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The global pandemic of COVID-19 has created an urgent demand for fast and accurate
diagnosis of pulmonary infections through CT imaging. Achieving automatic segmentation
and quantification of infected areas in the lungs is crucial for disease assessment and
treatment guidance. However, the COVID-19 infection areas exhibit complex
characteristics in CT images, such as multi-scale features, blurred boundaries, and adhesion
to normal tissues, which present significant challenges for automatic segmentation
techniques. To address the poor performance of existing fully convolutional networks in
segmenting small-sized infection regions and blurry boundaries, this paper proposes an
automatic diagnostic model for COVID-19 pulmonary infection based on multi-scale feature
enhancement. Firstly, an encoder-decoder framework with an improved VGG16-BN as the
backbone is constructed. The core of the model is the design of a multi-scale feature
enhancement module, which integrates features from different layers and dynamically
adjusts the foreground and background weights through learnable parameters, effectively
reducing interference from complex backgrounds. The context information enhancement
component within the module employs a multi-branch dilated convolution strategy to
enlarge the receptive field while preserving the feature map resolution, thus significantly
improving the model's ability to capture minute lesions and enhance boundary segmentation
accuracy. Finally, based on the high-precision segmentation results, an automatic diagnostic
strategy is developed, which quantifies key indicators such as the volume and distribution
of the infected area to assist in disease evaluation. The innovations of this study mainly
include: 1) the proposal of a segmentation network architecture that integrates multi-scale
feature enhancement and context awareness, effectively addressing the core challenges of
varying infection region scales and blurred boundaries; 2) the introduction of a dynamic
weight adjustment mechanism in the feature enhancement module, allowing the model to
adaptively focus on infection region features, thus improving its discriminative capability;
and 3) the integration of pixel-level segmentation results with clinical diagnostic
requirements, forming a complete automatic diagnostic solution from image analysis to
quantitative assessment, with significant theoretical value and clinical application potential.

1. INTRODUCTION

also prone to subjectivity and low diagnostic consistency,
highlighting the urgent need for efficient and accurate

The global pandemic of COVID-19 [1-3] has become a
major public health crisis, placing unprecedented pressure on
global healthcare systems [4, 5]. Chest computed tomography
(CT) imaging [6-9] is widely used for COVID-19 screening,
diagnosis, and disease assessment due to its high sensitivity.
The typical manifestations of COVID-19 in CT images
include multiple [10] ground-glass opacities and consolidation
[11, 12], which are distributed peripherally. The precise
identification and segmentation of these infection regions are
key to quantitatively assessing disease severity and monitoring
disease progression. However, faced with the surge in cases,
relying on radiologists to manually outline infection regions
[13-15] is not only time-consuming and labor-intensive but
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automated diagnostic solutions.

Developing an Al-based automatic diagnostic system for
COVID-19 pulmonary infections [16, 17] holds significant
practical and clinical value. First, it can greatly enhance
diagnostic efficiency, enabling rapid localization and
quantification of lesions, providing objective decision support
for doctors, and alleviating high-intensity workload pressure.
Second, precise volume calculation and density analysis of
infected areas can facilitate accurate disease grading and
dynamic follow-up, offering data support for personalized
treatment plans. Ultimately, the application of such systems
will promote the development of intelligent and standardized
medical image analysis [18], which will not only play a role in
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the current pandemic but also accumulate valuable
technological experience for handling similar public health
events in the future.

Although many studies have attempted to apply deep
learning models, particularly fully convolutional networks
(FCN) and U-Net architectures, to the segmentation of
COVID-19 pulmonary infections, these methods still have
obvious limitations in practice. For example, the U-Net model
proposed by Alom et al. [19], despite its success in biomedical
image segmentation, struggles with the multi-scale
characteristics of COVID-19 infection areas due to its
symmetric encoder-decoder structure. It fails to extract small-
sized ground-glass opacity features that are scattered and
distributed, and the segmentation accuracy is limited for
regions with blurred boundaries. Moreover, although the
DeepLabv3+ model proposed by Murugappan et al. [20] uses
dilated convolutions to enlarge the receptive field, it is easily
affected by background interference when dealing with the
complex situation of infection areas being strongly adhered to
normal lung tissue, leading to false positives or discontinuous
regions in the segmentation results, thereby affecting the
accuracy of quantitative assessments. In addition, classic
segmentation models such as UNet rely on fixed-scale
convolution kernels, which cannot capture the features of both
small ground-glass opacities and large consolidation areas
simultaneously, leading to missed small lesions or inaccurate
boundary segmentation of large lesions. Although the dilated
spatial pyramid pooling in DeepLabv3+ can expand the
receptive field, it handles the gradient transition areas between
the infected region and normal lung tissue roughly, easily
misclassifying vascular textures and artifacts as infection
lesions. Infection pixels usually account for less than 10% in
CT images, and the simple application of existing cross-
entropy loss or Dice loss tends to cause the model to favor
predicting the background class, reducing the detection rate of
small infection lesions. Most methods only remain at the
segmentation of infection areas and fail to convert the
segmentation results into quantifiable indicators and
classification diagnostic conclusions with clinical decision-
making value, limiting their practicality.

To address these issues, this paper proposes a framework
for "COVID-19 Pulmonary Infection Automatic Diagnosis
Based on Multi-Scale Feature Enhancement". The core
research of this paper is the construction of a novel pulmonary
infection region extraction model, which introduces multi-
scale feature enhancement and context information
enhancement modules, aiming to accurately solve the
problems of small target omission and blurry boundary
segmentation. Based on this, the study further develops an
automatic diagnostic strategy from pixel-level segmentation to
clinical assessment, achieving quantitative analysis and
severity determination of the infection areas. The value of this
research lies in the fact that the proposed method not only
significantly improves the precision and robustness of the
segmentation task but also forms an end-to-end automatic
diagnostic process, providing an effective technical tool for the
intelligent and precise clinical auxiliary diagnosis of COVID-
19, with significant theoretical innovation value and broad
clinical application prospects.

