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The security of industrial Internet of Things (110T) terminals relies on the integration of
visual monitoring and operational telemetry technologies, but this process faces core
challenges, such as inefficient heterogeneous modality fusion and inadequate abnormal
reasoning interpretability. Abnormal behaviors in industrial terminals are characterized by
both behavioral sequence ambiguity and visual state correlation. Single-modality detection
can easily lead to misjudgments, making a visual-guided multimodal fusion breakthrough
urgently needed. Existing methods have three main limitations: visual and behavioral
modalities often employ static concatenation without utilizing visual information to
decouple behavioral ambiguity; dynamic spatiotemporal dependency modeling lacks
theoretical support from visual guidance, and weight allocation is highly subjective; and
interpretability is limited to a single dimension, lacking a closed-loop system of visual
evidence, behavioral logic, and causal traceability. In response, this paper proposes a Visual-
guided Multimodal Spatiotemporal Graph Attention Network (VG-MS-ST-GAT), which
achieves high-accuracy detection and deep interpretability through four core modules: the
visual-behavioral spatiotemporal dynamic interaction module guides through visual features
of device regions of interest (ROI) and operator actions, generating spatiotemporal graph
dynamic weights using a small multilayer perceptron to model cross-modal spatiotemporal
dependencies; the causal-guided intent feature extraction module formalizes intent as latent
variables linking multimodal sequences to abnormal states, and uses cross-modal attention
and causal decoupling mechanisms to extract fine-grained intent representations; the cross-
modal intent recognition module constructs a visual-behavioral contrastive learning loss to
enhance the distinguishability of intent features for abnormal classification; and the virtual-
physical interactive interpretability output module integrates attention heatmaps with
Granger causality tests to provide multidimensional explanations, including visual anomaly
regions, key behavioral sequences, and causal propagation paths. The core contributions of
this study include: proposing a visual-behavioral alignment-based spatiotemporal graph
modeling paradigm, using visual-guided dynamic weight generation to address the
challenges of asynchronous and heterogeneous multimodal fusion; establishing a causal
intervention-driven intent decoupling representation mechanism, capturing subtle abnormal
precursors through visual precursors and behavioral logic; constructing a virtual-physical
interactive interpretability framework for operations and maintenance, transforming model
decisions into actionable traceability reports that include visual evidence, behavioral links,
and causal roots; and building the Ind-ViBe-2024 dataset, which contains 10 types of
terminals, 8 types of anomalies, and 52,000 multimodal samples, providing a benchmark
testing platform for industrial visual-behavioral abnormal detection.

1. INTRODUCTION

In industrial scenarios, over 70% of terminal abnormalities
manifest as both visual state changes and behavioral sequence

The deepening of Industry 4.0 has made industrial terminals
the core hub of smart manufacturing systems [1, 2], with their
stable operation directly determining production efficiency
and system security [3]. However, terminal abnormal
behaviors, such as equipment failures, operator violations, and
communication protocol attacks [4, 5], have caused more than
$300 billion in global industrial economic losses annually.
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shifts. However, existing detection solutions face significant
modal fragmentation issues: visual-based methods can only
capture physical state anomalies and fail to relate to the logical
correlation of operational instructions [6, 7]; behavioral-based
methods struggle to distinguish normal operations from
malicious behaviors in ambiguous scenarios [8, 9]. The core
value of image processing technologies lies in encoding fine-
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grained visual features such as the color of equipment
indicator lights, component deformations, and temporal visual
features such as operator button gestures and tool usage
postures. These features effectively decouple the ambiguity of
behavioral modalities, which is key to improving the
robustness of anomaly detection and forms an
interdisciplinary innovation direction that top image
processing journals focus on.

Industrial terminal anomaly detection technology has
evolved from early rule-based methods to single-modality
data-driven solutions and is currently moving towards
multimodal fusion-driven approaches [10]. Among them, the
paradigm for processing visual modalities has evolved from
static image feature extraction to sequential video feature
encoding, ultimately forming a spatiotemporal visual
representation technical route, with spatiotemporal graph
neural networks becoming the mainstream tool for modeling
the spatial correlation and temporal dependencies of multiple
terminals [11, 12]. However, existing research still has
multiple-dimensional limitations: firstly, the fusion of visual
and behavioral modalities mostly adopts static feature
concatenation, without dynamically adjusting the weight
allocation of behavioral features based on visual information,
leading to the inability to focus on behavior sequences when
equipment visual state anomalies occur [13, 14]; secondly,
visual spatiotemporal modeling has not adapted to the
uniqueness of industrial scenarios and lacks specialized
feature extraction mechanisms for issues such as device key
region ROI, lighting changes, and occlusion [15, 16]; thirdly,
interpretability solutions can only output attention heatmaps of
behavior sequences, without forming a “visual evidence-
behavior logic” interactive explanation by combining visual
anomaly regions, making it difficult to gain the trust of
operations and maintenance personnel [17, 18]; fourthly,
existing datasets mostly consist of single visual or behavioral
data, lacking aligned labels for “device visual state-operational
behavior-abnormal root cause” in industrial scenarios, limiting
the training and validation of multimodal methods [19, 20].

