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CT imaging technology is a crucial tool for revealing the dynamic evolution of gas-water 

displacement interfaces within porous media. However, challenges such as insufficient 

segmentation accuracy, poor robustness in 3D reconstruction, and a lack of systematic 

morphological quantification hinder deeper understanding of gas-water flow mechanisms. 

To address these challenges, this paper proposes an integrated technical solution: 1) An 

improved 3D Attention U-Net segmentation model, which introduces a projection attention 

module (PAM) before the attention-guided AG module to enhance the effective feature 

representation of the encoder layer. This enables accurate integration of low-level surface 

features with high-level abstract features. Additionally, a hybrid loss function with a weight 

parameter λ is designed to balance class imbalance and boundary segmentation accuracy. 2) 

A multi-feature fusion-Transformer matching strategy for reconstruction, which integrates 

dense feature point clouds of the gas-water interface extracted by Oriented FAST and 

Rotated BRIEF (ORB), Harris corners, and Speeded Up Robust Features (SURF). The 

global attention mechanism of Transformer is applied to achieve scale-invariant feature 

point matching from coarse to fine, thus improving the precision of 3D reconstruction. 3) A 

multi-dimensional morphological quantification index system is developed for quantitative 

representation of the interface's geometric and dynamic features. Experiments based on real 

core CT gas-water data demonstrate that the improved 3D Attention U-Net achieves a Dice 

coefficient of 0.92, IoU of 0.86, mean surface distance of 2.1 μm, and Hausdorff distance 

(HD) of 5.3 μm, providing pixel-level overlap and submicron boundary restoration. The 

segmentation results show a high consistency with measured cross-sectional X/Y/Z half-

variance curves, with precise matching of local morphology, inflection points, and 

displacement features. The 3D reconstruction point cloud has an RMSE of 0.021 mm, with 

relative deviations of 2.3%, 1.8%, and 3.1% in surface area, enclosed volume, and average 

curvature, respectively. The core morphological parameters have a deviation of less than 2% 

from measured values, successfully capturing the "expansion-filling-stabilization" three-

phase displacement pattern, supporting the analysis of the relationship between "interface 

morphology and displacement efficiency." This method provides reliable technical support 

for the quantitative study of gas-water processes in porous media and can be extended to 

engineering fields such as oil and gas development and CO₂ geological sequestration. 
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1. INTRODUCTION

The gas-water displacement process in porous media is a 

core physical mechanism in engineering fields such as oil and 

gas extraction, CO₂ geological sequestration, and groundwater 

pollution remediation. The dynamic evolution of the interface 

directly determines fluid migration efficiency and resource 

utilization efficiency [1-3]. X-ray CT, with its high resolution 

and non-invasive advantages [4, 5], has become the 

mainstream technology for real-time observation of the spatial 

distribution of gas-water displacement interfaces. By 

continuous CT scanning, two-dimensional slice images of the 

interface at different time steps can be obtained, providing a 

data basis for three-dimensional structural analysis and 

mechanism revealing. 

However, CT gas-water images face three major technical 

bottlenecks: 1) Insufficient interface segmentation accuracy: 

The gas-water interface is affected by noise, gray-scale 
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inhomogeneity, and fluid diffusion effects, resulting in blurred 

boundaries with small gray-scale differences from the 

background core matrix [6, 7]. Although the existing 3D 

Attention U-net enhances interface features through attention 

mechanisms, it is easily disturbed by irrelevant signals when 

merging low-level features from the encoding area with high-

level features from the decoding area, leading to boundary 

shifts [8, 9]; 2) Poor robustness in three-dimensional 

reconstruction: Traditional feature point extraction methods 

struggle to balance "density" and "robustness." Although ORB 

has strong real-time performance, its feature points are sparse 

in regions with few textures. Harris corners are sensitive to 

noise, and SURF, though resistant to scale variations, has high 

computational complexity [10, 11]. Moreover, feature point 

matching is easily influenced by scale changes in CT images, 

leading to point cloud misalignment and decreased 

reconstruction accuracy [12, 13]; 3) Unsystematic 

morphological quantification: Existing studies mainly focus 

on a single metric, lacking the integration of multi-

dimensional features such as interface curvature, migration 

rate, and stability, and are unable to fully characterize the 

physical essence of interface evolution [14-16]. Therefore, 

developing an integrated method for high-accuracy 

segmentation, high-robustness reconstruction, and multi-

dimensional quantification is of significant theoretical and 

practical value for revealing the gas-water seepage mechanism 

and optimizing engineering design. 

To address the above challenges, this paper aims to solve 

the bottlenecks in CT gas-water interface analysis. The 

specific objectives include: 1) Proposing an improved 3D 

Attention U-net segmentation model that enhances the 

accuracy and robustness of interface segmentation by 

embedding a PAM and designing a hybrid loss function; 2) 

Constructing a "multi-feature fusion extraction-Transformer 

precise matching" three-dimensional reconstruction 

framework to achieve accurate reconstruction of the gas-water 

interface’s dense point cloud; 3) Establishing a multi-

dimensional morphological quantification index system to 

achieve quantitative representation of the interface's geometric 

and dynamic features. 

