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A persistent challenge in organizational research is the objective quantification of team
collaboration states. Nonverbal communication remains insufficiently captured by existing
measurement frameworks, which are limited by single-granularity representations,
inadequate modeling of cross-member interactions, and so on. To address these limitations,
an end-to-end, multi-task, multimodal, multi-granularity Convolutional Neural Network
(CNN) was developed, in which nonverbal communication patterns are represented as
learnable latent variables embedded within intermediate network layers. Joint optimization
is performed through a primary task of team performance prediction and an auxiliary self-
supervised task of nonverbal behavior reconstruction. This design enables the accurate
extraction of individual- and team-level skeletal features together with frame- and clip-level
Red-Green-Blue (RGB) representations, while modeling interaction dependencies among
team members. Experimental results demonstrate that the proposed framework consistently
outperforms representative baseline methods, achieving lower prediction errors on a self-
constructed ONC dataset and exhibiting robust generalization across public benchmarks.
Empirical analyses indicate that higher nonverbal synchrony is positively associated with
team performance, that more egalitarian attention distribution benefits creative task
outcomes, and that dynamic changes in synchrony during task sprint phases provide stronger
predictive power than static descriptors. Ablation studies further confirm that the synergistic
integration of multi-granularity fusion, cross-member attention, and latent variable decoding
is critical to performance gains. Analyses of SHapley Additive exPlanations (SHAP) values
highlight the superior representational power of automatically learned latent variables over
traditional handcrafted features. The proposed approach establishes a quantitative paradigm
for nonverbal communication analysis, extends the application boundary of video
representation learning to multi-agent team interaction scenarios, and offers a practical tool
for team collaboration diagnosis and performance forecasting.

1. INTRODUCTION

unresolved challenges in the field.
From a technological perspective, substantial advances

The core value of team collaboration is derived from
implicit  interactions among members. Nonverbal
communication, as a fundamental component of interpersonal
exchange, encompasses behaviors such as bodily synchrony,
gaze coordination, and facial expression transmission [1-3],
and has been identified as a critical determinant of
coordination efficiency, emotional resonance, and ultimate
team performance. Foundational research in organizational
behavior has long established the importance of such implicit
interactions; however, traditional investigations have
predominantly relied on questionnaire surveys and manual
observation [4, 5]. These approaches are constrained by strong
subjectivity, coarse analytical granularity, and an inability to
capture dynamic interaction processes in real time [6-8]. As a
result, the objective quantification of team nonverbal
communication patterns and the establishment of their
relationship with performance have remained long-standing
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have been achieved in video-based behavioral representation
learning within the computer vision community. Models such
as Inflated 3D ConvNets (I3D) and Graph Convolutional
Networks (GCNs) have enabled increasingly accurate
recognition of individual-level actions [9, 10]. Nevertheless,
three fundamental bottlenecks persist in team collaboration
scenarios. First, the insufficient capture of multi-granularity
hierarchical features limits the ability to represent team
structures spanning individuals, interactions, and collective
dynamics. Second, the absence of explicit modeling of cross-
member dynamic interaction dependencies prevents effective
characterization of coordinated behavioral coupling among
team members. Third, objectives have remained largely
confined to action classification, without being tightly coupled
to performance prediction tasks central to organizational
management research.

