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Hydraulic valves are key components of fluid control systems, and the fatigue damage and 

micro-defect distribution of valve spools and valve seats directly affect the system's 

operational reliability. In industrial scenarios, issues such as scarce samples, high-

dimensional redundancy of high-frequency texture data, and the weak features of micro-

defects make it challenging for existing methods to simultaneously achieve high-accuracy 

damage detection and micro-defect distribution prediction. To address these challenges, an 

integrated model combining high-frequency image textures with a multi-head self-attention 

semi-supervised generative adversarial network (GAN) is proposed. The model extracts 

multi-modal high-frequency texture features through wavelet transform, gray-level co-

occurrence matrix, and local binary patterns (LBP), enhancing the representation of micro-

defects. A multi-head self-attention layer is embedded in the discriminator to perform high-

dimensional feature selection. The damage classification and distribution prediction tasks 

are integrated into a dual-task learning mechanism based on the semi-supervised GAN 

framework, enabling fatigue damage level identification and micro-defect distribution 

quantification of hydraulic valves under small sample conditions. The innovative 

contributions of this model include: designing a multi-scale high-frequency texture fusion 

strategy to accurately capture the edges, gray-level distribution, and local structural features 

of micro-defects; constructing a dual-task multi-head self-attention semi-supervised GAN 

to optimize both the robustness of damage detection and the precision of distribution 

prediction; and proposing a hybrid loss function combining Wasserstein GAN loss, cross-

entropy loss, and MSE-SSIM joint loss for collaborative optimization of classification and 

regression tasks. Validation is carried out using a hydraulic valve accelerated fatigue 

experimental dataset, which contains five damage levels, with labeled samples accounting 

for 10%-20%. Experimental results show that the model achieves a damage detection 

accuracy of 98.7%, with an F1 score of 0.978; the structural similarity of micro-defect 

distribution prediction reaches 0.92, with a mean absolute error of 0.03. Compared with 

traditional semi-supervised GANs, residual networks, and FixMatch methods, the model's 

detection accuracy improves by 3.2%-8.5%, and the prediction error of distribution 

decreases by 15.6%-27.3%, demonstrating excellent adaptability to small samples and 

strong anti-interference capability. The proposed method provides an effective technical 

solution for hydraulic valve fatigue damage detection and micro-defect distribution 

prediction and has significant reference value for the construction of predictive maintenance 

systems in industrial equipment. 
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1. INTRODUCTION

As the core control component of fluid power systems, 

hydraulic valves are widely used in key fields such as 

construction machinery, aerospace, and intelligent 

manufacturing, and their operating status directly determines 

the reliability and safety of the entire system [1-4]. With the 

upgrade of industrial intelligence, predictive maintenance of 

hydraulic valves has become a consensus in the industry [5, 6]. 

Accurate fatigue damage detection [7] and micro-defect 

distribution prediction [8] are the core prerequisites for 

implementing predictive maintenance. These not only require 

identifying damage levels but also quantifying the location, 

density, and expansion trends of defects, providing data 

support for remaining life evaluation. However, the current 

related technologies still face three major core bottlenecks: 

firstly, the issue of scarce samples is prominent. The 

accelerated fatigue test cycle of hydraulic valves lasts several 

months or even years, and obtaining labeled defect samples is 

highly expensive, making it difficult to meet the training needs 

of deep learning models [9]; secondly, high-frequency image 

texture analysis is difficult. Images collected in industrial 

scenarios contain interference information such as oil stains 

and vibration noise. The micro-defect texture features are 

weak, and the data dimensions are high. Redundant 

information can easily obscure effective features [10]; thirdly, 
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task fragmentation is common. Existing methods often focus 

solely on damage detection or defect distribution prediction, 

lacking an integrated framework, which leads to insufficient 

model generalization and difficulty adapting to the real-time 

monitoring needs of industrial sites [11]. Therefore, 

developing a hydraulic valve damage diagnosis method that 

integrates small sample adaptability, high anti-interference 

ability, and dual-task synergy is of significant engineering 

value and academic significance for improving the operational 

safety of industrial equipment and reducing maintenance costs. 

The development of hydraulic valve damage detection 

technology can be summarized as the evolution from 

traditional offline detection to intelligent online diagnosis. 

Traditional methods such as ultrasonic testing [12] and 

magnetic particle testing [13] rely on professional equipment 

and manual interpretation, with low detection efficiency and 

unable to achieve real-time monitoring, making them difficult 

to adapt to the needs of intelligent manufacturing. In machine 

learning methods, schemes combining support vector 

machines and LBP [14] rely on manually designed features, 

and their generalization ability is limited by the rationality of 

feature engineering. Convolutional neural networks [15], 

though capable of automatically extracting features, require a 

large number of labeled samples, prone to overfitting in small 

sample scenarios, and the redundant information in high-

dimensional texture data significantly reduces detection 

accuracy. Semi-supervised and generative models provide a 

new path for small sample problems. Methods such as semi-

supervised GAN and FixMatch [16, 17] train models with a 

small amount of labeled data and a large amount of unlabeled 

data. However, their feature extraction modules are not 

optimized for hydraulic valve high-frequency textures and 

only perform damage classification, without completing 

defect distribution prediction. High-frequency image texture 

extraction is a key means of characterizing micro-defects. 

Existing technologies can be divided into single-feature and 

multi-modal fusion categories. Wavelet transform is good at 

capturing high-frequency abrupt features at defect edges, gray-

level co-occurrence matrices can describe the spatial 

distribution uniformity of textures, and LBP effectively 

characterize local structural differences. However, a single 

feature can only reflect one aspect of a defect's characteristics, 

making it difficult to cover the texture features of different 

types of defects such as wear and micro-cracks. Multi-modal 

texture fusion has become a research trend. However, existing 

fusion strategies often adopt simple concatenation methods, 

which do not strengthen the texture differences between 

micro-defects and normal surfaces, failing to highlight 

effective features. This results in redundant data after fusion, 

which affects the subsequent model's learning efficiency. The 

rise of GAN provides a new paradigm for industrial defect 

diagnosis. Current research mainly uses their strong 

generation and feature learning capabilities for defect sample 

augmentation or damage classification. Improved models such 

as attention-based GAN [18] enhance feature selection 

abilities by incorporating attention mechanisms but still focus 

on a single classification task. Micro-defect distribution 

prediction often uses convolutional neural networks or 

Transformers [19, 20] to build regression models. These 

models require large amounts of labeled defect distribution 

data, are sensitive to small sample scenarios, and do not 

incorporate generative mechanisms for data augmentation, 

which limits prediction accuracy and generalization 

capabilities. Based on the current research progress, three key 

research gaps still exist in the field: the lack of an integrated 

architecture tailored to the high-frequency texture 

characteristics of hydraulic valves; the failure to achieve an 

organic combination of feature selection, small-sample 

learning, and dual-task synergy; the underutilization of 

attention mechanisms and semi-supervised GAN for high-

dimensional texture data and the expansion to defect 

distribution prediction tasks, making it difficult to meet the 

actual needs of industrial scenarios; and the failure of loss 

function designs to consider both the robustness of 

classification tasks and the detail restoration of regression 

tasks, which leads to the loss of details in distribution 

prediction or overfitting of classification results in existing 

solutions. 

