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Brain tumor segmentation identifies disjoint regions for differentiating overlapping pixels 

from a Magnetic Resonance Imaging (MRI) input. This article introduces a novel Disjoint 

Segmentation Method (DSM) using a Fully Connected Learning Network (FCLN) for 

addressing textural uncertainty issues. The uncertainty due to pixel overlapping regardless 

of different textural features is mitigated using this segmentation to improve accuracy. In 

this method, the pixels are classified for their independence and disjoint features. The 

disjoint pixels are focused over similar and dissimilar regions based on different brain 

objects such as fluids, tissues, etc. A fully connected learning network performs two 

concurrent operations: disjoint feature detection and uncertainty estimation. These 

operations are performed for similar and dissimilar regions and the outputs are grouped for 

concurrent training. Both the outputs are used for training the learning network regardless 

of the uncertainty value. The training is suspended only if both operations identify a 

unanimous uncertainty value. Therefore, the process is iterated until the maximum disjoint 

features are identified. Such identification is segregated from the other region features for 

improving the precision. Thus, the proposed method improves the segmentation rate with 

fewer uncertainties. 
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1. INTRODUCTION

Among the most significant tumor categories worldwide are 

brain masses and abnormal lesions. In the evaluation and 

classification of brain tumors, magnetic resonance imaging 

(MRI) plays a pivotal role, with segmentation being a key step 

in the analysis process [1]. MRI, a widely used non-invasive 

imaging technique, is capable of producing multiple distinct 

tissue contrasts within a single scan, making it an invaluable 

tool for medical professionals in identifying brain tumors [2]. 

Traditionally, the segmentation and examination of structural 

MRI scans have been carried out manually by experienced 

neuroradiologists a process that is both labor-intensive and 

time-consuming. Therefore, the development of a fully 

automated and dependable brain tumor segmentation approach 

holds immense potential to enhance the accuracy, speed, and 

effectiveness of tumor detection and subsequent treatment 

planning [3]. To improve the efficacy and significance of 

therapy advancement, radiologists can provide essential 

information regarding the size, location, and form of tumors 

with the aid of an automated lesion segmentation technique. 

The tumor and its normal adjacent tissue (NAT) differ in 

several ways, which makes segmentation in medical imaging 

analysis less successful [4]. Numerous methods have been put 

into practice that attempt to identify the precise and effective 

boundary curves of brain tumors in medical pictures [5]. 

In medical image processing and classification for 

radiological evaluation or computer-aided diagnosis, 

segmentation is a crucial step. The process of dividing an 

image into discrete areas by assembling nearby pixels 

according to a predetermined similarity standard is known as 

image segmentation [6]. Pixels that represent objects in the 

image can have certain attributes or features that can be used 

to determine the similarity principle. Thus, segmentation is a 

pixel categorization method that enables similar regions to 

form inside the image [7]. In region-based segmentation 

techniques, the analysis begins at the pixel level, where 

regions are grown according to a pre-established similarity 

criterion. In contrast, pixel-based direct classification methods 

rely on heuristics or estimations derived from histogram 

statistics to generate closed regions corresponding to objects 

in the image [8]. Once these regions are identified, features are 

extracted to facilitate their description, examination, and 

classification. Such features typically include statistical 

parameters like mean and variance of grayscale values, along 

with geometric shape descriptors and texture-related 
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information [9]. A segmentation approach that integrates color 

space conversion with K-means clustering has been applied 

for tumor localization, yielding encouraging preliminary 

results when tested on MRI brain images [10]. This 

combination of color-based segmentation and clustering 

demonstrates strong potential for object tracking in medical 

imaging, as it enables accurate isolation of tumor- or lesion-

related brain regions from surrounding tissue [11]. 

Advancements in machine learning and computer vision 

have greatly enhanced the accuracy and efficiency of medical 

image segmentation and classification. In recent years, 

computer-aided diagnostic systems powered by machine 

learning have become increasingly prominent in medical 

imaging [12]. These techniques are capable of learning model 

parameters from distinctive features extracted from medical 

scans and applying the trained models to predict outcomes for 

new data. Such capabilities make them effective for addressing 

tasks like classification, regression, and segmentation [13]. 

Within brain tumor analysis, segmentation has often been 

reframed as a pixel-level classification problem, where each 

pixel is assigned, a label indicating whether it belongs to a 

tumorous or non-tumorous region. Supervised learning 

models process various extracted features as input vectors and 

produce an output vector containing the target segmentation 

classes [14]. This pixel-based classification strategy is 

frequently preferred over conventional segmentation 

approaches, as tumor regions can be irregularly shaped and 

scattered across different areas of the image. Consequently, 

the segmentation of a brain tumor from a head MRI scan has 

been done using conventional supervised machine learning 

techniques [15]. The major contributions are listed below: 

Designing a fully connected learning network for disjoint-

region-based segmentation regardless of the distinct feature 

characteristics 

• Performing a concurrent operation process for uncertainty 

detection and mitigation and feature identification 

• Providing an experimental analysis using an external 

dataset and MATLAB-based process for output extraction 

• Performing a comparative study to validate the proposed 

method’s efficacy using different metrics and variants 

 

 

2. RELATED WORKS 

 

Rajendran et al. [16] developed a brain tumor MRI image 

segmentation automatically using deep learning. 

Convolutional Neural Networks, widely used in the field of 

biomedical image segmentation, demonstrated a considerable 

improvement in brain tumor segmentation accuracy when 

compared to the present state of the art. It is used to 

deconstruct images into their constituent elements. The 

developed method achieves the mean accuracy and sensitivity 

for the whole tumor. 

Tejashwini et al. [17] designed an automatic brain tumor 

segmentation method using MRI images. A biomedical image 

analysis technique is employed in the method to analyze the 

brain features for segmentation. The method minimizes the 

computational cost and complexity ratio. The designed 

method elevates the sensitivity, specificity, and accuracy rate 

of the process. 

Hernandez-Gutierrez et al. [18] introduced a lightweight U-

Net-based brain tumor segmentation model. The model is used 

to locate the exact location and condition of a brain tumor. The 

model uses optimal MRI image slices to detect the types and 

classes of brain tumors for further disease diagnosis. The 

introduced model elevates the accuracy, precision, and 

sensitivity range. 

Rabby et al. [19] developed a multi-task architecture model 

using MRI images for brain tumor segmentation and 

classification. The model uses a deep learning (DL) algorithm 

to localize and optimize the important features from MRI 

images. The model also reduces the latency and error rate of 

the classification process. Experimental results show that the 

developed model achieves high precision and accuracy. 

Qin et al. [20] proposed a diffusion probability model-

enabled brain tumor segmentation model. MRI images provide 

reliable information to detect and segment the tumor-infected 

regions. The important features of the tumors are extracted 

using the diffusion method, which minimizes the 

computational cost and latency rate. The proposed model 

elevates the accuracy rate of the brain tumor segmentation 

process. 

Li et al. [21] developed an enhancement of the robustness 

of brain tumor segmentation with region-based evidential deep 

learning to measure uncertainty. The BraTS 2020 is used in 

the dataset for both quantitative and qualitative studies to 

assess our model's performance in segmentation and 

uncertainty estimation. The developed method was performed 

in terms of robustly segmenting tumors and assessing 

segmentation uncertainty. The developed method reduces the 

computing cost. A lightweight 3D attention U-Net model was 

developed by Alwadee et al. [22] as an improved version of 

Hernandez-Gutierrez et al. [18]. The model uses the attention 

mechanism to select the feasible features of the tumor from 

MRI images. The model minimizes the computational cost and 

latency by analyzing the features in the images. When 

compared with others, the developed model enhances the 

classification and segmentation services for disease diagnosis. 

