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Cardiovascular disease remains one of the foremost causes of mortality worldwide,
emphasizing the urgent need for accurate and energy-efficient early risk prediction methods.
The growing availability of wearable devices capable of continuously capturing
physiological data, such as heart rate, blood pressure, sleep duration, and activity levels,
presents a powerful opportunity for proactive health monitoring. In this study, we propose a
lightweight, intelligent system for predicting heart disease risk by leveraging hybrid
Convolutional Neural Network—Long Short-Term Memory (CNN-LSTM) architecture. The
model is specifically optimized for edge deployment using TinyML techniques, including
pruning and quantization, to reduce computational complexity while maintaining high
predictive performance. This research focuses on centralized training using preprocessed
multimodal wearable data, addressing challenges such as data imbalance and real-time
resource constraints. The proposed system achieves high predictive performance
while significantly improving efficiency for wearable deployment. The baseline
CNN-LSTM model attains 95.27% accuracy, with the pruned and quantized versions
maintaining 95.23% and 95.14%, respectively. Model size is reduced from 610MB to
190MB, power consumption drops from 16.74W to 7.90W, and inference time improves
from 71 s to 48 s, demonstrating that the optimized model supports real-time, low-power

cardiovascular-risk prediction on edge devices.

1. INTRODUCTION

Cardiovascular diseases (CVDs) remain a major global
health challenge, causing nearly 18 million deaths each year
according to the World Health Organization (WHO). They
contribute significantly to morbidity and mortality worldwide
[1]. Aging populations and changing lifestyles continue to
worsen this burden. The impact of CVDs extends beyond
individual patients, affecting families and healthcare systems
as well. This widespread prevalence highlights the urgent need
for effective, timely, and accurate detection methods. Early
intervention can help save lives and reduce the strain on
healthcare resources.

One of the critical challenges in CVD management is the
limited availability of continuous cardiovascular monitoring,
particularly ~ for high-risk individuals who remain
asymptomatic. Traditional diagnostic methods, such as
periodic check-ups and tests, often fail to detect issues early
enough for timely intervention. Given the dynamic nature of
cardiovascular health, it is imperative to adopt solutions that
offer real-time monitoring, enabling continuous assessment of
a patient’s health status. This would not only allow for the
early detection of abnormalities but also provide valuable data
for personalized treatment and prevention strategies.
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The integration of wearable sensors and artificial
intelligence (AI) has emerged as a promising approach to meet
the need for continuous, real-time health monitoring.
Wearable devices, such as fitness trackers, smart watches, and
other biosensors, are capable of gathering vital signs such as
heart rate, blood pressure, physical activity levels, and sleep
patterns. These sensors provide a continuous stream of data,
which, when analyzed, can reveal patterns indicative of
cardiovascular risk. However, despite these advancements,
there are significant challenges in utilizing deep learning
models on wearable devices, primarily due to the limited
processing power and energy constraints of these devices.

Traditional deep learning models, particularly those that
process sequential and spatial data, require substantial
computational resources, which are often beyond the
capabilities of typical wearable devices. Furthermore,
processing these complex models in real-time consumes
considerable energy, which can rapidly drain the device's
battery, making continuous monitoring impractical.

To address these challenges, we present an approach that
integrates Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks for predicting the risk
of heart disease. CNNs are particularly effective in extracting
meaningful features from data with spatial patterns, such as


https://orcid.org/0000-0003-3405-8449
https://orcid.org/0009-0000-1122-3064
https://orcid.org/0000-0001-6842-0675
https://orcid.org/0000-0002-7384-826X
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420642&domain=pdf

electrocardiogram (ECG) signals or physical activity data. On
the other hand, LSTMs are well-suited for modeling sequential
dependencies in time-series data, such as heart rate and blood
pressure trends. By leveraging the strengths of both
architectures, the proposed hybrid CNN-LSTM model offers
enhanced accuracy in forecasting cardiovascular risk.

To enable the deployment of the proposed hybrid model on
wearable devices, we incorporate Tiny Machine Learning
(TinyML) strategies with a focus on pruning and quantization
techniques. Pruning enhances model efficiency by removing
redundant or low-impact weights, thereby reducing model
complexity. Quantization, meanwhile, lowers the bit-width of
weights and activations, which minimizes memory usage and
computational load. These optimizations collectively ensure
that the deep learning model can run efficiently on devices
with limited resources, enabling real-time and energy-efficient
cardiovascular monitoring.

The objective of this work is to design a predictive system
that delivers performance comparable to traditional healthcare
solutions, while remaining computationally lightweight for
seamless deployment on wearable devices. By addressing the
power and memory limitations inherent to such platforms, this
model paves the way for scalable and personalized
cardiovascular monitoring in everyday settings.

This study offers several key contributions. First, it
demonstrates how a hybrid CNN-LSTM architecture can be
effectively adapted and optimized for deployment in real
wearable-edge environments. This is validated through
implementation and testing on a Raspberry Pi 4 Model B edge
device.Secondly, it integrates TinyML techniques, which are
structured pruning and 8-bit quantization to substantially
reduce computational load and memory usage, enabling real-
time inference under strict resource constraints. Thirdly,
beyond evaluation on the primary wearable Kaggle dataset, the
model’s generalizability was further confirmed using the
Medical Information Mart for Intensive Care IV (MIMIC-1V)
Waveform dataset from PhysioNet [2], where 5-fold cross-
validation established the robustness and stability of the
optimized model.

Together, these advancements lay the foundation for a
scalable, energy-efficient, and clinically reliable framework
for continuous cardiovascular-risk monitoring.

2. LITERATURE SURVEY

Cardiovascular disease prediction has evolved significantly
with advances in wearable sensing, Internet of Things (IoT)
systems, and machine-learning methodologies. Early research
focused on traditional statistical and machine-learning models
applied to structured clinical datasets. Recent work has
leveraged deep-learning architectures capable of extracting
complex temporal and physiological patterns from continuous
sensor data. Parallel developments in TinyML and edge
computing have further enabled resource-efficient deployment
of intelligent health-monitoring systems on wearable and low-
power devices. This literature review synthesizes prior
contributions across these domains, highlighting key
methodologies and limitations.

Bhatt et al. [3] highlighted the continued relevance of
classical machine-learning methods such as logistic regression,
decision trees, and Support Vector Machines (SVM) for heart-
disease prediction due to their interpretability and suitability
for structured clinical data. Their approach incorporated
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essential preprocessing steps, including feature selection and
discretization (e.g., binning age, blood pressure, and
cholesterol), which helped capture nonlinear relationships and
improved classifier performance. They also employed k-
modes clustering to identify latent patterns in categorical
medical data, further enhancing predictive accuracy.

