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Digital signal processors (DSPs) require good CPU core integration to perform complex
processes such as convolution, transformation, and filtering, which rely primarily on
multiplication and accumulation. The multiply-accumulate (MAC) unit is crucial for DSP
algorithms that require high performance. This paper proposes a high-speed and low-power
MAC unit that employs a Pipelined Urdhva-Tiryagbhyam Vedic Multiplier (PUVM)
technique based on the Ladner-Fischer adder (LFA). The design is proven using Kintex,
Artix, and Virtex FPGAs in Xilinx Vivado 2022.2 and ASIC 45 nm technology, which
improves performance. At different bit widths, the suggested PUVM-LFA achieves latency
reductions of 43%, 61.55%, 73.04%, and 79.49%. The MAC-PUVM-LFA design achieves
a 66.04% reduction in latency and a 19.49% reduction in FPGA area. It boosts power by
71.80% and 74.15%, delays by 87.21% and 87.21%, APP by 18.37% and 39.07%, ADP by
62.98% and 69.86%, and PDP by 96.39% and 96.99% in ASIC. The results show that the
suggested technique beats previous solutions in the literature, despite its dependability and

low cost.

1. INTRODUCTION

The MAC unit plays a vital role in DSP systems,
significantly impacting processor performance in applications
like FIR filters, FFT, and convolution that rely on complex
arithmetic operations. Reducing latency by MAC units leads
to improved performance [1]. VMs have been used to design
an efficient MAC unit, and area and delay characteristics have
been compared [2]. A successful development of a high-speed
MAC unit has been made [3]. A typical Brent-Kung adder-
based (BKA) unit is almost five times slower than the
suggested MAC unit [4]. There are two suggested 32-bit MAC
architectures: one with a Carry Save Adder, VM, and a Ripple
Carry Adder (RCA), and an Array Multiplier (AM) [5]. There
have been two proposed 32-bit MAC architectures, one using
AM and the other using VM [6]. To maximize the computing
of neural networks, MAC units are compared for energy,
throughput, and area [7].

Convolutional neural networks have been suggested to use
a fully customized 8-bit MAC architecture in place of
embedded memories and DSP blocks [8]. A feasible choice for
high-performance applications, VMs are distinguished by
their effective architecture, which is typified by low power
consumption and decreased delay. This is demonstrated in
Table 1's comparisons of implementation characteristics, area,
latency, power consumption, and complexity with various
multiplier architectures, such as the Array, Wallace, Booth,
and Dadda multipliers. Many creative multiplier designs have
been created: A Booth-Vedic hybrid architecture has been
developed to improve efficiency in both area and speed [9].
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Using inexact adders and clock-gating, approximation
multipliers have been shown to improve speed and minimize
power usage [10]. Using a hybrid compressor, a new multiplier
has been presented [11]. Using the Anurupyena sub-sutra,
multiplication operations have been carried out using the
Vedic technique [12].

The Vedic method based on the UT Sutra has been
examined for its use in multiplication [13]. To maximize area
and power, an effective 4:2 compressor design was employed
[14]. By integrating UT Sutra with Booth and Vedic methods,
efficient multiplication of signed digits has been made
possible [15]. Cadence Virtuoso and 45nm technology were
utilized to design a 4-bit VM for enhanced speed [16].
Utilizing the UT technique, a modular VM architecture was
created [17]. A square architecture with a low area
consumption was created [18]. Using 4 x4 blocks, an 8 <8
VM was built on a Kintex-7 FPGA board [19]. They
introduced a parallel signed multiplier without sign extension
[20]. For cryptography applications, a high-speed multiplier
unit was put into place [21]. UT Sutra was used to design a 32-
bit VM [22]. Redundant data detectors and compressors were
used in the architecture of reconfigurable VMs [23]. Single-
precision floating-point multipliers were implemented using
compressor designs [24]. For high-speed Booth multipliers,
new compressor structures were employed [25].