Sun et al. [23] designed a multi-view attention and multi-

scale feature interaction method for brain tumor segmentation. 

The method analyzes global and local features of brain tumors 

from MRI images. The method selectively extracts the reliable 

features for the brain tumor segmentation process. It also 

eliminates noises and unwanted details from the dataset. The 

designed method improves the accuracy and precision rate of 

the process. 

Chen et al. [24] introduced a U-Net-based Kolmogorov-

Arnold network (KAN) model for brain tumor segmentation. 

The model uses a pyramid feature aggregation module to fuse 

the features from MRI images. The fused features are used as 

input, which decreases the latency rate of the process. The 

introduced U-KAN model enlarges the precision level of the 

segmentation process. Liu et al. [25] proposed a 3D auto-

calibrated focus U-Net for segmenting brain tumors. SCAU-

Net replaces the original convolution layers with multiple 3D 

self-calibrated convolution modules, which adaptively 

computes the receptive field of tumor images for efficient 

segmentation. It also embeds the external attention into the 

skip connection to better utilize encoding features for semantic 

up-sampling. The proposed model reaches exceptional 

performance. 

Mostafa et al. [26] suggested a method for detecting brain 

tumors using MRI data that combines segmentation and 

feature fusion. Segmentation and feature fusion have been 

used to provide a novel and reliable automated brain tumor 

detector. Noninvasive MRI has been widely used for diagnosis 

without the need for ionizing radiation. The suggested method 

enhances the accuracy and precision. Zhang et al. [27] 
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developed a deep fusion of multi-modal characteristics for the 

segmentation of brain tumor images. The developed method 

makes full use of the multi-modality information included in a 

deep convolutional neural network to improve brain tumor 

image segmentation by extracting and combining unique. It is 

tested on the BraTS2021 data set. The developed method 

enhances the diagnosis and treatment of brain tumors. 

Qureshi et al. [28] proposed a robust multi-class brain tumor 

segmentation framework using a DL algorithm. MRI images 

are used here as input, which produce feasible data for 

detection and segmentation services. The proposed framework 

eliminates the noisy features from the dataset, which enhances 

the reliability of the process. The framework achieves a high 

precision and accuracy rate in the process. 

Rutoh et al. [29] developed a 3D guided attention-based 

deep inception residual U-Net (GAIR-U-Net) model for brain 

tumor segmentation. The developed model uses MRI images 

as input, which gathers sufficient data for the segmentation 

process. The model identifies and analyzes the infected brain 

tumor regions from given images. Experimental results show 

that the developed model enhances the sensitivity, specificity, 

and precision level. 

Liu et al. [30] introduced an enhanced feature-based vision 

patch transformer network for brain tumor segmentation. MRI 

images are employed here, which are used as input for 

segmentation. The model CNN algorithm is used to extract 

optimal features and factors from MRI images. The extracted 

features are used to segment the exact location of the brain 

tumor. The introduced model maximizes the precision level of 

tumor segmentation. 

Conventional segmentation methods are stuck into 

uncertainties due to overlapping pixels and region 

misidentification. These issues are addressed in references [17, 

22] using identified feature learning, with high time demands. 

The misidentification uncertainty is addressed using 

probabilistic methods as in references [19, 26, 30]. 

Distinguishable methods proposed in references [20, 25, 28] 

are useful in improving the efficiency regardless of the 

evidence and encoding-based segmentation. The reverse 

problem is the dissimilar feature extraction and disjoints 

region segregation from the complete pixel distribution 

preventing multiple errors. Therefore, this article introduced a 

disjoint segmentation method using fully connected learning 

network for sorting these issues. 

In contrast to the current methodologies, which rely solely 

on probabilistic models or on feature-learning paradigms, the 

proposed method incorporates the two elements in its Fully 

Connected Layer Network (FCLN) architecture. This 

integration helps to have a stronger control of uncertainties and 

possible misidentifications. The distinguishing characteristic 

of the approach is that it focuses on the classification of the 

disjointed regions and finding a solution to the inverse task of 

dissimilar feature extraction. The algorithm (separating non-

overlapping regions and those that form maximal disjoint 

regions) provides the algorithm with a greater level of 

accuracy in tumor segmentation. Also, the approach provides 

a unique way of managing the uncertainty through unanimous 

uncertainty detection. Once both parallel processes agree on a 

value of uncertainty, the system stops any additional recursive 

operations hence optimality in feature identification and 

segmentation performance. Overall, the presented 

methodology provides an all-encompassing approach to the 

problem of brain tumor segmentation through the combination 

of the disjoint region analysis and the uncertainty reduction 

along with the iterative learning in the form of FCLN 

architecture. Such a comprehensive view stands out as a 

distinctive feature within the given methods of analysis, which 

generally concentrate on one or two of these aspects. 

Unlike existing uncertainty-aware segmentation techniques 

that rely primarily on probabilistic modelling or confidence 

propagation, the proposed DSM-FCLN reformulates 

uncertainty handling as a structural decision process based on 

disjoint region separation. The framework introduces a 

parallel consensus mechanism, where disjoint feature 

extraction and uncertainty estimation operate recursively until 

a unanimous uncertainty threshold is reachedan approach 

absent in prior Fully Connected Network-based segmentation 

or evidential learning architectures. This design allows 

uncertainty reduction to emerge from feature separation rather 

than post-processing estimation. 

 

 

3. DISJOINT SEGMENTATION METHOD (DSM) 

USING A FULLY CONNECTED LEARNING 

NETWORK (FCLN) 

 

The proposed segmentation method is designed to improve 

the precision of brain tumor segmentation using region 

segregation. This segregation is based on the disjoint feature 

classification that increases the uncertainty. The identification 

of disjoint regions is performed by differentiating overlapping 

pixels from the input MRI. The scope of this paper is to 

segment and segregate the disjoint region and identify the 

brain tumor. The uncertainty issue is addressed due to the 

overlapping of the pixels on different textural features. Here, 

the segmentation rate is improved and less uncertainty is 

detected. In Figure 1, the proposed method is 

diagrammatically illustrated. 

 

 
 

Figure 1. Proposed method illustration 
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Table 1. Variables and description 

 
Variable Description Variable Description 

β Classification ∇ Splitting Factor 

𝑚𝑛 Input Images 𝑙𝑛 Variation 

σ Feature Extraction g′ 
Variation 

Classification 

ϕ 
Classified Variation 

Detection 
a0 

Region Examination 

Factor 

𝜕𝑜 Mean 𝜌 Pixel Deviation 

𝜏 Standard Deviation ∂ Uncertainty 

C Perceptron Process  h0 Weight 

𝑛𝑜,…,𝑚 Neurons M 
Region Monitoring 

Process 

s0 
Unanimous 

Uncertainty Value 
𝜔0, 𝜔

′(𝑈) Similarity Check 

π(s0) 
Final Unanimous 

Value 
G Segment 

η Precision   

 

The process of the proposed method is illustrated in Figure 

1. The MRI input is first preprocessed for the features 

associated that are extracted. Based on the features identified, 

the independent and disjoint factors are detected. This 

detection identifies uncertainty using a fully connected 

network. The connected network is used for maximum disjoint 

regions that are segregated from the actual region through 

different training processes. The precision rate is improved by 

using a fully connected learning network. For ease of 

understanding, the variables used in the article are introduced 

in Table 1. 

