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The global pandemic of COVID-19 has created an urgent demand for fast and accurate 

diagnosis of pulmonary infections through CT imaging. Achieving automatic segmentation 

and quantification of infected areas in the lungs is crucial for disease assessment and 

treatment guidance. However, the COVID-19 infection areas exhibit complex 

characteristics in CT images, such as multi-scale features, blurred boundaries, and adhesion 

to normal tissues, which present significant challenges for automatic segmentation 

techniques. To address the poor performance of existing fully convolutional networks in 

segmenting small-sized infection regions and blurry boundaries, this paper proposes an 

automatic diagnostic model for COVID-19 pulmonary infection based on multi-scale feature 

enhancement. Firstly, an encoder-decoder framework with an improved VGG16-BN as the 

backbone is constructed. The core of the model is the design of a multi-scale feature 

enhancement module, which integrates features from different layers and dynamically 

adjusts the foreground and background weights through learnable parameters, effectively 

reducing interference from complex backgrounds. The context information enhancement 

component within the module employs a multi-branch dilated convolution strategy to 

enlarge the receptive field while preserving the feature map resolution, thus significantly 

improving the model's ability to capture minute lesions and enhance boundary segmentation 

accuracy. Finally, based on the high-precision segmentation results, an automatic diagnostic 

strategy is developed, which quantifies key indicators such as the volume and distribution 

of the infected area to assist in disease evaluation. The innovations of this study mainly 

include: 1) the proposal of a segmentation network architecture that integrates multi-scale 

feature enhancement and context awareness, effectively addressing the core challenges of 

varying infection region scales and blurred boundaries; 2) the introduction of a dynamic 

weight adjustment mechanism in the feature enhancement module, allowing the model to 

adaptively focus on infection region features, thus improving its discriminative capability; 

and 3) the integration of pixel-level segmentation results with clinical diagnostic 

requirements, forming a complete automatic diagnostic solution from image analysis to 

quantitative assessment, with significant theoretical value and clinical application potential. 
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1. INTRODUCTION

The global pandemic of COVID-19 [1-3] has become a 

major public health crisis, placing unprecedented pressure on 

global healthcare systems [4, 5]. Chest computed tomography 

(CT) imaging [6-9] is widely used for COVID-19 screening, 

diagnosis, and disease assessment due to its high sensitivity. 

The typical manifestations of COVID-19 in CT images 

include multiple [10] ground-glass opacities and consolidation 

[11, 12], which are distributed peripherally. The precise 

identification and segmentation of these infection regions are 

key to quantitatively assessing disease severity and monitoring 

disease progression. However, faced with the surge in cases, 

relying on radiologists to manually outline infection regions 

[13-15] is not only time-consuming and labor-intensive but 

also prone to subjectivity and low diagnostic consistency, 

highlighting the urgent need for efficient and accurate 

automated diagnostic solutions. 

Developing an AI-based automatic diagnostic system for 

COVID-19 pulmonary infections [16, 17] holds significant 

practical and clinical value. First, it can greatly enhance 

diagnostic efficiency, enabling rapid localization and 

quantification of lesions, providing objective decision support 

for doctors, and alleviating high-intensity workload pressure. 

Second, precise volume calculation and density analysis of 

infected areas can facilitate accurate disease grading and 

dynamic follow-up, offering data support for personalized 

treatment plans. Ultimately, the application of such systems 

will promote the development of intelligent and standardized 

medical image analysis [18], which will not only play a role in 
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the current pandemic but also accumulate valuable 

technological experience for handling similar public health 

events in the future. 

Although many studies have attempted to apply deep 

learning models, particularly fully convolutional networks 

(FCN) and U-Net architectures, to the segmentation of 

COVID-19 pulmonary infections, these methods still have 

obvious limitations in practice. For example, the U-Net model 

proposed by Alom et al. [19], despite its success in biomedical 

image segmentation, struggles with the multi-scale 

characteristics of COVID-19 infection areas due to its 

symmetric encoder-decoder structure. It fails to extract small-

sized ground-glass opacity features that are scattered and 

distributed, and the segmentation accuracy is limited for 

regions with blurred boundaries. Moreover, although the 

DeepLabv3+ model proposed by Murugappan et al. [20] uses 

dilated convolutions to enlarge the receptive field, it is easily 

affected by background interference when dealing with the 

complex situation of infection areas being strongly adhered to 

normal lung tissue, leading to false positives or discontinuous 

regions in the segmentation results, thereby affecting the 

accuracy of quantitative assessments. In addition, classic 

segmentation models such as UNet rely on fixed-scale 

convolution kernels, which cannot capture the features of both 

small ground-glass opacities and large consolidation areas 

simultaneously, leading to missed small lesions or inaccurate 

boundary segmentation of large lesions. Although the dilated 

spatial pyramid pooling in DeepLabv3+ can expand the 

receptive field, it handles the gradient transition areas between 

the infected region and normal lung tissue roughly, easily 

misclassifying vascular textures and artifacts as infection 

lesions. Infection pixels usually account for less than 10% in 

CT images, and the simple application of existing cross-

entropy loss or Dice loss tends to cause the model to favor 

predicting the background class, reducing the detection rate of 

small infection lesions. Most methods only remain at the 

segmentation of infection areas and fail to convert the 

segmentation results into quantifiable indicators and 

classification diagnostic conclusions with clinical decision-

making value, limiting their practicality. 

To address these issues, this paper proposes a framework 

for "COVID-19 Pulmonary Infection Automatic Diagnosis 

Based on Multi-Scale Feature Enhancement". The core 

research of this paper is the construction of a novel pulmonary 

infection region extraction model, which introduces multi-

scale feature enhancement and context information 

enhancement modules, aiming to accurately solve the 

problems of small target omission and blurry boundary 

segmentation. Based on this, the study further develops an 

automatic diagnostic strategy from pixel-level segmentation to 

clinical assessment, achieving quantitative analysis and 

severity determination of the infection areas. The value of this 

research lies in the fact that the proposed method not only 

significantly improves the precision and robustness of the 

segmentation task but also forms an end-to-end automatic 

diagnostic process, providing an effective technical tool for the 

intelligent and precise clinical auxiliary diagnosis of COVID-

19, with significant theoretical innovation value and broad 

clinical application prospects. 

