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The structured representation and dynamic modeling of non-rigid, high-level aesthetic visual 

styles remain core challenges in computer vision. The ambiguity and temporal dynamics of 

such styles make it difficult for traditional methods to achieve accurate characterization. As 

a typical medium for this challenge, film visual styles evolve dynamically along with the 

narrative progression, integrating multiple aesthetic attributes such as color, lighting, and 

composition. This places high demands on the representational capabilities and temporal 

modeling precision of analysis methods. To address these challenges, we propose an end-

to-end general framework for "deep image representation - temporal correlation modeling - 

style evolution analysis." The core innovation of this framework lies in constructing a triune 

deep image representation that integrates local textures, global semantics, and style 

prototypes, tailored to the multi-dimensional nature of aesthetic styles. A narrative-guided 

hierarchical attention masking mechanism is designed to enhance the relevance of dynamic 

evolution modeling. The key contributions of this research include: the construction and 

public release of the FilmStyleEvoBench benchmark dataset, accompanied by standard 

evaluation tasks and metrics; and cross-domain validation through painting, architectural 

videos, and user-generated content, which demonstrates the generalization potential of the 

method. Experiments based on FilmStyleEvoBench and cross-domain datasets show that the 

proposed method significantly outperforms existing comparison methods in style 

recognition, evolution change point detection, and temporal correlation quantification tasks, 

with stable and effective cross-domain transfer performance. This method not only solves 

key issues in the analysis of film visual style evolution but also provides a universal 

methodology for visual aesthetic computation and structured understanding of long videos, 

while empowering film industry creative support and digital humanities quantitative 

research. 
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1. INTRODUCTION

The structured representation and dynamic modeling of 

aesthetic visual styles is a frontier challenge in the field of 

computer vision [1, 2]. Such styles exhibit significant 

subjectivity, non-rigid characteristics, and integrate multiple 

dimensional attributes, making it difficult for traditional image 

features to achieve precise quantification [3, 4]. The long-term 

dependencies and scene-driven dynamic changes 

accompanying the evolution of these styles further pose dual 

challenges to existing modeling methods in terms of 

representational ability and temporal adaptability. As an ideal 

test medium for this challenge, film visual styles serve as a 

concrete expression of the director's aesthetic concept, 

evolving continuously with the narrative progression and 

encompassing multi-dimensional aesthetic attributes such as 

color, lighting, composition, and movement [5]. Moreover, 

style changes are strongly correlated with narrative nodes [6], 

which can comprehensively test the discriminatory ability of 

representation methods and the relevance of temporal 

modeling. Solving this challenge holds significant 

interdisciplinary value: in computer vision, it can provide new 

research directions for visual aesthetic computation and 

structured understanding of long videos; in the film industry, 

it can establish objective tools for style analysis to assist 

creation and quality control [7, 8]; and in digital humanities, it 

can empower the quantitative research and deep interpretation 

of large-scale film cultural heritage [9, 10]. Deep learning-

driven image processing technologies, with their powerful 

feature learning capabilities and advanced temporal modeling 

techniques, provide key support for overcoming the 

aforementioned challenges. 

Although related research has made certain progress, there 

remain many shortcomings. In terms of aesthetic visual style 

representation, general deep models like CLIP, ViT, and 

ResNet have been widely used in art style recognition and 

aesthetic scoring of natural images, but they generally lack the 

ability to integrate multi-dimensional aesthetic attributes, have 

limited discrimination accuracy for non-rigid styles, and 

struggle to adapt to complex scene requirements [11-13]. In 

the field of long video temporal style modeling, models such 

as LSTM and Transformer have become mainstream, but the 
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temporal modeling process lacks scene-driven targeted design, 

making it difficult to accurately capture key nodes in style 

evolution. Additionally, no transferable general framework 

has been established [12, 13]. Research on film and cross-

domain style analysis is even more limited, with representation 

often focusing on a single visual dimension and failing to 

construct multi-dimensional aesthetic style representations 

[14]. On the modeling side, no links have been established 

between style evolution and scene or narrative structure [15, 

16]. Temporal modeling exhibits strong generalization but 

lacks specificity, and there is a lack of standardized film style 

evolution datasets and unified evaluation systems, resulting in 

poor reproducibility and generalization. Existing methods are 

mostly domain-specific and have not undergone systematic 

cross-domain validation, limiting their general value [17-20]. 

To address these common challenges and domain limitations, 

this paper starts from image processing technology, constructs 

a general framework that combines multi-dimensional 

aesthetic representation with scene-driven temporal modeling, 

and provides standardized datasets and cross-domain 

validation schemes to fill the gaps in existing research. 

The research goal of this paper is to solve the common 

computer vision challenge of structured representation and 

dynamic modeling of aesthetic visual styles, using film as a 

typical case to validate the method's effectiveness, while 

achieving cross-domain transfer and providing a universal 

methodology for the field of visual aesthetic computation. The 

core contributions can be summarized in four points: First, a 

triune deep image representation method that integrates local 

texture, global semantics, and style prototypes is proposed, 

enhancing the targeted representation of multi-dimensional 

aesthetic styles through a prototype adaptation network, 

significantly improving the discrimination and semantic 

relevance of non-rigid styles. Second, a narrative-guided 

hierarchical attention masking mechanism is designed to 

optimize the Transformer temporal encoder, enabling the 

capture of local scene style coherence and collaborative 

modeling of key nodes across scenes, providing a general 

technical solution for dynamic style evolution analysis. Third, 

the FilmStyleEvoBench benchmark dataset for film style 

evolution is developed and publicly released, covering various 

types of movie samples and multi-dimensional style 

annotations, accompanied by standard evaluation tasks and 

metrics, enhancing research reproducibility and community 

impact. Fourth, cross-domain conceptual validation through 

painting, architectural videos, and user-generated videos 

demonstrates the generalization potential of the proposed 

method and core modules, validating its universal 

methodological value. 

The subsequent content of this paper will unfold according 

to the following logic: A systematic review of related research 

in aesthetic visual style representation, temporal modeling, 

and film style analysis; a detailed explanation of the technical 

details of the proposed general framework, including data 

preprocessing, deep image representation, temporal 

correlation modeling, style evolution analysis, and 

optimization strategies; experimental validation of the 

method's effectiveness in the film domain, covering dataset 

introduction, comparison experiments, ablation experiments, 

and visualization analysis; cross-domain conceptual validation 

to assess the generalization capability of the method; an in-

depth discussion of experimental results, method limitations, 

and multi-domain impact; and finally, a summary of the core 

work and future research directions. 

 

 

2. METHODS 

 

2.1 Overview of the overall general framework 

 

This paper proposes an end-to-end multi-task learning 

general framework, with the core objective of solving the 

common computer vision challenge of structured 

representation and dynamic modeling of aesthetic visual styles. 

