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The structured representation and dynamic modeling of non-rigid, high-level aesthetic visual
styles remain core challenges in computer vision. The ambiguity and temporal dynamics of
such styles make it difficult for traditional methods to achieve accurate characterization. As
a typical medium for this challenge, film visual styles evolve dynamically along with the
narrative progression, integrating multiple aesthetic attributes such as color, lighting, and
composition. This places high demands on the representational capabilities and temporal
modeling precision of analysis methods. To address these challenges, we propose an end-
to-end general framework for "deep image representation - temporal correlation modeling -
style evolution analysis." The core innovation of this framework lies in constructing a triune
deep image representation that integrates local textures, global semantics, and style
prototypes, tailored to the multi-dimensional nature of aesthetic styles. A narrative-guided
hierarchical attention masking mechanism is designed to enhance the relevance of dynamic
evolution modeling. The key contributions of this research include: the construction and
public release of the FilmStyleEvoBench benchmark dataset, accompanied by standard
evaluation tasks and metrics; and cross-domain validation through painting, architectural
videos, and user-generated content, which demonstrates the generalization potential of the
method. Experiments based on FilmStyleEvoBench and cross-domain datasets show that the
proposed method significantly outperforms existing comparison methods in style
recognition, evolution change point detection, and temporal correlation quantification tasks,
with stable and effective cross-domain transfer performance. This method not only solves
key issues in the analysis of film visual style evolution but also provides a universal
methodology for visual aesthetic computation and structured understanding of long videos,
while empowering film industry creative support and digital humanities quantitative
research.

1. INTRODUCTION

interdisciplinary value: in computer vision, it can provide new
research directions for visual aesthetic computation and

The structured representation and dynamic modeling of
aesthetic visual styles is a frontier challenge in the field of
computer vision [1, 2]. Such styles exhibit significant
subjectivity, non-rigid characteristics, and integrate multiple
dimensional attributes, making it difficult for traditional image
features to achieve precise quantification [3, 4]. The long-term
dependencies and  scene-driven  dynamic  changes
accompanying the evolution of these styles further pose dual
challenges to existing modeling methods in terms of
representational ability and temporal adaptability. As an ideal
test medium for this challenge, film visual styles serve as a
concrete expression of the director's aesthetic concept,
evolving continuously with the narrative progression and
encompassing multi-dimensional aesthetic attributes such as
color, lighting, composition, and movement [5]. Moreover,
style changes are strongly correlated with narrative nodes [6],
which can comprehensively test the discriminatory ability of
representation methods and the relevance of temporal
modeling. Solving this challenge holds significant
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structured understanding of long videos; in the film industry,
it can establish objective tools for style analysis to assist
creation and quality control [7, 8]; and in digital humanities, it
can empower the quantitative research and deep interpretation
of large-scale film cultural heritage [9, 10]. Deep learning-
driven image processing technologies, with their powerful
feature learning capabilities and advanced temporal modeling
techniques, provide key support for overcoming the
aforementioned challenges.

Although related research has made certain progress, there
remain many shortcomings. In terms of aesthetic visual style
representation, general deep models like CLIP, ViT, and
ResNet have been widely used in art style recognition and
aesthetic scoring of natural images, but they generally lack the
ability to integrate multi-dimensional aesthetic attributes, have
limited discrimination accuracy for non-rigid styles, and
struggle to adapt to complex scene requirements [11-13]. In
the field of long video temporal style modeling, models such
as LSTM and Transformer have become mainstream, but the
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temporal modeling process lacks scene-driven targeted design,
making it difficult to accurately capture key nodes in style
evolution. Additionally, no transferable general framework
has been established [12, 13]. Research on film and cross-
domain style analysis is even more limited, with representation
often focusing on a single visual dimension and failing to
construct multi-dimensional aesthetic style representations
[14]. On the modeling side, no links have been established
between style evolution and scene or narrative structure [15,
16]. Temporal modeling exhibits strong generalization but
lacks specificity, and there is a lack of standardized film style
evolution datasets and unified evaluation systems, resulting in
poor reproducibility and generalization. Existing methods are
mostly domain-specific and have not undergone systematic
cross-domain validation, limiting their general value [17-20].
To address these common challenges and domain limitations,
this paper starts from image processing technology, constructs
a general framework that combines multi-dimensional
aesthetic representation with scene-driven temporal modeling,
and provides standardized datasets and cross-domain
validation schemes to fill the gaps in existing research.

The research goal of this paper is to solve the common
computer vision challenge of structured representation and
dynamic modeling of aesthetic visual styles, using film as a
typical case to validate the method's effectiveness, while
achieving cross-domain transfer and providing a universal
methodology for the field of visual aesthetic computation. The
core contributions can be summarized in four points: First, a
triune deep image representation method that integrates local
texture, global semantics, and style prototypes is proposed,
enhancing the targeted representation of multi-dimensional
aesthetic styles through a prototype adaptation network,
significantly improving the discrimination and semantic
relevance of non-rigid styles. Second, a narrative-guided
hierarchical attention masking mechanism is designed to
optimize the Transformer temporal encoder, enabling the
capture of local scene style coherence and collaborative
modeling of key nodes across scenes, providing a general
technical solution for dynamic style evolution analysis. Third,
the FilmStyleEvoBench benchmark dataset for film style
evolution is developed and publicly released, covering various

types of movie samples and multi-dimensional style
annotations, accompanied by standard evaluation tasks and
metrics, enhancing research reproducibility and community
impact. Fourth, cross-domain conceptual validation through
painting, architectural videos, and user-generated videos
demonstrates the generalization potential of the proposed
method and core modules, validating its universal
methodological value.

The subsequent content of this paper will unfold according
to the following logic: A systematic review of related research
in aesthetic visual style representation, temporal modeling,
and film style analysis; a detailed explanation of the technical
details of the proposed general framework, including data
preprocessing, deep image representation, temporal
correlation modeling, style evolution analysis, and
optimization strategies; experimental validation of the
method's effectiveness in the film domain, covering dataset
introduction, comparison experiments, ablation experiments,
and visualization analysis; cross-domain conceptual validation
to assess the generalization capability of the method; an in-
depth discussion of experimental results, method limitations,
and multi-domain impact; and finally, a summary of the core
work and future research directions.