The core innovations of this paper are as follows: 

(1) Multi-scale feature enhancement dual-branch 

collaborative mechanism: A "foreground enhancement-

context information enhancement" dual-branch module is 

designed, which accurately separates infection lesions from 

the background through the synergistic effect of a soft 

attention mechanism and multi-scale dilated convolutions. 

The foreground enhancement branch adopts a Sigmoid 

probabilistic weight distribution strategy to dynamically 

strengthen the response of infection area features. The context 

information enhancement branch innovatively uses a "four-

branch heterogeneous dilated convolution" architecture to 

build a hierarchical receptive field, capturing both small lesion 

details and the spatial distribution relationships of large lesions. 

(2) Dynamic weight adaptive adjustment strategy: 

Learnable parameters α and β are introduced in the foreground 

enhancement module, and a multi-level refinement process is 

used to gradually optimize the weights. The model 

automatically adjusts based on infection patterns: for diffuse 

ground-glass opacities, the α weight is increased to 0.7-0.8 to 

enhance the foreground features; for clearly defined 

consolidation areas, the β weight is moderately increased to 

0.3-0.4 to suppress background noise. 

(3) Medical adaptation optimization of the improved 

VGG16-BN backbone network: In response to the 

characteristics of COVID-19 CT images, the channel 

configuration is adjusted, fully connected layers are discarded 

to retain spatial structural information, and a combination of 

five max-pooling layers and ReLU activations is used to 

balance feature abstraction ability and gradient stability, 

preventing the loss of small infection lesion features. 

 

 

2. METHODOLOGY 

 

2.1 Extraction of COVID-19 pulmonary infection regions 

 

This paper proposes a new infection region extraction 

model, designed to address the unique challenges presented by 

COVID-19 pulmonary infection images, including small 

infection region size, blurred boundaries, and adhesion to 

surrounding tissues. These characteristics cause standard fully 

convolutional models to be easily interfered with by 

background noise and make it difficult to accurately capture 

subtle infection regions during segmentation. Therefore, the 

model in this paper adopts an improved pre-trained VGG16-

BN as the base architecture, with four layers of downsampling 

operations that gradually increase the number of feature 

channels to adapt to the size variation of the input images and 

improve feature extraction efficiency. This design effectively 

utilizes the powerful generalization capability of VGG16-BN 

in image recognition tasks, while the downsampling process 

reduces spatial dimensions, thus reducing computational 

burden and enhancing focus on key features of the infection 

region. Additionally, the increase in channels during the 

downsampling process helps the model capture both local and 

global features of the infection region at multiple scales, 

providing a rich feature base for subsequent modules and 

directly supporting the high-precision requirements of 

automatic diagnosis in the research objective. 

On top of the base architecture, this paper constructs four 

multi-scale feature enhancement modules. The reason for 

designing these modules is that infection regions in COVID-

19 pulmonary infection images often exhibit multi-scale 

distribution, such as the coexistence of small ground-glass 

opacities and larger consolidation areas, with severe adhesion 

to healthy tissue at the boundaries. This makes traditional 

single-scale feature extraction methods prone to losing detail. 

The module integrates the input from the current 
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downsampling layer, the output from the next layer, and the 

features from the corresponding downsampling layer to 

generate higher-quality feature maps, thus providing rich and 

detailed multi-scale information. This fusion strategy 

effectively filters out background noise, such as vascular 

textures or artifacts in the lung parenchyma, while refining the 

edge definition of the infection region. The multi-scale feature 

enhancement module internally integrates a context 

information enhancement module, designed to address the fact 

that COVID-19 pulmonary infection regions often exhibit 

small target features, such as small nodules or subtle ground-

glass opacities in early infections. These areas are easily 

overwhelmed by the background and have blurred boundaries 

in the images. The module uses dilated convolution strategies 

at different scales to expand the model’s receptive field, 

capturing broader contextual information without losing 

resolution. By adjusting the dilation rate, dilated convolutions 

allow the model to simultaneously focus on local details and 

global structures. The enhanced contextual awareness 

improves the model's ability to capture infection regions, 

ensuring accurate separation of infection regions from 

complex backgrounds and thus supporting the efficient and 

automated diagnostic process of the research objective. 

 

 
 

Figure 1. COVID-19 pulmonary infection region extraction model network structure 

 

The model employs bilinear interpolation to upsample the 

output features from each layer and outputs four different 

levels of prediction results to address the challenge of 

maintaining high spatial accuracy in the segmentation of 

COVID-19 pulmonary infection regions, which need to handle 

blurred edges and size variation. Bilinear interpolation, as an 

efficient upsampling method, can smoothly restore feature 

map sizes, avoiding the aliasing effect caused by nearest-

neighbor interpolation and retaining the subtle structure of the 

infection region during output prediction. The multi-level 

prediction mechanism corresponds to the outputs from 

downsampling layers 4 to 1, enabling the model to supervise 

the segmentation process at different scales. For example, 

high-level predictions focus on global infection distribution, 

while low-level predictions focus on local details and 

boundary refinement. This allows the model to gradually 

refine the segmentation results of the infection region through 

a multi-scale loss function during training, reducing issues of 

small targets or blurred boundaries that might be overlooked 

by single-scale predictions. Figure 1 illustrates the complete 

network structure of the COVID-19 pulmonary infection 

region extraction model. 

 

2.1.1 Backbone network 

This paper makes targeted improvements to the VGG-16 

backbone network to ensure the model adapts to the 

fundamental characteristics of COVID-19 pulmonary 

infection images. Figure 2 shows the improved backbone 

network architecture. COVID-19 CT images typically contain 

numerous diffuse, small-sized ground-glass opacities and 

consolidation regions. These infection features are widely 

distributed and vary in shape within the image. The improved 

backbone network fixes the input size to 512×512 pixel RGB 

images, which balances retaining sufficient detail information 

with computational efficiency. By using a 3×3 small-sized 

convolution kernel with a stride of 1 and padding of 1, the 

network fully retains boundary information of the infection 

regions during the convolution process, avoiding the loss of 

fine infection features caused by size reduction. Additionally, 

the depth structure of 13 convolutional layers ensures that the 

network can progressively build a comprehensive 

understanding of the infection regions, from low-level texture 

features to high-level semantic features. 