The main contributions of this paper include the following 

three aspects: 1) Innovation in the segmentation model: 

Embedding a PAM before the AG module in the 3D Attention 

U-net, strengthening the feature representation of the encoding 

area by feature re-projection and attention weighting, and 

suppressing irrelevant signals. A hybrid loss function with a 

weight parameter λ is introduced to balance cross-entropy loss 

and Dice loss; 2) Innovation in the reconstruction method: 

Fusing ORB, Harris, and SURF to extract dense feature points 

of the gas-water interface, and using the global attention 

mechanism of Transformer to achieve "coarse-to-fine" scale-

invariant matching, improving point cloud matching accuracy 

and reconstruction robustness; 3) Innovation in the 

quantification system: Integrating interface geometric features 

and dynamic features to build a multi-dimensional 

quantification index system for the quantitative representation 

of gas-water interface evolution and its physical significance 

correlation. 

The structure of the paper is arranged as follows: Chapter 2 

provides a detailed explanation of the proposed segmentation, 

reconstruction, and quantification methods; Chapter 3 verifies 

the effectiveness of the methods through experiments and 

analyzes the results; Chapter 4 discusses the advantages, 

limitations, and application value of the methods, summarizes 

the paper, and outlines future directions. 

 

 

2. METHODOLOGY 

 

This chapter details the segmentation-reconstruction-

quantification integrated method for CT gas-water interfaces. 

The method description is as follows: 1) Preprocess the CT 

sequence images and improve the 3D Attention U-net 

segmentation to obtain binary images of the gas-water 

interface; 2) Extract a dense point cloud using multi-feature 

fusion from the segmented interface images, and perform 

three-dimensional reconstruction using Transformer matching; 

3) Calculate multi-dimensional morphological quantification 

indices based on the reconstructed 3D model. 

 

2.1 CT gas-water interface segmentation based on the 

improved 3D Attention U-net 

 

2.1.1 Improved 3D Attention U-net network structure 

The improved 3D Attention U-net follows the classic U-

shaped architecture, with encoding, decoding, and skip 

connections as the basic framework. The core innovation lies 

in the introduction of the PAM and the optimization of the skip 

connection mechanism, which enhances segmentation 

accuracy of the gas-water interface by feature enhancement 

and cross-scale fusion. This architecture extracts abstract 

features through downsampling in the encoding area, restores 

spatial resolution through upsampling in the decoding area, 

and compensates for detail loss caused by downsampling via 

skip connections. PAM and the optimized connection 

mechanism specifically address the issue of weak features in 

the gas-water interface, which are prone to interference from 

the core matrix background. 

 

 
 

Figure 1. Improved 3D Attention U-net network structure for CT gas-water interface segmentation 
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Figure 1 shows the improved 3D Attention U-net network 

structure suitable for CT gas-water interface segmentation. 

The encoding area consists of four 3D convolution blocks and 

three 3D max-pooling layers alternately. Each convolution 

block contains two 3×3×3 convolution layers, a batch 

normalization (BN) layer, and a ReLU activation function. In 

the figure, the BN layers are simplified and omitted. The 

convolution blocks gradually enhance the texture and 

morphological features of the gas-water interface by extracting 

local features. The max-pooling layers perform downsampling 

with a 2×2×2 kernel size and a stride of 2, which compresses 

the feature map size while preserving key structural 

information. The final output feature map size from the 

encoding area is 1/8 of the input, effectively extracting high-

level abstract features. The decoding area consists of four 3D 

deconvolution blocks, each consisting of a 2×2×2 

deconvolution layer, two 3×3×3 convolution layers, a BN 

layer, and a ReLU activation function. The deconvolution 

gradually upsamples to restore the spatial resolution of the 

feature map and provide structural support for precise 

segmentation. 

PAM is the core enhancement module of the network, 

embedded between the outputs of the encoding area and the 

attention-guided AG module. It strengthens target feature 

representation and suppresses background interference 

through feature re-projection and attention weighting. The 

specific process is as follows: First, the 3D feature map 

Fenc∈RC×H×W×D output by the encoding area, where C is the 

number of channels, and H, W, and D are the spatial 

dimensions, is subjected to A/Z/Y/X multi-dimensional 3D 

average pooling to extract feature information from different 

spatial dimensions. Then, the pooled features from each 

dimension are concatenated into a multi-dimensional 3D 

pooled feature map, which is projected to a lower-dimensional 

space using a 1×1×1 3D convolution to reduce computational 

complexity. After BN and ReLU activation function 

processing, the feature representation ability is enhanced. The 

processed features are then separated into multiple branches 

through 3D feature separation, and each branch generates the 

corresponding attention weights for each dimension through a 

1×1×1 3D convolution and a Sigmoid activation function. 

Finally, the attention weights from each branch are element-

wise multiplied with the 3D feature map of the CT gas-water 

interface output from the original encoding block, resulting in 

Fatt∈RC×H×W×D. The AG module aligns Fatt with the upsampled 

feature map Fdec from the decoding area through channel 

alignment, focusing on the target region via attention weight 

allocation and outputting the fused feature Ffusion. The 

optimized skip connection no longer directly transmits the 

original features from the encoding area but fuses them with 

the features from the decoding area after enhancement via 

PAM. This effectively reduces interference from background 

noise during the fusion process and enhances the effectiveness 

of cross-scale feature fusion. Figure 2 shows the structure of 

the PAM for CT gas-water interface 3D segmentation. 