Recent interdisciplinary efforts integrating computational
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behavioral science with organizational behavior theory [11,
12] have provided a promising pathway for addressing these
limitations. The construction of end-to-end quantitative
modeling frameworks has been shown to not only mitigate
methodological ~ constraints  inherent in  traditional
management research but also to extend the application
boundary of video representation learning, enabling
technology-driven empowerment of management practice and
playing a crucial role in promoting the synergistic
development of both fields [13]. Despite these advances,
notable limitations remain at both the technical and theoretical
levels. From a technical standpoint, existing approaches
exhibit modality and granularity designs that are misaligned
with the hierarchical structure of teams. Attention mechanisms
have predominantly focused on individual actors while
neglecting cross-member interaction dependencies. Moreover,
the construction of communication patterns has relied heavily
on expert-defined rules, which not only introduce subjective
bias but also limit generalization across scenarios. The
decoupling of communication modeling from performance
prediction has further resulted in fragmented optimization
pipelines [14-16]. From a theoretical standpoint, quantitative
evidence supporting the intrinsic mechanisms linking
nonverbal communication to team performance remains
limited. The differential effects of communication patterns
across task types have not been clearly established, and prior
studies have largely emphasized static descriptors while
overlooking the dynamic evolution of nonverbal interaction
patterns and their temporal relationship with performance
outcomes [17-19].

The central objectives of this study are threefold. First, an
end-to-end multimodal video-based representation learning
model is designed to enable the automatic decoding of latent
variables characterizing team nonverbal communication.
Second, testable research hypotheses grounded in
organizational behavior theory are formulated to precisely
quantify the associations between communication patterns and
team performance. Third, a team performance prediction
framework with both strong generalization capability and
interpretability is constructed to provide effective analytical
tools for organizational management practice. In alignment
with these objectives, three core hypotheses were proposed:

H1l: Team nonverbal synchrony is significantly and
positively correlated with task performance.

H2: In creative tasks, an egalitarian cross-member attention
distribution pattern is more predictive of high performance
than a centralized attention pattern.

H3: The rate of increase in communication synchrony
during task sprint phases exhibits greater predictive power for
performance outcomes than static synchrony measures.

This study introduces four key innovations. First, it
proposes an end-to-end framework that combines latent
variables with multi-task learning, allowing communication
patterns to be learned directly from data, rather than relying on
expert-defined features. Second, it develops an interpretable
cross-member attention mechanism and multi-level feature
fusion strategies to model interpersonal interactions and
complementary features. Third, it creates a closed research
loop that links theory and methodology—organizational
behavior hypotheses shape the model and experiments, and are
later tested using computational methods. Fourth, it uses
SHAP analysis and pattern pathway mining together to
provide practical insights for improving management
practices.
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The remainder of this study is organized as follows. Section
2 describes the model's architecture and the overall research
framework. Section 3 presents the experimental results used to
evaluate the model and test the hypotheses. Finally, the key
findings are summarized, and suggestions for future research
are provided.

2. RESEARCH METHODOLOGY
2.1 Overview of the research framework

An end-to-end, multi-task, multimodal, multi-granularity
CNN framework is developed with the objective of integrating
multimodal video data, accurately decoding latent nonverbal
communication patterns, and achieving efficient team
performance prediction. The overall architecture comprises
four core components: multi-granularity feature extraction,
latent variable decoding of nonverbal communication, dual-
task output, and multi-task optimization. The central
processing pipeline is structured below. Multimodal video
data, consisting of RGB video and skeletal data are provided
as inputs. Individual- and team-level skeletal features, together
with frame- and clip-level RGB features, are extracted through
the proposed network architecture. Latent variables
representing core nonverbal communication patterns are
subsequently decoded at intermediate layers. Finally, a dual-
output layer is employed to simultaneously generate team
performance predictions and reconstructed nonverbal
behavior representations. To strengthen the intrinsic
associations between features and the ultimate objective of
performance prediction, a multi-task joint optimization
strategy is adopted. The primary task corresponds to team
performance prediction, with an associated loss function
denoted as Lyqin, While the auxiliary task corresponds to self-
supervised reconstruction of nonverbal behaviors, with an
associated loss function denoted as Lu.. The overall loss
function is defined as:

L:/leainJ'_( 1 'A)Laux (1 )
where, A is set to 0.7 and determined via cross-validation to
balance the relative priorities of the primary and auxiliary
tasks. This ensures that the latent variables are capable of
capturing essential nonverbal communication information
while effectively serving the team performance prediction
task.

