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The diagnosis of brain diseases is an emerging research focus that leverages artificial 

intelligence and multimodal imaging for early and accurate prediction. Functional MRI 

provides valuable biomarkers for clinical diagnosis, but existing imaging techniques face 

limitations such as low resolution and difficulty integrating multimodal data. To address 

this, the proposed research develops an enhanced diagnostic system using a Cross-Modal 

Super Resolution Graph Adversarial Network (Cross-SRGAN) combined with Hybrid 

Manifold Learning with Dynamic Weighting (HMLDW). Cross-SRGAN improves the 

resolution and visual quality of multimodal brain images, including MRI and PET scans, by 

dynamically learning inter-modal relationships through mutual learning. It is trained using 

paired low- and high-resolution images with adversarial and perceptual loss functions to 

reconstruct finer anatomical and structural details critical for disease interpretation. The 

super-resolved images are then processed by HMLDW, which adaptively extracts both local 

and global manifold features. This model dynamically adjusts weights of different manifold 

learning strategies to generate an optimized feature representation. The ensemble features 

are fed into a Graph Neural Network to classify subjects into normal or disease-affected 

categories. Experimental performance demonstrates that the hybrid Cross-SRGAN + 

HMLDW framework delivers higher image fidelity and improved classification accuracy 

compared to conventional diagnostic approaches. 
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1. INTRODUCTION

One of the most important and intricate organs in the human 

body is the brain. It is essential for generating ideas, solving 

problems, reasoning, making decisions, imagining, and 

remembering, among other functions. Information and 

experiences can be stored and retrieved from memory. The 

entirety of our life’s history is preserved in our physical 

memory plays a crucial role in shaping our identities and 

character [1]. Memory loss related to dementia and losing our 

sense of surroundings can be terrifying experiences. Dementia 

with Alzheimer's disease (AD) is the most common type. As 

people age, often become more fearful of Alzheimer's. 

Alzheimer's patients gradually lose the ability to recognize 

their family members, to love or care for others to follow basic 

instructions and to connect with the outside world due to the 

disease's slow but inevitable destruction of brain cells [2]. 

A person may lose their capacity to breathe, swallow, and 

cough in more advanced stages. In the 18th largest economy 

in the world, the expenditures on social and health care for the 

approximately 50 million people affected by dementia are 

significant. An estimated 152 million instances of AD and 

related dementias are expected by 2050 with a new case 

occurring every three seconds [3]. This represents a significant 

increase in the number of cases by 2050. The symptoms of AD 

can also be confused with those of Vascular Dementia (VD) 

or normal aging, making diagnosis more challenging. Early 

and precise identification of AD is essential for effective 

treatment, prevention, and patient care can be accomplished 

by frequently monitoring its progression [4]. Numerous 

research programs aim to use brain imaging such as MRIs, to 

detect AD. MRI can determine the quantity and size of brain 

cells and may also demonstrate parietal atrophy in cases of AD 

[5]. 

In numerous scientific domains, images play an important 

part, with medical imaging being especially essential in 

providing significant understanding of brain activity. Methods 

like neuroimaging, particularly Magnetic Resonance Imaging 

(MRI), are essential for studying brain anatomy and function 

and detecting brain illnesses [6]. To diagnose AD dementia, 

medical professionals evaluate AD signs and symptoms 

alongside numerous tests. Physicians may recommend 

memory tests, brain imaging examinations, or other laboratory 

assessments. These tests assist in diagnosing patients by ruling 

out illnesses with like symptoms [7]. MRI scans can classify 

Mild Cognitive Impairment (MCI) patients who may be at risk 

of increasing AD by detecting brain abnormalities connected 

with MCI. For instance, in MRI scans used to classify 

abnormalities, the temporal and parietal lobes are between the 

brain regions that display size decrease [8]. From brain 

imaging data, Machine Learning (ML) and Deep Learning 

(DL) are becoming more and more important for gleaning
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important insights and forecasting AD. This technological 

revolution is driven by modern brain imaging methods and the 

vast amounts of information they generate [9]. 

To classify cases of AD, a variation of machine-learning 

methods has been used, with models displaying outstanding 

results. Traditional learning-based approaches typically 

comprise three phases: first, determining the brain's Regions 

of Interest (ROIs); second, choosing features from these ROIs; 

and third, generating and evaluating classification models 

[10]. A main challenge with traditional learning-based 

approaches is the manual selection and extraction of features 

in feature engineering, which can suggestively impact the 

model's performance. In recent decades, DL has emerged as a 

revolutionary method associated to standard ML methods. DL 

has made feature extraction automatic, removing the necessity 

for human experts and permitting the procedure to be 

seamlessly integrated with classification, rather than 

necessitating manual, different phases [11].  

This study presents a unique technique that combines 

HMLDW with Cross-SRGANs. The Cross-SRGAN 

framework improves low-resolution neuroimaging data by 

allowing better feature extraction across numerous imaging 

modalities. HMLDW progresses the diagnostic procedure by 

combining adaptive weighting and manifold learning to 

integrate multi-modal data simultaneously. This combination 

method purposes to rise the resilience and precision of brain 

illness diagnosis by efficiently managing large and diverse 

neuroimaging information [12]. The major contribution of this 

research: 

• To progress an advanced diagnostic system that uses

Cross-SR GAN and HMLDW to screen for brain illnesses 

based on numerous imaging data. 

• GANs have been used for the aggregation of multi-modal

brain connectomes. Most existing GAN means do not 

incorporate the correlation between inter-modal relationships. 

• The Cross-SR GANs dynamically learn the inter-modal

relationships and perform mutual learning. 

• HMLDW also helps enhance the assembly of highly

informative features, resulting in better classification rates of 

brain diseases compared to conventional models. 

