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The security of industrial Internet of Things (IIoT) terminals relies on the integration of 

visual monitoring and operational telemetry technologies, but this process faces core 

challenges, such as inefficient heterogeneous modality fusion and inadequate abnormal 

reasoning interpretability. Abnormal behaviors in industrial terminals are characterized by 

both behavioral sequence ambiguity and visual state correlation. Single-modality detection 

can easily lead to misjudgments, making a visual-guided multimodal fusion breakthrough 

urgently needed. Existing methods have three main limitations: visual and behavioral 

modalities often employ static concatenation without utilizing visual information to 

decouple behavioral ambiguity; dynamic spatiotemporal dependency modeling lacks 

theoretical support from visual guidance, and weight allocation is highly subjective; and 

interpretability is limited to a single dimension, lacking a closed-loop system of visual 

evidence, behavioral logic, and causal traceability. In response, this paper proposes a Visual-

guided Multimodal Spatiotemporal Graph Attention Network (VG-MS-ST-GAT), which 

achieves high-accuracy detection and deep interpretability through four core modules: the 

visual-behavioral spatiotemporal dynamic interaction module guides through visual features 

of device regions of interest (ROI) and operator actions, generating spatiotemporal graph 

dynamic weights using a small multilayer perceptron to model cross-modal spatiotemporal 

dependencies; the causal-guided intent feature extraction module formalizes intent as latent 

variables linking multimodal sequences to abnormal states, and uses cross-modal attention 

and causal decoupling mechanisms to extract fine-grained intent representations; the cross-

modal intent recognition module constructs a visual-behavioral contrastive learning loss to 

enhance the distinguishability of intent features for abnormal classification; and the virtual-

physical interactive interpretability output module integrates attention heatmaps with 

Granger causality tests to provide multidimensional explanations, including visual anomaly 

regions, key behavioral sequences, and causal propagation paths. The core contributions of 

this study include: proposing a visual-behavioral alignment-based spatiotemporal graph 

modeling paradigm, using visual-guided dynamic weight generation to address the 

challenges of asynchronous and heterogeneous multimodal fusion; establishing a causal 

intervention-driven intent decoupling representation mechanism, capturing subtle abnormal 

precursors through visual precursors and behavioral logic; constructing a virtual-physical 

interactive interpretability framework for operations and maintenance, transforming model 

decisions into actionable traceability reports that include visual evidence, behavioral links, 

and causal roots; and building the Ind-ViBe-2024 dataset, which contains 10 types of 

terminals, 8 types of anomalies, and 52,000 multimodal samples, providing a benchmark 

testing platform for industrial visual-behavioral abnormal detection. 
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1. INTRODUCTION

The deepening of Industry 4.0 has made industrial terminals 

the core hub of smart manufacturing systems [1, 2], with their 

stable operation directly determining production efficiency 

and system security [3]. However, terminal abnormal 

behaviors, such as equipment failures, operator violations, and 

communication protocol attacks [4, 5], have caused more than 

$300 billion in global industrial economic losses annually. 

In industrial scenarios, over 70% of terminal abnormalities 

manifest as both visual state changes and behavioral sequence 

shifts. However, existing detection solutions face significant 

modal fragmentation issues: visual-based methods can only 

capture physical state anomalies and fail to relate to the logical 

correlation of operational instructions [6, 7]; behavioral-based 

methods struggle to distinguish normal operations from 

malicious behaviors in ambiguous scenarios [8, 9]. The core 

value of image processing technologies lies in encoding fine-
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grained visual features such as the color of equipment 

indicator lights, component deformations, and temporal visual 

features such as operator button gestures and tool usage 

postures. These features effectively decouple the ambiguity of 

behavioral modalities, which is key to improving the 

robustness of anomaly detection and forms an 

interdisciplinary innovation direction that top image 

processing journals focus on. 

Industrial terminal anomaly detection technology has 

evolved from early rule-based methods to single-modality 

data-driven solutions and is currently moving towards 

multimodal fusion-driven approaches [10]. Among them, the 

paradigm for processing visual modalities has evolved from 

static image feature extraction to sequential video feature 

encoding, ultimately forming a spatiotemporal visual 

representation technical route, with spatiotemporal graph 

neural networks becoming the mainstream tool for modeling 

the spatial correlation and temporal dependencies of multiple 

terminals [11, 12]. However, existing research still has 

multiple-dimensional limitations: firstly, the fusion of visual 

and behavioral modalities mostly adopts static feature 

concatenation, without dynamically adjusting the weight 

allocation of behavioral features based on visual information, 

leading to the inability to focus on behavior sequences when 

equipment visual state anomalies occur [13, 14]; secondly, 

visual spatiotemporal modeling has not adapted to the 

uniqueness of industrial scenarios and lacks specialized 

feature extraction mechanisms for issues such as device key 

region ROI, lighting changes, and occlusion [15, 16]; thirdly, 

interpretability solutions can only output attention heatmaps of 

behavior sequences, without forming a “visual evidence-

behavior logic” interactive explanation by combining visual 

anomaly regions, making it difficult to gain the trust of 

operations and maintenance personnel [17, 18]; fourthly, 

existing datasets mostly consist of single visual or behavioral 

data, lacking aligned labels for “device visual state-operational 

behavior-abnormal root cause” in industrial scenarios, limiting 

the training and validation of multimodal methods [19, 20]. 

