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Cardiovascular disease remains one of the foremost causes of mortality worldwide, 

emphasizing the urgent need for accurate and energy-efficient early risk prediction methods. 

The growing availability of wearable devices capable of continuously capturing 

physiological data, such as heart rate, blood pressure, sleep duration, and activity levels, 

presents a powerful opportunity for proactive health monitoring. In this study, we propose a 

lightweight, intelligent system for predicting heart disease risk by leveraging hybrid 

Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) architecture. The 

model is specifically optimized for edge deployment using TinyML techniques, including 

pruning and quantization, to reduce computational complexity while maintaining high 

predictive performance. This research focuses on centralized training using preprocessed 

multimodal wearable data, addressing challenges such as data imbalance and real-time 

resource constraints. The proposed system achieves high predictive performance 

while significantly improving efficiency for wearable deployment. The baseline 

CNN-LSTM model attains 95.27% accuracy, with the pruned and quantized versions 

maintaining 95.23% and 95.14%, respectively. Model size is reduced from 610MB to 

190MB, power consumption drops from 16.74W to 7.90W, and inference time improves 

from 71 s to 48 s, demonstrating that the optimized model supports real-time, low-power 

cardiovascular-risk prediction on edge devices. 
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1. INTRODUCTION

Cardiovascular diseases (CVDs) remain a major global 

health challenge, causing nearly 18 million deaths each year 

according to the World Health Organization (WHO). They 

contribute significantly to morbidity and mortality worldwide 

[1]. Aging populations and changing lifestyles continue to 

worsen this burden. The impact of CVDs extends beyond 

individual patients, affecting families and healthcare systems 

as well. This widespread prevalence highlights the urgent need 

for effective, timely, and accurate detection methods. Early 

intervention can help save lives and reduce the strain on 

healthcare resources. 

One of the critical challenges in CVD management is the 

limited availability of continuous cardiovascular monitoring, 

particularly for high-risk individuals who remain 

asymptomatic. Traditional diagnostic methods, such as 

periodic check-ups and tests, often fail to detect issues early 

enough for timely intervention. Given the dynamic nature of 

cardiovascular health, it is imperative to adopt solutions that 

offer real-time monitoring, enabling continuous assessment of 

a patient’s health status. This would not only allow for the 

early detection of abnormalities but also provide valuable data 

for personalized treatment and prevention strategies. 

The integration of wearable sensors and artificial 

intelligence (AI) has emerged as a promising approach to meet 

the need for continuous, real-time health monitoring. 

Wearable devices, such as fitness trackers, smart watches, and 

other biosensors, are capable of gathering vital signs such as 

heart rate, blood pressure, physical activity levels, and sleep 

patterns. These sensors provide a continuous stream of data, 

which, when analyzed, can reveal patterns indicative of 

cardiovascular risk. However, despite these advancements, 

there are significant challenges in utilizing deep learning 

models on wearable devices, primarily due to the limited 

processing power and energy constraints of these devices.  

Traditional deep learning models, particularly those that 

process sequential and spatial data, require substantial 

computational resources, which are often beyond the 

capabilities of typical wearable devices. Furthermore, 

processing these complex models in real-time consumes 

considerable energy, which can rapidly drain the device's 

battery, making continuous monitoring impractical. 

To address these challenges, we present an approach that 

integrates Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks for predicting the risk 

of heart disease. CNNs are particularly effective in extracting 

meaningful features from data with spatial patterns, such as 
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electrocardiogram (ECG) signals or physical activity data. On 

the other hand, LSTMs are well-suited for modeling sequential 

dependencies in time-series data, such as heart rate and blood 

pressure trends. By leveraging the strengths of both 

architectures, the proposed hybrid CNN-LSTM model offers 

enhanced accuracy in forecasting cardiovascular risk. 

To enable the deployment of the proposed hybrid model on 

wearable devices, we incorporate Tiny Machine Learning 

(TinyML) strategies with a focus on pruning and quantization 

techniques. Pruning enhances model efficiency by removing 

redundant or low-impact weights, thereby reducing model 

complexity. Quantization, meanwhile, lowers the bit-width of 

weights and activations, which minimizes memory usage and 

computational load. These optimizations collectively ensure 

that the deep learning model can run efficiently on devices 

with limited resources, enabling real-time and energy-efficient 

cardiovascular monitoring. 

The objective of this work is to design a predictive system 

that delivers performance comparable to traditional healthcare 

solutions, while remaining computationally lightweight for 

seamless deployment on wearable devices. By addressing the 

power and memory limitations inherent to such platforms, this 

model paves the way for scalable and personalized 

cardiovascular monitoring in everyday settings. 

This study offers several key contributions. First, it 

demonstrates how a hybrid CNN-LSTM architecture can be 

effectively adapted and optimized for deployment in real 

wearable-edge environments. This is validated through 

implementation and testing on a Raspberry Pi 4 Model B edge 

device.Secondly, it integrates TinyML techniques, which are 

structured pruning and 8-bit quantization to substantially 

reduce computational load and memory usage, enabling real-

time inference under strict resource constraints. Thirdly, 

beyond evaluation on the primary wearable Kaggle dataset, the 

model’s generalizability was further confirmed using the 

Medical Information Mart for Intensive Care IV (MIMIC-IV) 

Waveform dataset from PhysioNet [2], where 5-fold cross-

validation established the robustness and stability of the 

optimized model. 

Together, these advancements lay the foundation for a 

scalable, energy-efficient, and clinically reliable framework 

for continuous cardiovascular-risk monitoring. 

 

 

2. LITERATURE SURVEY 

 

Cardiovascular disease prediction has evolved significantly 

with advances in wearable sensing, Internet of Things (IoT) 

systems, and machine-learning methodologies. Early research 

focused on traditional statistical and machine-learning models 

applied to structured clinical datasets. Recent work has 

leveraged deep-learning architectures capable of extracting 

complex temporal and physiological patterns from continuous 

sensor data. Parallel developments in TinyML and edge 

computing have further enabled resource-efficient deployment 

of intelligent health-monitoring systems on wearable and low-

power devices. This literature review synthesizes prior 

contributions across these domains, highlighting key 

methodologies and limitations. 

Bhatt et al. [3] highlighted the continued relevance of 

classical machine-learning methods such as logistic regression, 

decision trees, and Support Vector Machines (SVM) for heart-

disease prediction due to their interpretability and suitability 

for structured clinical data. Their approach incorporated 

essential preprocessing steps, including feature selection and 

discretization (e.g., binning age, blood pressure, and 

cholesterol), which helped capture nonlinear relationships and 

improved classifier performance. They also employed k-

modes clustering to identify latent patterns in categorical 

medical data, further enhancing predictive accuracy. 

