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 Detailed Face masks present a significant challenge part, such as balancing privacy rights 

and public safety. Which rely on visible features and struggle with small faces, lighting, 

camera angles, to address this problem. This paper introduces YOLO-ISAM, an improved 

model to detect Masked Faces Recognition (MFR). Our approach network was upgraded 

with an Improved Spatial Attention Mechanism (ISAM) in the backbone and a new fusion 

layer of YOLO, which increasing the prediction contributions to face detection. The ISAM 

Module leverages parallel max, average, and median pooling operations to generate a more 

robust spatial attention map, allowing the model to focus on the most relevant facial regions 

obscured by masks. We evaluate the proposed model on the four dataset The ChokePoint, 

VIDMASK, Moxa3k, and LFW-SM datasets were used as benchmarks owing to the lack of 

video datasets with masked individuals. Experimental results demonstrate that YOLO-

ISAM significantly outperforms of the masked face detection performance across multiple 

datasets, achieving Accuracy rates of 92%, 99%, 91%, and 100% on the respective datasets. 
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1. INTRODUCTION 

 

Recent studies have proven their ability to accurately detect 

people with occluded faces, that is, whether they have 

occlusions (in the upper or lower part of the face) under low-

light conditions [1]. However, the accuracy of the results is 

related to the database used, noting that all research that dealt 

with knowing the identity of a person who suffers from facial 

occlusion was based on data in which the person’s face is very 

close [2, 3]. This is a challenge in this research, which is the 

person wearing the mask and tracking him from a distance 

(several meters), as is the case in offices, governmental and 

private institutions, and hospitals. Therefore, there is a need 

for further development to keep pace with these needs and 

changes in the real world [4, 5]. Deep learning-based 

categorization of object detection algorithms is into two 

groups: two-stage and one-stage approaches [6]. Two-stage 

methods, such as Region-based Convolutional Neural 

Networks (R-CNN), Fast R-CNN, Faster R-CNN, and Mask 

R-CNN, involve a two-step process where potential Regions 

of Interest (ROIs) are proposed in the input image and then 

classified and regressed. bounding boxes and class labels is 

one-stage methods that directly predict performing regression 

on a dense sampling of predefined locations in the image 

without first proposing regions [7]. The difference between 

them is that two-stage detection algorithms extract features 

and then determine the location of the target objects among the 

candidate regions. The one-stage method directly determines 

and classifies the location of an object [8]. A single-shot 

multi_box detector (SSD) [9] is an object-detection approach 

that relies on a single neural network. One of the methods for 

single-stage detection is the YOLO [10] series and SSD series; 

the YOLO series is faster but less accurate than the two-stage 

detectors. It is faster, that is, less time-consuming, by reducing 

the calculations that result from skipping the step of creating 

suggestion boxes, every box must detect and classify objects 

in an area, because of 7×7 square images divided [11]. 

YOLOv1 was less flexible as it required changing the size of 

the input because the last two layers in it were fully connected, 

hence the updates to it, as YOLOv2 [12] and YOLOv3 [13], 

An anchor mechanism was used to address these flaws it 

improves accuracy. YOLOv2 also uses the k-means algorithm 

to size the input to fit the width to height of the anchor boxes. 

The release of YOLOv4 represents many improvements 

compared to previous versions, such as mosaic data 

augmentation and integration of partial cross-stage 

connections (CSP) and merging them with Darknet53 to create 

CSPDarknet53, which in turn significantly reduces the 

computational complexity [14, 15]. Among these, YOLOv5 is 

lightweight and portable YOLOv5 also uses CSPDarknet53 to 

capture depth features from input images [16]. This creates a 

clear research gap: the lack of a robust detection model 

specifically optimized for the small-size and high-occlusion 

characteristics of masked faces at a distance. 

A solution was presented to address the challenge of 

achieving an accurate mask detection under low-light 

conditions [17]. The proposed approach combines an attention 

mechanism with a CSPDarknet53 network model, and 

attention mechanisms have attracted significant interest in the 

field of deep learning. The Convolutional Block Attention 

Module “CBAM” combines both the Channel Attention 

Module (CAM) and Spatial Attention Module (SAM) to 
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enrich the original feature map [18]. The primary weakness of 

this strategy is its generality and post-hoc application. 