2.2 Dataset construction and preprocessing

Well-established collaborative task paradigms from
organizational behavior research were adopted to ensure the
authenticity of the collected nonverbal communication data.
The task set encompassed creative decision-making scenarios
(the winter survival task), problem-solving scenarios (the
moon survival task), and execution-oriented scenarios
involving real corporate project collaboration. Data collection
was conducted across both laboratory-simulated collaboration
settings and authentic corporate meeting room environments.
A total of 62 teams were recruited, with team sizes ranging
from 3 to 8 members. Team compositions spanned three major
industry sectors—technology, education, and finance—
yielding a cumulative effective data duration of 128 hours.
During data acquisition, multimodal information was



synchronously recorded, including RGB video at a resolution
of 1080p and 30 frames per second (fps), three-dimensional
skeletal data comprising 25 keypoints extracted via
MediaPipe, and auxiliary audio recordings retained as backup
signals. To preserve the ecological validity of the dataset, task
designs were closely aligned with real-world organizational
workflows. Standardized project requirement documents and
realistic time constraints were incorporated, and team
compositions were structured to reflect typical corporate role
distributions, including leaders, executors, and coordinators.
The data collection process adhered to a minimal-intervention
principle; concealed camera setups were employed to mitigate
behavioral distortion and to ensure the naturalistic expression
of nonverbal communication.

A multidimensional performance labeling system was
constructed based on the input-process-output framework, and
a triangulation approach was employed to ensure label
reliability. The labeling scheme comprised three core
dimensions. The task performance dimension was defined
using objective indicators, including task completion rate,
decision accuracy, and execution efficiency. The team vitality
dimension integrated objective and subjective measures,
encompassing the variance in member speaking frequency and
the mean level of emotional positivity derived from facial
expression recognition. The member satisfaction dimension
was obtained through subjective assessments, including post-
task peer evaluations of collaboration quality and
communication fluency, as well as self-reported satisfaction
scores provided by participants. Labels across all dimensions
were integrated using a weighted averaging method to produce
a composite performance score normalized to the [0,1]
interval. Weight assignments were determined by
organizational behavior experts according to the relative
contribution of each dimension to overall team performance.
The annotation process was jointly conducted by three
organizational behavior experts and two technical engineers.
Inter-annotator reliability was evaluated using Krippendorftf’s
a, with all coefficients exceeding (.88, thereby satisfying
established reliability standards for empirical research.

During skeletal data preprocessing, median filtering was

Key frames of team nonverbal
communication in the RGB modality
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applied for noise reduction, and missing frames were
completed via linear interpolation. Individual skeletal
sequences and team-level spatial position matrices were
subsequently constructed to meet model input requirements.
For RGB video preprocessing, frame sampling at 15 fps was
first performed to balance data volume and computational
efficiency. Face and body regions were detected using the You
Only Look Once version 8 (YOLOvVS) model, followed by
region-of-interest ~ cropping to remove  background
interference and to focus on core interaction areas. To enhance
model generalization and to accommodate auxiliary task
training, targeted data augmentation strategies were
implemented, including random frame flipping, temporal
sequence shuffling, and adjustments to brightness and
contrast. All preprocessing procedures were designed to
preserve the integrity and authenticity of the original
nonverbal communication characteristics.

