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The diagnosis of brain diseases is an emerging research focus that leverages artificial
intelligence and multimodal imaging for early and accurate prediction. Functional MRI
provides valuable biomarkers for clinical diagnosis, but existing imaging techniques face
limitations such as low resolution and difficulty integrating multimodal data. To address
this, the proposed research develops an enhanced diagnostic system using a Cross-Modal
Super Resolution Graph Adversarial Network (Cross-SRGAN) combined with Hybrid
Manifold Learning with Dynamic Weighting (HMLDW). Cross-SRGAN improves the
resolution and visual quality of multimodal brain images, including MRI and PET scans, by
dynamically learning inter-modal relationships through mutual learning. It is trained using
paired low- and high-resolution images with adversarial and perceptual loss functions to
reconstruct finer anatomical and structural details critical for disease interpretation. The
super-resolved images are then processed by HMLDW, which adaptively extracts both local
and global manifold features. This model dynamically adjusts weights of different manifold
learning strategies to generate an optimized feature representation. The ensemble features
are fed into a Graph Neural Network to classify subjects into normal or disease-affected
categories. Experimental performance demonstrates that the hybrid Cross-SRGAN +
HMLDW framework delivers higher image fidelity and improved classification accuracy

compared to conventional diagnostic approaches.

1. INTRODUCTION

One of the most important and intricate organs in the human
body is the brain. It is essential for generating ideas, solving
problems, reasoning, making decisions, imagining, and
remembering, among other functions. Information and
experiences can be stored and retrieved from memory. The
entirety of our life’s history is preserved in our physical
memory plays a crucial role in shaping our identities and
character [1]. Memory loss related to dementia and losing our
sense of surroundings can be terrifying experiences. Dementia
with Alzheimer's disease (AD) is the most common type. As
people age, often become more fearful of Alzheimer's.
Alzheimer's patients gradually lose the ability to recognize
their family members, to love or care for others to follow basic
instructions and to connect with the outside world due to the
disease's slow but inevitable destruction of brain cells [2].

A person may lose their capacity to breathe, swallow, and
cough in more advanced stages. In the 18th largest economy
in the world, the expenditures on social and health care for the
approximately 50 million people affected by dementia are
significant. An estimated 152 million instances of AD and
related dementias are expected by 2050 with a new case
occurring every three seconds [3]. This represents a significant
increase in the number of cases by 2050. The symptoms of AD
can also be confused with those of Vascular Dementia (VD)
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or normal aging, making diagnosis more challenging. Early
and precise identification of AD is essential for effective
treatment, prevention, and patient care can be accomplished
by frequently monitoring its progression [4]. Numerous
research programs aim to use brain imaging such as MRIs, to
detect AD. MRI can determine the quantity and size of brain
cells and may also demonstrate parietal atrophy in cases of AD
[5].

In numerous scientific domains, images play an important
part, with medical imaging being especially essential in
providing significant understanding of brain activity. Methods
like neuroimaging, particularly Magnetic Resonance Imaging
(MRI), are essential for studying brain anatomy and function
and detecting brain illnesses [6]. To diagnose AD dementia,
medical professionals evaluate AD signs and symptoms
alongside numerous tests. Physicians may recommend
memory tests, brain imaging examinations, or other laboratory
assessments. These tests assist in diagnosing patients by ruling
out illnesses with like symptoms [7]. MRI scans can classify
Mild Cognitive Impairment (MCI) patients who may be at risk
of increasing AD by detecting brain abnormalities connected
with MCI. For instance, in MRI scans used to classify
abnormalities, the temporal and parietal lobes are between the
brain regions that display size decrease [8]. From brain
imaging data, Machine Learning (ML) and Deep Learning
(DL) are becoming more and more important for gleaning
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important insights and forecasting AD. This technological
revolution is driven by modern brain imaging methods and the
vast amounts of information they generate [9].

To classify cases of AD, a variation of machine-learning
methods has been used, with models displaying outstanding
results. Traditional learning-based approaches typically
comprise three phases: first, determining the brain's Regions
of Interest (ROIs); second, choosing features from these ROIs;
and third, generating and evaluating classification models
[10]. A main challenge with traditional learning-based
approaches is the manual selection and extraction of features
in feature engineering, which can suggestively impact the
model's performance. In recent decades, DL has emerged as a
revolutionary method associated to standard ML methods. DL
has made feature extraction automatic, removing the necessity
for human experts and permitting the procedure to be
seamlessly integrated with classification, rather than
necessitating manual, different phases [11].

This study presents a unique technique that combines
HMLDW with Cross-SRGANs. The Cross-SRGAN
framework improves low-resolution neuroimaging data by
allowing better feature extraction across numerous imaging
modalities. HMLDW progresses the diagnostic procedure by
combining adaptive weighting and manifold learning to
integrate multi-modal data simultaneously. This combination
method purposes to rise the resilience and precision of brain
illness diagnosis by efficiently managing large and diverse
neuroimaging information [12]. The major contribution of this
research:

» To progress an advanced diagnostic system that uses
Cross-SR GAN and HMLDW to screen for brain illnesses
based on numerous imaging data.

* GANSs have been used for the aggregation of multi-modal
brain connectomes. Most existing GAN means do not
incorporate the correlation between inter-modal relationships.

* The Cross-SR GANs dynamically learn the inter-modal
relationships and perform mutual learning.

« HMLDW also helps enhance the assembly of highly
informative features, resulting in better classification rates of
brain diseases compared to conventional models.

The residual sections of this work are structured as follows:
Section 2 reviews related works, Section 3 discusses the
proposed technique and its specifics, Section 4 provides an
explanation and discussion of the results, and Section 5
presents the conclusion and future recommendations.