Traditional ML approaches have additionally been applied
to wearable-sensor data. Siirtola et al. [4] and Martin-
Gonzalez et al. [5] used Linear Discriminant Analysis (LDA)
and Quadratic Discriminant Analysis (QDA) to predict
cardiac-related events from sleep-sensor signals. While initial
user-independent models suffered from variability in
individual sleep patterns, personalized models significantly
improved performance by tailoring decision boundaries to
each user’s physiological characteristics.

Wearable and IoT technologies are rapidly reshaping
cardiovascular monitoring by enabling continuous, non-
clinical data collection and analytics. Singhal and Cowie [6]
reviewed how wearables support heart-failure management,
highlighting their promise and current limitations such as data
validity and clinical integration. Perez-Pozuelo et al. [7]
demonstrated wearable devices could detect sleep outside the
clinic, supporting scalable early anomaly detection.

Alday et al. [8] presented the 2020 PhysioNet challenge on
12-lead ECG classification, underlining the integration of
sensor data into predictive workflows. Lin et al. [9] provided
a detailed survey of wearable sensors and devices for real-time
cardiovascular disease monitoring, covering hardware, signals
— ECG, Photoplethysmography (PPG) — and deployment
platforms. De Zambotti et al. [10] showed how a commercially
available wristband could capture sleep and cardiac function
in adolescents, confirming the feasibility of consumer
wearables in cardiovascular research. Sarmah [11] reported an
IoT-based deep-learning system for heart-disease prediction,
combining device data with modified neural networks, but
warned of system-level risks like latency and data quality.

Ali et al. [12] proposed an ensemble deep-learning and
feature-fusion approach using wearable and IoT-derived
variables for heart-disease prediction, offering strong accuracy
yet raising issues of interpretability. Kundrick et al. [13]
applied machine learning to wearable fitness tracker data to
predict hospitalizations and cardiovascular events. This
demonstrated improved risk stratification using continuous
real-world physiological signals. However, the study was
limited by device-specific data and cohort dependence, which
might affect generalizability.

Deperlioglu et al. [14] applied an autoencoder—Deep Neural
Network (DNN) in a secure Internet of Health Things (IoHT)
framework for disease diagnosis, trading transparency for
performance. Pakhomov et al. [15] integrated electronic
medical records with sensor data for heart-failure
identification, improving prediction depth but facing
interoperability and privacy hurdles.

Recent research on deep-learning approaches for heart-
disease prediction has demonstrated significant advances in
representation learning, feature augmentation, and hybrid
network design. Garcia-Ordas et al. [16] showed that deep
neural architectures combined with feature augmentation
substantially improved prediction accuracy on structured
clinical datasets. Alqurashi et al. [17] integrated Predator
Crow Optimization with deep neural networks to automate
hyperparameter tuning and feature selection, achieving strong
performance but at the cost of increased computational
complexity.



Mohammad and Al-Ahmadi [18] proposed a hybrid
Wavelet Transform—Convolutional Neural Network (WT-
CNN) model that extracted wavelet-based ECG features
before applying convolutional layers, reporting accuracy
levels near 97%. This work highlighted the value of signal-
driven deep learning. Shankar et al. [19] demonstrated that
even relatively simple CNN architectures could outperform
classical machine-learning models on heart-disease datasets
when trained with proper regularization.

Ram Kumar et al. [20] introduced a hybrid CNN-DNN
architecture that combined convolutional feature extractors
with dense layers for final classification, achieving improved
predictive performance but also noted potential overfitting
risks on limited datasets. Collectively, these studies confirmed
that deep-learning models can capture nonlinear feature
interactions more effectively than traditional methods, while
also emphasizing ongoing challenges related to dataset size,
model interpretability, and robust cross-dataset validation.

Subashini and Kanaka Raju [21] presented an IoT-based
heart-disease  diagnosis  framework that integrated
physiological data collected via smart sensors with a hybrid
learning pipeline combining gradient boosting for tabular
features and a deep convolutional neural network for improved
classification accuracy; however, the study was limited by
evaluation on a restricted dataset and the lack of external
clinical validation, which might affect generalizability.
Abutalip et al. [22] proposed a machine-learning—driven heart-
disease detection system using data acquired from wearable
devices, where conventional ML classifiers were employed to
identify cardiovascular risk patterns, but the work was
constrained by limited feature diversity and short-term
wearable data, reducing robustness across populations. Al
Reshan et al. [23] developed a robust heart-disease prediction
approach using hybrid deep neural networks, including CNN,
LSTM, and a combined CNN-LSTM architecture, achieving
high predictive performance on multiple benchmark datasets.
Nevertheless, the model’s reliance on curated public datasets
and increased computational complexity posed challenges for
real-time deployment and clinical interpretability.

Xia et al. [24] proposed an intelligent cardiovascular disease
diagnosis framework that integrated Ant Colony Optimization
for feature selection with a deep-learning—enhanced neural
network, further optimized using Bayesian hyperparameter
tuning to improve classification accuracy. Although the
approach achieved strong performance, the combined use of
metaheuristic optimization and deep learning increased
computational complexity and training cost, which might limit
its suitability for real-time or resource-constrained healthcare
applications.

To make these models practical for wearables, researchers
have applied TinyML techniques. Arooj et al. [25] explored
structured pruning to reduce model complexity, while Neri et
al. [26] showed that 8-bit quantization significantly reduced
memory use and power consumption without major accuracy
loss. Qureshi and Krishnan [27] demonstrated that TinyML-
compatible CNN-LSTM models could deliver accurate, real-
time predictions on microcontrollers, balancing performance
with energy efficiency.

Recent work by Sun et al. [28] introduced a TinyML
methodology for continuous, cuff-less blood-pressure
estimation using only PPG signals. Their approach shrunk
conventional CNN  architectures  (AlexNet, LeNet,
SqueezeNet, ResNet, MobileNet) via pruning and quantization,
and deployed them on constrained edge platforms. Their
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evaluation used thousands of ICU patient records and showed
performance comparable to server-based systems while
meeting the Association for the Advancement of Medical
Instrumentation and the British Hypertension Society
(AAMI/BHS) standards. The memory footprint was reduced
to <l MB and inference latency to around 10ms on a
Cortex-M microcontroller, although generalization across
ambulatory settings remained a concern. Their work
demonstrated the viability of TinyML for cardiovascular
monitoring but highlighted the trade-off between model size
and inter-subject robustness.