The residual sections of this work are structured as follows: 

Section 2 reviews related works, Section 3 discusses the 

proposed technique and its specifics, Section 4 provides an 

explanation and discussion of the results, and Section 5 

presents the conclusion and future recommendations. 

2. LITERATURE SURVEY

GAN-based models have demonstrated strong potential in 

improving MRI resolution and extracting reliable structural 

features. One work applied convolutional layers in a GAN 

framework to classify brain cancers, enabling feature 

refinement through adversarial learning. It successfully 

discriminated gliomas, meningiomas, and pituitary tumours 

using a dataset of 233 patients, achieving high accuracy 

supported by evaluation metrics such as sensitivity and F1-

score [13]. Building on these, segmentation-focused research 

has leveraged quick thresholding and regional segmentation 

techniques integrated with transfer learning, where pre-trained 

networks like AlexNet and VGG-19 were adapted using 

smaller MRI datasets. These transfer-learning approaches 

showed improved initialization for tumor segmentation tasks, 

boosting localization and interpretation performance [14]. 

Advanced segmentation methods have adopted U-Net variants 

incorporating attention mechanisms. A multiscale residual 

attention U-Net effectively emphasized pathological regions 

while maintaining boundary precision, resulting in superior 

localization of tumor structures. CNN models trained from 

scratch on brain MRI datasets showed testing accuracies above 

95%, demonstrating that custom architectures can achieve 

strong performance even without pre-trained initializations. 

These models often require a large number of annotated 

samples, which are difficult to collect for low-incidence 

neurological disorders [15]. 

To optimize classification efficiency, hybrid boosted 

models combining multiple feature streams have been 

introduced. One such model, termed Deep Hybrid Boosted 

architecture, reached 95% accuracy in MRI-based tumor 

recognition. Nonetheless, such feature fusion and boosting 

strategies are computationally intensive and demand expert-

driven tuning to ensure stability and consistency across 

datasets. Feature fusion complexity also increases the risk of 

overfitting when training data is limited [16]. Multicenter 

neuroimaging introduces additional domain shift problems 

due to scanner variability and acquisition differences. To 

address this, a Multi-Discriminator Active Adversarial 

Network (MDAAN) was proposed for multi-center brain 

disorder classification. By jointly learning invariant latent 

representations across centers and assigning adaptive weights 

based on sample difficulty, MDAAN effectively reduced 

negative transfer across imaging sites. This selective labeling 

strategy decreased annotation cost while maintaining high 

diagnostic accuracy [17]. 

Another critical research direction targets the challenge of 

missing or incomplete multimodal data. A spatially-

constrained Fisher representation framework was developed to 

infer missing PET images from MRI using hybrid GAN 

architecture. Spatial anatomical constraints enforced 

consistency between inferred PET signals and individual brain 

morphology. The technique significantly improved both 

neuroimaging fidelity and downstream diagnostic accuracy 

across multiple datasets, validating the benefit of multimodal 

generative reconstruction [18], functional network-based 

diagnosis using fMRI has also evolved with the adoption of 

geometric learning. A Multi-Level Fully Connected (MFC) 

fusion learning framework extracted both low-order and high-

order functional connectivity patterns using deep neural 

networks. Ensemble classifiers based on hierarchical stacking 

captured heterogeneous connectivity dynamics and 

maintained strong generalization across varying pre-

processing pipelines and validation strategies, demonstrating 

robustness in complex clinical applications [19]. 

Optimization-assisted tumour classification has been 

explored through bio-inspired computing models. A Whale-

Harris Hawks Optimization (WHHO) approach was used for 

morphological feature selection and classifier tuning. The 

model extracted tumor features such as size, variance, and 

kurtosis, while an improved VGG-16 architecture achieved a 

classification accuracy of 95.71% on large datasets. These 

hybrid optimization frameworks have proven capable of 

improving convergence and classification confidence but 

remain difficult to scale due to dependence on heuristic tuning 

[20]. Despite significant advancements, several limitations 

persist in the existing literature: 

• Insufficient multimodal fusion: Most approaches process

MRI, fMRI, or PET separately and underutilize cross-modal 

structural-functional relationships. 
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• Resolution inconsistency: PET and some fMRI-derived

features are lower resolution, limiting detailed structural 

interpretation. 

• Static feature learning: Many manifold learning

approaches do not adapt their weighting or geometry as 

representations evolve. 

• Reproducibility constraints: Limited availability of high-

quality annotated datasets and lack of harmonized 

methodologies restrict clinical translation. 

Overall, prior studies demonstrate that GAN-based 

reconstruction enhances MRI interpretability, transfer learning 

improves segmentation efficiency, attention-based U-Nets 

increase localization accuracy, and manifold fusion enhances 

functional connectivity-based diagnosis. However, there 

remains a critical need for integrated models that combine 

resolution enhancement with dynamic feature representation 

learning across modalities [21]. These research gaps strongly 

motivate the development of a unified framework such as 

Cross-Modal Super-Resolution Graph Adversarial Networks 

(Cross-SRGANs) and Hybrid Manifold Learning with 

Dynamic Weighting (HMLDW), which together aim to 

provide superior multimodal fusion, improved super-resolved 

brain imaging, and adaptive feature embedding for more 

accurate and clinically dependable brain disease diagnosis. 

3. PROPOSED SYSTEM

In this section, describe an enhanced diagnostic system for 

screening brain diseases using multiple imaging modalities 

through Cross-SR GAN and HMLDW. The majority of 

existing GAN methods do not incorporate the correlation 

between inter-modal relationships. Introduce Cross-SRGANs, 

which dynamically learn these inter-modal relationships and 

perform mutual learning. The Cross-SR GAN-HMLDW block 

diagram is displayed in Figure 1. 

