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Digital signal processors (DSPs) require good CPU core integration to perform complex 

processes such as convolution, transformation, and filtering, which rely primarily on 

multiplication and accumulation. The multiply-accumulate (MAC) unit is crucial for DSP 

algorithms that require high performance. This paper proposes a high-speed and low-power 

MAC unit that employs a Pipelined Urdhva-Tiryagbhyam Vedic Multiplier (PUVM) 

technique based on the Ladner-Fischer adder (LFA). The design is proven using Kintex, 

Artix, and Virtex FPGAs in Xilinx Vivado 2022.2 and ASIC 45 nm technology, which 

improves performance. At different bit widths, the suggested PUVM-LFA achieves latency 

reductions of 43%, 61.55%, 73.04%, and 79.49%. The MAC-PUVM-LFA design achieves 

a 66.04% reduction in latency and a 19.49% reduction in FPGA area. It boosts power by 

71.80% and 74.15%, delays by 87.21% and 87.21%, APP by 18.37% and 39.07%, ADP by 

62.98% and 69.86%, and PDP by 96.39% and 96.99% in ASIC. The results show that the 

suggested technique beats previous solutions in the literature, despite its dependability and 

low cost.  
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1. INTRODUCTION

The MAC unit plays a vital role in DSP systems, 

significantly impacting processor performance in applications 

like FIR filters, FFT, and convolution that rely on complex 

arithmetic operations. Reducing latency by MAC units leads 

to improved performance [1]. VMs have been used to design 

an efficient MAC unit, and area and delay characteristics have 

been compared [2]. A successful development of a high-speed 

MAC unit has been made [3]. A typical Brent-Kung adder-

based (BKA) unit is almost five times slower than the 

suggested MAC unit [4]. There are two suggested 32-bit MAC 

architectures: one with a Carry Save Adder, VM, and a Ripple 

Carry Adder (RCA), and an Array Multiplier (AM) [5]. There 

have been two proposed 32-bit MAC architectures, one using 

AM and the other using VM [6]. To maximize the computing 

of neural networks, MAC units are compared for energy, 

throughput, and area [7]. 

Convolutional neural networks have been suggested to use 

a fully customized 8-bit MAC architecture in place of 

embedded memories and DSP blocks [8]. A feasible choice for 

high-performance applications, VMs are distinguished by 

their effective architecture, which is typified by low power 

consumption and decreased delay. This is demonstrated in 

Table 1's comparisons of implementation characteristics, area, 

latency, power consumption, and complexity with various 

multiplier architectures, such as the Array, Wallace, Booth, 

and Dadda multipliers. Many creative multiplier designs have 

been created: A Booth-Vedic hybrid architecture has been 

developed to improve efficiency in both area and speed [9]. 

Using inexact adders and clock-gating, approximation 

multipliers have been shown to improve speed and minimize 

power usage [10]. Using a hybrid compressor, a new multiplier 

has been presented [11]. Using the Anurupyena sub-sutra, 

multiplication operations have been carried out using the 

Vedic technique [12]. 

The Vedic method based on the UT Sutra has been 

examined for its use in multiplication [13]. To maximize area 

and power, an effective 4:2 compressor design was employed 

[14]. By integrating UT Sutra with Booth and Vedic methods, 

efficient multiplication of signed digits has been made 

possible [15]. Cadence Virtuoso and 45nm technology were 

utilized to design a 4-bit VM for enhanced speed [16]. 

Utilizing the UT technique, a modular VM architecture was 

created [17]. A square architecture with a low area 

consumption was created [18]. Using 4 × 4 blocks, an 8 × 8 

VM was built on a Kintex-7 FPGA board [19]. They 

introduced a parallel signed multiplier without sign extension 

[20]. For cryptography applications, a high-speed multiplier 

unit was put into place [21]. UT Sutra was used to design a 32-

bit VM [22]. Redundant data detectors and compressors were 

used in the architecture of reconfigurable VMs [23]. Single-

precision floating-point multipliers were implemented using 

compressor designs [24]. For high-speed Booth multipliers, 

new compressor structures were employed [25]. 