To address the above research gaps and technical 

bottlenecks, the core research goal of this paper is to propose 

a small-sample adaptable, high anti-interference hydraulic 

valve fatigue damage detection and micro-defect distribution 

prediction model, achieving integrated damage level 

recognition, defect location, and density quantification. The 

specific core contributions are as follows: (1) Propose a multi-

modal high-frequency texture fusion strategy that integrates 

the advantages of wavelet transform, gray-level co-occurrence 

matrix, and LBP, reinforcing and differentiating features 

through standardization and emphasizing micro-defect texture 

features to lay the foundation for subsequent model learning; 

(2) Construct a dual-task multi-head self-attention semi-

supervised GAN framework, embedding multi-head self-

attention mechanisms in the discriminator to achieve subspace 

selection of high-dimensional texture features, simultaneously 

outputting damage levels and defect distribution heatmaps, 

overcoming the task fragmentation limitations of traditional 

models; (3) Design a hybrid loss function that integrates 

Wasserstein generative adversarial loss, weighted cross-

entropy loss, and MSE-SSIM joint loss to address overfitting 

in small sample scenarios and the loss of details in distribution 

prediction, enabling collaborative optimization of dual tasks; 

(4) Conduct systematic validation based on real hydraulic 

valve accelerated fatigue experimental datasets, demonstrating 

the superiority of the proposed method through comparative 

experiments, ablation experiments, and robustness 

experiments, providing technical support for industrial 

hydraulic valve predictive maintenance systems. 

To systematically present the research findings, the 

following chapters are arranged as follows: Chapter 2 details 

the overall architecture of the proposed model, high-frequency 

texture extraction methods, network structure design, and loss 

function construction; Chapter 3 introduces the experimental 

dataset, experimental setup, and evaluation metrics, verifying 

the model's performance through comparative experiments 

and ablation experiments; Chapter 4 analyzes the experimental 

results, discusses the model's mechanisms, limitations, and 

industrial application prospects; Chapter 5 summarizes the 

research findings and looks forward to future research 

directions. 

 
 

2. METHOD 

 

2.1 Problem definition 

 

This paper aims to solve the dual-task problem of fatigue 

damage detection and micro-defect distribution prediction in 

hydraulic valves under small sample scenarios, and it seeks to 
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achieve accurate classification of damage levels and pixel-

level quantification of defect spatial distribution through a 

unified model. For the fatigue damage detection task, the input 

is defined as the high-frequency texture feature matrix of the 

hydraulic valve XRN×D, where N represents the total number 

of samples and D is the feature dimension after high-frequency 

texture fusion. The label space Y={y1,y2,…,yK} contains five 

damage levels: no damage, light wear, moderate wear, micro-

cracks, and severe cracks, i.e., K = 5. The goal of the task is to 

learn a mapping function f:X→Y, so that the model can output 

the posterior probability P(y∣X) for each damage level and 

achieve accurate classification of the damage category. 

The micro-defect distribution prediction task focuses on the 

quantification of defect spatial location and density, and the 

real micro-defect distribution heatmap is defined as HRH×W, 

where H and W are the height and width of the heatmap, 

respectively, and the pixel values directly correspond to the 

defect density at the location. The core task is to learn the 

mapping function: 

 

g:X→Ĥ (1) 

 

where, Ĥ is the model's predicted defect distribution heatmap, 

and it is necessary to minimize the difference between Ĥ and 

the real heatmap H to ensure the accuracy of defect location, 

range, and density predictions. In consideration of the scarce 

sample nature in industrial scenarios, the dataset consists of 

three types of samples: 

(1) A labeled sample set containing complete features, 

damage labels, and defect distribution annotations: 

 

Dlabel={(Xi,Yi,Hi)}i=1

M
 (2) 

 

where, M accounts for 10%-20% of the total number of 

samples. 

(2) An unlabeled sample set containing only high-frequency 

texture features: 

 

Dunlabel={Xj}j=1

N-M
 (3) 

 

This sample set is used to assist the model in learning data 

distribution patterns. 

(3) A pseudo-sample set generated by the generator (G) 

from standard normal distribution noise (z): 

 

Dfake={G(z)}
z∼N(0,1)

 (4) 

 

This sample set is used to expand the training data and 

enhance the model's generalization ability. 

 

2.2 Data preprocessing and high-frequency texture feature 

extraction 
 

Image preprocessing is a key step to enhance the 

effectiveness of subsequent feature extraction. The core goal 

is to eliminate interference information, focus on critical areas, 

and unify data scaling. For common issues in hydraulic valve 

images, such as oil stains, blur, and vibration noise from 

shooting, a strategy combining adaptive median filtering and 

wavelet threshold denoising is employed. First, adaptive 

median filtering dynamically adjusts the filter window size to 

suppress salt-and-pepper noise while preserving image edge 

details. Then, wavelet transform is applied to suppress noise 

coefficients in the high-frequency sub-bands using an adaptive 

threshold (τ), and the denoised image is reconstructed using 

the inverse wavelet transform: 

 

Idenoised=WT-1(WT(I)⋅τ) (5) 

 

To reduce interference from background redundant 

information, a target detection algorithm is used to locate key 

friction surfaces such as the valve spool and valve seat, and a 

256×256 region of interest (ROI) is cropped, ensuring 

subsequent processing focuses on areas prone to damage. 

Finally, grayscale normalization is performed to unify the 

feature scale, with the normalization formula: 

 

Inorm(i,j)=
I(i,j)-min(I)

max(I)-min(I)
  (6) 

 

This maps the grayscale values of the image to the range [0, 

1], preventing feature distribution shift due to brightness 

differences. 

High-frequency texture features are the core information for 

characterizing micro-defects. A single feature is difficult to 

fully cover the texture characteristics of different defect types, 

so a multi-modal fusion strategy is used to integrate the 

advantages of wavelet transform, gray-level co-occurrence 

matrix, and LBP to construct a comprehensive defect 

representation. The wavelet transform uses the db4 wavelet 

base for 3-level decomposition to extract high-frequency sub-

bands in the horizontal, vertical, and diagonal directions. 

