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Automated sorting of fruits and vegetables is critical in modern agriculture and industry. 

However, this task faces a number of challenges, including the need for high classification 

accuracy, real-time processing speed, interclass similarities like the resemblance of chili 

peppers and bell peppers, and intraclass variability like the size and color differences among 

class apples. To tackle these challenges, this study implemented changes to the pre-trained 

AlexNet deep learning model, in which the first seven layers were frozen for feature 

extraction, replacing ReLU activations with LeakyReLU to improve discrimination of 

visually similar species, and class-weighted loss concerning imbalance among 

underrepresented classes like ginger (68 samples) and orange (69 samples). The model 

achieved 98.04% accuracy on the 36-class dataset (3,818 images), demonstrating a 2.47% 

improvement over the baseline AlexNet (95% confidence interval [1.12%, 4.19%]) and a 

56.2% reduction in classification errors. As a side effect, computational efficiency 

improved, achieving 127.13 images per second for training and 55.45 images per second for 

testing on GPU hardware, demonstrating an optimal balance of performance and efficiency 

for practical deployment. This study revealed a solution for automated sorting of produce, 

where accuracy, morphological ambiguities, and operational speed posed critical 

constraints. 
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1. INTRODUCTION

The classification of fruits and vegetables is an innovation 

in agricultural technology that improves food security, supply 

chain management, and waste minimization [1]. Human errors 

in manual sorting in the fresh produce industry account for 

approximately 30-40% of post-harvest losses [2]. Applications 

for recognition of fruits can remove the human component in 

fruit harvesting processes [3]. The multitude of fruit types 

makes their categorization difficult [4]. The efficiency of an 

image recognition system has been enhanced by recent 

developments in computer vision [5]. There is tremendous 

potential to solve these two persistent problems using deep 

learning-based computer vision systems. Firstly, interclass 

similarities, in which distinct species, such as bell and chili 

peppers, share visual look-alikes. Secondly, intraclass 

variability—differences in the same cultivar’s appearance 

owing to environmental conditions—can be substantial [6]. 

The need for accurate classification systems dealing with fruits 

and vegetables has been spurred by the growing automation in 

food quality assessment, smart farming, and precision 

nutrition [7]. 

Current approaches using transfer learning with pretrained 

convolutional neural networks (CNNs), a category of 

Artificial Neural Network (ANN), have received scant 

attention to accuracy on controlled datasets, while often 

overlooking critical operational requirements [8]. The impact 

of advanced CNN-based image processing frameworks has 

significantly advanced the field of image categorization [9]. In 

2012, Krizhevsky [10] won the ImageNet competition with his 

model, AlexNet, which demonstrated outstanding 

performance in image categorization. This architecture marks 

a significant breakthrough in deep learning for imaging and 

has served as the basis for subsequent complex CNN 

architectures [11, 12]. 

Although the classification of fruits and vegetables has 

advanced with image processing and machine learning 

techniques, several areas remain that can be addressed by 

advanced deep learning frameworks such as AlexNet. The 

model implemented in reference [13] used color and texture 

feature extraction, PCA for feature selection, and classification 

with an artificial neural network (ANN). Even though it 

achieved a remarkable 98.3% accuracy, this approach relied 

heavily on handcrafted features, which cannot match the 

performance of deep learning algorithms that automatically 

extract features from images. With the success of CNNs across 

various domains, many researchers shifted their focus to fruit 

recognition using CNNs. Despite CNN being effective at 

solving the image recognition problem, it still has certain 

limitations: it does not require an additional feature extraction 
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process during classification; instead, the entire feature 

extraction and classification are performed in a single link. As 

a result, the model structure is straightforward and the 

implementation process is comparatively simple. 

With a range of species and strong generalization, Zeng [14] 

classified 26 distinct fruits and vegetables using the VGG 

architecture. The classification accuracy was 95.6%, which 

satisfies the requirements for fruit classification but falls short 

in terms of speed and morphological ambiguities. 

In a comparison of the AlexNet deep learning approach with 

traditional methods such as BP neural networks and SVM 

classifiers, Zhu et al. [15] demonstrated that deep learning 

outperformed conventional methods by a large margin, 

achieving 92.1% accuracy on the test set. They presented a 

deep learning-based vegetable image classification system 

using the AlexNet model, demonstrating high performance. 