Mabhardika et al. [29] proposed a CNN-LSTM architecture
trained on the MIMIC-III arterial-blood-pressure (ABP) and
PPG dataset. Their optimized configuration (5 convolutional
layers+ 1 LSTM + 2 dense layers) achieved a mean absolute
error (MAE) of 7.89+3.79 mmHg for systolic BP and
5.34 +2.89 mmHg for diastolic BP — meeting the AAMI and
BHS limits. Deployment considerations included window
segmentation (4 s, 500 points) and Principal Component
Analysis (PCA) feature reduction. While the accuracy was
promising, the architecture was still too heavy (around 10 M
parameters) for ultra-low-power microcontroller deployment
without further compression or dedicated hardware
acceleration. This work underscored the value of hybrid CNN—
LSTM models for cardiovascular regression tasks but also
emphasized the need for TinyML-aware optimization.

Arthi and Krishnaveni [30] proposed a fog-enabled TinyML
with explainable-Al pipeline for healthcare decision support.
Their system achieved an Fl-score 0f0.93 for
abnormal-health-event detection while employing Modified
Lempel-Ziv-Welch (mLZW) data compression and
Lightweight Shapley Additive explanations (SHAP) on
edge/fog nodes. The paper reported memory usage of
around 800 kB and latency of 30 ms for anomaly inference.
However, the study used general health-sensor features rather
than specialized cardiovascular signals and lacked prospective
wearable deployment. It provided a valuable proof-of-concept
for combining compression, interpretability, and TinyML in
health monitoring.

Elhanashi et al. [31] provided a comprehensive survey of
TinyML in embedded and IoT-based healthcare applications,
covering more than 150 papers up to2024. The review
reported that the median parameter count of deployed TinyML
models in health was around 35 k parameters, average memory
footprint 256 kB, and average latency 20 ms. It also cited key
challenges: lack of standardized evaluation benchmarks (e.g.,
sensitivity, calibration), limited cross-device generalization,
and weak clinical validation. Their conclusions emphasized
that, although TinyML 1is technically feasible and
deployment-ready, clinically validated TinyML systems for
cardiovascular applications remain scarce. Our work builds on
these advances by deploying a compressed CNN-LSTM
model for multi-class cardiovascular risk prediction, reporting
clinically relevant metrics (sensitivity, specificity, calibration)
and validating on edge hardware under realistic constraints.

3. PROPOSED METHOD

This section presents the step-by-step methodology
employed in developing an energy-efficient heart disease
prediction system using wearable sensor data and a hybrid
CNN-LSTM model. The approach integrates data acquisition,
preprocessing, model training, and TinyML-based



optimization to enable deployment on low-power wearable
devices.

3.1 Dataset

The dataset employed in this study is the Wearables Dataset,
publicly accessible on Kaggle. It comprises comprehensive
health and lifestyle data collected from various wearable
devices, including smartwatches, fitness trackers, and clinical-
grade biosensors. The dataset includes a rich set of
physiological indicators such as electrocardiogram (ECG) and
photoplethysmography (PPG) signals, heart rate (HR), blood
pressure (BP), sleep quality scores, and levels of physical
activity, along with biometric and demographic information.
Table 1 lists the attributes in the dataset. In total, the dataset
contains 10,000 instances, each with 28 attributes that
combine real-time sensor data and personal metadata,
including age, gender, and medical history.

Table 1. Dataset attributes

Sl. No Attribute
1 User_ID
2 Age
3 Gender
4 Weight
5 Height
6 Medical_Condition
7 Medication
8 Smoker
9 Alcohol_Consumption
10 Sleep_Duration
11 Deep_Sleep
12 REM_Sleep
13 Wakeups
14 Heart_rate
15 Blood_Oxygen
16 ECG
17 Calories_Consumed
18 Stress_level
19 Mood
20 Body_Fat
21 Health_Scan_Anomaly Flag

To strengthen the reliability and clinical relevance of the
proposed model, an additional external validation was
performed using the MIMIC-IV Waveform Database from
PhysioNet. This dataset provides high-fidelity ECG and vital-
sign waveforms collected from real ICU patients, enabling
robust assessment of the model’s generalizability. Together,
the two datasets support both development on wearable-style
input data and validation on clinically grounded physiological
signals.

3.1.1 Data preprocessing

The preprocessing phase ensures that the input data is clean,
structured, and ready for model training. This process includes
several critical steps:

Incomplete entries in categorical fields such as alcohol
consumption or existing medical conditions were addressed
using mean/mode imputation or deletion, depending on the
extent of missingness and its impact on class distribution. All
continuous numerical features (e.g., heart rate, blood pressure)
were scaled to a standard range using min-max normalization
to ensure uniformity in data representation and avoid bias
during training. Time-series data such as ECG and PPG
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signals were filtered to remove outliers and irregularities that
could skew the learning process.

To improve the efficiency and interpretability of the model,
PCA [32] was applied during the feature selection stage. PCA
is a statistical technique that transforms the original high-
dimensional dataset into a smaller set of linearly uncorrelated
variables known as principal components, which capture the
maximum variance present in the data. By analyzing the
cumulative explained variance, the top components that
retained over 95% of the total variance were selected. This
dimensionality reduction helped eliminate redundant and less
informative features while preserving the essential patterns
within the wearable physiological signals.

After applying PCA, the most informative features
contributing to heart disease prediction included:

Heart Rate Variability (HRV)
Systolic and Diastolic Blood Pressure
Oxygen Saturation (SpO2)
Respiratory Rate

Sleep Quality Score

Activity Level Index

The selected components were then used as input for the
CNN-LSTM architecture, allowing the model to focus on
learning the most relevant spatial-temporal patterns in the data.

The classification task is centered on a target variable called
the Anomaly Flag, which categorizes each record into one of
four heart disease risk levels: Normal, Low, Medium, or High.
A key challenge associated with this dataset is the imbalance
in class distribution, where Normal and Low Risk instances
significantly outnumber the Medium and High Risk categories.
To address this issue and ensure robust model generalization,
we applied the Synthetic Minority Oversampling Technique
(SMOTE) [33] during the model training phase. This publicly
available dataset ensures reproducibility and transparency for
future research and validation.

We used k=5 nearest neighbors, and minority classes were
oversampled until class distribution was approximately
uniform. This method generates synthetic samples for
minority classes by interpolating between existing instances,
thus ensuring a more balanced distribution of risk categories.

