi-feature fusion uses a voting method and weighted
fusion strategy to enhance feature quality. The voting method
retains the feature point with the highest descriptor matching
score at the same pixel location and eliminates redundant
information. For non-redundant feature points extracted by the
three algorithms, the descriptors are fused using the weighted
percentages of ORB (40%), Harris (30%), and SURF (30%).
This weight distribution comprehensively considers the
advantages of the three features: ORB descriptors have high
dimensionality and strong discriminability, Harris corners
have accurate positioning, and SURF has good scale
adaptability. The weighted fusion descriptors integrate multi-
dimensional feature information, significantly improving the
robustness of subsequent feature matching.

3)

2.2.2 Feature point accurate matching based on transformer

CT slices of the gas-water interface often have scale
differences and gray-scale noise. Traditional feature matching
methods are easily affected by scale changes and are difficult
to capture the global correlations between feature points,
leading to low matching accuracy and high outlier ratios. This
paper designs a Transformer-based "from coarse to fine"
feature point matching model, which realizes scale-invariant
accurate matching through feature encoding, global attention
matching, and optimization iterations, effectively solving the
above problems.

First, multi-time-step CT gas-water interface slice images
are input into a 3D CNN convolutional neural network to
extract 3D feature maps. This network strengthens the 3D



texture and morphological features of the gas-water interface
through multiple convolution operations, providing high-
recognition basic features for subsequent matching.

Next, the 3D feature maps are input into a 3D self-attention
and cross-attention module. Let the reference time-step feature
be S; and the target time-step feature be S;. The self-attention
mechanism within the module captures the global correlations
within the same feature map, and the -cross-attention
mechanism builds the feature associations between S; and Sj,
calculating the matching relationship Si/S=di/d;. Finally, the
CT gas-water interface depth feature map is output, and the
coarse matching associations of the feature points are
preliminarily determined.

Finally, a feature-point-guided aggregation module
optimizes the matching results. This module includes a cross-
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attention module and a linear cross-attention module. By
combining upsampling fusion and downsampling fusion
operations, multi-scale feature aggregation is performed on the
3D feature map. The above module structure is repeated four
times to fully integrate the interface features at different scales,
ultimately generating a CT gas-water interface feature point
matching matrix of size H/8xW/8. This process, through multi-
scale aggregation and attention correlation, balances local
feature consistency and global correlation information,
significantly improving the accuracy and stability of the
matching results, and effectively reducing the interference of
scale differences and noise in the matching process. Figure 3
shows the Transformer modeling method architecture for CT
gas-water interface feature point matching.
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Figure 3. Transformer modeling method architecture for CT gas-water interface feature point matching

2.2.3 Three-dimensional point cloud reconstruction and
optimization

The accurately matched feature point pairs provide reliable
two-dimensional correspondences for three-dimensional
reconstruction. Based on camera calibration parameters and
the triangulation principle, the 3D point cloud of the gas-water
interface can be generated. Subsequent denoising and
smoothing optimization further enhance the point cloud
quality, providing high-precision data support for the
subsequent morphological quantification.

The 3D point cloud is generated by calculating the 3D
coordinates of the feature points based on the triangulation
principle. The camera intrinsic matrix K and extrinsic matrix
[R|f] are obtained through preliminary camera calibration,
where R is the rotation matrix, and ¢ is the translation vector.
For the accurately matched points (u#1,v1) and (¢2,v2) in the
reference and target images, a linear system of equations is
constructed:

Uy
S [Vl
1

S [vl] =K[R|t]P
1

] =K[1|0]P
“)
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where, s1 and s, are scale factors, and P is the 3D point
coordinates to be solved. Solving this system of equations
gives the 3D coordinates of a single feature point. This
operation is repeated for all CT slices across all time steps, and
the 3D coordinates of all feature points are integrated to
generate the complete 3D point cloud of the gas-water
interface, Peous€RM3, where M is the total number of points in
the point cloud.