2. METHODS
2.1 Overview of the overall general framework

This paper proposes an end-to-end multi-task learning
general framework, with the core objective of solving the
common computer vision challenge of structured
representation and dynamic modeling of aesthetic visual styles.
The framework achieves cross-domain adaptation through
modular and configurable design, seamlessly integrating
temporal visual data such as films, painting sequences, and
architectural videos, and using a unified technical paradigm to
complete precise style characterization and capture evolution
patterns, overcoming the limitations of traditional domain-
specific methods.
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Figure 1. Overall architecture of the film style evolution analysis method
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Figure 1 shows the overall architecture of the film style
evolution analysis method. The framework adopts an "end-to-
end process" with the following general flow: "Data
Preprocessing — Deep Image Representation Extraction —
Scene-guided Temporal Correlation Modeling — Style
Evolution Analysis — Multi-task Optimization." Each module
collaborates efficiently through standardized interfaces. The
specific process is as follows: The data preprocessing module
is responsible for the standardization and quality screening of
temporal visual data and adaptive processing for different
domains: film data adopts frame rate adaptive sampling and
visual saliency detection to select key frames and remove
invalid frames; painting sequences are sorted by creation
timestamp and standardized; architectural videos optimize
space scene continuity and subframe extraction. All data is
uniformly processed by size normalization, 3x3 Gaussian
filtering for denoising, and pixel value normalization,
outputting a temporally consistent image sequence. The deep
image representation extraction module uses a "local texture
enhancement - global semantic encoding - style prototype
adaptation" three-level architecture, integrating low-level
texture, mid-level semantics, and high-level style information,
and outputs a 1024-dimensional deep feature vector. The
scene-guided temporal correlation modeling module adapts to
the film's narrative scenes, the painting's creation periods, and
the architectural space scenes using configurable interfaces. It
uses hierarchical attention masking to capture dual temporal
correlations: full attention interaction within local scenes
ensures coherence, and sparse attention across scenes only
links key nodes, enhancing core dependencies and reducing
redundant computation. The style evolution analysis module
performs three core functions: smoothing and change-point
detection to locate style change points, combining a style
prototype library to label segments, and calculating the
temporal synchronization coefficient between style changes
and scene nodes to quantify evolution patterns. The multi-task
optimization module uses a composite loss function that
integrates prototype clustering loss, temporal reconstruction
loss, change point detection loss, and temporal correlation loss
to jointly optimize all link parameters end-to-end. Dynamic
weight allocation achieves multi-objective coordination,
where the prototype clustering loss ensures clustering
performance, the temporal reconstruction loss strengthens
temporal coherence, and the detection and correlation losses
optimize core task performance.

2.2 Data preprocessing module

The data preprocessing module is designed with the core
principles of "universal strategy standardization" and "domain
adaptation customization" to optimize quality and structurally
convert temporal visual data, providing a unified and high-
quality data foundation for subsequent deep representation
extraction and temporal modeling. The general preprocessing
flow includes three core operations: sampling screening,
denoising enhancement, and standardization. The key
parameters and core formulas are as follows: The denoising
step uses 3x3 Gaussian filtering, where the core is to generate
a filter kernel using a 2D Gaussian function to apply weighted
smoothing to image pixels, effectively suppressing high-
frequency noise while retaining style texture details. The
Gaussian filter kernel's mathematical expression is:

x2 +y2
262

G(x,y)zﬁ exp ( (1)
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where, (x, y) are the coordinates of pixels relative to the center
of the filter kernel, and o = 1.0 is the Gaussian standard
deviation. This parameter is determined through grid search
and can balance the denoising effect and detail retention. The
standardization step uniformly adjusts the image size to
224x224 or 384%384 and uses the default CLIP normalization
method to eliminate pixel scale differences. The specific
formula is:

L1275
norm 127.5

2
where, [ is the original pixel value and 7,0/ is the normalized
pixel value. This normalization directly adapts to the feature
distribution of pre-trained models, enhancing feature learning
efficiency.

The domain adaptation processing optimizes the core logic
based on the data characteristics of different carriers, focusing
on preserving key information and temporal integrity. The key
frame extraction for film data uses a "frame rate adaptive
sampling + ITTI visual saliency detection" composite strategy:
first, an initial sampling is done at 2 fps, and then the ITTI
algorithm calculates the image saliency map to select the top
30% of frames with the highest saliency as candidate key
frames. The core formula for calculating saliency values in the
ITTI algorithm is:

S:wcSc+wlSl+woSo (3)
where, S, S1, and S, are the saliency maps for color, luminance,
and orientation features, and w.~w~=w,=1/3 are the weights for
each channel, ensuring a balanced contribution from multi-
dimensional visual information. Additionally, meaningless
frames are removed: frames such as black screens and
overexposed frames are eliminated using Iuminance
thresholds, and frames with large areas of subtitles are
removed using text detection algorithms. For painting
sequences, sampling and sorting are based on the creation
timestamps, and multiple works from the same period are
uniformly sampled at equal intervals. Architectural videos
combine scene segmentation results to perform dense
sampling at scene transition points to ensure that style change
details are not lost.

Temporal and scene alignment is the final step of
preprocessing and provides the core constraints for subsequent
scene-guided temporal modeling. Its core is to construct a
unified temporal coordinate system and bind scene semantic
labels. Universal temporal alignment is achieved through
timestamp mapping. For data with native timestamps, such as
film and architectural videos, the temporal index is directly
established using the original timestamp ¢. For data without
native timestamps, such as painting sequences, the creation
year/month is converted into a continuous temporal scale ¢'.
The mapping formula is:

Y-Y,

t'= xT

Yimax-Yo (4)
where, Y is the creation year of the painting, Yy is the earliest
creation year in the dataset, Y. is the latest creation year, and
T is the total length of the temporal sequence, ensuring that the
temporal relationship between works from different periods is
continuous and comparable. Scene labels are defined
according to domain adaptation: for film data, they are
associated with the script's narrative structure and labeled as
plot units; for architectural videos, they are based on spatial



functions and labeled as architectural space regions; for
painting sequences, they are based on art historical periods and
labeled as creation periods. Finally, the output is a "temporal
image sequence - temporal index - scene label" triplet,
ensuring the unified constraint of temporal and semantic
relationships.

