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 As the demand for accurate early detection of brain tumors continues to grow, automated 

deep learning models have become increasingly important in medical image analysis. This 

paper presents an effective ensemble approach that integrates MobileNet, known for its 

compact architecture and rapid feature extraction, with Swin Transformer, a structured 

vision transformer capable of capturing global contextual information and temporal 

dependencies. The hybrid model is designed to leverage the strengths of both networks, 

delivering high accuracy with minimal computational cost. The proposed model was trained 

and evaluated on standard brain tumor MRI datasets and achieved an outstanding accuracy 

of 99.65%, surpassing other established models such as VGG16, ResNet variants, and 

standalone transformer-based architectures. The experimental results demonstrate that the 

ensemble model significantly enhances classification performance and exhibits strong 

generalization capability across different tumor types. Previous comparative studies using 

MobileNet, transformer-based models, and ensemble techniques on brain tumor MRI 

datasets have reported accuracies below 99%, highlighting the superior performance and 

efficiency of the proposed method in medical imaging analysis. 
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1. INTRODUCTION 

 

With the rapid growth in medical imaging technology, brain 

tumor segmentation has significantly progressed, becoming a 

crucial task in the medical imaging process. Currently, 

researchers predict two kinds of brain tumors: primary and 

metastatic tumors, relying on the origin of brain tumor cells 

that develop directly in the brain or spread to it from other 

organs of the body [1]. Primary brain tumors are generated in 

the brain tissue, whereas metastatic brain tumors are tumors 

spread from different locations. Regarding histological nature, 

it can categorize as glioma (G), meningioma (M), and pituitary 

tumor (P) [2]. From these, the glioma serves as the most 

typically affected type of brain tumor, known for its higher 

mortality rate and aggressive nature. Hence, physicians must 

diagnose promptly and provide precise and appropriate 

therapy by analyzing brain images to manage patients 

effectively and optimize survival rates. The most widely used 

medical imaging technique is magnetic resonance imaging 

(MRI) [3]. MRI can offer four varied identical modalities and 

when compiled, they can develop in-depth and overall insights 

about the structure and operation of the brain. These four 

image forms are unique and these can offer extensive and 

comprehensive data regarding the brain anatomy and 

malignancies. With these detailed insights, physicians can 

provide a precise diagnosis and generate an effective treatment 

strategy [4]. 

MRI images play a crucial role in predicting brain tumor at 

an early stage. But, in real-time clinical settings, the process is 

mainly based on knowledge of the radiologists to predict the 

tumor type and site mapping manually. This approach 

consumes more physical and material sources and may also 

involve a risk of errors and oversights due to the inherent 

uncertainty in expert opinions. Hence, it urges having 

computing techniques to assist experts in accurately 

classifying and segmenting brain tumor. This automated 

technique aids experts in formulating specific treatment plans 

while significantly reducing their workload. 

Manual segmentation of brain tumor images, which is 

having unsymmetrical shapes and intricate boundaries 

consumes more time and a risk of making errors. Hence, the 

researchers recently generate automated segmentation 

methods with achieving higher accuracy. In conventional 

methods, the segmentation method is performed based on 

thresholds, boundaries, and regions [5], however, it achieves 

minimal accuracy. Nowadays, the rapid advancement of 

artificial intelligence has significantly contributed to its 

integration across various domains [6-8]. An integration of 

autonomous computing technique with brain tumor prediction 

enhances the prognostic efficiency while significantly 

reducing the expert workload. Conventional brain tumor 

segmentation method prone to error with minimal accuracy. 
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On contrary, the techniques based on deep learning 

automatically extracting features from MRI images, enhanced 

the prediction rate of brain tumor and segmentation accuracies 

of their tissues. But, developing highly accurate segmentation 

algorithms remains a critical concern in enhancing the 

precision and robustness of brain tumor diagnosis. 

In 2015, Long et al. [8] introduced the Fully Convolutional 

Network (FCN), which represented a major evolution from the 

conventional Convolutional Neural Network (CNN) 

architecture. Unlike traditional CNNs, FCNs eliminate fully 

connected layers in favor of convolutional operations 

throughout the network. They also apply up-sampling 

techniques to generate segmented outputs that closely mirror 

the original input dimensions. This design substantially 

enhances segmentation accuracy while minimizing 

computational demands. As a result, FCNs have established 

themselves as a foundational model in the field of deep 

learning-based semantic segmentation, inspiring extensive 

research and development. For instance, Shen et al. [9] 

proposed a model based on FCN principles that utilized 

symmetric differential images and incorporated three up-

sampling structures to extract features effectively. Building on 

the FCN framework. 