 

 
 

Figure 2. Backbone network architecture 

 

In terms of feature extraction depth and efficiency 

optimization, this paper makes significant adjustments to the 

channel configuration of VGG-16. The number of output 

channels for the first downsampling layer is changed to 128, 

and three downsampling operations with 512 channels are 

implemented. The initial layers use relatively fewer channels 

to prioritize capturing basic visual features, such as edge and 

texture features, which are crucial for distinguishing infection 
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regions from normal tissue. As the network depth increases, 

the number of channels gradually expands to 512, enabling the 

network to process multiple feature maps simultaneously and 

more comprehensively describe the complex infection patterns. 

The abandonment of the fully connected portion of VGG-

16 is another key design decision, which directly serves the 

unique needs of the image segmentation task. Traditional 

VGG-16 contains three fully connected layers, which disrupt 

the spatial structure information of the feature maps and 

introduce a large number of parameters into the model, 

increasing computational complexity and potentially causing 

gradient vanishing issues. For the dense prediction task of 

COVID-19 infection region segmentation, preserving the 

spatial information of feature maps is crucial, as pixel-level 

classification results are required. The improved backbone 

network exclusively uses convolution and pooling operations, 

gradually reducing the feature map size with five max pooling 

layers while increasing the level of feature abstraction. Max 

pooling operations are particularly suitable for medical image 

processing because they preserve the strong response of 

features, highlighting the contrast differences between 

infection regions and normal tissue, and providing rich spatial 

context for subsequent multi-scale feature enhancement 

modules. Specifically, assuming the width and height of the 

output feature map are represented by qp and gp, the width and 

height of the input feature map by qu and gu, the pooling 

kernel's width and height by qo and go, and the stride by ST, 

the computation formula for max pooling is as follows: 

 

( )
1

u o

p

q q
q

ST

−
= +  (1) 

 

( )
1

u o

p

g g
g

ST

−
= +  (2) 

 

In terms of nonlinear representation and gradient 

optimization, the improved VGG-16 backbone network uses 

the ReLU activation function to address the gradient vanishing 

problem in deep networks. The boundaries of COVID-19 

infection regions are often blurred, with a gradual transition 

between infection and normal lung tissue, requiring the 

network to have strong nonlinear modeling capability. The 

ReLU activation function, with its one-sided suppression 

property, enhances the network’s nonlinear expression ability 

while maintaining training efficiency, enabling the model to 

learn the complex decision boundaries between infection 

regions and complex backgrounds. Although the final fully 

connected layer is removed, the network still retains sufficient 

nonlinear transformation ability at the end, and through 

progressive ReLU activations, the model can gradually refine 

high-level features representing infection regions. 

 

2.1.2 Multi-scale feature enhancement 

To address the key challenges of multi-scale characteristics, 

blurred boundaries, and adhesion to normal tissue in COVID-

19 pulmonary infection regions in CT images, this paper 

designs a multi-scale feature enhancement module aimed at 

achieving precise feature extraction and differentiation 

through architectural innovation. The specific architecture is 

shown in Figure 3. This module consists of a foreground 

feature enhancement process and a context information 

enhancement module working in tandem. Due to the 

significant variation in infection lesion sizes, ranging from tiny 

ground-glass nodules to large consolidation areas, and the 

often infiltrative blurring of boundaries, the module builds a 

context information enhancement component by integrating 

dilated convolutions with different dilation rates to 

systematically expand the model’s receptive field. The main 

reason for adopting this multi-scale receptive field strategy is 

that it effectively distinguishes infection regions with similar 

appearances from background structures such as blood vessels 

and interstitium, reducing misjudgments. At the same time, the 

foreground feature enhancement process dynamically adjusts 

the weights between foreground and background features 

using learnable parameters, actively strengthening the 

response to infection features and suppressing noise 

interference caused by the complex lung parenchyma 

background. 

 

 
 

Figure 3. Multi-scale feature enhancement module structure 

 

(1) Foreground Enhancement 

The foreground feature enhancement module is based on the 

core challenges of low contrast, blurred boundaries, and 

complex background interference between infection regions 

and normal tissue in COVID-19 pulmonary CT images. This 

module uses a Sigmoid-based soft attention mechanism to 

achieve precise separation and weight adjustment between 

foreground and background features. Specifically, the module 

first applies the Sigmoid function to the high-level prediction 

results, generating foreground regions with values close to 1 

and background regions with values close to 0. The 

probabilistic treatment effectively handles the gradual 

transition between the ground-glass-like blurred shadows of 

infection regions and normal lung tissue, which is common in 

COVID-19 images. By multiplying the background 

probability map from the Sigmoid output with the upsampled 

high-level features, the module can clearly identify 

background noise features, thus providing the foundation for 

subsequent foreground enhancement. Specifically, assuming 

the upsampling process is denoted by US( ), the context 

information enhancement process by XXZQ( ), the upsampled 

high-level features by 𝐷𝑔
𝑈𝑃, the background noise features by 

𝐷𝑚
𝑦

, the input low-level features by Dm, the high-level features 

Dg, the high-level prediction results by Og, and the output 

fused features by DRE, the more refined segmentation result by 

Om, the calculations for each layer’s features are as follows: 

 

( )( )7 7

UP

g gD US Conv D=  (3) 

 

( )( )UP

g gO US Sigmoid O=  (4) 

 

( )( )1y UP

m g mD XXZQ O D= −   (5) 
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( )( )UP y

RE g mD RELU BN D D= −   (6) 

 

( )3 3m REO Conv D=  (7) 

 

Based on the preliminary separation of foreground and 

background features, the module further explores and 

optimizes these features through a dual-branch context 

information enhancement architecture, which separately 

processes foreground and background features. These multi-

scale characteristics include both scattered small ground-glass 

opacities and large, merged consolidation areas. Two 

independent context information enhancement modules 

process the foreground and background features, respectively, 

using dilated convolutions with different dilation rates to 

construct multi-scale receptive fields and capture infection 

features of different sizes. Figure 4 shows the context 

information enhancement module structure. For the 

foreground branch, the module focuses on extracting internal 

texture features and boundary morphology of the infection 

region; for the background branch, it focuses on identifying 

normal tissue structures that are easily misjudged as infection. 