The framework achieves cross-domain adaptation through 

modular and configurable design, seamlessly integrating 

temporal visual data such as films, painting sequences, and 

architectural videos, and using a unified technical paradigm to 

complete precise style characterization and capture evolution 

patterns, overcoming the limitations of traditional domain-

specific methods. 

 

 
 

Figure 1. Overall architecture of the film style evolution analysis method 
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Figure 1 shows the overall architecture of the film style 

evolution analysis method. The framework adopts an "end-to-

end process" with the following general flow: "Data 

Preprocessing → Deep Image Representation Extraction → 

Scene-guided Temporal Correlation Modeling → Style 

Evolution Analysis → Multi-task Optimization." Each module 

collaborates efficiently through standardized interfaces. The 

specific process is as follows: The data preprocessing module 

is responsible for the standardization and quality screening of 

temporal visual data and adaptive processing for different 

domains: film data adopts frame rate adaptive sampling and 

visual saliency detection to select key frames and remove 

invalid frames; painting sequences are sorted by creation 

timestamp and standardized; architectural videos optimize 

space scene continuity and subframe extraction. All data is 

uniformly processed by size normalization, 3×3 Gaussian 

filtering for denoising, and pixel value normalization, 

outputting a temporally consistent image sequence. The deep 

image representation extraction module uses a "local texture 

enhancement - global semantic encoding - style prototype 

adaptation" three-level architecture, integrating low-level 

texture, mid-level semantics, and high-level style information, 

and outputs a 1024-dimensional deep feature vector. The 

scene-guided temporal correlation modeling module adapts to 

the film's narrative scenes, the painting's creation periods, and 

the architectural space scenes using configurable interfaces. It 

uses hierarchical attention masking to capture dual temporal 

correlations: full attention interaction within local scenes 

ensures coherence, and sparse attention across scenes only 

links key nodes, enhancing core dependencies and reducing 

redundant computation. The style evolution analysis module 

performs three core functions: smoothing and change-point 

detection to locate style change points, combining a style 

prototype library to label segments, and calculating the 

temporal synchronization coefficient between style changes 

and scene nodes to quantify evolution patterns. The multi-task 

optimization module uses a composite loss function that 

integrates prototype clustering loss, temporal reconstruction 

loss, change point detection loss, and temporal correlation loss 

to jointly optimize all link parameters end-to-end. Dynamic 

weight allocation achieves multi-objective coordination, 

where the prototype clustering loss ensures clustering 

performance, the temporal reconstruction loss strengthens 

temporal coherence, and the detection and correlation losses 

optimize core task performance. 

 

2.2 Data preprocessing module 

 

The data preprocessing module is designed with the core 

principles of "universal strategy standardization" and "domain 

adaptation customization" to optimize quality and structurally 

convert temporal visual data, providing a unified and high-

quality data foundation for subsequent deep representation 

extraction and temporal modeling. The general preprocessing 

flow includes three core operations: sampling screening, 

denoising enhancement, and standardization. The key 

parameters and core formulas are as follows: The denoising 

step uses 3×3 Gaussian filtering, where the core is to generate 

a filter kernel using a 2D Gaussian function to apply weighted 

smoothing to image pixels, effectively suppressing high-

frequency noise while retaining style texture details. The 

Gaussian filter kernel's mathematical expression is: 

 

G(x,y)=
1

2πσ2
exp (-

x2+y2

2σ2
)  (1) 

where, (x, y) are the coordinates of pixels relative to the center 

of the filter kernel, and σ = 1.0 is the Gaussian standard 

deviation. This parameter is determined through grid search 

and can balance the denoising effect and detail retention. The 

standardization step uniformly adjusts the image size to 

224×224 or 384×384 and uses the default CLIP normalization 

method to eliminate pixel scale differences. The specific 

formula is: 

 

Inorm=
I-127.5

127.5
  (2) 

 

where, I is the original pixel value and Inorm is the normalized 

pixel value. This normalization directly adapts to the feature 

distribution of pre-trained models, enhancing feature learning 

efficiency. 

The domain adaptation processing optimizes the core logic 

based on the data characteristics of different carriers, focusing 

on preserving key information and temporal integrity. The key 

frame extraction for film data uses a "frame rate adaptive 

sampling + ITTI visual saliency detection" composite strategy: 

first, an initial sampling is done at 2 fps, and then the ITTI 

algorithm calculates the image saliency map to select the top 

30% of frames with the highest saliency as candidate key 

frames. The core formula for calculating saliency values in the 

ITTI algorithm is: 

 

S=ωcSc+ωlSl+ωoSo  (3) 

 

where, Sc, Sl, and So are the saliency maps for color, luminance, 

and orientation features, and ωc=ωl=ωo=1/3 are the weights for 

each channel, ensuring a balanced contribution from multi-

dimensional visual information. Additionally, meaningless 

frames are removed: frames such as black screens and 

overexposed frames are eliminated using luminance 

thresholds, and frames with large areas of subtitles are 

removed using text detection algorithms. For painting 

sequences, sampling and sorting are based on the creation 

timestamps, and multiple works from the same period are 

uniformly sampled at equal intervals. Architectural videos 

combine scene segmentation results to perform dense 

sampling at scene transition points to ensure that style change 

details are not lost. 

Temporal and scene alignment is the final step of 

preprocessing and provides the core constraints for subsequent 

scene-guided temporal modeling. Its core is to construct a 

unified temporal coordinate system and bind scene semantic 

labels. Universal temporal alignment is achieved through 

timestamp mapping. For data with native timestamps, such as 

film and architectural videos, the temporal index is directly 

established using the original timestamp t. For data without 

native timestamps, such as painting sequences, the creation 

year/month is converted into a continuous temporal scale t′. 

The mapping formula is: 
 

t'=
Y-Y0

Ymax-Y0
×T  (4) 

 

where, Y is the creation year of the painting, Y0 is the earliest 

creation year in the dataset, Ymax is the latest creation year, and 

T is the total length of the temporal sequence, ensuring that the 

temporal relationship between works from different periods is 

continuous and comparable. Scene labels are defined 

according to domain adaptation: for film data, they are 

associated with the script's narrative structure and labeled as 

plot units; for architectural videos, they are based on spatial 
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functions and labeled as architectural space regions; for 

painting sequences, they are based on art historical periods and 

labeled as creation periods. Finally, the output is a "temporal 

image sequence - temporal index - scene label" triplet, 

ensuring the unified constraint of temporal and semantic 

relationships. 

 

2.3 Deep image representation module 

 

The deep image representation module is the core of the 

framework for accurately encoding aesthetic visual styles. The 

design core is to construct a "global semantics - local texture - 

style prototype" triune multi-dimensional fusion 

representation, which adapts to cross-domain data through a 

universal architecture and enhances the targeted representation 

of style attributes through hierarchical feature encoding. 

