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Automated sorting of fruits and vegetables is critical in modern agriculture and industry.
However, this task faces a number of challenges, including the need for high classification
accuracy, real-time processing speed, interclass similarities like the resemblance of chili
peppers and bell peppers, and intraclass variability like the size and color differences among
class apples. To tackle these challenges, this study implemented changes to the pre-trained
AlexNet deep learning model, in which the first seven layers were frozen for feature
extraction, replacing ReLU activations with LeakyReLU to improve discrimination of
visually similar species, and class-weighted loss concerning imbalance among
underrepresented classes like ginger (68 samples) and orange (69 samples). The model
achieved 98.04% accuracy on the 36-class dataset (3,818 images), demonstrating a 2.47%
improvement over the baseline AlexNet (95% confidence interval [1.12%, 4.19%]) and a
56.2% reduction in classification errors. As a side effect, computational efficiency
improved, achieving 127.13 images per second for training and 55.45 images per second for
testing on GPU hardware, demonstrating an optimal balance of performance and efficiency
for practical deployment. This study revealed a solution for automated sorting of produce,
where accuracy, morphological ambiguities, and operational speed posed critical

constraints.

1. INTRODUCTION

The classification of fruits and vegetables is an innovation
in agricultural technology that improves food security, supply
chain management, and waste minimization [1]. Human errors
in manual sorting in the fresh produce industry account for
approximately 30-40% of post-harvest losses [2]. Applications
for recognition of fruits can remove the human component in
fruit harvesting processes [3]. The multitude of fruit types
makes their categorization difficult [4]. The efficiency of an
image recognition system has been enhanced by recent
developments in computer vision [5]. There is tremendous
potential to solve these two persistent problems using deep
learning-based computer vision systems. Firstly, interclass
similarities, in which distinct species, such as bell and chili
peppers, share visual look-alikes. Secondly, intraclass
variability—differences in the same cultivar’s appearance
owing to environmental conditions—can be substantial [6].
The need for accurate classification systems dealing with fruits
and vegetables has been spurred by the growing automation in
food quality assessment, smart farming, and precision
nutrition [7].

Current approaches using transfer learning with pretrained
convolutional neural networks (CNNs), a category of
Artificial Neural Network (ANN), have received scant
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attention to accuracy on controlled datasets, while often
overlooking critical operational requirements [8]. The impact
of advanced CNN-based image processing frameworks has
significantly advanced the field of image categorization [9]. In
2012, Krizhevsky [ 10] won the ImageNet competition with his
model, AlexNet, which demonstrated outstanding
performance in image categorization. This architecture marks
a significant breakthrough in deep learning for imaging and
has served as the basis for subsequent complex CNN
architectures [11, 12].

Although the classification of fruits and vegetables has
advanced with image processing and machine learning
techniques, several areas remain that can be addressed by
advanced deep learning frameworks such as AlexNet. The
model implemented in reference [13] used color and texture
feature extraction, PCA for feature selection, and classification
with an artificial neural network (ANN). Even though it
achieved a remarkable 98.3% accuracy, this approach relied
heavily on handcrafted features, which cannot match the
performance of deep learning algorithms that automatically
extract features from images. With the success of CNNs across
various domains, many researchers shifted their focus to fruit
recognition using CNNs. Despite CNN being effective at
solving the image recognition problem, it still has certain
limitations: it does not require an additional feature extraction


https://orcid.org/0009-0000-4977-0493
https://orcid.org/0000-0002-3310-096X
https://orcid.org/0000-0003-1006-3120
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420623&domain=pdf

process during classification; instead, the entire feature
extraction and classification are performed in a single link. As
a result, the model structure is straightforward and the
implementation process is comparatively simple.

With a range of species and strong generalization, Zeng [14]
classified 26 distinct fruits and vegetables using the VGG
architecture. The classification accuracy was 95.6%, which
satisfies the requirements for fruit classification but falls short
in terms of speed and morphological ambiguities.

In a comparison of the AlexNet deep learning approach with
traditional methods such as BP neural networks and SVM
classifiers, Zhu et al. [15] demonstrated that deep learning
outperformed conventional methods by a large margin,
achieving 92.1% accuracy on the test set. They presented a
deep learning-based vegetable image classification system
using the AlexNet model, demonstrating high performance.