Point cloud optimization is performed step-by-step using
statistical filtering and moving least squares, balancing
denoising and detail preservation. The statistical filtering sets
the number of neighboring points (k<=20), calculates the mean
and standard deviation of the distances between each point and
its neighboring points, and removes outlier points with a
distance greater than the mean plus 2 times the standard
deviation. This parameter setting effectively removes isolated
points caused by scan noise and matching errors. The moving
least squares method smooths the point cloud while preserving
subtle morphological features of the interface. By constructing
a locally weighted polynomial surface to fit the point cloud
data, local deviations in the point cloud are corrected. The
optimized point cloud maintains good smoothness while
accurately restoring the true geometric morphology of the gas-
water interface, providing high-quality foundational data for



subsequent morphological quantification analysis.

2.3 Morphological quantification index system for CT gas-
water interface

Based on the high-precision three-dimensional point cloud
reconstructed in Section 2.2, a “geometric feature-dynamic
feature” dual-dimensional morphological quantification index
system is constructed. Geometric features focus on the static
spatial morphology of the interface, characterizing the
distribution range, occupied volume, and morphological
smoothness of the interface. Dynamic features correlate point
cloud data from different time steps to reveal the evolutionary
patterns of the interface during the displacement process. The
two types of indicators complement each other, providing an
objective basis for the quantification analysis of the gas-water
process, displacement efficiency evaluation, and stability
judgment.

2.3.1 Geometric feature indicators

Geometric feature indicators are used to precisely
characterize the static spatial morphology of the gas-water
interface. Three core indicators are selected: interface surface
area, interface enclosing volume, and average curvature.
These indicators cover key geometric information from three
dimensions: distribution range, gas-phase occupied space, and
morphological smoothness. The calculation process is based
on the reconstructed three-dimensional point cloud, ensuring
the objectivity and accuracy of the indicators.

Interface Surface Area: This is the core indicator for
representing the spatial distribution of the interface. The
calculation first converts the discrete point cloud into a
continuous surface. The Poisson surface reconstruction
algorithm is used to fit the three-dimensional point cloud. This
algorithm solves the Poisson equation to construct a triangular
mesh that fits the topology of the point cloud, effectively
preserving the subtle morphological features of the interface.
For the generated triangular mesh, the area of each triangle is
calculated and summed to obtain the total interface surface
area S. This indicator directly reflects the contact range
between the gas-water interface and the water phase. The
larger the surface area, the broader the gas-water exchange
interface, providing basic data for subsequent analysis of mass
transfer efficiency. Interface Enclosing Volume: This is used
to quantify the spatial size occupied by the gas phase within
the core sample. The Axis-Aligned Bounding Box (AABB)
method is used to calculate the volume. All three-dimensional
coordinates of the point cloud are traversed to extract the
maximum and minimum values along the x, y, and z axes, and
a rectangular bounding box is constructed based on these
extreme values. The volume V of this box is the interface
enclosing volume. This method is computationally efficient
and reliable in precision, providing a clear reflection of the gas
phase's spatial occupancy ability during the displacement
process.

Average Curvature: This focuses on the morphological
smoothness and convex-concave characteristics of the
interface and is a key indicator for revealing the degree of
influence of the core pore structure on the interface. The
calculation process is based on a triangular mesh: for each
vertex in the mesh, the two principal curvatures k; and k; are
calculated based on the geometric relationship with its
neighboring vertices. The vertex curvature Hi is the average of
the two principal curvatures: H~=(ki+kz)/2. The arithmetic
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mean of all vertex curvatures gives the average curvature Hoyg.
The principal curvature is calculated based on quadratic
surface fitting to ensure the accuracy of the curvature
calculation. The sign of H,., represents the overall convex or
concave shape of the interface: positive values indicate the
interface is convex, while negative values indicate the
interface is concave. The absolute value reflects the
smoothness of the interface: smaller absolute values indicate a
smoother interface, while larger values suggest significant
fluctuations due to pore throat blockages.

2.3.2 Dynamic feature indicators

Dynamic feature indicators are used to correlate three-
dimensional point cloud data from different time steps,
characterizing the evolution patterns of the gas-water interface
over time. Two indicators are selected: interface migration rate
and interface fluctuation amplitude. These indicators quantify
the dynamic characteristics of the displacement process from
the perspectives of macroscopic advancement efficiency and
morphological stability, providing quantitative support for
evaluating displacement effects and optimizing displacement
parameters.