Wearable sensors have known limitations, particularly
reduced accuracy under motion, motion artifacts in PPG,
environmental and placement variability, and user
noncompliance, which affect measurement reliability. We
addressed these issues by implementing preprocessing steps
(bandpass filtering, motion-artifact detection and rejection,
baseline correction), signal-quality indices (SQI) to exclude
low-quality segments, and data augmentation during training
to improve robustness to motion.

To provide a clear clinical basis for the Normal, Low,
Medium and High risk labels used in this study, we mapped
wearable-derived physiological features to established clinical
thresholds and combined them into an interpretable composite
score. Specifically, blood-pressure thresholds follow the 2017
American College of Cardiology (ACC) and the American
Heart Association (AHA) [34] classification (Normal: SBP
<120 & DBP <80mmHg; Elevated: SBP 120-129 & DBP
<80mmHg; Stage-1 hypertension: SBP 130-139 or DBP 80-
89mmHg; Stage-2 hypertension: SBP >140 or DBP
>90mmHg). Oxygen saturation (SpO:) thresholds were
interpreted according to standard clinical guidance (normal
>95%; values 90-94% considered concerning; <90%
consistent with hypoxemia).

Heart-rate variability (HRV) reductions were treated as a



contributory risk indicator given its established association
with cardiovascular morbidity and mortality [35]. These
clinical cutoffs were used as inputs to a conservative
composite rule. When multiple clinical flags were present,
such as elevated blood pressure combined with low SpO: or
markedly reduced heart rate variability, the subject was
assigned to a higher risk category. In contrast, a single or
borderline deviation resulted in a lower-risk label. All clinical
feature extraction from validation waveforms included explicit
preprocessing steps (filtering, artifact rejection, beat detection)
and signal-quality checks prior to scoring to minimize
spurious assignments.

3.2 System architecture

Figure 1 illustrates the end-to-end workflow of the proposed
framework. The process begins with dataset collection
followed by comprehensive preprocessing, including data
cleaning, noise removal, reshaping, and handling of missing
values. By applying PCA, relevant features are selected, and
the data is divided into training and testing sets. SMOTE was
applied on training dataset to address class imbalance.

Preprocessing of
@D o, —
Y + Data Cleanin
Dataset  \%°% . Serss? *+ Noise qu.l
Collection .v' + Reshaping
« Missing values J
1
Train CNN-LSTM | [ 1000 the Attribute Seloction|
model <« | Model ' e {Features
%S selection)
Q
[}
Dataset Splitting
L | TrainingA Testing
%
ot 4 |
Optimization--TinyML |  Prediction & Risk ofomtDisssce
. .| Categorization Risk Level

Figure 1. Proposed system architecture

A hybrid CNN-LSTM model is trained to learn both spatial
and temporal patterns from wearable-sensor inputs, after
which TinyML-based optimization techniques are applied to
reduce model size and computational load.

As shown in Figure 2, the model begins with one-
dimensional Convolutional layers (Conv1D), that analyze
localized patterns in the input signals, such as the
characteristic waveforms in ECG or PPG data. These layers
help in extracting spatial features, which are crucial for
recognizing anomalies or signal distortions indicative of
cardiovascular issues.

The spatially filtered outputs are passed into Long Short-
Term Memory (LSTM) layers, which are tailored to detect
time-series trends and fluctuations over intervals. This is
particularly useful in understanding how health metrics evolve,
such as sudden spikes in heart rate or irregular heartbeat
patterns. The model includes a fully connected (Dense) layer
that fuses spatial and temporal insights. A final Softmax output
layer categorizes each instance into one of the defined risk
levels: Normal, Low, Medium, or High. The use of Softmax
ensures that the model outputs a well-calibrated probability
distribution across these classes.

As listed in Table 2, the model begins with an input layer
structured as a 3D tensor of shape [B, T, F], where B is the
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batch size, T denotes the number of time steps, and F is the
number of input features per time step (e.g., heart rate, ECG,
PPG).

Input Layer

= = . =
Conv 1D Layer 1 (64 filters, Extract spatial Features,
_kernel size=5, RelU)

L
MaxPooling 1D (Pool ‘
size=2)

1
Conv 1D Layer 2 (128
filters, kernel size=3,
ReLU)
‘ ]
LSTM Layer (128 Units) 1

Convert CNN output to 1D feature
vecor for sequential analysis

Maodel time series patterns

'

' Dropout Layer (Dropout |
rate=0.2)
— Y R
Dense Layer (64 Units,

‘ RelLU) J

Aggregate features from CNN and
LSTM

. '
Qutput Layer {4 Units, l
SoftMax)

Classification( risk levels)

Figure 2. Proposed model architecture

Table 2. Model

Layer
Input Layer
ConvlD Layer 1

Configuration / Parameters
[batch_size, time_steps, features]
64 filters, kernel size=5, activation=ReLU

MaxPooling1D Pool size=2
ConvlD Layer2 128 filters, kernel size=3, activation=ReLU
LSTM Layer 128 units

Dropout Layer
Dense Layer
Output Layer

Dropout rate=0.2
64 units, activation=ReLU
4 units, activation=Softmax

The initial one-dimensional convolutional (Conv1D) layer
utilizes 64 filters of size 5 with rectified linear unit (ReLU)
activation to extract localized spatial features from the
physiological signals.

The  one-dimensional  convolution
mathematically defined as follows:

operation  is

¥t = ReLU(ZIS6 W * Xy + b) (D
where,

Xy4i Tepresents the input sequence segment starting at time
t+1,

w; denotes the convolutional kernel weights,

k is the kernel size (i.e., the number of input points
considered at once),

b is the bias term,

ReLU(z)=max(0, z) is the Rectified Linear Unit activation
function.

A MaxPooling1D layer is subsequently applied to reduce
the dimensionality of the convolved feature map by selecting
the maximum value within a sliding window of size 2. This
process preserves salient features and decreases computational
requirements.

The second Conv1D layer processes the feature map with
128 filters of size 3 and employs rectified linear unit (ReLU)
activation. This configuration enables the model to capture



more complex spatial dependencies.

Next, the output from the convolutional block is passed to
an LSTM (Long Short-Term Memory) layer with 128 units,
designed to model the temporal dynamics in the physiological
signals. The LSTM cell updates its internal state using the
following equations:

fo = o(Wg - [he_q, x¢] + by) )

i = o(W; - [he_1,x(] + by) 3)
C'y = tanh(W¢ - [he_q, %] + b.) “)
Cc=fiOC1 +1,OC %)

0y = (W, - [hy_q, %] + by) (6)
h; = o, © tanh(Cy) (7)

Here, f;, i, and o, are the forget, input, and output gates, C;
is the cell state, and h, is the hidden state used in predictions.