2. LITERATURE SURVEY

GAN-based models have demonstrated strong potential in
improving MRI resolution and extracting reliable structural
features. One work applied convolutional layers in a GAN
framework to classify brain cancers, enabling feature
refinement through adversarial learning. It successfully
discriminated gliomas, meningiomas, and pituitary tumours
using a dataset of 233 patients, achieving high accuracy
supported by evaluation metrics such as sensitivity and F1-
score [13]. Building on these, segmentation-focused research
has leveraged quick thresholding and regional segmentation
techniques integrated with transfer learning, where pre-trained
networks like AlexNet and VGG-19 were adapted using
smaller MRI datasets. These transfer-learning approaches
showed improved initialization for tumor segmentation tasks,
boosting localization and interpretation performance [14].
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Advanced segmentation methods have adopted U-Net variants
incorporating attention mechanisms. A multiscale residual
attention U-Net effectively emphasized pathological regions
while maintaining boundary precision, resulting in superior
localization of tumor structures. CNN models trained from
scratch on brain MRI datasets showed testing accuracies above
95%, demonstrating that custom architectures can achieve
strong performance even without pre-trained initializations.
These models often require a large number of annotated
samples, which are difficult to collect for low-incidence
neurological disorders [15].

To optimize classification efficiency, hybrid boosted
models combining multiple feature streams have been
introduced. One such model, termed Deep Hybrid Boosted
architecture, reached 95% accuracy in MRI-based tumor
recognition. Nonetheless, such feature fusion and boosting
strategies are computationally intensive and demand expert-
driven tuning to ensure stability and consistency across
datasets. Feature fusion complexity also increases the risk of
overfitting when training data is limited [16]. Multicenter
neuroimaging introduces additional domain shift problems
due to scanner variability and acquisition differences. To
address this, a Multi-Discriminator Active Adversarial
Network (MDAAN) was proposed for multi-center brain
disorder classification. By jointly learning invariant latent
representations across centers and assigning adaptive weights
based on sample difficulty, MDAAN effectively reduced
negative transfer across imaging sites. This selective labeling
strategy decreased annotation cost while maintaining high
diagnostic accuracy [17].

Another critical research direction targets the challenge of
missing or incomplete multimodal data. A spatially-
constrained Fisher representation framework was developed to
infer missing PET images from MRI using hybrid GAN
architecture. Spatial anatomical constraints enforced
consistency between inferred PET signals and individual brain
morphology. The technique significantly improved both
neuroimaging fidelity and downstream diagnostic accuracy
across multiple datasets, validating the benefit of multimodal
generative reconstruction [18], functional network-based
diagnosis using fMRI has also evolved with the adoption of
geometric learning. A Multi-Level Fully Connected (MFC)
fusion learning framework extracted both low-order and high-
order functional connectivity patterns using deep neural
networks. Ensemble classifiers based on hierarchical stacking
captured heterogeneous connectivity dynamics and
maintained strong generalization across varying pre-
processing pipelines and validation strategies, demonstrating
robustness in complex clinical applications [19].

Optimization-assisted tumour classification has been
explored through bio-inspired computing models. A Whale-
Harris Hawks Optimization (WHHO) approach was used for
morphological feature selection and classifier tuning. The
model extracted tumor features such as size, variance, and
kurtosis, while an improved VGG-16 architecture achieved a
classification accuracy of 95.71% on large datasets. These
hybrid optimization frameworks have proven capable of
improving convergence and classification confidence but
remain difficult to scale due to dependence on heuristic tuning
[20]. Despite significant advancements, several limitations
persist in the existing literature:

* Insufficient multimodal fusion: Most approaches process
MRI, fMRI, or PET separately and underutilize cross-modal
structural-functional relationships.



* Resolution inconsistency: PET and some fMRI-derived
features are lower resolution, limiting detailed structural
interpretation.

» Static feature learning: Many manifold learning
approaches do not adapt their weighting or geometry as
representations evolve.

* Reproducibility constraints: Limited availability of high-
quality annotated datasets and lack of harmonized
methodologies restrict clinical translation.

Overall, prior studies demonstrate that GAN-based
reconstruction enhances MRI interpretability, transfer learning
improves segmentation efficiency, attention-based U-Nets
increase localization accuracy, and manifold fusion enhances
functional connectivity-based diagnosis. However, there
remains a critical need for integrated models that combine
resolution enhancement with dynamic feature representation
learning across modalities [21]. These research gaps strongly
motivate the development of a unified framework such as
Cross-Modal Super-Resolution Graph Adversarial Networks
(Cross-SRGANs) and Hybrid Manifold Learning with
Dynamic Weighting (HMLDW), which together aim to
provide superior multimodal fusion, improved super-resolved
brain imaging, and adaptive feature embedding for more
accurate and clinically dependable brain disease diagnosis.

3. PROPOSED SYSTEM

In this section, describe an enhanced diagnostic system for
screening brain diseases using multiple imaging modalities
through Cross-SR GAN and HMLDW. The majority of
existing GAN methods do not incorporate the correlation
between inter-modal relationships. Introduce Cross-SRGAN:S,
which dynamically learn these inter-modal relationships and
perform mutual learning. The Cross-SR GAN-HMLDW block
diagram is displayed in Figure 1.
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Figure 1. Block diagram of Cross-SRGAN-HMLDW
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3.1 Dataset

Data on neuroimaging were obtained from the ADNI
website (https://www .kaggle.com/datasets/jeyaprathapp/adni-
1-az). The ADNI initiative was started to better understand
how AD progresses from normal aging to early memory
impairments under the direction of Dr. Michael W. Weiner. In
addition to monitoring neuroimaging initiatives, the program
also manages clinical and genetic data with the goal of
assessing and quantifying various genes to gain greater insight
into the hereditary risks associated with AD. Used ADNI to
obtain 5,058 MRI scans for this investigation. The retrieved
dataset is separated into four classes, as indicated in Table 1:
1,124 samples for AD, 2,590 samples for Mild Cognitive
Impairment (MCI), 1,140 samples for Cognitively Normal
(CN), and 204 samples for Early Mild Cognitive Impairment
(EMCD).