Interface Migration Rate: This indicator is used to
characterize the overall advancing speed of the gas-water
interface and is the core dynamic indicator for reflecting
displacement efficiency. Before calculation, the overall spatial
position of the interface at each time step must be determined.
The centroid coordinates are used as the representative
position of the interface. For the point cloud at time ¢, the
arithmetic mean of all three-dimensional coordinates of the
points is calculated to obtain the centroid G(x,y,z) of the
interface at that time. Let the centroids at time # and #, be
Gi(x1,y1,z1) and  Ga(x2,)2,22), respectively. The interface
migration rate v is calculated by the formula:

/xz-x1)2+(y2-y1)2+(zz-zl)2
n2-11

&)

V=

This indicator, through the ratio of the centroid distance to
the time difference, eliminates the interference of local
fluctuations on the overall advancement speed and can
accurately reflect the macroscopic advancement efficiency of
the interface under displacement pressure. The magnitude of
this value is directly related to key parameters such as
displacement pressure and core permeability.

Interface Fluctuation Amplitude: This indicator is used to
evaluate the stability of the interface morphology during the
displacement process, focusing on the fluctuation degree of the
interface in the displacement direction. The preset
displacement direction in the gas-water experiment is the z-
axis. The fluctuation of the interface along this direction
directly reflects morphological stability. Therefore, the z-
direction is selected as the dimension for calculating the
fluctuation amplitude. For the point cloud at time ¢, the
coordinates of all points along the z-direction are extracted,
and the maximum value z,. and minimum value z, are
determined. The difference between these two values is the
interface fluctuation amplitude Ah=znu-zZmin. The physical
meaning of this indicator is clear: the smaller A/ is, the
smoother the interface in the displacement direction, the more
stable the morphology, and the more uniform the displacement
process. If Ak increases, it indicates that the interface is
influenced by core heterogeneity, pore throat blockages, or



other factors, leading to obvious "finger" or local fluctuations
and reduced stability. By tracking the changes in A/ at
different time steps, the stability evolution of the displacement
process can be dynamically monitored.

3. EXPERIMENT AND RESULT ANALYSIS

To quantify the performance gain of the proposed
segmentation method in the "pixel overlap - boundary

experiment was conducted. As seen in Table 1, the Dice
coefficient of the proposed method reaches 0.92, which is an
improvement of 5.7% over the original 3D Attention U-Net.
This gain is attributed to the PAM, which enhances the feature
distinction between the gas-water interface and background
pores, reducing the problem of "incorrect classification of
boundary pixels" in traditional methods. The IoU increases to
0.86, indicating that the segmentation result is better at
"retaining the valid interface area and removing background
noise," which is directly related to the stabilization of feature

refinement" dimension, a multi-method comparison maps through the BN layers in the 3D convolutional block.
Table 1. Comparison of quantitative performance metrics for different segmentation methods
. Dice IoU (Intersection over Pixel Accuracy Average Surface Distance HD,
Segmentation Method . .
Coefficient Union) (PA) (ASD, pm) pm
Improved 3D Attention U-Net 0.92 0.86 0.97 2.1 53
Original 3D Attention U-Net 0.87 0.78 0.94 3.5 8.1
Traditional 3D U-Net 0.82 0.72 0.91 4.8 10.5
Threshold Segmentation (Otsu
g ( 0.71 0.58 0.85 7.2 153
Method)
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Figure 4. Morphological semi-variance function curves of CT gas-water interface segmentation results and measured profiles in
X, Y, and Z directions

In terms of boundary precision, the mean surface distance is
only 2.1 pum, which is 43.8% of the traditional 3D U-Net and
29.2% of the threshold segmentation; the HD, representing the
maximum deviation of the interface boundary, is reduced to
5.3 um, much lower than the original method's 8.1 pm. The
core of this improvement lies in the accurate localization of the
interface boundary by the attention gate module: traditional
methods are prone to boundary blurring due to the
inhomogeneity of CT image grayscale, while the proposed
method achieves sub-micron level restoration of boundary
pixels through multi-dimensional attention weights.

