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Brain tumor segmentation identifies disjoint regions for differentiating overlapping pixels
from a Magnetic Resonance Imaging (MRI) input. This article introduces a novel Disjoint
Segmentation Method (DSM) using a Fully Connected Learning Network (FCLN) for
addressing textural uncertainty issues. The uncertainty due to pixel overlapping regardless
of different textural features is mitigated using this segmentation to improve accuracy. In
this method, the pixels are classified for their independence and disjoint features. The
disjoint pixels are focused over similar and dissimilar regions based on different brain
objects such as fluids, tissues, etc. A fully connected learning network performs two
concurrent operations: disjoint feature detection and uncertainty estimation. These
operations are performed for similar and dissimilar regions and the outputs are grouped for
concurrent training. Both the outputs are used for training the learning network regardless
of the uncertainty value. The training is suspended only if both operations identify a
unanimous uncertainty value. Therefore, the process is iterated until the maximum disjoint
features are identified. Such identification is segregated from the other region features for
improving the precision. Thus, the proposed method improves the segmentation rate with

fewer uncertainties.

1. INTRODUCTION

Among the most significant tumor categories worldwide are
brain masses and abnormal lesions. In the evaluation and
classification of brain tumors, magnetic resonance imaging
(MRI) plays a pivotal role, with segmentation being a key step
in the analysis process [1]. MRI, a widely used non-invasive
imaging technique, is capable of producing multiple distinct
tissue contrasts within a single scan, making it an invaluable
tool for medical professionals in identifying brain tumors [2].
Traditionally, the segmentation and examination of structural
MRI scans have been carried out manually by experienced
neuroradiologists a process that is both labor-intensive and
time-consuming. Therefore, the development of a fully
automated and dependable brain tumor segmentation approach
holds immense potential to enhance the accuracy, speed, and
effectiveness of tumor detection and subsequent treatment
planning [3]. To improve the efficacy and significance of
therapy advancement, radiologists can provide essential
information regarding the size, location, and form of tumors
with the aid of an automated lesion segmentation technique.
The tumor and its normal adjacent tissue (NAT) differ in
several ways, which makes segmentation in medical imaging

3087

analysis less successful [4]. Numerous methods have been put
into practice that attempt to identify the precise and effective
boundary curves of brain tumors in medical pictures [5].

In medical image processing and classification for
radiological evaluation or computer-aided diagnosis,
segmentation is a crucial step. The process of dividing an
image into discrete areas by assembling nearby pixels
according to a predetermined similarity standard is known as
image segmentation [6]. Pixels that represent objects in the
image can have certain attributes or features that can be used
to determine the similarity principle. Thus, segmentation is a
pixel categorization method that enables similar regions to
form inside the image [7]. In region-based segmentation
techniques, the analysis begins at the pixel level, where
regions are grown according to a pre-established similarity
criterion. In contrast, pixel-based direct classification methods
rely on heuristics or estimations derived from histogram
statistics to generate closed regions corresponding to objects
in the image [8]. Once these regions are identified, features are
extracted to facilitate their description, examination, and
classification. Such features typically include statistical
parameters like mean and variance of grayscale values, along
with geometric shape descriptors and texture-related
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information [9]. A segmentation approach that integrates color
space conversion with K-means clustering has been applied
for tumor localization, yielding encouraging preliminary
results when tested on MRI brain images [10]. This
combination of color-based segmentation and clustering
demonstrates strong potential for object tracking in medical
imaging, as it enables accurate isolation of tumor- or lesion-
related brain regions from surrounding tissue [11].

Advancements in machine learning and computer vision
have greatly enhanced the accuracy and efficiency of medical
image segmentation and classification. In recent years,
computer-aided diagnostic systems powered by machine
learning have become increasingly prominent in medical
imaging [12]. These techniques are capable of learning model
parameters from distinctive features extracted from medical
scans and applying the trained models to predict outcomes for
new data. Such capabilities make them effective for addressing
tasks like classification, regression, and segmentation [13].
Within brain tumor analysis, segmentation has often been
reframed as a pixel-level classification problem, where each
pixel is assigned, a label indicating whether it belongs to a
tumorous or non-tumorous region. Supervised learning
models process various extracted features as input vectors and
produce an output vector containing the target segmentation
classes [14]. This pixel-based -classification strategy is
frequently preferred over conventional segmentation
approaches, as tumor regions can be irregularly shaped and
scattered across different areas of the image. Consequently,
the segmentation of a brain tumor from a head MRI scan has
been done using conventional supervised machine learning
techniques [15]. The major contributions are listed below:

Designing a fully connected learning network for disjoint-
region-based segmentation regardless of the distinct feature
characteristics

* Performing a concurrent operation process for uncertainty
detection and mitigation and feature identification

* Providing an experimental analysis using an external
dataset and MATLAB-based process for output extraction

* Performing a comparative study to validate the proposed
method’s efficacy using different metrics and variants

2. RELATED WORKS

Rajendran et al. [16] developed a brain tumor MRI image
segmentation  automatically using deep learning.
Convolutional Neural Networks, widely used in the field of
biomedical image segmentation, demonstrated a considerable
improvement in brain tumor segmentation accuracy when
compared to the present state of the art. It is used to
deconstruct images into their constituent elements. The
developed method achieves the mean accuracy and sensitivity
for the whole tumor.

Tejashwini et al. [17] designed an automatic brain tumor
segmentation method using MRI images. A biomedical image
analysis technique is employed in the method to analyze the
brain features for segmentation. The method minimizes the
computational cost and complexity ratio. The designed
method elevates the sensitivity, specificity, and accuracy rate
of the process.

Hernandez-Gutierrez et al. [18] introduced a lightweight U-
Net-based brain tumor segmentation model. The model is used
to locate the exact location and condition of a brain tumor. The
model uses optimal MRI image slices to detect the types and
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classes of brain tumors for further disease diagnosis. The
introduced model elevates the accuracy, precision, and
sensitivity range.

Rabby et al. [19] developed a multi-task architecture model
using MRI images for brain tumor segmentation and
classification. The model uses a deep learning (DL) algorithm
to localize and optimize the important features from MRI
images. The model also reduces the latency and error rate of
the classification process. Experimental results show that the
developed model achieves high precision and accuracy.

Qin et al. [20] proposed a diffusion probability model-
enabled brain tumor segmentation model. MRI images provide
reliable information to detect and segment the tumor-infected
regions. The important features of the tumors are extracted
using the diffusion method, which minimizes the
computational cost and latency rate. The proposed model
elevates the accuracy rate of the brain tumor segmentation
process.