Traditional ML approaches have additionally been applied 

to wearable-sensor data. Siirtola et al. [4] and Martin-

Gonzalez et al. [5] used Linear Discriminant Analysis (LDA) 

and Quadratic Discriminant Analysis (QDA) to predict 

cardiac-related events from sleep-sensor signals. While initial 

user-independent models suffered from variability in 

individual sleep patterns, personalized models significantly 

improved performance by tailoring decision boundaries to 

each user’s physiological characteristics. 

Wearable and IoT technologies are rapidly reshaping 

cardiovascular monitoring by enabling continuous, non-

clinical data collection and analytics. Singhal and Cowie [6] 

reviewed how wearables support heart-failure management, 

highlighting their promise and current limitations such as data 

validity and clinical integration. Perez-Pozuelo et al. [7] 

demonstrated wearable devices could detect sleep outside the 

clinic, supporting scalable early anomaly detection. 

Alday et al. [8] presented the 2020 PhysioNet challenge on 

12-lead ECG classification, underlining the integration of 

sensor data into predictive workflows. Lin et al. [9] provided 

a detailed survey of wearable sensors and devices for real-time 

cardiovascular disease monitoring, covering hardware, signals 

— ECG, Photoplethysmography (PPG) — and deployment 

platforms. De Zambotti et al. [10] showed how a commercially 

available wristband could capture sleep and cardiac function 

in adolescents, confirming the feasibility of consumer 

wearables in cardiovascular research. Sarmah [11] reported an 

IoT-based deep-learning system for heart-disease prediction, 

combining device data with modified neural networks, but 

warned of system-level risks like latency and data quality. 

Ali et al. [12] proposed an ensemble deep-learning and 

feature-fusion approach using wearable and IoT-derived 

variables for heart-disease prediction, offering strong accuracy 

yet raising issues of interpretability. Kundrick et al. [13] 

applied machine learning to wearable fitness tracker data to 

predict hospitalizations and cardiovascular events. This 

demonstrated improved risk stratification using continuous 

real-world physiological signals. However, the study was 

limited by device-specific data and cohort dependence, which 

might affect generalizability. 

Deperlioglu et al. [14] applied an autoencoder–Deep Neural 

Network (DNN) in a secure Internet of Health Things (IoHT) 

framework for disease diagnosis, trading transparency for 

performance. Pakhomov et al. [15] integrated electronic 

medical records with sensor data for heart-failure 

identification, improving prediction depth but facing 

interoperability and privacy hurdles. 

Recent research on deep-learning approaches for heart-

disease prediction has demonstrated significant advances in 

representation learning, feature augmentation, and hybrid 

network design. García-Ordás et al. [16] showed that deep 

neural architectures combined with feature augmentation 

substantially improved prediction accuracy on structured 

clinical datasets. Alqurashi et al. [17] integrated Predator 

Crow Optimization with deep neural networks to automate 

hyperparameter tuning and feature selection, achieving strong 

performance but at the cost of increased computational 

complexity. 
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Mohammad and Al-Ahmadi [18] proposed a hybrid 

Wavelet Transform–Convolutional Neural Network (WT-

CNN) model that extracted wavelet-based ECG features 

before applying convolutional layers, reporting accuracy 

levels near 97%. This work highlighted the value of signal-

driven deep learning. Shankar et al. [19] demonstrated that 

even relatively simple CNN architectures could outperform 

classical machine-learning models on heart-disease datasets 

when trained with proper regularization. 

Ram Kumar et al. [20] introduced a hybrid CNN–DNN 

architecture that combined convolutional feature extractors 

with dense layers for final classification, achieving improved 

predictive performance but also noted potential overfitting 

risks on limited datasets. Collectively, these studies confirmed 

that deep-learning models can capture nonlinear feature 

interactions more effectively than traditional methods, while 

also emphasizing ongoing challenges related to dataset size, 

model interpretability, and robust cross-dataset validation. 

Subashini and Kanaka Raju [21] presented an IoT-based 

heart-disease diagnosis framework that integrated 

physiological data collected via smart sensors with a hybrid 

learning pipeline combining gradient boosting for tabular 

features and a deep convolutional neural network for improved 

classification accuracy; however, the study was limited by 

evaluation on a restricted dataset and the lack of external 

clinical validation, which might affect generalizability. 

Abutalip et al. [22] proposed a machine-learning–driven heart-

disease detection system using data acquired from wearable 

devices, where conventional ML classifiers were employed to 

identify cardiovascular risk patterns, but the work was 

constrained by limited feature diversity and short-term 

wearable data, reducing robustness across populations. Al 

Reshan et al. [23] developed a robust heart-disease prediction 

approach using hybrid deep neural networks, including CNN, 

LSTM, and a combined CNN–LSTM architecture, achieving 

high predictive performance on multiple benchmark datasets. 

Nevertheless, the model’s reliance on curated public datasets 

and increased computational complexity posed challenges for 

real-time deployment and clinical interpretability. 

Xia et al. [24] proposed an intelligent cardiovascular disease 

diagnosis framework that integrated Ant Colony Optimization 

for feature selection with a deep-learning–enhanced neural 

network, further optimized using Bayesian hyperparameter 

tuning to improve classification accuracy. Although the 

approach achieved strong performance, the combined use of 

metaheuristic optimization and deep learning increased 

computational complexity and training cost, which might limit 

its suitability for real-time or resource-constrained healthcare 

applications. 

To make these models practical for wearables, researchers 

have applied TinyML techniques. Arooj et al. [25] explored 

structured pruning to reduce model complexity, while Neri et 

al. [26] showed that 8-bit quantization significantly reduced 

memory use and power consumption without major accuracy 

loss. Qureshi and Krishnan [27] demonstrated that TinyML-

compatible CNN–LSTM models could deliver accurate, real-

time predictions on microcontrollers, balancing performance 

with energy efficiency. 

Recent work by Sun et al. [28] introduced a TinyML 

methodology for continuous, cuff-less blood-pressure 

estimation using only PPG signals. Their approach shrunk 

conventional CNN architectures (AlexNet, LeNet, 

SqueezeNet, ResNet, MobileNet) via pruning and quantization, 

and deployed them on constrained edge platforms. Their 

evaluation used thousands of ICU patient records and showed 

performance comparable to server-based systems while 

meeting the Association for the Advancement of Medical 

Instrumentation and the British Hypertension Society 

(AAMI/BHS) standards. The memory footprint was reduced 

to <1 MB and inference latency to around 10 ms on a 

Cortex-M microcontroller, although generalization across 

ambulatory settings remained a concern. Their work 

demonstrated the viability of TinyML for cardiovascular 

monitoring but highlighted the trade-off between model size 

and inter-subject robustness. 