Divya Shree et al. [16] developed a two-phase model for 

fruit recognition and estimation of their nutritional value using 

a pre-trained AlexNet model. A CNN was used to classify 

fruits in the first phase, after which pertinent dietary 

information for the detected fruit was displayed. Its 

performance on 15 fruit categories was evaluated and about 91% 

accuracy was reported. 

In reference [17], the results were compared with 

algorithms such as AlexNet, GoogLeNet, and ResNet-50, 

which were fine-tuned, along with metrics such as accuracy, 

precision, sensitivity, and specificity. The study showed that 

the new deep convolutional neural network, Fruit114Net, 

enabled efficient classification while being low-cost in terms 

of computational, training time, and resource requirements. As 

noted, however, the accuracy, precision, and sensitivity 

metrics reported were much lower than those achieved with 

fine-tuned models. 

Fu et al. [18] reported that an optimized version of 

GoogLeNet achieved 96.88% accuracy during training and 98% 

during testing for fruit and vegetable classification. The 

optimization focused on parameter reduction and 

modifications to the Inception-based design, improving 

training speed from 11.38 images per second to 33.68 images 

per second. An efficient model for the classification and 

identification of eight types of date fruit was presented by 

Albarrak et al. [19]. The proposed model is based on the 

MobileNetV2 architecture and achieved an accuracy of 99%, 

outperforming other well-known models such as AlexNet, 

VGG16, InceptionV3, and ResNet, but no details on testing 

and training speeds are provided. 

Amin et al. [20] proposed a method based on Convolutional 

Neural Networks (CNNs) combined with transfer learning for 

automatic classification of fruit freshness. In this instance, 

AlexNet was applied for transfer learning and later fine-tuned 

for better results. Its application to three publicly available 

datasets demonstrated that the method achieved an average 

accuracy of over 99%. However, the study did not address 

speed of processing, intra-category ambiguity, visual 

variability, and the range of feature recognition for class 

imbalance, all of which are crucial for practical 

implementation. 

Vegetable classification was performed by the study [21] 

using the AlexNet CNN model and block-based compressive 

sensing (CS) to enhance computational and storage efficiency. 

A standalone AlexNet model achieved 98% maximum test 

accuracy. With block-based CS, the performance declined to 

96.66%. There was no mention of dealing with interclass 

resemblance or intraclass variation in focus on fruit 

classification, particularly within the context of fruit 

classification. 

Thirumalraj et al. [22] developed an automated fruit 

recognition system that employs a modified AlexNet model 

for feature extraction and an FSSATM (Fruit Shift Self-

Attention Transform Mechanism) classifier. This system 

sought to improve classification performance on the 

comprehensive Fruit-360 dataset, which contains 90,483 

images across 131 fruit classes. The model achieving 98% 

accuracy is impressive; however, it did not report training or 

testing times, nor did it appear to address concerns about 

category or contour overlap, or variation in the features of 

samples from a single class. 

A recent study [23] compared traditional machine learning 

and deep learning approaches for fruit recognition and 

classification using the Fruit-360 dataset. The authors 

achieved 99.85% accuracy with the AlexNet model. However, 

while the approach demonstrated strong classification 

performance, it did not examine critical deployment 

challenges, such as processing speed and visual resemblance 

across different fruit types or appearance inconsistencies 

within the same category—factors that significantly affect 

real-world classification systems. 

Kurniawan et al. [24] used the deep Convolutional Neural 

Network AlexNet to improve the efficiency and accuracy of 

palm oil fruit maturity classification. Though the model 

achieved an accuracy of 0.9962, which met classification 

benchmarks, it fell short in processing speed and in handling 

morphological ambiguities. 

Recent studies have demonstrated the performance gains 

possible with increasingly complex architectures. Notably, 

Wang et al. [25] proposed an advanced framework for 

eggplant disease detection based on multimodal data fusion 

and an embedding attention mechanism. Their method 

integrates image data with environmental sensor inputs using 

a dual-stream network (ResNet-50 and BERT) and 

dynamically weights features via a specialized attention 

module. Although this approach achieves notable accuracy, it 

also exemplifies a trend toward high computational 

complexity. 