The core innovations of this paper are as follows:

(1) Multi-scale feature enhancement dual-branch
collaborative mechanism: A "foreground enhancement-
context information enhancement" dual-branch module is
designed, which accurately separates infection lesions from
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the background through the synergistic effect of a soft
attention mechanism and multi-scale dilated convolutions.
The foreground enhancement branch adopts a Sigmoid
probabilistic weight distribution strategy to dynamically
strengthen the response of infection area features. The context
information enhancement branch innovatively uses a "four-
branch heterogeneous dilated convolution" architecture to
build a hierarchical receptive field, capturing both small lesion
details and the spatial distribution relationships of large lesions.

(2) Dynamic weight adaptive adjustment strategy:
Learnable parameters a and f are introduced in the foreground
enhancement module, and a multi-level refinement process is
used to gradually optimize the weights. The model
automatically adjusts based on infection patterns: for diffuse
ground-glass opacities, the o weight is increased to 0.7-0.8 to
enhance the foreground features; for clearly defined
consolidation areas, the B weight is moderately increased to
0.3-0.4 to suppress background noise.

(3) Medical adaptation optimization of the improved
VGG16-BN backbone network: In response to the
characteristics of COVID-19 CT images, the channel
configuration is adjusted, fully connected layers are discarded
to retain spatial structural information, and a combination of
five max-pooling layers and ReLU activations is used to
balance feature abstraction ability and gradient stability,
preventing the loss of small infection lesion features.

2. METHODOLOGY
2.1 Extraction of COVID-19 pulmonary infection regions

This paper proposes a new infection region extraction
model, designed to address the unique challenges presented by
COVID-19 pulmonary infection images, including small
infection region size, blurred boundaries, and adhesion to
surrounding tissues. These characteristics cause standard fully
convolutional models to be easily interfered with by
background noise and make it difficult to accurately capture
subtle infection regions during segmentation. Therefore, the
model in this paper adopts an improved pre-trained VGG16-
BN as the base architecture, with four layers of downsampling
operations that gradually increase the number of feature
channels to adapt to the size variation of the input images and
improve feature extraction efficiency. This design effectively
utilizes the powerful generalization capability of VGG16-BN
in image recognition tasks, while the downsampling process
reduces spatial dimensions, thus reducing computational
burden and enhancing focus on key features of the infection
region. Additionally, the increase in channels during the
downsampling process helps the model capture both local and
global features of the infection region at multiple scales,
providing a rich feature base for subsequent modules and
directly supporting the high-precision requirements of
automatic diagnosis in the research objective.

On top of the base architecture, this paper constructs four
multi-scale feature enhancement modules. The reason for
designing these modules is that infection regions in COVID-
19 pulmonary infection images often exhibit multi-scale
distribution, such as the coexistence of small ground-glass
opacities and larger consolidation areas, with severe adhesion
to healthy tissue at the boundaries. This makes traditional
single-scale feature extraction methods prone to losing detail.
The module integrates the input from the current



downsampling layer, the output from the next layer, and the
features from the corresponding downsampling layer to
generate higher-quality feature maps, thus providing rich and
detailed multi-scale information. This fusion strategy
effectively filters out background noise, such as vascular
textures or artifacts in the lung parenchyma, while refining the
edge definition of the infection region. The multi-scale feature
enhancement module internally integrates a context
information enhancement module, designed to address the fact
that COVID-19 pulmonary infection regions often exhibit
small target features, such as small nodules or subtle ground-
glass opacities in early infections. These areas are easily

overwhelmed by the background and have blurred boundaries
in the images. The module uses dilated convolution strategies
at different scales to expand the model’s receptive field,
capturing broader contextual information without losing
resolution. By adjusting the dilation rate, dilated convolutions
allow the model to simultaneously focus on local details and
global structures. The enhanced contextual awareness
improves the model's ability to capture infection regions,
ensuring accurate separation of infection regions from
complex backgrounds and thus supporting the efficient and
automated diagnostic process of the research objective.
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Figure 1. COVID-19 pulmonary infection region extraction model network structure

The model employs bilinear interpolation to upsample the
output features from each layer and outputs four different
levels of prediction results to address the challenge of
maintaining high spatial accuracy in the segmentation of
COVID-19 pulmonary infection regions, which need to handle
blurred edges and size variation. Bilinear interpolation, as an
efficient upsampling method, can smoothly restore feature
map sizes, avoiding the aliasing effect caused by nearest-
neighbor interpolation and retaining the subtle structure of the
infection region during output prediction. The multi-level
prediction mechanism corresponds to the outputs from
downsampling layers 4 to 1, enabling the model to supervise
the segmentation process at different scales. For example,
high-level predictions focus on global infection distribution,
while low-level predictions focus on local details and
boundary refinement. This allows the model to gradually
refine the segmentation results of the infection region through
a multi-scale loss function during training, reducing issues of
small targets or blurred boundaries that might be overlooked
by single-scale predictions. Figure 1 illustrates the complete
network structure of the COVID-19 pulmonary infection
region extraction model.