Figure 2 shows the architecture of the deep image 

representation module. The basic visual feature extraction uses 

the CLIP-ViT model, which, through large-scale image-text 

cross-modal pretraining, has strong general semantic 

representation capabilities and can effectively capture high-

level semantic information from visual data across domains, 

significantly outperforming single-modal pre-trained models 

like ResNet in cross-domain transfer. The input is the 

preprocessed standardized image, and after being encoded by 

CLIP-ViT, a 768-dimensional global semantic feature vector 

is output, which encodes the overall content semantics of the 

image, providing a semantic anchor point for style 

representation and ensuring that the style analysis remains 

within the content context. 

 

 
 

Figure 2. Architecture of the deep image representation module 

 

The local texture feature enhancement module adopts a 

lightweight 4-layer convolution + pooling structure, 

specifically designed to extract low-level texture and color 

details for aesthetic style, compensating for CLIP-ViT’s 

insufficient capture of local details. The specific structural 

parameters are designed as follows: The first layer convolution 

uses a 3×3 convolution kernel with a stride of 1, outputting 64 

channels, with the activation function being ReLU; the second 

layer convolution uses a 3×3 convolution kernel with a stride 

of 1, outputting 128 channels, followed by 2×2 max pooling; 

the third layer convolution uses a 3×3 convolution kernel with 

a stride of 1, outputting 192 channels; the fourth layer 

convolution uses a 3×3 convolution kernel with a stride of 1, 

outputting 256 channels, followed by 2×2 max pooling. This 

structure enhances feature expression capabilities by 

progressively increasing the number of channels, while 

pooling operations reduce spatial dimensions and retain key 

details, outputting a 256-dimensional local texture feature 

vector. The design principle is that aesthetic style differences 

are often reflected in details such as local color distribution 

and texture, and this lightweight structure ensures feature 

extraction capabilities while avoiding overfitting and 

computational redundancy brought by complex networks. 

The style prototype adaptation network (APN) is the core 

universal module for achieving targeted style representation 

through prototype learning, reinforcing the encoding of multi-

dimensional aesthetic styles. It mainly includes three core 

steps: style prototype memory bank construction, cross-

attention matching, and prototype activation feature 

generation. The style prototype memory bank is initialized 

with 30 style prototypes, covering four general aesthetic 

dimensions: color, composition, lighting, and movement. The 

prototype initialization uses the k-means clustering algorithm 

to cluster cross-domain style sample features, and a dynamic 

expansion mechanism is designed to adaptively add 

prototypes based on new domain data, ensuring cross-domain 

adaptability. The cross-attention mechanism calculates the 

similarity between the current frame’s features and each style 

prototype in the memory bank, using cosine similarity to 

quantify the matching degree, with the core formula as: 

 

αi=
exp ( cos (flocal,pi))

∑ exp (N
j=1 cos (flocal,pj)

  (5) 

 

where, αi is the weight of the i-th style prototype, flocal is the 

local texture feature, pi is the i-th style prototype, and N=30 is 

the total number of prototypes. After obtaining the prototype 

distribution weights through this formula, the residual features 

ri=flocal−pi are calculated, encoding the style difference 

information. 
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Prototype activation feature generation is achieved by 

weighted summation, aggregating the features of each style 

prototype according to similarity weights to obtain a 256-

dimensional prototype activation feature vector, with the 

formula: 

 

f
proto

=∑ αi
N
i=1 ⋅ p

i
  (6) 

 

This feature vector condenses the matching information 

between the current frame and general style prototypes, 

directly encoding high-level style attributes, which enhances 

the style discrimination capability of the representation. The 

feature fusion step uses a "concatenation - fully connected" 

universal strategy. First, the CLIP global semantic features, 

local texture features, prototype activation features, and 

prototype residual features are concatenated to obtain a 1536-

dimensional concatenated feature vector (768 + 256×3). Then, 

a fully connected layer maps it to a 1024-dimensional feature 

vector. The mathematical expression for the fusion process is: 

 

f
fusion

=ReLU(W⋅[f
global

,f
local

,f
proto

,f
res
]+b) (7) 

 

where, W is the weight matrix of the fully connected layer, b 

is the bias term, and [ ] denotes feature concatenation. The 

fused 1024-dimensional feature combines the correlation of 

global semantics, the richness of local details, and the targeted 

style attributes, enabling precise encoding of aesthetic visual 

styles across domains and providing a high-quality feature 

foundation for subsequent temporal modeling. 

 

2.4 Scene-guided temporal correlation modeling module 

 

The core goal of the scene-guided temporal correlation 

modeling module is to accurately capture the long-term 

temporal dependencies of aesthetic styles while enhancing the 

targeting and efficiency of temporal modeling through scene 

semantic constraints. Its design follows the principle of 

"universal architecture + scene adaptation," which can 

seamlessly interface with temporal visual data from different 

domains. Figure 3 shows the architecture of the scene-guided 

temporal correlation modeling module. The input layer 

construction is the foundation of temporal modeling. First, the 

deep image representation is arranged in temporal order, 

forming a temporal feature sequence F=[f1,f2,...,fT]∈RT×1024, 

where ft is the fused feature of the t-th frame. To address the 

issue that Transformer is insensitive to temporal order, 

sinusoidal position encoding is introduced to inject temporal 

information. The calculation formula for the position encoding 

Pt∈R1024 is: 
 

Pt,2k= sin (
t

100002k/1024
) , Pt,2k+1= cos (

t

100002k/1024
)  (8) 

 

where, k is the feature dimension index. This encoding is 

generated by sine/cosine functions with different frequencies 

to distinguish the feature differences at different temporal 

positions. Meanwhile, to integrate scene semantic constraints, 

scene type labels are encoded into a 1024-dimensional scene 

type embedding St using an embedding layer. The final input 

features are fused by feature addition, with the fusion formula 

as: 
 

Xt=ft+Pt+St 
 

This results in an input sequence X=[X1,X2,...,XT]∈RT×1024, 

which provides high-quality input for subsequent attention 

modeling.