This work solves all these problems, creating a landmark 

achievement in the automatic classification of fruits and 

vegetables by addressing a triad of the most important and 

closely related classification problems: achieving real-time 

classification accuracy, processing speed, and tolerance to 

similarity in classification features within a class and between 

classes. Unlike prior approaches that addressed accuracy, 

speed, or class imbalance in isolation. As an extension to the 

previous study and finding a better classification system, an 

innovative optimization of the AlexNet architecture has been 

investigated to achieve superior performance on a complex 

and imbalanced dataset containing 36 classes with substantial 

variations in sample sizes, background conditions, and object 

density, like multiple peppers appearing in a single image. 

Given the modifications made to the baseline AlexNet, the 

main key contributions of this work can be summed up as 

follows: 

- A modified AlexNet architecture is designed and validated 

for an end-to-end classification system, which is particularly 

customized for surmounting the core challenges in fruit and 

vegetable imagery: high inter-class similarity, significant 

intra-class variability, and the practical necessity for real-time 

processing, 

- It is shown that with a strategic and holistic modification, 

3346



 

a classic CNN can achieve state-of-the-art performance on a 

complex 36-class dataset while retaining superior 

computational efficiency compared to much larger modern 

architectures. This was achieved through the integrated use of 

layer freezing, LeakyReLU activations, and a class-weighted 

loss function, 

- Extensive empirical analysis is provided that encompasses 

per-class metrics, computational complexity, and thorough 

statistical validation. 

This paper is organized as follows: the proposed system is 

described in Section 2; Section 3 presents the experimental 

results and their analysis; and Section 4 offers the conclusion 

and an outlook on limitations and future research directions. 

 

 

2. THE PROPOSED SYSTEM DESIGN 

 

The evolution of an actual fruit and vegetable classification 

system required a holistic approach following a conventional 

deep learning pipeline, including three essential stages: data 

preprocessing, network modification, and tailored training 

protocols. This section outlines the systematic design of the 

proposed solution, which incorporates key enhancements to 

optimize performance on a 36-class agricultural dataset. 

Selected changes were made to the baseline AlexNet 

architecture to improve feature discrimination among closely 

related species while enhancing computational efficiency. 

These changes benefited to some degree both feature 

discrimination and robustness to overfitting for visually 

similar produce. Diverse categories of produce were subjected 

to a thorough training regimen to obtain stable model 

performance with strong convergence. These elements, 

together, designed a complete system that could solve practical 

agricultural automation problems as accurately and quickly as 

possible. The complete system design is illustrated in Figure 1. 

 

 

 
 

Figure 1. Diagram for the proposed study 

 

2.1 Dataset 

 

The dataset used in this study was obtained from the 

publicly available Kaggle dataset titled "Fruits and Vegetables 

Image Recognition Dataset" [26]. It comprised 3,818 images, 

categorized into 36 distinct classes of fruits and vegetables. 

These categories included the following fruit classes: banana, 

apple, pear, grapes, orange, kiwi, watermelon, pomegranate, 

pineapple, and mango; and the following vegetable classes: 

cucumber, carrot, capsicum, onion, potato, lemon, tomato, 

radish, beetroot, cabbage, lettuce, spinach, soybean, 

cauliflower, bell pepper, chili pepper, turnip, corn, sweetcorn, 

sweet potato, paprika, jalapeño, ginger, garlic, peas, and 

eggplant. Sample images from the dataset are shown in Figure 
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2, illustrating the visual diversity across fruit and vegetable 

categories, including varying object sizes, background 

complexities, and lighting conditions. The dataset 

demonstrated evident intraclass variability in the spatial 

arrangement of objects within images, with certain classes, 

such as eggplant and onions, containing both single and 

grouped items. While this non-uniformity could, in theory, 

bias feature learning toward object scale or background 

context, it ultimately enhanced the model’s robustness to real-

world agricultural conditions. 

As illustrated in Figure 3, the dataset was split into three 

subsets: 3,110 images for training, 350 for validation, and 358 

for testing. Some issues were resolved before the actual 

training began. Each image was transformed to 227 by 227 so 

that it could be used by the AlexNet architecture. Additionally, 

grayscale images were converted to RGB to provide a 

consistent three-channel input. A class distribution analysis 

was performed to assess and address class imbalance. 

Moreover, the training dataset was randomly shuffled during 

training to reduce potential sequence bias and improve 

generalization. The detailed distribution of images across all 

categories and dataset splits is provided in Table 1. 
 

