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Detailed Face masks present a significant challenge part, such as balancing privacy rights
and public safety. Which rely on visible features and struggle with small faces, lighting,
camera angles, to address this problem. This paper introduces YOLO-ISAM, an improved
model to detect Masked Faces Recognition (MFR). Our approach network was upgraded
with an Improved Spatial Attention Mechanism (ISAM) in the backbone and a new fusion
layer of YOLO, which increasing the prediction contributions to face detection. The ISAM
Module leverages parallel max, average, and median pooling operations to generate a more
robust spatial attention map, allowing the model to focus on the most relevant facial regions
obscured by masks. We evaluate the proposed model on the four dataset The ChokePoint,
VIDMASK, Moxa3k, and LFW-SM datasets were used as benchmarks owing to the lack of
video datasets with masked individuals. Experimental results demonstrate that YOLO-
ISAM significantly outperforms of the masked face detection performance across multiple
datasets, achieving Accuracy rates of 92%, 99%, 91%, and 100% on the respective datasets.

1. INTRODUCTION

Recent studies have proven their ability to accurately detect
people with occluded faces, that is, whether they have
occlusions (in the upper or lower part of the face) under low-
light conditions [1]. However, the accuracy of the results is
related to the database used, noting that all research that dealt
with knowing the identity of a person who suffers from facial
occlusion was based on data in which the person’s face is very
close [2, 3]. This is a challenge in this research, which is the
person wearing the mask and tracking him from a distance
(several meters), as is the case in offices, governmental and
private institutions, and hospitals. Therefore, there is a need
for further development to keep pace with these needs and
changes in the real world [4, 5]. Deep learning-based
categorization of object detection algorithms is into two
groups: two-stage and one-stage approaches [6]. Two-stage
methods, such as Region-based Convolutional Neural
Networks (R-CNN), Fast R-CNN, Faster R-CNN, and Mask
R-CNN, involve a two-step process where potential Regions
of Interest (ROIs) are proposed in the input image and then
classified and regressed. bounding boxes and class labels is
one-stage methods that directly predict performing regression
on a dense sampling of predefined locations in the image
without first proposing regions [7]. The difference between
them is that two-stage detection algorithms extract features
and then determine the location of the target objects among the
candidate regions. The one-stage method directly determines
and classifies the location of an object [8]. A single-shot
multi_box detector (SSD) [9] is an object-detection approach
that relies on a single neural network. One of the methods for
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single-stage detection is the YOLO [10] series and SSD series;
the YOLO series is faster but less accurate than the two-stage
detectors. It is faster, that is, less time-consuming, by reducing
the calculations that result from skipping the step of creating
suggestion boxes, every box must detect and classify objects
in an area, because of 7x7 square images divided [11].
YOLOvI was less flexible as it required changing the size of
the input because the last two layers in it were fully connected,
hence the updates to it, as YOLOv2 [12] and YOLOV3 [13],
An anchor mechanism was used to address these flaws it
improves accuracy. YOLOV2 also uses the k-means algorithm
to size the input to fit the width to height of the anchor boxes.
The release of YOLOv4 represents many improvements
compared to previous versions, such as mosaic data
augmentation and integration of partial cross-stage
connections (CSP) and merging them with Darknet53 to create
CSPDarknet53, which in turn significantly reduces the
computational complexity [14, 15]. Among these, YOLOVS is
lightweight and portable YOLOVS also uses CSPDarknet53 to
capture depth features from input images [16]. This creates a
clear research gap: the lack of a robust detection model
specifically optimized for the small-size and high-occlusion
characteristics of masked faces at a distance.