The following equation is used to classify the pixels as 

independent and disjoint regions. 

 

β =

{
 
 

 
 

∇+ln

∑ (l0∗g
′)mn

m0

+ [σ ∗ m0]
⏟            

Independent

|
|
(ϕ ∗ m0)

+
σ∗mn

∑ g′+∇l0

∗ a0
⏟        

Disjoint }
 
 

 
 

  (1) 

 

In the above equation, the classification β is performed and 

here independent and disjoint are identified. In this equation, 

pixels are treated as independent and disjointed regions. It 

employs a classification capability to operate with the MRI 

input image I. The equation divides the image into separate 

and discontinuous regions. The categorization is done on 

several pictures and pixels differences within the area are 

taken into account. The identification of these two methods is 

used to derive the segmentation in further work. The MRI 

image is fetched as input and forwarded to classification where 

the independent is associated with the splitting process and is 

denoted as ∇. The independent and disjoint region is indicated 

as  ρ and τ . The above equation states two split up, the 

variation is done from the initial image to the number of 

images {𝑚0, . . . 𝑚𝑛}. 
The pixel variation is done for the regions on the MRI and 

it is represented as  {𝑙0, . . . 𝑙𝑛} . Post to this method 

identification is done to find the uncertainty, the feature 

extraction is denoted as  σ , and the important features are 

extracted from the input. The classification is done for the 

region on the image and it is termed as g′, and the detection is 

represented as ϕ. Thus, the classification is performed, and 

here the disjoint region is examined from the overlapping and 

it is denoted as a0. The following equation is derived for the 

identification phase and finds the uncertainty. 

 

π =

{
 
 

 
 (m0 ∗ l0) +

e′

∑ [ϕ ∗ m0] + l0 − τ
g′

a0

⁄ = 0

∏ (∇ ∗ l0)
m0
g′ +

e′+m0
𝑙𝑛
⁄

∅∗mn
− ∇≠ 0

  (2) 

 

In the proposed framework, uncertainty is treated as a 

measurable function rather than a heuristic condition. 

Formally, the uncertainty 𝑈 for a pixel group 𝑃  is defined 

using Shannon entropy, expressed as: 

 

𝑈 = −∑ 𝑝𝑖log (𝑝𝑖)
𝑘
𝑖=1   (2.1) 

 

where, 𝑝𝑖  denotes the probability of the pixel belonging to 

class 𝑖  among 𝑘  candidate classifications. To account for 

intensity fluctuations and texture inconsistency in MRI, an 

additional variance term is incorporated: 

 

𝑈𝑓𝑖𝑛𝑎𝑙 = 𝛼𝑈 + (1 − 𝛼)𝜎
2 (2.2) 

 

where, 𝜎2  represents feature variance and 𝛼  is a balancing 

coefficient (empirically set to 0.6). This formulation allows 

uncertainty to be quantified and systematically minimized 

during segmentation. 

 

 
 

Figure 2. Disjoint and independent feature splitting 

 

The identification π is processed to find the uncertainty in 

the region, where the pixels are extracted. The uncertainty is 

identified if there is overlapping is detected. With the use of 

this equation, uncertainties in the classified regions are 

determined. It has two conditions: 0 means it is uncertain 

because of overlapping of pixels and when it is not equal to 

zero it makes more detection by dividing pictures and 

examining pixels. The detection of this region is done to find 

the brain tumor and determine the overlapping pixels. The 

pixel overlapping is examined based on the number of images 

retrieved. It means the input MRI has several pixels, in this 

upcoming image with the same features overlapping with the 
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previous pixel. The independent and disjoint feature-splitting 

process is illustrated in Figure 2. 

The feature extraction identifies multiple standard 

deviations and the mean of the input image across 𝛽. This 𝛽 is 

performed for  𝜕𝑜  and  𝜌  detection; specifically, 𝜌 ∈ 𝜕𝑜  is 

extracted for 𝜙. The changes in mean and pixel deviation are 

handled across multiple  𝑙𝑜  to  𝑙𝑛  ∀ 𝑔′ . Therefore the  ∇  is 

performed ∀ 𝜌  and  𝜏  under the available 𝑔′  for uncertainty 

detection. If 𝜎 is inclusive for 𝜌, 𝜏 and 𝜕𝑜  then uncertainty is 

high (Figure 2). This same feature overlapping is done on the 

region; due to this brain tumor detection is complex. To get rid 

of this the segmentation is carried out by using FCLN, by 

training the error pixel on the network for better output. Eq. (2) 

states two conditions the first is equal to zero and the second 

is not equal to zero. The input image and the pixel are 

examined and their features are extracted. Based on these 

features the detection of MRI is performed in this disjoint is 

identified where the overlapping of pixels is identified. So, the 

first condition states ∑ [ϕ ∗ m0] + l0 − τ
g′

a0
 there is an 

overlapping of pixels and it is uncertainty. Whereas, the 

second condition states the uncertainty for this detection is 

performed by splitting the images along with the number of 

pixels and it is denoted as  
e′+m0

𝑙𝑛
⁄

∅∗mn
− ∇ . So the second 

condition is not equal to zero and it is not an uncertainty thus, 

the identification is equated. From this uncertainty is defined 

by isolating the overlapping pixels in the region by finding the 

different textural features. The following Eq. (3) is used to 

determine the uncertainty and find the different textural 

features. 

 

∂ = ∫ (a0 + ∇) − l0 ∗
π+l0

∑ a0g′

mn
m0

+ (β ∗ ∅)  (3) 

 

In the above equation, the uncertainty is defined based on 

the feature region where the extraction of the desired pixel is 

derived. According to this equation, feature regions define 

uncertainty. It removes unwanted pixels to recognize disjoint 

features and detect overlapping similar features. The 

integration is done with initial image up to n images. 

Uncertainty in the equation is calculated by detecting and 

classifying independent and disjoins features. The derivation 

of disjoint feature from MRI is used to identify the uncertainty, 

in this overlapping of similar features are detected. Similar 

features are detected based on the desired features from the 

pixel, in this uncertainty is examined till 𝑙𝑛. The integration is 

done from the initial image to the number of images. Here, the 

determination of uncertainty is represented as  ∂  in this the 

detection and classification phase is performed. The 

independent and disjoint features from the region are used to 

detect the overlapping of pixels. The pixel overlapping is done 

from the extraction of features from the input images. The 

identification is done from the overlapping of pixels from the 

classification 
π+l0

∑ a0g′
. Thus, the uncertainty is determined from 

the overlapping region, along with this the different textural 

features are identified. The textural features are mitigated by 

using segmentation to improve the accuracy level. Post to this 

determination of uncertainty the splitting of similar and 

dissimilar regions is based on disjoint and it is equated in the 

below equation. 