Table 1. Detailed dataset description

Dataset AD MCI CN ECI
Images = Images = Images = _
Brain 1124 2590 1140 Images
. 204 Class
Axial Class Class Class 4(EMCI)
MRI 1(AD) 2(MCI) 3(CN) Label = 3
Label=0 Label=1 Label=2 abe

3.2 Pre-processing phase

The following preparation procedures must be completed
by the data from the ADNI database before it can be used in
the algorithms:

1. The ADNI phase and acquisition plane are used to filter
the data. As shown in Figure 2, used ADNI Phase 3 data for
the four classes (CN, MCI, AD, and EMCI) and chose the axial
acquisition plane for the MR images.

2. For the highest level of quality, images are scaled to 512
x 512 pixels.

3. The vector database contains the extracted labels for each
of the images classes. The following values are assigned to the
classes using label encoding: 0 for AD, 1 for MCI, 2 for CN,
and 3 for EMCL

4. Two functions, a standard scaler and a min-max scaler,
are used to standardize and normalize the given images.

5. The data are divided into training and testing sets after
pre-processing is finished in order to assess performance on
never-before-seen data.

a) AD

b) CN

¢) EMCI

d) MCI

Figure 2. Brain axial MRI data for (a) AD, (b) CN, (¢) EMCI
and (d) MCI



3.3 Cross-SRGAN

Cross-SRGANSs is a framework designed to improve the
resolution of neuroimaging data from various modalities (e.g.,
MRI, PET, CT) using super-resolution techniques. The
primary goal is to leverage information from multiple imaging
modalities to improve the quality of low-resolution images and
support illness detection. By incorporating adversarial
learning, the network aims to generate high-resolution images
that are indistinguishable from real high-resolution images,
thereby improving diagnostic accuracy. The network uses a
graph-based technique to capture the intricate interactions
between several imaging modalities. The cross-modal feature
ensures that the model can utilize complementary information
from multiple imaging sources to produce high-quality super-
resolved images.

3.3.1 Cross-distillation

Heterogeneous representations, including functional,
structural, and multi-modal compositional aspects, are present
in the proposed Cross-SRGANSs. These features have distinct
yet complementary qualities when making decisions. To
enhance the representations, suggest combining the benefits of
this heterogeneous knowledge with training through mutual
learning. Design a cooperative optimization technique with an
auxiliary branch for cross-distillation and a self-distillation
framework to reduce heterogeneity. A three-layer multilayer
perceptron with dropout and leaky ReLU activation functions
is used to create an auxiliary branch. As a result, the cross-
distillation loss function L. is created by combining the three
outputs, namely the functional prediction fP?,the structural
prediction sP, and the multi-modal prediction m?:

Lep =UV(M? || £7)+UV(mP [[sP)+UV(s” || T7) (1
where, L¢p is determined by assessing the similarity of the
output distribution and combining three UV divergences.
Inspired by the progressive distillation of self-knowledge
suggest progressively adjusting the weight a to counterbalance
the mutual learning loss. utilize a linear growth methodology.

o, =o; X

2

where, T represents the entire training time for . In summary,
the t™ epoch's self-distillation loss function can be found as
follows:

Leo, &)
a UV (mP | fP)+aUV (M ||sP)+ UV (P || fP)
3.3.2 Optimization
During the training phase, the weighted cross-distillation
L¢p, and cross-entropy function L¢g are combined to create
the goal function:

L = Lee (M?, g8) + Lo, )

where the ground truth is indicated by gt. The multimodal
outputs are used for prediction in the inference. In summary,
the details of our proposed Cross-SRGANSs are presented in
Algorithm 1.
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Algorithm 1. Cross-modal Super-Resolution Graph
Adversarial Network

Input: Multi-modal brain networks {G;,G,, Gs.,..., G}
where,
G= {G‘, G' } (5)
For each graph
G={,EX) (6)
Output: Prediction m? for the test set
Calculate dynamic node features:
h' = Encoder(x") (7
ht' = Encoder(x") (8)
Calculate the correspondence matrix:
@ :% h'(h)" +% ht (h')" )

Normalize ® into ® such that it satisfies doubly stochastic
constraints
Obtain the cross-modality mapping representations:

ht = &Tht (10)
ht' = dTht' (In
Fori=1tol:
Update node representations:
B = o(®"hi 1. wc) (12)
ht =|[ht, R’ (13)
h' = g(@Tht ;. 0,;) (14)
h; =, ht (15)
End For
Readout layer:
o= 1] (kb (16)

8. Prediction and auxiliary outputs:

mP « Readout(h”)
ft « Readout(ht)
£t « Readout( ht")

3.3.3 Algorithm Convergence

The algorithm uses graph-based iterative updates similar to
message passing in Graph Neural Networks (GNNs).

» Convergence is influenced by: Number of propagation
layers 1.



» Activation function ¢ (e.g., ReLU ensures bounded
outputs).

* Proper normalization of @ ensures stability in cross-modal
mapping.

* Empirically, convergence occurs when embeddings
stabilize and the adversarial loss for the GAN reaches a
minimum.

3.3.4 Complexity analysis

Let: n = number of nodes per graph; d = feature dimension;
k = number of modalities; 1 = number of GNN layers.

Correspondence matrix computation: O(nd) per modality
pair.

Normalization (® ): Typically O (n?> using Sinkhorn
iteration.

Node propagation: O(In?d) per modality pair.

Readout: O(nd)

Total complexity: O(k?n?dl) (dominant for large graphs)

Upper bound: Theoretically limited by the representational
power of the encoder and depth I; deeper layers improve
expressivity but risk over-smoothing.

Lower bound: Minimal layer and feature dimension reduce
to linear classification on raw node features.

Empirical performance: Performance improves with
accurate cross-modal correspondence (@) and effective
adversarial training, validated through metrics like accuracy,
F1-score, and image reconstruction quality.

3.4 HMLDW

HMLDW is a machine learning methodology that employs
advanced techniques to enhance the accuracy of brain disease
detection. It integrates several learning algorithms with
dynamic weighting mechanisms to improve the identification
of complex patterns in brain imaging data. Manifold learning
is utilized to uncover low-dimensional structures within high-
dimensional neuroimaging data. By incorporating dynamic
weighting, HMLDW adjusts the importance of various
features or data points based on their relevance leading to more
accurate disease prediction.

