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A persistent challenge in organizational research is the objective quantification of team 

collaboration states. Nonverbal communication remains insufficiently captured by existing 

measurement frameworks, which are limited by single-granularity representations, 

inadequate modeling of cross-member interactions, and so on. To address these limitations, 

an end-to-end, multi-task, multimodal, multi-granularity Convolutional Neural Network 

(CNN) was developed, in which nonverbal communication patterns are represented as 

learnable latent variables embedded within intermediate network layers. Joint optimization 

is performed through a primary task of team performance prediction and an auxiliary self-

supervised task of nonverbal behavior reconstruction. This design enables the accurate 

extraction of individual- and team-level skeletal features together with frame- and clip-level 

Red-Green-Blue (RGB) representations, while modeling interaction dependencies among 

team members. Experimental results demonstrate that the proposed framework consistently 

outperforms representative baseline methods, achieving lower prediction errors on a self-

constructed ONC dataset and exhibiting robust generalization across public benchmarks. 

Empirical analyses indicate that higher nonverbal synchrony is positively associated with 

team performance, that more egalitarian attention distribution benefits creative task 

outcomes, and that dynamic changes in synchrony during task sprint phases provide stronger 

predictive power than static descriptors. Ablation studies further confirm that the synergistic 

integration of multi-granularity fusion, cross-member attention, and latent variable decoding 

is critical to performance gains. Analyses of SHapley Additive exPlanations (SHAP) values 

highlight the superior representational power of automatically learned latent variables over 

traditional handcrafted features. The proposed approach establishes a quantitative paradigm 

for nonverbal communication analysis, extends the application boundary of video 

representation learning to multi-agent team interaction scenarios, and offers a practical tool 

for team collaboration diagnosis and performance forecasting. 
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1. INTRODUCTION

The core value of team collaboration is derived from 

implicit interactions among members. Nonverbal 

communication, as a fundamental component of interpersonal 

exchange, encompasses behaviors such as bodily synchrony, 

gaze coordination, and facial expression transmission [1-3], 

and has been identified as a critical determinant of 

coordination efficiency, emotional resonance, and ultimate 

team performance. Foundational research in organizational 

behavior has long established the importance of such implicit 

interactions; however, traditional investigations have 

predominantly relied on questionnaire surveys and manual 

observation [4, 5]. These approaches are constrained by strong 

subjectivity, coarse analytical granularity, and an inability to 

capture dynamic interaction processes in real time [6-8]. As a 

result, the objective quantification of team nonverbal 

communication patterns and the establishment of their 

relationship with performance have remained long-standing 

unresolved challenges in the field. 

From a technological perspective, substantial advances 

have been achieved in video-based behavioral representation 

learning within the computer vision community. Models such 

as Inflated 3D ConvNets (I3D) and Graph Convolutional 

Networks (GCNs) have enabled increasingly accurate 

recognition of individual-level actions [9, 10]. Nevertheless, 

three fundamental bottlenecks persist in team collaboration 

scenarios. First, the insufficient capture of multi-granularity 

hierarchical features limits the ability to represent team 

structures spanning individuals, interactions, and collective 

dynamics. Second, the absence of explicit modeling of cross-

member dynamic interaction dependencies prevents effective 

characterization of coordinated behavioral coupling among 

team members. Third, objectives have remained largely 

confined to action classification, without being tightly coupled 

to performance prediction tasks central to organizational 

management research. 

Recent interdisciplinary efforts integrating computational 
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behavioral science with organizational behavior theory [11, 

12] have provided a promising pathway for addressing these

limitations. The construction of end-to-end quantitative

modeling frameworks has been shown to not only mitigate

methodological constraints inherent in traditional

management research but also to extend the application

boundary of video representation learning, enabling

technology-driven empowerment of management practice and

playing a crucial role in promoting the synergistic

development of both fields [13]. Despite these advances,

notable limitations remain at both the technical and theoretical

levels. From a technical standpoint, existing approaches

exhibit modality and granularity designs that are misaligned

with the hierarchical structure of teams. Attention mechanisms

have predominantly focused on individual actors while

neglecting cross-member interaction dependencies. Moreover,

the construction of communication patterns has relied heavily

on expert-defined rules, which not only introduce subjective

bias but also limit generalization across scenarios. The

decoupling of communication modeling from performance

prediction has further resulted in fragmented optimization

pipelines [14-16]. From a theoretical standpoint, quantitative

evidence supporting the intrinsic mechanisms linking

nonverbal communication to team performance remains

limited. The differential effects of communication patterns

across task types have not been clearly established, and prior

studies have largely emphasized static descriptors while

overlooking the dynamic evolution of nonverbal interaction

patterns and their temporal relationship with performance

outcomes [17-19].

The central objectives of this study are threefold. First, an 

end-to-end multimodal video-based representation learning 

model is designed to enable the automatic decoding of latent 

variables characterizing team nonverbal communication. 

Second, testable research hypotheses grounded in 

organizational behavior theory are formulated to precisely 

quantify the associations between communication patterns and 

team performance. Third, a team performance prediction 

framework with both strong generalization capability and 

interpretability is constructed to provide effective analytical 

tools for organizational management practice. In alignment 

with these objectives, three core hypotheses were proposed: 

H1: Team nonverbal synchrony is significantly and 

positively correlated with task performance. 

H2: In creative tasks, an egalitarian cross-member attention 

distribution pattern is more predictive of high performance 

than a centralized attention pattern. 