2.3 Deep image representation module

The deep image representation module is the core of the
framework for accurately encoding aesthetic visual styles. The
design core is to construct a "global semantics - local texture -
style  prototype"  triune  multi-dimensional  fusion
representation, which adapts to cross-domain data through a
universal architecture and enhances the targeted representation

K;asic Visual Feature Extraction’
(CLIP-ViT Model, Pre-trained

of style attributes through hierarchical feature encoding.
Figure 2 shows the architecture of the deep image
representation module. The basic visual feature extraction uses
the CLIP-ViT model, which, through large-scale image-text
cross-modal pretraining, has strong general semantic
representation capabilities and can effectively capture high-
level semantic information from visual data across domains,
significantly outperforming single-modal pre-trained models
like ResNet in cross-domain transfer. The input is the
preprocessed standardized image, and after being encoded by
CLIP-ViT, a 768-dimensional global semantic feature vector
is output, which encodes the overall content semantics of the
image, providing a semantic anchor point for style
representation and ensuring that the style analysis remains
within the content context.
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Figure 2. Architecture of the deep image representation module

The local texture feature enhancement module adopts a
lightweight 4-layer convolution + pooling structure,
specifically designed to extract low-level texture and color
details for aesthetic style, compensating for CLIP-ViT’s
insufficient capture of local details. The specific structural
parameters are designed as follows: The first layer convolution
uses a 3x3 convolution kernel with a stride of 1, outputting 64
channels, with the activation function being ReLU; the second
layer convolution uses a 3x3 convolution kernel with a stride
of 1, outputting 128 channels, followed by 2x2 max pooling;
the third layer convolution uses a 3%3 convolution kernel with
a stride of 1, outputting 192 channels; the fourth layer
convolution uses a 3x3 convolution kernel with a stride of 1,
outputting 256 channels, followed by 2x2 max pooling. This
structure enhances feature expression capabilities by
progressively increasing the number of channels, while
pooling operations reduce spatial dimensions and retain key
details, outputting a 256-dimensional local texture feature
vector. The design principle is that aesthetic style differences
are often reflected in details such as local color distribution
and texture, and this lightweight structure ensures feature
extraction capabilities while avoiding overfitting and
computational redundancy brought by complex networks.

The style prototype adaptation network (APN) is the core
universal module for achieving targeted style representation
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through prototype learning, reinforcing the encoding of multi-
dimensional aesthetic styles. It mainly includes three core
steps: style prototype memory bank construction, cross-
attention matching, and prototype activation feature
generation. The style prototype memory bank is initialized
with 30 style prototypes, covering four general aesthetic
dimensions: color, composition, lighting, and movement. The
prototype initialization uses the k-means clustering algorithm
to cluster cross-domain style sample features, and a dynamic
expansion mechanism is designed to adaptively add
prototypes based on new domain data, ensuring cross-domain
adaptability. The cross-attention mechanism calculates the
similarity between the current frame’s features and each style
prototype in the memory bank, using cosine similarity to
quantify the matching degree, with the core formula as:

__ep (cos (flocal’pi))

i Zj]il exp (o (fioeqpl)) (5)
where, o; is the weight of the i-th style prototype, fiocar is the
local texture feature, p; is the i-th style prototype, and N=30 is
the total number of prototypes. After obtaining the prototype
distribution weights through this formula, the residual features
r~flca—pi are calculated, encoding the style difference
information.



Prototype activation feature generation is achieved by
weighted summation, aggregating the features of each style
prototype according to similarity weights to obtain a 256-
dimensional prototype activation feature vector, with the
formula:

A

.
proto_ Zi:l o; pi

(6)

This feature vector condenses the matching information
between the current frame and general style prototypes,
directly encoding high-level style attributes, which enhances
the style discrimination capability of the representation. The
feature fusion step uses a "concatenation - fully connected"
universal strategy. First, the CLIP global semantic features,
local texture features, prototype activation features, and
prototype residual features are concatenated to obtain a 1536-
dimensional concatenated feature vector (768 +256x3). Then,
a fully connected layer maps it to a 1024-dimensional feature
vector. The mathematical expression for the fusion process is:

ffusion =ReL U( w: [fglobal Zflocal ‘fproto Jpres]+b) (7

where, W is the weight matrix of the fully connected layer, b
is the bias term, and [ ] denotes feature concatenation. The
fused 1024-dimensional feature combines the correlation of
global semantics, the richness of local details, and the targeted
style attributes, enabling precise encoding of aesthetic visual
styles across domains and providing a high-quality feature
foundation for subsequent temporal modeling.

2.4 Scene-guided temporal correlation modeling module

The core goal of the scene-guided temporal correlation

modeling module is to accurately capture the long-term
temporal dependencies of aesthetic styles while enhancing the
targeting and efficiency of temporal modeling through scene
semantic constraints. Its design follows the principle of
"universal architecture + scene adaptation,” which can
seamlessly interface with temporal visual data from different
domains. Figure 3 shows the architecture of the scene-guided
temporal correlation modeling module. The input layer
construction is the foundation of temporal modeling. First, the
deep image representation is arranged in temporal order,
forming a temporal feature sequence F=[fi,fz,..../7T|ERT10?,
where f; is the fused feature of the #-th frame. To address the
issue that Transformer is insensitive to temporal order,
sinusoidal position encoding is introduced to inject temporal
information. The calculation formula for the position encoding
PER is:

®)

P, =cos ( L )
t2k+1 1000021024

. t

Py o=sin (10000“/1024) ’
where, k is the feature dimension index. This encoding is
generated by sine/cosine functions with different frequencies
to distinguish the feature differences at different temporal
positions. Meanwhile, to integrate scene semantic constraints,
scene type labels are encoded into a 1024-dimensional scene
type embedding S; using an embedding layer. The final input
features are fused by feature addition, with the fusion formula
as:

This results in an input sequence X=[X1,Xa,...,X7]ERT 1024

which provides high-quality input for subsequent attention
modeling.
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Figure 3. Architecture of the scene-guided temporal correlation modeling module

The hierarchical attention mask mechanism is the core
innovation of the module. Through a dual-layer design of
"local full attention + cross-scene sparse attention," it captures
temporal continuity and strengthens key node associations
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while reducing redundant computation. The local scene mask
constructs a full attention mask for the frame sequence within
the same scene, with the mask matrix Mj,cs€RTT defined as:
If frame ¢ and frame ¢ belong to the same scene, then



Miocal[t,t']=1, otherwise 0. The core principle of this design is
that styles within the same scene have strong continuity, and
full attention interaction can fully capture the fine-grained
style dependencies between frames, ensuring the integrity of
temporal modeling within the scene. The cross-scene global
mask sparsifies the constraints on frame interactions between
different scenes. The mask matrix Mgop€RTT s
mathematically defined as:

1, lf t’E {tprev-endstcurr-start}
0, other cases

Mol 1] ©)

where, fyev-cna is the index of the last frame of the previous
scene, and Zour-stare 1S the index of the first frame of the current
scene. This rule ensures that cross-scene interactions focus
only on the key nodes at scene transitions, enhancing the
temporal correlation of key turning points in style evolution
while reducing the attention computation complexity from
O(T») to O(T), significantly improving computational
efficiency. Since the scene definition can be adapted to
different domains via a configurable interface, this mask
mechanism has inherent cross-domain universality.