3.4.1 Optimization of HMLDW

Using Laplacian matrices, the related regularization terms
are transformed into trace forms in order to optimize the
parameters in H. The Lagrangian multiplier approach is then
applied to these trace forms, and solutions can be obtained
using either conventional or generalized -eigenvalue
decomposition. For this transformation, Laplacian matrices
are preferred as they preserve the m™ source data's feature
space's manifold structure.

> S Il ~b; [E=Tr(BTL™ B) =Tr(APH™)L™ 15

i#]

where, L™ = D™ — 5 and D™ indicate a diagonal
matrix with non-zero components that represents the column a
summary of S and L™ indicates the Laplacian matrix of
the m" source.

Using Tr(LT GH) iteratively optimize G and H in order to
maximize the non-smooth convex term ||H||3,. G €?*Pis a
diagonal matrix, and the i-th diagonal entry of the matrix is
represented by:
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1
g“ —_—

i §||Hi||§’° (18)

In this case, the potential zeros cause us to add an
insignificant offset to the denominator.

min 2 M Ty [|B = AHO| +

M XM am TrHMT gAML
_r (19)
2|2
_
2[||Hy [|2

In order to solve Eq. (7), the optimal solution of the goal
function and the interdependence in the H and G matrix
computation must be found. Utilize an iterative method by
computing H and G in turn to achieve this goal. The updated
matrix H, updates the matrix G,_; and the matrix H; is
updated by the matrix G, at the t" iteration. The most accurate
response to can be obtained by taking the derived of the loss
function with respect to H and setting it to 0.

M
S @™

m-1

ATA— AB' +/11AT( )AH +4LGH=0 (20

Describe this equation in more detail as follows:

M
3 o™

m-1

AT A+ ﬂlAT( jAJrﬂ,ZG:ABT 21)

Eq. (5) can be solved in closed form and expressed as
follows:

KH =17 (22)
where this equation can be solved resulting in K = ATA +
MAT(EM_ a™LM)A +2,G,Z = ABT and H.

Algorithm 1 provides a summary of the implementation
details.

3.4.2 Algorithm 2: Pseudo code for solving Eq. (7)
Input: Multi-source data matrix

A=[AD, AP, A RO (23)
B=[b.b,,...0 JeR" 24)
Weights of multi-source data a(m), m=1, 2, ..., M.

Regularization parameters A; and A,, 0 < ¢ < 2.
Iteration number t
Output: Weight matrix W
Procedure:
1. Initialize t=0
2. Set G, as an identity matrix
3. For m=1 to M do
Construct matrix L(™ € RN XV according to Eq. (5)
4. End For
5. Define:



Lo g 25)
m1
M = AT A+ ALAT (26)

6. Repeat
Update:

K. =M+ 4G 27)
Let:

H =[v,...,V.] (28)

be the eigenvectors of K; corresponding to the first ccc
smallest nonzero eigenvalues

Update H by solving Eq. (10).

Update the diagonal matrix G;,, by:

1
2|[H][12°
Gt+1= 1 (29)
2|[H] 127
t=t+1 (30)

Until Eq. (7) converges

Convergence: It is guaranteed under the iterative
reweighted eigen-decomposition scheme:

* Each step minimizes the objective in Eq. (7) w.r.t H and
G alternately

* Diagonal update G;,, ensures stability and monotonic
decrease of the objective

Typically converges within tens of iterations depending on
A; and A, and graph size.

3.4.3 Complexity analysis
Let: N = number of samples; D = feature dimension; M =
number of sources; ¢ = number of eigenvectors
Laplacian construction: O(MN?)
1. Matrix computation M: O(DN?)
2. Eigen-decomposition of K,: O(N?) (dominant for
large N)
3. Diagonal update G;,,: O(Nc)
Overall complexity per iteration: O(N>+MN?*+DN?)
Key Features
e Integrates multiple sources through weighted
Laplacians
e [teratively refines eigenvectors H and weight matrix
G
e Balances data fitting (ATA ) and smoothness across
graphs (A; and A,)
e Can be used as a feature learning or dimensionality
reduction method before classification

4. RESULTS AND DISCUSSIONS

NumPy, Pandas, Keras, TensorFlow, and other libraries

were used in the experiments for this work, while Python 3.6
was used as the programming language. The proposed model
was trained using Keras. Analytical simulations were used to
assess the framework's performance on a PC with a GPU and
a Core i7 processor, with an Intel CPU performing the
calculations.

Table 2. Hyper-parameter settings

Component Hyper Parameter Value / Setting
Learning Rate 0.0001
Optimizer Adam
Cross-SRGANSs Batch Size 8
Epochs 200
Upscale Factor x4
HMLDW F ]e)ature Dir\r;]eqsili)n 256
Module ynamic Weight Softmax-based
Update
Classifier Graph Layers 3
(GNN) Dropout Rate 0.25
Loss Metrics PSNR, SSIM,
General Accuracy
Hardware NVIDIA GPU (RTX
3090)

The proposed Cross-Modal Super-Resolution Graph Neural
Network (Cross-SRGANs) and HMLDW framework is
configured with carefully tuned hyper-parameters to optimize
brain disease diagnosis performance shown in Table 2. Cross-
SRGAN:Ss is trained using the Adam optimizer with a learning
rate of 0.0001, batch size of 8, and 200 training epochs, while
a x4 upscale factor enables accurate reconstruction of high-
quality brain images from low-resolution inputs. The
HMLDW module employs a 256-dimensional feature
representation with a softmax-based dynamic weight update
strategy to adaptively prioritize the most informative
modalities. The GNN-based classifier integrates 3 graph layers
with a dropout rate of 0.25 to prevent overfitting while
effectively learning neuro-structural relationships.
Performance is optimized using PSNR, SSIM, and accuracy as
core loss and evaluation metrics. All experiments are executed
on an NVIDIA RTX 3090 GPU, ensuring -efficient
computation for complex multimodal processing. Together,
these hyper-parameter configurations enhance reconstruction
fidelity, multimodal feature fusion, and classification
robustness in brain disease diagnosis.