Divya Shree et al. [16] developed a two-phase model for
fruit recognition and estimation of their nutritional value using
a pre-trained AlexNet model. A CNN was used to classify
fruits in the first phase, after which pertinent dietary
information for the detected fruit was displayed. Its

performance on 15 fruit categories was evaluated and about 91%

accuracy was reported.

In reference [17], the results were compared with
algorithms such as AlexNet, GoogleNet, and ResNet-50,
which were fine-tuned, along with metrics such as accuracy,
precision, sensitivity, and specificity. The study showed that
the new deep convolutional neural network, Fruitl14Net,
enabled efficient classification while being low-cost in terms
of computational, training time, and resource requirements. As
noted, however, the accuracy, precision, and sensitivity
metrics reported were much lower than those achieved with
fine-tuned models.

Fu et al. [18] reported that an optimized version of

GoogLeNet achieved 96.88% accuracy during training and 98%

during testing for fruit and vegetable classification. The
optimization focused on parameter reduction and
modifications to the Inception-based design, improving
training speed from 11.38 images per second to 33.68 images
per second. An efficient model for the classification and
identification of eight types of date fruit was presented by
Albarrak et al. [19]. The proposed model is based on the
MobileNetV2 architecture and achieved an accuracy of 99%,
outperforming other well-known models such as AlexNet,
VGG16, InceptionV3, and ResNet, but no details on testing
and training speeds are provided.

Amin et al. [20] proposed a method based on Convolutional
Neural Networks (CNNs) combined with transfer learning for
automatic classification of fruit freshness. In this instance,
AlexNet was applied for transfer learning and later fine-tuned
for better results. Its application to three publicly available
datasets demonstrated that the method achieved an average
accuracy of over 99%. However, the study did not address
speed of processing, intra-category ambiguity, visual
variability, and the range of feature recognition for class
imbalance, all of which are crucial for practical
implementation.

Vegetable classification was performed by the study [21]
using the AlexNet CNN model and block-based compressive
sensing (CS) to enhance computational and storage efficiency.
A standalone AlexNet model achieved 98% maximum test
accuracy. With block-based CS, the performance declined to
96.66%. There was no mention of dealing with interclass
resemblance or intraclass variation in focus on fruit
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classification,
classification.

Thirumalraj et al. [22] developed an automated fruit
recognition system that employs a modified AlexNet model
for feature extraction and an FSSATM (Fruit Shift Self-
Attention Transform Mechanism) classifier. This system
sought to improve classification performance on the
comprehensive Fruit-360 dataset, which contains 90,483
images across 131 fruit classes. The model achieving 98%
accuracy is impressive; however, it did not report training or
testing times, nor did it appear to address concerns about
category or contour overlap, or variation in the features of
samples from a single class.

A recent study [23] compared traditional machine learning
and deep learning approaches for fruit recognition and
classification using the Fruit-360 dataset. The authors
achieved 99.85% accuracy with the AlexNet model. However,
while the approach demonstrated strong classification
performance, it did not examine critical deployment
challenges, such as processing speed and visual resemblance
across different fruit types or appearance inconsistencies
within the same category—factors that significantly affect
real-world classification systems.

Kurniawan et al. [24] used the deep Convolutional Neural
Network AlexNet to improve the efficiency and accuracy of
palm oil fruit maturity classification. Though the model
achieved an accuracy of 0.9962, which met classification
benchmarks, it fell short in processing speed and in handling
morphological ambiguities.

Recent studies have demonstrated the performance gains
possible with increasingly complex architectures. Notably,
Wang et al. [25] proposed an advanced framework for
eggplant disease detection based on multimodal data fusion
and an embedding attention mechanism. Their method
integrates image data with environmental sensor inputs using
a dual-stream network (ResNet-50 and BERT) and
dynamically weights features via a specialized attention
module. Although this approach achieves notable accuracy, it
also exemplifies a trend toward high computational
complexity.