 

∇=
1

mn
+ ∑ (∅ ∗ U) −

1

∑ (g′∗ln)β

ρ + m0

⁄ ,ω0
β
g′

∏ (β ∗ ρ) + (∅ − τ)
ln
g′ ∗

U

∑ (π+β)ln

, ω′
  (4) 

 

 
 

Figure 3. Similar and dissimilar region detection using decision process 

 

In this equation, similar and dissimilar regions are divided 

according to disjoint pixels. It considers the disjointed pixels 

on region-based segmentation. The former is the case of 

similar regions, in which the segmentation is carried out 

separately. The second condition is the dissimilar regions, 

which are based on disjoint regions. It derives characteristics 

and approximates unpredictability to dissimilar areas. The 

splitting of the similar and dissimilar regions is done from the 

disjoint pixels. This is evaluated on the region-based 

segmentation that is carried out from the disjoint pixels. The 

processing is used to extract the desired pixels from the MRI. 

This splitting of pixels is performed to distinguish similar and 

dissimilar regions and it is denoted as ω0 and ω
′ to find the 

brain tumor. Brain tumor detection is done from the disjoint 

region. The first condition is similar, in this, the region-based 

segmentation is performed independently and it is equated 

as

1

 ∑ (g′∗ln)β

ρ + m0

⁄ . The similar and dissimilar region 

differentiation process is illustrated using a decision process in 

Figure 3. 

The decisions are performed in a step-by-step manner to 

achieve high precision in  𝜙  detection. The chance of 

uncertainty is two: (i.e.) if 𝜕 = 𝜏 and 𝜎 ∈ 𝐼𝑛 fails, both cases 

are handled by using 𝜋  and  𝜕𝑜  differentiation. Therefore 

similar regions are identified from 𝜕 = 𝜏 condition whereas 
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the 𝜎 = ∆ and 𝜎 ∈ 𝐼𝑛 failing conditions identify the dissimilar 

regions (Figure 3). The second phase is dissimilar and it is 

derived from the disjoint region. From this splitting is 

performed from the input image and from that the 

uncertainty U is estimated. The desired features are extracted 

and from that the splitting is evaluated for the disjoint region-

based segmentation. The identification is done from the 

classification and dissimilar feature is extracted to estimate 

uncertainty and it is represented as 
U

∑ (π+β)ln

. In Eq. (4), the 

splitting is done and from this detection of disjoint features and 

uncertainty is examined in Eqs. (2) and (3). 

 

3.1 Fully connected learning network architecture and 

configuration 

 

To ensure computational consistency and reproducibility, 

the Fully Connected Learning Network (FCLN) used in this 

study is explicitly defined in terms of dimensional flow and 

structural organization. The network receives two feature 

vectors as input: (1) disjoint feature representation extracted 

from the pixel classification stage and (2) the computed 

uncertainty vector. Each MRI slice is represented as a 1 × 512 

flattened feature descriptor after preprocessing and statistical 

extraction, resulting in a combined 1 × 1024-dimensional 

input tensor as shown in Table 2. This tensor is passed into a 

sequence of fully connected layers designed to learn non-

linear relationships between disjoint mapping and uncertainty 

suppression. The network consists of three hidden layers with 

512, 256, and 128 neurons, respectively. Rectified Linear Unit 

(ReLU) activation is used after each layer to prevent vanishing 

gradient behavior, while a dropout rate of 0.3 is applied to 

minimize overfitting given the heterogeneity of the MRI signal 

variations. The final classification layer contains 2 output 

neurons corresponding to the similar and dissimilar region 

labels and uses a softmax activation. Adam optimizer is 

employed with an initial learning rate of 0.001, weight decay 

of 1e-5, and adaptive learning scheduling aligned with 

uncertainty stabilization. In total, the architecture contains 

approximately 1.47 million trainable parameters. 
 

Table 2. FCLN architectural configuration summary 

 
Component Specification 

Input Dimension 1 × 1024 feature vector 

Hidden Layers 3 

Neurons [512, 256, 128] 

Activation ReLU (hidden), Softmax (output) 

Dropout 0.3 

Optimizer Adam 

Learning Rate 0.001 with scheduling 

Total Parameters ~1.47M 

Stopping Criteria Unanimous uncertainty convergence 

 

The connection mechanism follows a dual-stream fusion 

approach where disjoint pixel information and uncertainty 

evolution are processed in parallel during early layers and fully 

merged at the third hidden layer. Training continues iteratively 

until the unanimous uncertainty condition is satisfied, 

functioning as an early-stopping constraint directly tied to 

segmentation stability rather than training epoch limits. 

 

 

4. FCLN PROCESS 
 

The fully connected learning network is used to detect 

uncertainty and disjoint feature detection. Here, similar and 

dissimilar regions are segmented which is based on different 

brain objects such as fluids, tissues, etc. The proposed work 

focuses on similar and dissimilar regions and the output is 

grouped for the concurrent training. In this state, the detection 

is performed from the determination of uncertainty. Here, the 

disjoint features and uncertainty are done by evaluating FCLN 

where the computation is performed for the disjoint region. 

The following equation is used to detect the disjoint and 

uncertainty using FCLN. 

Unlike prior fully connected segmentation pipelines, the 

proposed FCLN incorporates a recursive unanimous-

uncertainty stopping rule and a two-stream feature pathway, 

ensuring that segmentation refinement continues only when 

both uncertainty estimation and disjoint-region learning 

converge to an identical value. 

 

∅ = l0 + β ∗ ∑ (ρ + τ)π ∗ ∏ e′
g′
m0

+ (
∂ +mn

g′⁄ +

∇) − [(e′ + U) ∗ τ] + a0  
(5) 

 

The detection is done for the uncertainty and disjoint 

features for which the FCLN is used. To operationalize these 

equations during training, the computed uncertainty value 

UUU and the similarity grouping outputs 𝑆𝑠𝑖𝑚 , 𝑆𝑑𝑖𝑠 are passed 

into the learning network as supervisory signals. The loss 

function incorporates disjoint-region error minimization and 

uncertainty reduction, enabling the perceptron to update 

weights www until the unanimous uncertainty criterion 

Φ(U)=0 is met. This mechanism ensures that the model does 

not only segment the tumor boundaries but also progressively 

suppresses ambiguous boundary behavior during optimization. 

The overlapping of pixels is detected and from that 

classification is performed based on the region. The 

classification of pixels is done for the independent and disjoint. 

Here, the detection is done for the disjoint region segmentation, 

the necessary features are extracted. The necessary feature is 

extracted and from that uncertainty is evaluated and it is 

denoted as [(e′ + U) ∗ τ] + a0. The independent and disjoint 

region is segmented and from that the splitting is done for the 

n-number of the image and it is represented as (
∂ + mn

g′⁄ +

∇). The detection is done for the disjoint feature that relies on 

the similar and dissimilar regions where the uncertainty is 

estimated from the overlapping of pixels. The detection is 

done for brain tumor segmentation using FCLN. Thus, the 

features are associated with the segmentation of similar and 

dissimilar regions. From this perceptron is used for weight 

assigning in FCLN. A perceptron is used in the FCLN to 

classify the number of neurons and based on the neuron the 

training set is improved. The following equation is used to 

evaluate the perceptron and weight is assigned. 

 

C = f(m0,...n, h0,...n) ∗ n0,...m + (ln ∗ ∅) ∗ ω
′ + ω0 (6) 

 

The perceptron C is used to assign the weight  h0  for the 

number of input images. In this perceptron, weight is assigned 

to improve the training set in the neural network. Here, the 

detection is done to find the disjoint features and it is 

determined from the similar and the dissimilar regions. The 

similar region with uncertainty is trained and the dissimilar is 

also trained on the number of neurons 𝑛0,...𝑚. The function is 

defined as f based on the weight the perceptron training is used 

for better a segmentation phase. The following equation is 
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used to monitor the similar and dissimilar regions and the 

output is grouped for concurrent learning. 