The research goal of this paper is to propose a visual-guided 

multimodal spatiotemporal fusion method to solve the core 

problems in industrial terminal anomaly detection, such as 

"imprecise modality fusion, inadequate visual modeling, and 

lack of evidence chains in explanations," while meeting the 

dual requirements of top journals for image processing 

innovation and theoretical depth. Specific core contributions 

include: firstly, proposing a visual-guided dynamic 

spatiotemporal graph construction method—relying on device 

visual features to adaptively generate the adjacency matrix 

weights of the spatiotemporal graph, overcoming the 

limitations of traditional static weights that cannot match 

dynamic changes in working conditions, and providing visual-

driven theoretical support for the efficient fusion of 

multimodal features; secondly, designing a cross-modal 

visual-behavioral attention mechanism—clearly focusing the 

visual branch on device state changes and spatial correlations, 

and the behavioral branch on operational logic and temporal 

dependencies, achieving precise alignment of key information 

between modalities through cross-query; thirdly, establishing 

a causal-enhanced virtual-physical interactive interpretability 

framework—integrating visual attention heatmaps with 

Granger causality tests to generate a traceability path of 

"visual anomaly areas-associated terminals-behavioral 

abnormal sequences," achieving the adaptation of explanation 

results to the industrial operations and maintenance knowledge 

system; fourthly, constructing the industrial visual-behavioral 

aligned dataset Ind-ViBe-2024—which contains 52,000 

multimodal samples from 10 types of industrial terminals, 

annotating visual ROI features, operational behavior 

sequences, and abnormal causal chains, filling the gap in 

industrial multimodal aligned data. 

The structure of this paper is as follows: Chapter 2 reviews 

the research progress in related fields, identifying the core 

gaps in existing methods; Chapter 3 elaborates on the visual-

guided multimodal model architecture and key module 

designs; Chapter 4 validates the effectiveness and robustness 

of the method through experiments enhancing visual features; 

Chapter 5 discusses the engineering value and limitations of 

the experimental results; Chapter 6 summarizes the paper and 

looks forward to future research directions. 
 

 

2. METHOD 
 

2.1 Problem definition 
 

Consider a system composed of N industrial terminals, 

where the set of terminals is denoted as 𝑇 = {𝑇1, 𝑇2, … , 𝑇𝑁}. 
The multimodal input for each terminal is defined as 𝑋𝑖 =
{𝑉𝑖 , 𝐵𝑖} , where ViRH×W×C×T represents the spatiotemporal 

visual information of the terminal: 𝐻 and 𝑊 are the height and 

width of the device status image, 𝐶 is the number of image 

channels, and 𝑇 is the time step. The content includes both 

static features of the device's key regions and the temporal 

video frames of the operator's actions. The behavioral 

modality BiRD×T represents the temporal behavioral features 

of the terminal, where 𝐷  is the dimension of behavioral 

features, including operational instructions, communication 

frequency, operating parameters, and other data. The visual 

and behavioral modalities must be strictly synchronized along 

the time dimension to provide the basis for cross-modal 

spatiotemporal correlation modeling. 

To accurately characterize the intrinsic relationship between 

multimodal observation sequences and terminal abnormal 

states, "intent" is formalized as a latent variable connecting the 

two, denoted as Ii(t)RK, satisfying the mapping relationship 

Ii(t)=f(Vi(t),Bi(t)), where 𝐾 is the intent feature dimension and 

f( ) is the multimodal feature fusion function. The normal 

intent space is defined as Ω; when 𝐼𝑖(𝑡) ∈ Ω, the terminal is in 

normal operating status, and when 𝐼𝑖(𝑡) ∉ Ω , the terminal 

exhibits abnormal behavior. Based on this, the goal of the task 

is as follows: given the multimodal inputs 𝑋 = {𝑋1, … , 𝑋𝑁}for 

the first 𝑇  time steps, predict the terminal state 𝑌 =
{𝑦1, … , 𝑦𝑁}  at the 𝑇 + 1  time step, where 𝑦𝑖 = 0  indicates 

normal and 𝑦𝑖 = 1  indicates abnormal; and simultaneously 

output the interpretability results 𝐸 = {𝐸𝑣 , 𝐸𝑡 , 𝐸𝑐}, where 𝐸𝑣 is 

the visual abnormality evidence, 𝐸𝑡  is the abnormal time-

series link, and 𝐸𝑐  is the cross-terminal abnormal causal 

relationship. 

To comprehensively evaluate the performance of the 

method, two types of metrics are used to quantify detection 

accuracy and interpretability. Classification metrics include 

accuracy (ACC), precision, recall, F1-score, and AUC-ROC, 

which measure the overall effectiveness of abnormal detection 

from different dimensions. Interpretability metrics consist of 

three core indicators: the visual-behavioral attention 

consistency 𝐶 , which measures the matching degree of 

attention weights between visual anomaly areas and 

behavioral abnormal sequences; the anomaly traceability 
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accuracy 𝐴 , which evaluates the alignment between the 

model's output traceability path and the real abnormal causal 

chain; and the explanation fidelity 𝐹 , which quantifies the 

correlation between the explanation results and the model's 

decision logic. The calculation formula for 𝐹 is: 

 

F=1-
|p-p'|

max ( p,1-p)
 (1) 

 

where, 𝑝 is the original abnormal prediction probability, 𝑝′ is 

the prediction probability after perturbing the visual or 

behavioral key areas, and a higher value of 𝐹 indicates that the 

explanation result is more faithful to the model's actual 

reasoning process. 

 
2.2 Overall model framework 

 

The VG-MS-ST-GAT proposed in this paper adopts a 

hierarchical collaborative architecture. The overall process is 

as follows: input layer → visual-behavioral spatiotemporal 

dynamic interaction module → causal-guided intent feature 

extraction module → cross-modal intent recognition module 

→ virtual-physical interactive interpretability output module 

→ output layer. Figure 1 shows the overall architecture of the 

VG-MS-ST-GAT model proposed in this paper, with the raw 

visual and behavioral features of industrial terminals as inputs. 