 

 
 

Figure 3. Architecture of the scene-guided temporal correlation modeling module 

 

The hierarchical attention mask mechanism is the core 

innovation of the module. Through a dual-layer design of 

"local full attention + cross-scene sparse attention," it captures 

temporal continuity and strengthens key node associations 

while reducing redundant computation. The local scene mask 

constructs a full attention mask for the frame sequence within 

the same scene, with the mask matrix Mlocal∈RT×T defined as: 

If frame t and frame t' belong to the same scene, then 
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Mlocal[t,t′]=1, otherwise 0. The core principle of this design is 

that styles within the same scene have strong continuity, and 

full attention interaction can fully capture the fine-grained 

style dependencies between frames, ensuring the integrity of 

temporal modeling within the scene. The cross-scene global 

mask sparsifies the constraints on frame interactions between 

different scenes. The mask matrix Mglobal∈RT×T is 

mathematically defined as: 

 

Mglobal[t,t
']= {

1, if t'∈{tprev-end,tcurr-start}

0, other cases
 (9) 

 

where, tprev-end is the index of the last frame of the previous 

scene, and tcurr-start is the index of the first frame of the current 

scene. This rule ensures that cross-scene interactions focus 

only on the key nodes at scene transitions, enhancing the 

temporal correlation of key turning points in style evolution 

while reducing the attention computation complexity from 

O(T2) to O(T), significantly improving computational 

efficiency. Since the scene definition can be adapted to 

different domains via a configurable interface, this mask 

mechanism has inherent cross-domain universality. 

The Transformer encoder is responsible for the deep 

encoding of temporal features, using a general structure with 

6 stacked encoder layers. The core parameter configuration is: 

each layer contains 8-head self-attention mechanisms with a 

head dimension of 128; the feed-forward network uses a 2-

layer fully connected structure, with a middle dimension of 

2048 and the ReLU activation function; each layer is equipped 

with layer normalization and residual connections to ensure 

training stability. The encoding process is as follows: The 

input sequence first undergoes masking with both the local 

scene mask and the cross-scene global mask to constrain the 

interaction range of self-attention. The final attention mask is 

M=Mlocal∨Mglobal, where "∨" represents logical OR. Then, a 

multi-head self-attention mechanism aggregates effective 

temporal context information, followed by a feed-forward 

network for nonlinear feature transformation. Finally, residual 

connections and layer normalization are applied to output the 

layer features. The progressive encoding of the 6-layer 

encoder gradually strengthens the ability to fuse long-term 

temporal contexts, ultimately outputting a 1024-dimensional 

style temporal representation sequence Z=[Z1,Z2,...,ZT]∈RT×1024, 

which retains frame-level style details and encodes long-term 

temporal dependencies, providing core temporal feature 

support for subsequent style evolution analysis. 

 

2.5 Style evolution analysis module 

 

The core goal of the style evolution analysis module is to 

achieve precise localization of style changes, label annotation, 

and temporal correlation quantification based on the encoded 

style temporal representation. It also improves result reliability 

through cross-modal auxiliary validation. The overall design 

follows the universal logic of "lightweight decoding + precise 

quantification + auxiliary validation" to adapt to the evolution 

analysis needs of temporal visual data from different domains. 

The style evolution decoding process adopts a progressive 

procedure of "temporal convolution smoothing - mutation 

detection - label matching," with the core component being the 

lightweight temporal convolution network (TCN). Its design 

aims to smooth the noise in temporal representations and 

strengthen the continuity of style evolution while retaining key 

change information. The TCN uses a 3-layer causal 

convolution structure, with the following parameters: each 

layer uses a 3×1 convolution kernel, dilation rates of 1, 2, and 

4, respectively, and the output channel number is 1024, which 

is consistent with the input temporal representation dimension. 

The ReLU activation function is used, and layer normalization 

is applied to stabilize training. 

The smoothing principle of the TCN is to only use current 

and past frame features for calculation through causal 

convolutions, avoiding future information leakage. At the 

same time, dilated convolutions efficiently capture long-term 

temporal dependencies, making the output smoothed temporal 

representation Z′=[Z1′,Z2′,...,ZT′] more aligned with the true 

trend of style evolution. Based on the smoothed representation, 

a threshold-based mutation detection algorithm is used to 

locate style change points. The core judgment rule is: calculate 

the L2 distance dt=‖Zt'-Zt-1'‖2(t ≥ 2), and if dt>τ, the t-th frame 

is determined to be a style change point, where τ is an adaptive 

threshold determined by the dataset's statistical distribution. 

After locating the change points, the frame sequences between 

adjacent change points are divided into style segments, and 

similarity matching with the style prototype memory bank is 

performed to assign corresponding style labels to each 

segment. The final output is a sequence of style change points 

and style label sequences. 

The temporal correlation quantification step aims to 

quantify the temporal synchronization between style changes 

and scene nodes, providing a quantitative basis for in-depth 

interpretation of style evolution patterns. First, the time 

difference between the style change point and the nearest 

scene node is calculated. The general calculation method is: 

let the style change point index be tc, and the nearest scene 

node indexes before and after it be ts1  and ts2 , respectively, 

then the time difference Δt= min ( |tc-ts1|,|tc-ts2|) . To further 

quantify overall synchronization, the Pearson correlation 

coefficient is used to measure the linear correlation between 

the style change point sequence and the scene node sequence. 

Let the temporal distribution vector of style change points be 

C, and the temporal distribution vector of scene nodes be S, 

then the Pearson correlation coefficient formula is: 

 

r=
∑ (T

t=1 Ct-C̄)(St-S̄)

√∑ (T
t=1 Ct-C̄)

2√∑ (T
t=1 St-S̄)

2
  (10) 

 

where, C̄ and S̄ are the mean values of C and S, respectively. 

The value of r ranges from [-1, 1]. The closer r is to 1, the 

stronger the synchronization between style changes and scene 

transitions; conversely, the weaker the synchronization. 

The cross-modal auxiliary validation step uses a general 

fusion approach with attention weighting to adapt to auxiliary 

modality information, such as text and audio, improving the 

reliability of the style evolution analysis results while ensuring 

the core focus remains on image temporal analysis. The 

specific process is as follows: extract the feature sequence of 

the auxiliary modality and map it to a 1024-dimensional space 

using a linear layer to match the dimensionality of the image 

temporal representation. A cross-modal attention mechanism 

is introduced to calculate the matching weight between image 

features and auxiliary modality features. The weight formula 

is: β
t
=softmax(Zt

' ⋅ At
T) , where At is the auxiliary modality 

feature at the t-th frame. The auxiliary modality features are 

then weighted and fused into the image temporal 

representation, resulting in the fused feature Zt''=Zt'+β
t
⋅ At . 

Based on the fused features, change point detection is 
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performed again. If the overlap rate with the image-only 

analysis result is ≥85%, the analysis result is verified as 

reliable; if the overlap rate is low, it is only used as a reference 

correction without altering the core image temporal analysis 

conclusions, ensuring the module’s reliance on image data and 

the stability of the results. Figure 4 shows the architecture of 

the style evolution analysis module.  