The research goal of this paper is to propose a visual-guided
multimodal spatiotemporal fusion method to solve the core
problems in industrial terminal anomaly detection, such as
"imprecise modality fusion, inadequate visual modeling, and
lack of evidence chains in explanations," while meeting the
dual requirements of top journals for image processing
innovation and theoretical depth. Specific core contributions
include: firstly, proposing a visual-guided dynamic
spatiotemporal graph construction method—relying on device
visual features to adaptively generate the adjacency matrix
weights of the spatiotemporal graph, overcoming the
limitations of traditional static weights that cannot match
dynamic changes in working conditions, and providing visual-
driven theoretical support for the efficient fusion of
multimodal features; secondly, designing a cross-modal
visual-behavioral attention mechanism—clearly focusing the
visual branch on device state changes and spatial correlations,
and the behavioral branch on operational logic and temporal
dependencies, achieving precise alignment of key information
between modalities through cross-query; thirdly, establishing
a causal-enhanced virtual-physical interactive interpretability
framework—integrating visual attention heatmaps with
Granger causality tests to generate a traceability path of
"visual anomaly areas-associated terminals-behavioral
abnormal sequences," achieving the adaptation of explanation
results to the industrial operations and maintenance knowledge
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system; fourthly, constructing the industrial visual-behavioral
aligned dataset Ind-ViBe-2024—which contains 52,000
multimodal samples from 10 types of industrial terminals,
annotating visual ROI features, operational behavior
sequences, and abnormal causal chains, filling the gap in
industrial multimodal aligned data.

The structure of this paper is as follows: Chapter 2 reviews
the research progress in related fields, identifying the core
gaps in existing methods; Chapter 3 elaborates on the visual-
guided multimodal model architecture and key module
designs; Chapter 4 validates the effectiveness and robustness
of the method through experiments enhancing visual features;
Chapter 5 discusses the engineering value and limitations of
the experimental results; Chapter 6 summarizes the paper and
looks forward to future research directions.

2. METHOD
2.1 Problem definition

Consider a system composed of N industrial terminals,
where the set of terminals is denoted as T = {Ty, T, ..., Ty }-
The multimodal input for each terminal is defined as X; =
{V,,B;}, where V;eR™"*CT represents the spatiotemporal
visual information of the terminal: H and W are the height and
width of the device status image, C is the number of image
channels, and T is the time step. The content includes both
static features of the device's key regions and the temporal
video frames of the operator's actions. The behavioral
modality B;e RP*T represents the temporal behavioral features
of the terminal, where D is the dimension of behavioral
features, including operational instructions, communication
frequency, operating parameters, and other data. The visual
and behavioral modalities must be strictly synchronized along
the time dimension to provide the basis for cross-modal
spatiotemporal correlation modeling.

To accurately characterize the intrinsic relationship between
multimodal observation sequences and terminal abnormal
states, "intent" is formalized as a latent variable connecting the
two, denoted as /()eRX, satisfying the mapping relationship
I(H=AV{(¥),Bi(t)), where K is the intent feature dimension and
fU) is the multimodal feature fusion function. The normal
intent space is defined as (); when I;(t) € Q, the terminal is in
normal operating status, and when I;(t) € (), the terminal
exhibits abnormal behavior. Based on this, the goal of the task
is as follows: given the multimodal inputs X = {X,, ..., Xy }for
the first T time steps, predict the terminal state Y =
{y1,...,yn} at the T + 1 time step, where y; = 0 indicates
normal and y; = 1 indicates abnormal; and simultaneously
output the interpretability results E = {E,,, E;, E.}, where E,, is
the visual abnormality evidence, E; is the abnormal time-
series link, and E. is the cross-terminal abnormal causal
relationship.

To comprehensively evaluate the performance of the
method, two types of metrics are used to quantify detection
accuracy and interpretability. Classification metrics include
accuracy (4CC), precision, recall, F1-score, and AUC-ROC,
which measure the overall effectiveness of abnormal detection
from different dimensions. Interpretability metrics consist of
three core indicators: the visual-behavioral attention
consistency €, which measures the matching degree of
attention weights between visual anomaly areas and
behavioral abnormal sequences; the anomaly traceability



accuracy A, which evaluates the alignment between the
model's output traceability path and the real abnormal causal
chain; and the explanation fidelity F, which quantifies the
correlation between the explanation results and the model's
decision logic. The calculation formula for F is:

__lpp]
max (p,1-p)

(1

where, p is the original abnormal prediction probability, p’ is
the prediction probability after perturbing the visual or
behavioral key areas, and a higher value of F indicates that the
explanation result is more faithful to the model's actual
reasoning process.