Table 3. Comparative analysis for Cross-SRGANs-HMLDW
method with existing systems

Model Accuracy Precision Recall SlcT;;e
(%) (%) (%) (%)
Proposed Cross-
SRGANSs- 95.6 94.8 95.2 95.0
HMLDW
Vision 91.2 90.5 90.8 906
Transformer
Graph
Convolutional 89.5 88.7 89.0 88.8
Network
Graph Attention 90.1 89.4 897 895
Network
Hybrid 92.0 913 91.5 91.4
Transformer-
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Figure 3. Comparative analysis for Cross-SRGANs-HMLDW method with existing systems
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Figure 4. Average time analysis for Cross-SRGANs-HMLDW method

Used 5-fold cross-validation in this study to evaluate the
model's performance in detail. The dataset is divided into five
subsets; four of these subsets are utilized for training, while
one subset is utilized for validation. This procedure is repeated
iteratively, permitting each subset to serve as the validation set
in turn. The average of the outcomes from each iteration is
used to calculate the final performance measures. Evaluated
the model's effectiveness in categorizing data using important
metrics such as the Area under the Curve (AUC), accuracy,
specificity, sensitivity, Dice Similarity Coefficient (DSC) and
precision.

The proposed Cross-SRGANs-HMLDW outperforms all
existing Transformer and GNN-based methods across all
evaluation metrics shown in Table 3 and Figure 3. Its higher
accuracy (95.6%) demonstrates superior overall classification
performance, while precision (94.8%) and recall (95.2%)
indicate more reliable identification of true positives with
fewer false positives and false negatives. The F1-score
(95.0%) confirms a balanced performance between precision
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and recall. In comparison, conventional ViT and GNN-based
models, though competitive, show slightly lower metrics due
to their limited capability in integrating spatial, contextual, and
multi-modal information simultaneously. Cross-SRGANs-
HMLDW’s hybrid approach effectively captures these
features, resulting in more robust and generalizable
predictions. Table 4 and Figure 4 illustrates the comparative
performance of Cross-SRGANs-HMLDW and recent models
(ViT, GCN, GAT, Hybrid Transformer-GNN) across varying
dataset sizes. Cross-SRGANs-HMLDW consistently achieves
the lowest values, indicating superior efficiency or error
minimization compared to other methods. In contrast,
conventional models like ViT and GNN-based architectures
show higher values, reflecting slower convergence or higher
error rates as dataset size increases. This demonstrates that
Cross-SRGANs-HMLDW effectively leverages its hybrid
generative-adversarial framework to maintain stability and
accuracy even with larger datasets, highlighting its robustness
and scalability.



Table 4. Average time analysis for Cross-SRGANs-HMLDW technique

Vision

Number of Data Transformer Graph Convolutional Graph Attention Hybrid Cross-SRGANs-
from Dataset (ViT) Network (GCN) Network (GAT) Transformer-GNN HMLDW
100 14.119 10.287 8.456 5.345 0.321
200 14.118 11.987 8.345 6.765 0.915
300 15.981 11.114 9.778 7.114 0.638
400 14.117 12.367 9.182 5.456 0.910
500 14.987 12.981 8.918 7.918 0.456
600 15.179 13.117 9.123 8.115 0.987
Table 5. PSNR analysis for Cross-SRGANs-HMLDW method
Vision . . .
Number of Data Transformer Graph Convolutional Graph Attention Hybrid Cross-SRGANs-
from Dataset (ViT) Network (GCN) Network (GAT) Transformer-GNN HMLDW
100 75.23 66.57 71.19 72.87 91.89
200 79.14 69.34 78.56 83.38 93.36
300 81.34 74.98 88.23 88.24 92.67
400 86.58 76.12 81.24 66.31 92.88
500 70.17 65.98 89.18 61.14 94.11
600 72.25 64.23 76.47 74.49 94.67

The PSNR analysis shows that the Cross-SRGANs-
HMLDW consistently achieves the highest PSNR values
across all dataset sizes, indicating superior image
reconstruction quality compared to existing systems shown in
Table 5 and Figure 5. While other models display fluctuating
performance as the dataset size increases, Cross-SRGANs-

100

Metric Value
= N w B 1% D ~ o] o
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HMLDW maintains a stable and high PSNR, reflecting its
effective feature extraction and generative capabilities. This
demonstrates its ability to produce clearer, more accurate
image outputs regardless of dataset size, highlighting the
robustness and reliability of the proposed method in handling
diverse and larger datasets.

M Cross-SRGANS-HMLDW

B Graph Attention Network (GAT)
Graph Convolutional Network (GCN)
Hybrid Transformer-GNN

M Vision Transformer (VIT)

Figure 5. PSNR analysis for Cross-SRGANs-HMLDW method

The Dice Similarity Coefficient (DSC) analysis
demonstrates that the Cross-SRGANs-HMLDW consistently
achieves the highest DSC values across all dataset sizes,
ranging from 92.12% to 94.89% shown in Table 6 and Figure
6. This indicates a superior overlap between predicted and
ground truth regions, highlighting the method’s precise
segmentation capability. Compared to ViT, GCN, GAT, and

Hybrid Transformer-GNN models, which show moderate
fluctuations and lower DSC values, Cross-SRGANs-HMLDW
exhibits both stability and robustness. The results reflect the
model’s ability to effectively capture spatial, contextual, and
structural features, making it highly reliable for accurate
segmentation even as dataset size increases. Utilizing an §0:20
training/validation split.