The UT Sutra from Vedic Mathematics was used to develop
high-speed multipliers, which were then implemented using
LFA. This work enhanced latency, area, and energy efficiency,
particularly for larger bit sizes.
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Table 1. Comparison of multipliers

Parameters Array Multiplier Shiftand Add Wallace Tree Multiplier Booth Multiplier Vedic Multiplier (VM)
Area High Less Medium Medium Medium
Power Consumption High Less Medium Medium Medium
Delay Medium Large Smallest Less Smallest
Complexity Simple Simple Complex Complex Simple
Implementation Easy Easy Difficult Medium Medium

Among the contributions made to this study were:

(1) In partial product addition, pipelining is employed to
reduce VM latency via LFA.

(2) Efficient MAC units were developed using pipelined
UVMs and LFA.

(3) VMs are used to process items that need to multiply
quickly and efficiently.

(4) The LFA produced less delay and lower power of
addition.

The suggested MAC unit improved delay and power by
using low-power and high-speed PUVM-LFA.

The manuscript is structured as follows: Part 2 explains
Parallel Prefix Adders (PPA), Part 3 covers VM, Part 4

BLACK CELL

GREY CELL

introduces the Proposed PUVM, Part 5 discusses the Proposed
MAC unit and results in Part 6, and Part 7 concludes the
manuscript.

2. PARALLEL PREFIX ADDER

Adders are essential in multipliers for summing partial
products. PPAs efficiently add binary integers in parallel,
outperforming sequential adders. PPAs utilize a tree structure
to compute carries, reducing propagation latency rapidly. The
PPA consists of three fundamental stages.

Gix Gy Py,

Figure 1. (a) Black cell (b) Grey cell
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(a) Pre-processing stage: At this stage, intermediate signals
must be produced for each bit position. Each bit in the binary
numbers being added produces a "generate" and "propagate"
signal.

Generate (g): This bit generates a carry (when the sum
exceeds one).

Gi=ai-b; (1)
Propagate (p): If a carry occurs, this bit propagates it.
Pi=ai @ bi (2)

These signals are crucial for efficient carry computation in
PPAs.

(b) Carry generation stage: Carry-lookahead logic is
implemented using Black Cells and Grey Cells to generate
carry signals for each bit location, as shown in Figure 1. The
carry signals are computed through concurrent algorithms in a
tree-like structure, merging pairs of bits in consecutive steps
based on produce and propagate signals.

(c) Sum generation stage: This step consists of creating
sum bits for each bit location. The total for each bit is then
determined by XORing the appropriate propagate value with
the carry.

Si=Pi @ ci (3)

Ci+1= G;j +Pic; 4)

PPAs enable logarithmic time addition, significantly

enhancing speed, particularly for large bit widths, and are
widely used in applications like digital signal processing,
encryption, and microprocessors. Common PPA types include
Kogge-Stone Adder (KSA) and BKA, with LFA architecture
offering fast addition while reducing power consumption. The
choice of adder depends on the application's specific needs,
with PPAs greatly influencing digital system design
performance [26, 27]. Research has evaluated and compared
PPA performance in terms of power dissipation, delay, and
area consumption [28, 29]. While KSA offers the least delay,
it uses more resources, and BKA optimizes the area at the cost
of delay. LFA provides a balance, making it suitable for both
delay and area optimization [29]. Various studies have
explored high-speed adders for arithmetic applications [30,
31], and efficient multiplier designs, like the Synchronous
Pipelined Array Multiplier, have been developed for specific
applications [32].

2.1 LFA architecture

The LFA is a high-speed parallel prefix adder designed by
Ladner and Fischer in 1980, as shown in Figure 2. The LFA
uses a recursive binary addition approach with a tree-like
structure that enables efficient computation of carry signals,
making it one of the fastest adders due to its minimal logic
depth. LFA offers a balance between area and latency,
allowing for a trade-off between the two. This design makes
LFA suitable for applications requiring both speed and
efficiency, positioning it as a balanced option between other
fast adders like KSA and area-efficient options like Brent-
Kung Adder BKA.
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3639



3. VEDIC MULTIPLIER

VM's efficient algorithm and architecture enable faster
speeds, reduced latency, and lower power consumption. Vedic
mathematics  accelerates  operations by  minimizing
complicated computations, making it ideal for applications
such as MAC units. It's many strategies that outperform
conventional designs. VMs, which are derived from ancient
Indian Vedic mathematics, multiply using 16 sutras. Notably,
the Nikhilam, Anurupye, and UT sutras present a variety of
approaches. The UT Sutra provides various benefits, including
faster performance, a smaller footprint, reduced power
consumption, a simpler architecture, and more scalability.