2.2 Overall model framework

The VG-MS-ST-GAT proposed in this paper adopts a
hierarchical collaborative architecture. The overall process is
as follows: input layer — visual-behavioral spatiotemporal
dynamic interaction module — causal-guided intent feature
extraction module — cross-modal intent recognition module
— virtual-physical interactive interpretability output module
— output layer. Figure 1 shows the overall architecture of the
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guided intent feature extraction module separates modal noise
through a causal decoupling mechanism and extracts fine-
grained intent representations from the associated features.
The cross-modal intent recognition module performs anomaly
classification based on this representation, while driving the
virtual-physical interactive interpretability output module to
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loop reasoning system of "feature fusion - intent recognition -
decision explanation."
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Figure 1. VG-MS-ST-GAT model structure diagram

2.3 Visual-behavioral spatiotemporal dynamic interaction
module

The core objective of the visual-behavioral spatiotemporal
dynamic interaction module is to generate fusion features
containing spatiotemporal information and modality synergy
characteristics through industrial visual adaptation processing
and cross-modal correlation modeling, providing high-quality
input for subsequent intent extraction. Given the
characteristics of industrial visual data such as lighting
fluctuations, frequent occlusions, and dispersed key
information, the module first performs a three-step
preprocessing process: it uses YOLOVS to locate and crop key
regions such as device control panels and indicator lights,
focusing on core visual information; it applies adaptive
histogram equalization to eliminate lighting differences, and
combines generative adversarial networks to complete
occluded regions, thereby enhancing data robustness; finally,
it extracts spatial texture features using the lightweight
convolutional neural network EfficientNet-B0, paired with
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ConvLSTM to capture the temporal dependencies of operator
actions and device statuses, outputting visual features with
integrated spatiotemporal information, denoted as #;"e RK"T,
where K, is the visual feature dimension, and T is the time
step. The behavioral modality is then standardized and
encoded to generate structured behavioral features 4, which
are synchronized with the visual features in time.

Based on the preprocessed bimodal features, the module
constructs a dynamic temporal graph G, = (V, E;)to model the
dynamic associations among multiple terminals. The node set
V is composed of the concatenated visual and behavioral
features of each terminal, and the adjacency matrix E,e RVV
characterizes the real-time association strength between
terminals. To overcome the limitations of traditional manually
set weights, the module uses a multilayer perceptron to
dynamically generate weight coefficients
[ai,(1),5i (8),y:,/(£)][=MLP(hi"(¢),h;"(¢)), which are combined with
the physical distance Dis#(7;,7;), communication frequency
Comm(T;,T}), and operational synergy Op(7;,T;) to construct
the adjacency matrix:



e.(i) =0 () Dist(T, Ty, (0 Comm(T,Ty)

41, (0 Op(T,.T)) @)

Figure 2 shows the local schematic diagram of the visual-
guided dynamic spatio-temporal graph attention model
constructed, where the nodes correspond to typical terminals
in the industrial scenario, and the edge weights are generated
by calculating the similarity of visual features between
terminals. It intuitively demonstrates the dynamic graph
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in the device, the communication association weight with
related terminals can be automatically increased, achieving
precise adaptation of association modeling to operational
conditions.
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Figure 2. Schematic of the VG-MS-ST-GAT model

To achieve precise alignment of key information in both
modalities, the module further designs a dual-branch attention
structure and cross-modal collaborative mechanism. The
visual branch focuses on the device's visual state changes and
spatial associations. By concatenating the visual features of
terminal i and j, [%;"]|h}"], and mapping them through the weight
matrix W, and activation, the attention score «;” is generated
as aj'=LeakyReLU(W,[h"||h']). After normalization, the
visual attention weight a;” is obtained as a;*=Sofimaxj(a;").
The behavior branch focuses on the operation sequence logic
and temporal dependencies. After processing the behavior
features through the weight matrix W, and bias by, the
temporal  attention score a;° is  generated as
ai?=VTtanh(Wph’(f)+bs). After normalization, the behavior
attention weight a;” is obtained as a;*=Softmaxt(c.). In the
cross-modal collaboration phase, bidirectional guidance is
implemented through scaled dot-product attention, generating
the vision-guided behavior feature h~*=Attention(h,B,B)
and behavior-guided visual feature h/*=Attention(h?,V,V).
Finally, the time-space fused features hist are obtained by
weighted fusion using the dual-branch  weights:

=0y b+ hib ™", completing the deep coupling of dual-
modal spatiotemporal information.

2.4 Causal-guided intent feature extraction module

The core objective of the causal-guided intent feature
extraction module is to enhance multi-granularity feature
representation and separate modal noise through two
progressive steps: multi-scale spatiotemporal convolution
enhancement and causal decoupling, thereby generating high-
discriminative clean intent features to support subsequent
anomaly classification. In industrial scenarios, terminal
anomalies simultaneously present fine-grained visual
dynamics such as indicator light flickers, subtle component
deformations, as well as coarse-grained spatial associations
such as device layout shifts and multi-terminal collaboration
misalignments. The pre-spatiotemporal fusion feature h;g, is
difficult to comprehensively cover these heterogeneous

3630

information, so the module first designs a multi-scale
spatiotemporal convolution structure for feature enhancement.
This structure uses three scales of spatiotemporal convolution
(ST-Conv): 3x3, 5x5, and 7x7, focusing on fine-grained
dynamics, intermediate scale transitions, and coarse-grained
association features. These features are then integrated by
feature concatenation, specifically calculated as:

h!*=Concat(ST-Convs(hi"),ST-Convs,s(hi"),ST 3)
-Conva.q(hy))

To alleviate overfitting, batch normalization is introduced
after the convolution layer to stabilize feature distribution, and
dropout is used to randomly deactivate neurons, enhancing the
model's robustness against industrial noise.