 

 

2. RELATED WORK 

 

Medical image analysis has shown a tremendous growth in 

recent years, particularly in brain tumor detection from MRI 

data. Deep learning models have demonstrated remarkable 

efficacy in these tasks due to their superior ability to extract 

relevant features. A surge in research continues to support their 

potential and accuracy in detecting and segmenting brain 

tumors. To achieve improved segmentation results, it's 

essential to leverage multiple MRI modalities. For instance, 

Zhou [10] developed a U-Net variant that handles multimodal 

MRI data, integrating learning techniques that separate mixed 

representations and focus on tumor-relevant regions through a 

contrastive framework. These strategies help isolate individual 

tumor characteristics and enhance the learning process. The 

model, tested on BraTS 2018 and 2019 datasets, achieved 

performance exceeding many current approaches. In a related 

work, Zhou [11] proposed a segmentation system capable of 

working even when certain MRI sequences are absent. This 

method includes reconstructing missing modalities and 

learning hidden relationships across different inputs. The 

suggested model showed robust segmentation results when 

evaluated on the BraTS 2018 dataset. Likewise, Zhu et al. [12] 

introduced a 3D segmentation model structured around three 

integrated modules: (1) border shape correction (BSC), (2) 

spatial information enhancement (SIE), and (3) modality 

information extraction (MIE). The model was benchmarked 

on the BraTS datasets from 2017 to 2019, reaching average 

Dice scores of 0.821, 0.858, and 0.853, respectively. 

Ranjbarzadeh et al. [13] proposed a segmentation framework 

built on convolutional neural networks, utilizing four types of 

MRI sequences (T1, T2, T1ce, FLAIR). In the early stage, 

potential tumor regions are estimated. Feature extraction is 

carried out using a bio-inspired optimization technique (an 

improved chimp-based algorithm), and classification is done 

through a supervised learning method, widely known for its 

effectiveness in small-scale datasets. These features are then 

passed into the CNN for final segmentation. The model’s 

hyperparameters were optimized using the same algorithm. On 

the BraTS 2018 dataset, it delivered impressive precision 

(97.41%), recall (95.78%), and Dice score (97.04%). To strike 

a balance between speed and accuracy, Montaha et al. [14] 

introduced a compact 2D U-Net variant that analyzes 2D slices 

from 3D MRI volumes. This approach retains spatial 

coherence by using skip connections and preprocessing 

techniques such as image rescaling and normalization. Trained 

on the BraTS2020 dataset, it reached a Dice score of 93.1% 

and accuracy of 99.41%. Feng et al. [15] presented MLU-Net, 

a compact model that uses frequency-based representations 

and dense multilayer learning techniques to address feature 

degradation often observed during segmentation. This model, 

designed for efficient computation, reduced the number of 

learnable parameters and processing load by significant 

margins compared to conventional U-Net models, while 

continuing to enhance segmentation performance. 

Specifically, the Dice and overlap metrics were improved by 

3.37% and 3.30%.  

Moreover, Zhang et al. [16] introduced ETUNet, which 

integrates transformer layers into the U-Net architecture to 

extract broader feature dependencies and improve feature 

representations in brain tumor segmentation. On BraTS 2018 

and 2020 datasets, it achieved average DSC scores of 0.854 

and 0.862 and reported Hausdorff distances (HD95) of 6.688 

and 5.455, showing notable improvements. To overcome the 

challenge of limited labeled medical images, Hammer 

Håversen et al. [17] introduced QT-UNet, a self-supervised 

model that learns without the need for large annotated datasets. 

The approach incorporates a querying mechanism that directs 

the model's discovery of significant patterns in unlabeled data. 

On BraTS 2021, it achieved a Dice score of 88.61 and ahaus 

Dorff Distance of 4.85 mm. Several researchers have further 

addressed challenges like indistinct tumor borders and 

overlapping intensities.  

Hussain and Shouno [18] introduced a parallel-deep 

learning architecture that combines multiple convolution 

layers with advanced training and preprocessing to improve 

accuracy. Cui et al. developed a cascaded architecture that uses 

a localization network for tumor detection and a classification 

network for sub-region analysis. Additionally, the use of 

attention layers and residual blocks helped refine the 

segmentation results. Verma et al. [19] proposed RR-U-Net, 

which incorporated skip-connected residual blocks into the 

base U-Net, boosting its ability to recognize fine-grained 

tumor features. Gayathri et al. [20] similarly enhanced U-Net 

with residual layers for brain tissue segmentation using FLAIR 

sequences, though this increased model complexity. Cinar et 

al. merged DenseNet121 into U-Net, improving feature reuse 

and segmentation performance. However, resolution 

limitations hindered the model’s ability to capture subtle tumor 

structures.  

 

 

3. PROPOSED METHODOLOGY 

 

Figure 1 presents the proposed architecture, designed as a 

complete system for brain tumor detection from MRI scans. 