This work solves all these problems, creating a landmark
achievement in the automatic classification of fruits and
vegetables by addressing a triad of the most important and
closely related classification problems: achieving real-time
classification accuracy, processing speed, and tolerance to
similarity in classification features within a class and between
classes. Unlike prior approaches that addressed accuracy,
speed, or class imbalance in isolation. As an extension to the
previous study and finding a better classification system, an
innovative optimization of the AlexNet architecture has been
investigated to achieve superior performance on a complex
and imbalanced dataset containing 36 classes with substantial
variations in sample sizes, background conditions, and object
density, like multiple peppers appearing in a single image.
Given the modifications made to the baseline AlexNet, the
main key contributions of this work can be summed up as
follows:

- A modified AlexNet architecture is designed and validated
for an end-to-end classification system, which is particularly
customized for surmounting the core challenges in fruit and
vegetable imagery: high inter-class similarity, significant
intra-class variability, and the practical necessity for real-time
processing,

- It is shown that with a strategic and holistic modification,

particularly within the context of fruit



a classic CNN can achieve state-of-the-art performance on a
complex 36-class dataset while retaining superior
computational efficiency compared to much larger modern
architectures. This was achieved through the integrated use of
layer freezing, LeakyReLU activations, and a class-weighted
loss function,

- Extensive empirical analysis is provided that encompasses
per-class metrics, computational complexity, and thorough
statistical validation.

This paper is organized as follows: the proposed system is
described in Section 2; Section 3 presents the experimental
results and their analysis; and Section 4 offers the conclusion
and an outlook on limitations and future research directions.

2. THE PROPOSED SYSTEM DESIGN

The evolution of an actual fruit and vegetable classification

system required a holistic approach following a conventional
deep learning pipeline, including three essential stages: data
preprocessing, network modification, and tailored training
protocols. This section outlines the systematic design of the
proposed solution, which incorporates key enhancements to
optimize performance on a 36-class agricultural dataset.
Selected changes were made to the baseline AlexNet
architecture to improve feature discrimination among closely
related species while enhancing computational efficiency.
These changes benefited to some degree both feature
discrimination and robustness to overfitting for visually
similar produce. Diverse categories of produce were subjected
to a thorough training regimen to obtain stable model
performance with strong convergence. These elements,
together, designed a complete system that could solve practical
agricultural automation problems as accurately and quickly as
possible. The complete system design is illustrated in Figure 1.
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Figure 1. Diagram for the proposed study

2.1 Dataset

The dataset used in this study was obtained from the
publicly available Kaggle dataset titled "Fruits and Vegetables
Image Recognition Dataset" [26]. It comprised 3,818 images,
categorized into 36 distinct classes of fruits and vegetables.
These categories included the following fruit classes: banana,
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apple, pear, grapes, orange, kiwi, watermelon, pomegranate,
pineapple, and mango; and the following vegetable classes:
cucumber, carrot, capsicum, onion, potato, lemon, tomato,
radish, beetroot, cabbage, lettuce, spinach, soybean,
cauliflower, bell pepper, chili pepper, turnip, corn, sweetcorn,
sweet potato, paprika, jalapefio, ginger, garlic, peas, and
eggplant. Sample images from the dataset are shown in Figure



2, illustrating the visual diversity across fruit and vegetable
categories, including varying object sizes, background
complexities, and lighting conditions. The dataset
demonstrated evident intraclass variability in the spatial
arrangement of objects within images, with certain classes,
such as eggplant and onions, containing both single and
grouped items. While this non-uniformity could, in theory,
bias feature learning toward object scale or background
context, it ultimately enhanced the model’s robustness to real-
world agricultural conditions.

As illustrated in Figure 3, the dataset was split into three

spinach

cucmber potato
bell epper
p pp beetroot
onion

cabbage

4

subsets: 3,110 images for training, 350 for validation, and 358
for testing. Some issues were resolved before the actual
training began. Each image was transformed to 227 by 227 so
that it could be used by the AlexNet architecture. Additionally,
grayscale images were converted to RGB to provide a
consistent three-channel input. A class distribution analysis
was performed to assess and address class imbalance.
Moreover, the training dataset was randomly shuffled during
training to reduce potential sequence bias and improve
generalization. The detailed distribution of images across all

categories and dataset splits is provided in Table 1.
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Figure 2. Sample images from selected fruit and vegetable categories in the dataset
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Figure 3. The number of images per class in the training, validation and testing sets
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Table 1. Class distribution of training, validation, and testing sets