Li et al. [21] developed an enhancement of the robustness
of brain tumor segmentation with region-based evidential deep
learning to measure uncertainty. The BraTS 2020 is used in
the dataset for both quantitative and qualitative studies to
assess our model's performance in segmentation and
uncertainty estimation. The developed method was performed
in terms of robustly segmenting tumors and assessing
segmentation uncertainty. The developed method reduces the
computing cost. A lightweight 3D attention U-Net model was
developed by Alwadee et al. [22] as an improved version of
Hernandez-Gutierrez et al. [18]. The model uses the attention
mechanism to select the feasible features of the tumor from
MRI images. The model minimizes the computational cost and
latency by analyzing the features in the images. When
compared with others, the developed model enhances the
classification and segmentation services for disease diagnosis.

Sun et al. [23] designed a multi-view attention and multi-
scale feature interaction method for brain tumor segmentation.
The method analyzes global and local features of brain tumors
from MRI images. The method selectively extracts the reliable
features for the brain tumor segmentation process. It also
eliminates noises and unwanted details from the dataset. The
designed method improves the accuracy and precision rate of
the process.

Chen et al. [24] introduced a U-Net-based Kolmogorov-
Arnold network (KAN) model for brain tumor segmentation.
The model uses a pyramid feature aggregation module to fuse
the features from MRI images. The fused features are used as
input, which decreases the latency rate of the process. The
introduced U-KAN model enlarges the precision level of the
segmentation process. Liu et al. [25] proposed a 3D auto-
calibrated focus U-Net for segmenting brain tumors. SCAU-
Net replaces the original convolution layers with multiple 3D
self-calibrated convolution modules, which adaptively
computes the receptive field of tumor images for efficient
segmentation. It also embeds the external attention into the
skip connection to better utilize encoding features for semantic
up-sampling. The proposed model reaches exceptional
performance.

Mostafa et al. [26] suggested a method for detecting brain
tumors using MRI data that combines segmentation and
feature fusion. Segmentation and feature fusion have been
used to provide a novel and reliable automated brain tumor
detector. Noninvasive MRI has been widely used for diagnosis
without the need for ionizing radiation. The suggested method
enhances the accuracy and precision. Zhang et al. [27]



developed a deep fusion of multi-modal characteristics for the
segmentation of brain tumor images. The developed method
makes full use of the multi-modality information included in a
deep convolutional neural network to improve brain tumor
image segmentation by extracting and combining unique. It is
tested on the BraTS2021 data set. The developed method
enhances the diagnosis and treatment of brain tumors.

Qureshi et al. [28] proposed a robust multi-class brain tumor
segmentation framework using a DL algorithm. MRI images
are used here as input, which produce feasible data for
detection and segmentation services. The proposed framework
eliminates the noisy features from the dataset, which enhances
the reliability of the process. The framework achieves a high
precision and accuracy rate in the process.

Rutoh et al. [29] developed a 3D guided attention-based
deep inception residual U-Net (GAIR-U-Net) model for brain
tumor segmentation. The developed model uses MRI images
as input, which gathers sufficient data for the segmentation
process. The model identifies and analyzes the infected brain
tumor regions from given images. Experimental results show
that the developed model enhances the sensitivity, specificity,
and precision level.

Liu et al. [30] introduced an enhanced feature-based vision

patch transformer network for brain tumor segmentation. MRI
images are employed here, which are used as input for
segmentation. The model CNN algorithm is used to extract
optimal features and factors from MRI images. The extracted
features are used to segment the exact location of the brain
tumor. The introduced model maximizes the precision level of
tumor segmentation.
Conventional segmentation methods are stuck into
uncertainties due to overlapping pixels and region
misidentification. These issues are addressed in references [17,
22] using identified feature learning, with high time demands.
The misidentification uncertainty is addressed using
probabilistic methods as in references [19, 26, 30].
Distinguishable methods proposed in references [20, 25, 28]
are useful in improving the efficiency regardless of the
evidence and encoding-based segmentation. The reverse
problem is the dissimilar feature extraction and disjoints
region segregation from the complete pixel distribution
preventing multiple errors. Therefore, this article introduced a
disjoint segmentation method using fully connected learning
network for sorting these issues.

In contrast to the current methodologies, which rely solely
on probabilistic models or on feature-learning paradigms, the
proposed method incorporates the two elements in its Fully
Connected Layer Network (FCLN) architecture. This
integration helps to have a stronger control of uncertainties and
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possible misidentifications. The distinguishing characteristic
of the approach is that it focuses on the classification of the
disjointed regions and finding a solution to the inverse task of
dissimilar feature extraction. The algorithm (separating non-
overlapping regions and those that form maximal disjoint
regions) provides the algorithm with a greater level of
accuracy in tumor segmentation. Also, the approach provides
a unique way of managing the uncertainty through unanimous
uncertainty detection. Once both parallel processes agree on a
value of uncertainty, the system stops any additional recursive
operations hence optimality in feature identification and
segmentation  performance. Overall, the presented
methodology provides an all-encompassing approach to the
problem of brain tumor segmentation through the combination
of the disjoint region analysis and the uncertainty reduction
along with the iterative learning in the form of FCLN
architecture. Such a comprehensive view stands out as a
distinctive feature within the given methods of analysis, which
generally concentrate on one or two of these aspects.

Unlike existing uncertainty-aware segmentation techniques
that rely primarily on probabilistic modelling or confidence
propagation, the proposed DSM-FCLN reformulates
uncertainty handling as a structural decision process based on
disjoint region separation. The framework introduces a
parallel consensus mechanism, where disjoint feature
extraction and uncertainty estimation operate recursively until
a unanimous uncertainty threshold is reachedan approach
absent in prior Fully Connected Network-based segmentation
or evidential learning architectures. This design allows
uncertainty reduction to emerge from feature separation rather
than post-processing estimation.

3. DISJOINT SEGMENTATION METHOD (DSM)
USING A FULLY CONNECTED LEARNING
NETWORK (FCLN)

The proposed segmentation method is designed to improve
the precision of brain tumor segmentation using region
segregation. This segregation is based on the disjoint feature
classification that increases the uncertainty. The identification
of disjoint regions is performed by differentiating overlapping
pixels from the input MRI. The scope of this paper is to
segment and segregate the disjoint region and identify the
brain tumor. The uncertainty issue is addressed due to the
overlapping of the pixels on different textural features. Here,
the segmentation rate is improved and less uncertainty is
detected. In Figure 1, the proposed method is
diagrammatically illustrated.