These sub-bands can effectively capture high-frequency 

abrupt features such as micro-crack edges and pit boundaries, 

forming a high-frequency texture feature tensor TWTR64×64×3, 

with the mathematical expression: 

 

TWT=∑ W3
k=1 Tk(Inorm)  (7) 

 

where, WTk(Inorm) represents the high-frequency sub-band 

feature at the k-th level of decomposition. The gray-level co-

occurrence matrix is used to describe the spatial distribution of 

textures. Four features—contrast, entropy, correlation, and 

energy—are calculated at distance (d=1) and angles 

θ={0°,45°,90°,135°}, forming a 16-dimensional feature vector 

TGLCMR16, which can effectively distinguish the texture 

uniformity differences between worn areas and normal 

surfaces. 

LBP represents local structures by encoding the grayscale 

relationship between a pixel and its 8 neighboring pixels, with 

the encoding formula: 

 

LBP(i,j)=∑ s7
p=0 (I(i+p,j+p)-I(i,j))⋅2p  (8) 

 

where, s(x) is the sign function, s(x)=1 if x≥0, otherwise s(x)=0. 

This feature strengthens the local texture differences in the 

micro-defect regions, generating a 256-dimensional feature 

vector TLBPR256. To fully utilize the complementary nature of 

various features, the wavelet transform feature tensor is 

flattened into a 1-dimensional vector TWT

flat
, which is then 

concatenated with the gray-level co-occurrence matrix feature 

TGLCM and LBP feature TLBP, forming a 1024-dimensional 

high-frequency texture fusion feature 

X=[TWT

flat
,TGLCM,TLBP]R1024. This fusion feature includes defect 

edge abruptness, as well as the global distribution and local 

structural characteristics of the texture, providing a rich and 
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effective input foundation for subsequent model feature 

learning. 

 

2.3 Model network architecture 

 

The model in this paper adopts an adversarial learning 

framework with generator and discriminator training 

cooperatively. The generator is responsible for small sample 

data augmentation and defect distribution modeling, while the 

discriminator is responsible for distinguishing between real 

and fake data, performing high-dimensional feature selection, 

and producing dual-task outputs. The two components are 

alternately optimized to improve performance, ultimately 

achieving the integrated goals of fatigue damage detection and 

micro-defect distribution prediction. Figure 1 illustrates the 

network architecture of the model. 

 

 
 

Figure 1. Network architecture of the proposed model 

 

2.3.1 Generator (G) 

The core function of the generator is to generate “fake high-

frequency texture – fake defect distribution” paired samples 

that closely match the real data distribution. This compensates 

for the scarcity of labeled samples and provides the 

discriminator with diversified training data. The input design 

takes into account both randomness and specificity: the 

random noise vector z~N(0,1) is set to 128 dimensions. 

Through grid search, this dimension was verified to be optimal 

for balancing diversity and training stability. A dimension that 

is too low leads to monotonous fake data patterns, while too 

high leads to training instability. The 5-dimensional defect 

prior vector (v) encodes key information such as defect type, 

severity, core location, and diffusion range, ensuring that the 

generated samples align with actual industrial defect features. 

After concatenating these two vectors along the feature 

dimension, a 133-dimensional fusion vector is obtained and 

mapped through an implicit fully connected layer to form a 

512×4×4 three-dimensional feature tensor, laying the 

foundation for spatial feature generation. 

The generator adopts a “shared feature extraction + dual-

branch output” architecture, progressively increasing the 

feature map resolution through 5 layers of transpose 

convolutions. The first three layers are shared feature layers, 

successively increasing the feature map resolution from 4×4 to 

28×28 while extracting common features such as defect 

location and scale to avoid disconnection between the two 

branches. The subsequent layers are divided into texture and 

distribution branches. The texture branch further increases the 

resolution to 128×128 through 2 layers of transpose 

convolutions, and is mapped to the range [-1,1] through a Tanh 

activation function, which is consistent with the normalized 

range of real high-frequency textures. The distribution branch 

adds 3 layers of transpose convolutions to optimize spatial 

distribution modeling, and uses a Sigmoid activation to output 

a fake defect distribution heatmap in the range [0,1], which is 

then post-processed using Gaussian smoothing to simulate the 

gradient density distribution of real defects. The generator can 

be formalized as a dual-output mapping function: 

 

G:(z,v)↦(Xfake,Hfake) (9) 

 

The core training objective is to minimize the adversarial 

loss as shown in the following equation, making it difficult for 

the discriminator to distinguish between real and pseudo data, 

while indirectly optimizing the pseudo data's classification 

distinguishability and distribution rationality through the 

backpropagation of the discriminator's dual-task loss. 

 

LG
GAN=-Ez,v[Dscore(G(z,v))] (10) 

 

The core innovation of this design lies in the prior-guided 

directed generation and dual-branch collaborative architecture. 

It not only targets the supplementation of rare defect scene 

samples but also ensures strong correlation between texture 

and distribution by sharing feature layers. The parameter count 

is approximately 8.7M, reducing by 32% compared to the U-

Net generator with equivalent performance, thus achieving a 

balance between feature expression ability and computational 

efficiency. 

 

2.3.2 Discriminator (D) 

The core task of the discriminator is to distinguish the real 

and fake attributes of input data while also performing high-

dimensional feature selection and dual-task outputs. Its input 

consists of real high-frequency texture features Xreal and the 

fake features Xfake output by the generator, with dimensions 
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unified to 256×256×1. The feature encoding layer is composed 

of 3 convolution layers. The first layer, Conv2d(1,64,4,2,1), 

uses LeakyReLU(0.2) activation and no BatchNorm to avoid 

mode collapse. The next two layers sequentially increase the 

channel number to 256, and the combination of BatchNorm 

and LeakyReLU enhances feature representation, ultimately 

outputting a 32×32×256 encoded feature map, achieving 

dimensionality reduction of high-dimensional data and 

enhancing defect feature representation. 

 

 
 

Figure 2. Illustration of the self-attention mechanism 

calculation 

 

 
 

Figure 3. Illustration of the multi-head attention mechanism 

calculation 

 

The multi-head self-attention mechanism splits the Query, 

Key, and Value of self-attention into multiple smaller parts, 

each corresponding to a different "head", and performs 

multiple self-attention layers in parallel, with each self-

attention layer computing independently. This allows the 

model to capture information in different subspaces. Figure 2 

shows the illustration of the self-attention mechanism 

calculation. Figure 3 shows the illustration of the multi-head 

attention mechanism calculation. The model in this paper 

reshapes the encoded feature map into a 1024×256 sequence 

and inputs it into the multi-head self-attention (MSA) layer for 

high-dimensional feature selection. Three independent fully 

connected layers generate Query (Q), Key (K), and Value (V), 

with the number of heads (h=8), and each head’s dimension 

dk=dv=32. The Q/K/V are split into 8 subsets, and scaled dot-

product attention is computed, focusing on high-frequency 

texture areas related to defects. After the outputs from the 8 

heads are concatenated, linear transformation, residual 

connection, and LayerNorm are applied to obtain the filtered 

feature map Fout, effectively removing redundancy and noise 

from high-dimensional data. 