Category  Training Validation Testing Total Category Training Validation Testing Total
peas 100 10 10 120 corn 87 10 10 107
pineapple 99 10 10 119 jalapefio 88 9 10 107
grapes 100 9 10 119 chili pepper 87 9 10 106
turnip 98 10 10 118 mango 86 10 10 106
soy beans 97 10 10 117 watermelon 84 10 10 104
spinach 97 10 10 117 paprika 83 10 10 103
lettuce 97 9 10 116 lemon 82 10 10 102
cucumber 94 10 10 114 carrot 82 9 10 101
onion 94 10 10 114 radish 81 9 10 100
tomato 92 10 10 112 eggplant 82 9 9 100
garlic 92 10 10 112 pomegranate 79 10 10 99
cabbage 92 10 10 112 cauliflower 79 10 10 99
sweetcorn 90 10 10 110 potato 77 10 10 97
capsicum 89 10 10 109 banana 75 9 9 93
bell pepper 90 9 10 109  sweet potato 69 10 10 89
pear 88 10 10 108 orange 69 9 10 88
kiwi 88 10 10 108 ginger 68 10 10 88
beetroot 88 10 10 108 apple 67 10 10 87
Total Dataset Images 3818

2.2 AlexNet architecture modification

The AlexNet architecture is considered the first deep
convolutional neural network that was used for image
classification in large databases. It consisted of five
convolutional and max-pooling layers, followed by three
dense layers, including fully connected layers with ReLU

activation. It is worth noting that the neural network was
proposed by Krizhevsky et al. [10] in 2012. Although baseline
models are helpful for many applications, in the case of fruit
and vegetable classification, they were not valuable, as they
were unable to discriminate fine-grained features due to the
lack of class imbalance.

Table 2. Layer configuration of the proposed modified AlexNet-based classifier

Layer Name Type Activations
1 data 227x227x3 images with ‘zerocenter’ normalization Image Input ~ 227(S) x 227(S) x 3(C) x1(B)
2 convl 96 11x11x3 convolutions with stride [4 4] and padding [0 0 0 0] 2-D Convolution  55(S) x 55(S) x 96(C) x1(B)
3 relul leaky LeakyReLULayer LeakyReLULayer 55(S) x 55(S) x 96(C) x1(B)
4 norm1 cross channel normalization with 5 channels per element Cross Channel 45 ¢, . 55(5) x 96(C) x1(B)
Normalization
5 pooll 3x3 max pooling with stride [2 2] and padding [0 0 0 0] 2-D Max Pooling 27(S) x 27(S) x 96(C) x1(B)
6  conv2 2 groups of 128 5x5x48 convolutions with stride [1 1] and padding [2 2 2 2] Z(ZODHS;;)IE?;: 27(S) % 27(S) * 256(c) *1(B)
7 relu2 leaky LeakyReLULayer LeakyReLULayer 27(S) x 27(S) x 256(C) x1(B)
8 norm?2 cross channel normalization with 5 channels per element Cross C.h anpel 27(S) x 27(S) x 256(C) x1(B)
Normalization

9 pool2 3x3 max pooling with stride [2 2] and padding [0 0 0 0] 2-D Max Pooling 13(S) x 13(S) x 256(C) x1(B)
10 conv3 384 3x3x256 convolutions with stride [1 1] and padding [1 1 1 1] 2-D Convolution 13(S) x 13(S) x 384(C) x1(B)
11 relu3 leaky LeakyReLULayer LeakyReLULayer 13(S) x 13(S) x 384(C) x1(B)
12 convé4 2 groups of 192 3x3x192 convolutions with stride [1 1] and padding [11 1 1] Z(ZODHS;;)IE?;: 13(S) x 13(S) x 384(C) x1(B)
13 relu4 leaky LeakyReLULayer LeakyReLULayer 13(S) x 13(S) x 384(C) x1(B)
14 conv5 2 groups of 128 3x3x192 convolutions with stride [1 1] and padding [11 1 1] ZcoDnSéﬁf;? 13(S) x 13(S) x 256(C) x1(B)
15 relu5_leaky LeakyReLULayer LeakyReLULayer 13(S) x 13(S) x 256(C) x1(B)
16 pool5 3%3 max pooling with stride [2 2] and padding [0 0 0 0] 2-D Max Pooling  6(S) x 6(S) x 256(C) x1(B)

17 fc6 4096 fully connected layer Fully Connected 1(S) x 1(S) x 4096(C) x1(B)
18 relu6 leaky LeakyReLULayer LeakyReLULayer 1(S) x 1(S) x 4096(C) x1(B)
19 drop6 50% dropout Dropout 1(S) x 1(S) x 4096(C) x1(B)
20 fc7 4096 fully connected layer Fully Connected 1(S) x 1(S) x 4096(C) x1(B)
21 relu7_leaky LeakyReLULayer LeakyReLULayer 1(S) x 1(S) x 4096(C) x1(B)
22 drop7 50% dropout Dropout 1(S) x 1(S) x 4096(C) x1(B)
23 Fruit Feature Learner 36 fully connected layer Fully Connected 1(S) x 1(S) x 36(C) x1(B)