2.1.1 Backbone network

This paper makes targeted improvements to the VGG-16
backbone network to ensure the model adapts to the
fundamental characteristics of COVID-19 pulmonary
infection images. Figure 2 shows the improved backbone
network architecture. COVID-19 CT images typically contain
numerous diffuse, small-sized ground-glass opacities and
consolidation regions. These infection features are widely
distributed and vary in shape within the image. The improved
backbone network fixes the input size to 512x512 pixel RGB
images, which balances retaining sufficient detail information
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with computational efficiency. By using a 3x3 small-sized
convolution kernel with a stride of 1 and padding of 1, the
network fully retains boundary information of the infection
regions during the convolution process, avoiding the loss of
fine infection features caused by size reduction. Additionally,
the depth structure of 13 convolutional layers ensures that the
network can progressively build a comprehensive
understanding of the infection regions, from low-level texture
features to high-level semantic features.
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Figure 2. Backbone network architecture

In terms of feature extraction depth and efficiency
optimization, this paper makes significant adjustments to the
channel configuration of VGG-16. The number of output
channels for the first downsampling layer is changed to 128,
and three downsampling operations with 512 channels are
implemented. The initial layers use relatively fewer channels
to prioritize capturing basic visual features, such as edge and
texture features, which are crucial for distinguishing infection



regions from normal tissue. As the network depth increases,
the number of channels gradually expands to 512, enabling the
network to process multiple feature maps simultaneously and

more comprehensively describe the complex infection patterns.

The abandonment of the fully connected portion of VGG-
16 is another key design decision, which directly serves the
unique needs of the image segmentation task. Traditional
VGG-16 contains three fully connected layers, which disrupt
the spatial structure information of the feature maps and
introduce a large number of parameters into the model,
increasing computational complexity and potentially causing
gradient vanishing issues. For the dense prediction task of
COVID-19 infection region segmentation, preserving the
spatial information of feature maps is crucial, as pixel-level
classification results are required. The improved backbone
network exclusively uses convolution and pooling operations,
gradually reducing the feature map size with five max pooling
layers while increasing the level of feature abstraction. Max
pooling operations are particularly suitable for medical image
processing because they preserve the strong response of
features, highlighting the contrast differences between
infection regions and normal tissue, and providing rich spatial
context for subsequent multi-scale feature enhancement
modules. Specifically, assuming the width and height of the
output feature map are represented by ¢, and g, the width and
height of the input feature map by ¢, and g,, the pooling
kernel's width and height by ¢, and g,, and the stride by S7,
the computation formula for max pooling is as follows:

(9,-4,)
9W="gr +1 (1)
(&,-2,)

In terms of nonlinear representation and gradient
optimization, the improved VGG-16 backbone network uses
the ReLU activation function to address the gradient vanishing
problem in deep networks. The boundaries of COVID-19
infection regions are often blurred, with a gradual transition
between infection and normal lung tissue, requiring the
network to have strong nonlinear modeling capability. The
ReLU activation function, with its one-sided suppression
property, enhances the network’s nonlinear expression ability
while maintaining training efficiency, enabling the model to
learn the complex decision boundaries between infection
regions and complex backgrounds. Although the final fully
connected layer is removed, the network still retains sufficient
nonlinear transformation ability at the end, and through
progressive ReLU activations, the model can gradually refine
high-level features representing infection regions.

2.1.2 Multi-scale feature enhancement

To address the key challenges of multi-scale characteristics,
blurred boundaries, and adhesion to normal tissue in COVID-
19 pulmonary infection regions in CT images, this paper
designs a multi-scale feature enhancement module aimed at
achieving precise feature extraction and differentiation
through architectural innovation. The specific architecture is
shown in Figure 3. This module consists of a foreground
feature enhancement process and a context information
enhancement module working in tandem. Due to the
significant variation in infection lesion sizes, ranging from tiny
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ground-glass nodules to large consolidation areas, and the
often infiltrative blurring of boundaries, the module builds a
context information enhancement component by integrating
dilated convolutions with different dilation rates to
systematically expand the model’s receptive field. The main
reason for adopting this multi-scale receptive field strategy is
that it effectively distinguishes infection regions with similar
appearances from background structures such as blood vessels
and interstitium, reducing misjudgments. At the same time, the
foreground feature enhancement process dynamically adjusts
the weights between foreground and background features
using learnable parameters, actively strengthening the
response to infection features and suppressing noise
interference caused by the complex lung parenchyma
background.

Upsample

A 4
Context information

enhancement module
h 4
Context information ™\ *¢ N
( enhancement module / N '@I—H T

Figure 3. Multi-scale feature enhancement module structure

(1) Foreground Enhancement

The foreground feature enhancement module is based on the
core challenges of low contrast, blurred boundaries, and
complex background interference between infection regions
and normal tissue in COVID-19 pulmonary CT images. This
module uses a Sigmoid-based soft attention mechanism to
achieve precise separation and weight adjustment between
foreground and background features. Specifically, the module
first applies the Sigmoid function to the high-level prediction
results, generating foreground regions with values close to 1
and background regions with values close to 0. The
probabilistic treatment effectively handles the gradual
transition between the ground-glass-like blurred shadows of
infection regions and normal lung tissue, which is common in
COVID-19 images. By multiplying the background
probability map from the Sigmoid output with the upsampled
high-level features, the module can clearly identify
background noise features, thus providing the foundation for
subsequent foreground enhancement. Specifically, assuming
the upsampling process is denoted by US( ), the context
information enhancement process by XXZQ( ), the upsampled
high-level features by DU, the background noise features by
Dy, the input low-level features by D,, the high-level features
Dy, the high-level prediction results by Og, and the output
fused features by Dg, the more refined segmentation result by
On, the calculations for each layer’s features are as follows:

DY =US(Comv,,, (D,)) 3)
O =S (Sigmoid (0, )) )
D = JO(ZQ((l—og”)xDm) (5)



Dy = RELU(BN (DY - pxD})) (6)

0, = Convsxs (DRE) @)