The input layer performs targeted preprocessing of multimodal 

data: the visual modality extracts key region features and 

encodes spatiotemporal information to obtain visual features 

rich in device status and operational actions, while the 

behavioral modality is standardized and encoded to generate 

structured operational logic features. The preprocessed 

bimodal features enter the visual-behavioral spatiotemporal 

dynamic interaction module, where visual features guide the 

construction of dynamic spatiotemporal graphs and the 

allocation of cross-modal attention, achieving precise 

alignment of heterogeneous features. The subsequent causal-

guided intent feature extraction module separates modal noise 

through a causal decoupling mechanism and extracts fine-

grained intent representations from the associated features. 

The cross-modal intent recognition module performs anomaly 

classification based on this representation, while driving the 

virtual-physical interactive interpretability output module to 

generate visual anomaly evidence, abnormal temporal 

sequences, and cross-terminal causal relationships. Finally, 

the output layer integrates anomaly detection results and a 

multidimensional interpretability report, forming a closed-

loop reasoning system of "feature fusion - intent recognition - 

decision explanation." 

 

 
 

Figure 1. VG-MS-ST-GAT model structure diagram 

 

2.3 Visual-behavioral spatiotemporal dynamic interaction 

module 

 

The core objective of the visual-behavioral spatiotemporal 

dynamic interaction module is to generate fusion features 

containing spatiotemporal information and modality synergy 

characteristics through industrial visual adaptation processing 

and cross-modal correlation modeling, providing high-quality 

input for subsequent intent extraction. Given the 

characteristics of industrial visual data such as lighting 

fluctuations, frequent occlusions, and dispersed key 

information, the module first performs a three-step 

preprocessing process: it uses YOLOv8 to locate and crop key 

regions such as device control panels and indicator lights, 

focusing on core visual information; it applies adaptive 

histogram equalization to eliminate lighting differences, and 

combines generative adversarial networks to complete 

occluded regions, thereby enhancing data robustness; finally, 

it extracts spatial texture features using the lightweight 

convolutional neural network EfficientNet-B0, paired with 

ConvLSTM to capture the temporal dependencies of operator 

actions and device statuses, outputting visual features with 

integrated spatiotemporal information, denoted as hi
vRKv×T, 

where 𝐾𝑣  is the visual feature dimension, and 𝑇 is the time 

step. The behavioral modality is then standardized and 

encoded to generate structured behavioral features hi
b, which 

are synchronized with the visual features in time. 

Based on the preprocessed bimodal features, the module 

constructs a dynamic temporal graph 𝐺𝑡 = (𝑉, 𝐸𝑡)to model the 

dynamic associations among multiple terminals. The node set 

𝑉  is composed of the concatenated visual and behavioral 

features of each terminal, and the adjacency matrix EtRN×N 

characterizes the real-time association strength between 

terminals. To overcome the limitations of traditional manually 

set weights, the module uses a multilayer perceptron to 

dynamically generate weight coefficients 

[αi,j(t),βi,j(t),γi,j(t)]=MLP(hi
v(t),hj

v(t)), which are combined with 

the physical distance Dist(Ti,Tj), communication frequency 

Comm(Ti,Tj), and operational synergy Op(Ti,Tj) to construct 

the adjacency matrix: 
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εt(i,j)=αi,j(t)∙Dist(Ti,Tj)+βi,j(t)∙Comm(Ti,Tj) 

+γ
i,j

(t)∙Op(Ti,Tj) 
(2) 

 

Figure 2 shows the local schematic diagram of the visual-

guided dynamic spatio-temporal graph attention model 

constructed, where the nodes correspond to typical terminals 

in the industrial scenario, and the edge weights are generated 

by calculating the similarity of visual features between 

terminals. It intuitively demonstrates the dynamic graph 

construction logic of "visual feature-guided terminal 

association," where the weight of self-association edges is 

reinforced by behavior features. This design allows the 

terminal association strength to dynamically adjust according 

to the visual state. For example, when a visual anomaly occurs 

in the device, the communication association weight with 

related terminals can be automatically increased, achieving 

precise adaptation of association modeling to operational 

conditions. 

 

 
 

Figure 2. Schematic of the VG-MS-ST-GAT model 

 

To achieve precise alignment of key information in both 

modalities, the module further designs a dual-branch attention 

structure and cross-modal collaborative mechanism. The 

visual branch focuses on the device's visual state changes and 

spatial associations. By concatenating the visual features of 

terminal i and j, [hi
v||hj

v], and mapping them through the weight 

matrix Wv and activation, the attention score aij
v is generated 

as aij
v=LeakyReLU(Wv[hi

v||hj
v]). After normalization, the 

visual attention weight αij
v is obtained as αij

v=Softmaxj(αij
v). 

The behavior branch focuses on the operation sequence logic 

and temporal dependencies. After processing the behavior 

features through the weight matrix Wb and bias bb, the 

temporal attention score ait
b is generated as 

ait
b=VTtanh(Wbhi

b(t)+bb). After normalization, the behavior 

attention weight αit
b is obtained as αit

b=Softmaxt(αit
b). In the 

cross-modal collaboration phase, bidirectional guidance is 

implemented through scaled dot-product attention, generating 

the vision-guided behavior feature hi
v→b=Attention(hi

v,B,B) 

and behavior-guided visual feature hi
b→v=Attention(hi

b,V,V). 

Finally, the time-space fused features hist are obtained by 

weighted fusion using the dual-branch weights: 

hi
st=αij

v·hi
v→b+αit

b·hib→v, completing the deep coupling of dual-

modal spatiotemporal information. 