24 Prob softmax Softmax 1(S) x 1(S) x 36(C) x1(B)

25 Fruit Classifier Class weighted crossentropyex with ‘apple’ and 35 other classes  Classification Output 1(S) x 1(S) x 36(C) x1(B)

To address these limitations, the AlexNet architecture was
modified (Table 2) with three key adaptations. First, all
standard ReLU activations were replaced with LeakyReLU
units (0=0.01) to improve gradient propagation and mitigate
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neuron saturation. Secondly, the last fully connected layer was
modified to support 36 output classes, and class-weighted loss
was used to address dataset imbalance. Thirdly, a transfer
learning approach was used, in which low-level feature



extraction in the first seven convolutional layers was preserved
by freezing those layers. In contrast, the remaining layers were
trained to domain-specific features. These modifications
enhanced feature discrimination for agricultural imagery while
maintaining computational efficiency. The use of LeakyReLU
ensured stable gradient flow during backpropagation,
particularly for inputs that were negatively activated.
Additionally, the class-weighted loss function effectively
balanced learning across underrepresented categories in the
training dataset.

2.3 Training protocol

The modified architecture was trained using an Adam
optimizer with an initial learning rate of 3x107%, which was
reduced by a factor of 0.1 every five epochs. This approach
balanced rapid convergence during early training stages with
precise weight updates in later phases. Validation metrics were
reviewed after every epoch, and an accuracy-improving
validation window of 10 iterations triggered early stopping to
avoid overfitting. A mini-batch size of 128 was used,
combined with L2 regularisation (A=0.0005) to combat
overfitting. A combination of early-layer freezing and deeper-
layer fine-tuning achieved effective transfer learning, reducing
trainable parameters by 58% compared to full-network
training. Convergence occurred between 12 and 15 epochs, at
which point the training loss was below 0.01, and the class-
weighted loss function was stabilised and optimised.

2.4 Rationale for architectural selection and integration

The specific changes to the AlexNet architecture were
guided by a coherent design philosophy tailored to the
application at hand. Equally, basing the system on AlexNet is
motivated by the requirement for a lean, efficient architecture
suitable for edge deployment-one that strikes an outstanding
balance between representational power and computational
footprint compared to more modern, more computationally
expensive networks.

In this context, the changes had specific purposes. Freezing
the first seven convolutional layers served a dual purpose. First,
it greatly reduces the number of parameters to train, thereby
speeding up training and reducing the risk of overfitting when
dealing with a relatively small dataset. Second, it keeps intact
the generic low-level feature detectors, which are edge and
texture filters, for instance, which had been learned from
ImageNet and maintain their universal value on agricultural
scenes with no need to relearn them.

Replacing the default ReLU activation with LeakyReLU
was essential to prevent dying neurons, which would have
been highly undesirable in a network fine-tuned as deeply as
this one. Such a change ensures that the gradient flow during
backpropagation remains consistent when learning minor
differences in features between visually quite similar classes,
such as bell peppers and chilli peppers.

Simultaneously, the natural imbalance in this dataset, such
as 68 samples of ginger and 120 peas, would naturally bias a
standard model towards the majority class. Implementing a
class-weighted loss function is a direct counterbalance to such
biases, since it imposes a higher penalty for misclassifying
instances from underrepresented classes, thereby forcing the
model to be more sensitive to their discriminative features.
Isolated, each technique addresses a specific weakness, while
together they form a synergistic system that is robust, efficient,
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and accurately tuned for the complexities of fruit and
vegetable classification. This integrated approach ensures the
model is not only accurate but also practical for real-world
agricultural applications.

3. EXPERIMENTAL AND RESULT ANALYSIS

The experimental evaluation was conducted on a dataset of
3,818 high-resolution fruit and vegetable images spanning 36
categories to validate performance improvements achieved
through architectural modifications to the AlexNet model. All
implementations were developed in MATLAB R2023b using
the Deep Learning Toolbox and executed on a high-
performance workstation equipped with Windows 11
Professional 64-bit, a 13th Gen Intel Core i7-13700H
processor (2.40GHz), 16 GB RAM, 500GB SSD storage, and
NVIDIA GeForce RTX 4060 GPU (8GB VRAM) acceleration.
A modified and a baseline architecture were implemented
alongside each other, along with the additional criteria of
training stability and computational efficiency, to form a
comprehensive assessment framework.