3.1 Urdhva-Tiryagbhyam Vedic Multiplier

Al=1 [ A1=1] |

A0 =1 | | A0=1 |

(@)
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A 4 v
[F T R - [F S T -
(b)

Figure 3. (a) 2 <2 demonstration of vedic multiplication (b)
2-bit vedic multiplier

The Urdhva Tiryagbhyam (UT) method utilizes a

"vertically and crosswise" technique for multiplication. This
approach can be applied to construct larger n*n multipliers by
scaling up from the fundamental 2*2 multiplication block, as
shown in Figure 3(a), enabling efficient multiplication
operations for various bit sizes.

A 2*2 multiplier unit, as shown in Figure 3(b), consists of
four AND gates generating partial products and two half-
adders for addition. It multiplies two 2-bit numbers (ala0 and
b1b0), where the LSB is obtained by multiplying vertically,
the second bit by adding the cross product and carry, and the
third and fourth bits are generated from the sum and carry of
the partial products of the most significant bits. This unit
serves as a fundamental building block for larger multiplier
implementations.

4. PROPOSED PUVM-LFA ARCHITECTURE

One technique for speeding up and improving the efficiency
of digital circuits in VLSI design is pipelining. Pipelining
enables more rapid signal processing and greater throughput
by breaking computations into simultaneous phases.
Pipelining is suitable for high-speed applications in which
performance is more important than space limitations,
although more space is needed for registers and control logic.

The proposed PUVM-LFA architecture shows a 32 x 32
VM pipeline structure as indicated in Figure 4. The structure
comprises two 32-bit LFAs, a half-adder, one 16-bit LFA, and
four 16 x 16 VMs with LFA. The structure balances
combinational logic paths and achieves maximum efficiency
using pipelining with well-placed registers. The registers are
wisely placed in between important stages, including:

(1) Input and Output: To enable smooth data transfer
between stages, input and output data are kept in registers.

(2) Multiplier and Adder Unit: To enable fast and efficient
computation, the intermediate results are kept in registers.

(3) Adders at Various Levels: Partial sums are kept in
registers, thus enabling complex arithmetic operations to be
performed quickly.

It possesses several noteworthy advantages over current
designs, including:

Increased Speed: The design is suitable for applications
where speed is high because of its significant delay
optimization.

Power Efficiency: The design reduces power consumption
by limiting the application of logic gates and minimizing
switching operations.

Designing efficient DSP systems involves knowing the
trade-offs and physical significance of delay, power, and area.
Through a compromise between these factors, the proposed
PUVM-LFA architecture enhances delay performance at less
power usage. The delay is defined as the time taken by a signal
to pass through a digital circuit. System performance is
increased, and data processing becomes faster by reducing the
delay. In the case of DSP systems, power consumption is an
important factor, particularly for battery-powered systems or
high-performance computing systems. Battery life, heat
dissipation, and system reliability improve if power
consumption is reduced.

The improved delay performance and reduced power
consumption of the proposed PUVM-LFA architecture render
it a good candidate for various real-world applications,
including 5G communication and IoT edge devices. System-
level design, application-specific  optimization, and
implementation/test can be explored in future studies to



optimize its benefits and establish its functionality in real-
world environments.

And it can be applied for data analysis, artificial intelligence,
cryptography, and scientific simulations on high-performance
computing for bit widths of 128 bits or wider. Rapid insights,

secure data transport, and accelerated Al workloads are
enabled by its scalability, low power usage, and high-speed
performance, which are suitable for applications requiring
efficient arithmetic operations.
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Figure 4. 32-bit proposed PUVM-LFA
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Figure 5. Architecture of proposed MAC-PUVM-LFA
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5. PROPOSED 32-BIT MAC UNIT USING PUVM-LFA

In real-time and DSP applications, the MAC unit is a critical
component that facilitates performing complicated
mathematical operations efficiently. It is important because it
can perform multiply-accumulate operations, which are
crucial to DSP algorithms such as Fourier transforms, filtering,
and convolution. The performance of the MAC unit has a
direct influence on the overall efficiency and accuracy of these
applications. The proposed MAC unit architecture, as
indicated in Figure 5, is intended to provide performance
optimization, power saving, and area usage efficiency. It is
made up of a multiplier stage that uses the PUVM-LFA, an
adder stage that uses the LFA, and a 2N-bit accumulator. For
their capability to be used to maximize DSP and real-time
applications, such as embedded systems, telecommunication,
and image and audio processing, two MAC unit
implementations, namely MAC-UVM-LFA and MAC-
PUVM-LFA, are studied in this research.