A solution was presented to address the challenge of
achieving an accurate mask detection under low-light
conditions [17]. The proposed approach combines an attention
mechanism with a CSPDarknet53 network model, and
attention mechanisms have attracted significant interest in the
field of deep learning. The Convolutional Block Attention
Module “CBAM” combines both the Channel Attention
Module (CAM) and Spatial Attention Module (SAM) to
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enrich the original feature map [18]. The primary weakness of
this strategy is its generality and post-hoc application.
Modules like CBAM are designed for general vision tasks and
are not optimized for the specific spatial configuration of a
masked face, where the upper half (eyes, brow) becomes
critically important. Furthermore, simply adding these
modules does not guide the backbone to fundamentally learn
more robust features for occlusion; it only refines the features
after they have been extracted. This often leads to suboptimal
feature representation for the specific MFR task. Wang et al.
[19] integrated attention modules. The Convolutional Block
Attention Module (CBAM) has been a popular choice, with
studies like reference [3] appending it to a backbone network
to refine features. However, this post-hoc application of
generic attention is often suboptimal, as it does not guide the
feature extraction process from within the network's core
layers. The spatial attention mechanism aims to highlight
significant spatial features in the original feature map [18].
Researchers have investigated the impact of factors such as
maximum pooling and average pooling within the channel
attention module, as well as the effect of the order in which the
channel attention module and SAM are applied on the
performance of the model [20]. Spatial Attention is one of the
most important aspects of neural networks, and it helps
identify the most important parts of the input data; therefore,
less important details can be neglected. Such a mechanism
facilitates the increase in representations in the network by
promoting more essential output areas to be selectively
boosted [21, 22].

However, the quality of this imaging technique is
sometimes poor, this may be affected by the use of different
angles of the face, lighting conditions, partial or total
occlusion, low resolution, or noisy imaging. For instance,
researchers can eliminate certain factors (such as the
darkening of face images or the less ideal positioning angle)
by preprocessing face images and then selecting the most
suitable angle for the hardware [23, 24].

This paper improves YOLO-ISAM for these challenges in
detection methods by Improving Spatial Attention Mechanism
(ISAM) approach. which we integrate directly into the
CSPDarknet53 backbone. Unlike simply adding attention
modules, our ISAM is structurally embedded, using parallel
max, average, and median pooling paths to generate a more
powerful spatial attention map. This allows the network to
dynamically focus on the most salient and visible facial
regions—such as the eyes and forehead—while suppressing
irrelevant background clutter, which is crucial for detecting
small, occluded faces. In our experiments, the input data
consisted of three datasets: ChokePoint, VIDMASK, Moxa3k,
and LFW-SM. By integrating the attention mechanism into the
YOLO-ISAM model, our objective is to refine the detection
process, enabling the model to focus on key regions within the
images, thereby improving its effectiveness in detecting
masked faces. Simultaneously, the improved model aims to
detect faces despite their size differences and low accuracy.
The main contributions of this study are summarized as
follows.

* Introduce a structurally modified YOLOvVS5 backbone that
embeds attention directly within the feature extraction process.
This is achieved by replace in original CSP1 module in the
backbone with ISAM designed to better highlight the critical
information, thereby facilitating the extraction of more
relevant features. Additionally, every Convolutional
BatchNormalize LeakyReLU (CBL) present in the backbone
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was replaced with a Convolutional BatchNormalize SiLU
(CBS).

* In addition to the level of feature fusion layers that
combine feature maps from different levels, these layers are
augmented to collect more specific details about the small
faces. Thus, four predictive heads are generated, which
significantly reduce the impact of changes in object size and
improve the ability to detect smaller objects in the Neck part.

* To improve the multi-perspective spatial contexts through
parallel pooling operations. The ISAM operations module
(median pooling, average pooling, and max pooling) was
processed through a dedicated Convolution-BatchNorm-SiLU
(CBS) block. This ensures that important information from
different pooling methods is preserved and highlighted,
resulting in a richer and more robust feature representation.

2. METHODS

In this section, we first provide a brief introduction to the
deep learning-based detection method for masked face
detection, as well as an introduction to the attention
mechanism. Finally, we describe the CSPDarknet model and
its improvements.