The subsequent dual-task branches output two aspects in 

parallel: The damage classification branch uses two fully 

connected layers with Dropout regularization and outputs the 

probability distribution of 5 damage levels via SoftMax; the 

distribution prediction branch uses a fully connected layer and 

two layers of transpose convolution, and outputs the defect 

distribution heatmap of 256×256 via Sigmoid, achieving 

collaborative optimization of classification and regression 

tasks. 

 

2.3.3 Training paradigm of the model 

The model in this paper follows the adversarial training 

logic of “generator-discriminator alternating optimization,” 

where the generator attempts to deceive the discriminator by 

generating realistic fake samples, and the discriminator 

improves its feature extraction and dual-task processing 

capabilities while distinguishing between real and fake data. 

The two components constrain each other and progress 

together. The training process is divided into two stages: pre-

training and joint training. In the pre-training stage, the 

generator is frozen, and only the discriminator’s dual-task 

branch is trained to minimize classification loss and prediction 

loss using labeled samples, initializing dual-task processing 

capability. In the joint training stage, the generator is unfrozen, 

and an alternating mode of “1 round of discriminator training 

+ 1 round of generator training” is adopted. The 

discriminator’s inputs include labeled samples, unlabeled 

samples, and fake samples, and the optimization goal is the 

weighted sum of Wasserstein GAN loss, classification loss, 

and prediction loss. The generator focuses on minimizing 

adversarial loss while using backpropagation from the 

discriminator’s dual-task loss to optimize the quality of fake 

samples. During training, gradient clipping is applied to the 

discriminator parameters, clip(w, -0.01, 0.01), and a cosine 

annealing learning rate scheduling strategy is used to ensure 

stable convergence of the training process and avoid mode 

collapse. 

 

2.4 Hybrid loss function design 

 

To achieve the collaborative optimization of adversarial 

training stability, small sample classification accuracy, and 

distribution prediction quality, a multi-objective hybrid loss 

function is designed, integrating Wasserstein Generative 

Adversarial Loss, weighted cross-entropy loss, and MSE-

SSIM joint loss, each adapted to meet the core requirements of 

adversarial training and dual-task learning. 

The Wasserstein Generative Adversarial Loss is used to 

improve training stability and avoid the mode collapse 

problem inherent in traditional GANs. The adversarial loss of 

the discriminator is defined as the difference between the 

scores of real data and fake data, that is: 

 

LD
GAN=E(Xreal,Hreal)

[Dscore(Xreal,Hreal)]-Ez[Dscore(G(z))] (11) 

 

The core objective is to maximize the score difference 

between real data and fake data; 

The adversarial loss of the generator is: 

 

LG
GAN=-Ez[Dscore(G(z))] (12) 
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This loss aims to minimize the probability of fake data being 

detected by the discriminator. 

To satisfy the Lipschitz condition of Wasserstein distance, 

gradient clipping is applied to all parameters of the 

discriminator clip(w,−0.01,0.01), effectively suppressing 

gradient explosion during training and improving convergence 

stability. 

The classification loss is designed for the small sample 

scenario, using a weighted fusion strategy of labeled and 

unlabeled samples. The loss for labeled samples is constructed 

based on cross-entropy, that is: 

 

Lcls
label=-

1

M
∑ ∑ y

i,k
5
k=1

M
i=1 log ( p

i,k
)  (13) 

 

where, yi,k is the one-hot label and pi,k is the classification 

probability output by the model, ensuring accurate 

transmission of supervised signals; for unlabeled samples, a 

pseudo-label strategy is used, with the predicted probability of 

the most likely class taken as the pseudo-label ŷ
j,k

, fully 

utilizing the distribution information of the unlabeled data. 

The loss function is: 

 

Lcls
unlabel=-

1

N-M
∑ ∑ ŷ

j,k
5
k=1

N-M
j=1 log ( p

j,k
)  (14) 

 

The two losses are fused with a weighted coefficient (α=0.3): 

 

Lcls=αLcls
label+(1-α)Lcls

unlabel (15) 

 

This balances the supervision strength of labeled samples 

and the auxiliary value of unlabeled samples, alleviating small 

sample overfitting. 

The distribution prediction loss considers both numerical 

accuracy and structural consistency, using a joint form of MSE 

and SSIM. The MSE loss measures the numerical error 

between the predicted heatmap and the real value, ensuring the 

quantification accuracy of defect density: 

 

LMSE=
1

H×W
∑ (i,j Ĥ(i,j)-H(i,j))

2
  (16) 

 

The SSIM loss is based on mean, variance, and covariance 

calculations, strengthening the topological consistency of 

defect distribution: 

 

LSSIM=1-SSIM(Ĥ,H) (17) 

 

where constants C1=0.012 and C2=0.032 are used to prevent 

division by zero. The coefficient β=0.7 is used to combine and 

obtain Lpred=βLMSE+(1−β)LSSIM, prioritizing numerical 

precision while avoiding structural distortion in the prediction 

results. The total loss function is: 

 

Ltotal=LD
GAN+λ1LG

GAN+λ2Lcls+λ3Lpred (18) 

 

Hyperparameters λ1=1.0, λ2=1.0, and λ3=1.5 are optimized 

via grid search, highlighting the priority of the distribution 

prediction task and achieving collaborative optimization of the 

dual tasks. 

 

2.5 Training strategy 

 

To gradually improve the feature learning ability and dual-

task performance of the model, a three-phase training strategy 

of “pre-training – joint training – inference” is designed, 

balancing initialization stability, adversarial learning 

effectiveness, and industrial application adaptability. 

The core objective of the pre-training phase is to initialize 

the dual-task processing ability of the discriminator, avoiding 

training oscillations caused by insufficient generator 

performance in the early stages of joint training. In this phase, 

the generator parameters are frozen, and only the dual-task 

branch of the discriminator is trained. The input consists solely 

of labeled samples Dlabel, and the optimization goal is the sum 

of classification loss and prediction loss Lcls+Lpred. Training 

parameters are set to: learning rate 5e-5, batch size 32, 50 

iterations, Adam optimizer (β1=0.5, β2=0.999), with a mild 

learning rate and limited iterations to help the discriminator 

quickly master basic damage classification and distribution 

prediction abilities, laying the foundation for subsequent 

adversarial training. 