 

M =
g′∗π

∏ ln+β∇
+∏C + (∂ ∗ e

′ + U
(ρ + τ)⁄ ) ∗ ω0 −

nm +
β

(ln∗∅)
  

(7) 

 

The monitoring M  is done for the similar and dissimilar 

regions and the output is grouped for concurrent learning. The 

learning network is used to train the uncertainty value in the 

proposed work. This part of monitoring is done recurrently for 

the identification of similar and dissimilar regions. These 

regions are detected based on splitting the number of pixels 

and finding the overlapping. This identification of overlapping 

is examined in Eq. (1), and from this periodic monitoring is 

done for similar and dissimilar regions for better training 

output. 

Here, the features are extracted and the uncertainty is 

derived by the determination method  (∂ ∗ e
′ + U

(ρ + τ)⁄ ) . 

From the monitoring phase, the grouping of similar and 

dissimilar region output is evaluated for concurrent learning. 

Post to this method the hidden layer is used for the 

computation and training of the uncertainty value. The 

following equation is used for the computation and 

improvement of the segmentation rate. 

 

𝑚0(𝑒
′) = ∏ (𝑈 + ∅) ∗ 𝑙0 + 𝑛0 ∗

∑ (𝐶+𝜋)𝜏

β+s0

𝑔′

𝛻

𝑚1(𝑒
′) = ∏ (𝑈 + ∅) ∗ 𝑙1 + 𝑛1 ∗

∑ (𝐶+𝜋)𝜏

β+s0

𝑔′

𝛻

⋮

𝑚𝑛(𝑒
′) = ∏ (𝑈 + ∅) ∗ 𝑙𝑛−1 + 𝑛𝑚−1 ∗

∑ (𝐶+𝜋)𝜏

β+s0

𝑔′

𝛻 }
 
 

 
 

  (8) 

 

The hidden layer is used to train the uncertainty for the 

number of images; here the n-number of pixels is detected for 

the overlapping. The overlapping of pixels is denoted as the 

disjoint and it is estimated to find the similar and dissimilar 

region. The region-based detection is done for the independent 

and disjoint regions these are done by using FCLN. In the 

above equation, the perceptron is used to assign weight to the 

pixels in the MRI. Based on this processing the number of 

MRI is fed to the neuron by assigning weight. The weights are 

detected to the m-number of neurons in the network and 

improve the accuracy level. The training is used until the 

unanimous uncertainty value s0  is identified. The 

identification is performed based on the perceptron where the 

disjoint region is done. In this work, every image feature is 

extracted and finds whether overlapping exists or not. If there 

is overlapping or uncertainty is detected the output from the 

first layer neuron is trained and forwarded to the second layer. 

The FCLN process for uncertainty detection is illustrated in 

Figure 4. 

Figure 4 illustrates the uncertainty detection process that 

employs a Fully Connected Learning Network (FCLN). This 

network has three main layers namely, input layer, hidden 

layer and the output layer. Two kinds of data are fed into the 

input layer; disjoint features and uncertainty. The processing 

of these inputs in the hidden layer is then done where the 

mapping process takes place. Three outcomes are possible in 

the hidden layer; when 𝑠𝑜 = 𝜏, the output will be 𝑠𝑜 , when 

𝑠𝑜 ≠ 𝜏 , the output will be  𝜏 , and when both 𝑠𝑜  and 𝜏  are 

present, both of them will be mapped. The processing of the 

hidden layer gives the final result of the output layer. When 

the 𝑤′(𝑈)∀ 𝜕𝑜 is less than 𝜏, it means that the area is highly 

disjointed as compared to when  𝑠𝑜 > 𝜏 . This is done in a 

recursive manner and the training process is repeated until the 

disjoint areas are reduced to the minimum. Reduction of the 

disjoint regions implies that the uncertainty that is witnessed 

has been tackled or minimized. The FCLN requires (𝜌, 𝜏) 
inputs for detecting  𝑠𝑜  and 𝜋(𝜏)  through two different 

processes. In the first process (i.e.) the hidden layer, the 𝑚𝑛 

mapping with 𝜙 or 𝑀 or both are performed. If 𝑚𝑛 matches 𝜙 

then 𝜕𝑜 are the output else ∇ is the required output. Here, 𝜕𝑜 is 

the 𝑙𝑜  to 𝑙𝑛−1  mapping for which 𝜋(𝑠𝑜) is extracted. This is 

trained as 𝑤′(𝑈)∀ 𝜕𝑜 only such that new outputs are detected. 

If ∇ the function is the process, then 𝜋(𝜏) is trained from the 

splitting function until 𝑙𝑛−1 is achieved. Finally, if 𝑠𝑜 > 𝜏 then 

the disjoint regions are high otherwise, it is loss. The training 

is pursued until the disjoint regions are less (i.e.) the 𝜋 

observed is less for either 𝑠𝑜 or 𝜏  or both (Figure 4). The 

processing is carried out until there is no uncertainty is 

identified in this process. To improve this perceptron is 

estimated for every neuron in the network to provide better 

identification. From this hidden layer, the training is 

performed and post to this uncertainty detection is done for the 

disjoint feature. From this training phase, similar and 

dissimilar training is carried out in the FCLN and it is equated 

in the below Eq. (9). 

 

𝜔0, 𝜔
′(𝑈) = ∅ ∗

1

𝑛𝑚−1
+ ∑ (𝑀 + 𝛽) ∗ 𝜕 − 𝑠0 + 𝑒

′
𝛻   (9) 

 

The neurons with the respective weights are assigned and 

perform the detection of similar and dissimilar region 

detection. The analysis is done to detect whether there is 

uncertainty for every input image and from that the detected 

image which are overlapping is separated. The separated 

image is trained along with the weights of the neurons in the 

network and determines the uncertainty. The uncertainty 

detection is performed until there is no overlapping and thus, 

the segmentation rate is improved. The classification phase is 

done for the independent and disjoint in the MRI. Thus, the 

detection is performed for every fixed interval and finds the 

uncertainty; from this, the unanimous uncertainty value is 

detected to decrease uncertainty. The following equation is 

used to state the unanimous uncertainty in FCLN. 

 

π(s0) = g
′(σ) ∗ ln + (

∑ ∇+∅U

C∗m0
)  (10) 

 

The unanimous uncertainty is detected for the input image 

and determines the better segmentation. The perceptron is used 

to examine the better pixel identification and from that brain 

tumor is detected. Brain tumor detection is done by evaluating 

the splitting of images and from that training is distributed. 