Modules like CBAM are designed for general vision tasks and 

are not optimized for the specific spatial configuration of a 

masked face, where the upper half (eyes, brow) becomes 

critically important. Furthermore, simply adding these 

modules does not guide the backbone to fundamentally learn 

more robust features for occlusion; it only refines the features 

after they have been extracted. This often leads to suboptimal 

feature representation for the specific MFR task. Wang et al. 

[19] integrated attention modules. The Convolutional Block 

Attention Module (CBAM) has been a popular choice, with 

studies like reference [3] appending it to a backbone network 

to refine features. However, this post-hoc application of 

generic attention is often suboptimal, as it does not guide the 

feature extraction process from within the network's core 

layers. The spatial attention mechanism aims to highlight 

significant spatial features in the original feature map [18]. 

Researchers have investigated the impact of factors such as 

maximum pooling and average pooling within the channel 

attention module, as well as the effect of the order in which the 

channel attention module and SAM are applied on the 

performance of the model [20]. Spatial Attention is one of the 

most important aspects of neural networks, and it helps 

identify the most important parts of the input data; therefore, 

less important details can be neglected. Such a mechanism 

facilitates the increase in representations in the network by 

promoting more essential output areas to be selectively 

boosted [21, 22]. 

However, the quality of this imaging technique is 

sometimes poor, this may be affected by the use of different 

angles of the face, lighting conditions, partial or total 

occlusion, low resolution, or noisy imaging. For instance, 

researchers can eliminate certain factors (such as the 

darkening of face images or the less ideal positioning angle) 

by preprocessing face images and then selecting the most 

suitable angle for the hardware [23, 24].  

This paper improves YOLO-ISAM for these challenges in 

detection methods by Improving Spatial Attention Mechanism 

(ISAM) approach. which we integrate directly into the 

CSPDarknet53 backbone. Unlike simply adding attention 

modules, our ISAM is structurally embedded, using parallel 

max, average, and median pooling paths to generate a more 

powerful spatial attention map. This allows the network to 

dynamically focus on the most salient and visible facial 

regions—such as the eyes and forehead—while suppressing 

irrelevant background clutter, which is crucial for detecting 

small, occluded faces. In our experiments, the input data 

consisted of three datasets: ChokePoint, VIDMASK, Moxa3k, 

and LFW-SM. By integrating the attention mechanism into the 

YOLO-ISAM model, our objective is to refine the detection 

process, enabling the model to focus on key regions within the 

images, thereby improving its effectiveness in detecting 

masked faces. Simultaneously, the improved model aims to 

detect faces despite their size differences and low accuracy. 

The main contributions of this study are summarized as 

follows. 

• Introduce a structurally modified YOLOv5 backbone that 

embeds attention directly within the feature extraction process. 

This is achieved by replace in original CSP1 module in the 

backbone with ISAM designed to better highlight the critical 

information, thereby facilitating the extraction of more 

relevant features. Additionally, every Convolutional 

BatchNormalize LeakyReLU (CBL) present in the backbone 

was replaced with a Convolutional BatchNormalize SiLU 

(CBS).  

• In addition to the level of feature fusion layers that 

combine feature maps from different levels, these layers are 

augmented to collect more specific details about the small 

faces. Thus, four predictive heads are generated, which 

significantly reduce the impact of changes in object size and 

improve the ability to detect smaller objects in the Neck part. 

• To improve the multi-perspective spatial contexts through 

parallel pooling operations. The ISAM operations module 

(median pooling, average pooling, and max pooling) was 

processed through a dedicated Convolution-BatchNorm-SiLU 

(CBS) block. This ensures that important information from 

different pooling methods is preserved and highlighted, 

resulting in a richer and more robust feature representation. 

 

 

2. METHODS 

 

In this section, we first provide a brief introduction to the 

deep learning-based detection method for masked face 

detection, as well as an introduction to the attention 

mechanism. Finally, we describe the CSPDarknet model and 

its improvements. 