 

 
 

Figure 2. Structure of the PAM for CT gas-water interface 3D segmentation 

 

2.1.2 Improved hybrid loss function 

Gas-water interface segmentation faces two core challenges: 

1) The significant pixel ratio difference between the interface 

region and the core matrix in CT images [17], resulting in 

severe class imbalance; 2) The small number of boundary 

pixels and the gradual gray-scale variation [18], making it 

difficult for traditional loss functions to accurately capture 

boundary features. To address these two issues simultaneously, 

a hybrid loss function Lmix with a weight parameter λ is 

designed, which combines cross-entropy loss and Dice loss 

through weighted fusion to balance class distribution and 

boundary segmentation accuracy. 

The cross-entropy loss LCE primarily addresses the class 

imbalance issue by penalizing misclassified pixels through 

logarithmic probability. It assigns a higher misclassification 

cost to the interface pixels, which occupy a very small 

proportion. The calculation formula is as follows: 

 

LCE=-
1

N
∑[y

i
log ( p

i
)+(1-y

i
) log ( 1-p

i
)]

N

i=1

 (1) 

where, N is the total number of pixels, yi is the true label of the 

i-th pixel, and pi is the model's predicted probability that the 

pixel belongs to the interface. The Dice loss LDice enhances 

boundary segmentation accuracy by measuring the overlap 

between the predicted and true regions, effectively focusing on 

the subtle features of the interface boundary. The calculation 

formula is as follows: 

 

LDice=1-
2∑ y

i
p
i
+N

i=1 ϵ

∑ y
i
2N

i=1 +∑ Pi
2N

i=1 +ϵ
 (2) 

 

where, ϵ=10−5 is a smoothing term to avoid division by zero in 

extreme cases. 

The final form of the hybrid loss function is: 

Lmix=λ·LCE+(1−λ)·LDice, where the weight parameter λ is used 

to adjust the contribution of the two types of losses. The 

optimal λ value is determined by performing a 5-fold cross-

validation over the range λ∈[0,1], with the final optimal value 

set to λ = 0.3. This value allows the cross-entropy loss to 

sufficiently suppress the bias caused by class imbalance while 
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enabling the Dice loss to fully optimize boundary features, 

achieving the best balance between interface pixel recognition 

and boundary morphology characterization. 

 

2.1.3 Dataset construction and preprocessing 

The experimental data are sourced from the Micro-CT 

scanning results of sandstone core gas-water displacement 

physical simulation experiments. The spatial resolution of the 

scanning equipment is 50 μm, with a scan step of 1 mm and a 

time interval of 30 seconds, resulting in dynamic scan data for 

100 time steps. Each time step consists of 200 two-

dimensional CT slices, with each slice having a size of 

512×512. The data covers the entire dynamic process of gas-

water displacement from the initial stage to the stable stage, 

providing rich dynamic feature samples for the interface 

segmentation model. The data labeling was independently 

completed by two experts with more than 5 years of 

experience in rock mechanics research using the LabelMe3D 

tool. The labeled object is the gas-water interface region in 

each slice. The intersection of the labeling results from both 

experts was taken as the gold standard for segmentation, 

ensuring the accuracy and authority of the labeling results. 

The purpose of data preprocessing is to improve image 

quality, unify data distribution, and increase sample size, 

thereby providing high-quality input for model training. First, 

Gaussian filtering is applied for denoising. A filter kernel with 

σ=1.0 is selected to smooth image noise while retaining the 

subtle gray-scale changes of the interface. This parameter is 

determined by comparing the gray-scale contrast between the 

interface and background at different σ values, achieving a 

balance between denoising and feature preservation. 

Subsequently, a gray-scale normalization operation is 

performed, linearly mapping the original image's gray-scale 

values to the range [0,1] with the mapping formula 

Inorm=(I−Imin)/(Imax−Imin), where I is the original gray-scale 

value, and Imin and Imax are the minimum and maximum gray-

scale values of a single image. This operation eliminates the 

gray-scale shift between different scan time steps, unifying the 

data distribution. 

To mitigate the issue of model overfitting, data 

augmentation strategies are adopted to increase the training 

samples, including random rotation, horizontal and vertical 

flipping, and random scaling. The rotation and flipping 

operations simulate slight pose changes of the core during 

scanning, while the scaling operation enhances the model's 

ability to adapt to interface features at different scales. The 

augmented dataset is split into training, validation, and test sets 

in a 7:2:1 ratio. The training set is used for model parameter 

iteration and update, the validation set is used for 

hyperparameter tuning and overfitting monitoring during the 

training process, and the test set is used for objective 

evaluation of the model's final segmentation performance. 

This splitting ratio follows the conventional setup in medical 

image segmentation and ensures the reliability of the 

evaluation results. 

 

2.2 Three-dimensional reconstruction of CT gas-water 

interface based on multi-feature fusion and transformer 

matching 

 

2.2.1 Dense feature point extraction using multi-feature fusion 

Single feature point extraction methods cannot fully cover 

the complex characteristics of the gas-water interface. ORB 

features are fast in real-time but have weak scale adaptability, 

Harris corner detection is sensitive to edge features but lacks 

noise resistance, and SURF has scale invariance but high 

computational complexity. Therefore, this paper combines 

ORB, Harris, and SURF algorithms to extract dense feature 

points from the interface, improving feature point integrity, 

stability, and robustness by complementary advantages, which 

lays the foundation for subsequent accurate matching. 