 

 
 

Figure 4. Architecture of the style evolution analysis module 

 

2.6 End-to-end optimization strategy 

 

The core of the end-to-end optimization strategy is to 

achieve global optimal convergence of the parameters across 

the framework modules through a multi-task collaborative loss 

function and a staged training mechanism, while ensuring the 

flexibility of cross-domain adaptation. The design of the multi-

task loss function follows the principle of "optimizing core 

tasks separately, collaboratively balancing overall 

performance," integrating four main loss terms: prototype 

clustering loss, temporal reconstruction loss, change point 

detection loss, and temporal correlation loss. Dynamic weight 

allocation is used to realize multi-objective collaborative 

optimization. The total loss function expression is: 

 

𝐿total=λ1𝐿proto+λ2𝐿rec+λ3𝐿cp+λ4𝐿corr  (11) 

 

where, λ1, λ2, λ3, λ4 are the weights of each loss term, 

determined through grid search on the validation set as λ1=0.3, 

λ2=0.2, λ3=0.3, λ4=0.2. This allocation ratio balances the 

quality of style representation and the accuracy of evolution 

analysis. 

The general mathematical definitions and optimization 

goals of each loss term are as follows: Prototype clustering 

loss is based on contrastive learning, strengthening the 

discrimination of style representations by reducing the 

distance of features within the same style and increasing the 

distance of features from different styles. The formula is: 

 

𝐿proto=-
1

N
∑ log (

exp (sim(fi,pyi
)/τ)

∑ exp (M
j=1 sim(fi,pj)/τ)

)N
i=1   (12) 

 

where, fi is the deep feature of the i-th sample, p
yi

 is the 

prototype vector of the style to which the sample belongs, p
j
 

is the j-th prototype in the memory bank, sim( , ) is the cosine 

similarity, τ=0.07 is the temperature parameter, N is the batch 

size, and M is the total number of prototypes. Temporal 

reconstruction loss ensures temporal continuity by 

reconstructing the input temporal feature sequence using a 

decoder. It is defined using mean squared error (MSE): 

 

𝐿rec=
1

T⋅D
∑ ‖T

t-1 f
t
-f̂

t
‖2
2
  (13) 

 

where, f̂
t
 is the reconstructed feature output by the decoder, T 

is the temporal sequence length, and D=1024 is the feature 

dimension. Change point detection loss is used for the binary 

classification task of "change point / non-change point," 

optimized by cross-entropy loss to improve detection accuracy: 

 

𝐿cp=-
1

T
∑ (T

t=1 y
t
log ŷ

t
+(1-y

t
) log ( 1-ŷ

t
)  (14) 

 

where, yt∈{0,1} is the true label for the t-th frame, and ŷ
t
 is the 

predicted probability of the change point. Temporal 

correlation loss uses MSE to optimize the prediction accuracy 

of the Pearson correlation coefficient: 

 

𝐿corr=‖r̂-rgt‖2
2
  (15) 

 

where, r̂ is the predicted temporal synchronization correlation 

coefficient, and rgt is the true correlation coefficient. 

The training strategy adopts a two-stage "pre-training - fine-

tuning" model, combining an adaptive optimizer and learning 

rate scheduling to ensure training stability and convergence 

efficiency. The basic optimization configuration is as follows: 

the AdamW optimizer is used with an initial learning rate of 

10⁻⁴, weight decay of 10⁻⁵, and a batch size of 32. Learning 

rate scheduling follows a cosine annealing strategy with a 

period of 10 training epochs, and the minimum learning rate is 

10⁻⁶. This periodic adjustment of the learning rate avoids local 
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optima and accelerates global convergence. The core 

advantage of the two-stage training is to optimize the goals in 

layers: during the pre-training phase, only the deep image 

representation module and style prototype memory bank are 

trained, freezing the temporal modeling and evolution analysis 

modules. The prototype clustering loss is optimized alone to 

first complete basic clustering of style features, forming a 

stable foundation for style representation and avoiding 

interference from multi-module collaborative training. In the 

fine-tuning phase, all modules are unfrozen, and end-to-end 

joint training is performed using the total loss function, 

optimizing the collaborative adaptation between modules and 

improving overall task performance. 

The domain adaptation fine-tuning strategy further ensures 

the framework’s cross-domain universality. The core is to 

adjust training parameters based on the characteristics of new 

domain data: first, freeze the CLIP-ViT pre-trained backbone 

network to avoid disrupting pre-trained semantic knowledge; 

second, reduce the initial learning rate to 5×10⁻⁵ and use a 

smaller learning rate for parameter updates to reduce 

overfitting risks caused by domain differences; and finally, 

dynamically adjust the number of training epochs based on the 

new domain data size. When the data volume is small, an early 

stop strategy is applied, using the peak validation set 

performance as the stopping criterion. This staged and 

domain-adaptive strategy ensures the training stability of the 

base model and improves the flexibility of cross-domain 

migration, enabling efficient convergence and precise 

modeling on temporal visual data from different domains. 

 

 

3. EXPERIMENT AND RESULT ANALYSIS 

 

3.1 Dataset construction and experimental setup 

 

To support the systematic validation of visual style 

evolution analysis, we constructed the benchmark dataset 

FilmStyleEvoBench. The core design of this dataset is to 

provide standardized data and evaluation support covering 

multiple scenes, adapting to core tasks such as style segment 

retrieval, evolution paragraph segmentation, and style 

prediction. The data selection balances diversity and 

representativeness, covering three major movie genres: drama, 

science fiction, and documentary, with 10 films in each genre, 

totaling 30 films. During the collection and preprocessing 

phase, we used frame-rate adaptive sampling combined with 

ITTI visual saliency detection to extract key frames, retaining 

200-300 key frames per film after removing invalid frames. 

The final dataset consists of approximately 9,000 key frames. 

The annotation system is designed with multiple dimensions, 

covering four major categories of style labels: color, light and 

shadow, composition, and motion, with 15 subcategories in 

total. We also annotated style change point positions and five 

types of narrative nodes. The annotation process follows a 

three-level mechanism of dual annotation, cross-validation, 

and expert review to ensure annotation quality, with Cohen's 

Kappa coefficients all ≥ 0.85. The dataset is publicly available 

on both GitHub and Zenodo platforms, along with defined 

standard evaluation tasks and corresponding baseline methods, 

providing detailed statistical information such as style 

distribution, duration distribution, and annotation example 

images to support reproducible benchmarking for the 

community's research. 

The experimental setup was designed to ensure rigor and 

reproducibility of the method validation. The hardware 

environment used an NVIDIA A100 GPU (80GB VRAM) 

with 256GB of memory. The software environment is based 

on Python 3.9 and built using the PyTorch 1.12.1 deep learning 

framework, with dependencies including OpenCV 4.6.0, 

Scikit-learn 1.2.2, etc. Key parameters were optimized through 

grid search, and the core configuration is as follows: the 

Transformer encoder is a 6-layer structure with 8 heads in the 

self-attention mechanism, and a feed-forward network 

dimension of 2048; the depth feature dimension is 1024, and 

the style prototype memory bank has a size of 30. During 

training, the AdamW optimizer was used with an initial 

learning rate of 1e-4, weight decay of 1e-5, batch size of 32, and 

cosine annealing learning rate scheduling. The pre-training 

stage lasted for 10 epochs, followed by 15 epochs of end-to-

end fine-tuning. Evaluation metrics were designed for 

different tasks: for the style recognition task, accuracy, 

precision, recall, and F1 score were used to quantify 

classification performance; for change point detection, change 

point accuracy and mean absolute error (MAE) were used to 

evaluate localization accuracy; for temporal correlation, 

Pearson correlation coefficient and MSE were used to measure 

the synchronization of style change and scene nodes, forming 

a comprehensive performance evaluation system. 