 

2.1 The YOLOv5 method 

 

The YOLOv5 architecture consists of components: 

Backbone “CSPDarknet”, Neck, and Output, which are 

responsible for extracting informative features from the input 

images and combining these features to produce three sets of 

feature maps at different scales. Finally, the Output, which is 

the last part of the network, utilizes multiscale feature maps 

generated by the neck to predict the presence and location of 

objects in the input image. The model architecture includes a 

convolutional neural network as the backbone, designed from 

the input image, extract multi-scale feature maps through 

successive convolutional and pooling operations. The 

backbone produces four layers of feature maps with varying 

dimensions. These multi-scale maps are then processed by the 

neck network, which merges them to enhance contextual 

information and prevent data loss, using Feature Pyramid 

Network (FPN) and Path Aggregation Network (PAN) 

structures. The FPN transfers strong semantic features from 

the higher to lower layers, whereas the PAN improves 

localization features by moving information from lower to 

higher layers. Together, these structures significantly enhance 

the feature fusion capability of the neck network. This fusion 

generated three scales of new feature maps: 76 × 76 × 255, 38 

× 38 × 255, and 19 × 19 × 255, where 255 denotes the number 

of channels. These different sizes enable the detection of 

objects at various scales: larger objects from the 19 × 19 × 255 

maps, and smaller objects from the 76 × 76 × 255 maps. The 

final detection and classification of objects occur in the output 

network. 

 

2.2 The Spatial Attention Module (SAM) 

 

The performance of deep learning models can be 

significantly improved by incorporating a spatial attention 

mechanism, particularly in image-processing and object-

detection tasks. This mechanism operates by concentrating on 

specific regions of the input image that are deemed vital for 

the task at hand, thereby enabling the model to focus on the 
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areas containing critical information [25]. For example, in 

object detection, a spatial attention mechanism can 

significantly improve the detection accuracy of smaller or less 

prominent objects by ensuring that these regions receive more 

attention during the feature-extraction process. 

Mathematically, two maps are created, each of which indicates 

the average pool features Favg and maximum pool features Fmax 

across the channel. they were combined using a convolutional 

layer to obtain a two-dimensional (2D) spatial attention map. 

Briefly, it is calculated as follows [19]. 

 

𝑀𝑆 = 𝜎 (𝑓7×7([𝐹𝑎𝑣𝑔;𝐹𝑚𝑎𝑥])) (1) 

 

where the equation symbols indicate the following: Ms to the 

result of the spatial attention mechanism, σ to the sigmoid 

function, 7 × 7 and to the filter size for the convolution 

operation f. 

 

2.3 Improved CSPDarknet with spatial attention 

mechanism 

 

To detect faces, we improved the detection method of 

CSPDarknet using an attention mechanism. As illustrated in 

Figure 1, which has several improvements to the YOLOv5 

model and the SAM: (1) The CBL module was replaced by 

CBS in the architecture. (2) The improved SAM was 

integrated into the backbone instead of the CSP1_X module. 

(3) A new feature fusion layer was added and CSP2_X was 

replaced with a C3 × 3 unit in the neck. (4) The SAM is 

improved by separating and increasing the number of pooling 

channels. 

First, compared with the original YOLOv5 architecture, the 

CBL in the backbone was replaced by CBS to enhance the 

feature representation ability. Note that CBL consists of 

“convolutional layer, batch normalization (BN), and leakyrelu 

activation function”, whereas for CBS, it is only the activation 

function replaced by The Sigmoid Linear Unit, and thus it 

becomes as follows (Convolutional Layer, BN, The Sigmoid 

Linear Unit (SiLU) Activation Function). The main 

importance of this replacement is the improvement offered by 

SiLU activation, as it combines the properties of both linear 

and nonlinear activation, allowing it to smoothen the 

activation function more than LeakyReLU. This smoothness 

can contribute to improving the deep learning process of the 

CSPDarknet model by reducing the problem of vanishing 

gradients, which is a common problem in deep neural 

networks. In addition, it improves the prediction accuracy and 

reduces the error in the object detection process, especially in 

complex tasks, such as detecting occluded faces or small 

objects in images. Therefore, every CBL used in the 

architecture is replaced by a CBS, as in an SPP module and 

neck. As in Figure 1.  