ORB feature point extraction is based on the FAST 

algorithm to detect corner points. After selecting an initial 

threshold T=20, non-maximum suppression is applied to 

remove redundant points and ensure a sparse and uniform 

distribution of feature points. The centroid of the gray-scale 

region is calculated to determine the main direction, and a 256-

dimensional rotation-invariant BRIEF descriptor is generated 

based on this direction, providing rotational invariance to the 

feature points. Harris feature point extraction is performed by 

calculating the second-order moment matrix of the image 

gray-scale: 
 

M= [
Ix
2 IxIy

IxIy Iy
2
] (3) 

 

where, Ix and Iy are the gray-scale gradients in the x and y 

directions, respectively. The response value is calculated as 

R=det(M)−k·(trace(M))2, where (k=0.04). Points with a 

response value greater than Rmax×0.01 are selected as corner 

points. This threshold is experimentally validated and 

effectively selects key feature points along the interface 

boundary. SURF feature point extraction detects scale-space 

extrema using the Hessian matrix, and sub-pixel level feature 

point localization is achieved through interpolation. The main 

direction is determined by calculating the Haar wavelet 

response in the feature point neighborhood, and finally, a 64-

dimensional SURF descriptor is generated, ensuring scale 

invariance. 

Multi-feature fusion uses a voting method and weighted 

fusion strategy to enhance feature quality. The voting method 

retains the feature point with the highest descriptor matching 

score at the same pixel location and eliminates redundant 

information. For non-redundant feature points extracted by the 

three algorithms, the descriptors are fused using the weighted 

percentages of ORB (40%), Harris (30%), and SURF (30%). 

This weight distribution comprehensively considers the 

advantages of the three features: ORB descriptors have high 

dimensionality and strong discriminability, Harris corners 

have accurate positioning, and SURF has good scale 

adaptability. The weighted fusion descriptors integrate multi-

dimensional feature information, significantly improving the 

robustness of subsequent feature matching. 
 

2.2.2 Feature point accurate matching based on transformer 

CT slices of the gas-water interface often have scale 

differences and gray-scale noise. Traditional feature matching 

methods are easily affected by scale changes and are difficult 

to capture the global correlations between feature points, 

leading to low matching accuracy and high outlier ratios. This 

paper designs a Transformer-based "from coarse to fine" 

feature point matching model, which realizes scale-invariant 

accurate matching through feature encoding, global attention 

matching, and optimization iterations, effectively solving the 

above problems. 

First, multi-time-step CT gas-water interface slice images 

are input into a 3D CNN convolutional neural network to 

extract 3D feature maps. This network strengthens the 3D 
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texture and morphological features of the gas-water interface 

through multiple convolution operations, providing high-

recognition basic features for subsequent matching. 

Next, the 3D feature maps are input into a 3D self-attention 

and cross-attention module. Let the reference time-step feature 

be Si and the target time-step feature be Sj. The self-attention 

mechanism within the module captures the global correlations 

within the same feature map, and the cross-attention 

mechanism builds the feature associations between Si and Sj, 

calculating the matching relationship Si/Sj=di/dj. Finally, the 

CT gas-water interface depth feature map is output, and the 

coarse matching associations of the feature points are 

preliminarily determined. 

Finally, a feature-point-guided aggregation module 

optimizes the matching results. This module includes a cross-

attention module and a linear cross-attention module. By 

combining upsampling fusion and downsampling fusion 

operations, multi-scale feature aggregation is performed on the 

3D feature map. The above module structure is repeated four 

times to fully integrate the interface features at different scales, 

ultimately generating a CT gas-water interface feature point 

matching matrix of size H/8×W/8. This process, through multi-

scale aggregation and attention correlation, balances local 

feature consistency and global correlation information, 

significantly improving the accuracy and stability of the 

matching results, and effectively reducing the interference of 

scale differences and noise in the matching process. Figure 3 

shows the Transformer modeling method architecture for CT 

gas-water interface feature point matching. 

 

 
 

Figure 3. Transformer modeling method architecture for CT gas-water interface feature point matching 

 

2.2.3 Three-dimensional point cloud reconstruction and 

optimization 

The accurately matched feature point pairs provide reliable 

two-dimensional correspondences for three-dimensional 

reconstruction. Based on camera calibration parameters and 

the triangulation principle, the 3D point cloud of the gas-water 

interface can be generated. Subsequent denoising and 

smoothing optimization further enhance the point cloud 

quality, providing high-precision data support for the 

subsequent morphological quantification. 

The 3D point cloud is generated by calculating the 3D 

coordinates of the feature points based on the triangulation 

principle. The camera intrinsic matrix K and extrinsic matrix 

[R|t] are obtained through preliminary camera calibration, 

where R is the rotation matrix, and t is the translation vector. 

For the accurately matched points (u1,v1) and (u2,v2) in the 

reference and target images, a linear system of equations is 

constructed: 

 

{
 
 

 
 s1 [

u1

v1

1
] =K[I|0]P

s2 [

u1

v1

1
] =K[R|t]P

 (4) 

where, s1 and s2 are scale factors, and P is the 3D point 

coordinates to be solved. Solving this system of equations 

gives the 3D coordinates of a single feature point. This 

operation is repeated for all CT slices across all time steps, and 

the 3D coordinates of all feature points are integrated to 

generate the complete 3D point cloud of the gas-water 

interface, Pcloud∈RM×3, where M is the total number of points in 

the point cloud. 