Dissimilar

Segmentation

Seggregation
Max. disjoint
Regions

Fully Connected
Network

Similar

Figure 1. Proposed method illustration



Table 1. Variables and description

Variable Description Variable Description
B Classification \Y Splitting Factor
m, Input Images L, Variation
. , Variation
o Feature Extraction g Classification
& Classified Variation a Region Examination
Detection 0 Factor
d, Mean p Pixel Deviation
T Standard Deviation a Uncertainty
C Perceptron Process hg Weight
Region Monitoring
No,..m Neurons M Process
Unanimous T
So Uncertainty Value wg, w'(U)  Similarity Check
Final Unanimous
m(sg) Value G Segment
n Precision

The process of the proposed method is illustrated in Figure
1. The MRI input is first preprocessed for the features
associated that are extracted. Based on the features identified,
the independent and disjoint factors are detected. This
detection identifies uncertainty using a fully connected
network. The connected network is used for maximum disjoint
regions that are segregated from the actual region through
different training processes. The precision rate is improved by
using a fully connected learning network. For ease of
understanding, the variables used in the article are introduced
in Table 1.

The following equation is used to classify the pixels as
independent and disjoint regions.

{ |

; 4 _ : | (¢ *my) 1
={=m2—+[o*m 9*Mn
Zmg (o*g") ST v
l Independent WJ

In the above equation, the classification 3 is performed and
here independent and disjoint are identified. In this equation,
pixels are treated as independent and disjointed regions. It
employs a classification capability to operate with the MRI
input image I. The equation divides the image into separate
and discontinuous regions. The categorization is done on

Independent

MRI Image ;‘i;
Disjoint

/

Feature Extraction

Uncertainty

several pictures and pixels differences within the area are
taken into account. The identification of these two methods is
used to derive the segmentation in further work. The MRI
image is fetched as input and forwarded to classification where
the independent is associated with the splitting process and is
denoted as V. The independent and disjoint region is indicated
as pand t. The above equation states two split up, the
variation is done from the initial image to the number of
images {m,,...m,}.

The pixel variation is done for the regions on the MRI and
it is represented as {ly,...l,} . Post to this method
identification is done to find the uncertainty, the feature
extraction is denoted as o, and the important features are
extracted from the input. The classification is done for the
region on the image and it is termed as g’, and the detection is
represented as ¢. Thus, the classification is performed, and
here the disjoint region is examined from the overlapping and
it is denoted as a,. The following equation is derived for the
identification phase and finds the uncertainty.

* e’ ’ =
((mo 10) + /Zio[cl>*mo]+lo—r 0

e’ +mg

n
H?O(V * 10) + W— V0

m=

2)

In the proposed framework, uncertainty is treated as a
measurable function rather than a heuristic condition.
Formally, the uncertainty U for a pixel group P is defined
using Shannon entropy, expressed as:

U=-YK plog () 2.1

where, p; denotes the probability of the pixel belonging to
class i among k candidate classifications. To account for
intensity fluctuations and texture inconsistency in MRI, an
additional variance term is incorporated:

Upina = aU + (1 — a)o? (2.2)

where, o2 represents feature variance and a is a balancing
coefficient (empirically set to 0.6). This formulation allows
uncertainty to be quantified and systematically minimized
during segmentation.
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Figure 2. Disjoint and independent feature splitting

The identification Tt is processed to find the uncertainty in
the region, where the pixels are extracted. The uncertainty is
identified if there is overlapping is detected. With the use of
this equation, uncertainties in the classified regions are
determined. It has two conditions: 0 means it is uncertain
because of overlapping of pixels and when it is not equal to
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zero it makes more detection by dividing pictures and
examining pixels. The detection of this region is done to find
the brain tumor and determine the overlapping pixels. The
pixel overlapping is examined based on the number of images
retrieved. It means the input MRI has several pixels, in this
upcoming image with the same features overlapping with the



previous pixel. The independent and disjoint feature-splitting
process is illustrated in Figure 2.

The feature extraction identifies multiple standard
deviations and the mean of the input image across 8. This 8 is
performed for d, and p detection; specifically, p € d, is
extracted for ¢. The changes in mean and pixel deviation are
handled across multiple [, to L, ¥V g'. Therefore the V is
performed V p and T under the available g’ for uncertainty
detection. If ¢ is inclusive for p, T and d, then uncertainty is
high (Figure 2). This same feature overlapping is done on the
region; due to this brain tumor detection is complex. To get rid
of this the segmentation is carried out by using FCLN, by
training the error pixel on the network for better output. Eq. (2)
states two conditions the first is equal to zero and the second
is not equal to zero. The input image and the pixel are
examined and their features are extracted. Based on these
features the detection of MRI is performed in this disjoint is
identified where the overlappmg of pixels is identified. So, the

first condition states Y5 [(])*mo] +1y, — T there is an

overlapping of pixels and it is uncertainty. Whereas, the
second condition states the uncertainty for this detection is
performed by splitting the images along with the number of
e’+mg |

n

pixels and it is denoted as —V. So the second

@+mp

condition is not equal to zero and it is not an uncertainty thus,
the identification is equated. From this uncertainty is defined
by isolating the overlapping pixels in the region by finding the
different textural features. The following Eq. (3) is used to

In the above equation, the uncertainty is defined based on
the feature region where the extraction of the desired pixel is
derived. According to this equation, feature regions define
uncertainty. It removes unwanted pixels to recognize disjoint
features and detect overlapping similar features. The
integration is done with initial image up to n images.
Uncertainty in the equation is calculated by detecting and
classifying independent and disjoins features. The derivation
of disjoint feature from MRI is used to identify the uncertainty,
in this overlapping of similar features are detected. Similar
features are detected based on the desired features from the
pixel, in this uncertainty is examined till [,,. The integration is
done from the initial image to the number of images. Here, the
determination of uncertainty is represented as d in this the
detection and classification phase is performed. The
independent and disjoint features from the region are used to
detect the overlapping of pixels. The pixel overlapping is done
from the extraction of features from the input images. The
identification is done from the overlapping of pixels from the

classification =2

g 30
the overlapping region, along with this the different textural
features are identified. The textural features are mitigated by
using segmentation to improve the accuracy level. Post to this
determination of uncertainty the splitting of similar and
dissimilar regions is based on disjoint and it is equated in the
below equation.