2.1 The YOLOV5 method

The YOLOV5 architecture consists of components:
Backbone “CSPDarknet”, Neck, and Output, which are
responsible for extracting informative features from the input
images and combining these features to produce three sets of
feature maps at different scales. Finally, the Output, which is
the last part of the network, utilizes multiscale feature maps
generated by the neck to predict the presence and location of
objects in the input image. The model architecture includes a
convolutional neural network as the backbone, designed from
the input image, extract multi-scale feature maps through
successive convolutional and pooling operations. The
backbone produces four layers of feature maps with varying
dimensions. These multi-scale maps are then processed by the
neck network, which merges them to enhance contextual
information and prevent data loss, using Feature Pyramid
Network (FPN) and Path Aggregation Network (PAN)
structures. The FPN transfers strong semantic features from
the higher to lower layers, whereas the PAN improves
localization features by moving information from lower to
higher layers. Together, these structures significantly enhance
the feature fusion capability of the neck network. This fusion
generated three scales of new feature maps: 76 x 76 x 255, 38
x 38 x 255, and 19 x 19 x 255, where 255 denotes the number
of channels. These different sizes enable the detection of
objects at various scales: larger objects from the 19 x 19 x 255
maps, and smaller objects from the 76 x 76 x 255 maps. The
final detection and classification of objects occur in the output
network.

2.2 The Spatial Attention Module (SAM)

The performance of deep learning models can be
significantly improved by incorporating a spatial attention
mechanism, particularly in image-processing and object-
detection tasks. This mechanism operates by concentrating on
specific regions of the input image that are deemed vital for
the task at hand, thereby enabling the model to focus on the



areas containing critical information [25]. For example, in
object detection, a spatial attention mechanism can
significantly improve the detection accuracy of smaller or less
prominent objects by ensuring that these regions receive more
attention  during  the  feature-extraction  process.
Mathematically, two maps are created, each of which indicates
the average pool features Faye and maximum pool features Fmax
across the channel. they were combined using a convolutional
layer to obtain a two-dimensional (2D) spatial attention map.
Briefly, it is calculated as follows [19].

Mg =0 (f7X7([Favg;Fmax])) (D
where the equation symbols indicate the following: M; to the
result of the spatial attention mechanism, ¢ to the sigmoid

function, 7 x 7 and to the filter size for the convolution
operation f.

2.3 Improved CSPDarknet
mechanism

with spatial attention

To detect faces, we improved the detection method of
CSPDarknet using an attention mechanism. As illustrated in
Figure 1, which has several improvements to the YOLOvS
model and the SAM: (1) The CBL module was replaced by
CBS in the architecture. (2) The improved SAM was

BackBone

integrated into the backbone instead of the CSP1_X module.
(3) A new feature fusion layer was added and CSP2_X was
replaced with a C3 x 3 unit in the neck. (4) The SAM is
improved by separating and increasing the number of pooling
channels.

First, compared with the original YOLOVS architecture, the
CBL in the backbone was replaced by CBS to enhance the
feature representation ability. Note that CBL consists of
“convolutional layer, batch normalization (BN), and leakyrelu
activation function”, whereas for CBS, it is only the activation
function replaced by The Sigmoid Linear Unit, and thus it
becomes as follows (Convolutional Layer, BN, The Sigmoid
Linear Unit (SiLU) Activation Function). The main
importance of this replacement is the improvement offered by
SiLU activation, as it combines the properties of both linear
and nonlinear activation, allowing it to smoothen the
activation function more than LeakyReLU. This smoothness
can contribute to improving the deep learning process of the
CSPDarknet model by reducing the problem of vanishing
gradients, which is a common problem in deep neural
networks. In addition, it improves the prediction accuracy and
reduces the error in the object detection process, especially in
complex tasks, such as detecting occluded faces or small
objects in images. Therefore, every CBL used in the
architecture is replaced by a CBS, as in an SPP module and
neck. As in Figure 1.
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Figure 1. Proposed of YOLO-ISAM architecture
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Second, in the backbone part, the CSP1 X module was
replaced with an improved spatial attention mechanism
(ISAM) to focus on important features and ignore weak
features to obtain more accurate and faster results. Integrating
the spatial attention mechanism into this site instead of the
CSP1 X unit in the backbone represents a strategic
improvement that enhances the accuracy and effectiveness of
the model. The process of extracting features starts from very
early stages, and because of its ability to focus on important
areas and ignore unnecessary information, it contributes to the
mechanism of spatial attention in reducing the loss of vital
information during the pooling and miniaturization that occur
in multiple stages of the network.