6. RESULTS AND DISCUSSION
6.1 FPGA implementation

The complete framework is developed using Xilinx Vivado
software, which operates on Kintex, Artix, and Virtex
processors. We implement the suggested PUVM-LFA in the
Kintex 7 series and simulate the outcomes utilizing the
XC7K325-2FFG900 device specification. It is known that the
suggested PUVM-LFA has a lower latency than alternative
multipliers. Table 2 compares the proposed PUVM-LFA's
delays to those of other current VMs, and Figure 6(a) depicts
the comparison chart. The “~” indicates the values are not
mentioned in the references.

It shows a comparison of combinational delay, in which the
suggested PUVM-LFA is enhanced. -, -, 0.31%, 2.88%, 7.71%,
43%, and 23.10% for 4-bit width; 37.35%, 35.66%, 0.05%,

0.07%, 52.16%, 61.55%, and 54.03% for 8-bit width; 31.87%,
30.30%, 23.96%, 17.17%, 69.98%, 73.04%, and 68.42% for
16-bit width; and 43.30%, 42.65%, 42.13%, 43.69%, 67.95%,
79.49%, and 73.06% for 32-bit width as compared to BB-VM,
CS4AM-VM, SquA, U-VM, and QCA-VM, respectively.

The designed PUVMLFA has been evaluated on the Artix-
7 XC7A100T-CSG324 device to simulate and validate its
performance. Table 3 compares the proposed PUVM-LFA's
delays to those of other current VMs, and Figure 6(b) depicts
the comparison chart. The comparison demonstrates how the
proposed PUVM-LFA reduces combinational latency. 25.25%,
25.15%, 25.25%, 25.25%, -, -, 25.53%, 38.18%, 13.17%,
2.59%, and 2.59% for four 4-bit widths; 47.82%, 41.08%,
43.59%, 45.55%, 6.92%, 10.40%, 67.28%, 60.97%, 12.36%,
12.36%, and 12.36% for 8-bit widths; and 49.61%, 45.11%,
50%, 53.83%, -, -, 70.99%, 65.96%, 29.11%, 14.48%, and
14.48% for 16-bit widths as compared to M2-HBVR-8, M3-
HBVR-8, AM-COSA, AMCS-LA, AM-RCA, AM-CSA,
BVR-4, BVR-8, ModVM, FloPM, and FBothM, respectively.

The suggested PUVM-LFA was also tested on the Virtex
device to simulate and evaluate its functionality. Figure 7
shows the simulation results, RTL schematic, and device for
the proposed 32-bit PUVM-LFA. The proposed PUVM-LFA's
delays were compared with those of other current VMs and are
listed in Tables 4-6. The comparison charts are presented in
Figure 8. The comparison shows that the UVM-LFA improved
combinational delay by 21.51%, 20.12%, and 17.61% for 32-
bit width compared to AM, WM, and VTC, respectively, while
the proposed PUVM-LFA reduced it by 49.67%, 60.50%,
59.80%, and 58.54% for 32-bit width compared to UVMLFA,
AM, WM, and VTC, respectively, and reduced it by 37.93%
and 56.52% for 64 and 16-bit width, respectively, as compared
to UVMLFA. The area was reduced by 13.33% in PUVM-
LFA for 32-bit when compared to AM, and reduced by 23%,
9.66%, and 5.44% in UVM-LFA when compared to AM, WM,
and VTC. Because of pipelining, the device utilizations (LUTS,
Slice registers, and Slices) are increased.