Figure 1. Block diagram of Cross-SRGAN-HMLDW 

3.1 Dataset 

Data on neuroimaging were obtained from the ADNI 

website (https://www.kaggle.com/datasets/jeyaprathapp/adni-

1-az). The ADNI initiative was started to better understand

how AD progresses from normal aging to early memory

impairments under the direction of Dr. Michael W. Weiner. In

addition to monitoring neuroimaging initiatives, the program

also manages clinical and genetic data with the goal of

assessing and quantifying various genes to gain greater insight

into the hereditary risks associated with AD. Used ADNI to

obtain 5,058 MRI scans for this investigation. The retrieved

dataset is separated into four classes, as indicated in Table 1:

1,124 samples for AD, 2,590 samples for Mild Cognitive

Impairment (MCI), 1,140 samples for Cognitively Normal

(CN), and 204 samples for Early Mild Cognitive Impairment

(EMCI).

Table 1. Detailed dataset description 

Dataset AD MCI CN ECI 

Brain 

Axial 

MRI 

Images = 

1124 

Class 

1(AD) 

Label = 0 

Images = 

2590 

Class 

2(MCI) 

Label = 1 

Images = 

1140 

Class 

3(CN) 

Label = 2 

Images = 

204 Class 

4(EMCI) 

Label = 3 

3.2 Pre-processing phase 

The following preparation procedures must be completed 

by the data from the ADNI database before it can be used in 

the algorithms: 

1. The ADNI phase and acquisition plane are used to filter

the data. As shown in Figure 2, used ADNI Phase 3 data for 

the four classes (CN, MCI, AD, and EMCI) and chose the axial 

acquisition plane for the MR images. 

2. For the highest level of quality, images are scaled to 512

× 512 pixels. 

3. The vector database contains the extracted labels for each

of the images classes. The following values are assigned to the 

classes using label encoding: 0 for AD, 1 for MCI, 2 for CN, 

and 3 for EMCI. 

4. Two functions, a standard scaler and a min-max scaler,

are used to standardize and normalize the given images. 

5. The data are divided into training and testing sets after

pre-processing is finished in order to assess performance on 

never-before-seen data. 

Figure 2. Brain axial MRI data for (a) AD, (b) CN, (c) EMCI 

and (d) MCI 
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3.3 Cross-SRGAN 

Cross-SRGANs is a framework designed to improve the 

resolution of neuroimaging data from various modalities (e.g., 

MRI, PET, CT) using super-resolution techniques. The 

primary goal is to leverage information from multiple imaging 

modalities to improve the quality of low-resolution images and 

support illness detection. By incorporating adversarial 

learning, the network aims to generate high-resolution images 

that are indistinguishable from real high-resolution images, 

thereby improving diagnostic accuracy. The network uses a 

graph-based technique to capture the intricate interactions 

between several imaging modalities. The cross-modal feature 

ensures that the model can utilize complementary information 

from multiple imaging sources to produce high-quality super-

resolved images. 

3.3.1 Cross-distillation 

Heterogeneous representations, including functional, 

structural, and multi-modal compositional aspects, are present 

in the proposed Cross-SRGANs. These features have distinct 

yet complementary qualities when making decisions. To 

enhance the representations, suggest combining the benefits of 

this heterogeneous knowledge with training through mutual 

learning. Design a cooperative optimization technique with an 

auxiliary branch for cross-distillation and a self-distillation 

framework to reduce heterogeneity. A three-layer multilayer 

perceptron with dropout and leaky ReLU activation functions 

is used to create an auxiliary branch. As a result, the cross-

distillation loss function 𝐿𝐶𝐷 is created by combining the three

outputs, namely the functional prediction 𝑓𝑝, the structural

prediction 𝑠𝑝, and the multi-modal prediction 𝑚𝑝:

( || ) ( || ) ( || )p p p p p p

CDL UV m f UV m s UV s f= + + (1) 

where, 𝐿𝐶𝐷  is determined by assessing the similarity of the

output distribution and combining three UV divergences. 

Inspired by the progressive distillation of self-knowledge 

suggest progressively adjusting the weight α to counterbalance 

the mutual learning loss. utilize a linear growth methodology. 

t T

t
X

T
 = (2) 

where, T represents the entire training time for 𝛼. In summary, 

the tth epoch's self-distillation loss function can be found as 

follows: 

,

. ( || ) ( || ) . ( || )

CD t

p p p p p p

t t t

L

UV m f UV m s UV s f  

=

+ +
(3) 

3.3.2 Optimization 

During the training phase, the weighted cross-distillation 

𝐿𝐶𝐷,𝑡  and cross-entropy function 𝐿𝐶𝐸  are combined to create

the goal function: 

,( , )p

t CE CD tL L m gt L= + (4) 

where the ground truth is indicated by gt. The multimodal 

outputs are used for prediction in the inference. In summary, 

the details of our proposed Cross-SRGANs are presented in 

Algorithm 1. 