The Transformer encoder is responsible for the deep
encoding of temporal features, using a general structure with
6 stacked encoder layers. The core parameter configuration is:
each layer contains 8-head self-attention mechanisms with a
head dimension of 128; the feed-forward network uses a 2-
layer fully connected structure, with a middle dimension of
2048 and the ReL.U activation function; each layer is equipped
with layer normalization and residual connections to ensure
training stability. The encoding process is as follows: The
input sequence first undergoes masking with both the local
scene mask and the cross-scene global mask to constrain the
interaction range of self-attention. The final attention mask is
M=MocaNMgiopai, Where "V" represents logical OR. Then, a
multi-head self-attention mechanism aggregates effective
temporal context information, followed by a feed-forward
network for nonlinear feature transformation. Finally, residual
connections and layer normalization are applied to output the
layer features. The progressive encoding of the 6-layer
encoder gradually strengthens the ability to fuse long-term
temporal contexts, ultimately outputting a 1024-dimensional
style temporal representation sequence Z=[Z1,2,,...,Z7]
which retains frame-level style details and encodes long-term
temporal dependencies, providing core temporal feature
support for subsequent style evolution analysis.

2.5 Style evolution analysis module

The core goal of the style evolution analysis module is to
achieve precise localization of style changes, label annotation,
and temporal correlation quantification based on the encoded
style temporal representation. It also improves result reliability
through cross-modal auxiliary validation. The overall design
follows the universal logic of "lightweight decoding + precise
quantification + auxiliary validation" to adapt to the evolution
analysis needs of temporal visual data from different domains.
The style evolution decoding process adopts a progressive
procedure of "temporal convolution smoothing - mutation
detection - label matching," with the core component being the
lightweight temporal convolution network (TCN). Its design
aims to smooth the noise in temporal representations and
strengthen the continuity of style evolution while retaining key
change information. The TCN wuses a 3-layer causal

T=x1024
ERT1024,

3336

convolution structure, with the following parameters: each
layer uses a 3x1 convolution kernel, dilation rates of 1, 2, and
4, respectively, and the output channel number is 1024, which
is consistent with the input temporal representation dimension.
The ReL U activation function is used, and layer normalization
is applied to stabilize training.

The smoothing principle of the TCN is to only use current
and past frame features for calculation through causal
convolutions, avoiding future information leakage. At the
same time, dilated convolutions efficiently capture long-term
temporal dependencies, making the output smoothed temporal
representation Z'=[Zi',Z,',...,Z7'] more aligned with the true
trend of style evolution. Based on the smoothed representation,
a threshold-based mutation detection algorithm is used to
locate style change points. The core judgment rule is: calculate
the L2 distance d=||Z,-Z,.,'||,(t > 2), and if d/>7, the ¢-th frame
is determined to be a style change point, where 7 is an adaptive
threshold determined by the dataset's statistical distribution.
After locating the change points, the frame sequences between
adjacent change points are divided into style segments, and
similarity matching with the style prototype memory bank is
performed to assign corresponding style labels to each
segment. The final output is a sequence of style change points
and style label sequences.

The temporal correlation quantification step aims to
quantify the temporal synchronization between style changes
and scene nodes, providing a quantitative basis for in-depth
interpretation of style evolution patterns. First, the time
difference between the style change point and the nearest
scene node is calculated. The general calculation method is:
let the style change point index be 7., and the nearest scene
node indexes before and after it be ¢, and ¢, respectively,
then the time difference Ar=min (|¢.-ty],/t.~t;5|). To further
quantify overall synchronization, the Pearson correlation
coefficient is used to measure the linear correlation between
the style change point sequence and the scene node sequence.
Let the temporal distribution vector of style change points be
C, and the temporal distribution vector of scene nodes be S,
then the Pearson correlation coefficient formula is:

I 1 (CONSS)
B € BT 557

=

(10)

where, C and S are the mean values of C and S, respectively.
The value of r ranges from [-1, 1]. The closer » is to 1, the
stronger the synchronization between style changes and scene
transitions; conversely, the weaker the synchronization.

The cross-modal auxiliary validation step uses a general
fusion approach with attention weighting to adapt to auxiliary
modality information, such as text and audio, improving the
reliability of the style evolution analysis results while ensuring
the core focus remains on image temporal analysis. The
specific process is as follows: extract the feature sequence of
the auxiliary modality and map it to a 1024-dimensional space
using a linear layer to match the dimensionality of the image
temporal representation. A cross-modal attention mechanism
is introduced to calculate the matching weight between image
features and auxiliary modality features. The weight formula
is: ﬁt:soﬁmax(Z; - Ay, where 4, is the auxiliary modality
feature at the #-th frame. The auxiliary modality features are
then weighted and fused into the image temporal
representation, resulting in the fused feature Z,"=Z,+f, - 4,.
Based on the fused features, change point detection is



performed again. If the overlap rate with the image-only
analysis result is >85%, the analysis result is verified as
reliable; if the overlap rate is low, it is only used as a reference
correction without altering the core image temporal analysis

Style Evolution Analysis Module

conclusions, ensuring the module’s reliance on image data and
the stability of the results. Figure 4 shows the architecture of
the style evolution analysis module.
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Figure 4. Architecture of the style evolution analysis module

2.6 End-to-end optimization strategy

The core of the end-to-end optimization strategy is to
achieve global optimal convergence of the parameters across
the framework modules through a multi-task collaborative loss
function and a staged training mechanism, while ensuring the
flexibility of cross-domain adaptation. The design of the multi-
task loss function follows the principle of "optimizing core
tasks  separately, collaboratively  balancing overall
performance," integrating four main loss terms: prototype
clustering loss, temporal reconstruction loss, change point
detection loss, and temporal correlation loss. Dynamic weight
allocation is used to realize multi-objective collaborative
optimization. The total loss function expression is:

Llotal :/11 Lprota +/12 Lrec +;{3 ch +j'4Lcorr (1 1)
where, A1, 42, 43, A4 are the weights of each loss term,
determined through grid search on the validation set as 4,=0.3,
4:=0.2, 45=0.3, 14=0.2. This allocation ratio balances the
quality of style representation and the accuracy of evolution
analysis.