 

3.2 Comparison experiment results and analysis 

 

To comprehensively verify the superiority of the proposed 

method, four representative comparison methods were 

selected, covering the three major research branches of 

traditional image features, single depth features, and temporal 

style evolution. The comparison dimensions include style 

recognition, change point detection, and temporal correlation, 

which are the three core tasks. The comparison methods are as 

follows: (1) Traditional image feature method: 

SIFT+BOVW+LSTM, a temporal modeling scheme based on 

handcrafted features. (2) Single depth feature methods: 

ResNet50+LSTM and ViT+Transformer, representing basic 

temporal modeling capabilities of convolutional and 

Transformer architectures, respectively. (3) Existing style 

evolution method: CNN-LSTM, a mainstream approach in 

recent film style analysis. The experiments were conducted on 

the FilmStyleEvoBench dataset, and the quantitative results 

are shown in Table 1. A two-tailed t-test was performed to 

verify the performance differences between the proposed 

method and each comparison method, with a significance level 

of α=0.05. 

The quantitative results show that the proposed method 

significantly outperforms the comparison methods across all 

evaluation metrics. In the style recognition task, the proposed 

method achieves an accuracy of 92.3% and an F1 score of 

92.3%, improving by 8.0 and 8.1 percentage points, 

respectively, compared to the best-performing method, 

ViT+Transformer. The t-test results for both metrics are 

p<0.01, confirming the statistical significance of the 

performance improvement. This advantage arises from the 

"local texture - global semantics - style prototype" three-in-

one deep representation, which more comprehensively 

encodes the multi-dimensional attributes of aesthetic style 

compared to the single ResNet or ViT features, enhancing the 

distinction of non-rigid styles. In the change point detection 

task, the proposed method achieves a CP-Acc of 89.4% and an 

MAE of only 2.2 frames, which is a 10.8 percentage point 

improvement in CP-Acc and a 1.9-frame reduction in MAE 
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compared to ViT+Transformer. The core reason for this 

improvement is the hierarchical attention mask mechanism, 

which strengthens the modeling of key scene nodes and avoids 

redundant interference from non-key frames, enabling the 

model to accurately locate style mutation positions. In the 

temporal correlation task, the proposed method achieves a 

Pearson correlation coefficient of 0.87 and an MSE of only 

0.021, significantly outperforming other methods. This 

demonstrates that scene-guided temporal modeling effectively 

captures the intrinsic correlation between style evolution and 

narrative nodes, achieving more precise temporal 

synchronization quantification. 

 

Table 1. Quantitative results of style recognition comparison experiments 

 

Comparison 

Method 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

(%) 

Change Point 

Detection CP-

Acc (%) 

Change Point 

Detection MAE 

(Frames) 

Temporal 

Correlation 

Pearson 

Temporal 

Correlation 

MSE 

t-test  

p-value (vs. 

Proposed 

Method) 

SIFT+BOVW+LSTM 68.4 69.1 67.8 68.4 62.3 8.7 0.52 0.086 <0.001 

ResNet50+LSTM 79.6 80.2 78.9 79.5 73.5 5.3 0.65 0.062 <0.001 

ViT+Transformer 84.3 84.7 83.8 84.2 78.6 4.1 0.71 0.048 <0.01 

CNN-LSTM 82.5 82.9 81.7 82.3 76.2 4.6 0.68 0.053 <0.01 

Proposed Method 92.3 92.6 92.1 92.3 89.4 2.2 0.87 0.021 - 

3.3 Ablation experiment results and attribution analysis 

 

To verify the necessity of the core innovative components 

of the proposed method, four ablation experiments were 

designed: A1 removes the local texture feature enhancement 

module, A2 removes the Prototype Adaptation Network 

(APN), A3 replaces the hierarchical attention mask with a 

regular full attention mask, and A4 removes the temporal 

correlation loss term. The complete model (Full Model) is 

used as the baseline. The quantitative results are shown in 

Table 2, and attribution analysis is conducted using typical 

case studies. 

Attribution analysis shows that each core component has a 

critical impact on the model's performance. In experiment A1, 

after removing the local texture features, the F1 score for style 

recognition dropped by 5.8 percentage points, and CP-Acc 

dropped by 6.2 percentage points. Case study analysis shows 

that the confusion rate between "high contrast neon" and "retro 

film" styles increased by 23%. The reason is that local texture 

features accurately encode low-level style details such as color 

distribution and texture, and the core difference between these 

two styles lies in local lighting and texture. After removing 

this, the model struggled to distinguish such fine-grained style 

differences. In experiment A2, after removing the APN, the 

style recognition accuracy dropped to 84.5%, and the 

confusion rate between "film noir" and "romantic comedy" 

increased by 31%. The APN condenses universal aesthetic 

attributes by learning style prototypes, giving features stronger 

style specificity. Without it, the model relied only on raw 

semantic and texture features, making it difficult to capture the 

higher-level differences in lighting tone and composition logic 

between the two styles, significantly reducing 

distinguishability. 

In experiment A3, after replacing the hierarchical attention 

mask with a full attention mask, the change point detection 

performance deteriorated the most. CP-Acc dropped to 76.3%, 

and MAE increased to 4.8 frames, a decline of 13.1 percentage 

points compared to the complete model. In a typical case, the 

model incorrectly identified non-change frames as change 

points during scene transitions in the movie Inception, with a 

deviation of 6-8 frames. This is because the full attention 

mechanism indiscriminately associates all frames, introducing 

a large number of non-key frame redundancies, weakening the 

guidance role of scene nodes. In contrast, the hierarchical 

mask precisely focuses on key nodes by sparsifying the cross-

scene interactions, ensuring the accuracy of change point 

detection. In experiment A4, after removing the temporal 

correlation loss, the Pearson coefficient of temporal 

correlation dropped from 0.87 to 0.75, and the smoothness of 

the style evolution trajectory significantly decreased. In the 

analysis of the natural scene evolution in the documentary 

Planet Earth, the fluctuation amplitude of the trajectory 

increased by 40%. The temporal correlation loss strengthens 

the coherence of temporal features by constraining the 

synchronization of style changes and scene nodes. After its 

removal, the model struggled to maintain long-term style 

evolution modeling, leading to a decrease in trajectory 

smoothness. In summary, all four core components together 

ensure the model's representation ability, temporal modeling 

relevance, and accuracy in capturing evolutionary patterns. 