Third, for the neck part, this includes adding a new feature
fusion layer and links or paths to the structure to create a map
of features larger than 152 x 152 x 255. The fusion layer
operations include unsampling and concatenation, which are
fed from the backbone after adding the ISAM. and CSP2 X
was replaced with a C3 x 3 unit. The C3*3 module (referring
to the use of a triple convolutional layer sequence of 33 size).
Using a sequence of 3 x 3 convolutional layers allows the
model to better handle spatial variations in the image, and the
model may obtain better and more stable gradients during the
training process. Although C3*3 may increase the number of
calculations compared to the CSP2_X unit, it achieves a better
balance between accuracy and efficiency by improving the
exploitation of gradients and information flow over the
network. In addition, replacing the CSP2_X module with the
C3 x 3 module improved the inference speed by reducing the
size of the model without sacrificing its ability to identify
valuable visual features. To clarify, CSP2 X differs from
CSP1_X in its backbone in that it replaces the remaining
network with a 2 x X CBS to enhance its ability to integrate
network features. where X is the number of units. Figure 2
shows the improved CSPDarknet that apply on Yolov5
architecture.
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Fourth, to focus on the small amount of information visible
from the face, an improved attention mechanism was added to
the backbone of the YOLOVS model, as illustrated in Figure 2.
The importance of incorporating the attention mechanism
module at this location into the backbone replacement with the
CSP1 X module represents a strategic improvement that
contributes to enhancing the accuracy and effectiveness of the
model. In terms of the feature extraction process that starts at
very early stages and owing to its ability to focus on important
regions and eliminate unnecessary information, the spatial
attention mechanism contributes to reducing the loss of vital
information that occurs at multiple stages of the network. The
SAM adopts three separate operations to generate three maps:
average, maximum, and average pooling. This is followed by
the CBS for each map to effectively utilize contextual
information, and then combined with CBS.

Finally, the sigmoid function is used to obtain the final
spatial attention map A. The use of multiple pooling channels,
such as median pooling, average pooling, and max pooling,
allows the model to accommodate a variety of spatial features
from the image. Each type of pooling captures different
aspects of the data, enhancing the model’s understanding of
the fine and varied details in the image. In particular, using
median pooling helps reduce noise from outliers in the data,
resulting in a higher stability in the model’s response. While
Avg-Pooling provides an average estimate of the features at
the pixel level, max-pooling captures the sharpest and most
robust features. In addition, separating the pooling channels
allows each to focus on specific aspects of the image without
being affected by the others.

The block diagram of the SAM is illustrated in Figure 2 The
spatial attention mechanism can be mathematically
represented as follows the algorithm 1 for ISAM.

Algorithm 1: ISAM

Input: Tensor channel input X

Output: Tensor Attention-weighted output Y
1. Begin:

2. Step 1: Perform Median-Pooling, Avg-Pooling, and
Max-Pooling on input tensor X:

3. Xmed=medianPooling(X)
4.  Xavg=avgPooling(X)
5. Xmax=maxPooling(X)

6. Step 2: Pass the pooled tensors through their
respective Convolution-Batch Normalization- SiLL.U
(CBS) blocks:

7. CBSmed=CBS(Xmed)
8. CBSavg=CBS(Xavg)
0. CBSmax=CBS(Xmax)

10. Step 3: Concatenate the outputs of the CBS blocks:
11.ConcatCBS=Concat(CBSmed,CBSavg,CBSmax)
12. Step 4: Pass the concatenated result through another
CBS block:

13.  CombinedCBS=CBS(ConcatCBS)

14. Step 5: Apply SoftMax function to the output of the
final CBS block to generate the attention map:

15. A=SoftMax(CombinedCBS)

16. Step 6: Multiply the original input tensor X
element-wise  with the attention map A to obtain the
final output tensor Y:

17. Y=AxX
18. Step 7: Return the final output tensor Y
19. End




2.4 Detailed implementation of the ISAM module

To enhance the feature representation capabilities of the
backbone network, we introduce the Improved ISAM. The
ISAM leverages multiple pooling strategies to generate a
robust attention map. Figure 2. illustrates the overall structure,
and the detailed forward pass is formulated as follows. Given
an input feature tensor X € RV the ISAM module
computes the output Y through the following steps:

* Multi-Branch Pooling is a three pooling operations in
parallel to capture different spatial contexts:

Median Pooling X,,.q = MedianPool(X), with a kernel
size of K xK and a stride of s. this operation highlight robust.