. Thus, the uncertainty is determined from

1

determine the uncertainty and find the different textural 24 ZB (@ *U) — 2p(g"*In) ®
» Wo
features. V=my 1 pU+ Mo “4)
Hg‘";([g *p)+ (0 —-1) *m,w'
_ (mp _ T+l n
0= [ @o+ V) —loxs—-t+ (B 0) 3)
Splitting-Dissimilar
m { Next O
gep = -
W No DlSS|m|Iar lnput
g Input ____» _Yes
— 3 I
Compute I, | i Cumpu(eTC
Region Uncertainty

Figure 3. Similar and dissimilar region detection using decision process

In this equation, similar and dissimilar regions are divided
according to disjoint pixels. It considers the disjointed pixels
on region-based segmentation. The former is the case of
similar regions, in which the segmentation is carried out
separately. The second condition is the dissimilar regions,
which are based on disjoint regions. It derives characteristics
and approximates unpredictability to dissimilar areas. The
splitting of the similar and dissimilar regions is done from the
disjoint pixels. This is evaluated on the region-based
segmentation that is carried out from the disjoint pixels. The
processing is used to extract the desired pixels from the MRI.
This splitting of pixels is performed to distinguish similar and
dissimilar regions and it is denoted as w, and ' to find the
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brain tumor. Brain tumor detection is done from the disjoint

region. The first condition is similar, in this, the region-based

segmentation is performed independently and it is equated
1

Yp(g'+ln) .. Lo .
as “FSTn 0+ m, The similar and dissimilar region
differentiation process is illustrated using a decision process in
Figure 3.

The decisions are performed in a step-by-step manner to
achieve high precision in ¢ detection. The chance of
uncertainty is two: (i.e.) if d = 7 and ¢ € I, fails, both cases
are handled by using m and 9, differentiation. Therefore
similar regions are identified from d = 7 condition whereas



the 0 = A and o € I, failing conditions identify the dissimilar
regions (Figure 3). The second phase is dissimilar and it is
derived from the disjoint region. From this splitting is
performed from the input image and from that the
uncertainty U is estimated. The desired features are extracted
and from that the splitting is evaluated for the disjoint region-
based segmentation. The identification is done from the
classification and dissimilar feature is extracted to estimate

U
W. In Eq (4), the

splitting is done and from this detection of disjoint features and
uncertainty is examined in Eqgs. (2) and (3).

uncertainty and it is represented as

3.1 Fully connected learning network architecture and
configuration

To ensure computational consistency and reproducibility,
the Fully Connected Learning Network (FCLN) used in this
study is explicitly defined in terms of dimensional flow and
structural organization. The network receives two feature
vectors as input: (1) disjoint feature representation extracted
from the pixel classification stage and (2) the computed
uncertainty vector. Each MRI slice is represented asa 1 x 512
flattened feature descriptor after preprocessing and statistical
extraction, resulting in a combined 1 X 1024-dimensional
input tensor as shown in Table 2. This tensor is passed into a
sequence of fully connected layers designed to learn non-
linear relationships between disjoint mapping and uncertainty
suppression. The network consists of three hidden layers with
512,256, and 128 neurons, respectively. Rectified Linear Unit
(ReLU) activation is used after each layer to prevent vanishing
gradient behavior, while a dropout rate of 0.3 is applied to
minimize overfitting given the heterogeneity of the MRI signal
variations. The final classification layer contains 2 output
neurons corresponding to the similar and dissimilar region
labels and uses a softmax activation. Adam optimizer is
employed with an initial learning rate of 0.001, weight decay
of le-5, and adaptive learning scheduling aligned with
uncertainty stabilization. In total, the architecture contains
approximately 1.47 million trainable parameters.

Table 2. FCLN architectural configuration summary

Component
Input Dimension
Hidden Layers

Specification
1 %1024 feature vector
3

Neurons [512, 256, 128]
Activation ReLU (hidden), Softmax (output)
Dropout 0.3
Optimizer Adam
Learning Rate 0.001 with scheduling
Total Parameters ~1.47TM

Stopping Criteria Unanimous uncertainty convergence

The connection mechanism follows a dual-stream fusion
approach where disjoint pixel information and uncertainty
evolution are processed in parallel during early layers and fully
merged at the third hidden layer. Training continues iteratively
until the unanimous uncertainty condition is satisfied,
functioning as an early-stopping constraint directly tied to
segmentation stability rather than training epoch limits.

4. FCLN PROCESS

The fully connected learning network is used to detect
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uncertainty and disjoint feature detection. Here, similar and
dissimilar regions are segmented which is based on different
brain objects such as fluids, tissues, etc. The proposed work
focuses on similar and dissimilar regions and the output is
grouped for the concurrent training. In this state, the detection
is performed from the determination of uncertainty. Here, the
disjoint features and uncertainty are done by evaluating FCLN
where the computation is performed for the disjoint region.
The following equation is used to detect the disjoint and
uncertainty using FCLN.

Unlike prior fully connected segmentation pipelines, the
proposed FCLN incorporates a recursive unanimous-
uncertainty stopping rule and a two-stream feature pathway,
ensuring that segmentation refinement continues only when
both uncertainty estimation and disjoint-region learning
converge to an identical value.

D=1y +B 5 Talp+ 0+ T e + (7 F Mo/, +

)
V)= [(e' +U) 1] +a,

The detection is done for the uncertainty and disjoint
features for which the FCLN is used. To operationalize these
equations during training, the computed uncertainty value
UUU and the similarity grouping outputs Sg;,,, Sqis are passed
into the learning network as supervisory signals. The loss
function incorporates disjoint-region error minimization and
uncertainty reduction, enabling the perceptron to update
weights www until the unanimous uncertainty -criterion
®(U)=0 is met. This mechanism ensures that the model does
not only segment the tumor boundaries but also progressively
suppresses ambiguous boundary behavior during optimization.
The overlapping of pixels is detected and from that
classification is performed based on the region. The
classification of pixels is done for the independent and disjoint.
Here, the detection is done for the disjoint region segmentation,
the necessary features are extracted. The necessary feature is
extracted and from that uncertainty is evaluated and it is
denoted as [(e’ + U) * t] + a,. The independent and disjoint
region is segmented and from that the splitting is done for the

n-number of the image and it is represented as (6 + mn/ g’ +

V). The detection is done for the disjoint feature that relies on

the similar and dissimilar regions where the uncertainty is
estimated from the overlapping of pixels. The detection is
done for brain tumor segmentation using FCLN. Thus, the
features are associated with the segmentation of similar and
dissimilar regions. From this perceptron is used for weight
assigning in FCLN. A perceptron is used in the FCLN to
classify the number of neurons and based on the neuron the
training set is improved. The following equation is used to
evaluate the perceptron and weight is assigned.
C =f(my,.n ho..n) *No..m + Iy * D) * 0" + wy (6)
The perceptron C is used to assign the weight h, for the
number of input images. In this perceptron, weight is assigned
to improve the training set in the neural network. Here, the
detection is done to find the disjoint features and it is
determined from the similar and the dissimilar regions. The
similar region with uncertainty is trained and the dissimilar is
also trained on the number of neurons ng_,. The function is
defined as f'based on the weight the perceptron training is used
for better a segmentation phase. The following equation is



used to monitor the similar and dissimilar regions and the
output is grouped for concurrent learning.