The dual-path processing approach ensures that the model can 

learn discriminative features of the infection region from both 

the forward and reverse dimensions. In particular, it 

effectively improves the model's recognition ability for small 

infection foci and blurred boundaries, which are caused by 

partial volume effects in COVID-19 pulmonary images. 

 

 
 

Figure 4. Context information enhancement module structure 

 

To achieve dynamic weight optimization for foreground 

and background features, the module introduces learnable 

parameters α and β, and continuously improves segmentation 

results through an incremental multi-level refinement 

architecture. This parameterized fusion mechanism allows the 

model to automatically adjust the contribution of foreground 

and background features based on different infection patterns. 

For example, in diffuse ground-glass opacity regions, the 

foreground features are given higher weight, while in normal 

lung parenchyma regions, the importance of background 

features is enhanced. To accommodate the complex 

manifestations of COVID-19 infection, where infection 

regions present different feature patterns at different scales, 

this paper uses a cascading structure with four multi-scale 

feature enhancement modules, forming a feature optimization 

process from coarse to fine: high-level modules provide global 

infection distribution semantic information, while low-level 

modules gradually incorporate more spatial details to refine 

boundary localization. Finally, through the collaboration of 

batch normalization and the ReLU activation function, the 

module enhances the nonlinear expression ability while 

maintaining feature distribution stability, enabling the model 

to progressively suppress background noise, strengthen 

infection features, and ultimately output infection region 

segmentation results with clear boundaries and accurate spatial 

positioning. 

(2) Context Information Enhancement 

COVID-19 infection regions exhibit significant scale 

diversity in CT images: in the early stages, they often appear 

as scattered small ground-glass opacities, while in the 

progressive stage, large consolidation areas may merge. 

Standard convolutional networks inevitably lose spatial details 

as they downsample to expand the receptive field, leading to 

decreased detection ability for small lesions. To address the 

contradiction between the multi-scale distribution 

characteristics of COVID-19 pulmonary infection regions and 

the need to retain details in CT images, this paper designs a 

context information enhancement module. This module 

innovatively adopts a multi-branch dilated convolution 

architecture, setting four branches with dilated convolutions at 

rates of 2, 4, 8, and 2, combined with 1×1, 3×3, 5×5, and 7×7 

convolution kernels of different sizes. For the characteristic 

patterns of peripheral distribution and multi-lobe involvement 

in COVID-19, the module uses smaller dilation rates with 3×3 

convolution kernels to finely capture the subtle density 

changes of ground-glass opacities, while larger dilation rates 

with 7×7 convolution kernels understand the spatial 

distribution relationships between multiple infection foci. 

The complex manifestations of COVID-19, such as the 

"stepping stone sign," include increased ground-glass density 

and thickened interlobular septa. These require different scales 

of context information for accurate interpretation. To address 

the spatial distribution characteristics of COVID-19 infection 

regions, where infection regions are not isolated but show 

spatial correlation within the lung, the four branches of the 

module adopt an increasing dilation rate design. Small ground-

glass opacities may merge as the disease progresses, forming 

more dangerous consolidation areas. By setting increasing 

dilation rates, the model constructs a hierarchical receptive 

field system: lower dilation rate convolution layers capture 

internal features and clear boundaries of individual infection 

foci, while higher dilation rate convolution layers integrate 

broader region information, identifying potential relationships 

between multiple foci. 

In terms of feature fusion, the context information 

enhancement module integrates multi-scale features from the 

four branches using a 1×1 convolution to address the 

heterogeneity and complexity of COVID-19 pulmonary 

infection regions. The features extracted from different 

branches represent infection region information at different 

scales: the local branch retains edge and texture details crucial 

for detecting small lesions, while the large receptive field 

branches provide the contextual information necessary for 

recognizing infection region distribution patterns. The final 

fusion process, through batch normalization and ReLU 

activation functions, ensures the coordinated distribution and 

nonlinear expression ability of features from different scales. 

Specifically, assuming the input feature D, the four branches’ 

calculation processes are as follows: 

 

( )( )( )1

1 3 3 1 1 1 1

f

BRD Conv Conv Conv D=

  =  (8) 

 

( )( )( )2

2 3 3 1 1 1

f

BR BRD Conv Conv D D=

 = +  (9) 
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( )( )( )4

3 3 3 5 5 1 1 2

f

BR BRD Conv Conv Conv D D=

  = +  (10) 

 

( )( )( )8

4 3 3 7 7 1 1 3

f

BR BRD Conv Conv Conv D D=

  = +  (11) 

 

The module’s output is: 

 

( )( )1 1 1 2 3 4, , ,XXZQ BR BR BR BRD Conv Concat D D D D=  (12) 

 

2.1.3 Upsampling 

COVID-19 infection regions in CT images often manifest 

as a gradual transition between ground-glass opacities and 

normal lung tissue, with blurred boundaries and a lack of clear 

edge contours. To address this, this paper adopts bilinear 

interpolation for upsampling in the decoder section. Bilinear 

interpolation computes a weighted average of the surrounding 

four pixels to generate smooth transition pixel values, which 

is particularly suited to handling the blurriness of infection 

region boundaries. Unlike transposed convolution, which may 

produce "checkerboard artifacts," bilinear interpolation 

preserves the natural smooth transition of boundaries, 

avoiding the introduction of unnatural hard edges at the 

infection region boundaries. Additionally, the computational 

efficiency of this method is an important consideration for its 

selection in this study. COVID-19 lung CT images typically 

have high spatial resolution, and large volumes of image data 

need to be processed in practical diagnosis. As a lightweight 

interpolation method, bilinear interpolation only requires 

simple arithmetic operations to perform the upsampling, 

which significantly reduces the model's computational 

complexity and speeds up inference. Particularly in cases 

where the model requires four consecutive upsampling 

operations, the efficiency advantage of bilinear interpolation 

becomes more apparent, ensuring the practicality of the entire 

segmentation process. 