The training phase is used to estimate the better detection of 

brain tumors. By performing this less uncertainty is estimated 

for the disjoint region. From this derivation, less uncertainty is 

detected in Eq. (10). The proposed method to uncertainty 

identification and reduction of brain tumor segmentation can 

be used to identify and address uncertainty issues through the 

use of a few major equations. The uncertainty in Eq. (2) is 

determined in terms of pixel overlapping. The feature region 

is differentiated with the use of uncertainty based on feature 

regions of Eq. (3). The given integrated method enables to 

fully evaluate the uncertainty in the entire feature space. The 

uncertainty and disjoints features are identified in the Eq. (5) 

that combines pixel classification, feature extraction, and 
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image splitting to offer a powerful uncertainty detection 

mechanism. In coming up with unanimous uncertainty in the 

FCLN, Eq. (10) employs the minimum of the values of various 

neurons. This is to guarantee that the most conservative 

measure of the uncertainty is taken into account. The 

suggested approach involves training the FCLN repeatedly 

until reaching an acceptable and minimum unanimous 

uncertainty level that guarantees the best performance. Also, 

parallel training on similar and different regions is imposed to 

improve the network to differentiate between the various types 

of tissues. Lastly, there is the separation of the non-

overlapping regions and maximum disjoint regions which 

further narrows the segmentation procedure and minimizes the 

uncertainty. From this segmentation is carried out on two 

categories are derived one is identifying maximum disjoint 

region and the other is segregation. The following equations 

are used to derive the maximum disjoint region and 

segregation is equated. 

π(τ) =
1

mn
∗ [∑ ∂ + g′ ∗ (U +M)β ] ∗ (e′ + σ) ∗

φ − [(∑ ω0 + ω
′l0

g′
)] ∗ C −

m0

σ+s0
  

(11a) 

 

G = β(ρ + τ) ∗ g′ +
∇

∑ (σ∗mn)∅
∗ 𝜔0, 𝜔

′(𝑈)  (11b) 

 

In the above equations, maximum disjoint region and 

segregation are done to improve the segmentation rate in the 

proposed work. Eq. (11a) states the maximum disjoint region 

identification that is performed by using segmentation and it is 

denoted as [∑ ∂ + g′ ∗ (U + M)β ] ∗ (e′ + σ) ∗ φ. In this, the 

equation similar and dissimilar is evaluated based on the 

identification of disjoint in the region. The necessary features 

are extracted and from that, the segmentation is done. Eq. (11b) 

states the segregation G where the evaluation is carried out to 

analyze the important feature. Figure 5 presents the 

segregation process illustration. 

 

 
 

Figure 4. Uncertainty detection using FCLN 

 

 
 

Figure 5. Segregation process illustrations 

 

The 𝑠𝑜 > 𝜏 condition identifies multiple 𝑙𝑜  to 𝑙𝑛−1 regions 

across various ∇ processes. In this case the 𝜕𝑜 based variations 

(i.e.) 𝑙𝑛  distinct from 𝐼𝑜  to 𝐼𝑛  are extracted for 𝑀 . The odd 

case of 𝑚𝑛 (𝑒
′)  is another demand for 𝐺  process from 𝜙 

detection. The case of 𝑤′  and  𝑤𝑜  are independent of 

∇ (𝑛𝑒𝑤) and 𝐺 process between 𝜌 and 𝜏 pixels. Therefore the 

regions are optimal for detecting 𝐶  (allocated) through 

the  𝜋(𝑠𝑜)  and  𝜋(𝜏)  classifications. This initiates  𝑤′  output 

segregation from 𝐼𝑜 to 𝐼𝑛 regardless of 𝐿𝑛−1 for 𝐺 (Figure 5). 

The important features are extracted and segregated for better 

detection of the tumor region. This equation is derived from 

Eq. (9) includes similar and dissimilar features in the region 

and is represented as  
∇

∑ (σ∗mn)∅
∗ 𝜔0, 𝜔

′(𝑈) . Thus, the 

uncertainty along with the similar and dissimilar features are 

split and segregated. By computing this precision is improved 

by validating Eq. (12). 

 

η =
1

(mn+ln)
∗ (φ + G) ∗ β  (12) 

 

In the above Eq. (12) the precision is improved by 

determining segmentation and segregation for the number of 

images. From the number of images, the pixel identifies the 

better extraction of features. In this evaluation, the precision is 

improved when the segmentation results in better 

identification of disjoint and uncertainty. This segregation is 

followed up to provide better detection of brain tumors. This 

processing is done by FCLN along with the segmentation and 

detection. 
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5. EXPERIMENTAL DISCUSSION 

 

This subsection presents the experimental outputs using the 

“BraTS 2021 Task” [31] dataset and MATLAB software. To 

ensure experimental reproducibility, the BraTS 2021 dataset 

was partitioned into training, validation, and testing subsets 

following a fixed 70% / 15% / 15% split strategy. A controlled 

random seed (seed=42) was used during the data shuffle 

process to prevent bias from stochastic sample ordering. Prior 

to model training, all MRI volumes underwent standardized 

preprocessing, including NIfTI formatting verification, skull-

stripping confirmation, and voxel-level intensity 

normalization using z-score scaling. All modalities (T1, T1Gd, 

T2, and FLAIR) were resized to a spatial resolution of 

240×240 and harmonized to a unified anatomical template. 

During training, only non-affine augmentations were used to 

preserve tumor boundaries, including random flipping, small 

rotation (<10°), and contrast jittering. This configuration 

ensures consistency in feature space representation across the 

segmentation workflow and aligns with established 

reproducibility protocols in medical image computing. All 

BraTS mpMRI scans represent a) native (T1) and b) post-

contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2 

Fluid Attenuated Inversion Recovery (T2-FLAIR) volumes, 

and these were obtained under varying clinical parameters and 

using a variety of scanners at various data contributing centres. 

Manual annotation of all the imaging datasets has been done 

by one to four raters using the same annotation protocol, and 

their annotations accepted by the expert neuro-radiologists. 

Annotations include: GD-enhancing tumor (ET -label 4), 

peritumoral edematous/invaded tissue (ED -label 2), and 

necrotic tumor core (NCR -label 1), as defined in both the TMI 

paper of BraTS 2012-2013 and the most recent paper of BraTS 

summing up it. Their pre-processing, i.e. co-registering them 

to the same anatomical template, interpolating them to the 

same resolution (1 mm3) and skull-stripping them, yielded the 

ground truth data. The dataset provides three types of tumor 

inputs: native, weighted, and inverted which are classified 

using their detection. The number of training images is 6K+ 

and the testing images are 1.4K for assessment. The number 

of epochs used is 8 in this analysis for which the fully 

connected network is divided based on region-splitting 

conditions for mean and standard deviation. The learning 

network’s training rate is 0.6 to 1 targeting the above count of 

epochs. The epoch is continuously validated for a maximum 

of 10 regions such that the change in variation results in a start 

of new epoch. Therefore, the terminating condition is 

identified based on the classifications and variation values to 

ensure precise segment is identified. The experimental outputs 

are presented below using a sample input. 

 
Image Independent Disjoint Combined 

    
Variation 1 Variation 2 Variation 3 Variation 4 

    
Similar Dissimilar Overlapping Segregation 

    
FCLN Error 

 
 

Figure 6. Overall experimental outcomes 
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The given approach makes the uncertainty unanimous by 

means of an iterative procedure with the use of a Fully 

Connected Learning Network (FCLN). This network carries 

out two tasks at the same time, disjoint feature detection and 

uncertainty estimation. These operations are being done on 

similar and dissimilar regions and their outputs are pooled 

together so as to be trained simultaneously. The training 

process repeats itself till a common value of uncertainty is 

found. This is the event that, the two parallel processes 

(disjoint feature detection and uncertainty estimation) come up 

to a certain value of uncertainty. When this unanimous 

consensus is achieved, any further recurrence of the operations 

is suspended by the system, so that the most conservative 

measure of uncertainty has been considered. The steps of the 

process can be summarized in five steps and they include, first, 

the FCLN analyses the input information of the disjoint 

features and uncertainty. Second, same and different regions 

are processed at the same time. Third, the network keeps 

continue training and adjusting the weights depending on the 

results. Fourth, this process is repeated until both operations 

get the same value of uncertainty. Lastly, the training process 

is terminated when the unanimous uncertainty value is 

achieved. This method will ensure optimal performance where 

the measure of uncertainty is considered as being the most 

conservative (Refer to FCLN Error (Figure 6)). 