g'+m

" Tivln+6

e +U _
T PR
M + 0o

The monitoring M is done for the similar and dissimilar
regions and the output is grouped for concurrent learning. The
learning network is used to train the uncertainty value in the
proposed work. This part of monitoring is done recurrently for
the identification of similar and dissimilar regions. These
regions are detected based on splitting the number of pixels
and finding the overlapping. This identification of overlapping
is examined in Eq. (1), and from this periodic monitoring is
done for similar and dissimilar regions for better training
output.

Here, the features are extracted and the uncertainty is

derived by the determination method (6 « €+ U/ (0 + r))'

From the monitoring phase, the grouping of similar and
dissimilar region output is evaluated for concurrent learning.
Post to this method the hidden layer is used for the
computation and training of the uncertainty value. The
following equation is used for the computation and
improvement of the segmentation rate.

me(e’) =117 (U+®)*l0+n0*%
0

r
my(e)) =1 (U +8) » Ly +ny » 200

Yr(C+m)
B+so

f ®)
mn(e’) = Hg,(U + Q)) * ln—l + Nyp—q * J

The hidden layer is used to train the uncertainty for the
number of images; here the n-number of pixels is detected for
the overlapping. The overlapping of pixels is denoted as the
disjoint and it is estimated to find the similar and dissimilar
region. The region-based detection is done for the independent
and disjoint regions these are done by using FCLN. In the
above equation, the perceptron is used to assign weight to the
pixels in the MRI. Based on this processing the number of
MRI is fed to the neuron by assigning weight. The weights are
detected to the m-number of neurons in the network and
improve the accuracy level. The training is used until the
unanimous uncertainty value s, is identified. The
identification is performed based on the perceptron where the
disjoint region is done. In this work, every image feature is
extracted and finds whether overlapping exists or not. If there
is overlapping or uncertainty is detected the output from the
first layer neuron is trained and forwarded to the second layer.
The FCLN process for uncertainty detection is illustrated in
Figure 4.

Figure 4 illustrates the uncertainty detection process that
employs a Fully Connected Learning Network (FCLN). This
network has three main layers namely, input layer, hidden
layer and the output layer. Two kinds of data are fed into the
input layer; disjoint features and uncertainty. The processing
of these inputs in the hidden layer is then done where the
mapping process takes place. Three outcomes are possible in
the hidden layer; when s, = 7, the output will be s,, when
S, # T, the output will be 7, and when both s, and T are
present, both of them will be mapped. The processing of the
hidden layer gives the final result of the output layer. When
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the w'(U)V 9, is less than 7, it means that the area is highly
disjointed as compared to when s, > t. This is done in a
recursive manner and the training process is repeated until the
disjoint areas are reduced to the minimum. Reduction of the
disjoint regions implies that the uncertainty that is witnessed
has been tackled or minimized. The FCLN requires (p,7)
inputs for detecting s, and m(7) through two different
processes. In the first process (i.e.) the hidden layer, the m,
mapping with ¢ or M or both are performed. If m,, matches ¢
then d, are the output else V is the required output. Here, d,, is
the [, to l,_; mapping for which (s,) is extracted. This is
trained as w'(U)V 9, only such that new outputs are detected.
If V the function is the process, then (7) is trained from the
splitting function until [,,_; is achieved. Finally, if s, > 7 then
the disjoint regions are high otherwise, it is loss. The training
is pursued until the disjoint regions are less (i.e.) the
observed is less for either s,or 7 or both (Figure 4). The
processing is carried out until there is no uncertainty is
identified in this process. To improve this perceptron is
estimated for every neuron in the network to provide better
identification. From this hidden layer, the training is
performed and post to this uncertainty detection is done for the
disjoint feature. From this training phase, similar and
dissimilar training is carried out in the FCLN and it is equated
in the below Eq. (9).

1

We, W' (U) =@ *

+YyM+B)xd—sy+e Q)

Nm-1
The neurons with the respective weights are assigned and
perform the detection of similar and dissimilar region
detection. The analysis is done to detect whether there is
uncertainty for every input image and from that the detected
image which are overlapping is separated. The separated
image is trained along with the weights of the neurons in the
network and determines the uncertainty. The uncertainty
detection is performed until there is no overlapping and thus,
the segmentation rate is improved. The classification phase is
done for the independent and disjoint in the MRI. Thus, the
detection is performed for every fixed interval and finds the
uncertainty; from this, the unanimous uncertainty value is
detected to decrease uncertainty. The following equation is
used to state the unanimous uncertainty in FCLN.

n(se) = g'(0) * I + (220)

Comg (10)

The unanimous uncertainty is detected for the input image
and determines the better segmentation. The perceptron is used
to examine the better pixel identification and from that brain
tumor is detected. Brain tumor detection is done by evaluating
the splitting of images and from that training is distributed.
The training phase is used to estimate the better detection of
brain tumors. By performing this less uncertainty is estimated
for the disjoint region. From this derivation, less uncertainty is
detected in Eq. (10). The proposed method to uncertainty
identification and reduction of brain tumor segmentation can
be used to identify and address uncertainty issues through the
use of a few major equations. The uncertainty in Eq. (2) is
determined in terms of pixel overlapping. The feature region
is differentiated with the use of uncertainty based on feature
regions of Eq. (3). The given integrated method enables to
fully evaluate the uncertainty in the entire feature space. The
uncertainty and disjoints features are identified in the Eq. (5)
that combines pixel classification, feature extraction, and



image splitting to offer a powerful uncertainty detection
mechanism. In coming up with unanimous uncertainty in the
FCLN, Eq. (10) employs the minimum of the values of various
neurons. This is to guarantee that the most conservative
measure of the uncertainty is taken into account. The
suggested approach involves training the FCLN repeatedly
until reaching an acceptable and minimum unanimous
uncertainty level that guarantees the best performance. Also,
parallel training on similar and different regions is imposed to
improve the network to differentiate between the various types
of tissues. Lastly, there is the separation of the non-
overlapping regions and maximum disjoint regions which
further narrows the segmentation procedure and minimizes the
uncertainty. From this segmentation is carried out on two
categories are derived one is identifying maximum disjoint
region and the other is segregation. The following equations
are used to derive the maximum disjoint region and
segregation is equated.