The joint training phase begins the alternating optimization 

of the generator and discriminator, achieving adversarial 

learning and dual-task collaborative improvement. In this 

phase, the generator is unfrozen, and the alternating mode of 

“1 round of discriminator training + 1 round of generator 

training” is adopted. The input includes labeled samples, 

unlabeled samples, and fake samples, with a sampling ratio of 

1:3:1, ensuring effective transmission of supervised signals 

while fully utilizing unlabeled data and fake samples to expand 

training diversity. The optimization goal for the discriminator 

is the total loss Ltotal, while the generator’s optimization goal 

is the fusion of adversarial loss and indirect losses between the 

dual tasks. Training parameters are set to: discriminator 

learning rate 1e−4, generator learning rate 1e−3, batch size 64, 

500 iterations, with cosine annealing learning rate scheduling. 

L2 regularization is applied to the fully connected layers of the 

discriminator to suppress overfitting. The alternating 

optimization mechanism ensures mutual constraint and joint 

progress between the generator and discriminator: the 

generator continuously improves the realism of fake data, 

while the discriminator further strengthens feature selection 

and dual-task processing abilities during the process of 

distinguishing real and fake data. 

The inference phase achieves integrated output for damage 

detection and distribution prediction, with input being the 

high-frequency texture features Xtest of the hydraulic valve to 

be tested. The inference process is: features are extracted 

through the feature encoding layer of the discriminator, key 

texture information is selected via the MSA layer, the 

classification branch outputs the probability distribution of 

each damage level, and the prediction branch outputs the 

defect distribution heatmap. To accurately extract the defect 

region, Otsu’s adaptive thresholding is applied to the heatmap 

to automatically determine the threshold for defect-

background segmentation, further outputting the defect 

location, range, and density quantification results, meeting the 

real-time monitoring and quantitative analysis requirements in 

industrial settings. This inference process does not require 

human intervention, and the inference time per sample is about 

23ms, making it adaptable to the real-time requirements of 

hydraulic valve online monitoring. 
 

 

3. EXPERIMENTS AND RESULTS 
 

3.1 Dataset construction 
 

To ensure the authenticity and industrial applicability of the 
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experiments, a dedicated dataset was constructed based on the 

hydraulic valve accelerated fatigue testing platform. The 

experimental platform used is the YFA-500 accelerated 

fatigue testing system, with the test object being the industrial 

commonly used 4WE6 solenoid directional valve. The valve 

core material is 45# steel, and the valve seat material is copper 

alloy, aligning with actual engineering applications. By 

adjusting the working pressure, flow rate, and number of 

cycles, the system generates five types of damage samples: no 

damage, slight wear, moderate wear, micro-cracks, and severe 

cracks, covering typical failure modes of hydraulic valves. 

Image acquisition is performed using an industrial camera 

with a resolution of 1920×1080 and a frame rate of 30fps, 

paired with a 20x microscope lens. Data collection is done in 

an environment free from oil contamination and with constant 

lighting to ensure the clarity and consistency of image textures. 

The dataset consists of 1000 images with regions of interest, 

divided into training, validation, and test sets at a 7:2:1 ratio, 

with labeled samples accounting for 15% and unlabeled 

samples accounting for 85%, simulating the small sample 

labeling scenario in industrial applications. 

The dataset annotation uses a rigorous dual-validation 

mechanism to ensure label reliability. The damage level labels 

are independently annotated by three mechanical engineering 

experts, and the consistency test Kappa coefficient reaches 

0.92, indicating a high level of agreement. The defect 

distribution heatmap labels are manually segmented from the 

microscopic images using the LabelMe tool, with defect 

region pixel values set to 1 and the background set to 0. 

Gaussian smoothing is then applied to generate a continuous-

valued heatmap, accurately simulating the spatial distribution 

characteristics of defect density. The dual annotation 

mechanism ensures both the accuracy of the damage level 

classification and provides high-quality supervision signals for 

the distribution prediction task, laying the foundation for the 

reliability of the experimental results. 

 

3.2 Experimental setup 

 

The experimental hardware and software environment 

configuration is as follows: the hardware uses an Intel i9-

13900K CPU, an NVIDIA RTX 4090 (24GB) GPU, and 64GB 

of memory, meeting the high computational power 

requirements of the deep learning model. The software is 

developed based on Python 3.9, relying on the PyTorch 2.0 

deep learning framework, with OpenCV 4.8 for image 

processing, Scikit-learn 1.2 for metric calculation, and 

Matplotlib 3.7 for result visualization, ensuring the 

reproducibility of the experiments. 

To comprehensively verify the superiority of the proposed 

model, eight comparison models are selected, covering 

traditional methods, semi-supervised learning methods, and 

deep learning methods. All models maintain consistent input 

features, training data, and training epochs, with only their 

own hyperparameters optimized to ensure fairness in 

comparison. The traditional methods include SVM+LBP and 

CNN+GLCM; semi-supervised learning methods include 

FixMatch and SGAN; and deep learning methods include 

ResNet50, U-Net, and Attention-GAN, forming a multi-layer, 

comprehensive comparison system. 

The experimental evaluation metrics are divided into two 

categories, each adapted to the requirements of classification 

and regression tasks. For fatigue damage detection, precision, 

recall, F1 score, confusion matrix, and macro-average F1 are 

used. Precision and recall measure the model's accuracy in 

recognizing each damage category, the F1 score focuses on the 

comprehensive performance for small sample defect 

categories, macro-average F1 evaluates the overall 

classification balance, and the confusion matrix visualizes the 

classification confusion for each category. For micro-defect 

distribution prediction, the intersection-over-union (IoU), 

peak signal-to-noise ratio (PSNR), and mean relative error 

(MRE) are used. IoU quantifies the matching of defect regions, 

PSNR evaluates the visual quality of the heatmap, and MRE, 

by introducing a small constant (ε), reduces zero value 

interference, accurately measuring the relative deviation 

between the predicted and real values. This multi-dimensional 

evaluation metric system comprehensively covers the model's 

classification accuracy, distribution prediction quality, and 

robustness, ensuring the objectivity and comprehensiveness of 

the experimental results. 

 

3.3 Benchmark comparison experiments 

 

To comprehensively verify the overall performance of the 

proposed model, benchmark comparison experiments were 

designed, selecting traditional methods, semi-supervised 

learning methods, and deep learning methods as comparison 

objects. Five independent experiments were conducted with a 

15% labeled sample ratio, and the results were averaged and 

tested for significant differences using a t-test. The 

experiments were carried out in two dimensions: fatigue 

damage detection and micro-defect distribution prediction. 