Point cloud optimization is performed step-by-step using 

statistical filtering and moving least squares, balancing 

denoising and detail preservation. The statistical filtering sets 

the number of neighboring points (k=20), calculates the mean 

and standard deviation of the distances between each point and 

its neighboring points, and removes outlier points with a 

distance greater than the mean plus 2 times the standard 

deviation. This parameter setting effectively removes isolated 

points caused by scan noise and matching errors. The moving 

least squares method smooths the point cloud while preserving 

subtle morphological features of the interface. By constructing 

a locally weighted polynomial surface to fit the point cloud 

data, local deviations in the point cloud are corrected. The 

optimized point cloud maintains good smoothness while 

accurately restoring the true geometric morphology of the gas-

water interface, providing high-quality foundational data for 
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subsequent morphological quantification analysis. 

 

2.3 Morphological quantification index system for CT gas-

water interface 

 

Based on the high-precision three-dimensional point cloud 

reconstructed in Section 2.2, a “geometric feature-dynamic 

feature” dual-dimensional morphological quantification index 

system is constructed. Geometric features focus on the static 

spatial morphology of the interface, characterizing the 

distribution range, occupied volume, and morphological 

smoothness of the interface. Dynamic features correlate point 

cloud data from different time steps to reveal the evolutionary 

patterns of the interface during the displacement process. The 

two types of indicators complement each other, providing an 

objective basis for the quantification analysis of the gas-water 

process, displacement efficiency evaluation, and stability 

judgment. 

 

2.3.1 Geometric feature indicators 

Geometric feature indicators are used to precisely 

characterize the static spatial morphology of the gas-water 

interface. Three core indicators are selected: interface surface 

area, interface enclosing volume, and average curvature. 

These indicators cover key geometric information from three 

dimensions: distribution range, gas-phase occupied space, and 

morphological smoothness. The calculation process is based 

on the reconstructed three-dimensional point cloud, ensuring 

the objectivity and accuracy of the indicators. 

Interface Surface Area: This is the core indicator for 

representing the spatial distribution of the interface. The 

calculation first converts the discrete point cloud into a 

continuous surface. The Poisson surface reconstruction 

algorithm is used to fit the three-dimensional point cloud. This 

algorithm solves the Poisson equation to construct a triangular 

mesh that fits the topology of the point cloud, effectively 

preserving the subtle morphological features of the interface. 

For the generated triangular mesh, the area of each triangle is 

calculated and summed to obtain the total interface surface 

area S. This indicator directly reflects the contact range 

between the gas-water interface and the water phase. The 

larger the surface area, the broader the gas-water exchange 

interface, providing basic data for subsequent analysis of mass 

transfer efficiency. Interface Enclosing Volume: This is used 

to quantify the spatial size occupied by the gas phase within 

the core sample. The Axis-Aligned Bounding Box (AABB) 

method is used to calculate the volume. All three-dimensional 

coordinates of the point cloud are traversed to extract the 

maximum and minimum values along the x, y, and z axes, and 

a rectangular bounding box is constructed based on these 

extreme values. The volume V of this box is the interface 

enclosing volume. This method is computationally efficient 

and reliable in precision, providing a clear reflection of the gas 

phase's spatial occupancy ability during the displacement 

process. 

Average Curvature: This focuses on the morphological 

smoothness and convex-concave characteristics of the 

interface and is a key indicator for revealing the degree of 

influence of the core pore structure on the interface. The 

calculation process is based on a triangular mesh: for each 

vertex in the mesh, the two principal curvatures k1 and k2 are 

calculated based on the geometric relationship with its 

neighboring vertices. The vertex curvature Hi is the average of 

the two principal curvatures: Hi=(k1+k2)/2. The arithmetic 

mean of all vertex curvatures gives the average curvature Havg. 

The principal curvature is calculated based on quadratic 

surface fitting to ensure the accuracy of the curvature 

calculation. The sign of Havg represents the overall convex or 

concave shape of the interface: positive values indicate the 

interface is convex, while negative values indicate the 

interface is concave. The absolute value reflects the 

smoothness of the interface: smaller absolute values indicate a 

smoother interface, while larger values suggest significant 

fluctuations due to pore throat blockages. 

 

2.3.2 Dynamic feature indicators 

Dynamic feature indicators are used to correlate three-

dimensional point cloud data from different time steps, 

characterizing the evolution patterns of the gas-water interface 

over time. Two indicators are selected: interface migration rate 

and interface fluctuation amplitude. These indicators quantify 

the dynamic characteristics of the displacement process from 

the perspectives of macroscopic advancement efficiency and 

morphological stability, providing quantitative support for 

evaluating displacement effects and optimizing displacement 

parameters. 

Interface Migration Rate: This indicator is used to 

characterize the overall advancing speed of the gas-water 

interface and is the core dynamic indicator for reflecting 

displacement efficiency. Before calculation, the overall spatial 

position of the interface at each time step must be determined. 