 

 
 

Figure 1. Proposed of YOLO-ISAM architecture 
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Second, in the backbone part, the CSP1_X module was 

replaced with an improved spatial attention mechanism 

(ISAM) to focus on important features and ignore weak 

features to obtain more accurate and faster results. Integrating 

the spatial attention mechanism into this site instead of the 

CSP1_X unit in the backbone represents a strategic 

improvement that enhances the accuracy and effectiveness of 

the model. The process of extracting features starts from very 

early stages, and because of its ability to focus on important 

areas and ignore unnecessary information, it contributes to the 

mechanism of spatial attention in reducing the loss of vital 

information during the pooling and miniaturization that occur 

in multiple stages of the network. 

Third, for the neck part, this includes adding a new feature 

fusion layer and links or paths to the structure to create a map 

of features larger than 152 × 152 × 255. The fusion layer 

operations include unsampling and concatenation, which are 

fed from the backbone after adding the ISAM. and CSP2_X 

was replaced with a C3 × 3 unit. The C3*3 module (referring 

to the use of a triple convolutional layer sequence of 3×3 size). 

Using a sequence of 3 × 3 convolutional layers allows the 

model to better handle spatial variations in the image, and the 

model may obtain better and more stable gradients during the 

training process. Although C3*3 may increase the number of 

calculations compared to the CSP2_X unit, it achieves a better 

balance between accuracy and efficiency by improving the 

exploitation of gradients and information flow over the 

network. In addition, replacing the CSP2_X module with the 

C3 × 3 module improved the inference speed by reducing the 

size of the model without sacrificing its ability to identify 

valuable visual features. To clarify, CSP2_X differs from 

CSP1_X in its backbone in that it replaces the remaining 

network with a 2 × X CBS to enhance its ability to integrate 

network features. where X is the number of units. Figure 2 

shows the improved CSPDarknet that apply on Yolov5 

architecture. 

 

 
 

Figure 2. Improve Spatial attention Module (ISAM) 

structure 

Fourth, to focus on the small amount of information visible 

from the face, an improved attention mechanism was added to 

the backbone of the YOLOv5 model, as illustrated in Figure 2. 

The importance of incorporating the attention mechanism 

module at this location into the backbone replacement with the 

CSP1_X module represents a strategic improvement that 

contributes to enhancing the accuracy and effectiveness of the 

model. In terms of the feature extraction process that starts at 

very early stages and owing to its ability to focus on important 

regions and eliminate unnecessary information, the spatial 

attention mechanism contributes to reducing the loss of vital 

information that occurs at multiple stages of the network. The 

SAM adopts three separate operations to generate three maps: 

average, maximum, and average pooling. This is followed by 

the CBS for each map to effectively utilize contextual 

information, and then combined with CBS. 

Finally, the sigmoid function is used to obtain the final 

spatial attention map A. The use of multiple pooling channels, 

such as median pooling, average pooling, and max pooling, 

allows the model to accommodate a variety of spatial features 

from the image. Each type of pooling captures different 

aspects of the data, enhancing the model’s understanding of 

the fine and varied details in the image. In particular, using 

median pooling helps reduce noise from outliers in the data, 

resulting in a higher stability in the model’s response. While 

Avg-Pooling provides an average estimate of the features at 

the pixel level, max-pooling captures the sharpest and most 

robust features. In addition, separating the pooling channels 

allows each to focus on specific aspects of the image without 

being affected by the others.  

The block diagram of the SAM is illustrated in Figure 2 The 

spatial attention mechanism can be mathematically 

represented as follows the algorithm 1 for ISAM. 
 