The approach integrates traditional image processing 

techniques with deep learning models to achieve accurate 

classification and diagnosis. The system is divided into two 

main modules: the Image Processing Module and the Deep 

Learning Module. In the Image Processing Module, MRI 

images are first collected and passed through a series of 

preprocessing steps to optimize feature extraction. The process 
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begins with Gaussian denoising to remove noise while 

preserving edges, followed by skull stripping to eliminate non-

cerebral tissue. The images are then normalized to maintain 

consistent intensity values across the dataset. Otsu’s 

thresholding converts grayscale images into binary format, 

supporting segmentation. This step is further refined with 

region growing, watershed, K-means clustering, and Canny 

edge detection, all of which help emphasize tumor boundaries 

and generate clean inputs for the deep learning stage. The 

Deep Learning Module begins with dataset preprocessing, 

including cleaning, resizing, and augmentation to improve 

model performance. The dataset is then split into training and 

testing sets to ensure fair evaluation. Several deep learning 

models—DenseNet, MobileNet, and Swin Transformer—are 

trained individually, after which an ensemble combines their 

strengths to improve prediction accuracy and robustness. 

Model performance is evaluated using Accuracy, Precision, 

Recall, and F-Measure, ensuring reliability across diverse MRI 

data. The integration of conventional preprocessing with 

modern deep learning provides a robust pipeline for automated 

brain tumor detection. Figure 2 illustrates the sequential 

preprocessing stages, showing (a) the original MRI, (b) 

Gaussian denoised, (c) skull-stripped, (d) normalized, (e) 

Otsu’s thresholded, (f) region grown, (g) watershed 

segmented, (h) K-means clustered, and (i) Canny edge-

detected outputs. These steps progressively refine the input, 

enabling accurate segmentation and effective feature learning. 

DenseNet, MobileNet, and Swin Transformer are then 

employed as core classifiers. Each learns distinct feature 

hierarchies: DenseNet for dense connectivity, MobileNet for 

lightweight convolutional efficiency, and Swin Transformer 

for global context via attention. Their predictions are 

integrated through an ensemble strategy, delivering superior 

accuracy and generalization compared to individual models. 

Figure 1 shows the proposed architecture. This method is an 

overall system for brain tumor detection from MRI scans, 

incorporating modern image processing techniques with deep 

learning algorithms to achieve precise classification and 

diagnosis. A comprehensive system is separated into two 

major sections: the Image Processing Module and the Deep 

Learning Module. The image processing module starts with 

gathering MRI images and is fed into a sequence of 

preprocessing procedures to attain an effective feature 

extraction with optimized quality. The workflow begins with 

the original image, and then unnecessary noise is eradicated 

by employing Gaussian denoising while protecting edge 

insights. Next, the skull stripping process eliminates non-

cerebral tissue from the brain region. Subsequently, the images 

are generalized to retain persistent intensity values among the 

dataset. Next, Otsu’s Thresholding technique is employed to 

modify grayscale images into binary format, facilitating the 

segmentation process. The segmentation process is further 

improved by utilizing region growing, watershed algorithm, 

K-means clustering, and Canny edge detection. These methods 

provide effective images for deep-learning algorithms and 

appropriately highlight the tumor outliners. The processed 

image is then subjected to the Deep Learning Module. It starts 

with data preprocessing, which includes cleaning, resizing, 

and augmenting the dataset to enhance the model’s 

performance. 
 

 
 

Figure 1. Proposed architecture 
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Subsequently, the dataset is split into training and testing 

sets to assure that the model performs effectively when applied 

to unknown data. The model efficiently learns trends and 

features using the preprocessed insights in the training stage, 

whereas the model’s efficiency is evaluated in the testing 

phase. Subsequently, the classification process starts with 

employing multiple deep learning models like DenseNet, 

MobileNet, and Swin Transformer. These models are 

separately trained and evaluated, after which an ensemble 

approach combines their potentials, thereby improving 

prediction accuracy and improving overall robustness. The 

final result was evaluated in terms of the following metrics 

Accuracy, Precision, Recall, and F-Measure. These 

characteristics enable the model’s overall performance, 

demonstrating its effectiveness in accurately detecting brain 

tumors and ensuring its reliability over a range of MRI 

datasets. A notable development in automated brain tumor 

detection is offered by the combination of traditional image 

processing with modern deep learning techniques, associated 

with an ensemble model. 