Algorithm 1. Cross-modal Super-Resolution Graph 

Adversarial Network 

Input: Multi-modal brain networks {𝐺̂1, 𝐺̂2 , 𝐺̂3 ,…,  𝐺̂𝑘 }

where, 

 ˆ ,t tG G G


= (5) 

For each graph 

𝐺 = (𝑉, 𝐸, 𝑋) (6) 

Output: Prediction 𝑚𝑝  for the test set

Calculate dynamic node features:  

( )t th Encoder x= (7) 

( )t th Encoder x
 

= (8) 

Calculate the correspondence matrix: 

1 1
( ) ( )

2 2

t t T t t Th h h h
 

 = + (9) 

Normalize Φ into 𝚽̂ such that it satisfies doubly stochastic 

constraints 

Obtain the cross-modality mapping representations: 

ℎ̂𝑡 =  Φ̂𝑻ℎ𝑡 (10) 

ℎ̂𝑡′
= Φ̂𝑻ℎ𝑡′

(11) 

For i=1 to l: 

Update node representations: 

ℎ𝑖
𝑡 =  𝜎(Φ̂𝑻ℎ𝑖−1

𝑡′
. ω𝑐−𝑖) (12) 

ˆ|| ,t t t

oh h h= (13) 

ℎ𝑖
𝑡′

=  𝜎(Φ̂𝑻ℎ𝑖−1
𝑡 . ω𝑐−𝑖) (14) 

ˆ|| ,t t t

oh h h
 

= (15) 

End For  

Readout layer: 

ℎ” =  || {ℎ𝑙
𝑡, ℎ𝑙

𝑡′
} (16) 

8. Prediction and auxiliary outputs:

𝑚𝑝 ← 𝑅𝑒𝑎𝑑𝑜𝑢𝑡(ℎ”)
𝑓𝑡 ← 𝑅𝑒𝑎𝑑𝑜𝑢𝑡( ℎ𝑡)

𝑓𝑡′
← 𝑅𝑒𝑎𝑑𝑜𝑢𝑡( ℎ𝑡′

)

3.3.3 Algorithm Convergence 

The algorithm uses graph-based iterative updates similar to 

message passing in Graph Neural Networks (GNNs). 

• Convergence is influenced by: Number of propagation

layers l. 
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• Activation function σ (e.g., ReLU ensures bounded

outputs). 

• Proper normalization of Φ ensures stability in cross-modal

mapping. 

• Empirically, convergence occurs when embeddings

stabilize and the adversarial loss for the GAN reaches a 

minimum. 

3.3.4 Complexity analysis 

Let: n = number of nodes per graph; d = feature dimension; 

k = number of modalities; l = number of GNN layers. 

Correspondence matrix computation: O(n2d) per modality 

pair. 

Normalization (Φ̂ ): Typically O (n2 using Sinkhorn 

iteration. 

Node propagation: O(ln2d) per modality pair. 

Readout: O(nd) 

Total complexity: O(k2n2dl) (dominant for large graphs) 

Upper bound: Theoretically limited by the representational 

power of the encoder and depth l; deeper layers improve 

expressivity but risk over-smoothing. 

Lower bound: Minimal layer and feature dimension reduce 

to linear classification on raw node features. 

Empirical performance: Performance improves with 

accurate cross-modal correspondence (Φ) and effective 

adversarial training, validated through metrics like accuracy, 

F1-score, and image reconstruction quality. 

3.4 HMLDW 

HMLDW is a machine learning methodology that employs 

advanced techniques to enhance the accuracy of brain disease 

detection. It integrates several learning algorithms with 

dynamic weighting mechanisms to improve the identification 

of complex patterns in brain imaging data. Manifold learning 

is utilized to uncover low-dimensional structures within high-

dimensional neuroimaging data. By incorporating dynamic 

weighting, HMLDW adjusts the importance of various 

features or data points based on their relevance leading to more 

accurate disease prediction. 

3.4.1 Optimization of HMLDW 

Using Laplacian matrices, the related regularization terms 

are transformed into trace forms in order to optimize the 

parameters in H. The Lagrangian multiplier approach is then 

applied to these trace forms, and solutions can be obtained 

using either conventional or generalized eigenvalue 

decomposition. For this transformation, Laplacian matrices 

are preferred as they preserve the mth source data's feature 

space's manifold structure. 

( )( )( ) 2 ( ) ( ) ( )

, 2|| || (( )
mm T m m m

i j i j

i j

S b b Tr B L B Tr A H L


− = = (17) 

where, 𝐿(𝑚) =  𝐷(𝑚) − 𝑆(𝑚)  and 𝐷(𝑚) indicate a diagonal

matrix with non-zero components that represents the column a 

summary of 𝑆(𝑚) and 𝐿(𝑚) indicates the Laplacian matrix of

the mth source. 

Using 𝑇𝑟(𝐿𝑇𝐺𝐻) iteratively optimize G and H in order to

maximize the non-smooth convex term ||𝐻||2,𝑜
𝑜 . 𝐺 ∈𝐷 𝑋 𝐷 is a

diagonal matrix, and the i-th diagonal entry of the matrix is 

represented by: 

2

2

1

2
| |

ii
i o

g

H
o

−

=
(18) 

In this case, the potential zeros cause us to add an 

insignificant offset to the denominator. 

min
𝐻

1

2
𝑀 ∑ ‖𝐵 − 𝐴(𝑚)𝐻(𝑚)‖𝑚=1 2

2
+

𝜆1 ∑ 𝛼(𝑚)𝑀
𝑚=1 𝑇𝑟(𝐻(𝑚)𝑇

𝐻𝐴(𝑚)𝑇𝐿)

|

1

2‖|𝐻1
𝑇‖2∞

1

2‖|𝐻𝑣
𝑇‖2∞

| 

(19) 

In order to solve Eq. (7), the optimal solution of the goal 

function and the interdependence in the H and G matrix 

computation must be found. Utilize an iterative method by 

computing H and G in turn to achieve this goal. The updated 

matrix 𝐻𝑡  updates the matrix  𝐺𝑡−1  and the matrix 𝐻𝑡  is

updated by the matrix 𝐺𝑡 at the tth iteration. The most accurate

response to can be obtained by taking the derived of the loss 

function with respect to H and setting it to 0.  