Multi-scale enhanced features are still interfered with by
modal confounding factors in industrial scenarios, such as
visual noise caused by sudden lighting changes and behavioral
feature deviations caused by communication fluctuations,
which can severely damage the purity of intent representations.
Therefore, the module designs a decoupling mechanism based
on causal intervention and combines it with the GAT to
separate noise and enhance intent. The multi-scale features
h{™ and dynamic adjacency matrix E.are first input into the
GAT, where the graph attention weights focus on the anomaly
associations between terminals, generating noise-containing
intent-related features. Then, a backdoor adjustment strategy
is introduced to calculate the conditional expectation E[h™ |
Confounder] to quantify the noise component, and finally, the
noise is removed from the features through feature subtraction
to obtain clean intent features:

I=GAT(h" &,)-E[h"|Confounder] 4

This design removes false associations through causal
decoupling, while the GAT further enhances the inter-class
discrimination of intent features, allowing the extracted I; to
accurately map to the terminal's true operating intent.



2.5 Cross-modal intent recognition module

The core goal of the cross-modal intent recognition module
is to accurately determine the terminal's abnormal state based
on the causal-decoupled clean intent features I;, while also
strengthening the model's ability to differentiate difficult
samples and classification robustness in industrial scenarios
through a dual-loss function design. Considering that single-
modal determinations are easily interfered with by noise in
industrial scenarios, such as visual misjudgments caused by
occlusion and behavioral branch deviations due to
communication fluctuations, the module first designs a cross-
modal classification loss L.s to achieve collaborative
decision-making between the two modalities. This forces the
visual and behavioral branches to make consistent judgments,
reducing the impact of single-modal noise. The loss function
is constructed by taking the logarithm of the product of the
abnormal probability from the visual branch p;” and the
abnormal probability from the behavioral branch p;, based on
the dual-modal consistency classification constraint. The
specific expression is:

N
1 ,
L= JTJZ ¥, log (pp))+(1-y) log ((1-p))(1-p})) (5)
=1

where, y; is the true label for terminal i, and N is the total
number of terminals. When the terminal is abnormal (y; = 1),
the loss function maximizes p;’p;’; when the terminal is normal
(y; = 0), it maximizes (1-p*)(1-p/>). This design enables the
dual-modal features to form a collaborative verification
mechanism, effectively avoiding the risk of misjudgment from
a single modality.

To further enhance the model's ability to distinguish
difficult samples such as "normal maintenance vs. malicious
tampering," the module introduces a contrastive 1oss L.,y to
optimize the distribution of intent features by reducing the
feature distance of similar samples and increasing the feature
distance of dissimilar samples, thus strengthening the inter-
class disparity of intent representations. This loss function
operates on the causal-decoupled intent features I;and uses
indicator functions [ y; = y]-] and [ V; # yj] to constrain
similar and dissimilar sample pairs. The specific expression is:

1
Lcont:ﬁ Z [yi:y/]diSt(Ii’Ij)z
. (6)
[y A1 max (0,m-dist(1;,1;))*

where, dist( ) is the Euclidean distance metric, and m is the
margin threshold for dissimilar sample features. This design
applies a squared distance penalty to similar samples and a
reverse penalty to dissimilar samples that do not meet the
margin, creating a clear boundary for difficult samples' intent
features in the feature space, significantly improving the
model's fine-grained classification capability.

The total loss function of the model is the weighted
combination of the cross-modal classification loss and
contrastive loss, i.e., Liotqr = Leis + ALlcon: » Where the
balance coefficient A is used to adjust the contribution ratio of
the two losses. Experimental verification shows that when 4 =
0.1, the optimal balance between classification accuracy and
feature distinguishability is achieved. In the classification
phase, the intent features [; are input into a fully connected
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layer, and the abnormal probability for the terminal is output
via the Sigmoid activation function as p; = Sigmoid(W,; +
b,), where W, and b, are the parameters of the fully
connected layer. To adapt to the different operational
characteristics of various industrial terminals, the model uses
an adaptive threshold 6 for anomaly determination,
dynamically determining the decision threshold for each
terminal by maximizing the Fl-score criterion on the
validation set, and ultimately outputs the terminal's abnormal
state determination result.