Table 2. Delay comparison of VMs [Kintex 7]

No of Bits 4 8 16 32
Proposed PUVM-LFA using Pipelining 3.876 4.114 5974 10.481
Booth based VM (BB-VM) [12] - 6.567 8.768 18.486
Booth with 4Mux based VM (B4M-VM) [12] - 6.394 8.571 18.275
CS Multiplier based VM(CSM-VM) [12] 3.888 4.116 7.856 18.112
CS Multiplier with 4Mux based VM (CS4M-VM) [12] 3.991 4565 7.212 18.613
Square Architecture (SquA) [18] 4.2 8.6 19.9 32.7
U-VM [19] 6.8 10.7 2216 51.09
QCA-based VM (QCA-VM) [19] 504 895 1892 389
Table 3. Delay comparison of VMs [Artix 7]
No of Bits 4 8 16
Proposed PUVM-LFA using Pipelining 3.994 4119 5.388
Method -2 Hybrid Booth Vedic Radix8 (M2-HBVR-8) [9] - 4.425 -
Method -3 Hybrid Booth Vedic Radix8 (M3-HBVR-8) [9] - 4.597 -
AM using Conditional Sum Adder (AM-COSA) [10] 5.343 7.894 10.693
AM using Carry Select Adder (AM-CSLA) [10] 5336 6.991 9.816
AM using Ripple Carry Adder (AM-RCA) [10] 5343 7.302 10.776
AM using Carry Save Adder (AM-CSA) [10] 5343 7565 11.67
Booth Vedic Radix4 (BVR-4) [15] 5363 1259 1857
Booth Vedic Radix8 (BVR-8) [15] 6.461 10.554 15.83
ModularVM (ModVM) [17] 4.6 4.7 7.6
Floating point Multiplier (FIOPM) [24] 4.1 4.7 6.3
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Table 4. Delay comparison of 64-bit VMs [Virtex]

VMs Delay (ns) Area (LUTs) Slice Registers Slices
Proposed PUVM-LFA using Pipelining 16.950 9682 489 2691
UVM-LFA 27.731 8721 - 2448

Table 5. Delay comparison of 32-bit VMs [Virtex]

Multipliers Delay (ns) Area (LUTs) Slice Registers  Slices
Proposed PUVM-LFA using Pipelining 10.141 2348 276 678
UVM-LFA 20.151 2086 - 589
Array Method (AM) [2] 25.674 2709 - -
Wallace Method (WM) [2] 25.228 2309 - -
Vedic Type with Compressor (VTC) [2] 24.457 2206 - -

Table 6. Delay comparison of 16-bit VMs [Virtex]

VMs Delay (ns) Area (LUTs) Slice Registers  Slices
Proposed PUVM-LFA using Pipelining 5.886 523 140 156
UVM-LFA 13.538 524 - 153
Name Design.. Block T.. " Name  Value Bz 025240500
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Figure 9. Proposed 32-bit MAC-PUVM-LFA

The proposed MAC-PUVMLFA was also tested on a Virtex
device to simulate and validate performance. It was also
discovered that the MAC unit created with the recommended
pipelined VM and the LFA adder had lower latency than both
the VM with LFA and the current MAC units. Figure 9 shows
the simulation results, RTL schematic, implementation
schematic, and device for the proposed 32-bit MAC unit.

Tables 7-9 compare 64-bit, 32-bit, and 16-bit MAC units,
with comparison charts presented in Figure 10. The
comparison highlights the improvement in MAC-UVM-LFA,
with combinational delay achieved by the 34.66%, 36.99%,

30.26% and 29.13% for 32-bit width, and area was reduced by
22.60%, 10.50%, 16.33%, and 6.53% for 16-bit width, and it
was reduced by 19.49%, 6.89%, 12.96%, and 2.77% for 32-bit
width in MAC-PUVM-LFA as compared to AM, WM, VeM,
and VTC, respectively. The delay was decreased by 46.11%,
64.79%, 66.04%, 62.41%, and 62.81% in Proposed MAC-
PUVM-LFA for 32-bit Width as compared to MAC-UVM-
LFA, AM, WM, VeM, and VTC, respectively, and was
decreased by 39.08% and 55.58% for 64 and 16-bit width,
respectively, as compared to MAC-UVM-LFA.