Average Pooling X,,; = AvgPool(X), with a kernel size
of K xK and a stride of s. this operation captures the mean
spatial context.

MaxPooling X4, = MaxPool(X), with a kernel size of K
x K and a stride of s. this operation emphasizes the salient
features.

Parameter kernel size of k=3 and stride s=1 was chosen for
all pooling operations. This size is enough to capture local
spatial relationships without causing excessive loss of
resolution. and also use 'same' padding to maintain the spatial
dimensions H xW.

* Feature Transformation each pooled feature map is then
passed through an independent (CBS) block.

CBSmeqa = CBS(Xmea)
CBSavg = CBS(Xavg)
CBSmax = CBS(Xmax)

Each convolution in these blocks has kernel size of 3 X3, a
stride of 1, and ‘same’ padding. The number of output
channels for each convolution is set to C, which is typically
C/4 or C/2 to create a bottleneck and reduce computational
overhead. The batch-normalization layer uses a momentum
0.03 and an epsilon of 1e-3.

* Feature fusion and attention map generation are
concatenated the three output CBS blocks channel dimension.

ConcatCBS = [CBSmed' CBSavg: CBSmax] € RSCXHXW

Thus fused tensor is then passesd through a final CBS block
with 1 x 1 convolution to compress the channels back to C.

Combined gs = CBS;,(Concatcgg) € REXHW

Thus is A SoftMax function is applied spatially to normalize
the values into an attention map A where each location (i, j)
sums to 1.

exp (Combinedcgs,; )
A b

2

bW YW exp ( Combinedcgs,, )

Y=A4-X 3)

Feature Recalibration is final output Y is obtained by
performing an element-wise multiplication between the
original input X and the attention map A, effectively re-
weighting the importance of each spatial location,
computational Complexity in ISAM module is operations are
the convolutions within the CBS blocks.
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3. EXPERIMENTAL SETUP
3.1 Dataset

In this study, four sets of video datasets were used:
ChokePoint [26] and ViDMASK ([27]. Studying a video
database is important to produce effective mechanisms for
detecting masked faces and recognizing an individual's
identity. For the third dataset, Moxa3K [28], which we used as
a standard for detecting faces because it is diverse and contains
unclear and crowded samples and different lighting
conditions, and the LFW-SM [29] dataset for mask face facial
image. Table 1. shows the sources of the database.

Table 1. Lists the sources of the databases

No. Dataset Number of Images / Video
1 ChokePoint [26] 48 Video
2 VIDMASK [27] 67 Videos
3 Moxa3k [28] 3000 Image
4 LFW-SM [29] 13233 Image
Table 2. Details of the dataset used
Dataset Total- image Train  Valid Test
Chockpoint 3166 2294 290 582
VIDMASK 7295 5120 727 1448
Moxa3k 2928 2049 293 586
LFW-SM 13233 9263 1324 2646

The Chokepoint Dataset is a real-world surveillance dataset
designed for person identification and verification
experiments. It includes videos captured using three cameras
placed above choke points for pedestrian traffic, resulting in a
dataset that simulates real-world scenarios. The dataset
includes face images captured while a person is walking
through a portal, with variations in illumination conditions,
pose, sharpness, and misalignment owing to automatic face
localization and detection. The Chokepoint Dataset consists of
25 individuals (19 males and 6 females) in Portal 1 and 29
individuals (23 males and 6 females) in Portal 2, totaling 48
video sequences and 64,204 face images. Each sequence is
named based on the recording conditions, such as the portal,
sequence, and camera labels.

The VIDMASK dataset includes videos of unidentified
individuals wearing or not wearing masks in various crowds
and incidental scenarios. Out of 67 videos. The frames were
annotated and shuffled. A total of 20,000 instances of masks
and 2,500 non-mask-wearing individuals were identified in the
images. The VIDMASK dataset was obtained from
“YouTube” and “Pexel.com”. The videos displayed real
environments, with being interviewed and working on daily
tasks, resulting in real poses expressions.

The Moxa3K dataset consists of approximately 3000
images. It contains images of many people and close-up shots
of the people's profiles. Additionally, it includes Google
search images of the population during the pandemic. What
will be mentioned now applies to all the datasets used. The
datasets were divided into training, testing, and validation sets
at ratios of 70, 20, and 10%, respectively.