The centroid coordinates are used as the representative 

position of the interface. For the point cloud at time t, the 

arithmetic mean of all three-dimensional coordinates of the 

points is calculated to obtain the centroid G(x,y,z) of the 

interface at that time. Let the centroids at time t1 and t2 be 

G1(x1,y1,z1) and G2(x2,y2,z2), respectively. The interface 

migration rate v is calculated by the formula: 

 

v=

√(x2-x1)
2
+(y2-y1)

2
+(z2-z1)

2

t2-t1
 

(5) 

 

This indicator, through the ratio of the centroid distance to 

the time difference, eliminates the interference of local 

fluctuations on the overall advancement speed and can 

accurately reflect the macroscopic advancement efficiency of 

the interface under displacement pressure. The magnitude of 

this value is directly related to key parameters such as 

displacement pressure and core permeability. 

Interface Fluctuation Amplitude: This indicator is used to 

evaluate the stability of the interface morphology during the 

displacement process, focusing on the fluctuation degree of the 

interface in the displacement direction. The preset 

displacement direction in the gas-water experiment is the z-

axis. The fluctuation of the interface along this direction 

directly reflects morphological stability. Therefore, the z-

direction is selected as the dimension for calculating the 

fluctuation amplitude. For the point cloud at time t, the 

coordinates of all points along the z-direction are extracted, 

and the maximum value zmax and minimum value zmin are 

determined. The difference between these two values is the 

interface fluctuation amplitude Δh=zmax-zmin. The physical 

meaning of this indicator is clear: the smaller Δh is, the 

smoother the interface in the displacement direction, the more 

stable the morphology, and the more uniform the displacement 

process. If Δh increases, it indicates that the interface is 

influenced by core heterogeneity, pore throat blockages, or 
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other factors, leading to obvious "finger" or local fluctuations 

and reduced stability. By tracking the changes in Δh at 

different time steps, the stability evolution of the displacement 

process can be dynamically monitored. 

 

 

3. EXPERIMENT AND RESULT ANALYSIS 

 

To quantify the performance gain of the proposed 

segmentation method in the "pixel overlap - boundary 

refinement" dimension, a multi-method comparison 

experiment was conducted. As seen in Table 1, the Dice 

coefficient of the proposed method reaches 0.92, which is an 

improvement of 5.7% over the original 3D Attention U-Net. 

This gain is attributed to the PAM, which enhances the feature 

distinction between the gas-water interface and background 

pores, reducing the problem of "incorrect classification of 

boundary pixels" in traditional methods. The IoU increases to 

0.86, indicating that the segmentation result is better at 

"retaining the valid interface area and removing background 

noise," which is directly related to the stabilization of feature 

maps through the BN layers in the 3D convolutional block. 

 

Table 1. Comparison of quantitative performance metrics for different segmentation methods 

 

Segmentation Method 
Dice 

Coefficient 

IoU (Intersection over 

Union) 

Pixel Accuracy 

(PA) 

Average Surface Distance 

(ASD, μm) 

HD, 

μm 

Improved 3D Attention U-Net 0.92 0.86 0.97 2.1 5.3 

Original 3D Attention U-Net 0.87 0.78 0.94 3.5 8.1 

Traditional 3D U-Net 0.82 0.72 0.91 4.8 10.5 

Threshold Segmentation (Otsu 

Method) 
0.71 0.58 0.85 7.2 15.3 

 

 
 

Figure 4. Morphological semi-variance function curves of CT gas-water interface segmentation results and measured profiles in 

X, Y, and Z directions 

 

In terms of boundary precision, the mean surface distance is 

only 2.1 μm, which is 43.8% of the traditional 3D U-Net and 

29.2% of the threshold segmentation; the HD, representing the 

maximum deviation of the interface boundary, is reduced to 

5.3 μm, much lower than the original method's 8.1 μm. The 

core of this improvement lies in the accurate localization of the 

interface boundary by the attention gate module: traditional 

methods are prone to boundary blurring due to the 

inhomogeneity of CT image grayscale, while the proposed 

method achieves sub-micron level restoration of boundary 

pixels through multi-dimensional attention weights. 

To quantify the restoration accuracy of the proposed 3D 

deep segmentation method for the gas-water interface spatial 

morphology, the morphological semi-variance function was 

introduced to compare the structural consistency between the 

segmentation result and the measured profile in 3D space. 

From the directional curve features in Figure 4, it can be 

observed that: in the X direction, the semi-variance rapidly 

increases in the 0-50 lag distance range, reflecting significant 

local morphological variation of the interface in short 

distances. At this point, the segmentation curve almost 

coincides with the measured profile curve, indicating that the 

method accurately captures the fine local morphology formed 

by the interface constrained by the core pore throat. In the 50-

250 range, the curve gradually stabilizes, with the semi-

variance fluctuation range of the segmentation result being 

narrow and always enclosing the measured curve, indicating 

that the restoration error for the macroscopic spatial continuity 

of the interface is controllable. In the Y direction, the semi-

variance growth slope in the 0-200 range is exactly the same 

as the measured profile, and the slight inflection point of the 

measured curve at 200 is also synchronized in the 

segmentation result, demonstrating the method’s ability to 

recognize the non-uniform morphology of the interface. In the 

200-500 range, the baseline deviation between the two is less 

than 10%, proving that the matching degree of the 

macroscopic spatial distribution of the interface is high. The Z 

direction is the displacement direction of the gas-water 

experiment. The semi-variance quickly saturates in the short 

lag distance, and the saturation point of the segmentation result 

coincides with the measured profile. The curve crossover 

phenomenon at the lag distance of 30 is exactly the same, 

showing that the method can accurately restore the dynamic 

morphological features of the interface in the displacement 

direction. In conclusion, the proposed 3D deep segmentation 

method achieves high consistency with the measured interface 

in three dimensions: fine local morphology, macroscopic 

spatial continuity, and dynamic features in the displacement 

direction. The output interface morphology data can directly 

support the analysis of the correlation mechanism between 

"interface morphology" and "displacement efficiency" in the 

gas-water process. 