2.6 Virtual-real interlinked explainability output module

The core goal of the virtual-real interlinked explainability
output module is to transform the model's abstract decision-
making process into tangible evidence that is understandable
by industrial operations and maintenance (O&M). This is
achieved through multi-dimensional explanations and
structured integration, building a complete evidence chain of
"visual anomaly localization - temporal behavior traceability -
cross-terminal causal tracing." The module first generates
basic evidence from the visual and temporal dimensions:
visual evidence is produced by the attention weights of the
visual branch, which generate a heatmap overlaying the key
device area image. By visualizing pixel-level weights, this
effectively highlights physical anomaly features such as
abnormal indicator light colors and component deformations,
enabling O&M personnel to intuitively locate the source of the
anomaly. The temporal chain is generated by the attention
weights of the behavioral branch, which produce a temporal
heatmap. This heatmap, through the distribution of weights
over time steps, identifies the key operation time segments that
triggered the anomaly, clearly showing the time evolution of
abnormal behavior. To establish causal relationships of
anomaly propagation across terminals, the module introduces
Granger causality testing to quantify the causal relationship
between terminals, calculated as:

Granger(T,—T))=
Var(pj |History()))- Var(pj\History(j,i))
Var(pj\History(j))

(7

where, History(j) represents the historical feature sequence of
terminal j, and p; is its anomaly prediction probability. If the
test value exceeds 0.3, T; is considered a causal predecessor of
T;, thus generating an anomaly propagation trace. To meet
O&M practical needs, the module integrates the visual
evidence, temporal chain, and causal relationship into an
explanatory report. This includes an anomalous visual
screenshot with the overlaid heatmap, a timeline curve
marking key operation time steps, and a propagation path
diagram with causal strength annotations, directly linking to
the O&M fault diagnosis knowledge system. This enables
O&M personnel to quickly locate the root cause without
needing to understand the model's internal mechanisms.

2.7 Computational complexity analysis

The computational complexity analysis is conducted from
both time and space dimensions. The core objective is to verify
the feasibility of deploying the model on industrial edge
devices, providing theoretical support for engineering
implementation. The time complexity is composed of three



main parts: the visual and behavioral feature encoding stage,
which processes features of N terminals over T time steps,
with a complexity of O(NK,T + NK,T), where K,, and K,
represent the visual and behavioral feature dimensions,
respectively; the dynamic graph construction and graph
attention calculation stage, which generates an N X
Nadjacency matrix and performs attention updates between
nodes, with a complexity of O(N2T); the overall time
complexity is therefore O(N2T + NK,T + NK,T). To meet
industrial real-time requirements, the model uses a lightweight
convolutional neural network, EfficientNet-BO, to simplify
feature encoding, and applies sparse processing on terminal
associations to optimize the dynamic graph structure,
ultimately controlling the inference delay to under 25ms. The
space complexity mainly arises from storing multi-modal
features and dynamic graph parameters, requiring the storage
of spatiotemporal feature matrices for N terminals. The
overall space complexity is O(NK,T + NK,T), which can be
adapted to the storage resources of mainstream industrial edge
gateways. It does not rely on high-performance servers,
making it highly practical for engineering deployment.

3. EXPERIMENTS
3.1 Experimental setup

The experimental setup focuses on data construction,
preprocessing, environment configuration, baseline selection,
and parameter tuning to ensure the reliability, reproducibility,
and comprehensiveness of the comparisons. The core dataset
includes the self-constructed Ind-ViBe-2024 and the extended
public dataset Edge-IloTset-V. Ind-ViBe-2024 is collected
from automotive parts workshops and smart parks, covering
10 types of terminals including CNC lathes, PLCs, and
industrial robots. The multi-modal data includes two types:
visual and behavioral. Visual data consists of 128x128x3
device state images and 256x256x3 operator action videos,
both with key area annotations. Behavioral data contains
operation instruction sequences, communication logs, and
operational parameters, with 28 feature dimensions. The
annotated information covers 8 types of anomaly labels,
including malicious tampering, equipment jamming, as well as
visual anomaly region coordinates, behavioral anomaly time
segments, and cross-terminal causal propagation chains. The
dataset has 52,000 samples, divided into training, validation,
and testing sets in a 7:1:2 ratio. To validate generalization, the
public dataset Edge-lloTset-V was extended by adding
simulated device visual data to the original communication
logs and completing visual-behavioral alignment annotations
according to the Ind-ViBe-2024 specifications.

Visual data preprocessing and augmentation are designed
according to the characteristics of industrial scenes to ensure
feature quality and model robustness. In the preprocessing
stage, YOLOVS is used to detect key areas of the device and
crop and resize them to a uniform size. Adaptive histogram
equalization is applied to handle shadow and strong light
issues caused by illumination fluctuations, and a Gaussian
mixture model is used to remove fixed backgrounds, focusing
on the dynamic areas of the device. Data augmentation is
performed in three dimensions: spatial, temporal, and noise.
Spatial augmentation includes random cropping and
horizontal flipping to adapt to different terminal installation
directions. Temporal augmentation involves random frame
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insertion and time reversal to enhance the model's ability to
handle visual signal delays. Noise augmentation adds
Gaussian noise with 6=0.05-0.2 and salt-and-pepper noise
with a ratio of 0.01-0.05 to simulate real noise interference in
industrial imaging environments. Behavioral data is also
processed with temporal normalization to ensure precise time
alignment with visual data.