2.3 Detailed design of the proposed model

2.3.1 Multi-granularity feature extraction module

The primary objective of the multi-granularity feature
extraction module is to accommodate the hierarchical structure
of team nonverbal communication by capturing core
representations of individual-team-level features and frame-
and clip-level features from both skeletal and RGB modalities,
providing fine-grained representations for subsequent
interaction modeling and team performance prediction. For the
skeletal branch, a dual-granularity design is adopted. The
individual skeletal keypoint subnetwork is constructed based
on Spatial-Temporal Graph Temporal Convolutional
Networks (S-GTCNs). The input consists of temporal
sequences with length 7, each containing 25 three-dimensional
skeletal keypoints. Through the combined application of
temporal convolutions and graph convolutions, dynamic body
motion patterns of individual members are extracted. The
output is an individual-level feature matrix Fig of
dimensionality 7 x d, where the feature dimensionality d is set
to 256 to balance representational capacity and computational
efficiency.

temporal feature
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Clip-level |
subnetwork
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RGB-based team nonverbal
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Figure 1. Temporal feature extraction module for team nonverbal communication in the RGB modality



The team interaction skeletal subnetwork is designed to
capture interaction-related features among team members. A
graph structure is constructed based on pairwise spatial
distances between members, in which nodes correspond to
individual team members and edge weights are defined as the
inverse of inter-member spatial distances, such that closer
proximity corresponds to stronger interaction association.
Feature aggregation is performed over this graph using a GCN,
enabling effective capturing of team-level interaction patterns,
including bodily coordination and spatial orientation
consistency. The  resulting team-level interaction
representation is denoted as Fieam, matching the dimensionality
(T x d) of the individual-level features and achieving
hierarchical coverage of skeletal representations from
individual actions to collective team interactions.

The RGB branch likewise adopts a dual-granularity design
to jointly capture static visual attributes and temporal
dynamics. The frame-level feature subnetwork is constructed
based on the 13D architecture. The input consists of 7 frames
of three-channel RGB images. Through three-dimensional
convolution operations, frame-level visual features are
extracted, encompassing static nonverbal cues such as facial
expressions and body postures. The resulting output is a
frame-level feature representation Fqme of dimensionality 7" X
d. The clip-level temporal subnetwork is implemented using a
three-layer Temporal Convolutional Network (TCN), with the
dilation factor set to 2 to expand the receptive field. The frame-
level feature sequence is provided as input, and temporal
convolutions are applied to capture behavioral evolution
across consecutive frames, thereby extracting temporal
dynamics of nonverbal communication. The final output is a
clip-level temporal feature representation Fiy, of
dimensionality 7 x d, completing multi-granularity feature
extraction in the RGB modality from static frames to dynamic
temporal segments. Figure 1 provides an overview of the
RGB-based team nonverbal feature extraction module. RGB
video streams from team interactions are processed through
three steps: dividing into temporal segments, extracting frame-
level nonverbal features, and applying clip-level temporal
enhancement. This produces multi-level representations of
team nonverbal communication in the RGB modality.

2.3.2 Cross-member attention mechanism

The primary function of the cross-member attention
mechanism is to quantify the dynamic association strength of
nonverbal behaviors among team members, thereby
amplifying interaction features relevant to performance while
suppressing interference from behaviorally irrelevant
individuals. To achieve this objective, preliminary feature
fusion is first performed for each member. Specifically,
individual skeletal features Fjq/ and frame-level visual
features Fpame i are concatenated along the feature dimension,
yielding a composite feature vector f for member i at time step
t. The resulting feature dimensionality is two-dimensional,
preserving essential individual behavioral information while
providing a comprehensive feature basis for computing
interaction dependencies among team members.

The computation of inter-member attention weights is
formulated using a scaled dot-product attention mechanism.
The attention weight aitj , representing the influence of
member i on member j at time ¢, is defined as:
fit'Wa'(fit)T_}_b )

V2d ¢

t

aj; = softmax( 2)
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where, W, denotes a learnable weight matrix of dimensionality
2d x 2d used to model feature associations between members,
b, represents a bias term, and (2d)'"? serves as a scaling factor
to mitigate gradient vanishing issues induced by increasing
feature dimensionality. The softmax function normalizes
weights to the [0,1] interval, ensuring that their sum equals
unity and enabling quantification of relative interaction
strengths.