H3: The rate of increase in communication synchrony 

during task sprint phases exhibits greater predictive power for 

performance outcomes than static synchrony measures. 

This study introduces four key innovations. First, it 

proposes an end-to-end framework that combines latent 

variables with multi-task learning, allowing communication 

patterns to be learned directly from data, rather than relying on 

expert-defined features. Second, it develops an interpretable 

cross-member attention mechanism and multi-level feature 

fusion strategies to model interpersonal interactions and 

complementary features. Third, it creates a closed research 

loop that links theory and methodology—organizational 

behavior hypotheses shape the model and experiments, and are 

later tested using computational methods. Fourth, it uses 

SHAP analysis and pattern pathway mining together to 

provide practical insights for improving management 

practices. 

The remainder of this study is organized as follows. Section 

2 describes the model's architecture and the overall research 

framework. Section 3 presents the experimental results used to 

evaluate the model and test the hypotheses. Finally, the key 

findings are summarized, and suggestions for future research 

are provided. 

2. RESEARCH METHODOLOGY

2.1 Overview of the research framework 

An end-to-end, multi-task, multimodal, multi-granularity 

CNN framework is developed with the objective of integrating 

multimodal video data, accurately decoding latent nonverbal 

communication patterns, and achieving efficient team 

performance prediction. The overall architecture comprises 

four core components: multi-granularity feature extraction, 

latent variable decoding of nonverbal communication, dual-

task output, and multi-task optimization. The central 

processing pipeline is structured below. Multimodal video 

data, consisting of RGB video and skeletal data are provided 

as inputs. Individual- and team-level skeletal features, together 

with frame- and clip-level RGB features, are extracted through 

the proposed network architecture. Latent variables 

representing core nonverbal communication patterns are 

subsequently decoded at intermediate layers. Finally, a dual-

output layer is employed to simultaneously generate team 

performance predictions and reconstructed nonverbal 

behavior representations. To strengthen the intrinsic 

associations between features and the ultimate objective of 

performance prediction, a multi-task joint optimization 

strategy is adopted. The primary task corresponds to team 

performance prediction, with an associated loss function 

denoted as Lmain, while the auxiliary task corresponds to self-

supervised reconstruction of nonverbal behaviors, with an 

associated loss function denoted as Laux. The overall loss 

function is defined as: 

L=λLmain+(1-λ)Laux (1) 

where, λ is set to 0.7 and determined via cross-validation to 

balance the relative priorities of the primary and auxiliary 

tasks. This ensures that the latent variables are capable of 

capturing essential nonverbal communication information 

while effectively serving the team performance prediction 

task. 

2.2 Dataset construction and preprocessing 

Well-established collaborative task paradigms from 

organizational behavior research were adopted to ensure the 

authenticity of the collected nonverbal communication data. 

The task set encompassed creative decision-making scenarios 

(the winter survival task), problem-solving scenarios (the 

moon survival task), and execution-oriented scenarios 

involving real corporate project collaboration. Data collection 

was conducted across both laboratory-simulated collaboration 

settings and authentic corporate meeting room environments. 

A total of 62 teams were recruited, with team sizes ranging 

from 3 to 8 members. Team compositions spanned three major 

industry sectors—technology, education, and finance—

yielding a cumulative effective data duration of 128 hours. 

During data acquisition, multimodal information was 
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synchronously recorded, including RGB video at a resolution 

of 1080p and 30 frames per second (fps), three-dimensional 

skeletal data comprising 25 keypoints extracted via 

MediaPipe, and auxiliary audio recordings retained as backup 

signals. To preserve the ecological validity of the dataset, task 

designs were closely aligned with real-world organizational 

workflows. Standardized project requirement documents and 

realistic time constraints were incorporated, and team 

compositions were structured to reflect typical corporate role 

distributions, including leaders, executors, and coordinators. 

The data collection process adhered to a minimal-intervention 

principle; concealed camera setups were employed to mitigate 

behavioral distortion and to ensure the naturalistic expression 

of nonverbal communication. 

A multidimensional performance labeling system was 

constructed based on the input-process-output framework, and 

a triangulation approach was employed to ensure label 

reliability. The labeling scheme comprised three core 

dimensions. The task performance dimension was defined 

using objective indicators, including task completion rate, 

decision accuracy, and execution efficiency. The team vitality 

dimension integrated objective and subjective measures, 

encompassing the variance in member speaking frequency and 

the mean level of emotional positivity derived from facial 

expression recognition. The member satisfaction dimension 

was obtained through subjective assessments, including post-

task peer evaluations of collaboration quality and 

communication fluency, as well as self-reported satisfaction 

scores provided by participants. Labels across all dimensions 

were integrated using a weighted averaging method to produce 

a composite performance score normalized to the [0,1] 

interval. Weight assignments were determined by 

organizational behavior experts according to the relative 

contribution of each dimension to overall team performance. 

The annotation process was jointly conducted by three 

organizational behavior experts and two technical engineers. 

Inter-annotator reliability was evaluated using Krippendorff’s 

α, with all coefficients exceeding 0.88, thereby satisfying 

established reliability standards for empirical research. 

During skeletal data preprocessing, median filtering was 

applied for noise reduction, and missing frames were 

completed via linear interpolation. Individual skeletal 

sequences and team-level spatial position matrices were 

subsequently constructed to meet model input requirements. 