The UT Sutra from Vedic Mathematics was used to develop 

high-speed multipliers, which were then implemented using 

LFA. This work enhanced latency, area, and energy efficiency, 

particularly for larger bit sizes.  
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Table 1. Comparison of multipliers 

 

Parameters Array Multiplier Shift and Add Wallace Tree Multiplier Booth Multiplier Vedic Multiplier (VM) 

Area High Less Medium Medium Medium 

Power Consumption High Less Medium Medium Medium 

Delay Medium Large Smallest Less Smallest 

Complexity Simple Simple Complex Complex Simple 

Implementation Easy Easy Difficult Medium Medium 

 

Among the contributions made to this study were:  

(1) In partial product addition, pipelining is employed to 

reduce VM latency via LFA. 

(2) Efficient MAC units were developed using pipelined 

UVMs and LFA. 

(3) VMs are used to process items that need to multiply 

quickly and efficiently. 

(4) The LFA produced less delay and lower power of 

addition. 

The suggested MAC unit improved delay and power by 

using low-power and high-speed PUVM-LFA. 

The manuscript is structured as follows: Part 2 explains 

Parallel Prefix Adders (PPA), Part 3 covers VM, Part 4 

introduces the Proposed PUVM, Part 5 discusses the Proposed 

MAC unit and results in Part 6, and Part 7 concludes the 

manuscript. 

 

 

2. PARALLEL PREFIX ADDER 

 

Adders are essential in multipliers for summing partial 

products. PPAs efficiently add binary integers in parallel, 

outperforming sequential adders. PPAs utilize a tree structure 

to compute carries, reducing propagation latency rapidly. The 

PPA consists of three fundamental stages. 

 

 

  
(a) 

 
(b) 

 

Figure 1. (a) Black cell (b) Grey cell 
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(a) Pre-processing stage: At this stage, intermediate signals 

must be produced for each bit position. Each bit in the binary 

numbers being added produces a "generate" and "propagate" 

signal. 

Generate (g): This bit generates a carry (when the sum 

exceeds one). 

 

Gi=ai⋅bi (1) 
 

Propagate (p): If a carry occurs, this bit propagates it. 
 

Pi=ai ⊕ bi (2) 
 

These signals are crucial for efficient carry computation in 

PPAs. 

(b) Carry generation stage: Carry-lookahead logic is 

implemented using Black Cells and Grey Cells to generate 

carry signals for each bit location, as shown in Figure 1. The 

carry signals are computed through concurrent algorithms in a 

tree-like structure, merging pairs of bits in consecutive steps 

based on produce and propagate signals. 

(c) Sum generation stage: This step consists of creating 

sum bits for each bit location. The total for each bit is then 

determined by XORing the appropriate propagate value with 

the carry. 
 

Si=Pi ⊕ ci (3) 

 

Ci+1 = Gi +Pici (4) 

 

PPAs enable logarithmic time addition, significantly 

enhancing speed, particularly for large bit widths, and are 

widely used in applications like digital signal processing, 

encryption, and microprocessors. Common PPA types include 

Kogge-Stone Adder (KSA) and BKA, with LFA architecture 

offering fast addition while reducing power consumption. The 

choice of adder depends on the application's specific needs, 

with PPAs greatly influencing digital system design 

performance [26, 27]. Research has evaluated and compared 

PPA performance in terms of power dissipation, delay, and 

area consumption [28, 29]. While KSA offers the least delay, 

it uses more resources, and BKA optimizes the area at the cost 

of delay. LFA provides a balance, making it suitable for both 

delay and area optimization [29]. Various studies have 

explored high-speed adders for arithmetic applications [30, 

31], and efficient multiplier designs, like the Synchronous 

Pipelined Array Multiplier, have been developed for specific 

applications [32]. 