 

2.4 Causal-guided intent feature extraction module 

 

The core objective of the causal-guided intent feature 

extraction module is to enhance multi-granularity feature 

representation and separate modal noise through two 

progressive steps: multi-scale spatiotemporal convolution 

enhancement and causal decoupling, thereby generating high-

discriminative clean intent features to support subsequent 

anomaly classification. In industrial scenarios, terminal 

anomalies simultaneously present fine-grained visual 

dynamics such as indicator light flickers, subtle component 

deformations, as well as coarse-grained spatial associations 

such as device layout shifts and multi-terminal collaboration 

misalignments. The pre-spatiotemporal fusion feature ℎ𝑖𝑠𝑡 is 

difficult to comprehensively cover these heterogeneous 

information, so the module first designs a multi-scale 

spatiotemporal convolution structure for feature enhancement. 

This structure uses three scales of spatiotemporal convolution 

(ST-Conv): 3×3, 5×5, and 7×7, focusing on fine-grained 

dynamics, intermediate scale transitions, and coarse-grained 

association features. These features are then integrated by 

feature concatenation, specifically calculated as: 

 

hi
ms

=Concat(ST-Conv3×3(hi
st

),ST-Conv5×5(hi
st

),ST 

-Conv7×7(hi
st

)) 
(3) 

 

To alleviate overfitting, batch normalization is introduced 

after the convolution layer to stabilize feature distribution, and 

dropout is used to randomly deactivate neurons, enhancing the 

model's robustness against industrial noise. 

Multi-scale enhanced features are still interfered with by 

modal confounding factors in industrial scenarios, such as 

visual noise caused by sudden lighting changes and behavioral 

feature deviations caused by communication fluctuations, 

which can severely damage the purity of intent representations. 

Therefore, the module designs a decoupling mechanism based 

on causal intervention and combines it with the GAT to 

separate noise and enhance intent. The multi-scale features 

ℎ𝑖
𝑚𝑠 and dynamic adjacency matrix 𝐸𝑡are first input into the 

GAT, where the graph attention weights focus on the anomaly 

associations between terminals, generating noise-containing 

intent-related features. Then, a backdoor adjustment strategy 

is introduced to calculate the conditional expectation 𝐸[ℎ𝑖
𝑚𝑠 ∣

Confounder] to quantify the noise component, and finally, the 

noise is removed from the features through feature subtraction 

to obtain clean intent features: 

 

Ii=GAT(hi
ms

,εt)-E[hi
ms

|Confounder] (4) 

 

This design removes false associations through causal 

decoupling, while the GAT further enhances the inter-class 

discrimination of intent features, allowing the extracted 𝐼𝑖  to 

accurately map to the terminal's true operating intent. 
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2.5 Cross-modal intent recognition module 

 

The core goal of the cross-modal intent recognition module 

is to accurately determine the terminal's abnormal state based 

on the causal-decoupled clean intent features 𝐼𝑖 , while also 

strengthening the model's ability to differentiate difficult 

samples and classification robustness in industrial scenarios 

through a dual-loss function design. Considering that single-

modal determinations are easily interfered with by noise in 

industrial scenarios, such as visual misjudgments caused by 

occlusion and behavioral branch deviations due to 

communication fluctuations, the module first designs a cross-

modal classification loss 𝐿𝑐𝑙𝑠  to achieve collaborative 

decision-making between the two modalities. This forces the 

visual and behavioral branches to make consistent judgments, 

reducing the impact of single-modal noise. The loss function 

is constructed by taking the logarithm of the product of the 

abnormal probability from the visual branch pi
v and the 

abnormal probability from the behavioral branch pi
b, based on 

the dual-modal consistency classification constraint. The 

specific expression is: 

 

Lcls=-
1

N
∑ y

i

N

i=1

log ( p
i

y
p
i
b)+(1-y

i
) log ( (1-p

i

y
)(1-p

i
b)) (5) 

 

where, 𝑦𝑖  is the true label for terminal 𝑖 , and 𝑁  is the total 

number of terminals. When the terminal is abnormal (𝑦𝑖 = 1), 

the loss function maximizes pi
vpi

b; when the terminal is normal 

(𝑦𝑖 = 0), it maximizes (1−pi
v)(1−pi

b). This design enables the 

dual-modal features to form a collaborative verification 

mechanism, effectively avoiding the risk of misjudgment from 

a single modality. 

To further enhance the model's ability to distinguish 

difficult samples such as "normal maintenance vs. malicious 

tampering," the module introduces a contrastive loss 𝐿𝑐𝑜𝑛𝑡  to 

optimize the distribution of intent features by reducing the 

feature distance of similar samples and increasing the feature 

distance of dissimilar samples, thus strengthening the inter-

class disparity of intent representations. This loss function 

operates on the causal-decoupled intent features 𝐼𝑖 and uses 

indicator functions [ 𝑦𝑖 = 𝑦𝑗 ]  and [ 𝑦𝑖 ≠ 𝑦𝑗 ]  to constrain 

similar and dissimilar sample pairs. The specific expression is: 

 

Lcont=
1

N2
∑ [

i,j

y
i
=y

j
]dist(Ii,Ij)

2
 

-[y
i
≠y

j
] max ( 0,m-dist(Ii,Ij))

2
 

(6) 

 

where, dist( ) is the Euclidean distance metric, and 𝑚 is the 

margin threshold for dissimilar sample features. This design 

applies a squared distance penalty to similar samples and a 

reverse penalty to dissimilar samples that do not meet the 

margin, creating a clear boundary for difficult samples' intent 

features in the feature space, significantly improving the 

model's fine-grained classification capability. 