For RGB video preprocessing, frame sampling at 15 fps was 

first performed to balance data volume and computational 

efficiency. Face and body regions were detected using the You 

Only Look Once version 8 (YOLOv8) model, followed by 

region-of-interest cropping to remove background 

interference and to focus on core interaction areas. To enhance 

model generalization and to accommodate auxiliary task 

training, targeted data augmentation strategies were 

implemented, including random frame flipping, temporal 

sequence shuffling, and adjustments to brightness and 

contrast. All preprocessing procedures were designed to 

preserve the integrity and authenticity of the original 

nonverbal communication characteristics. 

2.3 Detailed design of the proposed model 

2.3.1 Multi-granularity feature extraction module 

The primary objective of the multi-granularity feature 

extraction module is to accommodate the hierarchical structure 

of team nonverbal communication by capturing core 

representations of individual-team-level features and frame- 

and clip-level features from both skeletal and RGB modalities, 

providing fine-grained representations for subsequent 

interaction modeling and team performance prediction. For the 

skeletal branch, a dual-granularity design is adopted. The 

individual skeletal keypoint subnetwork is constructed based 

on Spatial-Temporal Graph Temporal Convolutional 

Networks (S-GTCNs). The input consists of temporal 

sequences with length T, each containing 25 three-dimensional 

skeletal keypoints. Through the combined application of 

temporal convolutions and graph convolutions, dynamic body 

motion patterns of individual members are extracted. The 

output is an individual-level feature matrix Find of 

dimensionality T × d, where the feature dimensionality d is set 

to 256 to balance representational capacity and computational 

efficiency. 

Figure 1. Temporal feature extraction module for team nonverbal communication in the RGB modality 
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The team interaction skeletal subnetwork is designed to 

capture interaction-related features among team members. A 

graph structure is constructed based on pairwise spatial 

distances between members, in which nodes correspond to 

individual team members and edge weights are defined as the 

inverse of inter-member spatial distances, such that closer 

proximity corresponds to stronger interaction association. 

Feature aggregation is performed over this graph using a GCN, 

enabling effective capturing of team-level interaction patterns, 

including bodily coordination and spatial orientation 

consistency. The resulting team-level interaction 

representation is denoted as Fteam, matching the dimensionality 

(T × d) of the individual-level features and achieving 

hierarchical coverage of skeletal representations from 

individual actions to collective team interactions. 

The RGB branch likewise adopts a dual-granularity design 

to jointly capture static visual attributes and temporal 

dynamics. The frame-level feature subnetwork is constructed 

based on the I3D architecture. The input consists of T frames 

of three-channel RGB images. Through three-dimensional 

convolution operations, frame-level visual features are 

extracted, encompassing static nonverbal cues such as facial 

expressions and body postures. The resulting output is a 

frame-level feature representation Fframe of dimensionality T × 

d. The clip-level temporal subnetwork is implemented using a

three-layer Temporal Convolutional Network (TCN), with the

dilation factor set to 2 to expand the receptive field. The frame-

level feature sequence is provided as input, and temporal

convolutions are applied to capture behavioral evolution

across consecutive frames, thereby extracting temporal

dynamics of nonverbal communication. The final output is a

clip-level temporal feature representation Fseq of

dimensionality T × d, completing multi-granularity feature

extraction in the RGB modality from static frames to dynamic

temporal segments. Figure 1 provides an overview of the

RGB-based team nonverbal feature extraction module. RGB

video streams from team interactions are processed through

three steps: dividing into temporal segments, extracting frame-

level nonverbal features, and applying clip-level temporal

enhancement. This produces multi-level representations of

team nonverbal communication in the RGB modality.

2.3.2 Cross-member attention mechanism 

The primary function of the cross-member attention 

mechanism is to quantify the dynamic association strength of 

nonverbal behaviors among team members, thereby 

amplifying interaction features relevant to performance while 

suppressing interference from behaviorally irrelevant 

individuals. To achieve this objective, preliminary feature 

fusion is first performed for each member. Specifically, 

individual skeletal features Find_i
t and frame-level visual 

features Fframe_i
t are concatenated along the feature dimension, 

yielding a composite feature vector fi
t for member i at time step 

t. The resulting feature dimensionality is two-dimensional,

preserving essential individual behavioral information while

providing a comprehensive feature basis for computing

interaction dependencies among team members.

The computation of inter-member attention weights is 

formulated using a scaled dot-product attention mechanism. 

The attention weight 𝛼𝑖𝑗
𝑡 , representing the influence of 

member i on member j at time t, is defined as: 

𝛼𝑖𝑗
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (

𝑓𝑖
𝑡 ⋅ 𝑊𝑎 ⋅ (𝑓𝑖

𝑡)𝑇

√2𝑑
+ 𝑏𝑎) (2) 

where, Wa denotes a learnable weight matrix of dimensionality 

2d × 2d used to model feature associations between members, 

ba represents a bias term, and (2d)1/2 serves as a scaling factor 

to mitigate gradient vanishing issues induced by increasing 

feature dimensionality. The softmax function normalizes 

weights to the [0,1] interval, ensuring that their sum equals 

unity and enabling quantification of relative interaction 

strengths. 