Table 6. DSC analysis for Cross-SRGANs-HMLDW technique

Vision
Number of Data Transformer Graph Convolutional Graph Attention Hybrid Cross-SRGANs-
from Dataset (ViT) Network (GCN) Network (GAT) Transformer-GNN HMLDW
100 61.57 66.56 72.13 82.65 92.45
200 63.45 67.52 70.45 84.56 94.35
300 61.23 65.56 76.15 81.33 93.56
400 63.56 71.73 74.23 84.49 93.88
500 63.45 72.67 80.34 8291 92.12
600 64.34 70.45 81.45 83.23 94.89
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Figure 6. Dice similarity coefficient analysis for Cross-SRGANs-HMLDW method
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Figure 7. Training and validation accuracy for Cross-SRGANs-HMLDW method

Figure 7 shows the accuracy of the Cross-SRGANs-
HMLDW system in both training and validation. While
validation accuracy is evaluated on a separate testing dataset,
training accuracy is determined using the Cross-SRGANSs-
HMLDW method on the training dataset. As the number of
epochs increases, the results show a steady improvement in
both training and validation accuracy, suggesting improved
performance of the Cross-SRGANs-HMLDW approach over
time.

Based on an 80:20 split of the training and validation sets,
Figure 8 illustrates the Cross-SRGANs-HMLDW system's
training and validation losses. Use the metric called validation
loss to assess the effectiveness of the Cross-SRGANs-
HMLDW technique on each validation data set, and use the
metric called training loss to measure the difference between
the original values and predicted performance within the
training data. The results show that as the number of epochs
increases, both training loss and validation loss decrease,
demonstrating the higher performance and classification
precision of the Cross-SRGANs-HMLDW approach. The
declining values of validation loss and training loss highlight
the method's superiority in classifying patterns and
correlations.

The confusion matrix for the four types of AD, MCI, CN,
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and EMCI is shown in Figure 9. It presents the expected and
actual labels for each type. The model establishes high
accuracy in classifying AD, with 1,119 correct predictions,
while only misclassifying a small number of instances as MCI
(3) or EMCI (2). For MCI, the model correctly classifies 2,585
cases but misclassifies 5 cases across the other types. The CN
class displays 1,134 correct predictions with minimal
confusion, and the EMCI class has 190 correct predictions
with insufficient misclassifications, indicating the model's
strong performance across these classes.

The results of the proposed Cross-SRGAN and HMLDW
model establish important developments in brain disease
diagnosis accuracy. By leveraging the cross-modal super-
resolution capabilities, the model effectively improves the
resolution of medical imaging data, leading to more detailed
and precise representations. The integration of graph neural
networks allows the capture of difficult spatial relationships,
while the HMLDW method dynamically adjusts the weighting
of dissimilar features, optimizing the learning procedure.
Comparative analysis with existing models displays that the
Cross-SRGAN and HMLDW method outperforms traditional
approaches in terms of both diagnostic accuracy and
computational efficiency, demonstrating its potential as a
robust tool for clinical applications in neuroimaging-based



disease diagnosis.

Evaluate how every element of the proposed model
influences the overall success of the ablation study. Evaluate
the contribution of the Cross-SRGANSs in improving multi-
modal data resolution and the effectiveness of the HMLDW in
developing classification accuracy. By isolating and
eliminating these elements, can quantify their individual roles
and interactions, providing insights into how each component
affects diagnostic efficacy and ensures the robustness of the
integrated method.

In the Cross-SRGANs and HMLDW for brain disease
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Figure 8. Training and validation loss for Cross-SRGANs-
HMLDW method

diagnosis, the model's robustness and dependability are
enhanced. Cross-validation is a statistical methodology in
which the dataset is divided into 10 segments, or subsets, with
one designated for validation and nine utilized for training
purposes. The proposed Cross-SRGANs - HMLDW model
achieved a superior performance of 97.89% on our input data
by applying 10-fold cross-validation. In comparison, the
existing Ensemble (KNN, XGBoost, SVM), Voting ensemble,
Ensemble (SVM, SENet, CNN), and LR, SVM, DT, and RF
obtained accuracy performances of 94.92%, 96.4%, 86%, and
84%, respectively as displayed in Table 7.

Confusion matrix
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Figure 9. Confusion matrix for Cross-SRGANs-HMLDW
method

Table 7. Comparison of the proposed model with existing approaches for validation analysis

Authors Modality Models Evaluation Methods  Accuracy (%)
Shaffi et al. [19] fNIRs Ensemble (XGBoost, KNN, SVM)  5-fold cross validation 94.92
Chatterjee et al. [20] sMRI Voting ensemble 5-fold cross validation 96.4
Pan et al. [21] SMRI Ensemble (SVM, SENet, CNN) 5-fold cross validation 86
Hamid et al. [22] sMRI LR, SVM, DT, and RF 5-fold cross validation 84
Proposed model sMRI Cross-SRGANs - HMLDW 5-fold cross validation 92.44

Table 8. Comparison of the proposed model with existing methods for accuracy analysis

Authors Database Feature Extraction Methods Models Accuracy (%)
Shaffi et al. [19] NACC UDS ROI Ensemble methods 78.5
Chatterjee et al. [20] ADNI ROI CNN, BIiLSTM 92.62
Pan et al. [21] ADNI ROI Stacking-based ensemble 96.5
Hamid et al. [22] ADNI ROI Ensemble 83.33
Proposed model Private - Ensemble (XGBoost, CART) 66.49
Shaffi et al. [19] ADNI Hybrid manifold learning and dynamic weighting  Cross-SRGANs - HMLDW 97.89

The proposed Cross-SRGANs-HMLDW model was
associated to various state-of-the-art methods. The proposed
approach, which combined Cross-SRGANs - HMLDW,
demonstrated computational efficiency and achieved an
outstanding accuracy of 97.89% in classifying brain disease
diagnoses depicted in Figure 10 and Table 8. The proposed
system shows faster and more stable convergence with
minimal overfitting compared to existing models. Overall, the
proposed method ensures superior training efficiency and
generalization shown in Table 9.