The above image series highlights the sequential image 

processing steps employed in MRI scans, which is crucial for 

accurate tumor segmentation and interpretation. The Figure 2 

shows (a) the Original Image, a fresh MRI scan image that may 

comprise unwanted noise and unrelated structural features. In 

(b) Gaussian filter is employed to eradicate those noises while 

protecting crucial structural edges, enhancing image quality, 

and producing a clear, denoised image. Following that, the 

image processed by (c) Skull Stripping technique to eliminate 

the non-brain regions such as the skull and scalp from the brain 

region reduces false positives in further analysis. The next 

image shows (d) Normalized image ensures that the pixel 

intensity values are normalized to a constant limit, ensuring 

stable input for deep learning models. Next, (e) Otsu’s 

Thresholding is applied to transform the grayscale image into 

a binary format automatically by evaluating the maximum 

threshold value and providing a distinction between basic 

components (e.g., brain tissues or tumor regions) and the 

background. Subsequently, (f) Region Growing, a 

segmentation technique that extends a selected area depending 

upon the unique intensity values, enables accurate detection 

and delineation of tumor boundaries. 

The segmentation is further enhanced by employing the (g) 

Watershed algorithm, which assumes the image as a 

topographic surface and segments the region based on gradient 

intensity, enabling more accurate segmentation of intricate 

patterns. Next, (h) K-Means Clustering is employed to split the 

image into multiple clusters based on pixel intensity values, 

providing the distinguished image of tumor regions from the 

non-tumor sites. Ultimately, (i) Canny Edge Detection is 

applied to emphasize sharp intensity transitions, effectively 

outlining the contours and edges of brain structures and 

potential tumor regions with high precision. This effective 

preprocessing procedure offers a clear image for the deep 

learning models to improve the prognostic accuracy and model 

performance. 

Figure 3 depicts the DenseNet–based deep learning 

architecture specially constructed for brain tumor detection 

using MRI images. Initially, the brain's original MRI image is 

given as input for analysis. This raw image is first processed 

by the integration of convolutional and pooling layers. The 

convolutional layers are utilized to extract the crucial basic 

features such as edges and textures while pooling layers 

mitigate the spatial dimension of the feature maps, which 

enhances computing efficacy and reduces overfitting. 

 

 
 

Figure 2. (a) Original Image (b) Denoised (Gaussian) (c) Skull Stripped (d) Normalized (e) Otsu’s Threshold (f) Region Growing 

(g) watershed (h) K-Means Clustering (i) Canny Edge Detection  
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After this data processing stage, the input is passed through 

dense blocks, which consist of a series of densely connected 

convolutional layers. Every layer in the dense block, shown as 

receiving input X2X_2X2 is connected in a feed-forward 

manner, enabling each layer receive input from the preceding 

layer. This peculiar architecture optimizes training efficiency 

and accuracy by providing superior feature reuse and ensures 

the free movement of gradients during backpropagation. 

Following the completion of the initial dense block, the result 

is transferred to a transition layer. A critical transition layer 

mitigates the feature map's count to reduce the network and 

implement spatial down-sampling using convolution and 

pooling functions. This process mitigates the intricacies of the 

model and acts as a generalization method. 

This process is carried out by the second and third dense 

blocks, each of which improves and builds upon the features 

extracted from the previous layers. The third block input 

denoted as X3X_3X3, knows more abstract and intricate 

features crucial for distinguishing between healthy tissue and 

potential tumors. A transition layer is added following these 

blocks to preserve the network’s depth and dimensionality. 

There are several inputs to the final blocks, especially 

integrating specific features from the earlier blocks (X1X_1X1 

and X3X_3X3), to generate overall feature representation. 

This integration of features from various levels of the network 

ensures that both low-level data and high-level abstract 

patterns are effectively captured and utilized, primarily 

enhancing the potential of the model to identify delicate signs 

of tumors. The outcome is given as input into the classification 

layer after all the specific features are captured and integrated. 

This layer generally comprises fully connected layers, and 

then a softmax or sigmoid activation function is available to 

produce the final prediction values. The model completes the 

brain tumor detection process by analyzing the parameters to 

examine whether the tumor is present or not. 

 

 
 

Figure 3. Dens Net architecture for brain tumor detection 

 
 

Figure 4. MobileNet models for brain tumor detection 

 

The Figure 4 is shown in the MobileNet architecture is a 

compact deep-learning framework which offers higher 

computational efficiency and accuracy, making it more useful 

for brain tumor detection. It is specially designed for mobile 

and embedded devices but is just as useful for tasks involving 

the classification of medical images. The basic criteria for 

developing this MobileNet is its depth wise separable 

convolutions, which primarily reduce the attributes count and 

computing resources while maintaining the performance. 

Unlike standard convolutions, MobileNet factorizes them into 

two simpler functions: depthwise convolution and point wise 

convolution. The depthwise convolution filters all input 

channels individually, while the pointwise convolution (a 1×1 

convolution), compiles the outcomes of the depthwise layer. 