Based on the preliminary separation of foreground and
background features, the module further explores and
optimizes these features through a dual-branch context
information enhancement architecture, which separately
processes foreground and background features. These multi-
scale characteristics include both scattered small ground-glass
opacities and large, merged consolidation areas. Two
independent context information enhancement modules
process the foreground and background features, respectively,
using dilated convolutions with different dilation rates to
construct multi-scale receptive fields and capture infection
features of different sizes. Figure 4 shows the context
information enhancement module structure. For the
foreground branch, the module focuses on extracting internal
texture features and boundary morphology of the infection
region; for the background branch, it focuses on identifying
normal tissue structures that are easily misjudged as infection.
The dual-path processing approach ensures that the model can
learn discriminative features of the infection region from both
the forward and reverse dimensions. In particular, it
effectively improves the model's recognition ability for small
infection foci and blurred boundaries, which are caused by
partial volume effects in COVID-19 pulmonary images.
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Figure 4. Context information enhancement module structure

To achieve dynamic weight optimization for foreground
and background features, the module introduces learnable
parameters o and f, and continuously improves segmentation
results through an incremental multi-level refinement
architecture. This parameterized fusion mechanism allows the
model to automatically adjust the contribution of foreground
and background features based on different infection patterns.
For example, in diffuse ground-glass opacity regions, the
foreground features are given higher weight, while in normal
lung parenchyma regions, the importance of background
features is enhanced. To accommodate the complex
manifestations of COVID-19 infection, where infection
regions present different feature patterns at different scales,
this paper uses a cascading structure with four multi-scale
feature enhancement modules, forming a feature optimization
process from coarse to fine: high-level modules provide global
infection distribution semantic information, while low-level
modules gradually incorporate more spatial details to refine
boundary localization. Finally, through the collaboration of
batch normalization and the ReLU activation function, the
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module enhances the nonlinear expression ability while
maintaining feature distribution stability, enabling the model
to progressively suppress background noise, strengthen
infection features, and ultimately output infection region
segmentation results with clear boundaries and accurate spatial
positioning.

(2) Context Information Enhancement

COVID-19 infection regions exhibit significant scale
diversity in CT images: in the early stages, they often appear
as scattered small ground-glass opacities, while in the
progressive stage, large consolidation areas may merge.
Standard convolutional networks inevitably lose spatial details
as they downsample to expand the receptive field, leading to
decreased detection ability for small lesions. To address the
contradiction  between the multi-scale  distribution
characteristics of COVID-19 pulmonary infection regions and
the need to retain details in CT images, this paper designs a
context information enhancement module. This module
innovatively adopts a multi-branch dilated convolution
architecture, setting four branches with dilated convolutions at
rates of 2, 4, 8, and 2, combined with 1x1, 3x3, 5x5, and 7x7
convolution kernels of different sizes. For the characteristic
patterns of peripheral distribution and multi-lobe involvement
in COVID-19, the module uses smaller dilation rates with 3x3
convolution kernels to finely capture the subtle density
changes of ground-glass opacities, while larger dilation rates
with 7x7 convolution kernels understand the spatial
distribution relationships between multiple infection foci.

The complex manifestations of COVID-19, such as the
"stepping stone sign," include increased ground-glass density
and thickened interlobular septa. These require different scales
of context information for accurate interpretation. To address
the spatial distribution characteristics of COVID-19 infection
regions, where infection regions are not isolated but show
spatial correlation within the lung, the four branches of the
module adopt an increasing dilation rate design. Small ground-
glass opacities may merge as the disease progresses, forming
more dangerous consolidation areas. By setting increasing
dilation rates, the model constructs a hierarchical receptive
field system: lower dilation rate convolution layers capture
internal features and clear boundaries of individual infection
foci, while higher dilation rate convolution layers integrate
broader region information, identifying potential relationships
between multiple foci.

In terms of feature fusion, the context information
enhancement module integrates multi-scale features from the
four branches using a 1x1 convolution to address the
heterogeneity and complexity of COVID-19 pulmonary
infection regions. The features extracted from different
branches represent infection region information at different
scales: the local branch retains edge and texture details crucial
for detecting small lesions, while the large receptive field
branches provide the contextual information necessary for
recognizing infection region distribution patterns. The final
fusion process, through batch normalization and ReLU
activation functions, ensures the coordinated distribution and
nonlinear expression ability of features from different scales.
Specifically, assuming the input feature D, the four branches’
calculation processes are as follows:

— f=1
- ConVSXS

Dy, (Conle1 (Conle1 (D)))

®)

Dy, = CO”V;SZ ((Conlel (D ) + Dy, )) )



Dy = Conv3 (ConvSX5 (Conv,xl (D) + Dy, )) (10)

Dy, = Conv{ (C0”V7x7 (Conlel (D) + Dgps )) (11)
The module’s output is:

Dy = Conv,, (Concat(DBRl s Dirs Digys Digy )) (12)

2.1.3 Upsampling

COVID-19 infection regions in CT images often manifest
as a gradual transition between ground-glass opacities and
normal lung tissue, with blurred boundaries and a lack of clear
edge contours. To address this, this paper adopts bilinear
interpolation for upsampling in the decoder section. Bilinear
interpolation computes a weighted average of the surrounding
four pixels to generate smooth transition pixel values, which
is particularly suited to handling the blurriness of infection
region boundaries. Unlike transposed convolution, which may
produce ‘"checkerboard artifacts," bilinear interpolation
preserves the natural smooth transition of boundaries,
avoiding the introduction of unnatural hard edges at the
infection region boundaries. Additionally, the computational
efficiency of this method is an important consideration for its
selection in this study. COVID-19 lung CT images typically
have high spatial resolution, and large volumes of image data
need to be processed in practical diagnosis. As a lightweight
interpolation method, bilinear interpolation only requires
simple arithmetic operations to perform the upsampling,
which significantly reduces the model's computational
complexity and speeds up inference. Particularly in cases
where the model requires four consecutive upsampling
operations, the efficiency advantage of bilinear interpolation
becomes more apparent, ensuring the practicality of the entire
segmentation process.