To balance the contributions of individual features and
interaction-driven  features, residual connections are
incorporated into the cross-member feature aggregation
process. The equation is as follows:

M

Fleei= Y by fi+rfi

J=1

3)

where, M denotes the number of team members, and y is set to
0.5 as the residual weighting coefficient. This design ensures
that critical individual behavioral characteristics are retained
while inter-member interaction dependencies are effectively
emphasized. Through the dynamic learning of attention
weights, the proposed mechanism adaptively focuses on task-
critical interaction behaviors, such as gestural coordination
during creative discussions and gaze convergence during
decision-making phases. As a result, more targeted and
interaction-aware representations are produced for subsequent
feature fusion.

2.3.3 Multi-granularity feature fusion

The primary objective of multi-granularity feature fusion is
to integrate four complementary feature dimensions across
skeletal and RGB modalities, thereby generating a
comprehensive representation that preserves hierarchical
completeness while emphasizing interaction relevance. This
integrated representation serves as a high-quality input for
subsequent decoding of latent nonverbal communication
variables. An adaptive weighted fusion strategy is adopted in
place of fixed-weight fusion, enabling the model to
automatically learn dynamic feature weights that align with
the requirements of team performance prediction. Weight
allocation is designed to be positively correlated with each
feature’s predictive contribution to performance outcomes.

The fusion process is formulated as follows:

t t
Eramc : F;cq

t t
F fusion : Ecam

— 2 .
=w - Fgtw, +w; + W,

4)

where, wi, way, w3, and ws denote the dynamic weights
associated with individual skeletal features, team interaction
features, frame-level visual features, and clip-level temporal
features, respectively. Each weight is learned via a sigmoid
activation function according to:

W

w

w, =sigmoid( -F/ +bw) (5)
where, W, represents a learnable weight matrix of
dimensionality d x d that captures the relationship between
each feature type and the performance prediction objective,
while b,, denotes a bias term. The sigmoid function constrains
weight values to the [0,1] interval, allowing each feature’s
contribution to be quantitatively interpreted while enabling
adaptive normalization across feature dimensions.

A key advantage of this fusion strategy lies in its ability to



dynamically adjust feature importance across task types and
collaboration phases. For example, during brainstorming
stages of creative tasks, higher weights are automatically
assigned to clip-level temporal features and cross-member
interaction features, whereas during execution-oriented stages,
increased emphasis is placed on individual skeletal features
and frame-level visual features. Through this adaptive
mechanism, the fused representation Fjsio.' is guided to focus
on context-specific nonverbal communication cues,
effectively leveraging the complementary strengths of
multimodal and multi-granularity features. This design
establishes a robust foundation for latent variable decoding
and subsequent team performance prediction.

2.3.4 Latent variable decoding of nonverbal communication

The latent variable decoding module for nonverbal
communication serves as the central intermediate layer
connecting multi-granularity fused features to the team
performance prediction task. Its primary objective is to
automatically distill low-dimensional latent variables that
characterize team nonverbal communication patterns from
high-dimensional fused representations, thereby avoiding
subjective bias introduced by expert-defined constructs and
enabling data-driven quantification of communication
patterns. The dimensionality of the latent variables directly
affects representational capacity and interpretability. Based on
extensive  cross-validation  experiments, the latent
dimensionality k is set to 64, a configuration that sufficiently
captures essential communication information while
mitigating overfitting and preserving interpretability.

Latent variable decoding is implemented using two fully
connected layers. The latent representation at time step ¢,
denoted as Z', is computed as:

Z' =ReLU(W, - Fyy,, +D.) (6)

sion

where, W. represents a learnable weight matrix of
dimensionality d x k, and b. denotes a k-dimensional bias term.
The ReLU activation function introduces nonlinearity to
enhance the model’s capacity to represent complex
communication patterns. The resulting latent variable matrix
Z consists of T x k dimensions that correspond to core
nonverbal communication factors automatically learned by the
model, such as bodily synchrony, balance of attention
allocation, and emotional positivity. These dimensions are not
predefined and are entirely induced from data, allowing
adaptive capture of task-specific key communication
characteristics across diverse team collaboration scenarios.