The Labelled Faces in the Wild simulated masks (LFW-
SM) dataset is contains images with the simulated mask
applied as a standard benchmark dataset used to evaluate the
performance of face recognition systems. It contains 5749
identities with a total of 13233 images. As mentioned earlier,



the objective of masked face recognition is to accurately
identify individuals both with and without masks [30, 31]. The
images in the test pairs are selected across the datasets to
evaluate the robustness of the network. Partitioning was
performed as shown in Table 2 for all datasets.

3.2 Evaluation metrics

To determine the mAP, precision, and recall, the True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). TP refers to the images that were
correctly classified as true, whereas TN denotes the images
that were correctly classified as false. On the other hand, FP
refers to results that have been incorrectly classified as false
but predicted correctly, whereas FN refers to images that have
been correctly classified as true but predicted as false. In the
context of mask detection, TP, FN, FP, and TN were measured
based on the objectless of the detection result, as determined
through the intersection of the wunion measurement.
Intersection over Union (IoU) is a widely used metric for
evaluating the accuracy of regression in object detection
models. It measures the overlap between a predicted bounding
box and its corresponding ground-truth box [28]. An IoU equal
to or greater than 50% is classified as a “True Positive (TP)”,
indicating a correct detection, whereas an IoU below 50% is
classified as a “False Positive (FP)”, indicating an incorrect
detection. “False Negatives (FN)” were determined by
counting objects that were not detected. To measure the
percentage of correct predictions, precision and recall were
calculated using Egs. (4)-(7).

o TP
Precision = TP+ FP 4
TP
Recall = m (5)
1
ap = f P(R) dR 6)
0

L1 AP;

N (7

mAP =

P, R, and N represent the precision, recall rate, and count of
all the objects in each category, respectively.

TP + TN

A = 8
CeUracy = TP TN + FP + FN ®)

3.3 Validation strategy

We used 5-fold cross-validation to rigorously evaluate our
model and prevent overfitting. The data was first split into five
separate groups of equal size, making sure the proportion of
each class was maintained in every group. We then trained and
tested the model five separate times. For each run, we used
four groups for training and held out the fifth for testing. This
process guaranteed that every data point was used for testing
once and only once. Our final results are the average and
variation of these five runs, which gives us a much more
trustworthy measure of how the model will perform on new
data compared to a simple single split.

4. COMPARISON AND ANALYSIS OF EXPERIMENT

This proposed conducted a comparative performance
analysis between the proposed YOLO-ISAM framework and
existing YOLO series models across three benchmark
datasets: ChokePoint, VIDMASK, Moxa3K, and LFW-SM.
As summarized in Table 3, YOLO-ISAM demonstrated
superior detection capabilities, particularly on the ChokePoint
dataset, where it achieved a substantial improvement in mean
AP at 50% intersection-over-union (mAP@50) compared to
baseline models.

The experimental results validate the effectiveness of the
proposed architectural enhancements in addressing the
challenges of masked face detection.

Table 3. Comparison of the performance of the YOLO series with our model

Methods mAP@0.5 Accuracy F1-ScoremAP@0.5 Accuracy F1-ScoremAP@ 0.5 Accuracy F1-Score mAP@ 0.5 Accuracy Sl;ore

Moxa3k LFW-SM

Dataset Chokepoint VIDMASK
YOLOV3 0.35 0.40 0.38 0.50 0.58
YOLOv4 0.36 0.40 039 049[33] 0.55
YOLOVS5 0.45 0.48 0.48 0.86 0.90
YOLOv6 0.44 0.46 0.45 0.81 0.82
YOLOv7 0.48 0.52 0.50 0.77 0.81
YOLOvV8 0.56 0.63 0.61 0.88 0.90
YOLOV9 0.66 0.72 0.73 0.90 0.93
YOLOv10 0.58 0.65 0.62 0.93 0.95
YOLOv11 0.78 0.81 0.78 0.94 0.96
YOLOv12 0.79 0.81 0.79 0.91 0.93