Quantitative analysis was performed to assess the performance 

differences and core reasons among the models. 

Table 1 presents a clear hierarchical improvement in fatigue 

damage detection performance: Among traditional methods, 

SVM+LBP achieved an accuracy of only 78.3% and an F1 

score of 74.4%. The method relies on manually designed LBP 

features, which struggle to capture the complex texture 

patterns of micro-defects in hydraulic valves, limiting its 

generalization ability. CNN+GLCM, which automatically 

extracts features through deep learning, improved accuracy to 

85.7%. However, the single GLCM texture feature could not 

fully cover the differential representations of wear and cracks, 

still exhibiting a clear performance bottleneck. The fully 

supervised ResNet50 achieved an accuracy of 89.2%, 

benefiting from the deep network's feature expression ability. 

However, under the constraint of 15% labeled samples, the 

lack of sufficient supervision signals led to overfitting risk, 

making it less effective than semi-supervised methods. Among 

the semi-supervised methods, FixMatch used consistency 

regularization to exploit unlabeled data information, 

improving accuracy to 91.5%, but it did not introduce a 

generative mechanism and could not fully address the sample 

distribution bias of rare defect scenarios. SGAN, which 

expanded the training set with generated pseudo-data, further 

improved the accuracy to 93.8%, verifying the effectiveness 

of adversarial data augmentation. Attention-GAN, which 

introduced an attention mechanism to optimize feature 

selection, achieved an accuracy of 95.4%, but it did not design 

specialized modules to address the high-dimensional 

redundancy of high-frequency textures, limiting feature 

selection efficiency. The proposed model, integrating multi-

modal texture features, multi-head self-attention selection, and 

dual-task collaborative mechanisms, achieved an accuracy of 

98.7% and an F1 score of 97.8%, improving by 3.3% and 3.8%, 

respectively, compared to Attention-GAN. The core reason for 
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this improvement lies in the MSA layer's parallel selection 

across 8 subspaces, which precisely removes redundant noise 

from high-frequency textures. Additionally, the dual-task 

collaborative optimization enabled the model to better meet 

the dual needs of classification and prediction, significantly 

improving recognition accuracy and generalization ability in 

small sample scenarios. 

 

Table 1. Fatigue damage detection performance comparison 

of models 

 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Macro-

F1 (%) 

SVM+LBP 78.3 75.6 73.2 74.4 72.1 

CNN+GLCM 85.7 83.1 81.5 82.3 80.7 

ResNet50 

(Full-sup) 
89.2 87.5 86.8 87.1 85.3 

FixMatch 91.5 90.2 89.7 89.9 88.5 

SGAN(Baseline) 93.8 92.6 91.9 92.2 90.8 

Attention-GAN 95.4 94.3 93.7 94.0 92.6 

Proposed  

Model 
98.7 97.9 97.6 97.8 96.9 

 

Table 2 presents a comparison of micro-defect distribution 

prediction performance. The fully supervised U-Net model 

achieved an MAE of 0.072 and an IoU of only 65.3%. Its 

segmentation network design focuses more on semantic 

boundary extraction rather than continuous quantification of 

defect density. Additionally, the lack of data augmentation 

mechanisms in small sample scenarios led to larger prediction 

errors. SGAN, by adding a prediction branch, reduced MAE 

to 0.051 and improved IoU to 72.6%. The introduction of 

pseudo-data alleviated the sample scarcity problem, but it did 

not optimize feature selection, and noise interference from 

high-frequency textures still caused insufficient defect region 

matching. Attention-GAN + prediction branch further reduced 

MAE to 0.043 and improved IoU to 76.8%. The attention 

mechanism's focus on key areas improved prediction accuracy, 

but the single attention head was insufficient to meet the multi-

scale feature requirements of high-frequency textures. The 

proposed model achieved an MAE of only 0.030, SSIM of 

0.92, and IoU of 85.4%, improving by 30.2%, 7.0%, and 

11.2%, respectively, compared to Attention-GAN + prediction 

branch. This advantage is attributed to two aspects: first, the 

MSA layer’s multi-subspace feature selection effectively 

enhanced the correlation between defect region texture 

features and spatial distribution; second, the MSE-SSIM 

combined loss function considers both numerical precision 

and structural consistency, preventing the loss of details in the 

heatmap caused by using a single MSE loss, making the 

predicted results align with both the density quantification of 

real defects and the topological consistency of spatial 

distribution. The PSNR reached 37.1dB, further verifying the 

model's precise quantification ability for defect distribution. 

 

Table 2. Micro-defect distribution prediction performance 

comparison of models 

 

Model MAE SSIM 
IoU 

(%) 

PSNR 

(dB) 

MRE 

(%) 

U-Net (Full-sup) 0.072 0.78 65.3 28.5 8.3 

SGAN 

(AddPredBranch) 
0.051 0.83 72.6 31.2 6.5 

Attention-GAN 

(AddPredBranch) 
0.043 0.86 76.8 33.7 5.7 

Proposed Model 0.030 0.92 85.4 37.1 3.9 

3.4 Ablation experiments 

 

To validate the effectiveness of the core modules of the 

proposed model, five ablation experiments were designed 

based on the benchmark architecture to analyze the 

independent contributions of the multi-head self-attention 

(MSA) layer, dual-task branches, GAN loss, and SSIM loss. 

The results are shown in Table 3. 

 

Table 3. Ablation experiment results 

 

Ablation Group 
Accuracy 

(%) 

F1-Score 

(%) 
MAE SSIM 

IoU 

(%) 

Full Model (Proposed) 98.7 97.8 0.030 0.92 85.4 

w/o MSA Layer 94.2 93.5 0.048 0.85 74.1 

w/o Dual-Task Branch 

(Only Classification) 
- 95.1 - - - 

w/o Dual-Task Branch 

(Only Prediction) 
- - 0.038 0.89 79.6 

w/o GAN Loss (Only 

Semi-Supervised + MSA) 
92.6 91.8 0.053 0.82 71.3 

w/o SSIM Loss 

 (Only MSE) 
97.5 96.7 0.035 0.87 80.2 

 

After removing the MSA layer, the model's accuracy 

dropped to 94.2%, F1 score decreased by 4.3%, MAE 

increased to 0.048, and IoU decreased by 11.3%. This 

indicates that the MSA layer is a key component for improving 

model performance. Its core role is to focus on the key defect-

related texture regions by performing multi-subspace parallel 

computation of scaled dot-product attention, accurately 

filtering out redundant noise from high-frequency textures. 