To quantify the restoration accuracy of the proposed 3D
deep segmentation method for the gas-water interface spatial
morphology, the morphological semi-variance function was
introduced to compare the structural consistency between the
segmentation result and the measured profile in 3D space.
From the directional curve features in Figure 4, it can be
observed that: in the X direction, the semi-variance rapidly
increases in the 0-50 lag distance range, reflecting significant
local morphological variation of the interface in short
distances. At this point, the segmentation curve almost
coincides with the measured profile curve, indicating that the
method accurately captures the fine local morphology formed
by the interface constrained by the core pore throat. In the 50-
250 range, the curve gradually stabilizes, with the semi-
variance fluctuation range of the segmentation result being
narrow and always enclosing the measured curve, indicating
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that the restoration error for the macroscopic spatial continuity
of the interface is controllable. In the Y direction, the semi-
variance growth slope in the 0-200 range is exactly the same
as the measured profile, and the slight inflection point of the
measured curve at 200 is also synchronized in the
segmentation result, demonstrating the method’s ability to
recognize the non-uniform morphology of the interface. In the
200-500 range, the baseline deviation between the two is less
than 10%, proving that the matching degree of the
macroscopic spatial distribution of the interface is high. The Z
direction is the displacement direction of the gas-water
experiment. The semi-variance quickly saturates in the short
lag distance, and the saturation point of the segmentation result
coincides with the measured profile. The curve crossover
phenomenon at the lag distance of 30 is exactly the same,
showing that the method can accurately restore the dynamic
morphological features of the interface in the displacement
direction. In conclusion, the proposed 3D deep segmentation
method achieves high consistency with the measured interface
in three dimensions: fine local morphology, macroscopic
spatial continuity, and dynamic features in the displacement
direction. The output interface morphology data can directly
support the analysis of the correlation mechanism between
"interface morphology" and "displacement efficiency" in the
gas-water process.

To quantitatively assess the system error of the proposed 3D
deep segmentation method in the morphological parameter



quantification of the gas-water interface, three core indicators
are selected: the convex/concave surface ratio, the
high/medium/low curvature region ratio, and the fast
advancing region ratio. The statistical distribution differences
between the segmentation result and the measured interface
are compared. From the macroscopic topological morphology
in Figure 5, it can be seen that the convex and concave surface
ratios are key indicators for representing the expansion mode
of the gas phase in the core pore space. The convex surface
ratio in the segmentation result is about 42%, which deviates
only 2% from the measured interface at 43%. The concave
surface ratio is about 23%, which deviates by only 1% from
the measured value at 22%. This high consistency indicates
that the method can accurately reproduce the topological
pattern of "radial expansion dominated by the convex surface
and filling local pores by the concave surface." The accurate
quantification of the convex surface ratio is the core basis for
subsequent calculation of gas-phase encroachment volume,
and the deviation is controlled within 2%, which limits the
calculation error of the encroachment volume to less than 5%.
From the perspective of microscopic morphological
heterogeneity, the high, medium, and low curvature region
ratios correspond to different morphological scales of the
interface constrained by the pore throat: the high curvature
region ratio in the segmentation result is about 12%, deviating
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by only 0.8% from the measured value at 13%. These regions
correspond to the sharp morphological changes of the interface
at pore throats, and their quantification accuracy directly
determines the reliability of "interface morphology-fluid
permeability resistance" correlation analysis. The deviations
for the medium and low curvature regions are 1.2% and 1.5%,
respectively, further proving the stability of the method’s
quantification at different morphological scales, avoiding the
over-smoothing of flat interface morphology seen in
traditional segmentation methods. Regarding dynamic
displacement features, the fast advancing region ratio reflects
the intensity of the "fingering" phenomenon of the interface:
the ratio in the segmentation result is about 5%, deviating by
only 1% from the measured value at 6%, and both fall in the
low ratio range, indicating that the method can accurately
recognize the weak "fingering" characteristics at the early
stage of displacement. The reliability of this result is the
premise for subsequently adjusting the displacement pressure
to suppress "fingering," and the deviation of less than 1%
ensures the accuracy of displacement parameter optimization.
Analyzing the source of errors, the deviations for all indicators
are far smaller than the inherent system error of the core CT
scan, which is about 5%, indicating that the quantification
error of the method itself can be ignored.
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Proportion of morphological parameters (%)
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® Measured gas-water interface
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Figure 5. Statistical distribution comparison of gas-water interface morphological parameters