Hidden Layer

- [a]

n(r)=min*[236+g’*(U+M)]*(e’+0)*

11a)
1 i mo (
0= |(Zgoo )] e~

! v !
G=PBlp+D*g +5 s wow'(U) (11b)

In the above equations, maximum disjoint region and
segregation are done to improve the segmentation rate in the
proposed work. Eq. (11a) states the maximum disjoint region
identification that is performed by using segmentation and it is
denoted as [ZB d+g «U+ M)] * (e’ + 0) * . In this, the
equation similar and dissimilar is evaluated based on the
identification of disjoint in the region. The necessary features
are extracted and from that, the segmentation is done. Eq. (11b)
states the segregation G where the evaluation is carried out to
analyze the important feature. Figure 5 presents the
segregation process illustration.

‘ wo(U) Training I

I *-

Condition
7 Yes
A N
L Output *( $o>T )*.
~ /
N -
Input Resion L Region-
Factors Similarity P £ based
Cheek rocess
wo(U) Training

Figure 4. Uncertainty detection using FCLN

Variation Extraction

Output
Regions

Segregation

Figure 5. Segregation process illustrations

The s, > 7 condition identifies multiple [, to l,,_; regions
across various V processes. In this case the d, based variations
(i.e.) L, distinct from I, to I, are extracted for M. The odd
case of m, (e') is another demand for G process from ¢
detection. The case of w' and w, are independent of
V (new) and G process between p and 7 pixels. Therefore the
regions are optimal for detecting C (allocated) through
the 7(s,) and m(7) classifications. This initiates w' output
segregation from I, to I, regardless of L,,_; for G (Figure 5).
The important features are extracted and segregated for better
detection of the tumor region. This equation is derived from
Eq. (9) includes similar and dissimilar features in the region

ﬁ*wo,w’(U) . Thus, the
¢{0*Mn

uncertainty along with the similar and dissimilar features are

and is represented as
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split and segregated. By computing this precision is improved
by validating Eq. (12).

_ 1
(mp+lp)

n *(@+G) =P (12)

In the above Eq. (12) the precision is improved by
determining segmentation and segregation for the number of
images. From the number of images, the pixel identifies the
better extraction of features. In this evaluation, the precision is
improved when the segmentation results in better
identification of disjoint and uncertainty. This segregation is
followed up to provide better detection of brain tumors. This
processing is done by FCLN along with the segmentation and
detection.



5. EXPERIMENTAL DISCUSSION

This subsection presents the experimental outputs using the
“BraTS 2021 Task” [31] dataset and MATLAB software. To
ensure experimental reproducibility, the BraTS 2021 dataset
was partitioned into training, validation, and testing subsets
following a fixed 70% / 15% / 15% split strategy. A controlled
random seed (seed=42) was used during the data shuffle
process to prevent bias from stochastic sample ordering. Prior
to model training, all MRI volumes underwent standardized
preprocessing, including NIfTT formatting verification, skull-
stripping  confirmation, and  voxel-level intensity
normalization using z-score scaling. All modalities (T1, T1Gd,
T2, and FLAIR) were resized to a spatial resolution of
240%240 and harmonized to a unified anatomical template.
During training, only non-affine augmentations were used to
preserve tumor boundaries, including random flipping, small
rotation (<10°), and contrast jittering. This configuration
ensures consistency in feature space representation across the
segmentation workflow and aligns with established
reproducibility protocols in medical image computing. All
BraTS mpMRI scans represent a) native (T1) and b) post-
contrast T1-weighted (T1Gd), ¢) T2-weighted (T2), and d) T2
Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes,
and these were obtained under varying clinical parameters and

Image

Independent

5 10 15
Variation 2

20

Dissimilar

using a variety of scanners at various data contributing centres.
Manual annotation of all the imaging datasets has been done
by one to four raters using the same annotation protocol, and
their annotations accepted by the expert neuro-radiologists.
Annotations include: GD-enhancing tumor (ET -label 4),
peritumoral edematous/invaded tissue (ED -label 2), and
necrotic tumor core (NCR -label 1), as defined in both the TMI
paper of BraTS 2012-2013 and the most recent paper of BraTS
summing up it. Their pre-processing, i.e. co-registering them
to the same anatomical template, interpolating them to the
same resolution (1 mm?) and skull-stripping them, yielded the
ground truth data. The dataset provides three types of tumor
inputs: native, weighted, and inverted which are classified
using their detection. The number of training images is 6K+
and the testing images are 1.4K for assessment. The number
of epochs used is 8 in this analysis for which the fully
connected network is divided based on region-splitting
conditions for mean and standard deviation. The learning
network’s training rate is 0.6 to 1 targeting the above count of
epochs. The epoch is continuously validated for a maximum
of 10 regions such that the change in variation results in a start
of new epoch. Therefore, the terminating condition is
identified based on the classifications and variation values to
ensure precise segment is identified. The experimental outputs
are presented below using a sample input.
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Figure 6. Overall experimental outcomes
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The given approach makes the uncertainty unanimous by
means of an iterative procedure with the use of a Fully
Connected Learning Network (FCLN). This network carries
out two tasks at the same time, disjoint feature detection and
uncertainty estimation. These operations are being done on
similar and dissimilar regions and their outputs are pooled
together so as to be trained simultaneously. The training
process repeats itself till a common value of uncertainty is
found. This is the event that, the two parallel processes
(disjoint feature detection and uncertainty estimation) come up
to a certain value of uncertainty. When this unanimous
consensus is achieved, any further recurrence of the operations
is suspended by the system, so that the most conservative
measure of uncertainty has been considered. The steps of the
process can be summarized in five steps and they include, first,
the FCLN analyses the input information of the disjoint
features and uncertainty. Second, same and different regions
are processed at the same time. Third, the network keeps
continue training and adjusting the weights depending on the
results. Fourth, this process is repeated until both operations
get the same value of uncertainty. Lastly, the training process
is terminated when the unanimous uncertainty value is

achieved. This method will ensure optimal performance where
the measure of uncertainty is considered as being the most
conservative (Refer to FCLN Error (Figure 6)).