Mahardika et al. [29] proposed a CNN–LSTM architecture 

trained on the MIMIC-III arterial-blood-pressure (ABP) and 

PPG dataset. Their optimized configuration (5 convolutional 

layers + 1 LSTM + 2 dense layers) achieved a mean absolute 

error (MAE) of 7.89 ± 3.79 mmHg for systolic BP and 

5.34 ± 2.89 mmHg for diastolic BP — meeting the AAMI and 

BHS limits. Deployment considerations included window 

segmentation (4 s, 500 points) and Principal Component 

Analysis (PCA) feature reduction. While the accuracy was 

promising, the architecture was still too heavy (around 10 M 

parameters) for ultra-low-power microcontroller deployment 

without further compression or dedicated hardware 

acceleration. This work underscored the value of hybrid CNN–

LSTM models for cardiovascular regression tasks but also 

emphasized the need for TinyML-aware optimization. 

Arthi and Krishnaveni [30] proposed a fog-enabled TinyML 

with explainable-AI pipeline for healthcare decision support. 

Their system achieved an F1-score of 0.93 for 

abnormal-health-event detection while employing Modified 

Lempel-Ziv-Welch (mLZW) data compression and 

Lightweight Shapley Additive explanations (SHAP) on 

edge/fog nodes. The paper reported memory usage of 

around 800 kB and latency of 30 ms for anomaly inference. 

However, the study used general health-sensor features rather 

than specialized cardiovascular signals and lacked prospective 

wearable deployment. It provided a valuable proof-of-concept 

for combining compression, interpretability, and TinyML in 

health monitoring. 

Elhanashi et al. [31] provided a comprehensive survey of 

TinyML in embedded and IoT-based healthcare applications, 

covering more than 150 papers up to 2024. The review 

reported that the median parameter count of deployed TinyML 

models in health was around 35 k parameters, average memory 

footprint 256 kB, and average latency 20 ms. It also cited key 

challenges: lack of standardized evaluation benchmarks (e.g., 

sensitivity, calibration), limited cross-device generalization, 

and weak clinical validation. Their conclusions emphasized 

that, although TinyML is technically feasible and 

deployment-ready, clinically validated TinyML systems for 

cardiovascular applications remain scarce. Our work builds on 

these advances by deploying a compressed CNN–LSTM 

model for multi-class cardiovascular risk prediction, reporting 

clinically relevant metrics (sensitivity, specificity, calibration) 

and validating on edge hardware under realistic constraints. 

 

 

3. PROPOSED METHOD 

 

This section presents the step-by-step methodology 

employed in developing an energy-efficient heart disease 

prediction system using wearable sensor data and a hybrid 

CNN-LSTM model. The approach integrates data acquisition, 

preprocessing, model training, and TinyML-based 

3603



 

optimization to enable deployment on low-power wearable 

devices. 

 

3.1 Dataset 

 

The dataset employed in this study is the Wearables Dataset, 

publicly accessible on Kaggle. It comprises comprehensive 

health and lifestyle data collected from various wearable 

devices, including smartwatches, fitness trackers, and clinical-

grade biosensors. The dataset includes a rich set of 

physiological indicators such as electrocardiogram (ECG) and 

photoplethysmography (PPG) signals, heart rate (HR), blood 

pressure (BP), sleep quality scores, and levels of physical 

activity, along with biometric and demographic information. 

Table 1 lists the attributes in the dataset. In total, the dataset 

contains 10,000 instances, each with 28 attributes that 

combine real-time sensor data and personal metadata, 

including age, gender, and medical history. 

 

Table 1. Dataset attributes 

 
Sl. No Attribute 

1 User_ID 

2 Age 

3 Gender 

4 Weight 

5 Height 

6 Medical_Condition 

7 Medication 

8 Smoker 

9 Alcohol_Consumption 

10 Sleep_Duration 

11 Deep_Sleep 

12 REM_Sleep 

13 Wakeups 

14 Heart_rate 

15 Blood_Oxygen 

16 ECG 

17 Calories_Consumed 

18 Stress_level 

19 Mood 

20 Body_Fat 

21 Health_Scan_Anomaly_Flag 

 

To strengthen the reliability and clinical relevance of the 

proposed model, an additional external validation was 

performed using the MIMIC-IV Waveform Database from 

PhysioNet. This dataset provides high-fidelity ECG and vital-

sign waveforms collected from real ICU patients, enabling 

robust assessment of the model’s generalizability. Together, 

the two datasets support both development on wearable-style 

input data and validation on clinically grounded physiological 

signals. 

 
3.1.1 Data preprocessing 

The preprocessing phase ensures that the input data is clean, 

structured, and ready for model training. This process includes 

several critical steps: 

Incomplete entries in categorical fields such as alcohol 

consumption or existing medical conditions were addressed 

using mean/mode imputation or deletion, depending on the 

extent of missingness and its impact on class distribution. All 

continuous numerical features (e.g., heart rate, blood pressure) 

were scaled to a standard range using min-max normalization 

to ensure uniformity in data representation and avoid bias 

during training. Time-series data such as ECG and PPG 

signals were filtered to remove outliers and irregularities that 

could skew the learning process. 

To improve the efficiency and interpretability of the model, 

PCA [32] was applied during the feature selection stage. PCA 

is a statistical technique that transforms the original high-

dimensional dataset into a smaller set of linearly uncorrelated 

variables known as principal components, which capture the 

maximum variance present in the data. By analyzing the 

cumulative explained variance, the top components that 

retained over 95% of the total variance were selected. This 

dimensionality reduction helped eliminate redundant and less 

informative features while preserving the essential patterns 

within the wearable physiological signals. 

After applying PCA, the most informative features 

contributing to heart disease prediction included: 

• Heart Rate Variability (HRV) 

• Systolic and Diastolic Blood Pressure 

• Oxygen Saturation (SpO2) 

• Respiratory Rate 

• Sleep Quality Score 

• Activity Level Index 

The selected components were then used as input for the 

CNN-LSTM architecture, allowing the model to focus on 

learning the most relevant spatial-temporal patterns in the data. 

The classification task is centered on a target variable called 

the Anomaly Flag, which categorizes each record into one of 

four heart disease risk levels: Normal, Low, Medium, or High. 

A key challenge associated with this dataset is the imbalance 

in class distribution, where Normal and Low Risk instances 

significantly outnumber the Medium and High Risk categories. 

To address this issue and ensure robust model generalization, 

we applied the Synthetic Minority Oversampling Technique 

(SMOTE) [33] during the model training phase. This publicly 

available dataset ensures reproducibility and transparency for 

future research and validation. 

We used k=5 nearest neighbors, and minority classes were 

oversampled until class distribution was approximately 

uniform. This method generates synthetic samples for 

minority classes by interpolating between existing instances, 

thus ensuring a more balanced distribution of risk categories. 