To build an efficient feature recovery path, this paper 

cleverly combines bilinear interpolation with a skip 

connection mechanism. Through four bilinear interpolation 

operations, each time doubling the feature map resolution, and 

by integrating features from the corresponding layers of the 

encoder, the model can progressively recover the spatial 

details lost during deep feature extraction. For example, when 

identifying scattered small ground-glass opacities, high-

resolution features from the shallow network can provide the 

necessary texture details, while deep features upsampled using 

bilinear interpolation offer semantic context. The combination 

of both ensures accurate detection and localization of small 

infection foci. Specifically, given known W11(a1,b1), 

W12(a1,b2), W21(a2,b1), W22(a2,b2), the interpolated pixel value 

at coordinate O, denoted as E1(a1, b1), is first calculated based 

on W11 and W21. Then, the pixel value E2(a2, b2) is calculated 

using W12 and W22, and finally, the pixel interpolation at point 

O is obtained using E1 and E2 as follows: 

 

( ) ( ) ( )1 1
1 11 21

2 1 2 1

a a a a
E W W

a a a a
  

   − −
= +   

− −   
 (13) 

 

( ) ( ) ( )2 1
2 12 22

2 1 2 1

a a a a
E W W

a a a a
  

   − −
= +   

− −   
 (14) 

 

Performing linear interpolation based on φ(E1) and φ(E2) 

along the vertical axis: 

 

( ) ( ) ( )2 1
1 2

2 1 2 1

b b b b
O E E

b b b b
  

   − −
= +   

− −   
 (15) 

 

Combining the above three formulas, there is: 

 

( ) ( )

( )

( )

( )

2 2
11

2 1 2 1

2 1
21

2 1 2 1

1 2
12

2 1 2 1

1 1
22

2 1 2 1

b b a a
O W

b b a a

b b a a
W

b b a a

b b a a
W

b b a a

b b a a
W

b b a a

 







  − −
=   

− −  

  − −
+  

− −  

  − −
+  

− −  

  − −
+  

− −  

 (16) 

 

By considering the weights of the four points affecting point 

O, denoted by μ11, μ21, μ12, and μ22, the equation simplifies to: 

 

( ) ( ) ( )

( ) ( )
11 11 21 21

12 12 22 22

O W W

W W

    

   

= +

+ +
 (17) 

 

Finally, through cascaded bilinear upsampling and feature 

fusion, the model can output a high-quality segmentation 

result that matches the input image size. In the final layer of 

the network, after four upsampling and feature fusion 

operations, the feature map undergoes a 1×1 convolution to 

reduce the channel number to the number of target classes, 

followed by the application of the Softmax function to 

generate the probability of each pixel belonging to a class. 

Figure 5 shows the model execution flow. 

 

 
 

Figure 5. Model execution flow 

 

2.1.4 Loss function 

COVID-19 infection regions in lung CT images typically 

appear as scattered, discontinuous lesions, with infection 
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pixels occupying a small proportion of the entire image, 

leading to significant class imbalance. Furthermore, as 

COVID-19 pulmonary infections often manifest as gradually 

increasing ground-glass densities, the boundary between the 

infection region and normal tissue is usually unclear, which 

introduces a certain level of uncertainty in the annotated data 

itself. Therefore, this paper selects cross-entropy loss as the 

loss function for the segmentation task. This loss function, 

through its logarithmic calculation, sensitively penalizes the 

model’s predicted probabilities: when the model misclassifies 

the actual infection region as background, the loss function 

generates large gradient signals, forcing the model to quickly 

adjust its parameters to correct such severe errors. 

Additionally, by independently evaluating the prediction 

probability of each pixel, this loss function adapts better to this 

situation of boundary fuzziness, without applying excessive 

penalty to boundary pixels. Specifically, let L denote the total 

number of samples, V the number of classes, the probability of 

the u-th sample belonging to the k-th class be ouk, and the 

probability predicted by the model for the u-th sample 

belonging to the k-th class be wuk, the loss function formula is 

as follows: 

 

( )
1 1

1
log

L V

uk uk

u k

LOSS o w
L = =

 
= −  

 
  (18) 

 

2.2 Automatic diagnosis of COVID-19 pulmonary 

infection 

 

Based on the precise infection region segmentation results 

extracted by the multi-scale feature enhancement model, the 

core strategy for the automatic diagnosis of COVID-19 in this 

paper is to convert pixel-level segmentation results into 

clinically valuable quantitative indicators and classification 

decisions. 

The model first calculates key quantitative diagnostic 

indicators based on the high-precision segmentation results. 

These include the total volume ratio of the infected region in 

the entire lung, the distribution of infection across different 

lung lobes, and the volume and ratio of ground-glass opacities 

and consolidation areas. These indicators are not isolated; they 

are integrated into a comprehensive evaluation framework. 

For example, the total infection volume ratio combined with 

the consolidation region ratio can serve as an important basis 

for grading disease severity; the distribution characteristics of 

the infection region across the upper, middle, and lower lung 

regions help determine the typical patterns of the disease. This 

strategy directly serves clinical decision-making, allowing 

doctors to quickly obtain objective and repeatable quantitative 

data without manually delineating the infection regions, 

significantly improving diagnostic efficiency and consistency. 

Furthermore, the automatic diagnostic system combines 

these quantitative features with multi-scale deep features such 

as texture and morphology of the infection regions and inputs 

them into a lightweight classifier to achieve the final 

diagnostic classification. The model not only extracts the 

scope of the infection region but also includes its intrinsic 

radiological features. For instance, subtle texture changes 

captured by the multi-scale feature enhancement module can 

be used to distinguish active inflammation from later-stage 

fibrosis; morphological features such as the clarity of infection 

region boundaries and irregularity of shapes serve as key 

indicators to differentiate COVID-19 from other pulmonary 

infections. This strategy of integrating "segmentation result 

quantification" with "deep feature analysis" elevates the 

automatic diagnosis from simple region detection to a 

comprehensive judgment of disease type and progression stage, 

ultimately outputting clinically meaningful diagnostic 

conclusions such as "suspected," "confirmed mild," 

"confirmed moderate," or "confirmed severe," thereby fully 

achieving the closed loop from image analysis to auxiliary 

diagnosis. 