 
 

Figure 2. Sample images from selected fruit and vegetable categories in the dataset 

 

 
 

Figure 3. The number of images per class in the training, validation and testing sets 
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Table 1. Class distribution of training, validation, and testing sets 

 
Category Training Validation Testing Total Category Training Validation Testing Total 

peas 100 10 10 120 corn 87 10 10 107 

pineapple 99 10 10 119 jalapeño 88 9 10 107 

grapes 100 9 10 119 chili pepper 87 9 10 106 

turnip 98 10 10 118 mango 86 10 10 106 

soy beans 97 10 10 117 watermelon 84 10 10 104 

spinach 97 10 10 117 paprika 83 10 10 103 

lettuce 97 9 10 116 lemon 82 10 10 102 

cucumber 94 10 10 114 carrot 82 9 10 101 

onion 94 10 10 114 radish 81 9 10 100 

tomato 92 10 10 112 eggplant 82 9 9 100 

garlic 92 10 10 112 pomegranate 79 10 10 99 

cabbage 92 10 10 112 cauliflower 79 10 10 99 

sweetcorn 90 10 10 110 potato 77 10 10 97 

capsicum 89 10 10 109 banana 75 9 9 93 

bell pepper 90 9 10 109 sweet potato 69 10 10 89 

pear 88 10 10 108 orange 69 9 10 88 

kiwi 88 10 10 108 ginger 68 10 10 88 

beetroot 88 10 10 108 apple 67 10 10 87 

Total Dataset Images 3818 

 

2.2 AlexNet architecture modification 

 

The AlexNet architecture is considered the first deep 

convolutional neural network that was used for image 

classification in large databases. It consisted of five 

convolutional and max-pooling layers, followed by three 

dense layers, including fully connected layers with ReLU 

activation. It is worth noting that the neural network was 

proposed by Krizhevsky et al. [10] in 2012. Although baseline 

models are helpful for many applications, in the case of fruit 

and vegetable classification, they were not valuable, as they 

were unable to discriminate fine-grained features due to the 

lack of class imbalance. 

 

 

Table 2. Layer configuration of the proposed modified AlexNet-based classifier 

 
Layer Name Type Activations 

1 data 227×227×3 images with ‘zerocenter’ normalization Image Input 227(S) × 227(S) × 3(C) ×1(B) 

2 conv1 96 11×11×3 convolutions with stride [4 4] and padding [0 0 0 0] 2-D Convolution 55(S) × 55(S) × 96(C) ×1(B) 

3 relu1_leaky LeakyReLULayer LeakyReLULayer 55(S) × 55(S) × 96(C) ×1(B) 

4 norm1 cross channel normalization with 5 channels per element 
Cross Channel 

Normalization 
55(S) × 55(S) × 96(C) ×1(B) 

5 pool1 3×3 max pooling with stride [2 2] and padding [0 0 0 0] 2-D Max Pooling 27(S) × 27(S) × 96(C) ×1(B) 

6 conv2 2 groups of 128 5×5×48 convolutions with stride [1 1] and padding [2 2 2 2] 
2-D Grouped 

Convolution 
27(S) × 27(S) × 256(c) ×1(B) 

7 relu2_leaky LeakyReLULayer LeakyReLULayer 27(S) × 27(S) × 256(C) ×1(B) 

8 norm2 cross channel normalization with 5 channels per element 
Cross Channel 

Normalization 
27(S) × 27(S) × 256(C) ×1(B) 

9 pool2 3×3 max pooling with stride [2 2] and padding [0 0 0 0] 2-D Max Pooling 13(S) × 13(S) × 256(C) ×1(B) 

10 conv3 384 3×3×256 convolutions with stride [1 1] and padding [1 1 1 1] 2-D Convolution 13(S) × 13(S) × 384(C) ×1(B) 

11 relu3_leaky LeakyReLULayer LeakyReLULayer 13(S) × 13(S) × 384(C) ×1(B) 

12 conv4 2 groups of 192 3×3×192 convolutions with stride [1 1] and padding [1 1 1 1] 
2-D Grouped 

Convolution 
13(S) × 13(S) × 384(C) ×1(B) 

13 relu4_leaky LeakyReLULayer LeakyReLULayer 13(S) × 13(S) × 384(C) ×1(B) 