Algorithm 1: ISAM 

Input: Tensor channel input X 

Output: Tensor Attention-weighted output Y 

1. Begin: 

2. Step 1: Perform Median-Pooling, Avg-Pooling, and 

Max-Pooling on input tensor X: 

3.       Xmed=medianPooling(X)      

4.       Xavg=avgPooling(X) 

5.       Xmax=maxPooling(X) 

6. Step 2: Pass the pooled tensors through their 

respective Convolution-Batch Normalization- SiLU 

(CBS) blocks: 

7.        CBSmed=CBS(Xmed) 

8.       CBSavg=CBS(Xavg)   

9.       CBSmax=CBS(Xmax)  

10. Step 3: Concatenate the outputs of the CBS blocks: 

11.ConcatCBS=Concat(CBSmed,CBSavg,CBSmax)  

12. Step 4: Pass the concatenated result through another 

CBS block: 

13.       CombinedCBS=CBS(ConcatCBS) 

14. Step 5: Apply SoftMax function to the output of the 

final CBS block to generate the attention map: 

15.         A=SoftMax(CombinedCBS)  

16. Step 6: Multiply the original input tensor X 

element-wise       with the attention map A to obtain the 

final output tensor Y: 

17.          Y= A × X    

18. Step 7: Return the final output tensor Y  
19. End  
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2.4 Detailed implementation of the ISAM module 

 

To enhance the feature representation capabilities of the 

backbone network, we introduce the Improved ISAM. The 

ISAM leverages multiple pooling strategies to generate a 

robust attention map. Figure 2. illustrates the overall structure, 

and the detailed forward pass is formulated as follows. Given 

an input feature tensor X ∈ RC×H×W, the ISAM module 

computes the output Y through the following steps: 

• Multi-Branch Pooling is a three pooling operations in 

parallel to capture different spatial contexts: 

Median Pooling 𝑋𝑚𝑒𝑑 = 𝑀𝑒𝑑𝑖𝑎𝑛𝑃𝑜𝑜𝑙(𝑋), with a kernel 

size of K ×K and a stride of s. this operation highlight robust. 

Average Pooling 𝑋𝑎𝑣𝑔 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑋), with a kernel size 

of K ×K and a stride of s. this operation captures the mean 

spatial context. 

MaxPooling 𝑋𝑚𝑎𝑥 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑋), with a kernel size of K 

× K and a stride of s. this operation emphasizes the salient 

features. 

Parameter kernel size of k=3 and stride s=1 was chosen for 

all pooling operations. This size is enough to capture local 

spatial relationships without causing excessive loss of 

resolution. and also use 'same' padding to maintain the spatial 

dimensions H ×W. 

• Feature Transformation each pooled feature map is then 

passed through an independent (CBS) block. 

 
𝐶𝐵𝑆𝑚𝑒𝑑 = 𝐶𝐵𝑆(𝑋𝑚𝑒𝑑) 

𝐶𝐵𝑆𝑎𝑣𝑔 = 𝐶𝐵𝑆(𝑋𝑎𝑣𝑔) 

𝐶𝐵𝑆𝑚𝑎𝑥 = 𝐶𝐵𝑆(𝑋𝑚𝑎𝑥) 

 
Each convolution in these blocks has kernel size of 3 ×3, a 

stride of 1, and ‘same’ padding. The number of output 

channels for each convolution is set to C, which is typically 

C/4 or C/2 to create a bottleneck and reduce computational 

overhead. The batch-normalization layer uses a momentum 

0.03 and an epsilon of 1e-3. 

• Feature fusion and attention map generation are 

concatenated the three output CBS blocks channel dimension. 

 

𝐶𝑜𝑛𝑐𝑎𝑡𝐶𝐵𝑆 = [𝐶𝐵𝑆𝑚𝑒𝑑 , 𝐶𝐵𝑆𝑎𝑣𝑔 , 𝐶𝐵𝑆𝑚𝑎𝑥] ∈ 𝑅3𝐶×𝐻×𝑊 

 

Thus fused tensor is then passesd through a final CBS block 

with 1 × 1 convolution to compress the channels back to C. 

 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝐵𝑆 = 𝐶𝐵𝑆1×1(𝐶𝑜𝑛𝑐𝑎𝑡𝐶𝐵𝑆) ∈ 𝑅𝐶×𝐻×𝑊 

 

Thus is A SoftMax function is applied spatially to normalize 

the values into an attention map A where each location (i, j) 

sums to 1. 