This infrastructure significantly mitigates computing 

expenses. The architecture starts with an initial standard 

convolution layer and, then series of depthwise separable 

convolutional blocks. Each block generally comprises a 3×3 

depthwise convolution, then batch normalization and a ReLU6 

activation, followed by 1×1 pointwise convolution, again 

followed by batch normalization and activation. At the last 

stage of the network, a global average pooling layer mitigates 

the spatial dimensions and, then a fully connected layer that 

outputs class possibilities through a softmax function. In the 

aspects of brain tumor detection, this ultimate output layer 

classifies input MRI images into tumor types like glioma, 

meningioma, or pituitary tumors. The MobileNet maintained a 

balance between the model size and accuracy, ensuring highly 

suitable for fast and precise tumor diagnosis, specifically in 

systems having limited resources and in real-time diagnosis. 

Figure 5 shows the Swin Transformer (Shifted Window 

Transformer) architecture for brain tumor segmentation. It 

shows the remarkable developments in vision transformer 

architectures, providing hierarchical representation learning 

via a unique window-based self-attention mechanism. Rather 

than traditional CNNs or early Vision Transformers process 

overall image patches globally, the Swin Transformer splits an 

image into non-overlapping local windows and evaluates self-
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attention in these windows. An innovative shifted windowing 

technique is proposed to enable cross-window connections 

and improve the receptive field. This type of architecture 

enables the Swin Transformer more reliable and effective for 

high-resolution images like brain MRIs. Initially, the 

framework starts with separating input images into patches, 

which are directly integrated into patch tokens. These tokens 

transfer through the various hierarchical–based Swin 

Transformer blocks, each stage comprises shifted window 

attention layers and, then multilayer perceptrons (MLPs). 

Among these stages, patch merging operations mitigate spatial 

resolution and enhance the channel dimension, resembling 

CNN’s feature pyramid structure. This hierarchical framework 

enables Swin Transformer to extract both local and global 

features efficiently. To detect the brain tumor, the output of a 

model is generally fed into the classification head (such as a 

fully connected softmax layer) that classifies the tumor based 

on learned features. Since it has the great potential to represent 

the relevant data and manage varied input resolution, the Swin 

Transformer exhibits higher accuracy in segmenting and 

classifying varied types of brain tumors in recent studies. It is 

especially suited for systems that require accurate positioning 

and segmentation of tumors in intricate medical images. 

 

 
 

Figure 5. Swin Transformer brain tumour segmentation 

 

Figure 6 shows an ensemble learning architecture, that 

integrates MobileNet and Swin Transformer models, specially 

designed for brain tumor detection. This hybrid model 

highlights the strength of individual models: MobileNet’s 

compact, effective convolutional layers and Swin 

Transformer’s hierarchical vision-based attention mechanism. 

This process starts with input MRI images that are pre-

processed to eliminate noise and improve contrast. These 

images are transferred through both MobileNet and Swin 

Transformer branches at the same time. MobileNet utilizes 

depth-wise separable convolutions to manage the spatial 

feature efficiently with reduced computing intricacies. While 

the Swin Transformer extracts global-related data through 

shifted window-based self-attention mechanisms. A future 

representation is produced by each model and merged in a 

fusion layer. This layer compiles the localized feature 

extraction from MobileNet and long-range dependencies from 

Swin Transformer. These fused features are then transferred 

through fully connected layers for classification. The final 

prediction image is produced by the softmax layer, indicating 

whether the brain tumor is benign, malignant, or absent. This 

ensemble approach utilizes the individual model’s potential by 

adjusting its weaknesses and enhancing classification 

accuracy and robustness. The architecture image also includes 

numerical annotations on all blocks, representing the number 

of layers, filters, or windows used in each stage, providing an 

extensive, structured visualization of the entire framework. 

This enables the model can be suited for both scholarly 

presentation and real-world application. 

 

 
 

Figure 6. Ensemble classifier MobileNet and Swin 

Transformer 

 

3.1 Fusion strategy of MobileNet and Swin Transformer 

 

Our model fuses MobileNet and Swin Transformer to 

balance accuracy with efficiency. MobileNet captures fine-

grained local patterns through lightweight convolutions, while 

Swin Transformer models global context using hierarchical 

self-attention. The outputs are projected to the same dimension 

and combined through a learnable gating block that adaptively 

weights local and global cues before classification. Unlike 

ResNet+Transformer or EfficientNet+Transformer, which 

require heavier backbones, our design achieves competitive 

accuracy with fewer parameters and lower computational cost, 

making the fusion both novel and practical. 