The selection of the specific hyperparameters for the
modified AlexNet architecture, particularly the LeakyReLU
activation and the seven-layer freezing strategy, was not
arbitrary but was determined through a structured ablation
study. This study evaluated variants using ReLU and
LeakyReLU (0=0.01, 0=0.1), along with different layer-
freezing strategies (3-9 frozen layers). The final combination
of LeakyReLU (¢=0.01) and seven frozen layers emerged as
the Pareto-optimal choice, delivering superior accuracy for
fruit and vegetable recognition without the computational
burden of training the whole network.

Model performance has significantly improved with the
changes made. The modified architecture achieved a test
accuracy of 98.04% on the evaluation dataset, representing a
2.51 percentage point increase over the baseline model's
95.53% accuracy.

This enhancement was statistically validated through
bootstrap analysis, with the improvement falling within a 95%
confidence interval of 1.12% to 4.19%. The model has proven
more reliable, with the error rate reduced from 4.47 per cent to
1.96 per cent. These metrics are visually contrasted in Figure
4, which presents a direct comparison of original and
optimized accuracy and error rates using a double-bar plot.

Training dynamics exhibited notable improvements, as
depicted in Figure 5. Compared to the baseline architecture,
the modified model achieved peak validation accuracy about
3 epochs earlier, demonstrating improved convergence. This
accelerated training occurred alongside enhanced stability,
with reduced fluctuation in loss values across epochs. The
experiment addressed two fundamental challenges in
agricultural image classification: interclass similarities among
visually analogous produce such as bell peppers vs. chili
peppers and intraclass variability stemming from natural
differences in color, size, and morphology such as red vs.
green apples. The modified AlexNet architecture
demonstrated notable success in discriminating between
taxonomically distinct but visually similar categories, as
evidenced by the confusion matrix presented in Figure 6.
While most class pairs achieved >99% accuracy, residual
misclassifications primarily occurred between produce with
overlapping morphological features, such as tomatoes and
cherries, where shape and texture differences were subtle.



100

99

98.04%

98

Accuracy (%)

Original  Optimized

455 4.47%

Error Rate (%)
= o
n ™ w w

-

0.5

Original

Optimized

Figure 4. Comparison of original versus optimized accuracy and error rates

Training Progress (24-Jun-2025 16:30:57)

Acauracy (%)

0 1 1 1 1

Results

Validation accuracy:
Training finished:
Training Time
Start time:

Elapsed time:
Training Cycle
Epoch:

Iteration

Iterations per epoch:
Maximum iterations
Validation
Frequency

Other Information
Hardware resource:
Learning rate schedule:

Learning rate:

98.00%

Max epochs completed

24-Jun-2025 16:30:57
5 min 13 sec

150f 15
360 of 360
24

360

24 iterations

Single GPU

Piecewise

3e-06

o 50 100 150 200
Iteration

3 e 10

250 300 350

Accuracy

Training (smoothed)
Training

— -®— - Validation
Loss

Training (smoothed)

Training

@, Final — -@— - Validation

150 200
Iteration

250 300 350

Figure 5. Training dynamics of the modified AlexNet for accuracy and loss curves across 15 epochs

Intraclass variability was effectively mitigated by
combining frozen early layers (preserving generic feature
extractors) with LeakyReLU activations, thereby maintaining
gradient flow across diverse color and texture distributions
within a single category. The class-weighted loss function
further compensated for underrepresented classes, ensuring
robust performance even for classes with limited training
samples, such as ginger and orange. Considering the natural
heterogeneity of lighting conditions, occlusion, and varying
stages of produce maturation, these adaptations were crucial.
As shown in Table 3, the modified architecture outperformed
the Dbaseline model across all evaluation metrics,
demonstrating consistent improvement.