To balance the contributions of individual features and 

interaction-driven features, residual connections are 

incorporated into the cross-member feature aggregation 

process. The equation is as follows: 

𝑓𝑎𝑡𝑡,𝑖
𝑡 =∑ α𝑖𝑗

𝑡

M

j=1

∙𝑓𝑗
𝑡+γ∙𝑓𝑖

𝑡 (3) 

where, M denotes the number of team members, and γ is set to 

0.5 as the residual weighting coefficient. This design ensures 

that critical individual behavioral characteristics are retained 

while inter-member interaction dependencies are effectively 

emphasized. Through the dynamic learning of attention 

weights, the proposed mechanism adaptively focuses on task-

critical interaction behaviors, such as gestural coordination 

during creative discussions and gaze convergence during 

decision-making phases. As a result, more targeted and 

interaction-aware representations are produced for subsequent 

feature fusion. 

2.3.3 Multi-granularity feature fusion 

The primary objective of multi-granularity feature fusion is 

to integrate four complementary feature dimensions across 

skeletal and RGB modalities, thereby generating a 

comprehensive representation that preserves hierarchical 

completeness while emphasizing interaction relevance. This 

integrated representation serves as a high-quality input for 

subsequent decoding of latent nonverbal communication 

variables. An adaptive weighted fusion strategy is adopted in 

place of fixed-weight fusion, enabling the model to 

automatically learn dynamic feature weights that align with 

the requirements of team performance prediction. Weight 

allocation is designed to be positively correlated with each 

feature’s predictive contribution to performance outcomes. 

The fusion process is formulated as follows: 

fusion 1 ind 2 team 3 frame 4 seq

t t t t tF w F w F w F w F=  +  +  +  (4) 

where, w1, w2, w3, and w4 denote the dynamic weights 

associated with individual skeletal features, team interaction 

features, frame-level visual features, and clip-level temporal 

features, respectively. Each weight is learned via a sigmoid 

activation function according to: 

( )sigmoid t

k w k ww W F b=  + (5) 

where, Ww represents a learnable weight matrix of 

dimensionality d × d that captures the relationship between 

each feature type and the performance prediction objective, 

while bw denotes a bias term. The sigmoid function constrains 

weight values to the [0,1] interval, allowing each feature’s 

contribution to be quantitatively interpreted while enabling 

adaptive normalization across feature dimensions. 

A key advantage of this fusion strategy lies in its ability to 
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dynamically adjust feature importance across task types and 

collaboration phases. For example, during brainstorming 

stages of creative tasks, higher weights are automatically 

assigned to clip-level temporal features and cross-member 

interaction features, whereas during execution-oriented stages, 

increased emphasis is placed on individual skeletal features 

and frame-level visual features. Through this adaptive 

mechanism, the fused representation Ffusion
t is guided to focus 

on context-specific nonverbal communication cues, 

effectively leveraging the complementary strengths of 

multimodal and multi-granularity features. This design 

establishes a robust foundation for latent variable decoding 

and subsequent team performance prediction. 

2.3.4 Latent variable decoding of nonverbal communication 

The latent variable decoding module for nonverbal 

communication serves as the central intermediate layer 

connecting multi-granularity fused features to the team 

performance prediction task. Its primary objective is to 

automatically distill low-dimensional latent variables that 

characterize team nonverbal communication patterns from 

high-dimensional fused representations, thereby avoiding 

subjective bias introduced by expert-defined constructs and 

enabling data-driven quantification of communication 

patterns. The dimensionality of the latent variables directly 

affects representational capacity and interpretability. Based on 

extensive cross-validation experiments, the latent 

dimensionality k is set to 64, a configuration that sufficiently 

captures essential communication information while 

mitigating overfitting and preserving interpretability. 

Latent variable decoding is implemented using two fully 

connected layers. The latent representation at time step t, 

denoted as Zt, is computed as: 

( )fusionReLUt t

z zZ W F b=  + (6) 

where, Wz represents a learnable weight matrix of 

dimensionality d × k, and bz denotes a k-dimensional bias term. 

The ReLU activation function introduces nonlinearity to 

enhance the model’s capacity to represent complex 

communication patterns. The resulting latent variable matrix 

Z consists of T × k dimensions that correspond to core 

nonverbal communication factors automatically learned by the 

model, such as bodily synchrony, balance of attention 

allocation, and emotional positivity. These dimensions are not 

predefined and are entirely induced from data, allowing 

adaptive capture of task-specific key communication 

characteristics across diverse team collaboration scenarios. 

To promote independence and interpretability across latent 

dimensions and to prevent information redundancy, an L2 

regularization constraint is incorporated during the decoding 

process. The regularization term is defined as λz||Z||₂², where λz 

is set to 1e-5. By penalizing the L2 norm of the latent variables, 

this constraint encourages the learning of sparse and relatively 

independent communication dimensions, thereby clarifying 

the semantic meaning of each latent factor, supporting 

subsequent interpretability analyses and further enhancing 

model generalization capability. 

2.3.5 Multi-task output head design 

The multi-task output head is designed under a joint 

optimization framework comprising a primary task and an 

auxiliary task. The primary task focuses on team performance 

prediction, while the auxiliary task constrains latent variable 

quality through self-supervised reconstruction of nonverbal 

behaviors. The collaborative optimization of these tasks is 

intended to jointly enhance prediction accuracy and feature 

representation capability. 

The primary task, corresponding to the team performance 

prediction head, receives two types of inputs: the temporal 

latent variable features Z and team attribute features A. Team 

attribute features include the number of members, task type, 

and role composition. After one-hot encoding and 

normalization, the attribute feature dimensionality is denoted 

as m. These attributes are jointly fed with the latent variable 

features to complement critical non-behavioral information. 