To build an efficient feature recovery path, this paper
cleverly combines bilinear interpolation with a skip
connection mechanism. Through four bilinear interpolation
operations, each time doubling the feature map resolution, and
by integrating features from the corresponding layers of the
encoder, the model can progressively recover the spatial
details lost during deep feature extraction. For example, when
identifying scattered small ground-glass opacities, high-
resolution features from the shallow network can provide the
necessary texture details, while deep features upsampled using
bilinear interpolation offer semantic context. The combination
of both ensures accurate detection and localization of small
infection foci. Specifically, given known Wii(ai,bi),
Wha(ai,b2), Wai(az,bi), Wa(az,b,), the interpolated pixel value
at coordinate O, denoted as Ei(ai1, b1), is first calculated based
on Wi and W>. Then, the pixel value E>(az, b,) is calculated
using Wi, and W2, and finally, the pixel interpolation at point
O is obtained using £ and E» as follows:

o)~ 2 fom o[ £ o) s
o) =[S Jotm) o[£ o)

Performing linear interpolation based on ¢(E;) and ¢(E»)
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along the vertical axis:

b,—b
bz _bl

b —b
bz_bl

¢(0)=[ (15)

|

Combining the above three formulas, there is:

|

Jote)

b,—b
b2_b1

a,—a

0(0)~( 22| 2= )

+

(16)

By considering the weights of the four points affecting point
0, denoted by 11, 21, 2, and 22, the equation simplifies to:

¢(0) = ﬂ11¢(W11)+/121¢(W21)

17
+/112¢(W12)+,Uzz¢(sz) (17
Finally, through cascaded bilinear upsampling and feature
fusion, the model can output a high-quality segmentation
result that matches the input image size. In the final layer of
the network, after four upsampling and feature fusion
operations, the feature map undergoes a 1x1 convolution to
reduce the channel number to the number of target classes,
followed by the application of the Softmax function to
generate the probability of each pixel belonging to a class.
Figure 5 shows the model execution flow.
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Figure 5. Model execution flow

2.1.4 Loss function
COVID-19 infection regions in lung CT images typically
appear as scattered, discontinuous lesions, with infection



pixels occupying a small proportion of the entire image,
leading to significant class imbalance. Furthermore, as
COVID-19 pulmonary infections often manifest as gradually
increasing ground-glass densities, the boundary between the
infection region and normal tissue is usually unclear, which
introduces a certain level of uncertainty in the annotated data
itself. Therefore, this paper selects cross-entropy loss as the
loss function for the segmentation task. This loss function,
through its logarithmic calculation, sensitively penalizes the
model’s predicted probabilities: when the model misclassifies
the actual infection region as background, the loss function
generates large gradient signals, forcing the model to quickly
adjust its parameters to correct such severe errors.
Additionally, by independently evaluating the prediction
probability of each pixel, this loss function adapts better to this
situation of boundary fuzziness, without applying excessive
penalty to boundary pixels. Specifically, let L denote the total
number of samples, " the number of classes, the probability of
the u-th sample belonging to the k-th class be o, and the
probability predicted by the model for the u-th sample
belonging to the k-th class be wu, the loss function formula is
as follows:

LOSS = 1

. (18)

[22% log (w, )}

u=l k=1

2.2 Automatic diagnosis
infection

of COVID-19 pulmonary

Based on the precise infection region segmentation results
extracted by the multi-scale feature enhancement model, the
core strategy for the automatic diagnosis of COVID-19 in this
paper is to convert pixel-level segmentation results into
clinically valuable quantitative indicators and classification
decisions.

The model first calculates key quantitative diagnostic
indicators based on the high-precision segmentation results.
These include the total volume ratio of the infected region in
the entire lung, the distribution of infection across different
lung lobes, and the volume and ratio of ground-glass opacities
and consolidation areas. These indicators are not isolated; they
are integrated into a comprehensive evaluation framework.
For example, the total infection volume ratio combined with
the consolidation region ratio can serve as an important basis
for grading disease severity; the distribution characteristics of
the infection region across the upper, middle, and lower lung
regions help determine the typical patterns of the disease. This
strategy directly serves clinical decision-making, allowing
doctors to quickly obtain objective and repeatable quantitative
data without manually delineating the infection regions,
significantly improving diagnostic efficiency and consistency.

Furthermore, the automatic diagnostic system combines
these quantitative features with multi-scale deep features such
as texture and morphology of the infection regions and inputs
them into a lightweight classifier to achieve the final
diagnostic classification. The model not only extracts the
scope of the infection region but also includes its intrinsic
radiological features. For instance, subtle texture changes
captured by the multi-scale feature enhancement module can
be used to distinguish active inflammation from later-stage
fibrosis; morphological features such as the clarity of infection
region boundaries and irregularity of shapes serve as key
indicators to differentiate COVID-19 from other pulmonary
infections. This strategy of integrating "segmentation result
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quantification" with "deep feature analysis" elevates the
automatic diagnosis from simple region detection to a
comprehensive judgment of disease type and progression stage,
ultimately outputting clinically meaningful diagnostic
conclusions such as "suspected,” "confirmed mild,"
"confirmed moderate," or "confirmed severe," thereby fully
achieving the closed loop from image analysis to auxiliary
diagnosis.