Computational efficiency metrics revealed substantial gains
in processing speed. Training throughput increased by 123%,
from 56.94 to 127.13 images per second, while testing speed
improved by 4%, from 53.32 to 55.45 images per second. As
the classification accuracy was preserved, these improvements
highlighted the model's effectiveness for real-time
deployment. The bootstrap distribution in Figure 7 shows the
frequency of mean accuracy differences between the
optimized and baseline models. The 95% confidence interval
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for this difference (1.12% to 4.19%) excludes zero, indicating
a statistically significant improvement at the p<0.05 level and
confirming that the observed gains are not due to random
chance.

A broad class-wise performance evaluation was thus carried
out to assess the effectiveness of the class-weighted loss
function in mitigating dataset imbalance. As can be seen from
Table 4, despite there being significant variation in the number
of samples available to train each class (67-100 samples per
class), the model ensured relatively strong performance in all
36 classes. For example, the smallest classes, such as ginger
and orange, with 68 and 69 samples, respectively, attained
100% recall; whereas the largest classes, such as peas and
grapes, each with 100 samples, also returned 100% recall. That
is a very narrow margin of only 20.0% between the minimum
and maximum recall values across the dataset. Furthermore,
the proposed class-weighted loss function successfully
mitigated imbalance; 25 out of 36 classes (69.4%) achieved
perfect recall, while only 3 classes scored below 90%. This
therefore proves that the approach presented is practical for
addressing class imbalance while sustaining very high overall
classification accuracy.



True Class

Confusion Matrix

apple [ 1 1
banana
beetroot
bell pepper
1
carrot
cauliflower
chilli pepper
com 1
gadic
ginger
grapes
jalepeno
Kiwi
lemon
lettuce
maqgc
onion
orange
paprika
pear
~ peas
pomegranate
potato 1
raddish
soy beans
spinach
sweetcorn 1
sweetpotato 1
tomato
tumip
watermelon [
PP LS PSSP F S LI IR IR ELTF TS ELES
% vé@ & @&Q fg fé’) &03&‘9 &*\Q& &p‘p &Q\ ¢ \O\o‘f T E S & & ¢ Q\@& & & @9 @wf? & é@‘:j;&y -96& \i;éé‘o
Predicted Class
Figure 6. Confusion matrix for the modified AlexNet (Rows: True labels; Columns: Predicted labels)
Table 3. Comparative performance metrics of baseline versus modified AlexNet
Metric Baseline Model Modified Model Improvement
Validation Accuracy (%) 95.43 98.00 +2.57
Training Accuracy (%) 87.50 98.44 +10.94
Training Speed (img/s) 56.94 127.13 +123%
Testing Accuracy (%) 95.53 98.04 +2.51
Testing Speed (img/s) 53.32 55.45 +4.0%
Error Rate (%) 4.47 1.96 -2.51
Macro Precision (%) 96.15 98.22 +0.0207
Macro Recall (%) 95.49 98.06 +0.0257
Macro F1-Score (%) 95.41 98.05 +0.0264
Weighted Precision (%) 96.13 98.21 +0.0208
Weighted Recall (%) 95.53 98.04 +0.0251
Weighted F1-Score (%) 95.42 98.04 +0.0262
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Figure 7. Bootstrap distribution of accuracy improvement
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Table 4. Comprehensive class-wise performance analysis

Class Training Samples Precision Recall F1-Score Class Training Sample Precision Recall F1-Score
apple 67 88.9 80 84.2 lettuce 97 100 100 100
banana 75 100 88.9 94.1 mango 86 100 100 100
beetroot 88 100 100 100 onion 94 100 100 100
bell pepper 90 81.8 90 85.7 orange 69 100 100 100
cabbage 92 100 100 100 paprika 83 100 100 100
capsicum 89 81.8 90 85.7 pear 88 100 100 100
carrot 82 100 100 100 peas 100 100 100 100
cauliflower 79 100 100 100 pineapple 99 100 100 100
chilli pepper 87 90.9 100 952  pomegranate 79 100 100 100
corn 87 88.9 80 84.2 potato 77 100 80 88.9
cucumber 94 100 100 100 raddish 81 100 100 100
eggplant 82 100 100 100 soy beans 97 100 100 100
garlic 92 100 100 100 spinach 97 100 100 100
ginger 68 100 100 100 sweetcorn 90 81.8 90 85.7
grapes 100 100 100 100 sweetpotato 69 100 90 94.7
jalepeno 88 100 100 100 tomato 92 100 100 100
kiwi 88 90.9 100 95.2 turnip 98 100 100 100
lemon 82 90.9 100 95.2 watermelon 84 100 100 100