To capture the dynamic evolution of communication patterns 

across task phases, a bidirectional Long Short-Term Memory 

(BiLSTM) layer is employed for temporal modeling. Through 

the combined operation of forward and backward LSTM units, 

temporal dependencies are effectively extracted. The resulting 

temporally fused feature representation is denoted as H of 

dimensionality T × 2k and is computed as: 

( )H BiLSTM Z= (7) 

To emphasize the differential contribution of critical task 

phases to overall performance, temporal attention-weighted 

pooling is applied to H. Temporal attention weights βt are 

obtained via softmax normalization: 

( )softmax t

t W H b  = + (8) 

where, Wβ denotes a learnable weight matrix of dimensionality 

2k × 1, and bβ represents a bias term. The features obtained 

after weighted pooling are passed through a fully connected 

layer followed by a sigmoid activation function to produce a 

composite team performance score P in the range [0,1]. 

T

t

t 1

sigmoid t

p pP W H b
=

  
=  +  

  
 (9) 

The loss function for the primary task adopts the mean 

squared error (MSE) formulation, which is well suited for 

continuous-valued performance labels. The primary task loss 

is defined as: 

2

main

1

1 N

i i

i

L P Y
N =

= − (10) 

where, N denotes the number of samples, and Yi represents the 

ground-truth performance label. 

The auxiliary task corresponds to a self-supervised 

nonverbal behavior reconstruction head, whose primary 

objective is to constrain the latent variable representation Z to 

preserve essential communication information by 

reconstructing original nonverbal behavior features. This 

design enhances the robustness and effectiveness of feature 

representations. The reconstruction targets include individual 

skeletal features Find and frame-level RGB features Fframe, as 

these features directly reflect fundamental nonverbal 

behavioral cues. The reconstruction network is composed of 

two transposed convolutional layers followed by a fully 

connected layer. Transposed convolutions are employed to 

restore spatial feature structures, while the fully connected 

layer is used to ensure dimensional alignment. The network 
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outputs reconstructed features 𝑭̂𝑖𝑛𝑑  and 𝑭̂frame . To improve 

robustness to outliers, the auxiliary task employs an L1 loss 

function, defined as: 

 ( )frameaux frame
1 1

1
ind indL

N T
= − + −


F F F F (11) 

The overall loss function of the model is defined as a 

weighted sum of the primary task loss and the auxiliary task 

loss, and is computed as follows: 

Ltotal=λ∙Lmain+(1-λ)∙Laux (12) 

where, λ denotes the balancing coefficient between the two 

tasks. The value is determined via grid search and is set to 0.7. 

This configuration preserves the central objective of team 

performance prediction while enabling the auxiliary task to 

effectively regularize latent variable quality, thereby 

achieving coordinated optimization of both tasks. 

2.4 Model training and optimization details 

Model training was conducted using the AdamW optimizer 

to achieve efficient convergence while incorporating 

parameter regularization. The weight decay coefficient was set 

to 1e-5, effectively mitigating overfitting by suppressing 

excessive parameter growth. The initial learning rate was 

configured as 1e-4, and a cosine annealing scheduling strategy 

was employed. Under this strategy, the learning rate was 

decayed to one-tenth of its current value every ten training 

epochs, thereby preserving exploratory capacity during early 

training stages while enabling gradual stabilization and 

convergence in later phases. During training, the batch size 

was set to 8, balancing GPU memory constraints with gradient 

estimation stability. The total number of training epochs was 

fixed at 100, supplemented by an early stopping mechanism. 

Training was terminated when the mean absolute error (MAE) 

on the validation set exhibited no improvement for 15 

consecutive epochs, thereby preventing redundant iterations 

and reducing the risk of overfitting. Parameter initialization 

was performed using the Xavier uniform distribution scheme 

to ensure consistent variance across layer inputs and outputs, 

while all bias terms were initialized to zero to provide a stable 

starting point for training. With respect to regularization, in 

addition to the L2 constraint applied within the latent variable 

decoding module, dropout layers with a probability of 0.3 were 

introduced in fully connected layers and feature fusion 

modules. By randomly deactivating a subset of neurons during 

training, model generalization capability was further 

enhanced, ensuring robust performance across diverse datasets 

and scenarios. An overview of the proposed framework for 

team nonverbal communication decoding and performance 

prediction is illustrated in Figure 2. 

Figure 2. Schematic overview of the proposed framework for team nonverbal communication decoding and performance 

prediction 

3. EXPERIMENTS

3.1 Experimental design and evaluation metrics 

The experimental objectives are organized around four 

dimensions: demonstrating the superior performance of the 

proposed model in team performance prediction; testing the 

validity of the three core research hypotheses; determining the 

necessity of key components, including multi-granularity 

feature extraction, cross-member attention, and latent variable 

decoding; and comprehensively evaluating model 

interpretability, temporal dynamics capture capability, and 

cross-scenario generalization. Two datasets were employed 

for experimental validation. The self-constructed ONC dataset 

comprised 62 team samples and was partitioned into training, 

validation, and test sets using a 42:10:10 split. The public 

MPII Group Interaction dataset, consisting of 30 team 

samples, was used exclusively for generalization evaluation. 

Dataset partitioning was conducted strictly at the team level to 

prevent data from the same team appearing across training, 

validation, and test sets, thereby guaranteeing fair evaluation 

and robust generalization performance. 