The general mathematical definitions and optimization
goals of each loss term are as follows: Prototype clustering
loss is based on contrastive learning, strengthening the
discrimination of style representations by reducing the
distance of features within the same style and increasing the
distance of features from different styles. The formula is:

exp (sim(/},pyi)/r)

o) "

1
Lprot():' ;Zfil lOg(

where, f; is the deep feature of the i-th sample, P, is the

prototype vector of the style to which the sample belongs, p;
is the j-th prototype in the memory bank, sim( , ) is the cosine
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similarity, 7=0.07 is the temperature parameter, N is the batch
size, and M is the total number of prototypes. Temporal
reconstruction loss ensures temporal continuity by
reconstructing the input temporal feature sequence using a
decoder. It is defined using mean squared error (MSE):

1 ~
Lreczﬁzz:l “ft'J{t”% (13)

Where,}‘t is the reconstructed feature output by the decoder, T

is the temporal sequence length, and D=1024 is the feature
dimension. Change point detection loss is used for the binary
classification task of "change point / non-change point,"
optimized by cross-entropy loss to improve detection accuracy:

1 ~ A~
Loy=-= %L1 (y,logP,+(1-y) log (1-5)) (14)

where, y,€{0,1} is the true label for the 7-th frame, and y, is the

predicted probability of the change point. Temporal
correlation loss uses MSE to optimize the prediction accuracy
of the Pearson correlation coefficient:

a2
L ooy =171 0l15

gt

(15)
where, 7 is the predicted temporal synchronization correlation
coefficient, and 7, is the true correlation coefficient.

The training strategy adopts a two-stage "pre-training - fine-
tuning" model, combining an adaptive optimizer and learning
rate scheduling to ensure training stability and convergence
efficiency. The basic optimization configuration is as follows:
the AdamW optimizer is used with an initial learning rate of
1074, weight decay of 107°, and a batch size of 32. Learning
rate scheduling follows a cosine annealing strategy with a
period of 10 training epochs, and the minimum learning rate is
107¢. This periodic adjustment of the learning rate avoids local



optima and accelerates global convergence. The core
advantage of the two-stage training is to optimize the goals in
layers: during the pre-training phase, only the deep image
representation module and style prototype memory bank are
trained, freezing the temporal modeling and evolution analysis
modules. The prototype clustering loss is optimized alone to
first complete basic clustering of style features, forming a
stable foundation for style representation and avoiding
interference from multi-module collaborative training. In the
fine-tuning phase, all modules are unfrozen, and end-to-end
joint training is performed using the total loss function,
optimizing the collaborative adaptation between modules and
improving overall task performance.

The domain adaptation fine-tuning strategy further ensures
the framework’s cross-domain universality. The core is to
adjust training parameters based on the characteristics of new
domain data: first, freeze the CLIP-ViT pre-trained backbone
network to avoid disrupting pre-trained semantic knowledge;
second, reduce the initial learning rate to 5x10° and use a
smaller learning rate for parameter updates to reduce
overfitting risks caused by domain differences; and finally,
dynamically adjust the number of training epochs based on the
new domain data size. When the data volume is small, an early
stop strategy is applied, using the peak validation set
performance as the stopping criterion. This staged and
domain-adaptive strategy ensures the training stability of the
base model and improves the flexibility of cross-domain
migration, enabling efficient convergence and precise
modeling on temporal visual data from different domains.

3. EXPERIMENT AND RESULT ANALYSIS
3.1 Dataset construction and experimental setup

To support the systematic validation of visual style
evolution analysis, we constructed the benchmark dataset
FilmStyleEvoBench. The core design of this dataset is to
provide standardized data and evaluation support covering
multiple scenes, adapting to core tasks such as style segment
retrieval, evolution paragraph segmentation, and style
prediction. The data selection balances diversity and
representativeness, covering three major movie genres: drama,
science fiction, and documentary, with 10 films in each genre,
totaling 30 films. During the collection and preprocessing
phase, we used frame-rate adaptive sampling combined with
ITTI visual saliency detection to extract key frames, retaining
200-300 key frames per film after removing invalid frames.
The final dataset consists of approximately 9,000 key frames.
The annotation system is designed with multiple dimensions,
covering four major categories of style labels: color, light and
shadow, composition, and motion, with 15 subcategories in
total. We also annotated style change point positions and five
types of narrative nodes. The annotation process follows a
three-level mechanism of dual annotation, cross-validation,
and expert review to ensure annotation quality, with Cohen's
Kappa coefficients all > 0.85. The dataset is publicly available
on both GitHub and Zenodo platforms, along with defined
standard evaluation tasks and corresponding baseline methods,
providing detailed statistical information such as style
distribution, duration distribution, and annotation example
images to support reproducible benchmarking for the
community's research.

The experimental setup was designed to ensure rigor and
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reproducibility of the method wvalidation. The hardware
environment used an NVIDIA A100 GPU (80GB VRAM)
with 256GB of memory. The software environment is based
on Python 3.9 and built using the PyTorch 1.12.1 deep learning
framework, with dependencies including OpenCV 4.6.0,
Scikit-learn 1.2.2, etc. Key parameters were optimized through
grid search, and the core configuration is as follows: the
Transformer encoder is a 6-layer structure with 8 heads in the
self-attention mechanism, and a feed-forward network
dimension of 2048; the depth feature dimension is 1024, and
the style prototype memory bank has a size of 30. During
training, the AdamW optimizer was used with an initial
learning rate of 1™, weight decay of 1¢, batch size of 32, and
cosine annealing learning rate scheduling. The pre-training
stage lasted for 10 epochs, followed by 15 epochs of end-to-
end fine-tuning. Evaluation metrics were designed for
different tasks: for the style recognition task, accuracy,
precision, recall, and F1 score were used to quantify
classification performance; for change point detection, change
point accuracy and mean absolute error (MAE) were used to
evaluate localization accuracy; for temporal correlation,
Pearson correlation coefficient and MSE were used to measure
the synchronization of style change and scene nodes, forming
a comprehensive performance evaluation system.