Table 7. Comparison of 64-bit MAC units [Virtex]

MAC Units Delay (ns) Area (LUTs) Slice Registers  Slices
Proposed MAC-PUVM-LFA 15.647 10041 616 2850
MAC-UVM-LFA 25.685 9314 128 2576
Table 8. Comparison of 32-bit MAC units [Virtex]
MAC Units Delay (ns) Area (LUTs) Slice Registers  Slices
Proposed MAC-PUVM-LFA 9.792 2351 340 674
MAC-UVM-LFA 18.022 2260 64 664
Array Method (AM) [2] 27.58 2920 - -
Wallace Method (WM) [2] 28.6 2525 - -
Vedic Method (VeM) [2] 25.84 2701 - -
Table 9. Comparison of 16-bit MAC units [Virtex]
MAC Units Delay (ns) Area (LUTs) Slice Registers  Slices
Proposed MAC-PUVM-LFA 6.141 610 172 188
MAC-UVM-LFA 12.597 554 32 171
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Figure 10. Comparison chart of MAC units [Virtex]

6.2 ASIC implementation

The suggested designs are built in an ASIC environment
that includes TSMC 45 nm libraries. The design's efficiency is
measured using VLSI metrics such as area, power, delay, ADP
(area delay product), PDP (power delay product), and APP

(area power product). A TCL script automates synthesis for
operands of 4, 8, 16, and 32. Table 10 compares the results to
state-of-the-art multipliers. Table 10 shows that the proposed
PUVM-LFA architecture outperforms current designs in terms
of speed, power, and area efficiency, resulting in faster
performance while consuming less power.

Table 10. Performance comparison of multipliers in ASIC

No. of Multipliers Area Power Delay APP ADP PDP
Bits (pm?) (Lw) (ns) (E*pw)  (Um**ns)  (pw*ns)
Proposed PUVM-LFA using Pipelining 330 3.101895 0.1023  1023.62535 33.759 0.31732386
4 CSA Multiplier (CSA-M) [20] 114 11 0.8 1254 91.2 8.8
Parallel Prefix Multiplier (PP-M) [20] 140 12 0.8 1680 112 9.6
Proposed PUVM-LFA using Pipelining 1048 12.88786 0.2274  13506.4773 238.3152 2.93069936
Method -1 Hybrid Booth Vedic Radix8
8 (M1-HBVR-8) [9] 442 323 2.172 14276.6 960.024 70.1556
CSA Multiplier (CSA-M) [20] 452 35 2.1 15820 949.2 735
Parallel Prefix Multiplier (PP-M) [20] 587 40 1.6 23480 939.2 64
Proposed PUVM-LFA using Pipelining 2356 53.103165 0.5478  125111.057 1290.6168 29.0899138
Booth Vedic Radix4 (BVR-4) [15] 1176 205 15 241080 1764 307.5
16 Booth Vedic Radix8 (BVR-8) [15] 1123 200 1.4 224600 1572.2 280
CSA Multiplier (CSA-M) [20] 2030 208 9.5 422240 19285 1976
Parallel Prefix Multiplier (PP-M) [20] 2679 260 6 696540 16074 1560
Proposed PUVM-LFA using Pipelining 7932 223.545883 1.03 1773165.94  8169.96  230.252259
32 CSA Multiplier (CSA-M) [20] 7697 1026 26.3 7897122 202431.1 26983.8
Parallel Prefix Multiplier (PP-M) [20] 10390 1272 175 13216080 181825 22260
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Table 11. Power comparison of PUVM-LFA units in ASIC

No. of Bits  Internal Power (w)  Switching Power (w)  Leakage Power (w)  Total Power (w)

4 0.136546 0.105881 2.859467 3.101895
8 0.334415 0.261126 12.292320 12.88786
16 1.159820 1.094074 50.849270 53.103165
32 4.355157 1.772958 217.417770 223.545883

Table 12. Performance comparison of MAC units in ASIC

No. of Bits MAC Units Area (um?)  Power (pw)  Delay (ns) APP (um?*w)  ADP (pm?*ns)
16 MAC-UVM-LFA 1804 3969.14917 0.7393 7160345.103 2934.391981
Proposed MAC-PUVM-LFA 2770 60.075985 0.718 166410.4785 43.13455723
32 MAC-UVM-LFA 6798 9497.891602 1.521 64566667.11 14446.29313
Proposed MAC-PUVM-LFA 8762 237.482147 1.423 2080818.572 337.9370952