Wearable sensors have known limitations, particularly 

reduced accuracy under motion, motion artifacts in PPG, 

environmental and placement variability, and user 

noncompliance, which affect measurement reliability. We 

addressed these issues by implementing preprocessing steps 

(bandpass filtering, motion-artifact detection and rejection, 

baseline correction), signal-quality indices (SQI) to exclude 

low-quality segments, and data augmentation during training 

to improve robustness to motion. 

To provide a clear clinical basis for the Normal, Low, 

Medium and High risk labels used in this study, we mapped 

wearable-derived physiological features to established clinical 

thresholds and combined them into an interpretable composite 

score. Specifically, blood-pressure thresholds follow the 2017 

American College of Cardiology (ACC) and the American 

Heart Association (AHA) [34] classification (Normal: SBP 

<120 & DBP <80mmHg; Elevated: SBP 120-129 & DBP 

<80mmHg; Stage-1 hypertension: SBP 130-139 or DBP 80-

89mmHg; Stage-2 hypertension: SBP ≥140 or DBP 

≥90mmHg). Oxygen saturation (SpO₂) thresholds were 

interpreted according to standard clinical guidance (normal 

≥95%; values 90-94% considered concerning; <90% 

consistent with hypoxemia). 

Heart-rate variability (HRV) reductions were treated as a 
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contributory risk indicator given its established association 

with cardiovascular morbidity and mortality [35]. These 

clinical cutoffs were used as inputs to a conservative 

composite rule. When multiple clinical flags were present, 

such as elevated blood pressure combined with low SpO₂ or 

markedly reduced heart rate variability, the subject was 

assigned to a higher risk category. In contrast, a single or 

borderline deviation resulted in a lower-risk label. All clinical 

feature extraction from validation waveforms included explicit 

preprocessing steps (filtering, artifact rejection, beat detection) 

and signal-quality checks prior to scoring to minimize 

spurious assignments. 

 

3.2 System architecture 

 

Figure 1 illustrates the end-to-end workflow of the proposed 

framework. The process begins with dataset collection 

followed by comprehensive preprocessing, including data 

cleaning, noise removal, reshaping, and handling of missing 

values. By applying PCA, relevant features are selected, and 

the data is divided into training and testing sets. SMOTE was 

applied on training dataset to address class imbalance. 

 

 
 

Figure 1. Proposed system architecture 

 

A hybrid CNN-LSTM model is trained to learn both spatial 

and temporal patterns from wearable-sensor inputs, after 

which TinyML-based optimization techniques are applied to 

reduce model size and computational load. 

As shown in Figure 2, the model begins with one-

dimensional Convolutional layers (Conv1D), that analyze 

localized patterns in the input signals, such as the 

characteristic waveforms in ECG or PPG data. These layers 

help in extracting spatial features, which are crucial for 

recognizing anomalies or signal distortions indicative of 

cardiovascular issues. 

The spatially filtered outputs are passed into Long Short-

Term Memory (LSTM) layers, which are tailored to detect 

time-series trends and fluctuations over intervals. This is 

particularly useful in understanding how health metrics evolve, 

such as sudden spikes in heart rate or irregular heartbeat 

patterns. The model includes a fully connected (Dense) layer 

that fuses spatial and temporal insights. A final Softmax output 

layer categorizes each instance into one of the defined risk 

levels: Normal, Low, Medium, or High. The use of Softmax 

ensures that the model outputs a well-calibrated probability 

distribution across these classes. 

As listed in Table 2, the model begins with an input layer 

structured as a 3D tensor of shape [B, T, F], where B is the 

batch size, T denotes the number of time steps, and F is the 

number of input features per time step (e.g., heart rate, ECG, 

PPG). 

 

 
 

Figure 2. Proposed model architecture 

 

Table 2. Model 

 
Layer Configuration / Parameters 

Input Layer [batch_size, time_steps, features] 

Conv1D Layer 1 64 filters, kernel size=5, activation=ReLU 

MaxPooling1D Pool size=2 

Conv1D Layer 2 128 filters, kernel size=3, activation=ReLU 

LSTM Layer 128 units 

Dropout Layer Dropout rate=0.2 

Dense Layer 64 units, activation=ReLU 

Output Layer 4 units, activation=Softmax 

 

The initial one-dimensional convolutional (Conv1D) layer 

utilizes 64 filters of size 5 with rectified linear unit (ReLU) 

activation to extract localized spatial features from the 

physiological signals. 

The one-dimensional convolution operation is 

mathematically defined as follows: 

 

yt = ReLU(∑ wi
k−1
i=0 ∙ xt+i + b)  (1) 

 

where, 

xt+i represents the input sequence segment starting at time 

t + i, 
wi denotes the convolutional kernel weights, 

k  is the kernel size (i.e., the number of input points 

considered at once), 

b is the bias term, 

ReLU(z)=max(0, z) is the Rectified Linear Unit activation 

function. 

A MaxPooling1D layer is subsequently applied to reduce 

the dimensionality of the convolved feature map by selecting 

the maximum value within a sliding window of size 2. This 

process preserves salient features and decreases computational 

requirements. 

The second Conv1D layer processes the feature map with 

128 filters of size 3 and employs rectified linear unit (ReLU) 

activation. This configuration enables the model to capture 
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more complex spatial dependencies. 

Next, the output from the convolutional block is passed to 

an LSTM (Long Short-Term Memory) layer with 128 units, 

designed to model the temporal dynamics in the physiological 

signals. The LSTM cell updates its internal state using the 

following equations: 

 

ft = σ(Wf ∙ [ht−1, xt] + bf) (2) 

 

it = σ(Wi ∙ [ht−1, xt] + bi) (3) 

 

C′t = tanh(WC ∙ [ht−1, xt] + bc) (4) 

 

Ct = ft ⊙ Ct−1 + it ⊙ C′t (5) 

 

ot = σ(Wo ∙ [ht−1, xt] + bo) (6) 

 

ht = ot ⊙ tanh(Ct) (7) 

 

Here, ft, it, and ot are the forget, input, and output gates, Ct 

is the cell state, and ht is the hidden state used in predictions.  

This architecture allows the model to capture and retain 

significant temporal patterns in cardiac signals, including 

variability and abrupt changes. To enhance generalization and 

mitigate overfitting, a Dropout layer with a rate of 0.2 is 

incorporated. This layer randomly deactivates 20% of neurons 

during training, thereby reducing dependency on specific 

neural pathways. This is followed by a dense layer comprising 

64 units with rectified linear unit (ReLU) activation, which 

consolidates the extracted spatial-temporal features into a 

unified representation. This representation is then forwarded 

to the final output layer, which employs a Softmax activation 

function to estimate the probabilities for four risk categories: 

Normal, Low, Medium, and High. 

The Softmax function is defined as: 

 

P(yi) =
ezi

∑ ezjC
j=1

 (8) 

 

where,zi  is the logit (raw output) for class i , and C  is the 

number of output classes. The class with the highest 

probability is selected as the final prediction. 