This architecture allows the model to capture and retain
significant temporal patterns in cardiac signals, including
variability and abrupt changes. To enhance generalization and
mitigate overfitting, a Dropout layer with a rate of 0.2 is
incorporated. This layer randomly deactivates 20% of neurons
during training, thereby reducing dependency on specific
neural pathways. This is followed by a dense layer comprising
64 units with rectified linear unit (ReLU) activation, which
consolidates the extracted spatial-temporal features into a
unified representation. This representation is then forwarded
to the final output layer, which employs a Softmax activation
function to estimate the probabilities for four risk categories:
Normal, Low, Medium, and High.

The Softmax function is defined as:

Zj

P(v,)) = ——
(Y1) jc=1 o4

®)
where, z; is the logit (raw output) for class i, and C is the
number of output classes. The class with the highest
probability is selected as the final prediction.

3.3 Optimization

One of the major constraints in deploying deep learning
models on wearable healthcare devices is the limitation in
hardware capabilities such as processing power, memory
availability, and energy efficiency.

To overcome these challenges, this study integrates Tiny
Machine Learning (TinyML) techniques, specifically focusing
on model pruning and quantization, as shown in Figure 3. This
is to compress the model and optimize it for deployment on
resource-constrained  platforms ~ without  significantly
compromising its predictive accuracy. Most wearable devices
are designed to operate on low-power microcontrollers with
limited battery life, making the direct implementation of
computationally intensive deep neural networks impractical.

Model pruning is a technique aimed at reducing the size and
complexity of a trained neural network by eliminating
parameters that contribute minimally to the overall model
performance. In this work, post-training weight pruning was
employed to identify and remove low-magnitude weights
within both the convolutional and recurrent layers. The
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rationale behind this method is that many neural network
parameters have negligible influence on the model’s output
and can be removed without severely affecting its predictive
capabilities. By setting these small-weight connections to zero
and creating a sparse network representation, the model’s size
is substantially reduced.

TinyML

Trained CNN-LSTM model

Y L4
Pruning Quantization

' ' v
Weight Fixed Point Low Precision
Pruning Quantization Floating Point

Figure 3. Optimization

Train Dense
CNN-LSTM Network

]

Prune small weights
(set to zero)

i

1

Sparse CNN-LSTM
Network

Retrain to recover
accuarcy

If target accuracy
achieved
 J

Compressed
CNN-LSTM Network

Figure 4. Pruning

Magnitude- based pruning is used here where weights are
pruned when:

{ Oif |lwj| <t
'™ |w; Otherwise

)

where, T is the pruning threshold.
This creates a sparse model, improving efficiency while
preserving important parameters. Sparsity S is defined as:

_ #{w; = 0}

W) (10)



As shown in Figure 4, following pruning, a fine-tuning
process is conducted to restore any minor loss in accuracy,
ensuring that the pruned model maintains robustness and
generalization.

To further compress the pruned CNN-LSTM model, we
employed k-means weight quantization as shown in Figure 5,
which clusters the network weights into K representative
centroids and replaces each weight with the index of its nearest
centroid.

Formally, given the set of weights

w = (wl, (11)

Choose the number of quantization levels K (for 8-bit

representation K=256).

Trained
weights{32-bit Float)

Cluster weights
(K-Means)

Replace weights with
indices to centroids

weight Centroids
(Codebook)

Low bit
representation

Retrain to preserve
accuracy

Quantized model

Figure 5. Quantization

The goal of k-means quantization is to find a codebook C =
{CLC2,C3,C4,C5 ...cK} C R of K centroids and an assignment
function k:{1,...,N}—{1,...,K} that minimizes the total
squared reconstruction error:

N

min J(C, k) where J(C,k) = Z(Wi - Ck(i))z

i=1

(12)

Given, C the optimal assignment for each weight is the
nearest centroid:
k(i) = arg_min_|w; —¢ | (13)
And given assignments, centroids are updated by the sample
mean of assigned weights:

G = lSiZies,- w, S = {i: k(D) = j}, (14)

jl

Iterating the assignment and centroid updates until
convergence of J.

Quantized representation: each original weight w; is
replaced by an index k(i).

This transformation yields a model that is significantly
smaller in size and faster in execution, with only a marginal
loss in accuracy that remains within acceptable limits for
clinical decision support systems.

4. EXPERIMENTS AND RESULTS

For fair comparison, the standalone CNN and LSTM
baselines were implemented using standardized and
lightweight architectures aligned with prior deep-learning
studies on physiological signal analysis. The CNN model
consisted of three 1D convolutional layers (Conv1D: 64 filters,
kernel size 3; Conv1D: 128 filters, kernel size 3; Conv1D: 256
filters, kernel size 3), each followed by ReLU activation and
max-pooling, and a final dense layer for classification.

The LSTM model comprised two stacked LSTM layers with
128 and 64 units, respectively, followed by a fully connected
classification layer. Both models were trained using the same
preprocessing pipeline, Adam optimizer, learning-rate
schedule, batch size, and early-stopping strategy as the
proposed CNN-LSTM. All models were evaluated using
stratified 5-fold cross-validation, and performance metrics
were reported as mean + standard deviation across folds. The
detailed results of this comparison are provided in Table 3 and
illustrated in Figure 6.

Table 3. Performance metrics comparison with state-of-the

art models
Accuracy Precision Recall F1-Score
Model (%) (%) (%) (%) AUC
CNN (baseline)  92.6 90.8 91.9 91.3 0.941
LSTM (baseline)  93.1 91.2 924 91.8 0.946
Proposed CNN-
LSTM 95.2 929 94.8 93.8 0.962
a6
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Figure 6. Performance metrics comparison with state-of-the
art models

To examine the feasibility of deploying the optimized CNN-
LSTM model in a real-world edge environment, we conducted
performance testing on a Raspberry Pi 4 Model B (4GB RAM),
a widely used embedded platform suitable for simulating
wearable-device workloads. The Raspberry Pi 4 features a 1.5
GHz quad-core ARM Cortex-A72 CPU, LPDDR4 memory,
and support for Python-based edge frameworks such as
TensorFlow Lite, making it a suitable intermediate platform
for validating lightweight machine-learning models before
migration to ultra-low-power microcontroller units (MCUs).