Table 13. Power comparison of MAC units in ASIC

No. of Bits MAC Units Internal Power (pw)  Switching Power (Jw)  Leakage Power (pw)  Total Power (pw)
16 MAC-UVM-LFA 2071.610840 1842.936279 54.602009 3969.14917
Proposed MAC-PUVM-LFA 1.453540 1.301418 57.321026 60.075985
32 MAC-UVM-LFA 8848.806641 432.256195 216.829041 9497.891602
Proposed MAC-PUVM-LFA 4.900466 2.256447 230.325226 237.482147
s
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Figure 11. Comparison chart of VMs [ASIC]
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Figure 11 shows a comparison chart of the PUVM-LFAs
Delay, Power, ADP, APP, and PDP and delay. In comparison
to CSA-M and PP-M, 45 nm PUVMLFA boosts power by
71.80% and 74.15%, delays by 87.21% and 87.21%, APP by
18.37% and 39.07%, ADP by 62.98% and 69.86%, and PDP
by 96.39% and 96.99% with a bit-width of 4. While the bit-
width of 8 results in a power gain of 60.10%, 63.18%, and
67.78%; delay improvements of 89.53%, 89.17%, and 85.79%;
APP improvements of 5.39%, 14.62%, and 42.48%; and ADP
improvements of 75.18%, 74.89%, and 74.63%, with PDP
increases of 95.82%, 96.01%, and 95.42% in comparison to

compared to BVR-4, BVR-8, CSA-M, and PP-M, it has a
power improvement of 74.10%, 73.45%, 74.47%, and 79.58%;
a delay improvement of 63.48%, 60.87%, 94.23%, and
90.87%; APP improvements of 48.10%, 44.30%, 70.37%, and
82.04%; ADP improvements of 26.84%, 17.91%, 93.31%, and
91.97%; and PDP improvements of 90.54%, 89.61%, 98.53%,
and 98.14% for 16 bits. When compared to CSA-M and PP-M,
a bit-width of 32 resulted in power gains of 78.21% and
82.43%, delay improvements of 96.08% and 94.11%, APP
improvements of 77.55% and 86.58%, ADP improvements of
96.96% and 95.11%, and PDP improvements of 99.15% and
98.97%.
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Figure 12. Comparison chart of MAC units [ASIC]

The power consumption breakdown of the PUVM-LFA
architecture is presented in Table 11, which also illustrates the
distribution of power among its various components. A deeper
understanding of the design's power efficiency is made
possible by this thorough analysis, which also identifies
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potential areas for improvement. Table 12 demonstrates that
the proposed MAC-PUVM-LFA outperforms the MAC-
UVM-LFA in two key aspects: greater speed and lower power
consumption.

Figure 12 presents a comparison chart. In comparison to



MAC-UVM-LFA, 45 nm MAC-PUVM-LFA improved power
by 98.49% and 97.50%, delay by 2.88% and 6.44%, APD by
97.68% and 96.78%, and PDP by 98.53% and 97.66% for bit
widths of 16 and 32 bits, respectively. A comparison of the
power consumption breakdown for the MAC-UVM-LFA and
MAC-PUVM-LFALFA architectures is presented in Table 13,
facilitating a comparison of the potential benefits between the
two designs and their power efficiency.

7. CONCLUSION

The proposed MAC unit, leveraging the Ladner-Fischer
adder (LFA) in a Vedic structure with pipelining, demonstrates
significant improvements in speed and power efficiency
compared to conventional methods. This design's impact on
real-time digital signal processing systems, 10T processors,
and distributed computing architectures is substantial,
enabling fast processing speeds and efficient performance.
Potential applications include FIR, IIR, and other digital signal
processing frameworks, as well as emerging technologies like
5G communication and 10T edge devices. Future work will
focus on scaling the design for more than 64 bits and exploring
application-level tests, such as image processing and neural
network acceleration, to further validate its efficiency and
versatility. This scalability and adaptability position the
proposed MAC unit as a promising solution for next-
generation computing systems.
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NOMENCLATURE

OWIUTOOW>

First input of addition
Second input of addition
Carry input

Carry Generate

Carry Propagate

Sum of Addition

Subscripts

Ranges from 0 to n