In Table 3, the ¢ and V for different regions with their
corresponding a and a, values are presented.

The disjoint regions and the independent ones are classified
at the classification phase. The unanimous value of uncertainty
is identified using Eq. (10). The region extraction is done
through the detection. The segregation is separated out of the
segmentation process and presents improved region
delineation. The splitting of regions is analyzed to result in the
proper detection of region. The extraction of the features is
implemented by the assignment of the weights of the number
of neurons in ascertaining perceptron. The error pixel that is
trained by the first layer is refined by the hidden layers and
better region detection occurs. The overlapping is discussed to
identify the brain tumors better according to this segmentation.
The segmentation and the segregation is carried out in order to
enhance the detection within brief time. The computation time
of detection is reduced by separating the areas that are similar
in features and not similar (Table 3).

Table 3. 7 ¢ and V for different conditions and regions

Conditions Regions ag g wo, w' (V) 0] v
2 0.8421 0.8967 0.9892 0.9852 + 0.0201
4 0.8655 0.8645 0.9023 0.9132 +0.1055
S =T 6 0.8139 0.8561 0.9874 0.9134 +0.1171
8 0.9442 0.8327 0.9043 0.9084 +0.1079
10 0.9371 0.8822 0.9783 0.9515 +0.0922
2 0.8337 0.8010 0.9428 0.9027 +0.0963
4 0.8648 0.786 0.9707 0.9936 +0.0864
So =T 6 0.9297 0.7504 0.9853 0.9713 +0.0728
8 0.8597 0.7816 0.9422 0.992 +0.0811
10 0.8363 0.7226 0.9562 0.9948 +0.0702
2 0.8414 0.7138 0.9513 0.9819 +0.0492
4 0.8234 0.718 0.9744 0.952 +0.0299
T Only 6 0.8013 0.7712 0.9861 0.9251 +0.0318
8 0.8242 0.7858 0.9215 0.9206 +0.0413
10 0.8268 0.6246 0.9298 0.9352 +0.0309

6. PERFORMANCE ASSESSMENT

The performance assessment is validated using the
following metrics: precision, segmentation rate, uncertainty,
detection time, and region detection. This assessment is
performed as a comparative analysis by changing the number
of regions (1 to 10) and feature extraction rates (0.1 to 1). The
existing methods EDLF (Evidential Deep Learning
Framework) [21], SCAU-Net (Self-Calibrated Attention U-
Net) [25], and ASBTCNN (Automated Segmentation of Brain
Tumor using CNN) [16] are paired with the proposed methods
in this comparative performance assessment.

To ensure robustness, the proposed DSM-FCLN framework
and baseline models were trained across five independent runs
with varying initialization seeds (42, 77, 101, 128, and 256).
All reported values are presented as mean + standard deviation,
and 95% confidence intervals were computed in accordance
with model-to-model wvariation. This statistical reporting
approach reflects stability across repeated trials rather than a
single execution outcome. To further evaluate stability and
sensitivity to initialization, the multi-run results were analyzed
using variance-based sensitivity scoring. The proposed DSM-
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FCLN demonstrated low run-to-run fluctuation, with
performance variation remaining within +1.4% for
segmentation rate and +0.9% for precision. A paired t-test
comparing the proposed model against the strongest baseline
(SCAU-Net) confirmed that improvements were statistically
significant (p<0.05). The narrow confidence intervals indicate
that the observed performance gains are not incidental or seed-
dependent but remain consistent across repeated training
iterations. To ensure fair comparison, all baselines (EDLF,
SCAU-Net, and ASBTCNN) were re-trained under identical
experimental conditions. The same dataset split (70% training,
15% wvalidation, 15% testing), preprocessing steps, and
augmentation policies were applied consistently across all
models. Training was standardized to 8 epochs, using the
Adam optimizer with a learning rate of 0.001, batch size of 16,
and controlled seed initialization (seed=42) to minimize
stochastic variation. No model-specific tuning advantage was
applied, and hyperparameter settings were aligned to prevent
bias in model performance. This ensures that the reported
improvements stem from methodological advantages rather
than differences in training configuration as shown Table 4.



Table 4. Training configuration consistency across models

Parameter EDLF SCAU-Net ASBTCNNDSM-FCLN
Train/Val/Test Split70/15/15 70/15/15  70/15/15  70/15/15

Epochs 8 8 8 8

Optimizer Adam Adam Adam Adam

Learning Rate 0.001 0.001 0.001 0.001
Batch Size 16 16 16 16

Augmentations ~ Same Same Same Same
Seed 42 42 42 42

In Figure 7, the precision for the proposed work increases
by identifying the similar and dissimilar regions. The feature
extraction is performed based on the classification process that
includes independent and disjoint. The precision is increased
by determining the segmentation of images. The image
segmentation is done by evaluating the pixels and decreasing

the uncertainty and it is represented as 25;[¢ xmg] + 1, — T
In this number of pixels are detected from the respective
regions. The region-based detection is done for the number of
images and determining the disjoint. Thus, the proposed
precision is improved in determining the segmentation. Eq. (3),
states the uncertainty and decreases overlapping of pixels. The
classification is carried out by splitting the independent and
disjoint regions. The feature extraction is done from the MRI
and the processing is done for the number of pixels and
identifies the overlapping.
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Figure 7. Precision analysis

7. SEGMENTATION RATE

The segmentation rate increases in Figure 8, by determining
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the uncertainty in the processing. Here, the similarities and
dissimilar are identified to evaluate the segmentation process.
The segmentation is evaluated by determining the
classification of independent and disjoint regions and it is

denoted as H;‘}(B * p) + (@ — 7). In this computation step, the

segregation is done from the segmentation method. Here, the
processing is termed by splitting the region and evaluating the
maximum disjoint identification. The analysis is done by
assigning  several neurons in  connected layers.