( ) ( )
1 2

1

0
M

m mT T T

m

A A AB A L AH GH  
−

 
− + + = 

 
 (20) 

Describe this equation in more detail as follows: 

( ) ( )
1 2

1

M
m mT T T

m

A A A L A G AB  
−

 
+ + = 

 
 (21) 

Eq. (5) can be solved in closed form and expressed as 

follows: 

𝐾𝐻 = 𝑍 (22) 

where this equation can be solved resulting in 𝐾 =  𝐴𝑇𝐴 +

λ1𝐴𝑇(∑ 𝛼(𝑚)𝐿(𝑚)𝑀
𝑚−1 )𝐴 + λ2𝐺, 𝑍 = 𝐴𝐵𝑇  and H.

Algorithm 1 provides a summary of the implementation 

details. 

3.4.2 Algorithm 2: Pseudo code for solving Eq. (7) 

Input: Multi-source data matrix 

( ) ( ) ( )1 2
, , ,

M N X DA A A A R =  
  (23) 

1

1 2, , , N X

vB b b b R =    (24) 

Weights of multi-source data 𝛼(𝑚) , m=1, 2, …, M. 

Regularization parameters λ1 and λ2, 0 <  𝜎 < 2.

Iteration number t 

Output: Weight matrix W 

Procedure: 

1. Initialize t=0

2. Set 𝐺𝑡 as an identity matrix

3. For m=1 to M do

Construct matrix 𝐿(𝑚) ∈  𝑅𝑁 𝑋 𝑁 according to Eq. (5)

4. End For

5. Define:
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( ) ( )

1

M
m m

m

L L
=

= (25) 

1

T TM A A ALA= + (26) 

6. Repeat

Update:

2t tK M G= + (27) 

Let: 

1[ , , ]t cH v v=  (28) 

be the eigenvectors of 𝐾𝑡  corresponding to the first ccc

smallest nonzero eigenvalues 

Update H by solving Eq. (10). 

Update the diagonal matrix 𝐺𝑡+1 by:

1

1

1

2 | | 2

1

2 | | 2

T

t

T

v

H
G

H



+



 
 
 

=  
 
  

(29) 

 1t t= + (30) 

Until Eq. (7) converges 

Convergence: It is guaranteed under the iterative 

reweighted eigen-decomposition scheme: 

 Each step minimizes the objective in Eq. (7) w.r.t H and

G alternately 

 Diagonal update 𝐺𝑡+1  ensures stability and monotonic

decrease of the objective 

Typically converges within tens of iterations depending on 

λ1 and λ2 and graph size.

3.4.3 Complexity analysis 

Let: N = number of samples; D = feature dimension; M = 

number of sources; c = number of eigenvectors 

Laplacian construction: O(MN2) 

1. Matrix computation M: O(DN2)

2. Eigen-decomposition of 𝐾𝑡 : O(N3) (dominant for

large N)

3. Diagonal update 𝐺𝑡+1: O(Nc)

Overall complexity per iteration: O(N3+MN2+DN2) 

Key Features 

• Integrates multiple sources through weighted

Laplacians

• Iteratively refines eigenvectors H and weight matrix

G

• Balances data fitting (𝐴𝑇𝐴 ) and smoothness across

graphs (λ1 and λ2)

• Can be used as a feature learning or dimensionality

reduction method before classification

4. RESULTS AND DISCUSSIONS

NumPy, Pandas, Keras, TensorFlow, and other libraries 

were used in the experiments for this work, while Python 3.6 

was used as the programming language. The proposed model 

was trained using Keras. Analytical simulations were used to 

assess the framework's performance on a PC with a GPU and 

a Core i7 processor, with an Intel CPU performing the 

calculations. 

Table 2. Hyper-parameter settings 

Component Hyper Parameter Value / Setting 

Cross-SRGANs 

Learning Rate 0.0001 

Optimizer Adam 

Batch Size 8 

Epochs 200 

Upscale Factor × 4 

HMLDW 

Module 

Feature Dimension 256 

Dynamic Weight 

Update 
Softmax-based 

Classifier 

(GNN) 

Graph Layers 3 

Dropout Rate 0.25 

General 

Loss Metrics 
PSNR, SSIM, 

Accuracy 

Hardware 
NVIDIA GPU (RTX 

3090) 

The proposed Cross-Modal Super-Resolution Graph Neural 

Network (Cross-SRGANs) and HMLDW framework is 

configured with carefully tuned hyper-parameters to optimize 

brain disease diagnosis performance shown in Table 2. Cross-

SRGANs is trained using the Adam optimizer with a learning 

rate of 0.0001, batch size of 8, and 200 training epochs, while 

a ×4 upscale factor enables accurate reconstruction of high-

quality brain images from low-resolution inputs. The 

HMLDW module employs a 256-dimensional feature 

representation with a softmax-based dynamic weight update 

strategy to adaptively prioritize the most informative 

modalities. The GNN-based classifier integrates 3 graph layers 

with a dropout rate of 0.25 to prevent overfitting while 

effectively learning neuro-structural relationships. 

Performance is optimized using PSNR, SSIM, and accuracy as 

core loss and evaluation metrics. All experiments are executed 

on an NVIDIA RTX 3090 GPU, ensuring efficient 

computation for complex multimodal processing. Together, 

these hyper-parameter configurations enhance reconstruction 

fidelity, multimodal feature fusion, and classification 

robustness in brain disease diagnosis.  