Evaluation metrics were designed in accordance with 

specific validation objectives. Team performance prediction 
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was formulated as a regression task and was assessed using 

MAE, root mean squared error (RMSE), and the coefficient of 

determination (R2) to comprehensively measure prediction 

accuracy and goodness of fit. Latent variable interpretability 

was evaluated by computing correlation coefficients between 

automatically learned latent dimensions and manually 

annotated communication dimensions, ensuring that learned 

representations possess clear behavioral semantics. The three 

core hypotheses were statistically tested using Pearson 

correlation coefficients—applied to examine associations 

between nonverbal synchrony, synchrony growth rates, and 

performance—and independent-sample t-tests—applied to 

evaluate performance differences across attention distribution 

patterns. Model robustness was assessed by analyzing 

performance variability across different team sizes and task 

types. Baseline models were selected to comprehensively 

represent diverse technical paradigms. These include classical 

dual-stream I3D models from video-based behavioral 

representation learning, the state-of-the-art temporal Video 

Swin Transformer, and TeamGCN designed for team 

interaction modeling; GroupViT and Multi-Agent 

Transformer (MAT) from multi-agent interaction modeling; 

and Extreme Gradient Boosting (XGBoost) with handcrafted 

features and Multilayer Perceptron (MLP) models 

incorporating team attributes from the performance prediction 

domain. Comparative evaluations against these baselines were 

conducted to highlight the advantages of the proposed 

approach in multimodal fusion, interaction modeling, and end-

to-end optimization. 

3.2 Results of core hypothesis testing 

Figure 3 illustrates the association between team nonverbal 

synchrony scores and composite performance scores, 

revealing their distributional characteristics across teams. As 

shown in the figure, both measures exhibit a consistent upward 

trend with respect to team ID, and the scatter distribution 

demonstrates a clear positive relationship. Statistical analysis 

indicates that the Pearson correlation coefficient between the 

nonverbal synchrony dimension score and the composite 

performance score reaches 0.71, suggesting that higher levels 

of nonverbal behavioral synchrony within teams are associated 

with superior overall performance outcomes. This finding is 

consistent with the central tenets of coordination theory, which 

posit that nonverbal synchrony among team members 

enhances coordination efficiency and, in turn, improves 

performance. Accordingly, H1 is supported, providing 

quantitative evidence that nonverbal synchrony serves as a key 

predictive factor for team performance. 

Figure 3. Association between team nonverbal synchrony 

scores and composite performance scores 

Figure 4. Effects of attention distribution patterns on team 

performance across different task types 

Figure 4 compares team performance differences across 

attention distribution patterns in creative and decision-making 

tasks. In creative tasks, teams exhibiting an egalitarian 

attention distribution (attention balance level > 0.7) achieved 

a significantly higher mean performance score (0.83) than 

centralized teams (attention balance level < 0.3), with an 

independent-sample t-test yielding t = 4.23. In contrast, no 

substantial performance differences were observed across 

attention distribution patterns in decision-making tasks, where 

mean performance fluctuations remained below 0.04. These 

findings are consistent with expectations derived from team 

diversity theory. Creative tasks rely on egalitarian interaction 

and the collision of diverse viewpoints, for which balanced 

attention allocation facilitates comprehensive information 

exchange. Decision-making tasks, by contrast, tend to depend 

more strongly on leadership by core members, thereby 

attenuating the influence of attention distribution patterns. 

Accordingly, H2 is supported. 

Figure 5 presents a comparison between the predictive 

capabilities of static nonverbal synchrony scores and the rate 

of synchrony increase during task sprint phases. The 

correlation coefficient between sprint-phase synchrony 

growth rate and performance reaches 0.76, exceeding the 

correlation of 0.71 observed for static synchrony scores. 

Correspondingly, R2 increases from 0.5041 to 0.5776, 

representing an improvement of 8.3%. These results indicate 

that increases in nonverbal synchrony during sprint phases 

more effectively capture the dynamic optimization of 

collaborative quality and provide stronger predictive power 

than static synchrony measures. Accordingly, H3 is supported, 

highlighting the central importance of dynamic coordination 

features for team performance prediction. 

Figure 5. Performance predictive power of static and 

dynamic nonverbal synchrony features 

3.3 Overall performance comparison 

Overall performance comparison experiments were 

conducted on both the self-constructed ONC dataset and the 
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public MPII Group Interaction dataset to comprehensively 

evaluate the performance superiority and generalization 

stability of the proposed model relative to baseline approaches 

representing diverse technical paradigms. On the ONC dataset, 

the proposed model achieves an MAE of 0.087, an RMSE of 

0.109, and an R2 of 0.82. Compared with the strongest baseline 

(MAT), MAE is reduced by 20.3% and RMSE by 18.6%. 

Statistical testing confirms that these performance differences 

are highly significant, indicating clear advantages over all 

comparative models drawn from video-based behavioral 

representation learning, multi-agent interaction modeling, and 

traditional performance prediction approaches. 

Cross-dataset generalization performance serves as a 

critical indicator of practical applicability. As reported in 

Table 1, the proposed model maintains the best overall 

performance on the MPII Group Interaction dataset, achieving 

an MAE of 0.095, an RMSE of 0.118, and an R2 value of 0.79. 