Here, (6 + mn/ g + V) the splitting of regions along with the

overlapping and non-overlapping pixels is examined. In this
evaluation step, better segmentation is performed by using the
FCNL. Thus, similar regions are segmented reducing the
uncertainty in the proposed work. The segmentation of similar
and dissimilar regions is done based on the classification
process.
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Figure 8. Segmentation rate analysis

8. UNCERTAINTY

In Figure 9, the uncertainty decreases by identifying the
disjoint from the classification method. The maximum disjoint
is identified by performing the segmentation method and it is

represented as 0 * e+ U/ (o +10) The computation is done

for the detection of brain tumors in MRI. From this processing,
the uncertainty is defined by extracting the necessary features
from the input region. The desired features are extracted and
split as independent and disjoint regions. Here, the uncertainty
is defined by assigning the weights for the number of neurons
in the connected network. The FCNL is proposed to decrease
the uncertainty and detect the brain tumor by addressing the
overlapping of pixels. The overlapping of pixels and
uncertainty is estimated by equating Eq. (9). The processing is
examined by improving the computation process by



introducing the single hidden layer that is used to train similar
and dissimilar regions.
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Figure 9. Uncertainty analysis

9. DETECTION TIME
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Figure 10. Detection time analysis

The detection time decreases in Figure 10, by evaluating the
better pixel identification from the MRI. The MRI extracts the
necessary features and provides the classification method. The
classification is done for the independent and disjoint regions
YuV+0o

Cxmg

proposed work shows the better detection of brain tumors by
detecting overlapping pixels. Eq. (1) is used to derive the
overlapping of pixels and eliminates the further processing
step. The overlapping is examined for better identification of
brain tumors based on this segmentation. The segmentation
along with the segregation is done to improve the detection in
less time. The computation time for detection decreases by
splitting the regions which are similar in features and not
similar. From this preliminary step, the processing step
decreases and shows better detection. The detection time is
reduced by identifying the disjoint region.

and it is equated as 1, + ( ) The computation for the

10. REGION DETECTION

In Figure 11, the region detection is high in the proposed
work by determining the uncertainty. The uncertainty value for
the proposed work shows better results that are based on
similar and dissimilar identification. The classification phase
is used to distinguish the independent and disjoint regions. Eq.
(10) is used to identify the unanimous uncertainty value. The
detection is performed for the region extraction and it is

o +or) - 2
represented as [( g Wo T )| * C prvod

is done from the segmentation process and shows better region
detection and it is represented as B(p + 1) * g'.

The appropriate detection of region is analyzed from the
splitting of regions. The feature extraction is done by assigning
the weights for the number of neurons by determining
perceptron. The hidden layers train the error pixel from the
first layer and perform better region detection. Thus, the region
detection is performed for better feature extraction. In the
below Tables 5 and 6 below, the above study is summarized
with the improvements of the proposed method compared to
the existing methods.

The segregation

Table 5. Comparative study summary for regions

Metrics EDLF SCAU-Net ASBTCNN DSM-FCLN
Precision 0.681  0.793 0.864 0.9211
Segmentation Rate 0.826  0.867 0.913 0.9669
Uncertainty (/Region) 0.189  0.141 0.105 0.0764
Detection Time (ms) 611.11 435.31 337.88 105.997
Region Detection (%) 67.21  73.49 84.1 94.715

Table 6. Comparative study summary for feature extraction

rate
Metrics EDLF SCAU-Net ASBTCNN DSM-FCLN
Precision 0.692 0.797 0.861 0.9292
Segmentation Rate  0.793 0.87 0.921 0.9652
Uncertainty (/Region) 0.185  0.148 0.124 0.0867
Detection Time (ms) 612.08 436.38 346.86 196.672
Region Detection (%) 67.64  75.88 85.06 94.536

The proposed method achieves the following: 7.09% more
precision, 9.82% more segmentation rate, 9.89% more region
detection, 6.86% less uncertainty, and 12.84% less detection
time.

The proposed method achieves the following: 7.29% more



precision, 10.39% more segmentation rate, 9.17% more region
detection, 6.56% less uncertainty, and 9.62% less detection
time.
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Figure 11. Region detection analysis

11. DISCUSSION BASED ON RESULTS FOR
CLINICAL CORRELATION

The proposed Disjoint Segmentation Method (DSM) with a
Fully Connected Learning Network (FCLN) pays off with a
number of clinically valuable gains in respect to brain tumor
segmentation. The method will help improve the performance
of the tumor boundary delineation by resolving the textural
uncertain issues and pixel overlap, and thus the resulting
treatment planning and tumor volume measurement might be
more precise and be used to help improve the treatment
planning process. The emphasis on minimizing uncertainties
during the segmentation process might make clinicians have
more accurate and consistent outcomes to make diagnoses and
treatment decisions. The capacity of the approach to
distinguish between similar and dissimilar areas, and detect
disjoint features, may be especially helpful in the segmentation
of tumors of heterogeneous nature or infiltrative ones. The
process of segmentation would be more accurately automated,
and thus the time and workload of manual segmentation by a
radiologist would be decreased, resulting in more effective
clinical processes. The DSM is compatible with most MRI
modalities (T1, T1Gd, T2, T2-FLAIR) that are active in
clinical practice to determine brain tumors. The proposed
technique has been demonstrated to have better precision,
higher rate of segmentation, region detection and less
uncertainty and detection time than current techniques. The
above enhancements may be in the form of more robust
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clinical evaluations and possibly incorporated into wider
clinical decision support systems that would assist in the
planning and monitoring of treatment.

12. CONCLUSION

This article introduced and briefed on the functions of the
disjoint segmentation method for uncertainty reduction in
detecting brain tumors using MR images. This proposed
method extracts standard deviation and mean features for the
inputs and classifies them as independent and disjoint. These
classifications are used by the fully connected network for
identifying uncertainty across similar and dissimilar regions.
This process is recurrent over the disjoint and similar regions
concurrently regardless of the disjoint regions. The maximum
disjoint regions are identified using recurrent training between
overlapping and pixel-varying regions. Therefore, the
precision is improved using two simultaneous operations:
feature detection and uncertainty computation. This is
suppressed using multiple concurrent training until the least
possible uncertainty value is reached. In this case, if both the
concurrent process identifies the uncertainty value as
unanimous then, the recurrency is halted. The non-overlapping
regions are segregated from the maximum disjoint regions in
the segmentation process. Therefore, the proposed method
achieves the following: 7.09% more precision, 9.82% more
segmentation rate, 9.89% more region detection, 6.86% less
uncertainty, and 12.84% less detection time. This proposed
method though reduces the uncertainties in MRI segmentation;
the finest portion analysis requires multiple varying regions.
This reduces the actual precision demand regardless of the
peak improvement for which a pre-classified segment-based
analysis is required. Thus, the segmentation process relies on
unidentified features over the parted regions for retaining
precision. Although the proposed method demonstrates strong
improvements in uncertainty reduction and segmentation
accuracy, future extensions will incorporate explainability
mechanisms such as activation-based visualizations and
interpretability maps to better analyze feature importance and
enhance clinical trust in the model outputs.
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