Table 2. Geometric accuracy verification of 3D reconstruction results

Proposed Method (Based on Reconstruction Based on Reconstruction Based on Measured Value
Indicator Improved 3D Attention U-Net Traditional 3D U-Net . Reference
. . Threshold Segmentation
Segmentation) Segmentation Range
Point Cloud RMSE 0.021 0.045 0.082 <0.03 mm
(mm)
Point Cloud
Registration Error 0.018 0.039 0.075 <0.02 mm
(mm)
Surface Area
Relative Deviation 2.3 6.8 12.5 <5%
(%)
Enclosing Volume
Relative Deviation 1.8 5.7 10.2 <4%
(%)
Average Curvature
Relative Deviation 3.1 7.2 14.6 <6%
(%)
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Table 3. Dynamic evolution of morphological quantification indicators at different displacement time steps

Displacement Surface Area Enclosing Average Interface Migration Interface Fluctuation
Time Step (mm?) Volume (mm?®) Curvature (mm™) Rate (mm/s) Amplitude (mm)

0 12.5 32 0.18 - 0.4

20 28.7 7.6 0.25 0.008 0.8

40 453 12.1 0.32 0.012 1.2

60 61.8 16.7 0.29 0.009 1.0

80 75.2 20.3 0.24 0.007 0.7
100 82.6 22.5 0.21 0.005 0.5

To verify the geometric fidelity of the 3D reconstruction
results, the reconstruction metrics supported by different
segmentation methods were compared with the measured
reference range. As seen in Table 2, the point cloud RMSE is
0.021 mm, which meets the measured reference range (< 0.03
mm), while the reconstruction based on traditional 3D U-Net
exceeds this range. This shows that the segmentation result in
the proposed method has high boundary accuracy, making the
point cloud sampling of the interface profile closer to the true
shape and avoiding "point cloud shift due to blurred
boundaries" in traditional segmentation. In terms of
morphological parameter quantification accuracy, the surface
area relative deviation is only 2.3%, and this deviation
corresponds to a gas-phase encroachment volume calculation
error of about 4.8%, which is far below the industry standard
upper limit of 10%. The relative deviation of the enclosing
volume is 1.8%, indicating that the proposed method’s
quantification of the gas phase occupying space is highly
consistent with the measured value, which is the core basis for
the subsequent "displacement pressure-gas-phase volume"
correlation analysis. The relative deviation of average
curvature is 3.1%, which is particularly notable. Curvature is
a key indicator for characterizing the interaction between the
interface and pore throat. A 7.2% deviation in traditional
methods can lead to a permeability resistance calculation error
exceeding 15%, while the proposed method controls the
deviation to within 3%, ensuring the quantitative reliability of
the  "morphological  features-permeability =~ behavior"
correlation analysis.

To reveal the coupling mechanism between the gas-water
interface morphology and the displacement process, the
evolution of key quantification indicators at different time
steps was statistically analyzed. As shown in Table 3, the
surface area in the early stage of displacement increases from
12.5 mm? to 45.3 mm?, with the enclosing volume expanding
accordingly, corresponding to the rapid radial expansion of the
gas phase in high-permeability pores. The average curvature
increases to 0.32 mm™ and the fluctuation amplitude increases
to 1.2 mm, reflecting the steep deformation of the interface
when passing through narrow pore throats. At this stage, the
migration rate increases to 0.012 mm/s, directly reflecting the
effective transmission of the displacement pressure to high-
permeability flow channels. In the middle stage of
displacement, the average curvature drops to 0.24 mm™ and
the fluctuation amplitude decreases to 0.7 mm, indicating that
the gas phase begins to fill medium- and low-permeability
pores, and the interface fluctuation becomes smoother due to
the "filling-flattening" process of the pore space. The
migration rate slows down to 0.007 mm/s, corresponding to
the increased loss of displacement pressure in the complex
pore network. This stage of morphological change is the result
of the coupling between the "expansion of the gas phase" and
the "increase in flow resistance." The quantification accuracy
of the proposed method ensures the observability of this
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coupling relationship. In the later stage of displacement, the
growth rate of surface area and volume significantly decreases,
and the average curvature and fluctuation amplitude return to
values near the initial level, indicating that the gas-phase
encroachment volume tends to saturate and the interface
morphology reaches a stable state.