3.2 Comparison experiment results and analysis

To comprehensively verify the superiority of the proposed
method, four representative comparison methods were
selected, covering the three major research branches of
traditional image features, single depth features, and temporal
style evolution. The comparison dimensions include style
recognition, change point detection, and temporal correlation,
which are the three core tasks. The comparison methods are as
follows: (1) Traditional image feature method:
SIFT+BOVW+LSTM, a temporal modeling scheme based on
handcrafted features. (2) Single depth feature methods:
ResNet50+LSTM and ViT+Transformer, representing basic
temporal modeling capabilities of convolutional and
Transformer architectures, respectively. (3) Existing style
evolution method: CNN-LSTM, a mainstream approach in
recent film style analysis. The experiments were conducted on
the FilmStyleEvoBench dataset, and the quantitative results
are shown in Table 1. A two-tailed t-test was performed to
verify the performance differences between the proposed
method and each comparison method, with a significance level
of a=0.05.

The quantitative results show that the proposed method
significantly outperforms the comparison methods across all
evaluation metrics. In the style recognition task, the proposed
method achieves an accuracy of 92.3% and an F1 score of
92.3%, improving by 8.0 and 8.1 percentage points,
respectively, compared to the best-performing method,
ViT+Transformer. The t-test results for both metrics are
p<0.01, confirming the statistical significance of the
performance improvement. This advantage arises from the
"local texture - global semantics - style prototype" three-in-
one deep representation, which more comprehensively
encodes the multi-dimensional attributes of aesthetic style
compared to the single ResNet or ViT features, enhancing the
distinction of non-rigid styles. In the change point detection
task, the proposed method achieves a CP-Acc of 89.4% and an
MAE of only 2.2 frames, which is a 10.8 percentage point
improvement in CP-Acc and a 1.9-frame reduction in MAE



compared to ViT+Transformer. The core reason for this
improvement is the hierarchical attention mask mechanism,
which strengthens the modeling of key scene nodes and avoids
redundant interference from non-key frames, enabling the

Pearson correlation coefficient of 0.87 and an MSE of only
0.021, significantly outperforming other methods. This
demonstrates that scene-guided temporal modeling effectively
captures the intrinsic correlation between style evolution and

model to accurately locate style mutation positions. In the narrative nodes, achieving more precise temporal
temporal correlation task, the proposed method achieves a synchronization quantification.
Table 1. Quantitative results of style recognition comparison experiments
Change Point Change Point Temporal Temporal t-test
Comparison Accuracy Precision Recall F1 Detection CP- Detection MAE  Correlation Correlation p-value (vs.
Method (%) (%) (%) (%) o Proposed
Acc (%) (Frames) Pearson MSE
Method)
SIFT+BOVWHLSTM  68.4 69.1 67.8 68.4 62.3 8.7 0.52 0.086 <0.001
ResNet50+LSTM 79.6 80.2 78.9 79.5 73.5 53 0.65 0.062 <0.001
ViT+Transformer 84.3 84.7 83.8 84.2 78.6 4.1 0.71 0.048 <0.01
CNN-LSTM 82.5 82.9 81.7 823 76.2 4.6 0.68 0.053 <0.01
Proposed Method 923 92.6 92.1 923 89.4 2.2 0.87 0.021 -
3.3 Ablation experiment results and attribution analysis between the two  styles, significantly reducing
distinguishability.

To verify the necessity of the core innovative components
of the proposed method, four ablation experiments were
designed: Al removes the local texture feature enhancement
module, A2 removes the Prototype Adaptation Network
(APN), A3 replaces the hierarchical attention mask with a
regular full attention mask, and A4 removes the temporal
correlation loss term. The complete model (Full Model) is
used as the baseline. The quantitative results are shown in
Table 2, and attribution analysis is conducted using typical
case studies.

Attribution analysis shows that each core component has a
critical impact on the model's performance. In experiment Al,
after removing the local texture features, the F1 score for style
recognition dropped by 5.8 percentage points, and CP-Acc
dropped by 6.2 percentage points. Case study analysis shows
that the confusion rate between "high contrast neon" and "retro
film" styles increased by 23%. The reason is that local texture
features accurately encode low-level style details such as color
distribution and texture, and the core difference between these
two styles lies in local lighting and texture. After removing
this, the model struggled to distinguish such fine-grained style
differences. In experiment A2, after removing the APN, the
style recognition accuracy dropped to 84.5%, and the
confusion rate between "film noir" and "romantic comedy"
increased by 31%. The APN condenses universal aesthetic
attributes by learning style prototypes, giving features stronger
style specificity. Without it, the model relied only on raw
semantic and texture features, making it difficult to capture the
higher-level differences in lighting tone and composition logic

In experiment A3, after replacing the hierarchical attention
mask with a full attention mask, the change point detection
performance deteriorated the most. CP-Acc dropped to 76.3%,
and MAE increased to 4.8 frames, a decline of 13.1 percentage
points compared to the complete model. In a typical case, the
model incorrectly identified non-change frames as change
points during scene transitions in the movie /nception, with a
deviation of 6-8 frames. This is because the full attention
mechanism indiscriminately associates all frames, introducing
a large number of non-key frame redundancies, weakening the
guidance role of scene nodes. In contrast, the hierarchical
mask precisely focuses on key nodes by sparsifying the cross-
scene interactions, ensuring the accuracy of change point
detection. In experiment A4, after removing the temporal
correlation loss, the Pearson coefficient of temporal
correlation dropped from 0.87 to 0.75, and the smoothness of
the style evolution trajectory significantly decreased. In the
analysis of the natural scene evolution in the documentary
Planet Earth, the fluctuation amplitude of the trajectory
increased by 40%. The temporal correlation loss strengthens
the coherence of temporal features by constraining the
synchronization of style changes and scene nodes. After its
removal, the model struggled to maintain long-term style
evolution modeling, leading to a decrease in trajectory
smoothness. In summary, all four core components together
ensure the model's representation ability, temporal modeling
relevance, and accuracy in capturing evolutionary patterns.
Each of these components is an indispensable key module.