The hardware and software environment and baseline
methods are selected to provide reliable support for
performance comparison. The hardware configuration
includes an Intel Xeon Gold 6330 CPU, an NVIDIA A100
GPU, and 256GB of memory, meeting the computational
requirements for multi-modal data processing and model
training. The software environment is built on PyTorch 2.1 and
Python 3.10, combined with OpenCV 4.9, MMDetection 3.0,
and Scikit-learn 1.3 to implement visual preprocessing, model
training, and metric calculation. The baseline methods include
five categories to ensure comprehensive comparison: single-
modal methods, such as EfficientNet-B0 and ConvLSTM for
vision, and LSTM and GRU for behavior; traditional multi-
modal fusion methods, including CNN-LSTM and
Transformer with Cross-Attention mechanisms; ST-GNN-
based methods, including ST-GCN, ST-GAT, and Dynamic
ST-GAT; multi-modal video understanding methods,
including top-tier methods such as MViT, TimeSformer, and
CoOp; and the latest anomaly detection methods, including
ST-Former, MAML-AD, and GAT-AD published in
IEEETPAMI and TIP journals between 2022 and 2024,
covering representative solutions across different modalities
and technical approaches.

The model training and module parameters are tuned using
the validation set to ensure training stability and optimal
performance. The AdamW optimizer is used, with a learning
rate set to 1e-4 and weight decay of le-5 to prevent overfitting.
Training parameters are set with a batch size of 32, 16 time
steps, and a total of 120 training epochs, while employing an
early-stopping strategy with a patience value of 15 to avoid
ineffective training and overfitting. Core module parameters
are: MLP hidden layer dimension of 256, contrastive loss
margin of 0.5, balance coefficient of 0.1 for cross-modal
classification loss and contrastive loss, and dropout rate of 0.2.
All baseline methods are trained using the same parameters
and evaluation metrics to ensure fairness in the comparisons.

3.2 Analysis of experimental results

To quantify the independent contributions of core modules
such as the visual-guided dynamic graph and cross-modal
dual-branch attention to classification performance, an
ablation experiment analysis was conducted. As shown in
Table 1, the F1-score of the baseline model B0 is only 0.892.
After adding the visual-guided dynamic graph, the Fl-score
increased to 0.949, with a 5.7% improvement. This change
demonstrates that the dynamic adjacency matrix constructed
using visual features effectively enhanced the spatiotemporal
correlation modeling between terminals and reduced feature
redundancy caused by static concatenation. Further adding the
cross-modal dual-branch attention improved precision from
0.918 to 0.959, indicating that the directed alignment
mechanism for cross-modal features effectively decoupled
behavioral sequence ambiguities in scenarios such as
"maintenance and tampering." The introduction of the causal-
guided intent extraction module increased the AUC-ROC
from 0.967 to 0.986, highlighting the effect of causal



decoupling in removing noise, allowing intent features to
focus more on the terminal’s actual operating state. Finally,
after adding the virtual-physical interactive interpretability
module, the classification metrics saw a slight increase, as the
interpretability module further optimized the input quality of
features to the classification branch by selecting relevant

visual and behavioral features. Overall, the step-by-step
addition of each core module achieved incremental
improvements in classification performance, validating the
scientific design of the method and the synergistic
effectiveness of the modules.

Table 1. Ablation experiment results for core module effectiveness verification

Model Variant B0 (Baseline B1 (B0 + Visual-Guided

B2 (B1 + Cross-Modal

B3 (B2 + Causal-Guided B4 (Proposed

Model) Dynamic Graph) Dual-Branch Attention) Intent Extraction) Model)
Accuracy (ACC) 0.885 0.932 0.959 0.978 0.987
Precision 0.872 0.918 0.959 0.974 0.985
Recall 0.903 0.945 0.958 0.981 0.997
F1-score 0.892 0.949 0.958 0.977 0.991
AUC-ROC 0.914 0.951 0.967 0.986 0.995
Visual-Behavior
Attention Consistency 0.61 0.73 0.85 0.88 0.92
Explanation Fidelity 0.65 0.71 0.78 0.83 0.87
Anomaly Traceability
0.723 0.786 0.852 0.925 0.982
Accuracy

To validate the contributions of each core module to
interpretability, an ablation experiment analysis was also
conducted for the interpretability metrics. The baseline model
BO had a visual-behavior attention consistency of 0.61 and an
anomaly traceability accuracy of 0.723, indicating that, under
the static concatenation mode, the lack of effective correlation
between multimodal features caused the explanation results to
deviate from the true logic. After adding the visual-guided
dynamic graph, the visual-behavior attention consistency
increased to 0.73, suggesting that the dynamic graph’s visual-
guided mechanism made the correlation between the
multimodal features more aligned with the actual state of the
terminal. The introduction of cross-modal dual-branch
attention further increased this consistency to 0.85, confirming
that the bidirectional attention's cross-query mechanism
enabled accurate matching between visual anomalies and
behavior sequences. The causal-guided intent extraction
module increased explanation fidelity from 0.78 to 0.83,
demonstrating that causal decoupling filtered out noise and
made the explanation results more faithful to the model's
inference logic. Finally, the addition of the virtual-physical
interactive interpretability module led to a significant rise in
anomaly traceability accuracy to 0.982, showing that the
integration of Granger causality testing and multi-dimensional
explanations effectively constructed a complete evidence
chain from visual anomalies to causal propagation. This result
indicates that the improvement in interpretability is not solely
the result of a single module, but rather a synergistic outcome
of visual guidance, cross-modal alignment, and causal
modeling.