3. EXPERIMENTAL
ANALYSIS

STUDY AND RESULTS

To verify the generalization ability and robustness of the
proposed model in clinical practical applications, external
validation experiments were conducted using three cross-
center datasets from different sources. The core characteristics
and key parameters of the datasets from each center exhibit
significant heterogeneity: Center A's CT images were acquired
from the GE Discovery CT750 HD device, with scanning
protocols set to a tube voltage of 120kV, tube current of 200-
300mA, image resolution of 512x512 pixels, slice thickness of
1.0mm, and a total of 286 cases. The infection type is primarily
ground-glass  opacities, with consolidation opacities
accounting for 38%. Center B used the Siemens Somatom
Force device for data acquisition, with tube voltage ranging
from 100-120kV in adaptive adjustment mode, tube current
ranging from 180-250mA, image resolution increased to
640%640 pixels, and slice thickness reduced to 0.8mm. A total
of 312 cases were included, and the infection type distribution
showed a significant difference from Center A, with a higher
proportion of consolidation opacities (45% ground-glass
opacities). The images from Center C were sourced from the
Philips Ingenuity Core device, with scanning parameters of
tube voltage 120kV, tube current 220-280mA, image
resolution back to 512x512 pixels, slice thickness of 1.2mm,
and a total of 258 cases. The infection type is dominated by
ground-glass opacities, with 18% of mixed infection cases and
significantly higher proportions of early-stage infections
compared to the other two centers. The heterogeneity in these
cross-center data is mainly reflected in three key dimensions:
first, differences in acquisition equipment models lead to
different image grayscale distribution characteristics. For
instance, images from the Siemens device typically have
higher contrast than those from the GE device, directly
affecting the visual distinction between infected areas and
normal tissues. Second, differences in slice thickness and
image resolution directly impact the display accuracy of small-
sized infection lesions. The thinner the slice thickness and the
higher the resolution, the more detailed the small lesions, but
more background noise may also be introduced. Third, the
distribution of infection types differs, with Center C
predominantly having early infection-related ground-glass
opacities, while Center B mainly has consolidation opacities
associated with later stages of infection. This difference in
case composition comprehensively tests the model's ability to
adapt to infection characteristics at different disease stages.
Veritying the model on this significantly heterogeneous cross-
center dataset can fully demonstrate its stable performance
under different clinical scanning devices, scanning parameters,
and case compositions, providing reliable data support for the
model’s clinical application.

To verify the segmentation performance and diagnostic
accuracy of the proposed model, two classic models in the
field of medical image segmentation were selected as baseline



comparisons. The rationale for selection and the features of the
models are as follows: (1) UNet, as a representative encoder-
decoder architecture, has a skip connection mechanism that
effectively fuses high and low-level features and is widely
used in lung infection segmentation tasks. However, the model
has inherent drawbacks: it relies solely on a single-scale
convolution kernel and cannot handle the multi-scale
distribution characteristics of COVID-19 infection lesions; the
use of transpose convolution for upsampling may generate
"checkerboard artifacts," affecting the segmentation accuracy
of blurred boundaries. Selecting this model as a baseline can
validate the effectiveness of the proposed multi-scale feature
enhancement module. (2) DeepLabv3+ uses the ASPP module

to expand the receptive field, introducing dilated convolutions
to balance the receptive field and resolution, achieving
excellent performance in semantic segmentation tasks.
However, its drawback is that the dilation rate configuration
of the ASPP module is fixed and cannot adapt to the scale
differences of COVID-19 infection lesions; it also lacks the
ability to capture small lesions' features and has not been
optimized for the class imbalance problem in medical images.
This model is selected to further validate the rationality of the
proposed context information enhancement module and loss
function design. All comparison models use the same input
size, optimizer, and training iterations to ensure fairness in the
experiments.

Table 1. Ablation experiment results of multi-scale feature enhancement module

Model Configuration IoU (%) Fi-Score (%) Precision (%) Recall (%)
Baseline Model (Baseline) 68.45 81.23 82.67 79.82
+ Multi-scale Feature Fusion 74.82 85.47 86.92 84.05
+ Multi-scale Feature Fusion + Context Enhancement 78.96 88.74 90.15 87.36
Table 2. Quantitative comparison results on the standard COVID-19 test set
Method IoU (%) Fi-Score (%) Precision (%) Recall (%) Param (MB)
UNet 70.35 82.56 83.91 81.25 31.04
DeepLabv3+ 73.28 84.62 86.47 82.85 40.81
Attention UNet 74.92 85.64 87.23 84.10 34.72
Proposed Method 78.96 88.74 90.15 87.36 28.45
Table 3. Quantitative comparison results on the small infection lesion test set
Method IoU (%) Fi-Score (%) Precision (%) Recall (%) Param (MB)
UNet 58.72 73.89 75.26 72.56 31.04
DeepLabv3+ 62.45 76.83 79.14 74.65 40.81
COVID-SegNet 65.38 78.92 80.37 77.52 36.75
Proposed Method 69.27 81.85 83.46 80.31 28.45

To validate the contribution of each component in the
proposed multi-scale feature enhancement module to the
COVID-19 pulmonary infection region segmentation
performance, ablation experiments were conducted.
According to the experimental results shown in Table 1, the
baseline model achieved an loU of 68.45% and an Fi-Score of
81.23%, indicating that the basic architecture already
possesses certain segmentation capabilities. After adding the
multi-scale  feature  fusion = mechanism,  significant
improvements were observed in all metrics, with IoU
increasing by 6.37 percentage points and Fi-Score increasing
by 4.24 percentage points. This demonstrates that multi-scale
feature fusion effectively enhances the model's ability to
capture infection regions of different sizes, especially
improving the recognition of small ground-glass opacities.
After further introducing the context enhancement module, the
model performance reached its peak, with IoU and Fi-Score
reaching 78.96% and 88.74%, respectively. The increase in
precision was particularly notable, indicating that the module
effectively  suppressed interference from  complex
backgrounds and reduced false positives. Overall, the ablation
experiment fully proves the effectiveness and necessity of
each component in the multi-scale feature enhancement
module, which together significantly improve the model's
segmentation accuracy and robustness for COVID-19
pulmonary infection regions.
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To evaluate the baseline performance of the model on
typical COVID-19 cases, a comparative experiment was
conducted on the standard test set. The results in Table 2
demonstrate  that the proposed multi-scale feature
enhancement model excels in conventional COVID-19
pulmonary infection segmentation tasks. The proposed
method achieved an IoU of 78.96% and an F1-Score of 88.74%,
ranking first among all comparison methods. Most importantly,
the model achieved the highest precision value of 90.15%
while maintaining an excellent recall of 87.36%. This
combination of "high precision, high recall" proves that the
model successfully achieved two key goals by introducing the
multi-scale feature enhancement module: on the one hand,
foreground feature enhancement and dynamic weight
adjustment effectively suppressed interference from the
complex lung parenchyma background, significantly reducing
false positives by preventing normal tissue from being
misclassified as infection, which directly contributes to the
high precision; on the other hand, by integrating features from
different levels, the model enhanced its ability to capture
infection regions of diverse sizes, preventing missed detection
of lesions and ensuring high recall. Furthermore, the model
requires only 28.45MB of parameters, achieving the best
balance between performance and efficiency, making it
convenient for clinical deployment.