To quantitatively assess the system error of the proposed 3D 

deep segmentation method in the morphological parameter 
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quantification of the gas-water interface, three core indicators 

are selected: the convex/concave surface ratio, the 

high/medium/low curvature region ratio, and the fast 

advancing region ratio. The statistical distribution differences 

between the segmentation result and the measured interface 

are compared. From the macroscopic topological morphology 

in Figure 5, it can be seen that the convex and concave surface 

ratios are key indicators for representing the expansion mode 

of the gas phase in the core pore space. The convex surface 

ratio in the segmentation result is about 42%, which deviates 

only 2% from the measured interface at 43%. The concave 

surface ratio is about 23%, which deviates by only 1% from 

the measured value at 22%. This high consistency indicates 

that the method can accurately reproduce the topological 

pattern of "radial expansion dominated by the convex surface 

and filling local pores by the concave surface." The accurate 

quantification of the convex surface ratio is the core basis for 

subsequent calculation of gas-phase encroachment volume, 

and the deviation is controlled within 2%, which limits the 

calculation error of the encroachment volume to less than 5%. 

From the perspective of microscopic morphological 

heterogeneity, the high, medium, and low curvature region 

ratios correspond to different morphological scales of the 

interface constrained by the pore throat: the high curvature 

region ratio in the segmentation result is about 12%, deviating 

by only 0.8% from the measured value at 13%. These regions 

correspond to the sharp morphological changes of the interface 

at pore throats, and their quantification accuracy directly 

determines the reliability of "interface morphology-fluid 

permeability resistance" correlation analysis. The deviations 

for the medium and low curvature regions are 1.2% and 1.5%, 

respectively, further proving the stability of the method’s 

quantification at different morphological scales, avoiding the 

over-smoothing of flat interface morphology seen in 

traditional segmentation methods. Regarding dynamic 

displacement features, the fast advancing region ratio reflects 

the intensity of the "fingering" phenomenon of the interface: 

the ratio in the segmentation result is about 5%, deviating by 

only 1% from the measured value at 6%, and both fall in the 

low ratio range, indicating that the method can accurately 

recognize the weak "fingering" characteristics at the early 

stage of displacement. The reliability of this result is the 

premise for subsequently adjusting the displacement pressure 

to suppress "fingering," and the deviation of less than 1% 

ensures the accuracy of displacement parameter optimization. 

Analyzing the source of errors, the deviations for all indicators 

are far smaller than the inherent system error of the core CT 

scan, which is about 5%, indicating that the quantification 

error of the method itself can be ignored. 

 

 
 

Figure 5. Statistical distribution comparison of gas-water interface morphological parameters 

 

Table 2. Geometric accuracy verification of 3D reconstruction results 

 

Indicator 

Proposed Method (Based on 

Improved 3D Attention U-Net 

Segmentation) 

Reconstruction Based on 

Traditional 3D U-Net 

Segmentation 

Reconstruction Based on 

Threshold Segmentation 

Measured Value 

Reference 

Range 

Point Cloud RMSE 

(mm) 
0.021 0.045 0.082 <0.03 mm 

Point Cloud 

Registration Error 

(mm) 

0.018 0.039 0.075 <0.02 mm 

Surface Area 

Relative Deviation 

(%) 

2.3 6.8 12.5 <5% 

Enclosing Volume 

Relative Deviation 

(%) 

1.8 5.7 10.2 <4% 

Average Curvature 

Relative Deviation 

(%) 

3.1 7.2 14.6 <6% 
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Table 3. Dynamic evolution of morphological quantification indicators at different displacement time steps 

 
Displacement 

Time Step 

Surface Area 

(mm²) 

Enclosing 

Volume (mm³) 

Average 

Curvature (mm⁻¹) 

Interface Migration 

Rate (mm/s) 

Interface Fluctuation 

Amplitude (mm) 

0 12.5 3.2 0.18 - 0.4 

20 28.7 7.6 0.25 0.008 0.8 

40 45.3 12.1 0.32 0.012 1.2 

60 61.8 16.7 0.29 0.009 1.0 

80 75.2 20.3 0.24 0.007 0.7 

100 82.6 22.5 0.21 0.005 0.5 

 