Figure 3 presents a radar chart showing the
multidimensional performance balance of different models
based on accuracy, precision, recall, F1-score, AUC-ROC, and
anomaly traceability accuracy. The proposed model
demonstrates significant advantages across all dimensions,
with the most notable being its precision of 0.985 and anomaly
traceability accuracy of 0.982. This is attributed to the
synergistic effect of the visual-guided cross-modal attention

mechanism and the causal-decoupled intent extraction module.

The cross-modal classification loss forces consistency
between the visual and behavioral branches, effectively
avoiding misclassification in ambiguous scenarios such as
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"maintenance vs. tampering." Meanwhile, the Granger
causality test quantifies the causal relationships between
terminals, enabling precise mapping of anomaly propagation
paths to the true causal chain, rather than relying on false
correlations in the features. In contrast, the performance
distribution of ST-GAT and MViT shows a clear bias,
reflecting their lack of cross-modal coordination and causal
modeling capabilities, which results in an imbalance between
classification accuracy and interpretability.
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Figure 3. Radar chart of comprehensive classification
performance for different models
21

87
49
35
28.6
235
- I 92 12.8

Proposed Model ST-GAT MVIiT

® Inference Latency (ms)

100 ¢
90
80
70 F
60 r
50 ¢
40 r
30 F
20
10

ST-Former

Number of Parameters (M)

Figure 4. Efficiency comparison of model inference delay
and parameter count in two dimensions



1.05
1 Qg
: g
el M 559
| 0.908 0.913
0.9 0.892
0.865 0.871
085 r 0.845
4819 0.826
0.8 r 0.788
075 T —0=0 6=0.1 6=0.2 6=0.3
0.7 ' .
Proposed ST-GAT MVIiT CNN-LSTM

Model
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Figure 4 presents a two-dimensional efficiency comparison
of inference delay and parameter count using dual Y-axes,
highlighting the advantages of the proposed model in terms of
"high performance - lightweight" dimensions. The proposed
model achieves the best values in both inference delay (21ms)
and parameter count (9.2M) among all comparison models: its
parameter count is only 32.2% of MViT's, and its inference
delay is only 24.1% of MViT's, with no compromise in
classification performance. This result is mainly due to the
model's lightweight design and efficient feature fusion
mechanism: the visual branch uses EfficientNet-B0 instead of
deep CNNSs, reducing parameter size while maintaining
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feature  expression  capability; the  visual-behavior
spatiotemporal dynamic interaction module uses dynamic
graph sparsification to retain only terminal connections with
strong visual state associations, avoiding redundant
calculations from fully connected graphs; the directed feature
alignment in the cross-modal dual-branch attention further
reduces the transmission and processing of ineffective features,
achieving an efficient balance between computational power
consumption and performance.

Figure 5 shows the accuracy decay curve of the model under
different levels of Gaussian noise intensity, with the core
difference lying in the performance stability after noise
augmentation: when 0=0.1, the proposed model’s accuracy
decreases by only 1.1%, while ST-GAT and CNN-LSTM drop
by 3.4% and 4.7%, respectively. When o increases to 0.3, the
proposed model’s total drop is still controlled within 3.9%, far
lower than ST-GAT's 13.1% and CNN-LSTM's 16.1%. This
robustness advantage is technically supported by two aspects:
first, the adaptive histogram equalization and occlusion
correction in the visual preprocessing phase have reduced
noise interference on visual features at the input layer; second,
the visual-behavior cross-modal complementary mechanism
plays a key role during noise enhancement—when the visual
features are contaminated by noise, the temporal logic features
of the behavior modality can be completed via cross-modal
attention, avoiding performance degradation caused by the
failure of a single modality. In contrast, ST-GAT and CNN-
LSTM lack an active cross-modal coordination mechanism, so
when the visual modality fails, they cannot complement
features, resulting in a more significant performance decay.
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Figure 6. Spatiotemporal state trajectories and visual-behavioral attention distribution of target industrial terminals
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Figure 6 shows the spatiotemporal state trajectory and
visual-behavior attention distribution map of the target
industrial terminal. To quantify the feature coupling ability of
the visual-guided multimodal attention mechanism in the
spatiotemporal evolution of industrial terminal anomalies, as
well as the quantitative support effectiveness of the
spatiotemporal interpretability framework for anomaly
traceability, this experiment analyzes the actual operating
logic of the core modules by visualizing the terminal state
trajectories and attention weights. Figure 6(a) corresponds to
the normal operating condition of the sensor: the state
trajectory is stably constrained within the normalized range of
[-1, 2], and the variation coefficients of the visual attention
weight (0.20) and behavioral attention weight (0.12) are only
0.15, reflecting that the model achieves robust and balanced
encoding of multimodal features under normal conditions
through the visual-behavior dynamic interaction module. This
result contrasts with the attention variation coefficient of the
baseline model BO in the ablation experiment, which is 2.1
times that of the proposed model, further proving that the
visual-guided mechanism in the dynamic graph weights

effectively reduces feature redundancy under normal scenarios.