 

2.1 LFA architecture 
 

The LFA is a high-speed parallel prefix adder designed by 

Ladner and Fischer in 1980, as shown in Figure 2. The LFA 

uses a recursive binary addition approach with a tree-like 

structure that enables efficient computation of carry signals, 

making it one of the fastest adders due to its minimal logic 

depth. LFA offers a balance between area and latency, 

allowing for a trade-off between the two. This design makes 

LFA suitable for applications requiring both speed and 

efficiency, positioning it as a balanced option between other 

fast adders like KSA and area-efficient options like Brent-

Kung Adder BKA. 

 

 
 

Figure 2. 32-bit Ladner Fischer Adder (LFA) architecture 
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3. VEDIC MULTIPLIER 
 

VM's efficient algorithm and architecture enable faster 

speeds, reduced latency, and lower power consumption. Vedic 

mathematics accelerates operations by minimizing 

complicated computations, making it ideal for applications 

such as MAC units. It's many strategies that outperform 

conventional designs. VMs, which are derived from ancient 

Indian Vedic mathematics, multiply using 16 sutras. Notably, 

the Nikhilam, Anurupye, and UT sutras present a variety of 

approaches. The UT Sutra provides various benefits, including 

faster performance, a smaller footprint, reduced power 

consumption, a simpler architecture, and more scalability. 

 

3.1 Urdhva-Tiryagbhyam Vedic Multiplier 
 

 
(a) 

 

 
(b) 

 

Figure 3. (a) 2 × 2 demonstration of vedic multiplication (b) 

2-bit vedic multiplier 

 

The Urdhva Tiryagbhyam (UT) method utilizes a 

"vertically and crosswise" technique for multiplication. This 

approach can be applied to construct larger n*n multipliers by 

scaling up from the fundamental 2*2 multiplication block, as 

shown in Figure 3(a), enabling efficient multiplication 

operations for various bit sizes. 

A 2*2 multiplier unit, as shown in Figure 3(b), consists of 

four AND gates generating partial products and two half-

adders for addition. It multiplies two 2-bit numbers (a1a0 and 

b1b0), where the LSB is obtained by multiplying vertically, 

the second bit by adding the cross product and carry, and the 

third and fourth bits are generated from the sum and carry of 

the partial products of the most significant bits. This unit 

serves as a fundamental building block for larger multiplier 

implementations. 
 

 

4. PROPOSED PUVM-LFA ARCHITECTURE 
 

One technique for speeding up and improving the efficiency 

of digital circuits in VLSI design is pipelining. Pipelining 

enables more rapid signal processing and greater throughput 

by breaking computations into simultaneous phases. 

Pipelining is suitable for high-speed applications in which 

performance is more important than space limitations, 

although more space is needed for registers and control logic. 

The proposed PUVM-LFA architecture shows a 32 × 32 

VM pipeline structure as indicated in Figure 4. The structure 

comprises two 32-bit LFAs, a half-adder, one 16-bit LFA, and 

four 16 × 16 VMs with LFA. The structure balances 

combinational logic paths and achieves maximum efficiency 

using pipelining with well-placed registers. The registers are 

wisely placed in between important stages, including: 

(1) Input and Output: To enable smooth data transfer 

between stages, input and output data are kept in registers. 

(2) Multiplier and Adder Unit: To enable fast and efficient 

computation, the intermediate results are kept in registers. 

(3) Adders at Various Levels: Partial sums are kept in 

registers, thus enabling complex arithmetic operations to be 

performed quickly. 

It possesses several noteworthy advantages over current 

designs, including: 

Increased Speed: The design is suitable for applications 

where speed is high because of its significant delay 

optimization. 

Power Efficiency: The design reduces power consumption 

by limiting the application of logic gates and minimizing 

switching operations. 

Designing efficient DSP systems involves knowing the 

trade-offs and physical significance of delay, power, and area. 

Through a compromise between these factors, the proposed 

PUVM-LFA architecture enhances delay performance at less 

power usage. The delay is defined as the time taken by a signal 

to pass through a digital circuit. System performance is 

increased, and data processing becomes faster by reducing the 

delay. In the case of DSP systems, power consumption is an 

important factor, particularly for battery-powered systems or 

high-performance computing systems. Battery life, heat 

dissipation, and system reliability improve if power 

consumption is reduced. 