14 conv5 2 groups of 128 3×3×192 convolutions with stride [1 1] and padding [1 1 1 1] 
2-D Grouped 

Convolution 
13(S) × 13(S) × 256(C) ×1(B) 

15 relu5_leaky LeakyReLULayer LeakyReLULayer 13(S) × 13(S) × 256(C) ×1(B) 

16 pool5 3×3 max pooling with stride [2 2] and padding [0 0 0 0] 2-D Max Pooling 6(S) × 6(S) × 256(C) ×1(B) 

17 fc6 4096 fully connected layer Fully Connected 1(S) × 1(S) × 4096(C) ×1(B) 

18 relu6_leaky LeakyReLULayer LeakyReLULayer 1(S) × 1(S) × 4096(C) ×1(B) 

19 drop6 50% dropout Dropout 1(S) × 1(S) × 4096(C) ×1(B) 

20 fc7 4096 fully connected layer Fully Connected 1(S) × 1(S) × 4096(C) ×1(B) 

21 relu7_leaky LeakyReLULayer LeakyReLULayer 1(S) × 1(S) × 4096(C) ×1(B) 

22 drop7 50% dropout Dropout 1(S) × 1(S) × 4096(C) ×1(B) 

23 Fruit Feature Learner 36 fully connected layer Fully Connected 1(S) × 1(S) × 36(C) ×1(B) 

24 Prob softmax Softmax 1(S) × 1(S) × 36(C) ×1(B) 

25 Fruit Classifier Class weighted crossentropyex with ‘apple’ and 35 other classes Classification Output 1(S) × 1(S) × 36(C) ×1(B) 

 

To address these limitations, the AlexNet architecture was 

modified (Table 2) with three key adaptations. First, all 

standard ReLU activations were replaced with LeakyReLU 

units (α=0.01) to improve gradient propagation and mitigate 

neuron saturation. Secondly, the last fully connected layer was 

modified to support 36 output classes, and class-weighted loss 

was used to address dataset imbalance. Thirdly, a transfer 

learning approach was used, in which low-level feature 
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extraction in the first seven convolutional layers was preserved 

by freezing those layers. In contrast, the remaining layers were 

trained to domain-specific features. These modifications 

enhanced feature discrimination for agricultural imagery while 

maintaining computational efficiency. The use of LeakyReLU 

ensured stable gradient flow during backpropagation, 

particularly for inputs that were negatively activated. 

Additionally, the class-weighted loss function effectively 

balanced learning across underrepresented categories in the 

training dataset. 

 

2.3 Training protocol 

 

The modified architecture was trained using an Adam 

optimizer with an initial learning rate of 3×10⁻⁴, which was 

reduced by a factor of 0.1 every five epochs. This approach 

balanced rapid convergence during early training stages with 

precise weight updates in later phases. Validation metrics were 

reviewed after every epoch, and an accuracy-improving 

validation window of 10 iterations triggered early stopping to 

avoid overfitting. A mini-batch size of 128 was used, 

combined with L2 regularisation (λ=0.0005) to combat 

overfitting. A combination of early-layer freezing and deeper-

layer fine-tuning achieved effective transfer learning, reducing 

trainable parameters by 58% compared to full-network 

training. Convergence occurred between 12 and 15 epochs, at 

which point the training loss was below 0.01, and the class-

weighted loss function was stabilised and optimised. 

 

2.4 Rationale for architectural selection and integration 

 

The specific changes to the AlexNet architecture were 

guided by a coherent design philosophy tailored to the 

application at hand. Equally, basing the system on AlexNet is 

motivated by the requirement for a lean, efficient architecture 

suitable for edge deployment-one that strikes an outstanding 

balance between representational power and computational 

footprint compared to more modern, more computationally 

expensive networks. 

In this context, the changes had specific purposes. Freezing 

the first seven convolutional layers served a dual purpose. First, 

it greatly reduces the number of parameters to train, thereby 

speeding up training and reducing the risk of overfitting when 

dealing with a relatively small dataset. Second, it keeps intact 

the generic low-level feature detectors, which are edge and 

texture filters, for instance, which had been learned from 

ImageNet and maintain their universal value on agricultural 

scenes with no need to relearn them. 