The pruned and quantized model (190MB) was deployed on
the Raspberry Pi using TensorFlow Lite, where we measured
inference latency, memory consumption, and CPU usage
during continuous streaming of wearable-like physiological
data. The device operated within acceptable thermal and



power limits, and no throttling was observed during
continuous execution, demonstrating that the optimized model
is capable of real-time cardiovascular risk inference in a
mobile-edge environment. Although the Raspberry Pi exceeds
the resource constraints of commercial wrist-worn devices, it
provides a realistic and controlled environment for evaluating
embedded performance, identifying bottlenecks, and guiding
further model compression or distillation for future
deployment on low-power MCUs.

In addition to computational performance, we addressed
key engineering and regulatory considerations essential for
wearable medical systems. Since inference is performed
entirely on-device, user physiological data does not need to be
transmitted to cloud servers, reducing privacy and security
risks.

The performance of the proposed CNN-LSTM model was
assessed not only in terms of classification accuracy but also
with respect to its suitability for deployment on resource-
constrained wearable devices.
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Figure 7 shows the memory usage across the baseline,
pruned, and quantized versions of the model. The unoptimized
baseline required approximately 610MB of memory, which is
far beyond the capacity of typical edge devices. With pruning,
memory consumption dropped to 370MB, and further
quantization reduced it to just 190MB-representing a
cumulative reduction of nearly 70%. This dramatic decrease
in memory footprint demonstrates the effectiveness of
TinyML techniques in preparing deep learning models for
embedded environments where hardware limitations pose a
significant concern.

Figure 8 highlights the classification accuracy of each
model version. The baseline model achieved an accuracy of
95.27%, which decreased to 73.7% after pruning, then the
fine-tuning process restored the accuracy back to 95.23% and
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the fine-tuning after quantization resulted in an accuracy of
95.14%. The results indicate that the core predictive capability
of the CNN-LSTM architecture is largely preserved, even after
aggressive model compression.
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Figure 9. Power consumption and inference time

Figure 9 compares power consumption and inference time
for the three configurations. The baseline model exhibited the
highest power usage at 16.74 watts and the longest inference
time at 71 seconds, which is impractical for continuous
monitoring on battery-powered devices. The pruned model
showed substantial improvement, reducing power draw to
10.2 watts and processing time to 50 seconds. The quantized
version performed even better, consuming only 7.9 watts and
completing inference in 48 seconds. These gains in speed and
energy efficiency underscore the viability of TinyML-
optimized deep learning for wearable deployment, enabling
fast, on-device inference while conserving battery life.

Table 4. Performance metrics comparison (V1: Baseline
CNN-LSTM, V2: Pruned CNN-LSTM (After fine-tuning),
V3: Quantized CNN-LSTM (After fine-tuning))

Model Accuracy Precision Sensitivity S';g;e Specificity AUC
Version (%) (%) (%) (%)

(%)
Vi 95.27 92.8 94.9 93.8 95.6  0.963
V2 95.23 93.2 93.5 93.3 953 0.958
V3 95.14 91.9 92.1 92.0 94.9 0.952
Table 5. Performance with statistically grounded metrics
Model Metric Mean SD 95% CI
Accuracy (%)  95.27 0.28 [94.81, 95.73]
Baseline Precision (%) 92.8 0.35 [92.16, 93.44]
ONN. Semsitivity %) 949 0.31  [94.36, 95.44]
LsTm Fl-Score(%) 938 033  [93.26,94.34]
Specificity (%) 956 029  [95.13, 96.07]
AUC 0.963  0.004 [0.956, 0.970]
Accuracy (%)  95.23 0.32 [94.68, 95.78]
Pruned Precjs_iqn (%) 93.2 0.37 [92.53, 93.87]
CNN- Sensitivity (%) 935 0.34 [92.96, 94.04]
LSTM F1-Score (%) 93.3 0.35 [92.76, 93.84]
Specificity (%) 953  0.31  [94.77, 95.83]
AUC 0.958  0.005 [0.949, 0.967]
Accuracy (%)  95.14 0.36 [94.57, 95.71]
Quantized Precision (%) 919 039  [91.23,92.57]
ONN.  Sensitivity ) 921 0.37 [91.49, 92.71]
LSTM F1-Score (%) 92.0 0.38 [91.39, 92.61]
Specificity (%)  94.9 0.33 [94.36, 95.44]
AUC 0.952  0.006 [0.941, 0.963]

Table 4 presents a comparison of clinically relevant



diagnostic metrics for the baseline, pruned, and quantized
CNN-LSTM models. The baseline model demonstrates the
strongest overall performance, with high sensitivity and
specificity, indicating excellent ability to correctly identify
both at-risk and normal individuals. The pruned model retains
performance very close to the baseline, showing that model
compression does not significantly affect its diagnostic
reliability. The quantized model exhibits a slight reduction in
sensitivity and specificity, but still maintains strong AUC
values, confirming that it continues to provide clinically
meaningful discrimination between risk levels.

Table 5 summarizes the performance of the three model
variants with statistically grounded metrics. The baseline
model achieved the highest accuracy (95.27%=0.28, 95% CI:
94.81-95.73) and AUC (0.963+0.004, CI: 0.956-0.970), while
the pruned and quantized models showed only marginal
reductions across precision, sensitivity, specificity, and AUC.
The narrow confidence intervals and low standard deviations
across all metrics indicate strong stability of the results and
confirm that pruning and quantization introduced only
minimal performance degradation. These statistical measures
reinforce the reliability and robustness of the proposed
TinyML-optimized model versions.

To ensure clinical relevance and dataset independence, the
proposed model was further validated on the MIMIC-IV
Waveform Database (PhysioNet), which contains clinically
recorded ECG, PPG, arterial blood pressure (ABP), respiration,
and SpO: signals.

All validation data underwent comprehensive preprocessing.
This included noise filtering, baseline correction, and
resampling. Following preprocessing, feature extraction was
performed to compute heart rate, heart rate variability (HRV),
blood pressure indices, oxygen saturation, and respiration rate.
These features were consistent with the feature set used in the
Kaggle Wearables dataset.

These features were normalized using the same scaling
parameters to maintain uniformity across datasets. The model
achieved an average accuracy of 93.8%+0.3, precision of
91.6%+0.3, recall of 93.1%=+0.3, F1-score of 92.3%+0.3, and
AUC of 0.953+0.002, confirming its ability to generalize
effectively from wearable to clinical data. These results
validate that the proposed CNN-LSTM model remains stable
and accurate across heterogeneous signal sources when
appropriate preprocessing and feature alignment are applied.