The improved delay performance and reduced power 

consumption of the proposed PUVM-LFA architecture render 

it a good candidate for various real-world applications, 

including 5G communication and IoT edge devices. System-

level design, application-specific optimization, and 

implementation/test can be explored in future studies to 
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optimize its benefits and establish its functionality in real-

world environments. 

And it can be applied for data analysis, artificial intelligence, 

cryptography, and scientific simulations on high-performance 

computing for bit widths of 128 bits or wider. Rapid insights, 

secure data transport, and accelerated AI workloads are 

enabled by its scalability, low power usage, and high-speed 

performance, which are suitable for applications requiring 

efficient arithmetic operations. 

 

 
 

Figure 4. 32-bit proposed PUVM-LFA 
 

 
 

Figure 5. Architecture of proposed MAC-PUVM-LFA 
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5. PROPOSED 32-BIT MAC UNIT USING PUVM-LFA 

 

In real-time and DSP applications, the MAC unit is a critical 

component that facilitates performing complicated 

mathematical operations efficiently. It is important because it 

can perform multiply-accumulate operations, which are 

crucial to DSP algorithms such as Fourier transforms, filtering, 

and convolution. The performance of the MAC unit has a 

direct influence on the overall efficiency and accuracy of these 

applications. The proposed MAC unit architecture, as 

indicated in Figure 5, is intended to provide performance 

optimization, power saving, and area usage efficiency. It is 

made up of a multiplier stage that uses the PUVM-LFA, an 

adder stage that uses the LFA, and a 2N-bit accumulator. For 

their capability to be used to maximize DSP and real-time 

applications, such as embedded systems, telecommunication, 

and image and audio processing, two MAC unit 

implementations, namely MAC-UVM-LFA and MAC-

PUVM-LFA, are studied in this research. 

 

 

6. RESULTS AND DISCUSSION 

 

6.1 FPGA implementation 

 

The complete framework is developed using Xilinx Vivado 

software, which operates on Kintex, Artix, and Virtex 

processors. We implement the suggested PUVM-LFA in the 

Kintex 7 series and simulate the outcomes utilizing the 

XC7K325-2FFG900 device specification. It is known that the 

suggested PUVM-LFA has a lower latency than alternative 

multipliers. Table 2 compares the proposed PUVM-LFA's 

delays to those of other current VMs, and Figure 6(a) depicts 

the comparison chart. The “–” indicates the values are not 

mentioned in the references. 

It shows a comparison of combinational delay, in which the 

suggested PUVM-LFA is enhanced. -, -, 0.31%, 2.88%, 7.71%, 

43%, and 23.10% for 4-bit width; 37.35%, 35.66%, 0.05%, 

0.07%, 52.16%, 61.55%, and 54.03% for 8-bit width; 31.87%, 

30.30%, 23.96%, 17.17%, 69.98%, 73.04%, and 68.42% for 

16-bit width; and 43.30%, 42.65%, 42.13%, 43.69%, 67.95%, 

79.49%, and 73.06% for 32-bit width as compared to BB-VM, 

CS4M-VM, SquA, U-VM, and QCA-VM, respectively. 

The designed PUVMLFA has been evaluated on the Artix-

7 XC7A100T-CSG324 device to simulate and validate its 

performance. Table 3 compares the proposed PUVM-LFA's 

delays to those of other current VMs, and Figure 6(b) depicts 

the comparison chart. The comparison demonstrates how the 

proposed PUVM-LFA reduces combinational latency. 25.25%, 

25.15%, 25.25%, 25.25%, -, -, 25.53%, 38.18%, 13.17%, 

2.59%, and 2.59% for four 4-bit widths; 47.82%, 41.08%, 

43.59%, 45.55%, 6.92%, 10.40%, 67.28%, 60.97%, 12.36%, 

12.36%, and 12.36% for 8-bit widths; and 49.61%, 45.11%, 

50%, 53.83%, -, -, 70.99%, 65.96%, 29.11%, 14.48%, and 

14.48% for 16-bit widths as compared to M2-HBVR-8, M3-

HBVR-8, AM-COSA, AMCS-LA, AM-RCA, AM-CSA, 

BVR-4, BVR-8, ModVM, FloPM, and FBothM, respectively. 