Relative to MAT, MAE and RMSE are reduced by 14.6% and 

12.8%, respectively. Moreover, performance variation 

between the ONC and MPII datasets remains within 5%, 

demonstrating stable predictive capability across differing 

team compositions, task types, and interaction contexts. These 

results indicate that the proposed approach exhibits 

substantially stronger generalization ability than baseline 

models that rely on scenario-specific features. The additional 

column reporting core model characteristics in Table 1 

provides a concise comparison of the examined methods in 

terms of multimodal fusion, interaction modeling, and end-to-

end optimization. This comparison elucidates the technical 

origins of the observed performance advantages. 

Table 1. Comparison of team performance prediction results on the MPII Group Interaction dataset 

Model Core Model Characteristics MAE RMSE R2 
Performance Difference from 

the Proposed Model (MAE) 

Statistical 

Significance 

Two-stream I3D 

Dual-modality (RGB + optical flow) 

and single-granularity frame-level 

features 

0.132 0.165 0.61 0.037 p < 0.001 

Video Swin 

Transformer 

Single-modality RGB and temporal 

attention features 
0.125 0.158 0.64 0.030 p < 0.001 

TeamGCN 
Single-modality skeleton and team-

level graph convolution modeling 
0.118 0.149 0.67 0.023 p < 0.01 

GroupViT 
Single-modality RGB and group-level 

visual Transformer 
0.121 0.153 0.66 0.026 p < 0.01 

Multi-Agent 

Transformer 

Dual-modality and multi-agent 

interaction attention 
0.111 0.135 0.71 0.016 p < 0.05 

Proposed model 

Multimodal, multi-granularity, and 

latent variables + cross-member 

attention 

0.095 0.118 0.79 - - 

Note: Statistical significance is assessed using independent-sample t-tests comparing the distribution of prediction errors between each baseline model and the 
proposed model on the test set. Thresholds are defined as follows: p < 0.05 indicates statistical significance, p < 0.01 indicates high significance, and p < 0.001 

indicates very high significance. 

The performance advantages of the proposed model are 

attributable to the synergistic effects of three core design 

elements. First, end-to-end latent variable learning enables the 

automatic, data-driven induction of communication patterns 

that are strongly associated with performance, thereby 

eliminating subjective bias and generalization limitations 

inherent in expert-defined representations. Second, the cross-

member attention mechanism provides precise quantification 

of dynamic interpersonal interaction dependencies, 

strengthening the representation of critical collaborative 

behaviors such as idea exchange and consensus formation. 

Third, multi-granularity feature fusion is aligned with the 

hierarchical structure of team nonverbal communication—

spanning individuals, interaction, and team—thereby 

effectively integrating complementary information from fine-

grained individual behaviors and global team interactions. 

Together, these components form a high-performance 

prediction framework tailored to complex team collaboration 

scenarios. 

3.4 Ablation studies 

Ablation studies were conducted by systematically 

removing or replacing key components of the model, resulting 

in six variant configurations, aiming to quantitatively assess 

the contribution of multi-granularity fusion, cross-member 

attention, latent variable decoding, and the auxiliary task to 

overall performance. The results are summarized in Table 2. 

All variants were derived from the original model architecture, 

with only the target module modified in each case, thereby 

satisfying the single-variable control principle. Evaluation 

metrics include MAE, RMSE, and R2, providing a 

comprehensive assessment of performance degradation. 

The experimental results clearly indicate that the most 

pronounced performance degradation occurs when the latent 

variable decoding module is removed, with MAE increasing 

by 41.4% and R2 decreasing by 20.7%. This finding 

demonstrates that latent variables function as the core 

representational carriers of communication patterns and are 

essential for enabling data-driven induction of nonverbal 

communication structures, directly determining the strength of 

alignment between features and performance objectives. 

When only a single granularity of features is retained, 

substantial performance degradation is observed in all cases. 

Notably, retaining only team-level granularity results in a 

larger performance loss (MAE +28.7%) than retaining only 

individual-level granularity (MAE +20.7%), indicating that 

individual behavioral details constitute the foundational basis 

of team interactions. A single granularity is therefore 

insufficient to capture the hierarchical information on team 

nonverbal communication, underscoring the irreplaceable role 

of multi-granularity feature fusion. The removal of the cross-

member attention mechanism leads to an MAE increase of 

13.8%, confirming its effectiveness in capturing inter-member 

interaction dependencies and its critical role in distinguishing 

interaction patterns between high- and low-performing teams. 
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When the auxiliary task is removed, MAE increases by 16.1%, 

indicating that the self-supervised reconstruction task 

effectively constrains latent variable quality and enhances 

representation robustness and generalization capability. 

Furthermore, replacing adaptive fusion with fixed-weight 

fusion results in a 24.1% increase in MAE, demonstrating that 

dynamic weight learning enables more precise alignment 

between feature contributions and performance prediction 

across varying scenarios, thereby substantially improving 

fusion effectiveness. 

Table 2. Ablation study results of core modules (ONC test set) 

Model Variant MAE RMSE R2 MAE Degradation R2 Degradation 

Full model 0.087 0.109 0.82 - - 

Variant 1: Cross-member attention removed 0.099 0.126 0.75 13.8% 8.5% 

Variant 2: Individual-level granularity only 0.105 0.134 0.72 20.7% 12.2% 

Variant 3: Team-level granularity only 0.112 0.143 0.69 28.7% 15.9% 

Variant 4: Latent variable decoding removed 0.123 0.158 0.65 41.4% 20.7% 

Variant 5: Auxiliary task removed 0.101 0.129 0.74 16.1% 9.8% 

Variant 6: Fixed-weight fusion 0.108 0.137 0.71 24.1% 13.4% 

Taken together, the high performance of the proposed 

model is not attributable to the optimization of any single 

component, but rather to the synergistic integration of multi-

granularity feature fusion, cross-member attention, latent 

variable decoding, and the auxiliary task. Among these 

components, latent variable decoding serves as the core 

innovation mechanism, multi-granularity fusion provides the 

foundation for scenario adaptability, cross-member attention 

constitutes the key to interaction modeling, and the auxiliary 

task functions as a performance-enhancing regularizer. 