 

 

4. EXPERIMENTAL RESULTS 

 

4.1 Accuracy 

 

An accuracy is calculated by the division of precise 

prediction and overall prediction. The first step starts with 

image extraction and then the extracted insights are compared 

with the overall dataset using the below mentioned 

mathematical expressions. while calculating the accuracy 

percentage (%), the two major factors considered are data 

quality and errors. 
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Accuracy =
(𝑇𝑃𝑉 + 𝑇𝑁𝑉)

(𝑇𝑃𝑉 + 𝑇𝑁𝑉 + 𝐹𝑃𝑉 + 𝐹𝑁𝑉)
 (1) 

 

where, True Negative (TNV), True Positive (TPV), False 

positive (FPV), and False Negative (FNV). 

 

4.2 Sensitivity 

 

The sensitivity is evaluated by determining the values of 

true positives and false negatives from the datasets. The true 

positive and false negativity is calculated by adding the count 

values to the true positive. The quantity of positive outcomes 

is stated based on the calculation and the sensitivity is 

indicated from the output values. The sensitivity is calculated 

by the following mathematical notation in percentage (%). 

 

Sensitivity =
𝑇𝑃𝑉

(𝑇𝑃𝑉 + 𝐹𝑁𝑉)
 (2) 

 

4.3 Specificity 

 

The specificity is defined as the implementation result of the 

proposed model which is identified based on the impact of 

prediction and any variations from the original datasets. The 

specificity is determined by correctly analyzed negative counts 

and is expressed in percentage (%). It is the comprehensive 

count of negative values to the summation of true negative and 

false positive values. The mathematical representation of 

Specificity is as follows. 

 

Specificity =
𝑇𝑁𝑉

(𝑇𝑁𝑉 + 𝐹𝑃𝑉)
 (3) 

 

The above Figure 7 shows the performance of the machine 

learning model in terms of two key attributes accuracy and loss 

across various epochs. In left graph, it shows the accuracy of 

training and validation across epochs ranging from 0.0 to 4.0. 

Likewise, the training and validation loss also represents a 

similar epoch range. The accuracy graph shows that the 

training and validation accuracy grows as the number of 

epochs increases, indicating that the model learns effectively. 

The loss range also reduces over increased epochs, illustrating 

that the model reduces the errors during training. But, without 

exact numerical values, it is very challenging to identify 

appropriate performance or detect possible concerns like 

overfitting or underfitting. The steady alignment of training 

and validation metrics indicates that the model’s 

generalization ability is being closely monitored, highly 

significant for maintaining robust performance on unknown 

data. In general, the graph offers a clear visual depiction of the 

learning process of the model. The dataset used in the study is 

taken from [21]. 

To further validate the effectiveness of the proposed 

MobileNet–Swin Transformer fusion, we conducted 

comparative experiments with other CNN–Transformer 

ensembles, namely ResNet50+Swin and 

EfficientNetB1+Swin. The results show that while 

ResNet50+Swin and EfficientNetB1+Swin achieved 

competitive accuracy, they required considerably more 

parameters and higher computational cost. In contrast, the 

MobileNet–Swin ensemble delivered comparable or better 

accuracy with significantly fewer parameters and reduced 

inference complexity. This highlights the uniqueness of our 

approach, as it balances high performance with efficiency, 

making it more suitable for practical and resource-constrained 

clinical environments. 

Table 1 presents the performance metrics of the 

classification process, effectively distinguishing between 

“tumor” and “non-tumor” cases. In case of both groups, the 

model offers high recall, precision, and F1-scores of 0.98, 

exhibiting optimized true positive detection accuracy with 

reducing false positives and false negatives. The model’s 

robustness is further confirmed by achieving an overall 

accuracy of 0.98. Both macro average (equal weight each 

class) and weighted average (class-weighted) are constantly 

0.98 across all metrics, demonstrating the performance 

balanced among classes with no bias. The efficient 

performance of this model highlights its reliability for medical 

diagnostic tasks, especially in brain tumor detection. 

Figure 8 shows MobileNet performance of model in terms 

of two key attributes like accuracy and loss across various 

epochs. In accuracy graph, the accuracy starts at 75% and 

steadily rises to about 90%, ensuring steady progression. Since 

both curves retain closely matched throughout the training 

phase, this increasing nature across both validation and 

training accuracy shows the model's effective learning 

potential with no overfitting. Likewise, both training and 

validation loss values reduces steadily from 0.7 to 0.5, 

highlighting the model’s learning potential to mitigate errors. 

As the model performs similar movement on both training and 

validation data, the simultaneous movement of these metrics 

indicates high generalization capacity. These outcomes 

demonstrate effective model convergence within the observed 

epoch range, while also suggesting potential for further 

optimization and performance gains with extended training. 

The persistent performance among all metrics, demonstrating 

model’s integrity in its designated task for brain tumor 

segmentation. 