Replacing the default ReLU activation with LeakyReLU 

was essential to prevent dying neurons, which would have 

been highly undesirable in a network fine-tuned as deeply as 

this one. Such a change ensures that the gradient flow during 

backpropagation remains consistent when learning minor 

differences in features between visually quite similar classes, 

such as bell peppers and chilli peppers. 

Simultaneously, the natural imbalance in this dataset, such 

as 68 samples of ginger and 120 peas, would naturally bias a 

standard model towards the majority class. Implementing a 

class-weighted loss function is a direct counterbalance to such 

biases, since it imposes a higher penalty for misclassifying 

instances from underrepresented classes, thereby forcing the 

model to be more sensitive to their discriminative features. 

Isolated, each technique addresses a specific weakness, while 

together they form a synergistic system that is robust, efficient, 

and accurately tuned for the complexities of fruit and 

vegetable classification. This integrated approach ensures the 

model is not only accurate but also practical for real-world 

agricultural applications. 

 

 

3. EXPERIMENTAL AND RESULT ANALYSIS 

 

The experimental evaluation was conducted on a dataset of 

3,818 high-resolution fruit and vegetable images spanning 36 

categories to validate performance improvements achieved 

through architectural modifications to the AlexNet model. All 

implementations were developed in MATLAB R2023b using 

the Deep Learning Toolbox and executed on a high-

performance workstation equipped with Windows 11 

Professional 64-bit, a 13th Gen Intel Core i7-13700H 

processor (2.40GHz), 16 GB RAM, 500GB SSD storage, and 

NVIDIA GeForce RTX 4060 GPU (8GB VRAM) acceleration. 

A modified and a baseline architecture were implemented 

alongside each other, along with the additional criteria of 

training stability and computational efficiency, to form a 

comprehensive assessment framework. 

The selection of the specific hyperparameters for the 

modified AlexNet architecture, particularly the LeakyReLU 

activation and the seven-layer freezing strategy, was not 

arbitrary but was determined through a structured ablation 

study. This study evaluated variants using ReLU and 

LeakyReLU (α=0.01, α=0.1), along with different layer-

freezing strategies (3-9 frozen layers). The final combination 

of LeakyReLU (α=0.01) and seven frozen layers emerged as 

the Pareto-optimal choice, delivering superior accuracy for 

fruit and vegetable recognition without the computational 

burden of training the whole network. 

Model performance has significantly improved with the 

changes made. The modified architecture achieved a test 

accuracy of 98.04% on the evaluation dataset, representing a 

2.51 percentage point increase over the baseline model's 

95.53% accuracy. 

This enhancement was statistically validated through 

bootstrap analysis, with the improvement falling within a 95% 

confidence interval of 1.12% to 4.19%. The model has proven 

more reliable, with the error rate reduced from 4.47 per cent to 

1.96 per cent. These metrics are visually contrasted in Figure 

4, which presents a direct comparison of original and 

optimized accuracy and error rates using a double-bar plot. 

Training dynamics exhibited notable improvements, as 

depicted in Figure 5. Compared to the baseline architecture, 

the modified model achieved peak validation accuracy about 

3 epochs earlier, demonstrating improved convergence. This 

accelerated training occurred alongside enhanced stability, 

with reduced fluctuation in loss values across epochs. The 

experiment addressed two fundamental challenges in 

agricultural image classification: interclass similarities among 

visually analogous produce such as bell peppers vs. chili 

peppers and intraclass variability stemming from natural 

differences in color, size, and morphology such as red vs. 

green apples. The modified AlexNet architecture 

demonstrated notable success in discriminating between 

taxonomically distinct but visually similar categories, as 

evidenced by the confusion matrix presented in Figure 6. 

While most class pairs achieved ≥99% accuracy, residual 

misclassifications primarily occurred between produce with 

overlapping morphological features, such as tomatoes and 

cherries, where shape and texture differences were subtle. 
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Figure 4. Comparison of original versus optimized accuracy and error rates 

 

 
 

Figure 5. Training dynamics of the modified AlexNet for accuracy and loss curves across 15 epochs 

 

Intraclass variability was effectively mitigated by 

combining frozen early layers (preserving generic feature 

extractors) with LeakyReLU activations, thereby maintaining 

gradient flow across diverse color and texture distributions 

within a single category. The class-weighted loss function 

further compensated for underrepresented classes, ensuring 

robust performance even for classes with limited training 

samples, such as ginger and orange. Considering the natural 

heterogeneity of lighting conditions, occlusion, and varying 

stages of produce maturation, these adaptations were crucial. 