The suggested PUVM-LFA was also tested on the Virtex 

device to simulate and evaluate its functionality. Figure 7 

shows the simulation results, RTL schematic, and device for 

the proposed 32-bit PUVM-LFA. The proposed PUVM-LFA's 

delays were compared with those of other current VMs and are 

listed in Tables 4-6. The comparison charts are presented in 

Figure 8. The comparison shows that the UVM-LFA improved 

combinational delay by 21.51%, 20.12%, and 17.61% for 32-

bit width compared to AM, WM, and VTC, respectively, while 

the proposed PUVM-LFA reduced it by 49.67%, 60.50%, 

59.80%, and 58.54% for 32-bit width compared to UVMLFA, 

AM, WM, and VTC, respectively, and reduced it by 37.93% 

and 56.52% for 64 and 16-bit width, respectively, as compared 

to UVMLFA. The area was reduced by 13.33% in PUVM-

LFA for 32-bit when compared to AM, and reduced by 23%, 

9.66%, and 5.44% in UVM-LFA when compared to AM, WM, 

and VTC. Because of pipelining, the device utilizations (LUTs, 

Slice registers, and Slices) are increased. 

 

 

Table 2. Delay comparison of VMs [Kintex 7] 

 
No of Bits 4 8 16 32 

Proposed PUVM-LFA using Pipelining 3.876 4.114 5.974 10.481 

Booth based VM (BB-VM) [12] - 6.567 8.768 18.486 

Booth with 4Mux based VM (B4M-VM) [12] - 6.394 8.571 18.275 

CS Multiplier based VM(CSM-VM) [12] 3.888 4.116 7.856 18.112 

CS Multiplier with 4Mux based VM (CS4M-VM) [12] 3.991 4.565 7.212 18.613 

Square Architecture (SquA) [18] 4.2 8.6 19.9 32.7 

U-VM [19] 6.8 10.7 22.16 51.09 

QCA-based VM (QCA-VM) [19] 5.04 8.95 18.92 38.9 

 

Table 3. Delay comparison of VMs [Artix 7] 

 
No of Bits 4 8 16 

Proposed PUVM-LFA using Pipelining 3.994 4.119 5.388 

Method -2 Hybrid Booth Vedic Radix8 (M2-HBVR-8) [9] - 4.425 - 

Method -3 Hybrid Booth Vedic Radix8 (M3-HBVR-8) [9] - 4.597 - 

AM using Conditional Sum Adder (AM-COSA) [10] 5.343 7.894 10.693 

AM using Carry Select Adder (AM-CSLA) [10] 5.336 6.991 9.816 

AM using Ripple Carry Adder (AM-RCA) [10] 5.343 7.302 10.776 

AM using Carry Save Adder (AM-CSA) [10] 5.343 7.565 11.67 

Booth Vedic Radix4 (BVR-4) [15] 5.363 12.59 18.57 

Booth Vedic Radix8 (BVR-8) [15] 6.461 10.554 15.83 

ModularVM (ModVM) [17] 4.6 4.7 7.6 

Floating point Multiplier (Fl0PM) [24] 4.1 4.7 6.3 
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(a) 

 
(b) 

 

Figure 6. (a) Delay comparison chart of VMs [Kintex 7] (b) Delay comparison chart of VMs [Artix 7] 
 

Table 4. Delay comparison of 64-bit VMs [Virtex] 
 

VMs Delay (ns) Area (LUTs) Slice Registers Slices 

Proposed PUVM-LFA using Pipelining 16.950 9682 489 2691 

UVM-LFA 27.731 8721 - 2448 
 

Table 5. Delay comparison of 32-bit VMs [Virtex] 
 