To promote independence and interpretability across latent
dimensions and to prevent information redundancy, an L2
regularization constraint is incorporated during the decoding
process. The regularization term is defined as 4||Z||2?, where A.
is set to 1e”. By penalizing the L2 norm of the latent variables,
this constraint encourages the learning of sparse and relatively
independent communication dimensions, thereby clarifying
the semantic meaning of each latent factor, supporting
subsequent interpretability analyses and further enhancing
model generalization capability.

2.3.5 Multi-task output head design

The multi-task output head is designed under a joint
optimization framework comprising a primary task and an
auxiliary task. The primary task focuses on team performance
prediction, while the auxiliary task constrains latent variable
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quality through self-supervised reconstruction of nonverbal
behaviors. The collaborative optimization of these tasks is
intended to jointly enhance prediction accuracy and feature
representation capability.

The primary task, corresponding to the team performance
prediction head, receives two types of inputs: the temporal
latent variable features Z and team attribute features 4. Team
attribute features include the number of members, task type,
and role composition. After one-hot encoding and
normalization, the attribute feature dimensionality is denoted
as m. These attributes are jointly fed with the latent variable
features to complement critical non-behavioral information.
To capture the dynamic evolution of communication patterns
across task phases, a bidirectional Long Short-Term Memory
(BiLSTM) layer is employed for temporal modeling. Through
the combined operation of forward and backward LSTM units,
temporal dependencies are effectively extracted. The resulting
temporally fused feature representation is denoted as H of
dimensionality 7 x 2k and is computed as:

H=BiLSTM(Z) (7)

To emphasize the differential contribution of critical task
phases to overall performance, temporal attention-weighted
pooling is applied to H. Temporal attention weights f; are
obtained via softmax normalization:

B =softmax(Wﬁ.H’ +bﬂ) (8)

where, Wj denotes a learnable weight matrix of dimensionality
2k x 1, and bp represents a bias term. The features obtained
after weighted pooling are passed through a fully connected
layer followed by a sigmoid activation function to produce a
composite team performance score P in the range [0,1].

P:sigmoid(Wp -[iﬁtH’)+bp) 9)

The loss function for the primary task adopts the mean
squared error (MSE) formulation, which is well suited for
continuous-valued performance labels. The primary task loss
is defined as:

1< 2
L...=—)I|B-Y
in =y 2B Y] (10)

where, N denotes the number of samples, and Y; represents the
ground-truth performance label.

The auxiliary task corresponds to a self-supervised
nonverbal behavior reconstruction head, whose primary
objective is to constrain the latent variable representation Z to
preserve  essential communication information by
reconstructing original nonverbal behavior features. This
design enhances the robustness and effectiveness of feature
representations. The reconstruction targets include individual
skeletal features Fj,s and frame-level RGB features Fume, as
these features directly reflect fundamental nonverbal
behavioral cues. The reconstruction network is composed of
two transposed convolutional layers followed by a fully
connected layer. Transposed convolutions are employed to
restore spatial feature structures, while the fully connected
layer is used to ensure dimensional alignment. The network



outputs reconstructed features F,; and Fgape. To improve
robustness to outliers, the auxiliary task employs an L1 loss
function, defined as:

L. =L(‘
N-T

frame

‘Find - End

1 +HFﬁam _F

) (11)
1

The overall loss function of the model is defined as a
weighted sum of the primary task loss and the auxiliary task
loss, and is computed as follows:

Ltotal:i'Lmain—i_( 1 "1) 'Laux ( 1 2)

where, 4 denotes the balancing coefficient between the two
tasks. The value is determined via grid search and is set to 0.7.
This configuration preserves the central objective of team
performance prediction while enabling the auxiliary task to
effectively regularize latent variable quality, thereby
achieving coordinated optimization of both tasks.