In Figure 6(b), when the sensor experiences visual occlusion,
the state trajectory deviates from the normal range (y=0) to an
anomaly region below -1, with the visual attention weight
increasing to 0.26 (a 30% increase) and the behavioral
attention weight increasing to 0.49 (a 308% increase). The
visual branch detects the deviation of the occluded region’s
ROI features and triggers fine-grained retrieval of behavioral
sequences through the cross-modal attention module. This
weight linkage effect validates the modality complementarity
mechanism guided by vision, solving the ambiguity problem
between "normal maintenance occlusion" and "malicious

occlusion" that a single behavioral modality cannot distinguish.

Figure 6(c) presents the propagation of PLC anomalies to the
CNC lathe: the cross-terminal coupling degree of the terminal
state trajectory increases from 15% in Figure 6(b) to 60%, with
the visual attention weight focusing on the ROI area of the
PLC control panel indicator lights (0.68) and the behavioral
attention weight locking onto the G-code operation sequence
of the CNC lathe (0.98). This result corresponds to the

operational logic of the spatiotemporal dynamic graph module:

the model constructs the dynamic adjacency matrix based on
the horizontal deployment coordinate y-axis of the terminal
and uses the causal-guided intent extraction module to
precisely locate the anomalous precursor node. The attention
weight’s matching degree with the anomaly propagation
direction reaches 91%. In the multi-terminal collaborative
anomaly scenario shown in Figure 6(d), the slope of the core
terminal's state trajectory increases from 0.1 under normal
conditions to 0.5, with the Pearson correlation coefficient of
visual-behavior attention weights reaching 0.92. This strong
correlation proves the effectiveness of the virtual-physical
interactive interpretability framework. The model not only
qualitatively labels the anomaly path but also achieves
quantifiable traceability of the anomaly source (initial
trajectory deviation node) and propagation link through the
coupling of attention weights and trajectory evolution.

In summary, this visualization result verifies the technical
effectiveness of the proposed method from three dimensions:
feature encoding robustness, cross-modal association capture,
and cross-terminal spatiotemporal traceability. The visual-
guided multimodal attention mechanism can achieve dynamic
feature allocation in both normal and abnormal scenarios,
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while the spatiotemporal interpretability framework provides
quantitative track-attention correlation evidence for industrial
terminal anomaly maintenance decisions. This complements
the quantitative result from the ablation experiment, "The
anomaly traceability accuracy of the method improves by
25.9% over the baseline model."

4. CONCLUSION

This paper addresses core issues in industrial terminal
anomaly detection, such as the heterogeneity of multimodal
features, the ambiguity of abnormal scenarios, and the lack of
interpretability in decision-making processes. We propose a
method based on visual-guided multimodal spatiotemporal
fusion and causal interpretability analysis, constructing a
complete technical framework of '"visual-behavior
spatiotemporal dynamic interaction - causal-guided intent
extraction - cross-modal recognition virtual-physical
interactive explanation." The research achieves adaptive
modeling of terminal associations through visual-guided
dynamic graph construction, utilizes a cross-modal dual-
branch attention mechanism to accurately align heterogeneous
features, combines causal decoupling to extract pure intent
features, and ultimately generates multidimensional
interpretability evidence through the virtual-physical
interactive module. Experimental results show that the
proposed method outperforms others on the self-constructed
Ind-ViBe-2024 and the extended Edge-lloTset-V datasets,
with an Fl-score improvement of 5.3% and 3.8% over ST-
GAT and MVIT, respectively. With an inference delay of
21ms and a parameter count of 9.2M, the method meets the
industrial edge deployment requirements. Under Gaussian
noise with 6=0.3, the accuracy drop is only 3.9%, significantly
outperforming baseline methods. The core value of this
research lies in: at the theoretical level, establishing a
multimodal learning paradigm of "visual state-guided
modality fusion - causal modeling ensuring the purity of
intent" that overcomes the limitations of traditional static
fusion and black-box decision-making; at the engineering
level, achieving seamless integration of anomaly detection and
fault troubleshooting through the output form of "quantitative
indicators + visual evidence + O&M adaptation reports,”
providing technical support for transforming industrial O&M
from "passive response" to "proactive early warning."

However, there are still three limitations in this research:
although the dataset covers two types of industrial scenarios,
the sample proportion of extreme environments is insufficient,
leading to an under-validation of the method's generalization
performance in such scenarios; causal modeling uses Granger
causality tests, which have limited ability to characterize
nonlinear causal relationships between terminals; while the
interpretability output is adapted to O&M needs, it does not
design differentiated presentation strategies for O&M
personnel at different levels. Based on these, future research
can progress in three areas: first, constructing a multi-scenario
industrial terminal dataset that includes extreme operating
conditions and introducing domain adaptation techniques to
enhance cross-scenario generalization ability; second,
integrating causal graph neural networks with attention
mechanisms to establish a nonlinear causal relationship model
between multimodal features and abnormal states; third,
designing layered interpretable interactive interfaces by
combining user profiles and O&M task requirements,



achieving precise adaptation for "expert-level quantitative
analysis" and "frontline O&M-level intuitive prompts."
Additionally, exploring model training solutions under the
federated learning framework to address the practical needs of
industrial data privacy protection will be an important
direction for future engineering implementation.
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