YOLO-ISAM  0.86 0.92 0.91 0.96 0.99

0.55
0.53
0.88
0.81
0.89
0.92
0.91
0.94
0.96
0.91
0.99

0.63 [32] 0.66 0.65 0.94 0.96 0.95
0.68 [34] 0.70 0.69 0.94 0.95 0.95
0.65 [32] 0.66 0.65 0.98 0.98 0.98
0.64 0.67 0.67 0.97 0.98 0.97
0.66 0.68 0.68 0.96 0.99 0.98
0.69 0.75 0.74 0.94 0.97 0.95
0.68 0.74 0.73 0.98 0.99 0.99
0.68 0.74 0.75 0.99 0.99 0.98
0.79 0.88 0.86 0.96 0.98 0.97
0.78 0.83 0.80 0.98 0.99 0.99
0.84 0.91 0.90 0.99 1.00 0.99

Table 4. A comparison of our proposed network with different ablation results of baseline YOLOV5 And Improve YOLOVS

Chokepoint VIDMASK Moxa3K LFW-SM

Dataset Fli- Fl- Fl- Fli-
Methods mAP@0.5 Accuracy Score mAP@0.5Accuracy Score mAP@0.5Accuracy Score mAP@0.5 Accuracy Score
VGG-16 0.32 035 034 0.79 080 079 0.6 048 045 097 0.98 0.97
ResNet-18 0.44 045 045 085 0.85 084 0.2 0.63 063 0098 0.99 0.99
Baseline (CSPDarknet53)  0.38 037 034 081 085 081 0.2 0.58 0.3  0.96 0.97 0.95
CSPDaI“S(Ze;? With 0.40 040 038 083 086 085 0.63 0.60 057  0.99 0.99 0.99
Improve- YOLOvSs with 4, 047 046 087 091 090  0.66 061 061 0098 0.98 0.97

-Fusion Layer
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5. ABLATION STUDY

An ablation study was conducted to systematically evaluate
the contribution of each component in the proposed YOLO-
ISAM architecture. As detailed in Table 4, we incrementally
integrated key modifications—including the ISAM and
additional fusion layers—into the baseline CSPDarknet53
backbone. The experimental framework involved selectively
removing architectural elements to isolate their individual

impact on detection performance across all three datasets.
Furthermore, statistical significance testing using Student's t-
test was performed to validate the observed performance
improvements, with results presented in Table 5. The
consistent improvement observed across all cross-validation
folds, supported by preliminary t-test results, suggests a strong
performance advantage for our model. Future work with more
extensive testing will be needed to confirm statistical
significance with high power.

Table 5. Comparison of YOLOv12 models with YOLO-ISAM models as a Statistical calculation an independent samples t-test

YOLOv12 YOLO-ISAM
Dataset Round Mean % STD % Mean % STD % T-Value P-Value
Chokepoint 25 80.85 1.64 88.42 3.73 9.28 0.0033
VIDMASK 25 93.4 1.71 97.42 2.33 6.95 0.0012
Moxa3K 25 84.26 1.05 88.72 2.40 8.5 0.0018
LFW-SM 25 95.4 2.0 99.4 33 4.69 0.00481
6. CONCLUSIONS S., Mishra, J.P. (2022). A novel machine learning scheme

This paper introduces YOLO-ISAM, an improved method
to detect the face mask recognition. The proposed model was
integrates on improved Spatial Attention Mechanism (ISAM)
directly into the YOLOv5 backbone (CSPDarknet-53), a
structural modification that compels the network to learn
feature representations prioritizing the most salient visible
facial regions. Furthermore, enhancements to the new feature
fusion network improved multi-scale detection capabilities,
which are critical for identifying faces at a distance.
Comprehensive on four databases, two of which are video and
the last are images, which were used as standards, Chockpoint,
VIDMASK, Moxa3dk, and LFW-SM, respectively.
Experimental results show that compared with VGG-16,
Resnet-18, YOLO series, and YOLO-ISAM. In addition, there
are still significant challenges in recognizing masked faces,
such as the lack of datasets and the complexity of face
occlusion. Furthermore, the model's performance is inherently
tied to the diversity of the available training data; a lack of
datasets representing an exhaustive range of mask types,
ethnicities, and extreme lighting conditions remains a
challenge for the field. In future work, we plan to create a
special dataset for masked face recognition. Simultaneously,
we can learn identity from multiple aspects, including voice,
to improve recognition accuracy.
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