2.4 Model training and optimization details

Model training was conducted using the AdamW optimizer
to achieve efficient convergence while incorporating
parameter regularization. The weight decay coefficient was set
to le?, effectively mitigating overfitting by suppressing

excessive parameter growth. The initial learning rate was
configured as 1e*, and a cosine annealing scheduling strategy
was employed. Under this strategy, the learning rate was
decayed to one-tenth of its current value every ten training
epochs, thereby preserving exploratory capacity during early
training stages while enabling gradual stabilization and
convergence in later phases. During training, the batch size
was set to 8, balancing GPU memory constraints with gradient
estimation stability. The total number of training epochs was
fixed at 100, supplemented by an early stopping mechanism.
Training was terminated when the mean absolute error (MAE)
on the validation set exhibited no improvement for 15
consecutive epochs, thereby preventing redundant iterations
and reducing the risk of overfitting. Parameter initialization
was performed using the Xavier uniform distribution scheme
to ensure consistent variance across layer inputs and outputs,
while all bias terms were initialized to zero to provide a stable
starting point for training. With respect to regularization, in
addition to the L2 constraint applied within the latent variable
decoding module, dropout layers with a probability of 0.3 were
introduced in fully connected layers and feature fusion
modules. By randomly deactivating a subset of neurons during
training, model generalization capability was further
enhanced, ensuring robust performance across diverse datasets
and scenarios. An overview of the proposed framework for
team nonverbal communication decoding and performance
prediction is illustrated in Figure 2.
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Figure 2. Schematic overview of the proposed framework for team nonverbal communication decoding and performance
prediction

3. EXPERIMENTS
3.1 Experimental design and evaluation metrics

The experimental objectives are organized around four
dimensions: demonstrating the superior performance of the
proposed model in team performance prediction; testing the
validity of the three core research hypotheses; determining the
necessity of key components, including multi-granularity
feature extraction, cross-member attention, and latent variable
decoding; and comprehensively evaluating  model
interpretability, temporal dynamics capture capability, and
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cross-scenario generalization. Two datasets were employed
for experimental validation. The self-constructed ONC dataset
comprised 62 team samples and was partitioned into training,
validation, and test sets using a 42:10:10 split. The public
MPII Group Interaction dataset, consisting of 30 team
samples, was used exclusively for generalization evaluation.
Dataset partitioning was conducted strictly at the team level to
prevent data from the same team appearing across training,
validation, and test sets, thereby guaranteeing fair evaluation
and robust generalization performance.

Evaluation metrics were designed in accordance with
specific validation objectives. Team performance prediction



was formulated as a regression task and was assessed using
MAE, root mean squared error (RMSE), and the coefficient of
determination (R?) to comprehensively measure prediction
accuracy and goodness of fit. Latent variable interpretability
was evaluated by computing correlation coefficients between
automatically learned latent dimensions and manually
annotated communication dimensions, ensuring that learned
representations possess clear behavioral semantics. The three
core hypotheses were statistically tested using Pearson
correlation coefficients—applied to examine associations
between nonverbal synchrony, synchrony growth rates, and
performance—and independent-sample t-tests—applied to
evaluate performance differences across attention distribution
patterns. Model robustness was assessed by analyzing
performance variability across different team sizes and task
types. Baseline models were selected to comprehensively
represent diverse technical paradigms. These include classical
dual-stream I3D models from video-based behavioral
representation learning, the state-of-the-art temporal Video
Swin Transformer, and TeamGCN designed for team
interaction  modeling;  GroupViT and Multi-Agent
Transformer (MAT) from multi-agent interaction modeling;
and Extreme Gradient Boosting (XGBoost) with handcrafted
features and Multilayer Perceptron (MLP) models
incorporating team attributes from the performance prediction
domain. Comparative evaluations against these baselines were
conducted to highlight the advantages of the proposed
approach in multimodal fusion, interaction modeling, and end-
to-end optimization.