The structural similarity index (SSIM) and Learned
Perceptual Image Patch Similarity (LPIPS) were used to
evaluate image reconstruction quality across different models
shown in Table 10. Vision Transformer (ViT) captures global
contextual information, achieving moderate SSIM and LPIPS
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scores shown in Table 10. Graph-based models, including
GCN and GAT, improve feature aggregation for structural
details but are limited in capturing long-range dependencies.
The Hybrid Transformer-GNN model combines the
advantages of ViT and GNN, yielding better SSIM and lower
LPIPS. The proposed Cross-SRGANs with HMLDW
significantly outperforms all baselines, producing higher
structural fidelity (SSIM = 0.902) and lower perceptual
distance (LPIPS 0.098), demonstrating its superior
capability in enhancing multimodal brain images for
downstream classification tasks.

To assess the reliability of model performance, we
conducted paired t-tests comparing each model against Vision
Transformer (ViT) shown in Table 11. Accuracy was reported
as mean =+ standard deviation over multiple runs, with 95%
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confidence intervals to reflect variability. Graph-based models
(GCN and GAT) showed moderate improvements in feature
aggregation but were statistically different from ViT (p <
0.05). Hybrid Transformer-GNN improved global and local
representation, achieving slightly better accuracy with
borderline statistical significance (p = 0.045). The proposed
Cross-SRGANs-HMLDW achieved the highest accuracy
(92.5%), significantly outperforming all baselines (p = 0.001),
demonstrating its effectiveness in enhancing multimodal brain
images for classification while providing robust and
reproducible results.

Table 12 summarizes the computational demands of
different models. Vision Transformer (ViT) exhibits quadratic
complexity with respect to the number of tokens, resulting in
moderate memory use and runtime. Graph-based models
(GCN and GAT) scale with the number of edges and feature
dimensions, offering reduced memory consumption but
slightly longer runtime for attention-based GAT due to
attention weight computations. Hybrid Transformer-GNN
models combine global token representation with graph
propagation, increasing both memory and runtime
requirements. The proposed Cross-SRGANs-HMLDW has
the highest computational complexity due to multi-modal
cross-resolution processing, adversarial training, and iterative
manifold learning, leading to higher memory consumption
(6.8 GB) and longer runtime per epoch (45 s). These results
highlight the trade-off between performance gains and
computational cost in multi-modal brain disease analysis.

Accuracy Comparison of the Cross-SRGANs - HMLDW
model with the state-of-the-art methods

Anetal. El-sappagh Ckhoeiet Ruizetat. Hamid et Our model
[23] etat. [24] at.[25] [26] at. [27]
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Figure 10. Accuracy comparison of the Cross-SRGANs-
HMLDW model

Table 9. Comparison of convergence epoch, overfit gap and

time
Convergence Overfit Time /
Model e ogh Gap Epoch
P (Acc%) (s)
Proposed Cross-
SRGANG- 60-70 1.2 45
HMLDW
Vision Transformer 120+ 45 40
Graph
Convolutional 100-120 6.1 70
Network
Graph Attention
Network 150+ 12.4 30
Hybrid N/A (non-
Transformer-GNN iterative) 15.0 N/A
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Table 10. Comparison of SSIM and LPIPS

Model SSIM1 LPIPS |
Vision Transformer (ViT) 0.845 0.142
Graph Convolutional Network (GCN) 0.812 0.165
Graph Attention Network (GAT) 0.825 0.158
Hybrid Transformer-GNN 0.861 0.135
Cross-SRGANs + HMLDW 0.902 0.098

Table 11. Performance metrics with statistical significance
(t-test), CI, and SD

Accuracy 95% ];:seesltil?;s
Model (%) £ SD Confidence (Vit) P-
Interval
Value
Vision
Transformer 88.5+1.2 [87.1, 89.9] -
Graph
Convolutional 853+1.5 [83.8, 86.8] 0.021
Network
Graph Attention
Network 86.7+1.3 [85.2, 88.2] 0.034
Hybrid
Transformer- 89.2+1.1 [87.9,90.5] 0.045
GNN
Cross-SRGANs
+ HMLDW 92.5+0.9 [91.3,93.7] 0.001

Table 12. Computational complexity, memory, and runtime

comparison
Runtime
Computational Memory per
Model . Consumption
Complexity Epoch
(GB)
(O]
Vision
Transformer Oln*d) 4.2 32
Graph
Convolutional O(E x d) 2.5 18
Network
Graph
Attenion  OF de)+ nx 3.1 25
Network
Hybrid
Transformer- O(n*d + E x d) 5.0 38
GNN
Cross-
SRGANSs + O(k*n2dl) 6.8 45
HMLDW

Note: n = number of nodes; d = feature dimension; E = number of edges; k =
number of modalities; | = number of graph layers

5. CONCLUSIONS

In conclusion, the integration of Cross-SRGANs and
HMLDW represents a significant advancement in brain
disease identification. Proposed approach substantially
enhances the quality and resolution of neuroimaging data,
which is crucial for accurate diagnosis and prognosis, by
leveraging the strengths of cross-modal super-resolution and
manifold learning techniques. The dynamic weighting in
HMLDW optimizes the learning process by adapting to the
intrinsic characteristics of the data, resulting in improved
disease classification and prediction performance. This
integrated methodology not only provides a more
comprehensive understanding of brain pathology but also sets



a new standard for incorporating advanced machine learning
techniques into medical imaging. Future goals involve
creating a more simplified framework for diagnosing brain
diseases and utilizing the proposed method on other datasets
related to brain disorders.