This significantly improves the classification and prediction 

accuracy, especially in subtle texture scenarios such as micro-

cracks. The ablation experiment of the dual-task branch shows 

that when only the classification branch is retained, the F1 

score is 95.1%, which is a decrease of 2.7% compared to the 

full model. When only the prediction branch is retained, MAE 

is 0.038 and IoU is 79.6%, which is an increase of 26.7% and 

6.8%, respectively, compared to the full model. This validates 

the necessity of dual-task collaborative optimization. The 

feature requirements for classification and prediction tasks are 

complementary: the classification task focuses on semantic 

distinction features, while the prediction task emphasizes 

spatial distribution features. The dual-task branch shares the 

feature encoding layer and MSA selection layer, enabling the 

extracted features to simultaneously possess semantic 

distinguishability and spatial refinement, achieving the 

"1+1>2" collaborative effect. 

After removing GAN loss, the model's accuracy dropped to 

92.6%, F1 score to 91.8%, MAE to 0.053, and IoU to only 

71.3%, showing a significant performance decline. This result 

demonstrates that the pseudo-texture-pseudo-distribution 

paired data generated by GAN loss not only compensates for 

the scarcity of real labeled samples but also enriches the 

diversity of defect scenarios by approximating the real data 

distribution, effectively alleviating the distribution shift 

problem in small sample scenarios, and providing a more 

comprehensive feature learning foundation for the model. 

After removing SSIM loss, the model's accuracy remained at 

97.5%, but SSIM decreased to 0.87, and IoU dropped by 5.2%. 

This shows that while the single MSE loss can guarantee small 

numerical errors between predicted and real values, it tends to 

cause distortion in the topological structure of defect 

distributions. In contrast, SSIM loss effectively constrains the 

structural rationality of the predicted heatmap by measuring 
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the consistency of mean, variance, and covariance, making the 

boundary contours and density gradients of the defect regions 

more aligned with the real situation. 

In summary, the benchmark comparison experiments 

validate the significant advantages of the proposed model in 

small sample and high-dimensional texture scenarios, and the 

ablation experiments further confirm the independent 

effectiveness of the MSA layer, dual-task branch, GAN loss, 

and SSIM loss. The organic integration of these modules 

forms the core support for the model's high performance. 

 

3.5 Training process and visualization analysis of 

classification results 

 

  
(a) Comparison of training loss curves (b) Comparison of training classification accuracy curves 

 

Figure 4. Training loss and classification accuracy curves of the proposed model and comparison models 

 

 
 

Figure 5. Confusion matrix of detection results 

 

3069



To evaluate the convergence efficiency and performance 

stability of the MSA-SGAN model during training, its training 

loss and classification accuracy curves were compared with 

those of SGAN, Attention-GAN, FixMatch, and ResNet50. 

The training loss curve in Figure 4 shows that the proposed 

model’s loss rapidly decreased to below 0.05 within 10 epochs, 

significantly faster than SGAN, Attention-GAN, FixMatch, 

and ResNet50, and the final loss remained around 0.05, the 

lowest among all models. This indicates that the proposed 

model has faster training convergence and better loss 

optimization. In the training classification accuracy curve, the 

proposed model reached an accuracy of over 0.98 within 5 

epochs and then stabilized near 1.0. In contrast, SGAN and 

Attention-GAN reached accuracies of 0.94 and 0.95 after 20 

and 15 epochs, respectively, while FixMatch and ResNet50's 

accuracies only approached 0.97. This shows that the proposed 

model not only converges more quickly but also achieves 

higher training classification accuracy. This result validates 

the effectiveness of the multi-head self-attention feature 

selection and dual-task collaborative optimization in MSA-

SGAN: precise filtering of high-frequency textures reduces 

training fluctuations caused by feature redundancy, and 

adversarial data augmentation alleviates the overfitting risk in 

small sample scenarios, enabling the model to rapidly and 

stably achieve superior performance during the training phase, 

laying the foundation for high classification accuracy during 

testing. 

To verify the classification accuracy and category 

discrimination ability of the MSA-SGAN model for the 11 

fatigue damage levels of hydraulic valves, a confusion matrix 

was constructed to quantify the model's recognition 

performance in various damage scenarios. The diagonal 

elements of the confusion matrix in Figure 5 show that the 

model achieves classification accuracy of over 99% for no 

damage, mild/moderate wear with different roughness, micro-

cracks/serious cracks with different lengths, and composite 

damage. Specifically, the identification accuracy for small 

sample defect categories such as micro-cracks (length 50μm, 

75μm) and serious cracks (length 100μm, 120μm) is 100%, 

with only a 1.2% misclassification in the mild wear 

(Ra=0.8μm) samples. Among the non-diagonal elements, the 

confusion rates between different types of damage are all 

below 0.5%, with no misclassification between categories that 

are easily confused, such as micro-cracks and moderate wear. 

The global classification accuracy reaches 99.9%. This result 

shows that MSA-SGAN, through multi-modal high-frequency 

texture fusion and multi-head self-attention feature selection, 

can effectively capture the differentiated texture features of 

various types and levels of hydraulic valve damage, 

significantly improving the classification accuracy and 

category discrimination, especially demonstrating excellent 

recognition stability in small sample defect categories, thus 

verifying the model’s reliable classification ability in complex 

damage scenarios. 

 

 

4. DISCUSSION 

 

The high performance of the proposed model is attributed 

to the collaborative optimization of multiple modules. Its core 

mechanisms can be analyzed from three dimensions: feature 

representation, feature selection, and task collaboration. The 

multi-modal high-frequency texture fusion strategy integrates 

the advantages of wavelet transform, gray-level co-occurrence 

matrix, and LBP to capture the edge mutation of micro-defects, 

the global distribution uniformity, and the local structural 

differences, forming a comprehensive defect representation 

that effectively solves the problem where single features 

cannot cover the various types of defects. The multi-head self-

attention layer selects high-dimensional texture features in 

parallel through 8 subspaces, accurately focusing on defect-

related regions, reducing the background and noise 

redundancy from 62% to 28%, and significantly improving 

feature extraction efficiency and purity, especially for the 

complex characteristics of hydraulic valve high-frequency 

textures. The dual-task collaborative mechanism enables the 

classification and prediction tasks to promote each other: the 

classification task guides the model to learn discriminative 

features for defect levels, and the prediction task strengthens 

the topological modeling of defect spatial distribution. By 

optimizing the mixed loss function, the model achieves 

integrated performance improvement for "detection-

prediction," avoiding feature bias in a single-task architecture. 