Table 6. Cross-validation results of the proposed CNN-
LSTM model on MIMIC-1V dataset

Accuracy Precision Recall F1-Score
ol o) o) ) ) AYC
Fold 1 93.4 91.2 92.6 91.9 0.950
Fold 2 93.8 91.5 93.0 92.2 0.953
Fold 3 94.1 91.9 93.4 92.6 0.956
Fold 4 93.7 914 93.1 92.2 0.952
Fold 5 93.9 91.8 93.3 92.5 0.954

Mean#SD 93.840.3 91.6#0.3 93.140.3 92.3%0.3 0.953+4).002

Table 6 explores the impact of varying learning rates on the
quantized model’s accuracy, precision, recall, and F1-score.
The five-fold cross-validation results demonstrate stable and
consistent model performance across all evaluation metrics.
The model achieved a mean accuracy of 93.8% =+ 0.3%, with
precision, recall, and F1-score of 91.6% £ 0.3%, 93.1% + 0.3%,
and 92.3% <+ 0.3%, respectively, indicating a balanced
classification performance. Additionally, the high mean AUC

3609

of 0.953 £ 0.002 reflects strong discriminative capability and
robustness of the model across different validation folds.
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Figure 10. Calibration curves for model variants

The calibration curve in Figure 10 shows that all three
models produce well-calibrated probability estimates, with
their curves closely following the diagonal reference line. At
low predicted probabilities (0.0-0.3), all models slightly
underestimate risk, which is expected in datasets dominated by
normal cases. In the mid-range (0.5-0.7), the observed
frequencies rise sharply, indicating that predicted probabilities
accurately correspond to actual risk levels. At higher
probabilities (0.8-1.0), the baseline CNN-LSTM aligns most
closely with the ideal line, while the pruned and quantized
models show only minor deviation. These results confirm that
compression minimally affects calibration quality and that all
three models provide reliable probability estimates for
cardiovascular risk prediction.

The confusion matrices in Figures 11(a)-(c) reflect
classification performance across the four risk classes. Each
model demonstrates high diagonal concentrations, with
correctly identified samples. Off-diagonal entries remain
comparatively low, typically within the range of 1 to 15
samples, indicating limited dispersion of predictions across
neighboring categories.

Table 7 highlights how memory usage, inference time, and
power consumption vary across the three model stages. The
baseline CNN-LSTM model is the most resource-intensive,
requiring 610MB of memory and consuming over 16 watts of
power. Pruning substantially reduces these requirements,
cutting memory needs to 370MB and decreasing power usage
by almost 40%. Quantization further optimizes the model,
reducing memory to 190MB and lowering power consumption
to below 8 watts. These optimizations make the model feasible
for deployment on energy-limited wearable devices.

The CNN-LSTM model was trained using the Adam
optimizer with a learning rate of 0.001, batch size of 32, and
default momentum parameters (:=0.9, 2=0.999) with e=le-
8. Training was performed for a maximum of 100 epochs using
the categorical cross-entropy loss function. To prevent
overfitting and ensure stable convergence, an early-stopping
strategy was applied with a patience of 10 epochs and a
minimum required improvement of 0.001 in validation loss.
Additionally, model checkpointing was enabled to
automatically save the best-performing model based on
validation accuracy during training, ensuring that the final
deployed model corresponded to the optimal epoch.
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model (b) Confusion matrix- CNN-LSTM pruned model (c)
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model

Table 7. Resource efficiency comparison

Model Version Memory Inference Power
(MB)  Time (s) Consumption (W)
Baseline CNN-LSTM 610 71 16.74
Pruned CNN-LSTM 370 50 10.20
Quantized CNN-LSTM 190 48 7.90
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Table 8. Effect of batch size on performance (Pruned model)

Batch  Accuracy  F1-Score Inference Memory
Size (%) (%) Time (s) (MB)
16 92.2 92 53 365
32 95.27 93.3 50 370
64 91.1 92.6 47 375
128 90.4 90 43 380
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Figure 12. Accuracy vs. batch size

Table 8 and the corresponding plot in Figure 12 together
analyze the impact of batch size on model performance and
efficiency for the pruned model. A batch size of 32 achieves
the highest accuracy (95.27%) and Fl-score, indicating an
optimal balance between stable gradient updates, memory
utilization, and learning effectiveness. Increasing the batch
size to 64 and 128 leads to a slight reduction in accuracy while
improving inference speed, highlighting the typical trade-off
between computational efficiency and learning stability in
deep learning models. Overall, the results show that moderate
batch sizes provide the best performance, whereas very large
batch sizes, despite reducing training noise, result in
marginally lower accuracy due to less frequent weight updates.

Table 9. Effect of learning rate on accuracy (Quantized

model)
Learnin Accurac Precision F1-Score
Rate (LRg) (%) / ()  Real (%) g0
0.1 88.4 88.1 88 88
0.01 91.3 90.9 91 90.8
0.001 92.3 91.9 92.1 92
0.0001 91 90.5 90.6 90.5
92.0
91,5
?3 91.0
ggo -
3 90.0
< §9.5
89.0
88.5
0% - . WF ... . W%, amy

Learning Rate (log scale)

Figure 13. Accuracy vs learning rate (Quantized model)

Table 9 and Figure 13 together illustrate the effect of

learning rate on model performance. A learning rate of 0.001



achieves the best accuracy, providing an optimal balance
between stable convergence and effective learning. In contrast,
a high learning rate (0.1) results in unstable training and
reduced performance, while a very low learning rate (0.0001)
slows  convergence  without meaningful accuracy
improvements. These results highlight the importance of
careful learning-rate tuning, even after model compression.

The results presented in Table 10 and Figure 14 demonstrate
the impact of dropout on the baseline CNN-LSTM model’s
accuracy and generalization. A dropout rate of 0.2 provides the
best balance, achieving 95.27% accuracy while effectively
reducing overfitting. In contrast, the absence of dropout leads
to slightly higher accuracy but increases overfitting risk,
whereas excessive dropout (0.6) causes underfitting and
degrades predictive performance. These results highlight the
importance of moderate regularization for robust wearable
healthcare models.

Table 10. Effect of dropout rate

Dropout  Accuracy  F1-Score Overfitting
Rate (%) (%) Observed
0.0 96 95.7 Yes
0.2 95.27 94.8 No
0.4 93.9 93.6 No
0.6 91.2 90.7 Slight underfitting
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Figure 14. Accuracy vs dropout rate

Table 11 and Figure 15 illustrate the relationship between

pruning percentages and the resulting accuracy and model size.

As pruning levels increase from 30% to 90%, model size
shrinks dramatically from 610MB to just 170MB—while
accuracy gradually declines. Up to 50% pruning, the accuracy
remains relatively stable (above 95%), demonstrating that
substantial compression is possible without severely affecting
model performance. Beyond 70% pruning, the model’s
predictive ability drops more noticeably.