Table 3. Comparative analysis for Cross-SRGANs-HMLDW 

method with existing systems 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Proposed Cross-

SRGANs-

HMLDW 

95.6 94.8 95.2 95.0 

Vision 

Transformer 
91.2 90.5 90.8 90.6 

Graph 

Convolutional 

Network 

89.5 88.7 89.0 88.8 

Graph Attention 

Network 
90.1 89.4 89.7 89.5 

Hybrid 

Transformer- 
92.0 91.3 91.5 91.4 
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Figure 3. Comparative analysis for Cross-SRGANs-HMLDW method with existing systems 

Figure 4. Average time analysis for Cross-SRGANs-HMLDW method 

Used 5-fold cross-validation in this study to evaluate the 

model's performance in detail. The dataset is divided into five 

subsets; four of these subsets are utilized for training, while 

one subset is utilized for validation. This procedure is repeated 

iteratively, permitting each subset to serve as the validation set 

in turn. The average of the outcomes from each iteration is 

used to calculate the final performance measures. Evaluated 

the model's effectiveness in categorizing data using important 

metrics such as the Area under the Curve (AUC), accuracy, 

specificity, sensitivity, Dice Similarity Coefficient (DSC) and 

precision. 

The proposed Cross-SRGANs-HMLDW outperforms all 

existing Transformer and GNN-based methods across all 

evaluation metrics shown in Table 3 and Figure 3. Its higher 

accuracy (95.6%) demonstrates superior overall classification 

performance, while precision (94.8%) and recall (95.2%) 

indicate more reliable identification of true positives with 

fewer false positives and false negatives. The F1-score 

(95.0%) confirms a balanced performance between precision 

and recall. In comparison, conventional ViT and GNN-based 

models, though competitive, show slightly lower metrics due 

to their limited capability in integrating spatial, contextual, and 

multi-modal information simultaneously. Cross-SRGANs-

HMLDW’s hybrid approach effectively captures these 

features, resulting in more robust and generalizable 

predictions. Table 4 and Figure 4 illustrates the comparative 

performance of Cross-SRGANs-HMLDW and recent models 

(ViT, GCN, GAT, Hybrid Transformer-GNN) across varying 

dataset sizes. Cross-SRGANs-HMLDW consistently achieves 

the lowest values, indicating superior efficiency or error 

minimization compared to other methods. In contrast, 

conventional models like ViT and GNN-based architectures 

show higher values, reflecting slower convergence or higher 

error rates as dataset size increases. This demonstrates that 

Cross-SRGANs-HMLDW effectively leverages its hybrid 

generative-adversarial framework to maintain stability and 

accuracy even with larger datasets, highlighting its robustness 

and scalability. 
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Table 4. Average time analysis for Cross-SRGANs-HMLDW technique 

Number of Data 

from Dataset 

Vision 

Transformer 

(ViT) 

Graph Convolutional 

Network (GCN) 

Graph Attention 

Network (GAT) 

Hybrid 

Transformer-GNN 

Cross-SRGANs-

HMLDW 

100 14.119 10.287 8.456 5.345 0.321 

200 14.118 11.987 8.345 6.765 0.915 

300 15.981 11.114 9.778 7.114 0.638 

400 14.117 12.367 9.182 5.456 0.910 

500 14.987 12.981 8.918 7.918 0.456 

600 15.179 13.117 9.123 8.115 0.987 

Table 5. PSNR analysis for Cross-SRGANs-HMLDW method 

Number of Data 

from Dataset 

Vision 

Transformer 

(ViT) 

Graph Convolutional 

Network (GCN) 

Graph Attention 

Network (GAT) 

Hybrid 

Transformer-GNN 

Cross-SRGANs-

HMLDW 

100 75.23 66.57 71.19 72.87 91.89 

200 79.14 69.34 78.56 83.38 93.36 

300 81.34 74.98 88.23 88.24 92.67 

400 86.58 76.12 81.24 66.31 92.88 

500 70.17 65.98 89.18 61.14 94.11 

600 72.25 64.23 76.47 74.49 94.67 

The PSNR analysis shows that the Cross-SRGANs-

HMLDW consistently achieves the highest PSNR values 

across all dataset sizes, indicating superior image 

reconstruction quality compared to existing systems shown in 

Table 5 and Figure 5. While other models display fluctuating 

performance as the dataset size increases, Cross-SRGANs-

HMLDW maintains a stable and high PSNR, reflecting its 

effective feature extraction and generative capabilities. This 

demonstrates its ability to produce clearer, more accurate 

image outputs regardless of dataset size, highlighting the 

robustness and reliability of the proposed method in handling 

diverse and larger datasets. 

Figure 5. PSNR analysis for Cross-SRGANs-HMLDW method 

The Dice Similarity Coefficient (DSC) analysis 

demonstrates that the Cross-SRGANs-HMLDW consistently 

achieves the highest DSC values across all dataset sizes, 

ranging from 92.12% to 94.89% shown in Table 6 and Figure 

6. This indicates a superior overlap between predicted and

ground truth regions, highlighting the method’s precise

segmentation capability. Compared to ViT, GCN, GAT, and

Hybrid Transformer-GNN models, which show moderate 

fluctuations and lower DSC values, Cross-SRGANs-HMLDW 

exhibits both stability and robustness. The results reflect the 

model’s ability to effectively capture spatial, contextual, and 

structural features, making it highly reliable for accurate 

segmentation even as dataset size increases. Utilizing an 80:20 

training/validation split. 

Table 6. DSC analysis for Cross-SRGANs-HMLDW technique 

Number of Data 

from Dataset 

Vision 

Transformer 

(ViT) 

Graph Convolutional 

Network (GCN) 

Graph Attention 

Network (GAT) 

Hybrid 

Transformer-GNN 

Cross-SRGANs-

HMLDW 

100 61.57 66.56 72.13 82.65 92.45 

200 63.45 67.52 70.45 84.56 94.35 

300 61.23 65.56 76.15 81.33 93.56 

400 63.56 71.73 74.23 84.49 93.88 

500 63.45 72.67 80.34 82.91 92.12 

600 64.34 70.45 81.45 83.23 94.89 
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Figure 6. Dice similarity coefficient analysis for Cross-SRGANs-HMLDW method 

Figure 7. Training and validation accuracy for Cross-SRGANs-HMLDW method 

Figure 7 shows the accuracy of the Cross-SRGANs-

HMLDW system in both training and validation. While 

validation accuracy is evaluated on a separate testing dataset, 

training accuracy is determined using the Cross-SRGANs-

HMLDW method on the training dataset. As the number of 

epochs increases, the results show a steady improvement in 

both training and validation accuracy, suggesting improved 

performance of the Cross-SRGANs-HMLDW approach over 

time. 