Multipliers Delay (ns) Area (LUTs) Slice Registers Slices 

Proposed PUVM-LFA using Pipelining 10.141 2348 276 678 

UVM-LFA 20.151 2086 - 589 

Array Method (AM) [2] 25.674 2709 - - 

Wallace Method (WM) [2] 25.228 2309 - - 

Vedic Type with Compressor (VTC) [2] 24.457 2206 - - 
 

Table 6. Delay comparison of 16-bit VMs [Virtex] 
 

VMs Delay (ns) Area (LUTs) Slice Registers Slices 

Proposed PUVM-LFA using Pipelining 5.886 523 140 156 

UVM-LFA 13.538 524 - 153 
 

 
(a) Simulation result  

 
(b) RTL schematic 
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(c) Implementation schematic and device 

 

Figure 7. Proposed 32-bit PUVM-LFA 

 

 
(a)  

 
(b) 

 

Figure 8. Comparison chart of VMs [Virtex] (a) Delay (b) Device utilization 

 

 
(a) Simulation result 
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(b) Schematic of RTL 

 

(c) Implementation schematic, and device 

 

Figure 9. Proposed 32-bit MAC-PUVM-LFA 

 

The proposed MAC-PUVMLFA was also tested on a Virtex 

device to simulate and validate performance. It was also 

discovered that the MAC unit created with the recommended 

pipelined VM and the LFA adder had lower latency than both 

the VM with LFA and the current MAC units. Figure 9 shows 

the simulation results, RTL schematic, implementation 

schematic, and device for the proposed 32-bit MAC unit. 

Tables 7-9 compare 64-bit, 32-bit, and 16-bit MAC units, 

with comparison charts presented in Figure 10. The 

comparison highlights the improvement in MAC-UVM-LFA, 

with combinational delay achieved by the 34.66%, 36.99%, 

30.26% and 29.13% for 32-bit width, and area was reduced by 

22.60%, 10.50%, 16.33%, and 6.53% for 16-bit width, and it 

was reduced by 19.49%, 6.89%, 12.96%, and 2.77% for 32-bit 

width in MAC-PUVM-LFA as compared to AM, WM, VeM, 

and VTC, respectively. The delay was decreased by 46.11%, 

64.79%, 66.04%, 62.41%, and 62.81% in Proposed MAC-

PUVM-LFA for 32-bit Width as compared to MAC-UVM-

LFA, AM, WM, VeM, and VTC, respectively, and was 

decreased by 39.08% and 55.58% for 64 and 16-bit width, 

respectively, as compared to MAC-UVM-LFA. 

 

Table 7. Comparison of 64-bit MAC units [Virtex] 

 
MAC Units Delay (ns) Area (LUTs) Slice Registers Slices 

Proposed MAC-PUVM-LFA  15.647 10041 616 2850 

MAC-UVM-LFA 25.685 9314 128 2576 
 

Table 8. Comparison of 32-bit MAC units [Virtex] 
 

MAC Units Delay (ns) Area (LUTs) Slice Registers Slices 

Proposed MAC-PUVM-LFA  9.792 2351 340 674 

MAC-UVM-LFA 18.022 2260 64 664 

Array Method (AM) [2] 27.58 2920 - - 

Wallace Method (WM) [2] 28.6 2525 - - 

Vedic Method (VeM) [2] 25.84 2701 - - 
 

Table 9. Comparison of 16-bit MAC units [Virtex] 
 

MAC Units Delay (ns) Area (LUTs) Slice Registers Slices 

Proposed MAC-PUVM-LFA  6.141 610 172 188 

MAC-UVM-LFA 12.597 554 32 171 
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(a) Delay 

 

 
(b) Device utilization 

 

Figure 10. Comparison chart of MAC units [Virtex] 

 

6.2 ASIC implementation 

 

The suggested designs are built in an ASIC environment 

that includes TSMC 45 nm libraries. The design's efficiency is 

measured using VLSI metrics such as area, power, delay, ADP 

(area delay product), PDP (power delay product), and APP 

(area power product). A TCL script automates synthesis for 

operands of 4, 8, 16, and 32. Table 10 compares the results to 

state-of-the-art multipliers. Table 10 shows that the proposed 

PUVM-LFA architecture outperforms current designs in terms 

of speed, power, and area efficiency, resulting in faster 

performance while consuming less power. 