Each of these components is an indispensable key module. 

 

Table 2. Quantitative results of ablation experiments 

 

Experiment 

Configuration 

Accuracy 

(%) 

F1 

(%) 

Change Point 

Detection CP-Acc 

(%) 

Change Point 

Detection MAE 

(Frames) 

Temporal 

Correlation 

Pearson 

Temporal 

Correlation MSE 

Full Model (Complete 

Model) 
92.3 92.3 89.4 2.2 0.87 0.021 

A1 (Remove Local 

Texture) 
86.7 86.5 83.2 3.1 0.81 0.029 

A2 (Remove APN) 84.5 84.2 81.5 3.5 0.78 0.035 

A3 (Full Attention 

Mask) 
87.9 87.6 76.3 4.8 0.72 0.046 

A4 (Remove Temporal 

Correlation Loss) 
90.1 89.8 87.6 2.5 0.75 0.041 
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3.4 Stability and generalization verification 

 

To verify the robustness of the model to training parameters, 

stability tests were conducted by adjusting core training 

parameters, such as batch size and initial learning rate. The 

core metrics, including style recognition F1, change point 

detection CP-Acc, and temporal correlation Pearson 

coefficient, were selected for evaluation. The results are 

shown in Table 3. 

The results show that when the batch size is adjusted 

between 16-64 and the initial learning rate is varied between 

5e-5 and 2e-4, the maximum fluctuation amplitude in the core 

metrics is only 1.6%, well below the 3% threshold. This 

indicates that the model is highly adaptable to changes in 

training parameters, with a stable training process that is not 

prone to significant performance fluctuations due to minor 

parameter adjustments. This provides convenience for 

parameter tuning in practical applications and also validates 

the rationality of the optimization strategy and network 

structure design. 

To verify the model's generalization ability on non-

mainstream movie styles, a niche movie subset from the 

FilmStyleEvoBench dataset was selected for testing. The core 

performance of the model on the mainstream subset and niche 

subset was compared. The results are shown in Table 4. 

 

Table 3. Stability verification results 

 
Parameter Configuration (Batch 

Size / Learning Rate) 

Style Recognition 

F1 (%) 

Change Point 

Detection CP-Acc (%) 

Temporal 

Correlation Pearson 

Maximum Fluctuation 

Amplitude 

32/1e-4 (Baseline) 92.3 89.4 0.87 - 

16/1e-4 91.5 88.7 0.85 0.8% 

64/1e-4 92.1 89.1 0.86 0.3% 

32/5e-5 90.7 87.9 0.84 1.6% 

32/2e-4 91.2 88.3 0.85 1.1% 

 

Table 4. Generalization verification results 

 

Dataset Subset 
Style Recognition 

Accuracy (%) 

Change Point Detection 

CP-Acc (%) 

Temporal Correlation 

Pearson 

Performance Drop 

Amplitude 

Mainstream Subset 

(Baseline) 
92.3 89.4 0.87 - 

Niche Movie Subset 88.6 85.7 0.82 3.7-4.3% 

 

Table 5. Cross-domain experiment quantitative results 

 
Cross-domain Dataset Style Recognition Accuracy (%) Change Point Detection CP-Acc (%) 

Painting (Van Gogh Works) 89.2 87.5 

Architectural Video 87.8 86.3 

Vlog Video 85.4 83.7 

Movie (Baseline) 92.3 89.4 

 

The results show that although the model's metrics showed 

slight declines on the niche movie subset, the drop was kept 

within 4.3%, and the core metrics still maintained a high level, 

with style recognition accuracy of 88.6% and CP-Acc of 

85.7%. Independent films and animated films often have more 

personalized styles and more flexible narrative structures. The 

model still achieved accurate style representation and 

evolution modeling, proving that it did not overfit to 

mainstream movie styles and has good generalization ability. 

This advantage arises from the design of the general deep 

representation and scene-guided temporal modeling, allowing 

it to adapt to movie data with different style types and narrative 

structures, providing reliable support for large-scale film style 

analysis. 

 

3.5 Cross-domain concept verification 

 

To verify the cross-domain generalization potential of the 

proposed method, three types of visual temporal data were 

selected to construct a cross-domain test set: (1) Painting Style 

Evolution Dataset, including 50 works from different creation 

periods of Van Gogh (early, middle, and late periods), with 

style labels such as Early Impressionism, Mature 

Impressionism, and evolution nodes marked. (2) Architectural 

Video Style Dataset, including five videos each of Modernism, 

Classicalism, and Postmodernism architectural styles, with 

1200 keyframes extracted and spatial style labels and scene 

switching nodes marked. (3) Vlog Aesthetic Style Dataset, 

including Vlog videos from 10 different vloggers, with 1500 

keyframes extracted and style labels such as Lifestyle 

Recording and Travel Scenery, as well as content switching 

nodes marked. 

The domain adaptation strategy used a simplified version of 

the proposed method. The core adjustments include: Adapting 

scene definitions to fit the characteristics of each domain: 

paintings correspond to creation periods, architectural videos 

correspond to spatial regions, and Vlogs correspond to content 

themes; Dynamically adjusting the style prototype memory 

bank size based on data volume: 20 prototypes for painting (50 

samples), and 30 prototypes for architecture and Vlog. 

Freezing the CLIP-ViT backbone network, fine-tuning only 

the feature fusion layer and prototype memory bank, and 

reducing the initial learning rate to 5e-5 to avoid overfitting 

due to domain differences. 

The cross-domain experiments focused on style recognition 

and change point detection, with quantitative results shown in 

Table 5 to verify the effectiveness of the proposed method 

across domains. 

The results show that the proposed method achieves high 

performance levels across all three cross-domain datasets, 

with style recognition accuracy exceeding 85% and change 

point detection CP-Acc exceeding 83%, with a decrease of 
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only 3.1-6.9 percentage points compared to the movie baseline 

dataset. In the painting domain, the model can accurately 

distinguish between different creation periods of Van Gogh, 

achieving an accuracy of 89.2%, demonstrating that the "local 

texture-global semantics-style prototype" representation 

method effectively adapts to the style evolution analysis of 

static image sequences. In the architectural video domain, the 

model's recognition of different architectural styles and scene 

switching point detection accuracy exceeds 86%, validating 

the adaptability of scene-guided temporal modeling to spatial 

style evolution. In the Vlog domain, although performance 

slightly declined due to fragmented scenes and high style 

diversity, the model still maintains a CP-Acc of over 83%, 

indicating its ability to handle the style analysis of non-

professional content. 