Based on an 80:20 split of the training and validation sets, 

Figure 8 illustrates the Cross-SRGANs-HMLDW system's 

training and validation losses. Use the metric called validation 

loss to assess the effectiveness of the Cross-SRGANs-

HMLDW technique on each validation data set, and use the 

metric called training loss to measure the difference between 

the original values and predicted performance within the 

training data. The results show that as the number of epochs 

increases, both training loss and validation loss decrease, 

demonstrating the higher performance and classification 

precision of the Cross-SRGANs-HMLDW approach. The 

declining values of validation loss and training loss highlight 

the method's superiority in classifying patterns and 

correlations. 

The confusion matrix for the four types of AD, MCI, CN, 

and EMCI is shown in Figure 9. It presents the expected and 

actual labels for each type. The model establishes high 

accuracy in classifying AD, with 1,119 correct predictions, 

while only misclassifying a small number of instances as MCI 

(3) or EMCI (2). For MCI, the model correctly classifies 2,585

cases but misclassifies 5 cases across the other types. The CN

class displays 1,134 correct predictions with minimal

confusion, and the EMCI class has 190 correct predictions

with insufficient misclassifications, indicating the model's

strong performance across these classes.

The results of the proposed Cross-SRGAN and HMLDW 

model establish important developments in brain disease 

diagnosis accuracy. By leveraging the cross-modal super-

resolution capabilities, the model effectively improves the 

resolution of medical imaging data, leading to more detailed 

and precise representations. The integration of graph neural 

networks allows the capture of difficult spatial relationships, 

while the HMLDW method dynamically adjusts the weighting 

of dissimilar features, optimizing the learning procedure. 

Comparative analysis with existing models displays that the 

Cross-SRGAN and HMLDW method outperforms traditional 

approaches in terms of both diagnostic accuracy and 

computational efficiency, demonstrating its potential as a 

robust tool for clinical applications in neuroimaging-based 
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disease diagnosis. 

Evaluate how every element of the proposed model 

influences the overall success of the ablation study. Evaluate 

the contribution of the Cross-SRGANs in improving multi-

modal data resolution and the effectiveness of the HMLDW in 

developing classification accuracy. By isolating and 

eliminating these elements, can quantify their individual roles 

and interactions, providing insights into how each component 

affects diagnostic efficacy and ensures the robustness of the 

integrated method. 

In the Cross-SRGANs and HMLDW for brain disease 

diagnosis, the model's robustness and dependability are 

enhanced. Cross-validation is a statistical methodology in 

which the dataset is divided into 10 segments, or subsets, with 

one designated for validation and nine utilized for training 

purposes. The proposed Cross-SRGANs - HMLDW model 

achieved a superior performance of 97.89% on our input data 

by applying 10-fold cross-validation. In comparison, the 

existing Ensemble (KNN, XGBoost, SVM), Voting ensemble, 

Ensemble (SVM, SENet, CNN), and LR, SVM, DT, and RF 

obtained accuracy performances of 94.92%, 96.4%, 86%, and 

84%, respectively as displayed in Table 7. 

Figure 8. Training and validation loss for Cross-SRGANs-

HMLDW method 

Figure 9. Confusion matrix for Cross-SRGANs-HMLDW 

method 

Table 7. Comparison of the proposed model with existing approaches for validation analysis 

Authors Modality Models Evaluation Methods Accuracy (%) 

Shaffi et al. [19] fNIRs Ensemble (XGBoost, KNN, SVM) 5-fold cross validation 94.92 

Chatterjee et al. [20] sMRI Voting ensemble 5-fold cross validation 96.4 

Pan et al. [21] sMRI Ensemble (SVM, SENet, CNN) 5-fold cross validation 86 

Hamid et al.  [22] sMRI LR, SVM, DT, and RF 5-fold cross validation 84 

Proposed model sMRI Cross-SRGANs - HMLDW 5-fold cross validation 92.44 

Table 8. Comparison of the proposed model with existing methods for accuracy analysis 

Authors Database Feature Extraction Methods Models Accuracy (%) 

Shaffi et al. [19] NACC UDS ROI Ensemble methods 78.5 

Chatterjee et al. [20] ADNI ROI CNN, BiLSTM 92.62 

Pan et al. [21] ADNI ROI Stacking-based ensemble 96.5 

Hamid et al. [22] ADNI ROI Ensemble 83.33 

Proposed model Private - Ensemble (XGBoost, CART) 66.49 

Shaffi et al. [19] ADNI Hybrid manifold learning and dynamic weighting Cross-SRGANs - HMLDW 97.89 

The proposed Cross-SRGANs-HMLDW model was 

associated to various state-of-the-art methods. The proposed 

approach, which combined Cross-SRGANs - HMLDW, 

demonstrated computational efficiency and achieved an 

outstanding accuracy of 97.89% in classifying brain disease 

diagnoses depicted in Figure 10 and Table 8. The proposed 

system shows faster and more stable convergence with 

minimal overfitting compared to existing models. Overall, the 

proposed method ensures superior training efficiency and 

generalization shown in Table 9. 