 

3.3 Optimization 

 

One of the major constraints in deploying deep learning 

models on wearable healthcare devices is the limitation in 

hardware capabilities such as processing power, memory 

availability, and energy efficiency. 

To overcome these challenges, this study integrates Tiny 

Machine Learning (TinyML) techniques, specifically focusing 

on model pruning and quantization, as shown in Figure 3. This 

is to compress the model and optimize it for deployment on 

resource-constrained platforms without significantly 

compromising its predictive accuracy. Most wearable devices 

are designed to operate on low-power microcontrollers with 

limited battery life, making the direct implementation of 

computationally intensive deep neural networks impractical. 

Model pruning is a technique aimed at reducing the size and 

complexity of a trained neural network by eliminating 

parameters that contribute minimally to the overall model 

performance. In this work, post-training weight pruning was 

employed to identify and remove low-magnitude weights 

within both the convolutional and recurrent layers. The 

rationale behind this method is that many neural network 

parameters have negligible influence on the model’s output 

and can be removed without severely affecting its predictive 

capabilities. By setting these small-weight connections to zero 

and creating a sparse network representation, the model’s size 

is substantially reduced. 

 

 
 

Figure 3. Optimization 

 

 
 

Figure 4. Pruning 

 

Magnitude- based pruning is used here where weights are 

pruned when: 

 

wi = {
0 if |wi| < 𝜏

wi Otherwise
 (9) 

 

where, τ is the pruning threshold. 

This creates a sparse model, improving efficiency while 

preserving important parameters. Sparsity S is defined as: 

 

S =
#{wi = 0}

#{wi}
 (10) 
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As shown in Figure 4, following pruning, a fine-tuning 

process is conducted to restore any minor loss in accuracy, 

ensuring that the pruned model maintains robustness and 

generalization.  

To further compress the pruned CNN-LSTM model, we 

employed k-means weight quantization as shown in Figure 5, 

which clusters the network weights into K representative 

centroids and replaces each weight with the index of its nearest 

centroid. 

Formally, given the set of weights 

 

𝑤 = {𝑤𝑖}𝑖=1
𝑁  (11) 

 

Choose the number of quantization levels K (for 8-bit 

representation K=256). 

 

 
 

Figure 5. Quantization 

 

The goal of k-means quantization is to find a codebook 𝐶 =

{𝑐1,𝑐2,𝑐3,𝑐4,𝑐5 … 𝑐𝐾} ⊂ 𝑅  of K centroids and an assignment 

function k:{1,…,N}→{1,…,K} that minimizes the total 

squared reconstruction error: 

 

min 𝐽(𝐶, 𝑘) 𝑤ℎ𝑒𝑟𝑒 𝐽(𝐶, 𝑘) = ∑(𝑤𝑖

𝑁

𝑖=1

− 𝑐𝑘(𝑖))2 (12) 

 

Given, C  the optimal assignment for each weight is the 

nearest centroid: 

 

𝑘(𝑖) = arg min
𝑗∈{1,…𝐾}

|𝑤𝑖 − 𝑐𝑗 | (13) 

 

And given assignments, centroids are updated by the sample 

mean of assigned weights: 

 

𝑐𝑗 =
1

|𝑆𝑗|
∑ 𝑤𝑖𝑖∈𝑆𝑗

, 𝑆𝑗 = {𝑖: 𝑘(𝑖) = 𝑗}, (14) 

 

Iterating the assignment and centroid updates until 

convergence of 𝐽. 

Quantized representation: each original weight wi  is 

replaced by an index k(i). 

This transformation yields a model that is significantly 

smaller in size and faster in execution, with only a marginal 

loss in accuracy that remains within acceptable limits for 

clinical decision support systems.  

4. EXPERIMENTS AND RESULTS 

 

For fair comparison, the standalone CNN and LSTM 

baselines were implemented using standardized and 

lightweight architectures aligned with prior deep-learning 

studies on physiological signal analysis. The CNN model 

consisted of three 1D convolutional layers (Conv1D: 64 filters, 

kernel size 3; Conv1D: 128 filters, kernel size 3; Conv1D: 256 

filters, kernel size 3), each followed by ReLU activation and 

max-pooling, and a final dense layer for classification. 

The LSTM model comprised two stacked LSTM layers with 

128 and 64 units, respectively, followed by a fully connected 

classification layer. Both models were trained using the same 

preprocessing pipeline, Adam optimizer, learning-rate 

schedule, batch size, and early-stopping strategy as the 

proposed CNN-LSTM. All models were evaluated using 

stratified 5-fold cross-validation, and performance metrics 

were reported as mean ± standard deviation across folds. The 

detailed results of this comparison are provided in Table 3 and 

illustrated in Figure 6. 

 

Table 3. Performance metrics comparison with state-of-the 

art models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 
AUC 

CNN (baseline) 92.6 90.8 91.9 91.3 0.941 

LSTM (baseline) 93.1 91.2 92.4 91.8 0.946 

Proposed CNN-

LSTM 
95.2 92.9 94.8 93.8 0.962 

 

 
 

Figure 6. Performance metrics comparison with state-of-the 

art models 

 

To examine the feasibility of deploying the optimized CNN-

LSTM model in a real-world edge environment, we conducted 

performance testing on a Raspberry Pi 4 Model B (4GB RAM), 

a widely used embedded platform suitable for simulating 

wearable-device workloads. The Raspberry Pi 4 features a 1.5 

GHz quad-core ARM Cortex-A72 CPU, LPDDR4 memory, 

and support for Python-based edge frameworks such as 

TensorFlow Lite, making it a suitable intermediate platform 

for validating lightweight machine-learning models before 

migration to ultra-low-power microcontroller units (MCUs). 

The pruned and quantized model (190MB) was deployed on 

the Raspberry Pi using TensorFlow Lite, where we measured 

inference latency, memory consumption, and CPU usage 

during continuous streaming of wearable-like physiological 

data. The device operated within acceptable thermal and 

3607



 

power limits, and no throttling was observed during 

continuous execution, demonstrating that the optimized model 

is capable of real-time cardiovascular risk inference in a 

mobile-edge environment. Although the Raspberry Pi exceeds 

the resource constraints of commercial wrist-worn devices, it 

provides a realistic and controlled environment for evaluating 

embedded performance, identifying bottlenecks, and guiding 

further model compression or distillation for future 

deployment on low-power MCUs. 

In addition to computational performance, we addressed 

key engineering and regulatory considerations essential for 

wearable medical systems. Since inference is performed 

entirely on-device, user physiological data does not need to be 

transmitted to cloud servers, reducing privacy and security 

risks.  

The performance of the proposed CNN-LSTM model was 

assessed not only in terms of classification accuracy but also 

with respect to its suitability for deployment on resource-

constrained wearable devices. 