Through their mutual reinforcement, these modules 

collectively establish an efficient framework for modeling 

team nonverbal communication and predicting team 

performance in organizational contexts. 

3.5 Sensitivity analysis of latent variable dimensionality 

Figure 6 illustrates the variation in MAE for team 

performance prediction on the ONC test set as the 

dimensionality of latent variables increases from 16 to 256. As 

shown, MAE decreases monotonically as the latent 

dimensionality increases from 16 to 64, with MAE values of 

0.12 at 16 dimensions, 0.10 at 32 dimensions, and a minimum 

of 0.087 at 64 dimensions. This trend indicates that increasing 

dimensionality enhances the model’s capacity to represent 

nonverbal communication patterns, enabling the capture of 

more fine-grained interaction features. When the latent 

dimensionality exceeds 64, MAE begins to increase gradually. 

Excessive dimensionality facilitates the fitting of noise present 

in the training data, leading to degraded generalization 

performance.  

Figure 6. Effect of latent variable dimensionality on MAE 

for team performance prediction 

These results empirically validate the rationality of the 

selected latent dimensionality. A dimensionality of 64 

provides sufficient representational capacity to capture the 

core patterns of team nonverbal communication while 

avoiding the overfitting risks associated with higher-

dimensional latent spaces. As such, this configuration 

represents an optimal balance between expressive power and 

generalization capability for the proposed model. 

Figure 7. SHAP values of different feature types for team performance prediction 
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3.6 SHAP-based feature importance analysis 

SHAP values were employed to quantify the marginal 

contributions of individual features to team performance 

prediction. Figure 7 presents a comparative visualization of the 

contribution magnitudes between model-learned latent 

variable features and traditional handcrafted features. As 

shown, SHAP values associated with latent variable features 

are substantially higher than those of handcrafted features. 

Among the latent variables, the synchrony dimension exhibits 

the highest SHAP value (0.28), followed by attention balance 

(0.23). Even the latent feature with the lowest contribution—

bodily orientation consistency (0.16)—exceeds the mean 

SHAP value of traditional handcrafted features (0.11). 

These results indicate that the automatically induced latent 

variables of nonverbal communication learned by the 

proposed model capture core information that is strongly 

associated with team performance with greater precision. 

Specifically, the synchrony dimension corresponds to 

coordination efficiency in collaborative processes, while 

attention balance reflects interactional equity among team 

members; both factors constitute critical drivers of team 

performance. By contrast, traditional handcrafted features 

focus on isolated behavioral indicators and fail to characterize 

inter-behavioral relational patterns, resulting in substantially 

lower contribution levels. This analysis not only clarifies the 

principal basis underlying the model’s performance 

predictions but also highlights the representational superiority 

of data-driven latent variable learning over conventional 

handcrafted feature engineering. 

4. CONCLUSION

This study addressed the longstanding challenge in 

organizational management of objectively quantifying team 

collaboration states by integrating computational behavioral 

science with organizational behavior theory. An end-to-end, 

multi-task, multimodal, multi-granularity CNN framework 

was proposed, through which nonverbal communication 

patterns were automatically induced and team performance 

was accurately predicted via the coordinated design of multi-

granularity feature extraction, cross-member attention 

mechanisms, and latent variable decoding. The results 

demonstrated that the proposed model achieved significantly 

higher performance prediction accuracy than existing baseline 

methods on both self-constructed and public datasets, with all 

three core hypotheses quantitatively validated. Ablation 

experiments and SHAP-based analyses further confirmed the 

necessity of the key architectural components and the 

representational superiority of the learned latent variables. The 

contributions of this study are manifested across three 

dimensions. At the technical level, the application boundary of 

video-based behavioral representation learning is extended to 

multi-agent team interaction scenarios. At the theoretical level, 

objective quantitative evidence is provided for coordination 

theory and team diversity theory within organizational 

behavior research. At the practical level, an implementable 

technological solution is offered for team collaboration 

diagnosis and performance prediction in organizational 

settings. 

Despite these advances, several limitations remain. The 

dataset coverage is primarily concentrated in technology-

oriented industries, and emerging work settings such as remote 

collaboration have not yet been incorporated. Audio modality 

information has not been integrated, potentially omitting 

complementary nonverbal cues such as prosody and vocal 

tone. In addition, the proposed framework has not yet been 

deployed as an operational management tool, and validation in 

real corporate environments is still lacking. Future research 

may be advanced along three directions. First, the multimodal 

fusion framework may be extended to incorporate audio 

signals and physiological data in order to enrich the 

dimensionality of communication features. Second, more 

advanced temporal modeling strategies may be introduced to 

enable real-time tracking and prediction of team performance. 

Third, lightweight enterprise collaboration analysis tools may 

be developed and deployed in real organizational contexts to 

validate practical value, while further expanding dataset 

diversity across scenarios and industries to enhance 

generalizability and applied relevance. 
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