 

Table 10. Performance comparison of multipliers in ASIC 

 
No. of 

Bits  
Multipliers 

Area 

(µm2)  

Power 

(µw) 

Delay 

(ns) 

APP 

(µm2*µw)   

ADP  

(µm2*ns) 

PDP  

(µw*ns) 

4 

Proposed PUVM-LFA using Pipelining 330 3.101895 0.1023 1023.62535 33.759 0.31732386 

CSA Multiplier (CSA-M) [20] 114 11 0.8 1254 91.2 8.8 

Parallel Prefix Multiplier (PP-M) [20] 140 12 0.8 1680 112 9.6 

8 

Proposed PUVM-LFA using Pipelining 1048 12.88786 0.2274 13506.4773 238.3152 2.93069936 

Method -1 Hybrid Booth Vedic Radix8 

(M1-HBVR-8) [9] 
442 32.3 2.172 14276.6 960.024 70.1556 

CSA Multiplier (CSA-M) [20] 452 35 2.1 15820 949.2 73.5 

Parallel Prefix Multiplier (PP-M) [20] 587 40 1.6 23480 939.2 64 

16 

Proposed PUVM-LFA using Pipelining 2356 53.103165 0.5478 125111.057 1290.6168 29.0899138 

Booth Vedic Radix4 (BVR-4) [15] 1176 205 1.5 241080 1764 307.5 

Booth Vedic Radix8 (BVR-8) [15] 1123 200 1.4 224600 1572.2 280 

CSA Multiplier (CSA-M) [20] 2030 208 9.5 422240 19285 1976 

Parallel Prefix Multiplier (PP-M) [20] 2679 260 6 696540 16074 1560 

32 

Proposed PUVM-LFA using Pipelining 7932 223.545883 1.03 1773165.94 8169.96 230.252259 

CSA Multiplier (CSA-M) [20] 7697 1026 26.3 7897122 202431.1 26983.8 

Parallel Prefix Multiplier (PP-M) [20] 10390 1272 17.5 13216080 181825 22260 
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Table 11. Power comparison of PUVM-LFA units in ASIC 

 

No. of Bits  Internal Power (µw) Switching Power (µw) Leakage Power (µw) Total Power (µw) 

4 0.136546 0.105881 2.859467 3.101895 

8 0.334415 0.261126 12.292320 12.88786 

16 1.159820 1.094074 50.849270 53.103165 

32 4.355157 1.772958 217.417770 223.545883 

 

Table 12. Performance comparison of MAC units in ASIC 

 
No. of Bits  MAC Units Area (µm2)  Power (µw) Delay (ns) APP (µm2*µw) ADP (µm2*ns) 

16 
MAC-UVM-LFA 1804 3969.14917 0.7393 7160345.103 2934.391981 

Proposed MAC-PUVM-LFA  2770 60.075985 0.718 166410.4785 43.13455723 

32 
MAC-UVM-LFA 6798 9497.891602 1.521 64566667.11 14446.29313 

Proposed MAC-PUVM-LFA  8762 237.482147 1.423 2080818.572 337.9370952 

 

Table 13. Power comparison of MAC units in ASIC 

 

No. of Bits  MAC Units Internal Power (µw) Switching Power (µw) Leakage Power (µw) Total Power (µw) 

16 
MAC-UVM-LFA 2071.610840 1842.936279 54.602009 3969.14917 

Proposed MAC-PUVM-LFA  1.453540 1.301418 57.321026 60.075985 

32 
MAC-UVM-LFA 8848.806641 432.256195 216.829041 9497.891602 

Proposed MAC-PUVM-LFA   4.900466 2.256447 230.325226 237.482147 

 

 
(a) Power and delay 

 