 

𝐴𝑐,𝑖,𝑗 =
𝑒𝑥𝑝 (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝐵𝑆𝑐,𝑖,𝑗

)

∑ ∑ 𝑒𝑥𝑝 (𝑊
𝑤=1

𝑊
ℎ=1 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝐵𝑆𝑐,ℎ,𝑤

)
 (2) 

 

𝑌 = 𝐴 ∙ 𝑋 (3) 

 
Feature Recalibration is final output Y is obtained by 

performing an element-wise multiplication between the 

original input X and the attention map A, effectively re-

weighting the importance of each spatial location, 

computational Complexity in ISAM module is operations are 

the convolutions within the CBS blocks.  

 

3. EXPERIMENTAL SETUP 
 

3.1 Dataset  
 

In this study, four sets of video datasets were used: 

ChokePoint [26] and ViDMASK [27]. Studying a video 

database is important to produce effective mechanisms for 

detecting masked faces and recognizing an individual's 

identity. For the third dataset, Moxa3K [28], which we used as 

a standard for detecting faces because it is diverse and contains 

unclear and crowded samples and different lighting 

conditions, and the LFW-SM [29] dataset for mask face facial 

image. Table 1. shows the sources of the database. 

 

Table 1. Lists the sources of the databases 

 
No. Dataset Number of Images / Video 

1 ChokePoint [26] 48 Video 

2 VIDMASK [27] 67 Videos 

3 Moxa3k [28] 3000 Image 

4 LFW-SM [29] 13233 Image 

 

Table 2. Details of the dataset used 

 
Dataset Total- image Train Valid Test 

Chockpoint 3166 2294 290 582 

VIDMASK 7295 5120 727 1448 

Moxa3k 2928 2049 293 586 

LFW-SM 13233 9263 1324 2646 

 

The Chokepoint Dataset is a real-world surveillance dataset 

designed for person identification and verification 

experiments. It includes videos captured using three cameras 

placed above choke points for pedestrian traffic, resulting in a 

dataset that simulates real-world scenarios. The dataset 

includes face images captured while a person is walking 

through a portal, with variations in illumination conditions, 

pose, sharpness, and misalignment owing to automatic face 

localization and detection. The Chokepoint Dataset consists of 

25 individuals (19 males and 6 females) in Portal 1 and 29 

individuals (23 males and 6 females) in Portal 2, totaling 48 

video sequences and 64,204 face images. Each sequence is 

named based on the recording conditions, such as the portal, 

sequence, and camera labels. 

The VIDMASK dataset includes videos of unidentified 

individuals wearing or not wearing masks in various crowds 

and incidental scenarios. Out of 67 videos. The frames were 

annotated and shuffled. A total of 20,000 instances of masks 

and 2,500 non-mask-wearing individuals were identified in the 

images. The VIDMASK dataset was obtained from 

“YouTube” and “Pexel.com”. The videos displayed real 

environments, with being interviewed and working on daily 

tasks, resulting in real poses expressions. 

The Moxa3K dataset consists of approximately 3000 

images. It contains images of many people and close-up shots 

of the people's profiles. Additionally, it includes Google 

search images of the population during the pandemic. What 

will be mentioned now applies to all the datasets used. The 

datasets were divided into training, testing, and validation sets 

at ratios of 70, 20, and 10%, respectively.  

The Labelled Faces in the Wild simulated masks (LFW-

SM) dataset is contains images with the simulated mask 

applied as a standard benchmark dataset used to evaluate the 

performance of face recognition systems. It contains 5749 

identities with a total of 13233 images. As mentioned earlier, 
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the objective of masked face recognition is to accurately 

identify individuals both with and without masks [30, 31]. The 

images in the test pairs are selected across the datasets to 

evaluate the robustness of the network. Partitioning was 

performed as shown in Table 2 for all datasets. 

 

3.2 Evaluation metrics 

 

To determine the mAP, precision, and recall, the True 

Positive (TP), True Negative (TN), False Positive (FP), and 

False Negative (FN). TP refers to the images that were 

correctly classified as true, whereas TN denotes the images 

that were correctly classified as false. On the other hand, FP 

refers to results that have been incorrectly classified as false 

but predicted correctly, whereas FN refers to images that have 

been correctly classified as true but predicted as false. In the 

context of mask detection, TP, FN, FP, and TN were measured 

based on the objectless of the detection result, as determined 

through the intersection of the union measurement. 