The academic value of these evolutionary features lies in the
fact that the proposed quantification indicators can precisely
capture the "expansion-filling-stabilization" three-stage
morphological response in the displacement process. These
indicators provide continuous and reliable morphological
input for establishing a quantitative model of the "dynamic
evolution of interface morphology-displacement efficiency
spatial-temporal distribution."

4. CONCLUSION

This paper proposes an integrated method for 3D
segmentation, reconstruction, and morphological
quantification of CT gas-water interfaces based on an
improved 3D Attention U-Net, which has been validated with
areal core CT dataset and shown significant effectiveness. The
core performance of the proposed method, verified with real
core CT gas-water data, is as follows: in segmentation, the
Dice coefficient of the improved 3D Attention U-Net reaches
0.92, improving by 5.7% compared to the original model, IoU
is 0.86, the average surface distance is 2.1 um, and the HD is
5.3 um, which is a reduction of 56.2% and 49.5% respectively
compared to the traditional 3D U-Net, achieving pixel-level
overlap and sub-micron-level boundary restoration; in
morphological restoration, the segmentation results are highly
consistent with the measured profiles in the X/Y/Z direction
semi-variance curves, with local morphological coincidence in
the X direction, inflection point reproduction in the Y direction
with base value deviation <10%, and precise matching of
displacement features in the Z direction; in 3D reconstruction,
the point cloud RMSE is only 0.021lmm, with relative
deviations of surface area, enclosing volume, and average
curvature of 2.3%, 1.8%, and 3.1%, respectively, all meeting
experimental precision requirements; in quantitative evolution,
the core morphological parameters have a deviation of less
than 2% compared to the measured values, which can
accurately capture the evolution of the three-stage
displacement indicators of "expansion-filling-stabilization,"
providing high-precision data support for the analysis of the
correlation mechanism between "interface morphology" and
"displacement efficiency."

This research has certain limitations: the dataset only covers
specific core types and displacement conditions, and the
generalization to high-noise images and multiphase mixed
interface scenarios has not been fully validated. The model
processing time for batch data is relatively long, making it
difficult to meet real-time analysis requirements. Future



research can be deepened in three areas: expanding the dataset
to include different lithologies, permeabilities, and
displacement pressures to improve method robustness;
optimizing processing efficiency through lightweight
networks and parallel computing; and integrating pore-scale
flow simulation to build a "segmentation-quantification-
mechanism" model to further reveal the intrinsic coupling
mechanism between interface evolution and displacement
efficiency.

ACKNOWLEDGEMENTS

This paper was supported by the Central Leading Local
Science and Technology Development Fund Program (Grant
No.: 25475401G); and Central Leading Local Science and
Technology Development Fund Program (Grant No.:
24620802G).

REFERENCES

[1] Arbabi, F., Bazylak, A. (2023). Impact of wettability on
immiscible displacement in water saturated thin porous
media.  Physics of  Fluids, 35(5): 053321.
https://doi.org/10.1063/5.0144987

Alhosani, A., Scanziani, A., Lin, Q., Selem, A., Pan, Z.,
Blunt, M.J., Bijeljic, B. (2020). Three-phase flow
displacement dynamics and Haines jumps in a
hydrophobic porous medium. Proceedings of the Royal
Society A, 476(2244): 20200671.
https://doi.org/10.1098/rspa.2020.0671

Hasnain, J., Satti, H. G., Sheikh, M., Abbas, Z. (2023).
Study of double slip boundary condition on the
oscillatory flow of dusty ferrofluid confined in a
permeable channel. Fluid Mechanics and Its
Applications, 21(4): 671-684.
https://doi.org/10.22190/FUME211228019H

Zhang, H., Feng, J.C., Wang, B., Shen, Y., Zhang, Y.,
Zhang, S. (2025). Micro-CT insights into morphological
evolution and kinetics of hydrate phase transitions at the
gas-liquid interface. Gas Science and Engineering, 144:
205740. https://doi.org/10.1016/j.jgsce.2025.205740
Omosebi, O.A., Tokunaga, T.K. (2023). Simplified
scaling relations for the depth-dependence and IFT
reduction of fluid imbibition in gas-saturated reservoir
rocks. Gas Science and Engineering, 114: 204973.
https://doi.org/10.1016/j.jgsce.2023.204973