 
 

3. EXPERIMENTAL STUDY AND RESULTS 

ANALYSIS 
 

To verify the generalization ability and robustness of the 

proposed model in clinical practical applications, external 

validation experiments were conducted using three cross-

center datasets from different sources. The core characteristics 

and key parameters of the datasets from each center exhibit 

significant heterogeneity: Center A's CT images were acquired 

from the GE Discovery CT750 HD device, with scanning 

protocols set to a tube voltage of 120kV, tube current of 200-

300mA, image resolution of 512×512 pixels, slice thickness of 

1.0mm, and a total of 286 cases. The infection type is primarily 

ground-glass opacities, with consolidation opacities 

accounting for 38%. Center B used the Siemens Somatom 

Force device for data acquisition, with tube voltage ranging 

from 100-120kV in adaptive adjustment mode, tube current 

ranging from 180-250mA, image resolution increased to 

640×640 pixels, and slice thickness reduced to 0.8mm. A total 

of 312 cases were included, and the infection type distribution 

showed a significant difference from Center A, with a higher 

proportion of consolidation opacities (45% ground-glass 

opacities). The images from Center C were sourced from the 

Philips Ingenuity Core device, with scanning parameters of 

tube voltage 120kV, tube current 220-280mA, image 

resolution back to 512×512 pixels, slice thickness of 1.2mm, 

and a total of 258 cases. The infection type is dominated by 

ground-glass opacities, with 18% of mixed infection cases and 

significantly higher proportions of early-stage infections 

compared to the other two centers. The heterogeneity in these 

cross-center data is mainly reflected in three key dimensions: 

first, differences in acquisition equipment models lead to 

different image grayscale distribution characteristics. For 

instance, images from the Siemens device typically have 

higher contrast than those from the GE device, directly 

affecting the visual distinction between infected areas and 

normal tissues. Second, differences in slice thickness and 

image resolution directly impact the display accuracy of small-

sized infection lesions. The thinner the slice thickness and the 

higher the resolution, the more detailed the small lesions, but 

more background noise may also be introduced. Third, the 

distribution of infection types differs, with Center C 

predominantly having early infection-related ground-glass 

opacities, while Center B mainly has consolidation opacities 

associated with later stages of infection. This difference in 

case composition comprehensively tests the model's ability to 

adapt to infection characteristics at different disease stages. 

Verifying the model on this significantly heterogeneous cross-

center dataset can fully demonstrate its stable performance 

under different clinical scanning devices, scanning parameters, 

and case compositions, providing reliable data support for the 

model’s clinical application. 

To verify the segmentation performance and diagnostic 

accuracy of the proposed model, two classic models in the 

field of medical image segmentation were selected as baseline 
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comparisons. The rationale for selection and the features of the 

models are as follows: (1) UNet, as a representative encoder-

decoder architecture, has a skip connection mechanism that 

effectively fuses high and low-level features and is widely 

used in lung infection segmentation tasks. However, the model 

has inherent drawbacks: it relies solely on a single-scale 

convolution kernel and cannot handle the multi-scale 

distribution characteristics of COVID-19 infection lesions; the 

use of transpose convolution for upsampling may generate 

"checkerboard artifacts," affecting the segmentation accuracy 

of blurred boundaries. Selecting this model as a baseline can 

validate the effectiveness of the proposed multi-scale feature 

enhancement module. (2) DeepLabv3+ uses the ASPP module 

to expand the receptive field, introducing dilated convolutions 

to balance the receptive field and resolution, achieving 

excellent performance in semantic segmentation tasks. 

However, its drawback is that the dilation rate configuration 

of the ASPP module is fixed and cannot adapt to the scale 

differences of COVID-19 infection lesions; it also lacks the 

ability to capture small lesions' features and has not been 

optimized for the class imbalance problem in medical images. 

This model is selected to further validate the rationality of the 

proposed context information enhancement module and loss 

function design. All comparison models use the same input 

size, optimizer, and training iterations to ensure fairness in the 

experiments. 

 

Table 1. Ablation experiment results of multi-scale feature enhancement module 

 
Model Configuration IoU (%) F₁-Score (%) Precision (%) Recall (%) 

Baseline Model (Baseline) 68.45 81.23 82.67 79.82 

+ Multi-scale Feature Fusion 74.82 85.47 86.92 84.05 

+ Multi-scale Feature Fusion + Context Enhancement 78.96 88.74 90.15 87.36 

 

Table 2. Quantitative comparison results on the standard COVID-19 test set 

 
Method IoU (%) F₁-Score (%) Precision (%) Recall (%) Param (MB) 

UNet 70.35 82.56 83.91 81.25 31.04 

DeepLabv3+ 73.28 84.62 86.47 82.85 40.81 

Attention UNet 74.92 85.64 87.23 84.10 34.72 

Proposed Method 78.96 88.74 90.15 87.36 28.45 

 

Table 3. Quantitative comparison results on the small infection lesion test set 

 
Method IoU (%) F₁-Score (%) Precision (%) Recall (%) Param (MB) 

UNet 58.72 73.89 75.26 72.56 31.04 

DeepLabv3+ 62.45 76.83 79.14 74.65 40.81 

COVID-SegNet 65.38 78.92 80.37 77.52 36.75 

Proposed Method 69.27 81.85 83.46 80.31 28.45 

 

To validate the contribution of each component in the 

proposed multi-scale feature enhancement module to the 

COVID-19 pulmonary infection region segmentation 

performance, ablation experiments were conducted. 

According to the experimental results shown in Table 1, the 

baseline model achieved an IoU of 68.45% and an F₁-Score of 

81.23%, indicating that the basic architecture already 

possesses certain segmentation capabilities. After adding the 

multi-scale feature fusion mechanism, significant 

improvements were observed in all metrics, with IoU 

increasing by 6.37 percentage points and F₁-Score increasing 

by 4.24 percentage points. This demonstrates that multi-scale 

feature fusion effectively enhances the model's ability to 

capture infection regions of different sizes, especially 

improving the recognition of small ground-glass opacities. 

After further introducing the context enhancement module, the 

model performance reached its peak, with IoU and F₁-Score 

reaching 78.96% and 88.74%, respectively. The increase in 

precision was particularly notable, indicating that the module 

effectively suppressed interference from complex 

backgrounds and reduced false positives. Overall, the ablation 

experiment fully proves the effectiveness and necessity of 

each component in the multi-scale feature enhancement 

module, which together significantly improve the model's 

segmentation accuracy and robustness for COVID-19 

pulmonary infection regions. 