The structural similarity index (SSIM) and Learned 

Perceptual Image Patch Similarity (LPIPS) were used to 

evaluate image reconstruction quality across different models 

shown in Table 10. Vision Transformer (ViT) captures global 

contextual information, achieving moderate SSIM and LPIPS 

scores shown in Table 10. Graph-based models, including 

GCN and GAT, improve feature aggregation for structural 

details but are limited in capturing long-range dependencies. 

The Hybrid Transformer-GNN model combines the 

advantages of ViT and GNN, yielding better SSIM and lower 

LPIPS. The proposed Cross-SRGANs with HMLDW 

significantly outperforms all baselines, producing higher 

structural fidelity (SSIM = 0.902) and lower perceptual 

distance (LPIPS = 0.098), demonstrating its superior 

capability in enhancing multimodal brain images for 

downstream classification tasks. 

To assess the reliability of model performance, we 

conducted paired t-tests comparing each model against Vision 

Transformer (ViT) shown in Table 11. Accuracy was reported 

as mean ± standard deviation over multiple runs, with 95% 
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confidence intervals to reflect variability. Graph-based models 

(GCN and GAT) showed moderate improvements in feature 

aggregation but were statistically different from ViT (p < 

0.05). Hybrid Transformer-GNN improved global and local 

representation, achieving slightly better accuracy with 

borderline statistical significance (p = 0.045). The proposed 

Cross-SRGANs-HMLDW achieved the highest accuracy 

(92.5%), significantly outperforming all baselines (p = 0.001), 

demonstrating its effectiveness in enhancing multimodal brain 

images for classification while providing robust and 

reproducible results. 

Table 12 summarizes the computational demands of 

different models. Vision Transformer (ViT) exhibits quadratic 

complexity with respect to the number of tokens, resulting in 

moderate memory use and runtime. Graph-based models 

(GCN and GAT) scale with the number of edges and feature 

dimensions, offering reduced memory consumption but 

slightly longer runtime for attention-based GAT due to 

attention weight computations. Hybrid Transformer-GNN 

models combine global token representation with graph 

propagation, increasing both memory and runtime 

requirements. The proposed Cross-SRGANs-HMLDW has 

the highest computational complexity due to multi-modal 

cross-resolution processing, adversarial training, and iterative 

manifold learning, leading to higher memory consumption 

(6.8 GB) and longer runtime per epoch (45 s). These results 

highlight the trade-off between performance gains and 

computational cost in multi-modal brain disease analysis. 

Figure 10. Accuracy comparison of the Cross-SRGANs-

HMLDW model 

Table 9. Comparison of convergence epoch, overfit gap and 

time 

Model 
Convergence 

Epoch 

Overfit 

Gap 

(Acc%) 

Time / 

Epoch 

(s) 

Proposed Cross-

SRGANs-

HMLDW 

60–70 1.2 45 

Vision Transformer 120+ 4.5 40 

Graph 

Convolutional 

Network 

100–120 6.1 70 

Graph Attention 

Network 
150+ 12.4 30 

Hybrid 

Transformer-GNN 

N/A (non-

iterative) 
15.0 N/A 

Table 10. Comparison of SSIM and LPIPS 

Model SSIM ↑ LPIPS ↓ 

Vision Transformer (ViT) 0.845 0.142 

Graph Convolutional Network (GCN) 0.812 0.165 

Graph Attention Network (GAT) 0.825 0.158 

Hybrid Transformer-GNN 0.861 0.135 

Cross-SRGANs + HMLDW 0.902 0.098 

Table 11. Performance metrics with statistical significance 

(t-test), CI, and SD 

Model 
Accuracy 

(%) ± SD 

95% 

Confidence 

Interval 

T-Test Vs

Baseline

(Vit) P-

Value

Vision 

Transformer 
88.5 ± 1.2 [87.1, 89.9] - 

Graph 

Convolutional 

Network 

85.3 ± 1.5 [83.8, 86.8] 0.021 

Graph Attention 

Network 
86.7 ± 1.3 [85.2, 88.2] 0.034 

Hybrid 

Transformer-

GNN 

89.2 ± 1.1 [87.9, 90.5] 0.045 

Cross-SRGANs 

+ HMLDW
92.5 ± 0.9 [91.3, 93.7] 0.001 

Table 12. Computational complexity, memory, and runtime 

comparison 

Model 
Computational 

Complexity 

Memory 

Consumption 

(GB) 

Runtime 

per 

Epoch 

(s) 

Vision 

Transformer 
O(n²d) 4.2 32 

Graph 

Convolutional 

Network 

O(E × d) 2.5 18 

Graph 

Attention 

Network 

O(E × d + n × 

d²) 
3.1 25 

Hybrid 

Transformer-

GNN 

O(n²d + E × d) 5.0 38 

Cross-

SRGANs + 

HMLDW 

O(k² n² d l) 6.8 45 

Note: n = number of nodes; d = feature dimension; E = number of edges; k = 

number of modalities; l = number of graph layers 

5. CONCLUSIONS

In conclusion, the integration of Cross-SRGANs and 

HMLDW represents a significant advancement in brain 

disease identification. Proposed approach substantially 

enhances the quality and resolution of neuroimaging data, 

which is crucial for accurate diagnosis and prognosis, by 

leveraging the strengths of cross-modal super-resolution and 

manifold learning techniques. The dynamic weighting in 

HMLDW optimizes the learning process by adapting to the 

intrinsic characteristics of the data, resulting in improved 

disease classification and prediction performance. This 

integrated methodology not only provides a more 

comprehensive understanding of brain pathology but also sets 
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a new standard for incorporating advanced machine learning 

techniques into medical imaging. Future goals involve 

creating a more simplified framework for diagnosing brain 

diseases and utilizing the proposed method on other datasets 

related to brain disorders. 
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