Intersection over Union (IoU) is a widely used metric for 

evaluating the accuracy of regression in object detection 

models. It measures the overlap between a predicted bounding 

box and its corresponding ground-truth box [28]. An IoU equal 

to or greater than 50% is classified as a “True Positive (TP)”, 

indicating a correct detection, whereas an IoU below 50% is 

classified as a “False Positive (FP)”, indicating an incorrect 

detection. “False Negatives (FN)” were determined by 

counting objects that were not detected. To measure the 

percentage of correct predictions, precision and recall were 

calculated using Eqs. (4)-(7). 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

𝐴𝑃 = ∫ 𝑃(𝑅)
1

0

𝑑𝑅 (6) 

𝑚𝐴𝑃 =
∑ 𝐴𝑃𝑖

𝑁
𝑖=1

𝑁
 (7) 

 
P, R, and N represent the precision, recall rate, and count of 

all the objects in each category, respectively. 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (8) 

 
3.3 Validation strategy 

 

We used 5-fold cross-validation to rigorously evaluate our 

model and prevent overfitting. The data was first split into five 

separate groups of equal size, making sure the proportion of 

each class was maintained in every group. We then trained and 

tested the model five separate times. For each run, we used 

four groups for training and held out the fifth for testing. This 

process guaranteed that every data point was used for testing 

once and only once. Our final results are the average and 

variation of these five runs, which gives us a much more 

trustworthy measure of how the model will perform on new 

data compared to a simple single split. 

 

 
4. COMPARISON AND ANALYSIS OF EXPERIMENT 

 

This proposed conducted a comparative performance 

analysis between the proposed YOLO-ISAM framework and 

existing YOLO series models across three benchmark 

datasets: ChokePoint, VIDMASK, Moxa3K, and LFW-SM. 

As summarized in Table 3, YOLO-ISAM demonstrated 

superior detection capabilities, particularly on the ChokePoint 

dataset, where it achieved a substantial improvement in mean 

AP at 50% intersection-over-union (mAP@50) compared to 

baseline models.  

The experimental results validate the effectiveness of the 

proposed architectural enhancements in addressing the 

challenges of masked face detection. 
 

Table 3. Comparison of the performance of the YOLO series with our model 
 

Dataset 

Methods 

Chokepoint VIDMASK Moxa3k LFW-SM 

mAP@0.5 Accuracy F1-Score mAP@0.5 Accuracy F1-Score mAP@ 0.5 Accuracy F1-Score mAP@ 0.5 Accuracy 
F1-

Score 

YOLOv3 0.35 0.40 0.38 0.50 0.58 0.55 0.63 [32] 0.66 0.65 0.94 0.96 0.95 

YOLOv4 0.36 0.40 0.39 0.49 [33] 0.55 0.53 0.68 [34] 0.70 0.69 0.94 0.95 0.95 

YOLOv5 0.45 0.48 0.48 0.86 0.90 0.88 0.65 [32] 0.66 0.65 0.98 0.98 0.98 

YOLOv6 0.44 0.46 0.45 0.81 0.82 0.81 0.64 0.67 0.67 0.97 0.98 0.97 

YOLOv7 0.48 0.52 0.50 0.77 0.81 0.89 0.66 0.68 0.68 0.96 0.99 0.98 

YOLOv8 0.56 0.63 0.61 0.88 0.90 0.92 0.69 0.75 0.74 0.94 0.97 0.95 

YOLOv9 0.66 0.72 0.73 0.90 0.93 0.91 0.68 0.74 0.73 0.98 0.99 0.99 

YOLOv10 0.58 0.65 0.62 0.93 0.95 0.94 0.68 0.74 0.75 0.99 0.99 0.98 

YOLOv11 0.78 0.81 0.78 0.94 0.96 0.96 0.79 0.88 0.86 0.96 0.98 0.97 

YOLOv12 0.79 0.81 0.79 0.91 0.93 0.91 0.78 0.83 0.80 0.98 0.99 0.99 

YOLO-ISAM 0.86 0.92 0.91 0.96 0.99 0.99 0.84 0.91 0.90 0.99 1.00 0.99 
 

Table 4. A comparison of our proposed network with different ablation results of baseline YOLOV5 And Improve YOLOV5 
 