Table 4. Quantitative comparison results on the multi-center external validation set

Method IoU (%) Fi-Score (%) Precision (%) Recall (%) Param (MB)
UNet 65.38 78.94 76.85 81.18 31.04
DeepLabv3+ 68.27 81.06 83.42 78.85 40.81
TransUNet 71.45 83.27 84.96 81.65 42.18
Proposed Method 74.62 85.43 87.28 83.67 28.45

Table 5. Quantitative comparison results for different infection types

Infection Type UNet DeepLabv3+ Proposed Method
mAP50 (%) mAP50:90 (%) mAP50 (%) mAP50:90 (%) mAP50 (%) mAP50:90 (%)

Ground-glass Opacity 40.1 16.9 453 20.6 53.3 25.0

Consolidation Area 32.8 11.9 36.3 13.7 41.9 16.2

Interlobular Septal Thickening 12.8 4.5 16.0 6.3 19.6 8.0

Fibrotic Lesions 74.5 45.0 77.4 53.6 82.1 57.9

Bronchial Inflation 36.8 24.9 42.0 294 45.9 31.9

Table 6. Generalization performance comparison across different medical center data

Infection Type UNet DeepLabv3+ Proposed Method
mAPS50 (%)  mAP50:90 (%) mAP50 (%) mAP50:90 (%) mAPS50 (%) mAP50:90 (%)

Center A (Training Set) 453 20.6 50.1 253 55.8 28.9

Center B (External Validation) 36.3 13.7 38.2 15.1 43.5 18.6

Center C (External Validation) 30.5 10.2 32.8 12.4 37.9 15.3

Center D (External Validation) 28.7 9.8 31.5 11.9 35.2 14.1

To address the challenge of detecting small infection lesions
in early COVID-19 diagnosis, we specifically evaluated the
performance of different methods on the small infection lesion
test set. The results in Table 3 demonstrate that the proposed
model excels in segmenting small infection regions critical for
early clinical diagnosis. Although the performance of all
models declines due to the increased task difficulty, the
proposed method significantly outperforms others with an IoU
0f 69.27% and an Fi-Score of 81.85%. Notably, the recall rate
reached 80.31%, the highest among all methods. This indicates
that the context enhancement module in the model played a
crucial role when handling subtle, scattered ground-glass
opacities that are easy to overlook. The module, using a
hierarchical receptive field built with multi-branch dilated
convolutions, integrates broader context information without
sacrificing spatial resolution of feature maps, enabling the
model to sensitively "perceive" small lesions with low contrast
and atypical morphology relative to the surrounding normal
tissue, thus greatly reducing the rate of missed detections.
Meanwhile, the precision of 83.46% shows that the foreground
feature enhancement mechanism effectively maintains feature
discrimination, avoiding excessive sensitivity that leads to
false positives even in the challenging task of segmenting
small targets.

To validate the generalization ability of the model, we tested
it on a multi-center external validation set from different
medical institutions. The outstanding performance shown in
Table 4 highlights the model's robust generalization and
clinical usability. On heterogeneous data from different
medical institutions, scan devices, and protocols, the proposed
method achieved an IoU of 74.62% and an Fi-Score of 85.43%,
with an exceptional precision of 87.28%. This result proves
that the proposed multi-scale feature enhancement architecture
is not overfitted to specific data distributions and that its core
mechanisms have strong robustness against domain shifts.
Regardless of changes in image contrast, noise levels, or visual
features, the model can reliably extract the essential
characteristics of COVID-19 infection regions and accurately
separate them from various background interferences using its
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multi-scale feature fusion and enhancement mechanism.
Compared with the large-parameter TransUNet, the
lightweight model outperformed it in terms of generalization
performance, further indicating that the inductive bias we
introduced is more effective and reliable for medical image
segmentation tasks than simply increasing model complexity.
This lays a solid foundation for the model's deployment in
real-world, multi-center clinical environments for automated
diagnosis.

To systematically evaluate the model's ability to recognize
various typical infection lesions in COVID-19, a quantitative
comparison was conducted for different methods on infection
types, which is crucial for accurate disease assessment and
staging diagnosis. The data analysis in Table 5 shows that the
proposed multi-scale feature enhancement model achieved the
best performance across five typical infection types. In the
most challenging detection of interlobular septal thickening,
the proposed method's mAP50 reached 19.6%, improving over
50% compared to UNet's 12.8%, demonstrating that the
context information enhancement component in the multi-
scale feature enhancement module effectively captures subtle
linear structural features. For the most common clinical
ground-glass opacities, the proposed method achieved an
mAPS50 of 53.3%, significantly outperforming other methods.
This is thanks to the foreground feature enhancement
mechanism, which dynamically adjusts feature weights
through learnable parameters, effectively strengthening
feature expression in areas with blurred boundaries and low
contrast. Notably, in the case of fibrotic lesions, a late-stage
manifestation, the proposed method achieved 57.9% in the
mAP50:90 metric, surpassing DeepLabv3+ by 4.3 percentage
points, indicating that the model can accurately identify the
complex boundaries and internal textures of such structures.