 

 
 

Figure 7. Memory usage 

 

 
 

Figure 8. Model’s accuracy 

 

Figure 7 shows the memory usage across the baseline, 

pruned, and quantized versions of the model. The unoptimized 

baseline required approximately 610MB of memory, which is 

far beyond the capacity of typical edge devices. With pruning, 

memory consumption dropped to 370MB, and further 

quantization reduced it to just 190MB-representing a 

cumulative reduction of nearly 70%. This dramatic decrease 

in memory footprint demonstrates the effectiveness of 

TinyML techniques in preparing deep learning models for 

embedded environments where hardware limitations pose a 

significant concern. 

Figure 8 highlights the classification accuracy of each 

model version. The baseline model achieved an accuracy of 

95.27%, which decreased to 73.7% after pruning, then the 

fine-tuning process restored the accuracy back to 95.23% and 

the fine-tuning after quantization resulted in an accuracy of 

95.14%. The results indicate that the core predictive capability 

of the CNN-LSTM architecture is largely preserved, even after 

aggressive model compression. 

 

 
 

Figure 9. Power consumption and inference time 

 

Figure 9 compares power consumption and inference time 

for the three configurations. The baseline model exhibited the 

highest power usage at 16.74 watts and the longest inference 

time at 71 seconds, which is impractical for continuous 

monitoring on battery-powered devices. The pruned model 

showed substantial improvement, reducing power draw to 

10.2 watts and processing time to 50 seconds. The quantized 

version performed even better, consuming only 7.9 watts and 

completing inference in 48 seconds. These gains in speed and 

energy efficiency underscore the viability of TinyML-

optimized deep learning for wearable deployment, enabling 

fast, on-device inference while conserving battery life. 

 

Table 4. Performance metrics comparison (V1: Baseline 

CNN-LSTM, V2: Pruned CNN-LSTM (After fine-tuning), 

V3: Quantized CNN-LSTM (After fine-tuning)) 

 

Model 

Version 

Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

F1-

Score 

(%) 

Specificity 

(%) 
AUC 

V1 95.27 92.8 94.9 93.8 95.6 0.963 

V2 95.23 93.2 93.5 93.3 95.3 0.958 

V3 95.14 91.9 92.1 92.0 94.9 0.952 

 

Table 5. Performance with statistically grounded metrics 

 
Model Metric Mean SD 95% CI 

Baseline 

CNN-

LSTM 

Accuracy (%) 95.27 0.28 [94.81, 95.73] 

Precision (%) 92.8 0.35 [92.16, 93.44] 

Sensitivity (%) 94.9 0.31 [94.36, 95.44] 

F1-Score (%) 93.8 0.33 [93.26, 94.34] 

Specificity (%) 95.6 0.29 [95.13, 96.07] 

AUC 0.963 0.004 [0.956, 0.970] 

Pruned 

CNN-

LSTM 

Accuracy (%) 95.23 0.32 [94.68, 95.78] 

Precision (%) 93.2 0.37 [92.53, 93.87] 

Sensitivity (%) 93.5 0.34 [92.96, 94.04] 

F1-Score (%) 93.3 0.35 [92.76, 93.84] 

Specificity (%) 95.3 0.31 [94.77, 95.83] 

AUC 0.958 0.005 [0.949, 0.967] 

Quantized 

CNN-

LSTM 

Accuracy (%) 95.14 0.36 [94.57, 95.71] 

Precision (%) 91.9 0.39 [91.23, 92.57] 

Sensitivity (%) 92.1 0.37 [91.49, 92.71] 

F1-Score (%) 92.0 0.38 [91.39, 92.61] 

Specificity (%) 94.9 0.33 [94.36, 95.44] 

AUC 0.952 0.006 [0.941, 0.963] 
 

Table 4 presents a comparison of clinically relevant 
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diagnostic metrics for the baseline, pruned, and quantized 

CNN-LSTM models. The baseline model demonstrates the 

strongest overall performance, with high sensitivity and 

specificity, indicating excellent ability to correctly identify 

both at-risk and normal individuals. The pruned model retains 

performance very close to the baseline, showing that model 

compression does not significantly affect its diagnostic 

reliability. The quantized model exhibits a slight reduction in 

sensitivity and specificity, but still maintains strong AUC 

values, confirming that it continues to provide clinically 

meaningful discrimination between risk levels. 

Table 5 summarizes the performance of the three model 

variants with statistically grounded metrics. The baseline 

model achieved the highest accuracy (95.27%±0.28, 95% CI: 

94.81-95.73) and AUC (0.963±0.004, CI: 0.956-0.970), while 

the pruned and quantized models showed only marginal 

reductions across precision, sensitivity, specificity, and AUC. 

The narrow confidence intervals and low standard deviations 

across all metrics indicate strong stability of the results and 

confirm that pruning and quantization introduced only 

minimal performance degradation. These statistical measures 

reinforce the reliability and robustness of the proposed 

TinyML-optimized model versions. 

To ensure clinical relevance and dataset independence, the 

proposed model was further validated on the MIMIC-IV 

Waveform Database (PhysioNet), which contains clinically 

recorded ECG, PPG, arterial blood pressure (ABP), respiration, 

and SpO₂ signals.  

All validation data underwent comprehensive preprocessing. 

This included noise filtering, baseline correction, and 

resampling. Following preprocessing, feature extraction was 

performed to compute heart rate, heart rate variability (HRV), 

blood pressure indices, oxygen saturation, and respiration rate. 

These features were consistent with the feature set used in the 

Kaggle Wearables dataset. 

These features were normalized using the same scaling 

parameters to maintain uniformity across datasets. The model 

achieved an average accuracy of 93.8%±0.3, precision of 

91.6%±0.3, recall of 93.1%±0.3, F1-score of 92.3%±0.3, and 

AUC of 0.953±0.002, confirming its ability to generalize 

effectively from wearable to clinical data. These results 

validate that the proposed CNN-LSTM model remains stable 

and accurate across heterogeneous signal sources when 

appropriate preprocessing and feature alignment are applied. 

 

Table 6. Cross-validation results of the proposed CNN-

LSTM model on MIMIC-IV dataset 

 

Fold 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 
AUC 

Fold 1 93.4 91.2 92.6 91.9 0.950 

Fold 2 93.8 91.5 93.0 92.2 0.953 

Fold 3 94.1 91.9 93.4 92.6 0.956 

Fold 4 93.7 91.4 93.1 92.2 0.952 

Fold 5 93.9 91.8 93.3 92.5 0.954 

Mean±SD 93.8±0.3 91.6±0.3 93.1±0.3 92.3±0.3 0.953±0.002 

 

Table 6 explores the impact of varying learning rates on the 

quantized model’s accuracy, precision, recall, and F1-score. 