Table 11. Pruning ratio vs accuracy and model size

Pruning (%) Accuracy (%) Model Size (MB)
0 95.27 610
30 95.12 490
50 95.15 370
70 95.15 290
90 88.2 170

Table 12 compares different quantization techniques: post-
training int8 quantization, dynamic range quantization, and
Floatl6 quantization. Post-training int8 quantization delivers
the highest memory and energy savings, reducing model size
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to 190MB with only a minor decrease in accuracy. Floatl6
maintains slightly higher accuracy but requires more memory,
indicating a trade-off between precision retention and
deployment feasibility on low-power hardware.

40 80

Pruning (%)
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Figure 15. Pruning vs accuracy and model size

Table 12. Effect of quantizationtype

Quantization Accuracy Inference  Power Model Size
Type (%) Time () (W) (MB)
None (Float32) 95.27 71 16.74 610
Post-training int8 ~ 94.3 48 7.9 190
Dynamic Range 915 52 8.4 200
Float16 93.2 55 9.1 310

Table 13. Number of LSTM units vs accuracy

LSTM Accuracy Memory Usage  Inference Time
Units (%) (MB) (s)

32 90.2 290 45

64 92.8 330 48

128 95.27 610 71

256 95.7 880 89

Insights from Table 13 and the corresponding trends in
Figure 16 demonstrate the effect of increasing LSTM units on
accuracy, memory consumption, and inference time. Adding
more units improves accuracy, with peak performance
(~95.7%) at 256 units. However, memory usage rises sharply
with more units, from 290MB at 32 units to 880MB at 256
units. This trade-off is critical: 128 LSTM units offer a sweet
spot, balancing high accuracy and reasonable memory
requirements for wearable applications.

Table 14 presents a detailed evaluation of how combined
pruning and quantization affect model performance, power
consumption, inference time, and model size. Moderate
pruning (30%-50%) coupled with quantization yields the best
balance, sustaining accuracy above 94% while reducing power
consumption and model size substantially. Heavier pruning
(70%-90%) significantly cuts memory and energy costs but at
the expense of noticeable drops in predictive performance,
making it less ideal for critical healthcare applications where
reliability is crucial.

The heatmap in Figure 17 illustrates how different levels of
pruning combined with int8 quantization impact model
performance metrics. As pruning levels increase from 30% to
90%, both model size and power consumption decrease
sharply, making the models more suitable for edge devices.
However, this compression comes at the cost of reduced
accuracy, especially beyond 70% pruning. The heatmap
highlights the importance of carefully choosing the pruning



threshold to maintain acceptable accuracy while maximizing
resource efficiency.
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Table 14. Combined pruning + quantization levels impact

Pruning Quanti- Accuracy Power Inference  Model
(%) zation (%) (W) Time (s) Size (MB)
30 int8 94.26 8.5 52 210
50 int8 94.28 7.9 48 190
70 int8 91.17 7.2 45 160
90 int8 84.8 6.5 42 130
g 0836 8.50 52.00 : _‘
1%0
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Figure 17. Optimization levels vs performance

The CNN-LSTM baseline model delivered the highest
classification performance with an accuracy of 95. 27%, a
precision of 92. 8% and an F1 score of 94.8%. However, it
required 610MB of memory and consumed 16.74 watts of
power, rendering it infeasible for deployment on low-power
wearable devices. To overcome these limitations, TinyML
optimization techniques were applied.

These results clearly demonstrate that the primary
contribution of pruning is memory and power reduction, not
accuracy improvement. The slight decrease in accuracy is a
trade-off for significant computational gains, which is often
acceptable in wearable applications where hardware
constraints are critical. The interpretation of the work is that
TinyML techniques can preserve diagnostic reliability while
transforming otherwise heavy deep learning models into
lightweight versions suitable for edge-level inference. In other
words, the model does not become more accurate after
optimization; it becomes more efficient while retaining
sufficient accuracy for practical use in the real world.

Ultimately, the actual result and central insight of this
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research is the demonstration that a carefully optimized CNN-
LSTM model can serve as a reliable, low-power, real-time
diagnostic engine for wearable health monitoring devices.

5. CONCLUSION

In this study, we presented an energy-efficient deep learning
approach for heart disease risk prediction using wearable
sensor data, combining a hybrid CNN-LSTM architecture with
TinyML optimization techniques. By leveraging the feature
extraction capabilities of Convolutional Neural Networks and
the sequential modeling strengths of Long Short-Term
Memory networks, the proposed model effectively captured
both spatial and temporal patterns within multimodal
physiological signals.

Recognizing the constraints imposed by wearable devices
such as limited memory, computation power, and battery life-
we incorporated TinyML strategies, namely structured
pruning and post-training quantization, to compress the model
without significantly compromising predictive accuracy.
Experimental evaluations demonstrated that the TinyML-
optimized CNN-LSTM model achieved a competitive test
accuracy of up to 94.28%, while reducing memory
consumption by over 65% and lowering inference time and
power requirements significantly compared to the baseline
model.

These results validate that deep learning models, when
appropriately optimized, can be deployed on resource-
constrained edge devices to enable real-time, continuous, and
personalized cardiovascular monitoring.

This research takes a significant step toward the realization
of intelligent, low-power, and proactive healthcare monitoring
systems accessible to a broader global population.

6. LIMITATION AND FUTURE SCOPE

Although the proposed model demonstrates strong
predictive performance, several limitations must be
acknowledged. First, wearable-derived physiological signals
are inherently susceptible to motion artifacts, environmental
noise, user compliance issues, and sensor-placement
variability, all of which can affect measurement reliability.
While preprocessing steps including artifact filtering, baseline
correction, and signal-quality assessment were applied to
reduce these effects, residual noise may still influence model
predictions. Second, the risk categories used in this study,
although aligned with known clinical thresholds, do not
replace formal diagnostic evaluation. Therefore, the model is
intended as ascreening and decision-support tool, not a
standalone diagnostic system.Compression through pruning
and quantization may introduce small shifts in sensitivity, so
we verified calibration and error trends to ensure safety.

Future work will focus on prospective validation in clinical
settings, conducted in collaboration with cardiovascular
specialists to assess real-world utility and diagnostic impact.
Additional improvements includeexpanding to multi-center
datasets, incorporating device-specific calibration, developing
personalized risk-adaptation strategies, and integrating
confidence scoring for clinician oversight. Such efforts are
essential before clinical deployment to ensure reliability,
interpretability, and alignment with medical decision-making.
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