The total loss function of the model is the weighted 

combination of the cross-modal classification loss and 

contrastive loss, i.e., 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑠 + 𝜆𝐿𝑐𝑜𝑛𝑡 , where the 

balance coefficient 𝜆 is used to adjust the contribution ratio of 

the two losses. Experimental verification shows that when 𝜆 =
0.1, the optimal balance between classification accuracy and 

feature distinguishability is achieved. In the classification 

phase, the intent features 𝐼𝑖  are input into a fully connected 

layer, and the abnormal probability for the terminal is output 

via the Sigmoid activation function as 𝑝𝑖 = Sigmoid(𝑊𝑜𝐼𝑖 +
𝑏𝑜) , where 𝑊𝑜  and 𝑏𝑜  are the parameters of the fully 

connected layer. To adapt to the different operational 

characteristics of various industrial terminals, the model uses 

an adaptive threshold 𝜃  for anomaly determination, 

dynamically determining the decision threshold for each 

terminal by maximizing the F1-score criterion on the 

validation set, and ultimately outputs the terminal's abnormal 

state determination result. 

 

2.6 Virtual-real interlinked explainability output module 

 

The core goal of the virtual-real interlinked explainability 

output module is to transform the model's abstract decision-

making process into tangible evidence that is understandable 

by industrial operations and maintenance (O&M). This is 

achieved through multi-dimensional explanations and 

structured integration, building a complete evidence chain of 

"visual anomaly localization - temporal behavior traceability - 

cross-terminal causal tracing." The module first generates 

basic evidence from the visual and temporal dimensions: 

visual evidence is produced by the attention weights of the 

visual branch, which generate a heatmap overlaying the key 

device area image. By visualizing pixel-level weights, this 

effectively highlights physical anomaly features such as 

abnormal indicator light colors and component deformations, 

enabling O&M personnel to intuitively locate the source of the 

anomaly. The temporal chain is generated by the attention 

weights of the behavioral branch, which produce a temporal 

heatmap. This heatmap, through the distribution of weights 

over time steps, identifies the key operation time segments that 

triggered the anomaly, clearly showing the time evolution of 

abnormal behavior. To establish causal relationships of 

anomaly propagation across terminals, the module introduces 

Granger causality testing to quantify the causal relationship 

between terminals, calculated as: 

 

Granger(Ti→Tj)= 

Var(p
j
|History(j))-Var(p

j
|History(j,i))

Var(p
j
|History(j))

 
(7) 

 

where, History(𝑗) represents the historical feature sequence of 

terminal 𝑗, and 𝑝𝑗 is its anomaly prediction probability. If the 

test value exceeds 0.3, 𝑇𝑖  is considered a causal predecessor of 

𝑇𝑗 , thus generating an anomaly propagation trace. To meet 

O&M practical needs, the module integrates the visual 

evidence, temporal chain, and causal relationship into an 

explanatory report. This includes an anomalous visual 

screenshot with the overlaid heatmap, a timeline curve 

marking key operation time steps, and a propagation path 

diagram with causal strength annotations, directly linking to 

the O&M fault diagnosis knowledge system. This enables 

O&M personnel to quickly locate the root cause without 

needing to understand the model's internal mechanisms. 

 

2.7 Computational complexity analysis 

 

The computational complexity analysis is conducted from 

both time and space dimensions. The core objective is to verify 

the feasibility of deploying the model on industrial edge 

devices, providing theoretical support for engineering 

implementation. The time complexity is composed of three 
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main parts: the visual and behavioral feature encoding stage, 

which processes features of 𝑁  terminals over 𝑇  time steps, 

with a complexity of 𝑂(𝑁𝐾𝑣𝑇 + 𝑁𝐾𝑏𝑇) , where 𝐾𝑣  and 𝐾𝑏 

represent the visual and behavioral feature dimensions, 

respectively; the dynamic graph construction and graph 

attention calculation stage, which generates an 𝑁 ×
𝑁adjacency matrix and performs attention updates between 

nodes, with a complexity of 𝑂(𝑁2𝑇) ; the overall time 

complexity is therefore 𝑂(𝑁2𝑇 + 𝑁𝐾𝑣𝑇 + 𝑁𝐾𝑏𝑇). To meet 

industrial real-time requirements, the model uses a lightweight 

convolutional neural network, EfficientNet-B0, to simplify 

feature encoding, and applies sparse processing on terminal 

associations to optimize the dynamic graph structure, 

ultimately controlling the inference delay to under 25ms. The 

space complexity mainly arises from storing multi-modal 

features and dynamic graph parameters, requiring the storage 

of spatiotemporal feature matrices for 𝑁  terminals. The 

overall space complexity is 𝑂(𝑁𝐾𝑣𝑇 + 𝑁𝐾𝑏𝑇), which can be 

adapted to the storage resources of mainstream industrial edge 

gateways. It does not rely on high-performance servers, 

making it highly practical for engineering deployment. 

 

 

3. EXPERIMENTS 

 

3.1 Experimental setup 

 

The experimental setup focuses on data construction, 

preprocessing, environment configuration, baseline selection, 

and parameter tuning to ensure the reliability, reproducibility, 

and comprehensiveness of the comparisons. The core dataset 

includes the self-constructed Ind-ViBe-2024 and the extended 

public dataset Edge-IIoTset-V. Ind-ViBe-2024 is collected 

from automotive parts workshops and smart parks, covering 

10 types of terminals including CNC lathes, PLCs, and 

industrial robots. The multi-modal data includes two types: 

visual and behavioral. Visual data consists of 128×128×3 

device state images and 256×256×3 operator action videos, 

both with key area annotations. Behavioral data contains 

operation instruction sequences, communication logs, and 

operational parameters, with 28 feature dimensions. The 

annotated information covers 8 types of anomaly labels, 

including malicious tampering, equipment jamming, as well as 

visual anomaly region coordinates, behavioral anomaly time 

segments, and cross-terminal causal propagation chains. The 

dataset has 52,000 samples, divided into training, validation, 

and testing sets in a 7:1:2 ratio. To validate generalization, the 

public dataset Edge-IIoTset-V was extended by adding 

simulated device visual data to the original communication 

logs and completing visual-behavioral alignment annotations 

according to the Ind-ViBe-2024 specifications. 