REFERENCES

(1]

(2]

(3]

(4]

(3]

(6]

(8]

[10]

Huang, J., van Zijl, P.C., Han, X., Dong, C.M., et al.
(2020). Altered d-glucose in brain parenchyma and
cerebrospinal fluid of early Alzheimer’s disease detected
by dynamic glucose-enhanced MRI. Science Advances,
6(20): eaba3884. https://doi.org/10.1126/sciadv.aba3884
Castellazzi, G., Cuzzoni, M.G., Cotta Ramusino, M.,
Martinelli, D., et al. (2020). A machine learning
approach for the differential diagnosis of Alzheimer and
vascular dementia fed by MRI selected features.
Frontiers in Neuroinformatics, 14: 25.
https://doi.org/10.3389/fninf.2020.00025

AlSaeed, D., Omar, S.F. (2022). Brain MRI analysis for
Alzheimer’s disease diagnosis using CNN-based feature
extraction and machine learning. Sensors, 22(8): 2911.
https://doi.org/10.3390/s22082911

Ji, H., Liu, Z., Yan, W.Q., Klette, R. (2019). Early
diagnosis of Alzheimer's disease using deep learning. In
Proceedings of the 2nd International Conference on
Control and Computer Vision, New York, United States,
pp- 87-91. https://doi.org/10.1145/3341016.3341024
Ghassemi, N., Shoeibi, A., Rouhani, M. (2020). Deep
neural network with generative adversarial networks pre-
training for brain tumor classification based on MR
images. Biomedical Signal Processing and Control, 57:
101678. https://doi.org/10.1016/j.bspc.2019.101678
Gull, S., Akbar, S., Shoukat, I.A. (2021). A deep transfer
learning approach for automated detection of brain tumor
through magnetic resonance imaging. In 2021
International Conference on Innovative Computing
(IC10), Lahore, Pakistan, pp. 1-6.
https://doi.org/10.1109/1CIC53490.2021.9692967

Ullah, Z., Usman, M., Jeon, M., Gwak, J. (2022).
Cascade multiscale residual attention CNNs with
adaptive ROI for automatic brain tumor segmentation.
Information sciences, 608: 1541-1556.
https://doi.org/10.1016/j.ins.2022.07.044

Alanazi, M.F., Ali, M.U., Hussain, S.J., Zafar, A., et al.
(2022). Brain tumor/mass classification framework using
magnetic-resonance-imaging-based isolated and
developed transfer deep-learning model. Sensors, 22(1):
372. https://doi.org/10.3390/s22010372

Khan, M.F., Khatri, P., Lenka, S., Anuhya, D., Sanyal,
A. (2022). Detection of brain tumor from the MRI
images using deep hybrid boosted based on ensemble
techniques. In 2022 3rd International Conference on
Smart Electronics and Communication (ICOSEC),
Trichy, India, pp- 1464-1467.
https://doi.org/10.1109/ICOSEC54921.2022.9952062
Zhu, Q., Yang, Q., Wang, M., Xu, X., Lu, Y., Shao, W.,
Zhang, D. (2023). Multi-discriminator active adversarial
network for multi-center brain disease diagnosis. IEEE
Transactions on Big Data, 9(6): 1575-1585.
https://doi.org/10.1109/TBDATA.2023.3294000

3662

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

(20]

(21]

[22]

Pan, Y., Liu, M., Lian, C., Xia, Y., Shen, D. (2020).
Spatially-constrained fisher representation for brain
disease identification with incomplete multi-modal
neuroimages. IEEE Transactions on Medical Imaging,
39(9): 2965-2975.
https://doi.org/10.1109/TMI1.2020.2983085

Liang, Y., Xu, G. (2022). Multi-level functional
connectivity fusion classification framework for brain
disease diagnosis. IEEE Journal of Biomedical and
Health Informatics, 26(6): 2714-2725.
https://doi.org/10.1109/JBHI.2022.3159031
Rammurthy, D., Mahesh, P.K. (2022). Whale Harris
hawks optimization based deep learning classifier for
brain tumor detection using MRI images. Journal of King
Saud University-Computer and Information Sciences,
34(6): 3259-3272.
https://doi.org/10.1016/j.jksuci.2020.08.006
Waghmare, V.K., Kolekar, M.H. (2021). Brain tumor
classification using deep learning. In Internet of Things
for  Healthcare = Technologies,  pp. 155-175.
https://doi.org/10.1007/978-981-15-4112-4 8

Khan, Y.F., Kaushik, B., Chowdhary, C.L., Srivastava,
G. (2022). Ensemble model for diagnostic classification
of Alzheimer’s disease based on brain anatomical
magnetic resonance imaging. Diagnostics, 12(12): 3193.
https://doi.org/10.3390/diagnostics 12123193

Yang, Y., Ye, C.,, Guo, X., Wu, T., Xiang, Y., Ma, T.
(2023). Mapping multi-modal brain connectome for
brain disorder diagnosis via cross-modal mutual
learning. IEEE Transactions on Medical Imaging, 43(1):
108-121. https://doi.org/10.1109/TM1.2023.3294967
Lei, B., Yang, P., Zhuo, Y., Zhou, F., et al. (2018).
Neuroimaging retrieval via adaptive ensemble manifold
learning for brain disease diagnosis. IEEE Journal of
Biomedical and Health Informatics, 23(4): 1661-1673.
https://doi.org/10.1109/JBHI.2018.2872581

Ozyurt, F., Sert, E., Avci, E., Dogantekin, E. (2019).
Brain tumor detection based on Convolutional Neural
Network with neutrosophic expert maximum fuzzy sure
entropy. Measurement, 147: 106830.
https://doi.org/10.1016/j.measurement.2019.07.058
Shaffi, N., Hajamohideen, F., Abdesselam, A., Mahmud,
M., Subramanian, K. (2022). Ensemble classifiers for a
4-way classification of Alzheimer’s disease. In
International Conference on Applied Intelligence and
Informatics, pp. 219-230. https://doi.org/10.1007/978-3-
031-24801-6 16

Chatterjee, S., Byun, Y.C. (2022). Voting ensemble
approach  for  enhancing  alzheimer’s  disease
classification. Sensors, 22(19): 7661.
https://doi.org/10.3390/s22197661

Pan, D., Zeng, A., Jia, L., Huang, Y., Frizzell, T., Song,
X. (2020). Early detection of Alzheimer’s disease using
magnetic resonance imaging: A novel approach
combining convolutional neural networks and ensemble
learning. Frontiers in Neuroscience, 14: 259.
https://doi.org/10.3389/fnins.2020.00259

Svoboda, D., Burgos, N., Wolterink, J.M., Zhao, C.
(2021). Simulation and synthesis in medical imaging.
Lecture Notes in Computer Science.
https://doi.org/10.1007/978-3-030-87592-3