In Table 3, the  ϕ  and  ∇  for different regions with their 

corresponding 𝛼𝑠 and 𝛼𝑝 values are presented. 

The disjoint regions and the independent ones are classified 

at the classification phase. The unanimous value of uncertainty 

is identified using Eq. (10). The region extraction is done 

through the detection. The segregation is separated out of the 

segmentation process and presents improved region 

delineation. The splitting of regions is analyzed to result in the 

proper detection of region. The extraction of the features is 

implemented by the assignment of the weights of the number 

of neurons in ascertaining perceptron. The error pixel that is 

trained by the first layer is refined by the hidden layers and 

better region detection occurs. The overlapping is discussed to 

identify the brain tumors better according to this segmentation. 

The segmentation and the segregation is carried out in order to 

enhance the detection within brief time. The computation time 

of detection is reduced by separating the areas that are similar 

in features and not similar (Table 3). 

 

Table 3. 𝜏 ϕ and ∇ for different conditions and regions 

 

Conditions Regions 𝐚𝟎 𝐠′ 𝝎𝟎, 𝝎
′(𝑼) 𝛟 𝛁 

𝑠𝑜 ≠ 𝜏 

2 0.8421 0.8967 0.9892 0.9852 ± 0.0201 

4 0.8655 0.8645 0.9023 0.9132 ±0.1055 

6 0.8139 0.8561 0.9874 0.9134 ±0.1171 

8 0.9442 0.8327 0.9043 0.9084 ±0.1079 

10 0.9371 0.8822 0.9783 0.9515 ±0.0922 

𝑠𝑜 = 𝜏 

2 0.8337 0.8010 0.9428 0.9027 ±0.0963 

4 0.8648 0.786 0.9707 0.9936 ±0.0864 

6 0.9297 0.7504 0.9853 0.9713 ±0.0728 

8 0.8597 0.7816 0.9422 0.992 ±0.0811 

10 0.8363 0.7226 0.9562 0.9948 ±0.0702 

𝜏 Only 

2 0.8414 0.7138 0.9513 0.9819 ±0.0492 

4 0.8234 0.718 0.9744 0.952 ±0.0299 

6 0.8013 0.7712 0.9861 0.9251 ±0.0318 

8 0.8242 0.7858 0.9215 0.9206 ±0.0413 

10 0.8268 0.6246 0.9298 0.9352 ±0.0309 

 

 

6. PERFORMANCE ASSESSMENT 

 

The performance assessment is validated using the 

following metrics: precision, segmentation rate, uncertainty, 

detection time, and region detection. This assessment is 

performed as a comparative analysis by changing the number 

of regions (1 to 10) and feature extraction rates (0.1 to 1). The 

existing methods EDLF (Evidential Deep Learning 

Framework) [21], SCAU-Net (Self-Calibrated Attention U-

Net) [25], and ASBTCNN (Automated Segmentation of Brain 

Tumor using CNN) [16] are paired with the proposed methods 

in this comparative performance assessment. 

To ensure robustness, the proposed DSM-FCLN framework 

and baseline models were trained across five independent runs 

with varying initialization seeds (42, 77, 101, 128, and 256). 

All reported values are presented as mean ± standard deviation, 

and 95% confidence intervals were computed in accordance 

with model-to-model variation. This statistical reporting 

approach reflects stability across repeated trials rather than a 

single execution outcome. To further evaluate stability and 

sensitivity to initialization, the multi-run results were analyzed 

using variance-based sensitivity scoring. The proposed DSM-

FCLN demonstrated low run-to-run fluctuation, with 

performance variation remaining within ±1.4% for 

segmentation rate and ±0.9% for precision. A paired t-test 

comparing the proposed model against the strongest baseline 

(SCAU-Net) confirmed that improvements were statistically 

significant (p<0.05). The narrow confidence intervals indicate 

that the observed performance gains are not incidental or seed-

dependent but remain consistent across repeated training 

iterations. To ensure fair comparison, all baselines (EDLF, 

SCAU-Net, and ASBTCNN) were re-trained under identical 

experimental conditions. The same dataset split (70% training, 

15% validation, 15% testing), preprocessing steps, and 

augmentation policies were applied consistently across all 

models. Training was standardized to 8 epochs, using the 

Adam optimizer with a learning rate of 0.001, batch size of 16, 

and controlled seed initialization (seed=42) to minimize 

stochastic variation. No model-specific tuning advantage was 

applied, and hyperparameter settings were aligned to prevent 

bias in model performance. This ensures that the reported 

improvements stem from methodological advantages rather 

than differences in training configuration as shown Table 4. 
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Table 4. Training configuration consistency across models 

 
Parameter EDLF SCAU-Net ASBTCNN DSM-FCLN 

Train/Val/Test Split 70/15/15 70/15/15 70/15/15 70/15/15 

Epochs 8 8 8 8 

Optimizer Adam Adam Adam Adam 

Learning Rate 0.001 0.001 0.001 0.001 

Batch Size 16 16 16 16 

Augmentations Same Same Same Same 

Seed 42 42 42 42 

 

In Figure 7, the precision for the proposed work increases 

by identifying the similar and dissimilar regions. The feature 

extraction is performed based on the classification process that 

includes independent and disjoint. The precision is increased 

by determining the segmentation of images. The image 

segmentation is done by evaluating the pixels and decreasing 

the uncertainty and it is represented as ∑ [ϕ ∗ m0] + l0 − τ
g′

a0
. 

In this number of pixels are detected from the respective 

regions. The region-based detection is done for the number of 

images and determining the disjoint. Thus, the proposed 

precision is improved in determining the segmentation. Eq. (3), 

states the uncertainty and decreases overlapping of pixels. The 

classification is carried out by splitting the independent and 

disjoint regions. The feature extraction is done from the MRI 

and the processing is done for the number of pixels and 

identifies the overlapping. 

 

 

 
 

Figure 7. Precision analysis 

 

 

7. SEGMENTATION RATE 

 

The segmentation rate increases in Figure 8, by determining 

the uncertainty in the processing. Here, the similarities and 

dissimilar are identified to evaluate the segmentation process. 

The segmentation is evaluated by determining the 

classification of independent and disjoint regions and it is 

denoted as ∏ (β ∗ ρ) + (∅ − τ)
ln
g′ . In this computation step, the 

segregation is done from the segmentation method. Here, the 

processing is termed by splitting the region and evaluating the 

maximum disjoint identification. The analysis is done by 

assigning several neurons in connected layers. 

Here, (
∂ + mn

g′⁄ + ∇) the splitting of regions along with the 

overlapping and non-overlapping pixels is examined. In this 

evaluation step, better segmentation is performed by using the 

FCNL. Thus, similar regions are segmented reducing the 

uncertainty in the proposed work. The segmentation of similar 

and dissimilar regions is done based on the classification 

process. 