Visual data preprocessing and augmentation are designed 

according to the characteristics of industrial scenes to ensure 

feature quality and model robustness. In the preprocessing 

stage, YOLOv8 is used to detect key areas of the device and 

crop and resize them to a uniform size. Adaptive histogram 

equalization is applied to handle shadow and strong light 

issues caused by illumination fluctuations, and a Gaussian 

mixture model is used to remove fixed backgrounds, focusing 

on the dynamic areas of the device. Data augmentation is 

performed in three dimensions: spatial, temporal, and noise. 

Spatial augmentation includes random cropping and 

horizontal flipping to adapt to different terminal installation 

directions. Temporal augmentation involves random frame 

insertion and time reversal to enhance the model's ability to 

handle visual signal delays. Noise augmentation adds 

Gaussian noise with σ=0.05-0.2 and salt-and-pepper noise 

with a ratio of 0.01-0.05 to simulate real noise interference in 

industrial imaging environments. Behavioral data is also 

processed with temporal normalization to ensure precise time 

alignment with visual data. 

The hardware and software environment and baseline 

methods are selected to provide reliable support for 

performance comparison. The hardware configuration 

includes an Intel Xeon Gold 6330 CPU, an NVIDIA A100 

GPU, and 256GB of memory, meeting the computational 

requirements for multi-modal data processing and model 

training. The software environment is built on PyTorch 2.1 and 

Python 3.10, combined with OpenCV 4.9, MMDetection 3.0, 

and Scikit-learn 1.3 to implement visual preprocessing, model 

training, and metric calculation. The baseline methods include 

five categories to ensure comprehensive comparison: single-

modal methods, such as EfficientNet-B0 and ConvLSTM for 

vision, and LSTM and GRU for behavior; traditional multi-

modal fusion methods, including CNN-LSTM and 

Transformer with Cross-Attention mechanisms; ST-GNN-

based methods, including ST-GCN, ST-GAT, and Dynamic 

ST-GAT; multi-modal video understanding methods, 

including top-tier methods such as MViT, TimeSformer, and 

CoOp; and the latest anomaly detection methods, including 

ST-Former, MAML-AD, and GAT-AD published in 

IEEETPAMI and TIP journals between 2022 and 2024, 

covering representative solutions across different modalities 

and technical approaches. 

The model training and module parameters are tuned using 

the validation set to ensure training stability and optimal 

performance. The AdamW optimizer is used, with a learning 

rate set to 1e-4 and weight decay of 1e-5 to prevent overfitting. 

Training parameters are set with a batch size of 32, 16 time 

steps, and a total of 120 training epochs, while employing an 

early-stopping strategy with a patience value of 15 to avoid 

ineffective training and overfitting. Core module parameters 

are: MLP hidden layer dimension of 256, contrastive loss 

margin of 0.5, balance coefficient of 0.1 for cross-modal 

classification loss and contrastive loss, and dropout rate of 0.2. 

All baseline methods are trained using the same parameters 

and evaluation metrics to ensure fairness in the comparisons. 

 

3.2 Analysis of experimental results 

 

To quantify the independent contributions of core modules 

such as the visual-guided dynamic graph and cross-modal 

dual-branch attention to classification performance, an 

ablation experiment analysis was conducted. As shown in 

Table 1, the F1-score of the baseline model B0 is only 0.892. 

After adding the visual-guided dynamic graph, the F1-score 

increased to 0.949, with a 5.7% improvement. This change 

demonstrates that the dynamic adjacency matrix constructed 

using visual features effectively enhanced the spatiotemporal 

correlation modeling between terminals and reduced feature 

redundancy caused by static concatenation. Further adding the 

cross-modal dual-branch attention improved precision from 

0.918 to 0.959, indicating that the directed alignment 

mechanism for cross-modal features effectively decoupled 

behavioral sequence ambiguities in scenarios such as 

"maintenance and tampering." The introduction of the causal-

guided intent extraction module increased the AUC-ROC 

from 0.967 to 0.986, highlighting the effect of causal 
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decoupling in removing noise, allowing intent features to 

focus more on the terminal’s actual operating state. Finally, 

after adding the virtual-physical interactive interpretability 

module, the classification metrics saw a slight increase, as the 

interpretability module further optimized the input quality of 

features to the classification branch by selecting relevant 

visual and behavioral features. Overall, the step-by-step 

addition of each core module achieved incremental 

improvements in classification performance, validating the 

scientific design of the method and the synergistic 

effectiveness of the modules. 

 

 

Table 1. Ablation experiment results for core module effectiveness verification 

 

Model Variant 
B0 (Baseline 

Model) 

B1 (B0 + Visual-Guided 

Dynamic Graph) 

B2 (B1 + Cross-Modal 

Dual-Branch Attention) 

B3 (B2 + Causal-Guided 

Intent Extraction) 

B4 (Proposed 

Model) 

Accuracy (ACC) 0.885 0.932 0.959 0.978 0.987 

Precision 0.872 0.918 0.959 0.974 0.985 

Recall 0.903 0.945 0.958 0.981 0.997 

F1-score 0.892 0.949 0.958 0.977 0.991 

AUC-ROC 0.914 0.951 0.967 0.986 0.995 

Visual-Behavior 

Attention Consistency 
0.61 0.73 0.85 0.88 0.92 

Explanation Fidelity 0.65 0.71 0.78 0.83 0.87 

Anomaly Traceability 

Accuracy 
0.723 0.786 0.852 0.925 0.982 

 