As shown in Table 3, the modified architecture outperformed 

the baseline model across all evaluation metrics, 

demonstrating consistent improvement. 

Computational efficiency metrics revealed substantial gains 

in processing speed. Training throughput increased by 123%, 

from 56.94 to 127.13 images per second, while testing speed 

improved by 4%, from 53.32 to 55.45 images per second. As 

the classification accuracy was preserved, these improvements 

highlighted the model's effectiveness for real-time 

deployment. The bootstrap distribution in Figure 7 shows the 

frequency of mean accuracy differences between the 

optimized and baseline models. The 95% confidence interval 

for this difference (1.12% to 4.19%) excludes zero, indicating 

a statistically significant improvement at the p<0.05 level and 

confirming that the observed gains are not due to random 

chance. 

A broad class-wise performance evaluation was thus carried 

out to assess the effectiveness of the class-weighted loss 

function in mitigating dataset imbalance. As can be seen from 

Table 4, despite there being significant variation in the number 

of samples available to train each class (67-100 samples per 

class), the model ensured relatively strong performance in all 

36 classes. For example, the smallest classes, such as ginger 

and orange, with 68 and 69 samples, respectively, attained 

100% recall; whereas the largest classes, such as peas and 

grapes, each with 100 samples, also returned 100% recall. That 

is a very narrow margin of only 20.0% between the minimum 

and maximum recall values across the dataset. Furthermore, 

the proposed class-weighted loss function successfully 

mitigated imbalance; 25 out of 36 classes (69.4%) achieved 

perfect recall, while only 3 classes scored below 90%. This 

therefore proves that the approach presented is practical for 

addressing class imbalance while sustaining very high overall 

classification accuracy. 
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Figure 6. Confusion matrix for the modified AlexNet (Rows: True labels; Columns: Predicted labels) 

 

Table 3. Comparative performance metrics of baseline versus modified AlexNet 

 
Metric Baseline Model Modified Model Improvement 

Validation Accuracy (%) 95.43 98.00 +2.57 

Training Accuracy (%) 87.50 98.44 +10.94 

Training Speed (img/s) 56.94 127.13 +123% 

Testing Accuracy (%) 95.53 98.04 +2.51 

Testing Speed (img/s) 53.32 55.45 +4.0% 

Error Rate (%) 4.47 1.96 -2.51 

Macro Precision (%) 96.15 98.22 +0.0207 

Macro Recall (%) 95.49 98.06 +0.0257 

Macro F1-Score (%) 95.41 98.05 +0.0264 

Weighted Precision (%) 96.13 98.21 +0.0208 

Weighted Recall (%) 95.53 98.04 +0.0251 

Weighted F1-Score (%) 95.42 98.04 +0.0262 

 

 
 

Figure 7. Bootstrap distribution of accuracy improvement 
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Table 4. Comprehensive class-wise performance analysis 

 
Class Training Samples Precision Recall F1-Score Class Training Sample Precision Recall F1-Score 

apple 67 88.9 80 84.2 lettuce 97 100 100 100 

banana 75 100 88.9 94.1 mango 86 100 100 100 

beetroot 88 100 100 100 onion 94 100 100 100 

bell pepper 90 81.8 90 85.7 orange 69 100 100 100 

cabbage 92 100 100 100 paprika 83 100 100 100 

capsicum 89 81.8 90 85.7 pear 88 100 100 100 

carrot 82 100 100 100 peas 100 100 100 100 

cauliflower 79 100 100 100 pineapple 99 100 100 100 

chilli pepper 87 90.9 100 95.2 pomegranate 79 100 100 100 

corn 87 88.9 80 84.2 potato 77 100 80 88.9 

cucumber 94 100 100 100 raddish 81 100 100 100 

eggplant 82 100 100 100 soy beans 97 100 100 100 

garlic 92 100 100 100 spinach 97 100 100 100 

ginger 68 100 100 100 sweetcorn 90 81.8 90 85.7 

grapes 100 100 100 100 sweetpotato 69 100 90 94.7 

jalepeno 88 100 100 100 tomato 92 100 100 100 

kiwi 88 90.9 100 95.2 turnip 98 100 100 100 

lemon 82 90.9 100 95.2 watermelon 84 100 100 100 

 