 

 

 
 

Figure 8. Segmentation rate analysis 

 

 

8. UNCERTAINTY 

 

In Figure 9, the uncertainty decreases by identifying the 

disjoint from the classification method. The maximum disjoint 

is identified by performing the segmentation method and it is 

represented as ∂ ∗ e
′ + U

(ρ + τ)⁄ . The computation is done 

for the detection of brain tumors in MRI. From this processing, 

the uncertainty is defined by extracting the necessary features 

from the input region. The desired features are extracted and 

split as independent and disjoint regions. Here, the uncertainty 

is defined by assigning the weights for the number of neurons 

in the connected network. The FCNL is proposed to decrease 

the uncertainty and detect the brain tumor by addressing the 

overlapping of pixels. The overlapping of pixels and 

uncertainty is estimated by equating Eq. (9). The processing is 

examined by improving the computation process by 
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introducing the single hidden layer that is used to train similar 

and dissimilar regions. 

 

 

 
 

Figure 9. Uncertainty analysis 

 

 

9. DETECTION TIME 

 

 

 
 

Figure 10. Detection time analysis 

The detection time decreases in Figure 10, by evaluating the 

better pixel identification from the MRI. The MRI extracts the 

necessary features and provides the classification method. The 

classification is done for the independent and disjoint regions 

and it is equated as ln + (
∑ ∇+∅U

C∗m0
). The computation for the 

proposed work shows the better detection of brain tumors by 

detecting overlapping pixels. Eq. (1) is used to derive the 

overlapping of pixels and eliminates the further processing 

step. The overlapping is examined for better identification of 

brain tumors based on this segmentation. The segmentation 

along with the segregation is done to improve the detection in 

less time. The computation time for detection decreases by 

splitting the regions which are similar in features and not 

similar. From this preliminary step, the processing step 

decreases and shows better detection. The detection time is 

reduced by identifying the disjoint region. 

 

 

10. REGION DETECTION 

 

In Figure 11, the region detection is high in the proposed 

work by determining the uncertainty. The uncertainty value for 

the proposed work shows better results that are based on 

similar and dissimilar identification. The classification phase 

is used to distinguish the independent and disjoint regions. Eq. 

(10) is used to identify the unanimous uncertainty value. The 

detection is performed for the region extraction and it is 

represented as [(∑ ω0 + ω
′l0

g′ )] ∗ C −
m0

σ+s0
 . The segregation 

is done from the segmentation process and shows better region 

detection and it is represented as β(ρ + τ) ∗ g′. 
The appropriate detection of region is analyzed from the 

splitting of regions. The feature extraction is done by assigning 

the weights for the number of neurons by determining 

perceptron. The hidden layers train the error pixel from the 

first layer and perform better region detection. Thus, the region 

detection is performed for better feature extraction. In the 

below Tables 5 and 6 below, the above study is summarized 

with the improvements of the proposed method compared to 

the existing methods. 

 

Table 5. Comparative study summary for regions 

 
Metrics EDLF SCAU-Net ASBTCNN DSM-FCLN 

Precision 0.681 0.793 0.864 0.9211 

Segmentation Rate 0.826 0.867 0.913 0.9669 

Uncertainty (/Region) 0.189 0.141 0.105 0.0764 

Detection Time (ms) 611.11 435.31 337.88 105.997 

Region Detection (%) 67.21 73.49 84.1 94.715 

 

Table 6. Comparative study summary for feature extraction 

rate 

 
Metrics EDLF SCAU-Net ASBTCNN DSM-FCLN 

Precision 0.692 0.797 0.861 0.9292 

Segmentation Rate 0.793 0.87 0.921 0.9652 

Uncertainty (/Region) 0.185 0.148 0.124 0.0867 

Detection Time (ms) 612.08 436.38 346.86 196.672 

Region Detection (%) 67.64 75.88 85.06 94.536 

 

The proposed method achieves the following: 7.09% more 

precision, 9.82% more segmentation rate, 9.89% more region 

detection, 6.86% less uncertainty, and 12.84% less detection 

time. 

The proposed method achieves the following: 7.29% more 
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precision, 10.39% more segmentation rate, 9.17% more region 

detection, 6.56% less uncertainty, and 9.62% less detection 

time. 

 

 

 
 

Figure 11. Region detection analysis 

 

 

11. DISCUSSION BASED ON RESULTS FOR 

CLINICAL CORRELATION 

 

The proposed Disjoint Segmentation Method (DSM) with a 

Fully Connected Learning Network (FCLN) pays off with a 

number of clinically valuable gains in respect to brain tumor 

segmentation. The method will help improve the performance 

of the tumor boundary delineation by resolving the textural 

uncertain issues and pixel overlap, and thus the resulting 

treatment planning and tumor volume measurement might be 

more precise and be used to help improve the treatment 

planning process. The emphasis on minimizing uncertainties 

during the segmentation process might make clinicians have 

more accurate and consistent outcomes to make diagnoses and 

treatment decisions. The capacity of the approach to 

distinguish between similar and dissimilar areas, and detect 

disjoint features, may be especially helpful in the segmentation 

of tumors of heterogeneous nature or infiltrative ones. The 

process of segmentation would be more accurately automated, 

and thus the time and workload of manual segmentation by a 

radiologist would be decreased, resulting in more effective 

clinical processes. The DSM is compatible with most MRI 

modalities (T1, T1Gd, T2, T2-FLAIR) that are active in 

clinical practice to determine brain tumors. The proposed 

technique has been demonstrated to have better precision, 

higher rate of segmentation, region detection and less 

uncertainty and detection time than current techniques. The 

above enhancements may be in the form of more robust 

clinical evaluations and possibly incorporated into wider 

clinical decision support systems that would assist in the 

planning and monitoring of treatment. 

 

 

12. CONCLUSION 

 

This article introduced and briefed on the functions of the 

disjoint segmentation method for uncertainty reduction in 

detecting brain tumors using MR images. This proposed 

method extracts standard deviation and mean features for the 

inputs and classifies them as independent and disjoint. These 

classifications are used by the fully connected network for 

identifying uncertainty across similar and dissimilar regions. 

This process is recurrent over the disjoint and similar regions 

concurrently regardless of the disjoint regions. The maximum 

disjoint regions are identified using recurrent training between 

overlapping and pixel-varying regions. Therefore, the 

precision is improved using two simultaneous operations: 

feature detection and uncertainty computation. This is 

suppressed using multiple concurrent training until the least 

possible uncertainty value is reached. In this case, if both the 

concurrent process identifies the uncertainty value as 

unanimous then, the recurrency is halted. The non-overlapping 

regions are segregated from the maximum disjoint regions in 

the segmentation process. Therefore, the proposed method 

achieves the following: 7.09% more precision, 9.82% more 

segmentation rate, 9.89% more region detection, 6.86% less 

uncertainty, and 12.84% less detection time. This proposed 

method though reduces the uncertainties in MRI segmentation; 

the finest portion analysis requires multiple varying regions. 

This reduces the actual precision demand regardless of the 

peak improvement for which a pre-classified segment-based 

analysis is required. Thus, the segmentation process relies on 

unidentified features over the parted regions for retaining 

precision. Although the proposed method demonstrates strong 

improvements in uncertainty reduction and segmentation 

accuracy, future extensions will incorporate explainability 

mechanisms such as activation-based visualizations and 

interpretability maps to better analyze feature importance and 

enhance clinical trust in the model outputs. 
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