Table S. Cross-dataset performance on Fruits-360 test set

Class Precision % Recall % F1 % Support
banana 77 52.4 62.4 166
beetroot 88.8 52.7 66.1 150

cauliflower - 0 - 234
corn 100 30 46.2 150
cucumber - 0 - 130
eggplant 89.1 100 943 156

kiwi 0 0 - 156
lemon 48.4 45.1 46.7 164
mango 38.6 81.9 52.5 166
orange 100 48.1 65 160

pear 159 6.1 8.8 164

pineapple 0 0 - 166
Overall Accuracy % 33.8

Cross-dataset validation using the publicly available Fruits-
360 dataset [27], which features distinct imaging conditions
with uniform white backgrounds compared to the primary
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training dataset [26] used in this work, quantitatively
characterized the model's generalization boundaries. The
evaluation achieved 33.83% accuracy on 15 overlapping
classes (Apple, Banana, Beetroot, Cauliflower, Corn,
Cucumber, Eggplant, Kiwi, Lemon, Mango, Orange, Pear,
Pineapple, Pomegranate, Watermelon) without fine-tuning. As
detailed in Table 5, this analysis provides crucial
benchmarking data that maps the domain-adaptation challenge
in agricultural vision systems, offering transparent insights
into the capabilities and limitations of deep learning
approaches under significant domain shifts.

In addition to the baseline AlexNet, our modified model was
rigorously evaluated against two other modern deep learning
architectures: ResNet-18 and VGG-19. This comprehensive
benchmarking was conducted to situate our model's
performance within the current landscape properly. All models
were trained and evaluated under identical conditions on the
36-class fruit-and-vegetable dataset.

Vahldation Training Training Speed  Testing Testing Speed Error Rate (%) Weghted Weghted WeghtedF1-
Accuracy (%)  Accuracy (%) (img/s) Accuracy (%) [img/s) Precision (%)  Recall (%) Score (%)
m B=xelneAl=xNet  m Modified AlexNet mResMet-18 ViEGE-18

Figure 8. Comprehensive comparative analysis
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The analysis reveals two key findings. First, our model
demonstrates a superior trade-off between accuracy and
efficiency. It achieves a top-tier testing accuracy of 98.04%,
marginally outperforming VGG-19 (97.49%) and significantly
surpassing ResNet-18 (91.9%) and the Baseline AlexNet
(95.53%). Second, and more critically, this high accuracy is
attained with exceptional computational efficiency. As Figure
8 illustrates, our Modified AlexNet occupies the most
desirable position in the accuracy-speed space, delivering
VGG-level accuracy but at a training speed more than six
times faster. This efficiency stems directly from our design
choices—the frozen layers and optimized architecture—which
yield a model that is both powerful and practical, avoiding the
computational overhead of the vastly larger VGG-19 network.

The overall results highlight that, with MATLAB's Deep
Learning Toolbox and modern GPU hardware, the accuracy
and efficiency of deep learning models for automated
agricultural classification can be optimally improved through
thoughtful changes to the model architecture. The
improvements in training stability, classification performance,
and computational speed position the modified AlexNet
architecture as a viable solution for real-world fruit and
vegetable recognition applications in precision agriculture and
food quality control systems.

4. CONCLUSIONS

This study successfully addressed the problems of inter-
class similarities and intraclass variability in the classification
of fruits and vegetables by systematically altering the design.
The model successfully distinguished visually similar items—
such as bell and chili peppers—while accounting for natural
variation within categories, achieving 98.04% test accuracy
and better performance on minority-class samples. This
success illustrates the significance of leveraging domain-
specific adaptations, such as LeakyReLU for fine-grained
feature exploitation, frozen layers for stability across diverse
inputs, and weighted loss for countering imbalance, to
agricultural computer vision systems. The practical viability
of the solution was underscored by real-time processing
capabilities and a testing speed of 55.45 images per second.
Such features are essential for industries such as automated
sorting where accuracy and efficiency are crucial.

This study demonstrates high-performance classification
while honestly quantifying domain adaptation challenges
through rigorous cross-dataset evaluation. The 33.83%
accuracy on Fruits-360 establishes a critical baseline that
advances the field by providing measurable generalization
boundaries. Future research should build upon these empirical
insights to develop domain-robust architectures capable of
operating across diverse agricultural imaging conditions.
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