To verify the geometric fidelity of the 3D reconstruction 

results, the reconstruction metrics supported by different 

segmentation methods were compared with the measured 

reference range. As seen in Table 2, the point cloud RMSE is 

0.021 mm, which meets the measured reference range (< 0.03 

mm), while the reconstruction based on traditional 3D U-Net 

exceeds this range. This shows that the segmentation result in 

the proposed method has high boundary accuracy, making the 

point cloud sampling of the interface profile closer to the true 

shape and avoiding "point cloud shift due to blurred 

boundaries" in traditional segmentation. In terms of 

morphological parameter quantification accuracy, the surface 

area relative deviation is only 2.3%, and this deviation 

corresponds to a gas-phase encroachment volume calculation 

error of about 4.8%, which is far below the industry standard 

upper limit of 10%. The relative deviation of the enclosing 

volume is 1.8%, indicating that the proposed method’s 

quantification of the gas phase occupying space is highly 

consistent with the measured value, which is the core basis for 

the subsequent "displacement pressure-gas-phase volume" 

correlation analysis. The relative deviation of average 

curvature is 3.1%, which is particularly notable. Curvature is 

a key indicator for characterizing the interaction between the 

interface and pore throat. A 7.2% deviation in traditional 

methods can lead to a permeability resistance calculation error 

exceeding 15%, while the proposed method controls the 

deviation to within 3%, ensuring the quantitative reliability of 

the "morphological features-permeability behavior" 

correlation analysis. 

To reveal the coupling mechanism between the gas-water 

interface morphology and the displacement process, the 

evolution of key quantification indicators at different time 

steps was statistically analyzed. As shown in Table 3, the 

surface area in the early stage of displacement increases from 

12.5 mm² to 45.3 mm², with the enclosing volume expanding 

accordingly, corresponding to the rapid radial expansion of the 

gas phase in high-permeability pores. The average curvature 

increases to 0.32 mm⁻¹ and the fluctuation amplitude increases 

to 1.2 mm, reflecting the steep deformation of the interface 

when passing through narrow pore throats. At this stage, the 

migration rate increases to 0.012 mm/s, directly reflecting the 

effective transmission of the displacement pressure to high-

permeability flow channels. In the middle stage of 

displacement, the average curvature drops to 0.24 mm⁻¹ and 

the fluctuation amplitude decreases to 0.7 mm, indicating that 

the gas phase begins to fill medium- and low-permeability 

pores, and the interface fluctuation becomes smoother due to 

the "filling-flattening" process of the pore space. The 

migration rate slows down to 0.007 mm/s, corresponding to 

the increased loss of displacement pressure in the complex 

pore network. This stage of morphological change is the result 

of the coupling between the "expansion of the gas phase" and 

the "increase in flow resistance." The quantification accuracy 

of the proposed method ensures the observability of this 

coupling relationship. In the later stage of displacement, the 

growth rate of surface area and volume significantly decreases, 

and the average curvature and fluctuation amplitude return to 

values near the initial level, indicating that the gas-phase 

encroachment volume tends to saturate and the interface 

morphology reaches a stable state. 

The academic value of these evolutionary features lies in the 

fact that the proposed quantification indicators can precisely 

capture the "expansion-filling-stabilization" three-stage 

morphological response in the displacement process. These 

indicators provide continuous and reliable morphological 

input for establishing a quantitative model of the "dynamic 

evolution of interface morphology-displacement efficiency 

spatial-temporal distribution." 

 

 

4. CONCLUSION 

 

This paper proposes an integrated method for 3D 

segmentation, reconstruction, and morphological 

quantification of CT gas-water interfaces based on an 

improved 3D Attention U-Net, which has been validated with 

a real core CT dataset and shown significant effectiveness. The 

core performance of the proposed method, verified with real 

core CT gas-water data, is as follows: in segmentation, the 

Dice coefficient of the improved 3D Attention U-Net reaches 

0.92, improving by 5.7% compared to the original model, IoU 

is 0.86, the average surface distance is 2.1 μm, and the HD is 

5.3 μm, which is a reduction of 56.2% and 49.5% respectively 

compared to the traditional 3D U-Net, achieving pixel-level 

overlap and sub-micron-level boundary restoration; in 

morphological restoration, the segmentation results are highly 

consistent with the measured profiles in the X/Y/Z direction 

semi-variance curves, with local morphological coincidence in 

the X direction, inflection point reproduction in the Y direction 

with base value deviation <10%, and precise matching of 

displacement features in the Z direction; in 3D reconstruction, 

the point cloud RMSE is only 0.021mm, with relative 

deviations of surface area, enclosing volume, and average 

curvature of 2.3%, 1.8%, and 3.1%, respectively, all meeting 

experimental precision requirements; in quantitative evolution, 

the core morphological parameters have a deviation of less 

than 2% compared to the measured values, which can 

accurately capture the evolution of the three-stage 

displacement indicators of "expansion-filling-stabilization," 

providing high-precision data support for the analysis of the 

correlation mechanism between "interface morphology" and 

"displacement efficiency." 

This research has certain limitations: the dataset only covers 

specific core types and displacement conditions, and the 

generalization to high-noise images and multiphase mixed 

interface scenarios has not been fully validated. The model 

processing time for batch data is relatively long, making it 

difficult to meet real-time analysis requirements. Future 
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research can be deepened in three areas: expanding the dataset 

to include different lithologies, permeabilities, and 

displacement pressures to improve method robustness; 

optimizing processing efficiency through lightweight 

networks and parallel computing; and integrating pore-scale 

flow simulation to build a "segmentation-quantification-

mechanism" model to further reveal the intrinsic coupling 

mechanism between interface evolution and displacement 

efficiency. 
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