Table 2. Quantitative results of ablation experiments

Change Point

Change Point Temporal

Cl;:)fllt)‘ier;?;etlil(:n Ac:;r)a y (f/l) Detection CP-Acc Detection MAE Correlation Cor:“:ll:tli)(;)lll‘i;\l/[SE
g ° ’ (%) (Frames) Pearson

Full Model (Complete 92.3 92.3 89.4 22 0.87 0.021
Model)

Al (Remove Local 86.7 86.5 83.2 3.1 0.81 0.029
Texture)

A2 (Remove APN) 84.5 84.2 81.5 3.5 0.78 0.035

A3 (Full Attention 87.9 87.6 76.3 48 0.72 0.046
Mask)

A4 (Remove Temporal 90.1 89.8 87.6 2.5 0.75 0.041

Correlation Loss)
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3.4 Stability and generalization verification

To verify the robustness of the model to training parameters,
stability tests were conducted by adjusting core training
parameters, such as batch size and initial learning rate. The
core metrics, including style recognition F1, change point
detection CP-Acc, and temporal correlation Pearson
coefficient, were selected for evaluation. The results are
shown in Table 3.

The results show that when the batch size is adjusted
between 16-64 and the initial learning rate is varied between
5e-5 and 2e-4, the maximum fluctuation amplitude in the core
metrics is only 1.6%, well below the 3% threshold. This

indicates that the model is highly adaptable to changes in
training parameters, with a stable training process that is not
prone to significant performance fluctuations due to minor
parameter adjustments. This provides convenience for
parameter tuning in practical applications and also validates
the rationality of the optimization strategy and network
structure design.

To verify the model's generalization ability on non-
mainstream movie styles, a niche movie subset from the
FilmStyleEvoBench dataset was selected for testing. The core
performance of the model on the mainstream subset and niche
subset was compared. The results are shown in Table 4.

Table 3. Stability verification results

Parameter Configuration (Batch Style Recognition Change Point Temporal Maximum Fluctuation
Size / Learning Rate) F1 (%) Detection CP-Acc (%) Correlation Pearson Amplitude
32/1e* (Baseline) 923 89.4 0.87 -
16/1e* 91.5 88.7 0.85 0.8%
64/1e* 92.1 89.1 0.86 0.3%
32/5¢7 90.7 87.9 0.84 1.6%
32/2¢* 91.2 88.3 0.85 1.1%
Table 4. Generalization verification results
Style Recognition Change Point Detection Temporal Correlation Performance Drop
Dataset Subset Accuracy (%) CP-Acc (%) Pearson Amplitude
Mamstrean_l Subset 923 89 4 087 )
(Baseline)
Niche Movie Subset 88.6 85.7 0.82 3.7-4.3%

Table 5. Cross-domain experiment quantitative results

Cross-domain Dataset

Style Recognition Accuracy (%)

Change Point Detection CP-Acc (%)

Painting (Van Gogh Works) 89.2
Architectural Video 87.8
Vlog Video 85.4

Movie (Baseline) 923

87.5
86.3
83.7
89.4

The results show that although the model's metrics showed
slight declines on the niche movie subset, the drop was kept
within 4.3%, and the core metrics still maintained a high level,
with style recognition accuracy of 88.6% and CP-Acc of
85.7%. Independent films and animated films often have more
personalized styles and more flexible narrative structures. The
model still achieved accurate style representation and
evolution modeling, proving that it did not overfit to
mainstream movie styles and has good generalization ability.
This advantage arises from the design of the general deep
representation and scene-guided temporal modeling, allowing
it to adapt to movie data with different style types and narrative
structures, providing reliable support for large-scale film style
analysis.

3.5 Cross-domain concept verification

To verify the cross-domain generalization potential of the
proposed method, three types of visual temporal data were
selected to construct a cross-domain test set: (1) Painting Style
Evolution Dataset, including 50 works from different creation
periods of Van Gogh (early, middle, and late periods), with
style labels such as Early Impressionism, Mature
Impressionism, and evolution nodes marked. (2) Architectural
Video Style Dataset, including five videos each of Modernism,
Classicalism, and Postmodernism architectural styles, with
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1200 keyframes extracted and spatial style labels and scene
switching nodes marked. (3) Vlog Aesthetic Style Dataset,
including Vlog videos from 10 different vloggers, with 1500
keyframes extracted and style labels such as Lifestyle
Recording and Travel Scenery, as well as content switching
nodes marked.

The domain adaptation strategy used a simplified version of
the proposed method. The core adjustments include: Adapting
scene definitions to fit the characteristics of each domain:
paintings correspond to creation periods, architectural videos
correspond to spatial regions, and Vlogs correspond to content
themes; Dynamically adjusting the style prototype memory
bank size based on data volume: 20 prototypes for painting (50
samples), and 30 prototypes for architecture and Vlog.
Freezing the CLIP-ViT backbone network, fine-tuning only
the feature fusion layer and prototype memory bank, and
reducing the initial learning rate to 5e-5 to avoid overfitting
due to domain differences.

The cross-domain experiments focused on style recognition
and change point detection, with quantitative results shown in
Table 5 to verify the effectiveness of the proposed method
across domains.

The results show that the proposed method achieves high
performance levels across all three cross-domain datasets,
with style recognition accuracy exceeding 85% and change
point detection CP-Acc exceeding 83%, with a decrease of



only 3.1-6.9 percentage points compared to the movie baseline
dataset. In the painting domain, the model can accurately
distinguish between different creation periods of Van Gogh,
achieving an accuracy of 89.2%, demonstrating that the "local
texture-global semantics-style prototype" representation
method effectively adapts to the style evolution analysis of
static image sequences. In the architectural video domain, the
model's recognition of different architectural styles and scene
switching point detection accuracy exceeds 86%, validating
the adaptability of scene-guided temporal modeling to spatial
style evolution. In the Vlog domain, although performance
slightly declined due to fragmented scenes and high style
diversity, the model still maintains a CP-Acc of over 83%,
indicating its ability to handle the style analysis of non-
professional content.