Table 5. Cross-dataset performance on Fruits-360 test set 

 
Class Precision % Recall % F1 % Support 

banana 77 52.4 62.4 166 

beetroot 88.8 52.7 66.1 150 

cauliflower - 0 - 234 

corn 100 30 46.2 150 

cucumber - 0 - 130 

eggplant 89.1 100 94.3 156 

kiwi 0 0 - 156 

lemon 48.4 45.1 46.7 164 

mango 38.6 81.9 52.5 166 

orange 100 48.1 65 160 

pear 15.9 6.1 8.8 164 

pineapple 0 0 - 166 

Overall Accuracy % 33.8 

 

Cross-dataset validation using the publicly available Fruits-

360 dataset [27], which features distinct imaging conditions 

with uniform white backgrounds compared to the primary 

training dataset [26] used in this work, quantitatively 

characterized the model's generalization boundaries. The 

evaluation achieved 33.83% accuracy on 15 overlapping 

classes (Apple, Banana, Beetroot, Cauliflower, Corn, 

Cucumber, Eggplant, Kiwi, Lemon, Mango, Orange, Pear, 

Pineapple, Pomegranate, Watermelon) without fine-tuning. As 

detailed in Table 5, this analysis provides crucial 

benchmarking data that maps the domain-adaptation challenge 

in agricultural vision systems, offering transparent insights 

into the capabilities and limitations of deep learning 

approaches under significant domain shifts. 

In addition to the baseline AlexNet, our modified model was 

rigorously evaluated against two other modern deep learning 

architectures: ResNet-18 and VGG-19. This comprehensive 

benchmarking was conducted to situate our model's 

performance within the current landscape properly. All models 

were trained and evaluated under identical conditions on the 

36-class fruit-and-vegetable dataset. 

 
 

 
 

Figure 8. Comprehensive comparative analysis 
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The analysis reveals two key findings. First, our model 

demonstrates a superior trade-off between accuracy and 

efficiency. It achieves a top-tier testing accuracy of 98.04%, 

marginally outperforming VGG-19 (97.49%) and significantly 

surpassing ResNet-18 (91.9%) and the Baseline AlexNet 

(95.53%). Second, and more critically, this high accuracy is 

attained with exceptional computational efficiency. As Figure 

8 illustrates, our Modified AlexNet occupies the most 

desirable position in the accuracy-speed space, delivering 

VGG-level accuracy but at a training speed more than six 

times faster. This efficiency stems directly from our design 

choices—the frozen layers and optimized architecture—which 

yield a model that is both powerful and practical, avoiding the 

computational overhead of the vastly larger VGG-19 network. 

The overall results highlight that, with MATLAB's Deep 

Learning Toolbox and modern GPU hardware, the accuracy 

and efficiency of deep learning models for automated 

agricultural classification can be optimally improved through 

thoughtful changes to the model architecture. The 

improvements in training stability, classification performance, 

and computational speed position the modified AlexNet 

architecture as a viable solution for real-world fruit and 

vegetable recognition applications in precision agriculture and 

food quality control systems. 

 

 

4. CONCLUSIONS 

 

This study successfully addressed the problems of inter-

class similarities and intraclass variability in the classification 

of fruits and vegetables by systematically altering the design. 

The model successfully distinguished visually similar items—

such as bell and chili peppers—while accounting for natural 

variation within categories, achieving 98.04% test accuracy 

and better performance on minority-class samples. This 

success illustrates the significance of leveraging domain-

specific adaptations, such as LeakyReLU for fine-grained 

feature exploitation, frozen layers for stability across diverse 

inputs, and weighted loss for countering imbalance, to 

agricultural computer vision systems. The practical viability 

of the solution was underscored by real-time processing 

capabilities and a testing speed of 55.45 images per second. 

Such features are essential for industries such as automated 

sorting where accuracy and efficiency are crucial. 

This study demonstrates high-performance classification 

while honestly quantifying domain adaptation challenges 

through rigorous cross-dataset evaluation. The 33.83% 

accuracy on Fruits-360 establishes a critical baseline that 

advances the field by providing measurable generalization 

boundaries. Future research should build upon these empirical 

insights to develop domain-robust architectures capable of 

operating across diverse agricultural imaging conditions. 
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