Dataset 

Methods 

Chokepoint VIDMASK Moxa3K LFW-SM 

mAP@0.5 Accuracy 
F1-

Score 
mAP@0.5 Accuracy 

F1-

Score 
mAP@0.5 Accuracy 

F1-

Score 
mAP@0.5 Accuracy 

F1-

Score 

VGG-16 0.32 0.35 0.34 0.79 0.80 0.79 0.46 0.48 0.45 0.97 0.98 0.97 

ResNet-18 0.44 0.45 0.45 0.85 0.85 0.84 0.62 0.63 0.63 0.98 0.99 0.99 

Baseline (CSPDarknet53) 0.38 0.37 0.34 0.81 0.85 0.81 0.62 0.58 0.53 0.96 0.97 0.95 

CSPDarknet53 With 

ISAM 
0.40 0.40 0.38 0.83 0.86 0.85 0.63 0.60 0.57 0.99 0.99 0.99 

Improve- YOLOv5s with 4 

-Fusion Layer 
0.42 0.47 0.46 0.87 0.91 0.90 0.66 0.61 0.61 0.98 0.98 0.97 
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5. ABLATION STUDY 

 

An ablation study was conducted to systematically evaluate 

the contribution of each component in the proposed YOLO-

ISAM architecture. As detailed in Table 4, we incrementally 

integrated key modifications—including the ISAM and 

additional fusion layers—into the baseline CSPDarknet53 

backbone. The experimental framework involved selectively 

removing architectural elements to isolate their individual 

impact on detection performance across all three datasets. 

Furthermore, statistical significance testing using Student's t-

test was performed to validate the observed performance 

improvements, with results presented in Table 5. The 

consistent improvement observed across all cross-validation 

folds, supported by preliminary t-test results, suggests a strong 

performance advantage for our model. Future work with more 

extensive testing will be needed to confirm statistical 

significance with high power. 

 

Table 5. Comparison of YOLOv12 models with YOLO-ISAM models as a Statistical calculation an independent samples t-test 

 

Dataset Round 
YOLOv12 YOLO-ISAM 

T-Value P-Value 
Mean % STD % Mean % STD % 

Chokepoint 25 80.85 1.64 88.42 3.73 9.28 0.0033 

VIDMASK 25 93.4 1.71 97.42 2.33 6.95 0.0012 

Moxa3K 25 84.26 1.05 88.72 2.40 8.5 0.0018 

LFW-SM 25 95.4 2.0 99.4 3.3 4.69 0.00481 

 

 

6. CONCLUSIONS 

 

This paper introduces YOLO-ISAM, an improved method 

to detect the face mask recognition. The proposed model was 

integrates on improved Spatial Attention Mechanism (ISAM) 

directly into the YOLOv5 backbone (CSPDarknet-53), a 

structural modification that compels the network to learn 

feature representations prioritizing the most salient visible 

facial regions. Furthermore, enhancements to the new feature 

fusion network improved multi-scale detection capabilities, 

which are critical for identifying faces at a distance. 

Comprehensive on four databases, two of which are video and 

the last are images, which were used as standards, Chockpoint, 

VIDMASK, Moxa3k, and LFW-SM, respectively. 

Experimental results show that compared with VGG-16, 

Resnet-18, YOLO series, and YOLO-ISAM. In addition, there 

are still significant challenges in recognizing masked faces, 

such as the lack of datasets and the complexity of face 

occlusion. Furthermore, the model's performance is inherently 

tied to the diversity of the available training data; a lack of 

datasets representing an exhaustive range of mask types, 

ethnicities, and extreme lighting conditions remains a 

challenge for the field. In future work, we plan to create a 

special dataset for masked face recognition. Simultaneously, 

we can learn identity from multiple aspects, including voice, 

to improve recognition accuracy. 
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