In conclusion, the proposed method, with simple domain
adaptation adjustments, can efficiently perform style evolution
analysis in different temporal visual domains such as painting,
architecture, and Vlogs, proving that its core modules have
universal adaptability and verifying its value as a "visual style
temporal analysis" general methodology. This provides a
transferable technical solution for cross-domain visual
aesthetic computing.

To quantify the dynamic evolution of screen style in movie
narratives and clarify the intrinsic relationship between visual
language and plot rhythm, this study performed temporal
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sampling and deep style representation analysis on key scenes
of typical narrative films. The temporal sampling results in
Figure 5(a) show that the film transitions from a cool-toned,
low-saturation wide shot at the beginning to a warm-toned
mid-shot scene at the 25% node. The climax phase (50% to
75%) features a high-saturation, high-contrast close-up, which
ultimately returns to a cool-toned wide shot layout, intuitively
presenting the phase changes in screen style as the plot
progresses. The deep representation results in Figure 5(b)
further reveal the essential characteristics of this change: the
color heatmap clearly shows the cyclical change of the main
color tones from blue-green to red-yellow and back to blue-
green. The composition radar chart shows a high-to-low-to-
high proportion of wide shots, with close-ups peaking during
the climax. The contrast values of the light and shadow
histogram rise from 0.7 to 1.8 and then fall back to 0.8, which
is highly consistent with visual perception. This result
indicates that the deep image representation method can
accurately extract the core style features of movie scenes, and
the temporal correlation visualization results effectively
capture the evolution trajectory of style as the plot progresses.
It provides a reliable feature foundation for subsequent
construction of movie screen style evolution models and also
confirms the strong correlation between screen style and
narrative rhythm.
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Figure 5. Actual effect verification of movie screen style evolution analysis method

4. DISCUSSION

A deep interpretation of the experimental results reveals the
scientific rationale behind the core design of this method. The
innovative architecture, which integrates multi-dimensional
fusion representation and scene-guided temporal modeling,
provides key technical insights for visual aesthetic computing.
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The three-in-one fusion representation of "local texture-global
semantics-style prototype" precisely aligns with the non-rigid
and multi-dimensional characteristics of aesthetic style by
collaboratively encoding low-level texture details, mid-level
content semantics, and high-level style attributes. This is the
core reason why it adapts to various fields such as film,
painting, and architecture. In the experiments, this



representation significantly improved the differentiation of
non-rigid styles, confirming the critical role of multi-
dimensional feature fusion in overcoming the limitations of
traditional single-feature methods. The hierarchical attention
mask mechanism optimizes temporal modeling by guiding
scenes. Compared to the generic full-attention mechanism
with indiscriminate interactions, the local full-attention
mechanism ensures the capture of scene coherence within
scenes and sparse cross-scene attention focuses on key nodes.
This design reduces redundant computational overhead while
enhancing the modeling of the core dependencies of style
evolution, significantly improving change point detection
accuracy and temporal correlation quantification. This general
architecture also endows the method with excellent cross-
domain generalization ability. Its precise representation of
universal aesthetic dimensions and the general temporal
modeling logic guided by scenes provide an important
reference for the design of general methods in visual aesthetic
computing, advancing research in non-rigid, high-level visual
attribute modeling. At the same time, the method's multi-
domain influence is significant. It improves the technical
system of long video structured understanding in the field of
computer vision; in the film industry, its potential for real-time
analysis can support editing assistance, trailer generation, and
shooting style monitoring; in the digital humanities, it provides
objective tools for large-scale quantitative research on film
and cultural heritage, helping verify art history theories; and
the cross-domain verification results in fields such as painting
and architecture demonstrate its broad application potential.

However, the method still has limitations that need
optimization, which also point to future core research
directions. The current model's high computational
complexity limits its application in ultra-long videos and
large-scale image sequence analysis. Future work should
explore sparse Transformer architectures based on local
windows and dynamic pruning strategies for the style
prototype library to reduce computational overhead while
ensuring performance. The current style prototype library does
not cover niche and emerging aesthetic styles sufficiently.
Future work could combine unsupervised contrastive learning
and open vocabulary learning to enable automatic discovery
and dynamic expansion of style prototypes, enhancing the
model's adaptability to diverse styles. Currently, cross-domain
adaptation requires manual adjustment of key parameters.
Future research should introduce domain adaptation
mechanisms to achieve automatic model adaptation across
different domains, simplifying the cross-domain application
process. Additionally, the existing multi-modal fusion is
merely auxiliary and lacks depth. Future work can explore
cross-modal attention fusion strategies between images, text,
and audio, integrating multi-dimensional information to
improve the comprehensiveness of style evolution analysis.
These explorations will further improve the general
methodology of visual style temporal analysis, advancing the
field of visual aesthetic computing and expanding the method's
application value in more practical scenarios.

5. CONCLUSION

This paper addressed the general challenge in computer
vision of structured representation and dynamic modeling of
non-rigid, high-level visual styles. It proposed an end-to-end
general framework for "deep image representation-scene-
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guided temporal modeling-style evolution analysis" and
systematically accomplishes four core tasks: constructing a
general deep representation method of local texture-global
semantics-style prototype, enhancing the differentiation of
multi-dimensional aesthetic styles; designing a narrative-
guided hierarchical attention mask mechanism to achieve
targeted temporal correlation modeling; building and publicly
releasing the FilmStyleEvoBench benchmark dataset for film
style evolution, along with a standardized evaluation system,;
and verifying the method's generalization potential through
cross-domain validation with painting, architectural videos,
and Vlogs. A series of experiments and ablation analyses
validated the necessity of each core component. The
framework significantly outperformed existing comparison
methods in style recognition, change point detection, and
temporal correlation quantification tasks, with performance
improvements showing statistical significance.

Key conclusions indicate that the proposed framework
effectively overcomes the limitations of traditional methods in
non-rigid style representation and dynamic evolution
modeling. Its general architectural design provides the method
with excellent cross-domain adaptability, offering a reliable
technical solution for solving the general problem of visual
aesthetic style temporal analysis. This research not only
advances the field of visual aesthetic computing and long
video structured understanding but also provides strong
support for the creation assistance in the film industry, the
quantitative research of film cultural heritage in digital
humanities, and the style evolution analysis in painting,
architecture, and other fields. It lays a solid foundation for
subsequent research and provides a reusable reference
framework.
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