Compared with existing research, the proposed method 

shows significant advantages in the fields of hydraulic valve 

damage diagnosis and defect distribution prediction. In 

hydraulic valve damage detection, a CNN + semi-supervised 

method proposed by IEEE TIE in 2023 achieved an accuracy 

of 92.1%, while the proposed method improved by 6.6%. The 

core reason lies in the introduction of the multi-head self-

attention layer to optimize high-dimensional texture selection, 

and the use of GAN to generate pseudo-data compensates for 

the lack of supervision signals in small sample scenarios, 

effectively alleviating the overfitting problem. In the defect 

distribution prediction field, a U-Net + attention model 

proposed by Mech. Syst. Signal Process. in 2022 achieved an 

IoU of 76.2%, while the proposed method improved by 9.2%. 

The key innovation is that the semi-supervised generative 

mechanism expands the sample distribution of rare defect 

scenarios, and the MSE-SSIM combined loss function 

balances numerical precision and structural consistency, 

preventing prediction distortion caused by single loss. 

Regarding the research on GAN and attention fusion, a 2024 

Neurocomputing study did not design specialized modules to 

address the high-dimensional redundancy of high-frequency 

textures and focused only on the classification task. In contrast, 

the proposed method, through the texture-adaptive multi-head 

self-attention structure and dual-task architecture, not only 

improves the specificity of feature selection but also expands 

the application of GAN in industrial defect diagnosis, 

achieving integration of detection and prediction. 

This study still has three limitations, which point to 

directions for future improvement. First, the generator's ability 

to model complex defect distributions such as multiple crack 

intersections and non-uniform wear is insufficient. In such 

scenarios, IoU is only 81.2%, lower than 89.5% for uniform 

defects. This is primarily due to the existing transposed 

convolution architecture's inability to capture spatial 

dependencies in complex defects. Second, ROI region 

cropping depends on YOLOv8 object detection. If the 

hydraulic valve posture deviates significantly, cropping errors 

can occur, affecting subsequent feature extraction accuracy. 

Finally, although the inference speed of 23ms/frame meets the 

online monitoring needs, it still requires further improvement 

in efficiency in complex scenarios involving parallel 

monitoring of multiple devices. Future optimizations can 

focus on four aspects: introducing cross-scale multi-head 

attention to enhance the fusion of defect features at different 
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scales and improve the representation of complex defects; 

designing a Transformer-based generator that uses self-

attention mechanisms to model long-range spatial 

dependencies of defects, improving the prediction accuracy 

for complex distributions; integrating vibration signals and 

temperature data to construct a "image + time-series" multi-

modal diagnostic framework, enriching defect representation 

dimensions; and achieving lightweight optimization through 

model pruning and quantization techniques, adapting it for 

embedded industrial equipment deployment, and expanding 

the engineering application scope. 

The industrial application prospects of this model are broad, 

with the core advantages being small sample adaptability and 

integrated diagnostic capabilities. The model can be directly 

integrated into hydraulic valve predictive maintenance 

systems to achieve "real-time detection - distribution 

quantification - life prediction" closed-loop management, 

providing precise data support for equipment maintenance 

decisions. It requires only 10%-15% labeled samples to 

achieve high performance, greatly reducing the labeling cost 

of industrial datasets and solving the problem of scarce 

labeling resources in industrial scenarios. Its noise-resistant 

and multi-defect scale adaptability not only applies to 

hydraulic valves but can also be extended to the defect 

diagnosis of other hydraulic components such as pumps and 

cylinders, providing technical support for the overall 

reliability improvement of hydraulic systems and holding 

significant engineering application value and promotion 

potential. 

 

 

5. CONCLUSION 

 

To address the three core challenges faced in hydraulic 

valve fatigue damage detection and micro-defect distribution 

prediction in industrial scenarios—sample scarcity, high-

dimensional redundancy of high-frequency textures, and task 

fragmentation—this paper proposes an integrated model that 

combines high-frequency image texture with multi-head self-

attention semi-supervised GANs. The model uses adversarial 

learning as the core framework, achieving dual objectives of 

damage level recognition and defect distribution 

quantification under small sample conditions, providing an 

effective technical solution for precise diagnosis and 

predictive maintenance of hydraulic valves. 

The key innovations of the model lie in three dimensions: 

the multi-modal high-frequency texture fusion strategy 

integrates the advantages of wavelet transform, gray-level co-

occurrence matrix, and LBP, capturing the edge mutation of 

micro-defects, global distribution uniformity, and local 

structural differences, thereby building a comprehensive 

defect representation system that effectively addresses the 

issue where single features cannot cover the variety of defect 

types; the dual-task model architecture embeds a multi-head 

self-attention layer in the discriminator, parallelly selecting 

key information from high-dimensional textures through 

multiple subspaces, eliminating redundant noise, while 

designing classification and prediction dual-task branches to 

achieve collaborative optimization of feature extraction, 

overcoming the task fragmentation limitations of traditional 

models; the hybrid loss function integrates Wasserstein 

generative adversarial loss, weighted cross-entropy loss, and 

MSE-SSIM combined loss, ensuring both the stability of 

adversarial training and the generalization ability of small-

sample classification, while also considering numerical 

precision and structural consistency in defect distribution 

prediction, providing crucial support for dual-task 

collaborative optimization. 

Systematic verification based on real hydraulic valve 

accelerated fatigue experimental datasets shows that the model 

demonstrates excellent overall performance: fatigue damage 

detection accuracy reaches 98.7%, with an F1 score of 97.8%, 

and the structural similarity of micro-defect distribution 

prediction reaches 0.92, with an IoU of 85.4%. Compared to 

traditional methods, semi-supervised learning methods, and 

existing deep learning methods, the model achieves significant 

improvements in detection accuracy and prediction quality, 

with performance advantages confirmed through statistical 

significance tests. Ablation experiments further confirm that 

the multi-head self-attention layer, dual-task branches, 

generative adversarial loss, and SSIM loss all play critical 

roles in the model’s performance, and their organic integration 

is the core reason for the high performance. 

This study not only provides a new technical approach for 

hydraulic valve fatigue damage detection and micro-defect 

distribution prediction, but also accumulates valuable 

experience in small sample high-dimensional texture data 

processing and dual-task collaborative learning. The model’s 

small sample adaptability significantly reduces the labeling 

cost of industrial datasets, and its integrated diagnostic 

capability meets the practical needs of predictive maintenance. 

It also possesses strong noise resistance and multi-scenario 

transferability, which can be extended to defect diagnosis of 

other hydraulic components such as pumps and cylinders. In 

the future, through cross-scale feature fusion, multi-sensor 

data integration, and lightweight optimization, the model's 

adaptation to complex scenarios and engineering deployment 

efficiency can be further improved, providing stronger 

technical support for enhancing the reliability of industrial 

equipment. 
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