To evaluate the baseline performance of the model on 

typical COVID-19 cases, a comparative experiment was 

conducted on the standard test set. The results in Table 2 

demonstrate that the proposed multi-scale feature 

enhancement model excels in conventional COVID-19 

pulmonary infection segmentation tasks. The proposed 

method achieved an IoU of 78.96% and an F₁-Score of 88.74%, 

ranking first among all comparison methods. Most importantly, 

the model achieved the highest precision value of 90.15% 

while maintaining an excellent recall of 87.36%. This 

combination of "high precision, high recall" proves that the 

model successfully achieved two key goals by introducing the 

multi-scale feature enhancement module: on the one hand, 

foreground feature enhancement and dynamic weight 

adjustment effectively suppressed interference from the 

complex lung parenchyma background, significantly reducing 

false positives by preventing normal tissue from being 

misclassified as infection, which directly contributes to the 

high precision; on the other hand, by integrating features from 

different levels, the model enhanced its ability to capture 

infection regions of diverse sizes, preventing missed detection 

of lesions and ensuring high recall. Furthermore, the model 

requires only 28.45MB of parameters, achieving the best 

balance between performance and efficiency, making it 

convenient for clinical deployment. 
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Table 4. Quantitative comparison results on the multi-center external validation set 

 
Method IoU (%) F₁-Score (%) Precision (%) Recall (%) Param (MB) 

UNet 65.38 78.94 76.85 81.18 31.04 

DeepLabv3+ 68.27 81.06 83.42 78.85 40.81 

TransUNet 71.45 83.27 84.96 81.65 42.18 

Proposed Method 74.62 85.43 87.28 83.67 28.45 

 

Table 5. Quantitative comparison results for different infection types 

 

Infection Type 
UNet DeepLabv3+ Proposed Method 

mAP50 (%) mAP50:90 (%) mAP50 (%) mAP50:90 (%) mAP50 (%) mAP50:90 (%) 

Ground-glass Opacity 40.1 16.9 45.3 20.6 53.3 25.0 

Consolidation Area 32.8 11.9 36.3 13.7 41.9 16.2 

Interlobular Septal Thickening 12.8 4.5 16.0 6.3 19.6 8.0 

Fibrotic Lesions 74.5 45.0 77.4 53.6 82.1 57.9 

Bronchial Inflation 36.8 24.9 42.0 29.4 45.9 31.9 

 

Table 6. Generalization performance comparison across different medical center data 

 

Infection Type 
UNet DeepLabv3+ Proposed Method 

mAP50 (%) mAP50:90 (%) mAP50 (%) mAP50:90 (%) mAP50 (%) mAP50:90 (%) 

Center A (Training Set) 45.3 20.6 50.1 25.3 55.8 28.9 

Center B (External Validation) 36.3 13.7 38.2 15.1 43.5 18.6 

Center C (External Validation) 30.5 10.2 32.8 12.4 37.9 15.3 

Center D (External Validation) 28.7 9.8 31.5 11.9 35.2 14.1 

 

To address the challenge of detecting small infection lesions 

in early COVID-19 diagnosis, we specifically evaluated the 

performance of different methods on the small infection lesion 

test set. The results in Table 3 demonstrate that the proposed 

model excels in segmenting small infection regions critical for 

early clinical diagnosis. Although the performance of all 

models declines due to the increased task difficulty, the 

proposed method significantly outperforms others with an IoU 

of 69.27% and an F₁-Score of 81.85%. Notably, the recall rate 

reached 80.31%, the highest among all methods. This indicates 

that the context enhancement module in the model played a 

crucial role when handling subtle, scattered ground-glass 

opacities that are easy to overlook. The module, using a 

hierarchical receptive field built with multi-branch dilated 

convolutions, integrates broader context information without 

sacrificing spatial resolution of feature maps, enabling the 

model to sensitively "perceive" small lesions with low contrast 

and atypical morphology relative to the surrounding normal 

tissue, thus greatly reducing the rate of missed detections. 

Meanwhile, the precision of 83.46% shows that the foreground 

feature enhancement mechanism effectively maintains feature 

discrimination, avoiding excessive sensitivity that leads to 

false positives even in the challenging task of segmenting 

small targets. 

To validate the generalization ability of the model, we tested 

it on a multi-center external validation set from different 

medical institutions. The outstanding performance shown in 

Table 4 highlights the model's robust generalization and 

clinical usability. On heterogeneous data from different 

medical institutions, scan devices, and protocols, the proposed 

method achieved an IoU of 74.62% and an F₁-Score of 85.43%, 

with an exceptional precision of 87.28%. This result proves 

that the proposed multi-scale feature enhancement architecture 

is not overfitted to specific data distributions and that its core 

mechanisms have strong robustness against domain shifts. 

Regardless of changes in image contrast, noise levels, or visual 

features, the model can reliably extract the essential 

characteristics of COVID-19 infection regions and accurately 

separate them from various background interferences using its 

multi-scale feature fusion and enhancement mechanism. 

Compared with the large-parameter TransUNet, the 

lightweight model outperformed it in terms of generalization 

performance, further indicating that the inductive bias we 

introduced is more effective and reliable for medical image 

segmentation tasks than simply increasing model complexity. 

This lays a solid foundation for the model's deployment in 

real-world, multi-center clinical environments for automated 

diagnosis. 

To systematically evaluate the model's ability to recognize 

various typical infection lesions in COVID-19, a quantitative 

comparison was conducted for different methods on infection 

types, which is crucial for accurate disease assessment and 

staging diagnosis. The data analysis in Table 5 shows that the 

proposed multi-scale feature enhancement model achieved the 

best performance across five typical infection types. In the 

most challenging detection of interlobular septal thickening, 

the proposed method's mAP50 reached 19.6%, improving over 

50% compared to UNet's 12.8%, demonstrating that the 

context information enhancement component in the multi-

scale feature enhancement module effectively captures subtle 

linear structural features. For the most common clinical 

ground-glass opacities, the proposed method achieved an 

mAP50 of 53.3%, significantly outperforming other methods. 

This is thanks to the foreground feature enhancement 

mechanism, which dynamically adjusts feature weights 

through learnable parameters, effectively strengthening 

feature expression in areas with blurred boundaries and low 

contrast. Notably, in the case of fibrotic lesions, a late-stage 

manifestation, the proposed method achieved 57.9% in the 

mAP50:90 metric, surpassing DeepLabv3+ by 4.3 percentage 

points, indicating that the model can accurately identify the 

complex boundaries and internal textures of such structures. 