The five-fold cross-validation results demonstrate stable and 

consistent model performance across all evaluation metrics. 

The model achieved a mean accuracy of 93.8% ± 0.3%, with 

precision, recall, and F1-score of 91.6% ± 0.3%, 93.1% ± 0.3%, 

and 92.3% ± 0.3%, respectively, indicating a balanced 

classification performance. Additionally, the high mean AUC 

of 0.953 ± 0.002 reflects strong discriminative capability and 

robustness of the model across different validation folds. 

 

 
 

Figure 10. Calibration curves for model variants 

 

The calibration curve in Figure 10 shows that all three 

models produce well-calibrated probability estimates, with 

their curves closely following the diagonal reference line. At 

low predicted probabilities (0.0-0.3), all models slightly 

underestimate risk, which is expected in datasets dominated by 

normal cases. In the mid-range (0.5-0.7), the observed 

frequencies rise sharply, indicating that predicted probabilities 

accurately correspond to actual risk levels. At higher 

probabilities (0.8-1.0), the baseline CNN-LSTM aligns most 

closely with the ideal line, while the pruned and quantized 

models show only minor deviation. These results confirm that 

compression minimally affects calibration quality and that all 

three models provide reliable probability estimates for 

cardiovascular risk prediction. 

The confusion matrices in Figures 11(a)-(c) reflect 

classification performance across the four risk classes. Each 

model demonstrates high diagonal concentrations, with 

correctly identified samples. Off-diagonal entries remain 

comparatively low, typically within the range of 1 to 15 

samples, indicating limited dispersion of predictions across 

neighboring categories. 

Table 7 highlights how memory usage, inference time, and 

power consumption vary across the three model stages. The 

baseline CNN-LSTM model is the most resource-intensive, 

requiring 610MB of memory and consuming over 16 watts of 

power. Pruning substantially reduces these requirements, 

cutting memory needs to 370MB and decreasing power usage 

by almost 40%. Quantization further optimizes the model, 

reducing memory to 190MB and lowering power consumption 

to below 8 watts. These optimizations make the model feasible 

for deployment on energy-limited wearable devices. 

The CNN-LSTM model was trained using the Adam 

optimizer with a learning rate of 0.001, batch size of 32, and 

default momentum parameters (β₁=0.9, β₂=0.999) with ε=1e-

8. Training was performed for a maximum of 100 epochs using 

the categorical cross-entropy loss function. To prevent 

overfitting and ensure stable convergence, an early-stopping 

strategy was applied with a patience of 10 epochs and a 

minimum required improvement of 0.001 in validation loss. 

Additionally, model checkpointing was enabled to 

automatically save the best-performing model based on 

validation accuracy during training, ensuring that the final 

deployed model corresponded to the optimal epoch. 
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(c) 

 

Figure 11. (a) Confusion matrix- CNN-LSTM baseline 

model (b) Confusion matrix- CNN-LSTM pruned model (c) 

Confusion matrix- CNN-LSTM pruned and quantized model 

model 

 

Table 7. Resource efficiency comparison 

 

Model Version 
Memory 

(MB) 

Inference 

Time (s) 

Power 

Consumption (W) 

Baseline CNN-LSTM 610 71 16.74 

Pruned CNN-LSTM 370 50 10.20 

Quantized CNN-LSTM 190 48 7.90 

Table 8. Effect of batch size on performance (Pruned model) 

 
Batch 

Size 

Accuracy 

(%) 

F1-Score 

(%) 

Inference 

Time (s) 

Memory  

(MB) 

16 92.2 92 53 365 

32 95.27 93.3 50 370 

64 91.1 92.6 47 375 

128 90.4 90 43 380 

 

 
 

Figure 12. Accuracy vs. batch size 

 

Table 8 and the corresponding plot in Figure 12 together 

analyze the impact of batch size on model performance and 

efficiency for the pruned model. A batch size of 32 achieves 

the highest accuracy (95.27%) and F1-score, indicating an 

optimal balance between stable gradient updates, memory 

utilization, and learning effectiveness. Increasing the batch 

size to 64 and 128 leads to a slight reduction in accuracy while 

improving inference speed, highlighting the typical trade-off 

between computational efficiency and learning stability in 

deep learning models. Overall, the results show that moderate 

batch sizes provide the best performance, whereas very large 

batch sizes, despite reducing training noise, result in 

marginally lower accuracy due to less frequent weight updates. 

 

Table 9. Effect of learning rate on accuracy (Quantized 

model) 

 
Learning 

Rate (LR) 

Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 

0.1 88.4 88.1 88 88 

0.01 91.3 90.9 91 90.8 

0.001 92.3 91.9 92.1 92 

0.0001 91 90.5 90.6 90.5 
 

 
 

Figure 13. Accuracy vs learning rate (Quantized model) 

 

Table 9 and Figure 13 together illustrate the effect of 

learning rate on model performance. A learning rate of 0.001 
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achieves the best accuracy, providing an optimal balance 

between stable convergence and effective learning. In contrast, 

a high learning rate (0.1) results in unstable training and 

reduced performance, while a very low learning rate (0.0001) 

slows convergence without meaningful accuracy 

improvements. These results highlight the importance of 

careful learning-rate tuning, even after model compression. 

The results presented in Table 10 and Figure 14 demonstrate 

the impact of dropout on the baseline CNN-LSTM model’s 

accuracy and generalization. A dropout rate of 0.2 provides the 

best balance, achieving 95.27% accuracy while effectively 

reducing overfitting. In contrast, the absence of dropout leads 

to slightly higher accuracy but increases overfitting risk, 

whereas excessive dropout (0.6) causes underfitting and 

degrades predictive performance. These results highlight the 

importance of moderate regularization for robust wearable 

healthcare models. 

 

Table 10. Effect of dropout rate 

 
Dropout 

Rate 

Accuracy  

(%) 

F1-Score 

 (%) 

Overfitting 

 Observed 

0.0 96 95.7 Yes 

0.2 95.27 94.8 No 

0.4 93.9 93.6 No 

0.6 91.2 90.7 Slight underfitting 

 

 
 

Figure 14. Accuracy vs dropout rate 

 

Table 11 and Figure 15 illustrate the relationship between 

pruning percentages and the resulting accuracy and model size. 

As pruning levels increase from 30% to 90%, model size 

shrinks dramatically from 610MB to just 170MB—while 

accuracy gradually declines. Up to 50% pruning, the accuracy 

remains relatively stable (above 95%), demonstrating that 

substantial compression is possible without severely affecting 

model performance. Beyond 70% pruning, the model’s 

predictive ability drops more noticeably. 