To validate the contributions of each core module to 

interpretability, an ablation experiment analysis was also 

conducted for the interpretability metrics. The baseline model 

B0 had a visual-behavior attention consistency of 0.61 and an 

anomaly traceability accuracy of 0.723, indicating that, under 

the static concatenation mode, the lack of effective correlation 

between multimodal features caused the explanation results to 

deviate from the true logic. After adding the visual-guided 

dynamic graph, the visual-behavior attention consistency 

increased to 0.73, suggesting that the dynamic graph’s visual-

guided mechanism made the correlation between the 

multimodal features more aligned with the actual state of the 

terminal. The introduction of cross-modal dual-branch 

attention further increased this consistency to 0.85, confirming 

that the bidirectional attention's cross-query mechanism 

enabled accurate matching between visual anomalies and 

behavior sequences. The causal-guided intent extraction 

module increased explanation fidelity from 0.78 to 0.83, 

demonstrating that causal decoupling filtered out noise and 

made the explanation results more faithful to the model's 

inference logic. Finally, the addition of the virtual-physical 

interactive interpretability module led to a significant rise in 

anomaly traceability accuracy to 0.982, showing that the 

integration of Granger causality testing and multi-dimensional 

explanations effectively constructed a complete evidence 

chain from visual anomalies to causal propagation. This result 

indicates that the improvement in interpretability is not solely 

the result of a single module, but rather a synergistic outcome 

of visual guidance, cross-modal alignment, and causal 

modeling. 

Figure 3 presents a radar chart showing the 

multidimensional performance balance of different models 

based on accuracy, precision, recall, F1-score, AUC-ROC, and 

anomaly traceability accuracy. The proposed model 

demonstrates significant advantages across all dimensions, 

with the most notable being its precision of 0.985 and anomaly 

traceability accuracy of 0.982. This is attributed to the 

synergistic effect of the visual-guided cross-modal attention 

mechanism and the causal-decoupled intent extraction module. 

The cross-modal classification loss forces consistency 

between the visual and behavioral branches, effectively 

avoiding misclassification in ambiguous scenarios such as 

"maintenance vs. tampering." Meanwhile, the Granger 

causality test quantifies the causal relationships between 

terminals, enabling precise mapping of anomaly propagation 

paths to the true causal chain, rather than relying on false 

correlations in the features. In contrast, the performance 

distribution of ST-GAT and MViT shows a clear bias, 

reflecting their lack of cross-modal coordination and causal 

modeling capabilities, which results in an imbalance between 

classification accuracy and interpretability. 

 

 
 

Figure 3. Radar chart of comprehensive classification 

performance for different models 

 

 
 

Figure 4. Efficiency comparison of model inference delay 

and parameter count in two dimensions
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Figure 5. Accuracy change curves of the model under 

different Gaussian noise intensities 

 

Figure 4 presents a two-dimensional efficiency comparison 

of inference delay and parameter count using dual Y-axes, 

highlighting the advantages of the proposed model in terms of 

"high performance - lightweight" dimensions. The proposed 

model achieves the best values in both inference delay (21ms) 

and parameter count (9.2M) among all comparison models: its 

parameter count is only 32.2% of MViT's, and its inference 

delay is only 24.1% of MViT's, with no compromise in 

classification performance. This result is mainly due to the 

model's lightweight design and efficient feature fusion 

mechanism: the visual branch uses EfficientNet-B0 instead of 

deep CNNs, reducing parameter size while maintaining 

feature expression capability; the visual-behavior 

spatiotemporal dynamic interaction module uses dynamic 

graph sparsification to retain only terminal connections with 

strong visual state associations, avoiding redundant 

calculations from fully connected graphs; the directed feature 

alignment in the cross-modal dual-branch attention further 

reduces the transmission and processing of ineffective features, 

achieving an efficient balance between computational power 

consumption and performance. 

Figure 5 shows the accuracy decay curve of the model under 

different levels of Gaussian noise intensity, with the core 

difference lying in the performance stability after noise 

augmentation: when σ=0.1, the proposed model’s accuracy 

decreases by only 1.1%, while ST-GAT and CNN-LSTM drop 

by 3.4% and 4.7%, respectively. When σ increases to 0.3, the 

proposed model’s total drop is still controlled within 3.9%, far 

lower than ST-GAT's 13.1% and CNN-LSTM's 16.1%. This 

robustness advantage is technically supported by two aspects: 

first, the adaptive histogram equalization and occlusion 

correction in the visual preprocessing phase have reduced 

noise interference on visual features at the input layer; second, 

the visual-behavior cross-modal complementary mechanism 

plays a key role during noise enhancement—when the visual 

features are contaminated by noise, the temporal logic features 

of the behavior modality can be completed via cross-modal 

attention, avoiding performance degradation caused by the 

failure of a single modality. In contrast, ST-GAT and CNN-

LSTM lack an active cross-modal coordination mechanism, so 

when the visual modality fails, they cannot complement 

features, resulting in a more significant performance decay. 

 

  

(a) Sensor normal operating state (b) Sensor visual obstruction triggering abnormality 

  
(c) PLC abnormality propagating to CNC (d) Multi-terminal collaborative abnormality traceback 

 

Figure 6. Spatiotemporal state trajectories and visual-behavioral attention distribution of target industrial terminals 
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Figure 6 shows the spatiotemporal state trajectory and 

visual-behavior attention distribution map of the target 

industrial terminal. To quantify the feature coupling ability of 

the visual-guided multimodal attention mechanism in the 

spatiotemporal evolution of industrial terminal anomalies, as 

well as the quantitative support effectiveness of the 

spatiotemporal interpretability framework for anomaly 

traceability, this experiment analyzes the actual operating 

logic of the core modules by visualizing the terminal state 

trajectories and attention weights. Figure 6(a) corresponds to 

the normal operating condition of the sensor: the state 

trajectory is stably constrained within the normalized range of 

[-1, 2], and the variation coefficients of the visual attention 

weight (0.20) and behavioral attention weight (0.12) are only 

0.15, reflecting that the model achieves robust and balanced 

encoding of multimodal features under normal conditions 

through the visual-behavior dynamic interaction module. This 

result contrasts with the attention variation coefficient of the 

baseline model B0 in the ablation experiment, which is 2.1 

times that of the proposed model, further proving that the 

visual-guided mechanism in the dynamic graph weights 

effectively reduces feature redundancy under normal scenarios. 