In conclusion, the proposed method, with simple domain 

adaptation adjustments, can efficiently perform style evolution 

analysis in different temporal visual domains such as painting, 

architecture, and Vlogs, proving that its core modules have 

universal adaptability and verifying its value as a "visual style 

temporal analysis" general methodology. This provides a 

transferable technical solution for cross-domain visual 

aesthetic computing. 

To quantify the dynamic evolution of screen style in movie 

narratives and clarify the intrinsic relationship between visual 

language and plot rhythm, this study performed temporal 

sampling and deep style representation analysis on key scenes 

of typical narrative films. The temporal sampling results in 

Figure 5(a) show that the film transitions from a cool-toned, 

low-saturation wide shot at the beginning to a warm-toned 

mid-shot scene at the 25% node. The climax phase (50% to 

75%) features a high-saturation, high-contrast close-up, which 

ultimately returns to a cool-toned wide shot layout, intuitively 

presenting the phase changes in screen style as the plot 

progresses. The deep representation results in Figure 5(b) 

further reveal the essential characteristics of this change: the 

color heatmap clearly shows the cyclical change of the main 

color tones from blue-green to red-yellow and back to blue-

green. The composition radar chart shows a high-to-low-to-

high proportion of wide shots, with close-ups peaking during 

the climax. The contrast values of the light and shadow 

histogram rise from 0.7 to 1.8 and then fall back to 0.8, which 

is highly consistent with visual perception. This result 

indicates that the deep image representation method can 

accurately extract the core style features of movie scenes, and 

the temporal correlation visualization results effectively 

capture the evolution trajectory of style as the plot progresses. 

It provides a reliable feature foundation for subsequent 

construction of movie screen style evolution models and also 

confirms the strong correlation between screen style and 

narrative rhythm. 

 

 
(a) Temporal core sampling of movie scenes 

 

 
(b) Visualization of deep image style feature representation 

 

Figure 5. Actual effect verification of movie screen style evolution analysis method 

 

 

4. DISCUSSION 

 

A deep interpretation of the experimental results reveals the 

scientific rationale behind the core design of this method. The 

innovative architecture, which integrates multi-dimensional 

fusion representation and scene-guided temporal modeling, 

provides key technical insights for visual aesthetic computing. 

The three-in-one fusion representation of "local texture-global 

semantics-style prototype" precisely aligns with the non-rigid 

and multi-dimensional characteristics of aesthetic style by 

collaboratively encoding low-level texture details, mid-level 

content semantics, and high-level style attributes. This is the 

core reason why it adapts to various fields such as film, 

painting, and architecture. In the experiments, this 
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representation significantly improved the differentiation of 

non-rigid styles, confirming the critical role of multi-

dimensional feature fusion in overcoming the limitations of 

traditional single-feature methods. The hierarchical attention 

mask mechanism optimizes temporal modeling by guiding 

scenes. Compared to the generic full-attention mechanism 

with indiscriminate interactions, the local full-attention 

mechanism ensures the capture of scene coherence within 

scenes and sparse cross-scene attention focuses on key nodes. 

This design reduces redundant computational overhead while 

enhancing the modeling of the core dependencies of style 

evolution, significantly improving change point detection 

accuracy and temporal correlation quantification. This general 

architecture also endows the method with excellent cross-

domain generalization ability. Its precise representation of 

universal aesthetic dimensions and the general temporal 

modeling logic guided by scenes provide an important 

reference for the design of general methods in visual aesthetic 

computing, advancing research in non-rigid, high-level visual 

attribute modeling. At the same time, the method's multi-

domain influence is significant. It improves the technical 

system of long video structured understanding in the field of 

computer vision; in the film industry, its potential for real-time 

analysis can support editing assistance, trailer generation, and 

shooting style monitoring; in the digital humanities, it provides 

objective tools for large-scale quantitative research on film 

and cultural heritage, helping verify art history theories; and 

the cross-domain verification results in fields such as painting 

and architecture demonstrate its broad application potential. 

However, the method still has limitations that need 

optimization, which also point to future core research 

directions. The current model's high computational 

complexity limits its application in ultra-long videos and 

large-scale image sequence analysis. Future work should 

explore sparse Transformer architectures based on local 

windows and dynamic pruning strategies for the style 

prototype library to reduce computational overhead while 

ensuring performance. The current style prototype library does 

not cover niche and emerging aesthetic styles sufficiently. 

Future work could combine unsupervised contrastive learning 

and open vocabulary learning to enable automatic discovery 

and dynamic expansion of style prototypes, enhancing the 

model's adaptability to diverse styles. Currently, cross-domain 

adaptation requires manual adjustment of key parameters. 

Future research should introduce domain adaptation 

mechanisms to achieve automatic model adaptation across 

different domains, simplifying the cross-domain application 

process. Additionally, the existing multi-modal fusion is 

merely auxiliary and lacks depth. Future work can explore 

cross-modal attention fusion strategies between images, text, 

and audio, integrating multi-dimensional information to 

improve the comprehensiveness of style evolution analysis. 

These explorations will further improve the general 

methodology of visual style temporal analysis, advancing the 

field of visual aesthetic computing and expanding the method's 

application value in more practical scenarios. 

 

 

5. CONCLUSION 

 

This paper addressed the general challenge in computer 

vision of structured representation and dynamic modeling of 

non-rigid, high-level visual styles. It proposed an end-to-end 

general framework for "deep image representation-scene-

guided temporal modeling-style evolution analysis" and 

systematically accomplishes four core tasks: constructing a 

general deep representation method of local texture-global 

semantics-style prototype, enhancing the differentiation of 

multi-dimensional aesthetic styles; designing a narrative-

guided hierarchical attention mask mechanism to achieve 

targeted temporal correlation modeling; building and publicly 

releasing the FilmStyleEvoBench benchmark dataset for film 

style evolution, along with a standardized evaluation system; 

and verifying the method's generalization potential through 

cross-domain validation with painting, architectural videos, 

and Vlogs. A series of experiments and ablation analyses 

validated the necessity of each core component. The 

framework significantly outperformed existing comparison 

methods in style recognition, change point detection, and 

temporal correlation quantification tasks, with performance 

improvements showing statistical significance. 

Key conclusions indicate that the proposed framework 

effectively overcomes the limitations of traditional methods in 

non-rigid style representation and dynamic evolution 

modeling. Its general architectural design provides the method 

with excellent cross-domain adaptability, offering a reliable 

technical solution for solving the general problem of visual 

aesthetic style temporal analysis. This research not only 

advances the field of visual aesthetic computing and long 

video structured understanding but also provides strong 

support for the creation assistance in the film industry, the 

quantitative research of film cultural heritage in digital 

humanities, and the style evolution analysis in painting, 

architecture, and other fields. It lays a solid foundation for 

subsequent research and provides a reusable reference 

framework. 
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