 

Table 11. Pruning ratio vs accuracy and model size 

 
Pruning (%) Accuracy (%) Model Size (MB) 

0 95.27 610 

30 95.12 490 

50 95.15 370 

70 95.15 290 

90 88.2 170 

 

Table 12 compares different quantization techniques: post-

training int8 quantization, dynamic range quantization, and 

Float16 quantization. Post-training int8 quantization delivers 

the highest memory and energy savings, reducing model size 

to 190MB with only a minor decrease in accuracy. Float16 

maintains slightly higher accuracy but requires more memory, 

indicating a trade-off between precision retention and 

deployment feasibility on low-power hardware. 

 

 
 

Figure 15. Pruning vs accuracy and model size 

 

Table 12. Effect of quantizationtype 

 
Quantization 

Type 

Accuracy 

(%) 

Inference 

Time (s) 

Power 

(W) 

Model Size 

(MB) 

None (Float32) 95.27 71 16.74 610 

Post-training int8 94.3 48 7.9 190 

Dynamic Range 91.5 52 8.4 200 

Float16 93.2 55 9.1 310 

 

Table 13. Number of LSTM units vs accuracy 

 
LSTM 

Units 

Accuracy 

(%) 

Memory Usage 

(MB) 

Inference Time 

(s) 

32 90.2 290 45 

64 92.8 330 48 

128 95.27 610 71 

256 95.7 880 89 

 

Insights from Table 13 and the corresponding trends in 

Figure 16 demonstrate the effect of increasing LSTM units on 

accuracy, memory consumption, and inference time. Adding 

more units improves accuracy, with peak performance 

(~95.7%) at 256 units. However, memory usage rises sharply 

with more units, from 290MB at 32 units to 880MB at 256 

units. This trade-off is critical: 128 LSTM units offer a sweet 

spot, balancing high accuracy and reasonable memory 

requirements for wearable applications. 

Table 14 presents a detailed evaluation of how combined 

pruning and quantization affect model performance, power 

consumption, inference time, and model size. Moderate 

pruning (30%-50%) coupled with quantization yields the best 

balance, sustaining accuracy above 94% while reducing power 

consumption and model size substantially. Heavier pruning 

(70%-90%) significantly cuts memory and energy costs but at 

the expense of noticeable drops in predictive performance, 

making it less ideal for critical healthcare applications where 

reliability is crucial. 

The heatmap in Figure 17 illustrates how different levels of 

pruning combined with int8 quantization impact model 

performance metrics. As pruning levels increase from 30% to 

90%, both model size and power consumption decrease 

sharply, making the models more suitable for edge devices. 

However, this compression comes at the cost of reduced 

accuracy, especially beyond 70% pruning. The heatmap 

highlights the importance of carefully choosing the pruning 
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threshold to maintain acceptable accuracy while maximizing 

resource efficiency. 

 

 
 

Figure 16. Accuracy and memory vs. number of LSTM 

Units 

 

Table 14. Combined pruning + quantization levels impact 

 
Pruning 

(%) 

Quanti-

zation 

Accuracy 

(%) 

Power 

(W) 

Inference 

Time (s) 

Model 

Size (MB) 

30 int8 94.26 8.5 52 210 

50 int8 94.28 7.9 48 190 

70 int8 91.17 7.2 45 160 

90 int8 84.8 6.5 42 130 

 

 
 

Figure 17. Optimization levels vs performance 

 

The CNN-LSTM baseline model delivered the highest 

classification performance with an accuracy of 95. 27%, a 

precision of 92. 8% and an F1 score of 94.8%. However, it 

required 610MB of memory and consumed 16.74 watts of 

power, rendering it infeasible for deployment on low-power 

wearable devices. To overcome these limitations, TinyML 

optimization techniques were applied. 

These results clearly demonstrate that the primary 

contribution of pruning is memory and power reduction, not 

accuracy improvement. The slight decrease in accuracy is a 

trade-off for significant computational gains, which is often 

acceptable in wearable applications where hardware 

constraints are critical. The interpretation of the work is that 

TinyML techniques can preserve diagnostic reliability while 

transforming otherwise heavy deep learning models into 

lightweight versions suitable for edge-level inference. In other 

words, the model does not become more accurate after 

optimization; it becomes more efficient while retaining 

sufficient accuracy for practical use in the real world. 

Ultimately, the actual result and central insight of this 

research is the demonstration that a carefully optimized CNN-

LSTM model can serve as a reliable, low-power, real-time 

diagnostic engine for wearable health monitoring devices.  

 

 

5. CONCLUSION 

 

In this study, we presented an energy-efficient deep learning 

approach for heart disease risk prediction using wearable 

sensor data, combining a hybrid CNN-LSTM architecture with 

TinyML optimization techniques. By leveraging the feature 

extraction capabilities of Convolutional Neural Networks and 

the sequential modeling strengths of Long Short-Term 

Memory networks, the proposed model effectively captured 

both spatial and temporal patterns within multimodal 

physiological signals. 

Recognizing the constraints imposed by wearable devices 

such as limited memory, computation power, and battery life-

we incorporated TinyML strategies, namely structured 

pruning and post-training quantization, to compress the model 

without significantly compromising predictive accuracy. 

Experimental evaluations demonstrated that the TinyML-

optimized CNN-LSTM model achieved a competitive test 

accuracy of up to 94.28%, while reducing memory 

consumption by over 65% and lowering inference time and 

power requirements significantly compared to the baseline 

model. 

These results validate that deep learning models, when 

appropriately optimized, can be deployed on resource-

constrained edge devices to enable real-time, continuous, and 

personalized cardiovascular monitoring.  

This research takes a significant step toward the realization 

of intelligent, low-power, and proactive healthcare monitoring 

systems accessible to a broader global population. 

 

 

6. LIMITATION AND FUTURE SCOPE 

 

Although the proposed model demonstrates strong 

predictive performance, several limitations must be 

acknowledged. First, wearable-derived physiological signals 

are inherently susceptible to motion artifacts, environmental 

noise, user compliance issues, and sensor-placement 

variability, all of which can affect measurement reliability. 

While preprocessing steps including artifact filtering, baseline 

correction, and signal-quality assessment were applied to 

reduce these effects, residual noise may still influence model 

predictions. Second, the risk categories used in this study, 

although aligned with known clinical thresholds, do not 

replace formal diagnostic evaluation. Therefore, the model is 

intended as ascreening and decision-support tool, not a 

standalone diagnostic system.Compression through pruning 

and quantization may introduce small shifts in sensitivity, so 

we verified calibration and error trends to ensure safety. 

Future work will focus on prospective validation in clinical 

settings, conducted in collaboration with cardiovascular 

specialists to assess real-world utility and diagnostic impact. 

Additional improvements includeexpanding to multi-center 

datasets, incorporating device-specific calibration, developing 

personalized risk-adaptation strategies, and integrating 

confidence scoring for clinician oversight. Such efforts are 

essential before clinical deployment to ensure reliability, 

interpretability, and alignment with medical decision-making.
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