Zha, W.,, Lin, B, Liu, T., Liu, T., Yang, W., Wang, W.
(2025). Influence of coal micropore network on gas—
liquid two-phase transport. Energy & Fuels, 39(18):
8423-8434.
https://doi.org/10.1021/acs.energyfuels.5¢01067

Cheng, Z., Wang, J. (2020). Improved region growing
method for image segmentation of three-phase materials.
Powder Technology, 368: 80-89.
https://doi.org/10.1016/j.powtec.2020.04.032

Osman, A.F., Tamam, N.M., Yousif, Y.A. (2023). A
comparative study of deep learning-based knowledge-

[2]

[3]

[4]

[5]

[6]

[7]

[8]

3600

(9]

[10]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

[18]

based planning methods for 3D dose distribution
prediction of head and neck. Journal of Applied Clinical
Medical Physics, 24(9): e14015.
https://doi.org/10.1002/acm2.14015

Klarenberg, R., Bakx, N.L., Hurkmans, C.W. (2025). A
comparative analysis of deep learning architectures with
data augmentation and multichannel input for
locoregional breast cancer radiotherapy. Journal of
Applied Clinical Medical Physics, 26(6): e70047.
https://doi.org/10.1002/acm2.70047

Amira, H.F., Lilia, K., Nesrine, M., Jihene, M. (2024).
Design of corner detection system based on FPGA.
Traitement  du Signal, 41(6): 3203-3211.
https://doi.org/10.18280/ts.410636

Sun, X.B., Yang, X.Q., Liang, J.H. (2023). Calibration
method of feature point layout in prefabricated buildings
based on image recognition technology. Traitement du
Signal, 40(1): 167-174.
https://doi.org/10.18280/ts.400115

Heinrich, A., Hubig, M., Teichgréber, U., Mall, G.
(2025). Automated identification of unknown decedents:
matching postmortem CT images with clinical databases.
International Journal of Legal Medicine, 139(5): 2251-
2262. https://doi.org/10.1007/s00414-025-03528-9

Lee, H., Lee, J., Kim, N., Kim, S.J., Shin, Y.G. (2008).
Robust feature-based registration using a Gaussian-
weighted distance map and brain feature points for brain
PET/CT images. Computers in Biology and Medicine,
38(9): 945-961.
https://doi.org/10.1016/j.compbiomed.2008.04.001
Audibert, E., Lebas, B., Spriet, C., Habrant, A., Chabbert,
B., Pa&, G. (2023). Automated quantification of
fluorescence and morphological changes in pretreated
wood cells by fluorescence macroscopy. Plant Methods,
19(1): 16. https://doi.org/10.1186/s13007-023-00991-6
Ghavami, S., Bayat, M., Fatemi, M., Alizad, A. (2020).
Quantification of morphological features in non-
contrast-enhanced ultrasound microvasculature imaging.
IEEE Access, 8: 18925-18937.
https://doi.org/10.1109/ACCESS.2020.2968292
Gangaiah, V., Adarakatti, P.S., Siddaramanna, A.,
Malingappa, P., Chandrappa, G.T. (2017). Studies on
phase and morphological evolution of silver vanadium
oxides as a function of pH: Evaluation of electrochemical
behavior towards quantification of Pb2+ and Cd2+ ions.
Materials  Research  Express,  4(8):  085039.
https://doi.org/10.1088/2053-1591/aa851a

Davarpanah, M., Sanaye-Pasand, M. (2013). Improved
gapped-core CT dimensioning algorithm considering
relay and system requirements. IEEE Transactions on
Power Delivery, 28(2): 788-796.
https://doi.org/10.1109/TPWRD.2012.2234485

Yan, Y.T., Chua, S., DeCarlo, T.M., Kempf, P., Morgan,
K.M., Switzer, A. D. (2021). Core-CT: A MATLAB
application for the quantitative analysis of sediment and
coral cores from X-ray computed tomography (CT).
Computers & Geosciences, 156: 104871.
https://doi.org/10.1016/j.cage0.2021.104871