To validate the model's generalization ability in real clinical
settings, we conducted a generalization performance
comparison across different medical centers, which is a key
factor in determining whether an automatic diagnosis system
can be practically applied. The data analysis presented in
Table 6 reveals that the proposed method maintains stable



performance across data from four independent medical
centers, showcasing its exceptional domain adaptation ability.
In Center A, the source of the training set, the proposed
method achieved 55.8% mAP50, as expected. However, in
three external validation centers (B, C, and D), the
performance decay was significantly smaller compared to the
other methods. Specifically, from Center A to Center D, the
mAP50 of the proposed method decayed by 36.9%, whereas
UNet and DeepLabv3+ decayed by 46.2% and 44.3%,
respectively. This demonstrates that the multi-scale feature
enhancement module, by fusing features from different layers,
has constructed a more generalizable feature space capable of
effectively resisting domain shifts caused by differences in
scanning devices, parameter settings, and reconstruction
algorithms. Notably, in Center D, where data quality was
relatively poor, the proposed method still maintained an
mAP50 of 35.2%, significantly outperforming the comparison
methods. This reflects the model's robustness against noise
and artifacts through multi-scale contextual awareness.

The experimental results show that the COVID-19
pulmonary infection automatic diagnosis method based on
multi-scale feature enhancement proposed in this paper not
only improves the recognition accuracy of various infection
lesions comprehensively, but more importantly, demonstrates
significant advantages in the clinical concerns of
generalization and practicality. The model can accurately
distinguish the infection manifestations at different
pathological stages, providing fine-grained analysis for
disease evaluation, and is also able to adapt to a multi-center
heterogeneous data environment, ensuring the reliability of
diagnostic results. This fully verifies the advancement and
practicality of the multi-scale feature enhancement
architecture in medical image analysis.

4. CONCLUSION

In this study, a COVID-19 pulmonary infection automatic
diagnosis model based on multi-scale feature enhancement
was developed, systematically addressing core challenges in
infection region segmentation and achieving significant
research results. This study successfully designed and
implemented an encoder-decoder architecture integrated with
a multi-scale feature enhancement module, innovatively
incorporating a foreground feature enhancement mechanism
and a context information enhancement module. Through
detailed ablation experiments and comparative validation, the
results indicate that the model demonstrates exceptional
performance across multiple test scenarios. Not only did it
achieve 78.96% IoU and 88.74% Fi-Score on the standard test
set, but it also significantly outperformed mainstream methods
in terms of small infection lesion detection and cross-center
generalization capability. The core value of the model lies in
its ability to effectively balance recall and precision in the
segmentation task through multi-scale feature fusion and
dynamic weight adjustment, while addressing long-standing
issues in medical image segmentation, such as varying
infection region scales, blurred boundaries, and adherence to
normal tissue. Furthermore, the model maintains low
computational complexity while preserving high performance,
providing a feasible technical solution for clinical application.

The automatic diagnostic model proposed in this paper has
clear and extensive clinical application value. On one hand, it
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can be applied to emergency rapid screening scenarios. By
performing end-to-end inference on 512x512 pixel images, it
enables real-time segmentation of infected areas and severity
grading, providing efficient and objective technical support for
patient triage decisions in emergency settings. On the other
hand, it can assist primary healthcare diagnosis. Addressing
the issue of relatively insufficient clinical experience among
doctors in primary healthcare settings, the model's output of
quantitative indicators such as the infection volume ratio, lung
lobe distribution features, and clear classification conclusions
can effectively reduce the risk of misdiagnosis and missed
diagnosis of COVID-19 lung infections. Additionally, it can
support large-scale epidemiological surveys. Leveraging its
proven multi-center generalization ability, it can adapt to CT
scanning devices and protocols from different regions,
enabling rapid population-level infection screening and mass
disease assessment.

However, the model still faces several practical challenges
during clinical translation, and targeted strategies need to be
developed to address them: For the issue of data privacy
protection, a federated learning framework will be used, where
model training is performed locally at each hospital, with only
optimized model parameters shared instead of raw medical
data, in strict compliance with the relevant requirements of the
"Medical Data Security Guidelines." To address the grayscale
distribution differences in images collected by CT devices
from different brands, an additional image preprocessing
adaptive module will be added. This module will use
techniques such as grayscale normalization and resolution
unification to enhance the model's cross-device adaptability.
To improve doctor acceptance, a "human-machine
collaboration" interface will be designed, allowing
radiologists to manually correct segmentation results and
provide feedback to the model. Through incremental learning,
the model's performance will be continuously optimized,
ensuring both diagnostic automation efficiency and full
respect for the doctor's autonomy. For label consistency issues,
a multi-center joint annotation standard will be established,
and a dual quality control mechanism will be implemented,
consisting of "3 radiologists' consensus annotations + 1 chief
physician review," to minimize the impact of annotation biases
on model performance.

To further unleash the diagnostic potential of the model and
expand its clinical applicability, future research will proceed
from multiple dimensions: Based on the two-dimensional
segmentation results already achieved in this paper, a three-
dimensional reconstruction model of the infected areas will be
constructed. By calculating more clinically meaningful
indicators such as the lesion's three-dimensional volume and
spatial distribution density, the severity of the patient's
condition can be more accurately reflected. The model will
also integrate multi-source information such as the patient's
blood routine indicators, nucleic acid test results, and clinical
symptoms to build a "image-biological marker-clinical
symptom" multimodal diagnostic model, further improving
the specificity and sensitivity of the classification diagnosis.
For series CT images of the same patient, a dynamic
quantitative analysis function for the changes in the infected
area will be developed, providing data support for clinical
treatment evaluation and prognosis prediction, thus upgrading
the model from a single diagnostic tool to a full-course
management assistance system.
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