To validate the model's generalization ability in real clinical 

settings, we conducted a generalization performance 

comparison across different medical centers, which is a key 

factor in determining whether an automatic diagnosis system 

can be practically applied. The data analysis presented in 

Table 6 reveals that the proposed method maintains stable 
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performance across data from four independent medical 

centers, showcasing its exceptional domain adaptation ability. 

In Center A, the source of the training set, the proposed 

method achieved 55.8% mAP50, as expected. However, in 

three external validation centers (B, C, and D), the 

performance decay was significantly smaller compared to the 

other methods. Specifically, from Center A to Center D, the 

mAP50 of the proposed method decayed by 36.9%, whereas 

UNet and DeepLabv3+ decayed by 46.2% and 44.3%, 

respectively. This demonstrates that the multi-scale feature 

enhancement module, by fusing features from different layers, 

has constructed a more generalizable feature space capable of 

effectively resisting domain shifts caused by differences in 

scanning devices, parameter settings, and reconstruction 

algorithms. Notably, in Center D, where data quality was 

relatively poor, the proposed method still maintained an 

mAP50 of 35.2%, significantly outperforming the comparison 

methods. This reflects the model's robustness against noise 

and artifacts through multi-scale contextual awareness. 

The experimental results show that the COVID-19 

pulmonary infection automatic diagnosis method based on 

multi-scale feature enhancement proposed in this paper not 

only improves the recognition accuracy of various infection 

lesions comprehensively, but more importantly, demonstrates 

significant advantages in the clinical concerns of 

generalization and practicality. The model can accurately 

distinguish the infection manifestations at different 

pathological stages, providing fine-grained analysis for 

disease evaluation, and is also able to adapt to a multi-center 

heterogeneous data environment, ensuring the reliability of 

diagnostic results. This fully verifies the advancement and 

practicality of the multi-scale feature enhancement 

architecture in medical image analysis. 

 

 

4. CONCLUSION 

 

In this study, a COVID-19 pulmonary infection automatic 

diagnosis model based on multi-scale feature enhancement 

was developed, systematically addressing core challenges in 

infection region segmentation and achieving significant 

research results. This study successfully designed and 

implemented an encoder-decoder architecture integrated with 

a multi-scale feature enhancement module, innovatively 

incorporating a foreground feature enhancement mechanism 

and a context information enhancement module. Through 

detailed ablation experiments and comparative validation, the 

results indicate that the model demonstrates exceptional 

performance across multiple test scenarios. Not only did it 

achieve 78.96% IoU and 88.74% F₁-Score on the standard test 

set, but it also significantly outperformed mainstream methods 

in terms of small infection lesion detection and cross-center 

generalization capability. The core value of the model lies in 

its ability to effectively balance recall and precision in the 

segmentation task through multi-scale feature fusion and 

dynamic weight adjustment, while addressing long-standing 

issues in medical image segmentation, such as varying 

infection region scales, blurred boundaries, and adherence to 

normal tissue. Furthermore, the model maintains low 

computational complexity while preserving high performance, 

providing a feasible technical solution for clinical application. 

The automatic diagnostic model proposed in this paper has 

clear and extensive clinical application value. On one hand, it 

can be applied to emergency rapid screening scenarios. By 

performing end-to-end inference on 512×512 pixel images, it 

enables real-time segmentation of infected areas and severity 

grading, providing efficient and objective technical support for 

patient triage decisions in emergency settings. On the other 

hand, it can assist primary healthcare diagnosis. Addressing 

the issue of relatively insufficient clinical experience among 

doctors in primary healthcare settings, the model's output of 

quantitative indicators such as the infection volume ratio, lung 

lobe distribution features, and clear classification conclusions 

can effectively reduce the risk of misdiagnosis and missed 

diagnosis of COVID-19 lung infections. Additionally, it can 

support large-scale epidemiological surveys. Leveraging its 

proven multi-center generalization ability, it can adapt to CT 

scanning devices and protocols from different regions, 

enabling rapid population-level infection screening and mass 

disease assessment. 

However, the model still faces several practical challenges 

during clinical translation, and targeted strategies need to be 

developed to address them: For the issue of data privacy 

protection, a federated learning framework will be used, where 

model training is performed locally at each hospital, with only 

optimized model parameters shared instead of raw medical 

data, in strict compliance with the relevant requirements of the 

"Medical Data Security Guidelines." To address the grayscale 

distribution differences in images collected by CT devices 

from different brands, an additional image preprocessing 

adaptive module will be added. This module will use 

techniques such as grayscale normalization and resolution 

unification to enhance the model's cross-device adaptability. 

To improve doctor acceptance, a "human-machine 

collaboration" interface will be designed, allowing 

radiologists to manually correct segmentation results and 

provide feedback to the model. Through incremental learning, 

the model's performance will be continuously optimized, 

ensuring both diagnostic automation efficiency and full 

respect for the doctor's autonomy. For label consistency issues, 

a multi-center joint annotation standard will be established, 

and a dual quality control mechanism will be implemented, 

consisting of "3 radiologists' consensus annotations + 1 chief 

physician review," to minimize the impact of annotation biases 

on model performance. 

To further unleash the diagnostic potential of the model and 

expand its clinical applicability, future research will proceed 

from multiple dimensions: Based on the two-dimensional 

segmentation results already achieved in this paper, a three-

dimensional reconstruction model of the infected areas will be 

constructed. By calculating more clinically meaningful 

indicators such as the lesion's three-dimensional volume and 

spatial distribution density, the severity of the patient's 

condition can be more accurately reflected. The model will 

also integrate multi-source information such as the patient's 

blood routine indicators, nucleic acid test results, and clinical 

symptoms to build a "image-biological marker-clinical 

symptom" multimodal diagnostic model, further improving 

the specificity and sensitivity of the classification diagnosis. 

For series CT images of the same patient, a dynamic 

quantitative analysis function for the changes in the infected 

area will be developed, providing data support for clinical 

treatment evaluation and prognosis prediction, thus upgrading 

the model from a single diagnostic tool to a full-course 

management assistance system.
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