(b) APP, ADP, and PDP 

 

Figure 11. Comparison chart of VMs [ASIC] 
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Figure 11 shows a comparison chart of the PUVM-LFAs 

Delay, Power, ADP, APP, and PDP and delay. In comparison 

to CSA-M and PP-M, 45 nm PUVMLFA boosts power by 

71.80% and 74.15%, delays by 87.21% and 87.21%, APP by 

18.37% and 39.07%, ADP by 62.98% and 69.86%, and PDP 

by 96.39% and 96.99% with a bit-width of 4. While the bit-

width of 8 results in a power gain of 60.10%, 63.18%, and 

67.78%; delay improvements of 89.53%, 89.17%, and 85.79%; 

APP improvements of 5.39%, 14.62%, and 42.48%; and ADP 

improvements of 75.18%, 74.89%, and 74.63%, with PDP 

increases of 95.82%, 96.01%, and 95.42% in comparison to 

M1-HBVR-8, CSA-M, and PP-M, respectively. When 

compared to BVR-4, BVR-8, CSA-M, and PP-M, it has a 

power improvement of 74.10%, 73.45%, 74.47%, and 79.58%; 

a delay improvement of 63.48%, 60.87%, 94.23%, and 

90.87%; APP improvements of 48.10%, 44.30%, 70.37%, and 

82.04%; ADP improvements of 26.84%, 17.91%, 93.31%, and 

91.97%; and PDP improvements of 90.54%, 89.61%, 98.53%, 

and 98.14% for 16 bits. When compared to CSA-M and PP-M, 

a bit-width of 32 resulted in power gains of 78.21% and 

82.43%, delay improvements of 96.08% and 94.11%, APP 

improvements of 77.55% and 86.58%, ADP improvements of 

96.96% and 95.11%, and PDP improvements of 99.15% and 

98.97%. 
 

 

(a) Power and delay 

 
(b) APP, ADP, and PDP 

 

Figure 12. Comparison chart of MAC units [ASIC] 
 

The power consumption breakdown of the PUVM-LFA 

architecture is presented in Table 11, which also illustrates the 

distribution of power among its various components. A deeper 

understanding of the design's power efficiency is made 

possible by this thorough analysis, which also identifies 

potential areas for improvement. Table 12 demonstrates that 

the proposed MAC-PUVM-LFA outperforms the MAC-

UVM-LFA in two key aspects: greater speed and lower power 

consumption.  

Figure 12 presents a comparison chart. In comparison to 
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MAC-UVM-LFA, 45 nm MAC-PUVM-LFA improved power 

by 98.49% and 97.50%, delay by 2.88% and 6.44%, APD by 

97.68% and 96.78%, and PDP by 98.53% and 97.66% for bit 

widths of 16 and 32 bits, respectively. A comparison of the 

power consumption breakdown for the MAC-UVM-LFA and 

MAC-PUVM-LFALFA architectures is presented in Table 13, 

facilitating a comparison of the potential benefits between the 

two designs and their power efficiency. 

 

 

7. CONCLUSION 

  

The proposed MAC unit, leveraging the Ladner-Fischer 

adder (LFA) in a Vedic structure with pipelining, demonstrates 

significant improvements in speed and power efficiency 

compared to conventional methods.  This design's impact on 

real-time digital signal processing systems, IoT processors, 

and distributed computing architectures is substantial, 

enabling fast processing speeds and efficient performance. 

Potential applications include FIR, IIR, and other digital signal 

processing frameworks, as well as emerging technologies like 

5G communication and IoT edge devices. Future work will 

focus on scaling the design for more than 64 bits and exploring 

application-level tests, such as image processing and neural 

network acceleration, to further validate its efficiency and 

versatility. This scalability and adaptability position the 

proposed MAC unit as a promising solution for next-

generation computing systems. 
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NOMENCLATURE 

 

A First input of addition 

B Second input of addition 

C Carry input 

G Carry Generate 

P Carry Propagate 

S Sum of Addition 

 

Subscripts 

 

i Ranges from 0 to n 
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