In Figure 6(b), when the sensor experiences visual occlusion, 

the state trajectory deviates from the normal range (y=0) to an 

anomaly region below -1, with the visual attention weight 

increasing to 0.26 (a 30% increase) and the behavioral 

attention weight increasing to 0.49 (a 308% increase). The 

visual branch detects the deviation of the occluded region’s 

ROI features and triggers fine-grained retrieval of behavioral 

sequences through the cross-modal attention module. This 

weight linkage effect validates the modality complementarity 

mechanism guided by vision, solving the ambiguity problem 

between "normal maintenance occlusion" and "malicious 

occlusion" that a single behavioral modality cannot distinguish. 

Figure 6(c) presents the propagation of PLC anomalies to the 

CNC lathe: the cross-terminal coupling degree of the terminal 

state trajectory increases from 15% in Figure 6(b) to 60%, with 

the visual attention weight focusing on the ROI area of the 

PLC control panel indicator lights (0.68) and the behavioral 

attention weight locking onto the G-code operation sequence 

of the CNC lathe (0.98). This result corresponds to the 

operational logic of the spatiotemporal dynamic graph module: 

the model constructs the dynamic adjacency matrix based on 

the horizontal deployment coordinate y-axis of the terminal 

and uses the causal-guided intent extraction module to 

precisely locate the anomalous precursor node. The attention 

weight’s matching degree with the anomaly propagation 

direction reaches 91%. In the multi-terminal collaborative 

anomaly scenario shown in Figure 6(d), the slope of the core 

terminal's state trajectory increases from 0.1 under normal 

conditions to 0.5, with the Pearson correlation coefficient of 

visual-behavior attention weights reaching 0.92. This strong 

correlation proves the effectiveness of the virtual-physical 

interactive interpretability framework. The model not only 

qualitatively labels the anomaly path but also achieves 

quantifiable traceability of the anomaly source (initial 

trajectory deviation node) and propagation link through the 

coupling of attention weights and trajectory evolution. 

In summary, this visualization result verifies the technical 

effectiveness of the proposed method from three dimensions: 

feature encoding robustness, cross-modal association capture, 

and cross-terminal spatiotemporal traceability. The visual-

guided multimodal attention mechanism can achieve dynamic 

feature allocation in both normal and abnormal scenarios, 

while the spatiotemporal interpretability framework provides 

quantitative track-attention correlation evidence for industrial 

terminal anomaly maintenance decisions. This complements 

the quantitative result from the ablation experiment, "The 

anomaly traceability accuracy of the method improves by 

25.9% over the baseline model." 

 

 

4. CONCLUSION 

 

This paper addresses core issues in industrial terminal 

anomaly detection, such as the heterogeneity of multimodal 

features, the ambiguity of abnormal scenarios, and the lack of 

interpretability in decision-making processes. We propose a 

method based on visual-guided multimodal spatiotemporal 

fusion and causal interpretability analysis, constructing a 

complete technical framework of "visual-behavior 

spatiotemporal dynamic interaction - causal-guided intent 

extraction - cross-modal recognition - virtual-physical 

interactive explanation." The research achieves adaptive 

modeling of terminal associations through visual-guided 

dynamic graph construction, utilizes a cross-modal dual-

branch attention mechanism to accurately align heterogeneous 

features, combines causal decoupling to extract pure intent 

features, and ultimately generates multidimensional 

interpretability evidence through the virtual-physical 

interactive module. Experimental results show that the 

proposed method outperforms others on the self-constructed 

Ind-ViBe-2024 and the extended Edge-IIoTset-V datasets, 

with an F1-score improvement of 5.3% and 3.8% over ST-

GAT and MViT, respectively. With an inference delay of 

21ms and a parameter count of 9.2M, the method meets the 

industrial edge deployment requirements. Under Gaussian 

noise with σ=0.3, the accuracy drop is only 3.9%, significantly 

outperforming baseline methods. The core value of this 

research lies in: at the theoretical level, establishing a 

multimodal learning paradigm of "visual state-guided 

modality fusion - causal modeling ensuring the purity of 

intent" that overcomes the limitations of traditional static 

fusion and black-box decision-making; at the engineering 

level, achieving seamless integration of anomaly detection and 

fault troubleshooting through the output form of "quantitative 

indicators + visual evidence + O&M adaptation reports," 

providing technical support for transforming industrial O&M 

from "passive response" to "proactive early warning." 

However, there are still three limitations in this research: 

although the dataset covers two types of industrial scenarios, 

the sample proportion of extreme environments is insufficient, 

leading to an under-validation of the method's generalization 

performance in such scenarios; causal modeling uses Granger 

causality tests, which have limited ability to characterize 

nonlinear causal relationships between terminals; while the 

interpretability output is adapted to O&M needs, it does not 

design differentiated presentation strategies for O&M 

personnel at different levels. Based on these, future research 

can progress in three areas: first, constructing a multi-scenario 

industrial terminal dataset that includes extreme operating 

conditions and introducing domain adaptation techniques to 

enhance cross-scenario generalization ability; second, 

integrating causal graph neural networks with attention 

mechanisms to establish a nonlinear causal relationship model 

between multimodal features and abnormal states; third, 

designing layered interpretable interactive interfaces by 

combining user profiles and O&M task requirements, 
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achieving precise adaptation for "expert-level quantitative 

analysis" and "frontline O&M-level intuitive prompts." 

Additionally, exploring model training solutions under the 

federated learning framework to address the practical needs of 

industrial data privacy protection will be an important 

direction for future engineering implementation. 
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