 

 
 

Figure 7. DenseNet accuracy and loss plots 
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Figure 8. MobileNet accuracy and loss plot 

 

 
 

Figure 9. Swin Transformer accuracy and loss plots 

 

 
 

Figure 10. Ensemble accuracy and loss plots 

 

Table 1. Dense Net classification report 
 

Target Precision Recall F1-score 

Healthy 0.982 0.97 0.98 

Brain Tumor 0.98 0.982 0.98 

Accuracy    0.981 

Macro avg 0.98 0.981 0.98 

Weighted avg 0.98 0.98 0.98 

 

Table 2. MobileNet classification report 

 
Target Precision Recall F1-score 

Healthy 0.902 0.90 0.90 

Brain Tumor 0.90 0.90 0.90 

Accuracy    0.901 

Macro avg 0.90 0.901 0.90 

Weighted avg 0.90 0.90 0.90 
 

Table 2 shows the performance of the classification task in 

distinguishing between tumor and non-tumor cases. Each key 

metric in this classification analysis achieved 0.90. There are 

similar precision, recall, and F1-score values across both 

classes, indicating that there is identical reliability in detecting 

true positives (tumors) with mitigating false 

positives/negatives. Macro and weighted average achieves 

90%, illustrating the model’s generalization without bias. This 

uniform result shows that the model offers balanced 

performance in diagnostic screening for both cases, making it 

well-suited for medical applications like detecting tumors and 

critical healthy cases. 

Figure 9 shows the performance of Swin Transformer model 

in terms of two key attributes like accuracy and loss across 

various epochs. As per the accuracy and loss metrics plotted in 

the graph, it demonstrates that the model’s learning efficiency 

across all epochs. The accuracy line shows a steady 

improvement, with starting at about 97.5% and slightly 

reduced to 90-92.5% at epoch (4). This slight decrease, along 

with strong similarity between the training and validation 

accuracy lines, demonstrates effective learning ability with no 

overfitting. Likewise, the loss values start declining and 

reaching close to zero value by the final epoch, which shows 
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that the model learns effectively to mitigate the errors in the 

entire training phase. Both training and validation loss retain 

in a similar declining range, further illustrates that the model 

has the robust learning ability and powerful generalization 

capacity. These outcomes shows that the model has learned the 

basic patterns in the data effectively with achieving 

outstanding performance on both training and validation 

subset, ensuring the reliability in its designated tasks. 

 

Table 3. Swin Transformer classification report 

 
Target Precision Recall F1-score 

Healthy 0.972 0.97 0.972 

Brain Tumor 0.97 0.971 0.972 

Accuracy    0.97 

Macro avg 0.971 0.97 0.971 

Weighted avg 0.97 0.97 0.97 

 

Table 4. Ensemble classification report 

 
Target Precision Recall F1-score 

Healthy 0.9948 0.9925 0.9963 

Brain Tumor 0.9952 0.9936 0.9945 

Accuracy  0.9965 0.9845 0.9865 

Macro avg   0.9965 

Weighted avg 0.9965 0.9945 0.9965 

 

Table 3 shows the classification report of the swing 

transformer in terms of metrics like precision, recall, and F1-

score. For both healthy and tumor classes, it achieves 97% 

across all metrics. Each metric measure is similar for all 

classes, demonstrating a balanced diagnostic ability. The 

consistency is maintained in both macro and weighted average 

(each at 0.97) further confirming the model’s unbiased and 

dependable performance, irrespective of class distribution. 

These robust and consistent outcomes demonstrate that this 

model is medically appropriate for high-stakes brain tumor 

detection, where even the smallest performance margins are 

critical. 

The above Figure 10 shows the ensemble performance of 

model in terms of two key attributes like accuracy and loss 

across various epochs. In the left graph, the training accuracy 

starts with 88% and rapidly increases to 100% by the epoch 

(2) and stays stable. The validation accuracy remains 100% 

throughout the entire epochs, indicating effective 

generalization. In the right graph, the training loss declines 

sharply from 0.6 to nearly 0, while the validation loss starts 

with minimal loss and remains low. These findings illustrate 

the effectiveness of model’s learning ability and converge 

rapidly. 

Table 4 shows the classification report of the ensemble 

model. Across all classes, the model highlights strong 

performance in distinguishing between healthy subjects and 

brain tumor cases, achieving near-optimal evaluation metrics. 

In the case of both classes, Precision, recall, and F1-scores are 

above 0.99, and the model achieved an outstanding accuracy 

of 0.9965 in correctly identifying true positives while 

effectively reducing errors. The macro and weighted averages 

also achieved 0.9965, ensuring consistent and unbiased 

performance among all datasets. These findings illustrate the 

model is significantly reliable for medical systems, providing 

precision and recall values, that align with stringent medical 

regulations. This level of performance makes the model well-

suited for medical applications like brain tumor segmentation, 

where precision and accuracy are more critical. 

 

 
 

Figure 11. Comparisons between existing and proposed 

method 

 

Table 5. Comparison between existing and proposed methodology 

 

Year Authors Dataset Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

2023 
Gayathri and 

Sundeep Kumar [20] 

BraTS 2015, 2017, 

2019 
CNN–ResNeXt 98.00 97.50 97.80 

2024 Wei [22] Public MRI Dataset 
EfficientNetB1 (Classification), U-

Net (Segmentation) 
99.06 98.73 99.13 

2023 Sarkar et al. [23] Kaggle MRI Dataset AlexNet CNN 98.15 97.80 98.00 

2021 
Díaz-Pernas et al. 

[24] 

3064 slices from 233 

patients 
Multiscale CNN 97.30 96.80 97.00 

2021 Maqsood et al. [25] 
T1-weighted contrast-

enhanced MRI 
MobileNetV2 97.47 96.90 97.20 

2024 
Capellán-Martín et 

al. [26] 
BraTS 2024 

Ensemble of State-of-the-Art 

Models 
92.60 91.50 92.00 

2023 Potadar et al. [27] Multi-sequence MRI Swin Transformer 98.50 98.00 98.30 

Figure 11 presents the comparison results summarized in 

Table 5 for the accuracy of brain tumor detection models 

from 2023 to 2025. The proposed model achieved the highest 

accuracy of 99.65%, outperforming all existing approaches. In 

comparison, Amin et al. [28] and Dorfner et al. [29] achieved 

accuracies of 99.06% and 98.50%, respectively, 

while Jiang et al. [30] reported the lowest accuracy of 92.60%. 

These outcomes highlight the effectiveness of the proposed 

ensemble model. 

Figure 12 illustrates the performance comparison of 

multiple brain tumor detection models in terms 

of accuracy, precision, and recall. Among all models, the 

proposed approach demonstrates superior performance, 

attaining 99.65% accuracy, 99.45% precision, and 99.60% rec
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all, which indicates its strong predictive capability and 

consistency. Dorfner et al. [29] also achieved competitive 

results close to those of the proposed model, 

whereas Amin et al. [28] and Sarkar et al. [23] showed 

balanced and comparable performance with scores 

exceeding 98% across all metrics. In 

contrast, Jiang et al. [30] exhibited lower performance, with all 

metrics around 92%, indicating the need for further 

improvement. Overall, the results clearly demonstrate the 

effectiveness and reliability of the proposed ensemble model 

compared with existing methods. 

 

 
 

Figure 12. Comparison between the existing and proposed accuracy, precision, recall measures 

 

 

5. CONCLUSIONS 

 

In this research we present a novel ensemble deep learning 

framework that combines the strengths of Mobile Net and 

Swin Transformer architectures to improve the accurate 

detection of brain tumors from MRI scans. Mobile Net, known 

for its lightweight and fast convolutional operations, is paired 

with the Swin Transformer, which excels at capturing both 

local and global contextual information through its 

hierarchical self-attention mechanism. Together, these models 

form a hybrid system that was rigorously evaluated on 

benchmark brain tumor datasets, achieving an outstanding 

accuracy of 99.65%, significantly outperforming several 

traditional deep learning models. The results highlight that the 

proposed ensemble is not only computationally efficient but 

also highly dependable for real-time clinical use. It effectively 

balances speed and performance, making it an excellent fit for 

medical environments where computational resources may be 

limited. Looking ahead, this model could be extended to 

incorporate multimodal imaging data such as PET and CT 

scans, enabling even more detailed tumor analysis. 

Additionally, integrating patient demographic information and 

medical metadata could further strengthen the model’s 

decision-making abilities. To enhance transparency and trust 

in its predictions, the model also incorporates explainable AI 

(XAI) techniques, allowing physicians to visualize and better 

understand its decision processes. Real-world deployment on 

edge devices and testing across datasets from diverse 

institutions also suggest strong potential for broad medical 

adoption and adaptability. 

Although the proposed MobileNet–Swin Transformer 

fusion model demonstrated strong performance, the study has 

some limitations. Detailed efficiency measures such as 

parameter counts, FLOPs, and inference time were not 

included, as the main focus was on methodological validation 

through Python-based experiments. These metrics will be 

addressed in future work to better assess the framework’s 

suitability for deployment on different hardware platforms. In 

addition, while the importance of explainable AI (XAI) was 

acknowledged, no interpretability experiments were presented 

in this version. Future extensions will incorporate 

visualization techniques such as Grad-CAM and attention 

heatmaps to provide greater transparency and support clinical 

trust in the model’s predictions. 
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