3.2 Results of core hypothesis testing

Figure 3 illustrates the association between team nonverbal
synchrony scores and composite performance scores,
revealing their distributional characteristics across teams. As
shown in the figure, both measures exhibit a consistent upward
trend with respect to team ID, and the scatter distribution
demonstrates a clear positive relationship. Statistical analysis
indicates that the Pearson correlation coefficient between the
nonverbal synchrony dimension score and the composite
performance score reaches 0.71, suggesting that higher levels
of nonverbal behavioral synchrony within teams are associated
with superior overall performance outcomes. This finding is
consistent with the central tenets of coordination theory, which
posit that nonverbal synchrony among team members
enhances coordination efficiency and, in turn, improves
performance. Accordingly, H1 is supported, providing
quantitative evidence that nonverbal synchrony serves as a key
predictive factor for team performance.

1

+ Nonverbal synchrony score
+ Composite performarnce score

0.8
0.6
0.4

02

10
Team ID

Figure 3. Association between team nonverbal synchrony
scores and composite performance scores
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Figure 4 compares team performance differences across
attention distribution patterns in creative and decision-making
tasks. In creative tasks, teams exhibiting an egalitarian
attention distribution (attention balance level > 0.7) achieved
a significantly higher mean performance score (0.83) than
centralized teams (attention balance level < 0.3), with an
independent-sample t-test yielding t = 4.23. In contrast, no
substantial performance differences were observed across
attention distribution patterns in decision-making tasks, where
mean performance fluctuations remained below 0.04. These
findings are consistent with expectations derived from team
diversity theory. Creative tasks rely on egalitarian interaction
and the collision of diverse viewpoints, for which balanced
attention allocation facilitates comprehensive information
exchange. Decision-making tasks, by contrast, tend to depend
more strongly on leadership by core members, thereby
attenuating the influence of attention distribution patterns.
Accordingly, H2 is supported.

Figure 5 presents a comparison between the predictive
capabilities of static nonverbal synchrony scores and the rate
of synchrony increase during task sprint phases. The
correlation coefficient between sprint-phase synchrony
growth rate and performance reaches 0.76, exceeding the
correlation of 0.71 observed for static synchrony scores.
Correspondingly, R? increases from 0.5041 to 0.5776,
representing an improvement of 8.3%. These results indicate
that increases in nonverbal synchrony during sprint phases
more effectively capture the dynamic optimization of
collaborative quality and provide stronger predictive power
than static synchrony measures. Accordingly, H3 is supported,
highlighting the central importance of dynamic coordination
features for team performance prediction.

B Static synchrony score

0.76

07?1 I

Correlation with performance

B Sprint-phase synchrony growth rate

0.5776

05041

Coefficient of determination (R?)

Figure 5. Performance predictive power of static and
dynamic nonverbal synchrony features

3.3 Overall performance comparison

Overall performance comparison experiments were
conducted on both the self-constructed ONC dataset and the



public MPII Group Interaction dataset to comprehensively
evaluate the performance superiority and generalization
stability of the proposed model relative to baseline approaches
representing diverse technical paradigms. On the ONC dataset,
the proposed model achieves an MAE of 0.087, an RMSE of
0.109, and an R? of 0.82. Compared with the strongest baseline
(MAT), MAE is reduced by 20.3% and RMSE by 18.6%.
Statistical testing confirms that these performance differences
are highly significant, indicating clear advantages over all
comparative models drawn from video-based behavioral
representation learning, multi-agent interaction modeling, and
traditional performance prediction approaches.

Cross-dataset generalization performance serves as a
critical indicator of practical applicability. As reported in
Table 1, the proposed model maintains the best overall

performance on the MPII Group Interaction dataset, achieving
an MAE 0f 0.095, an RMSE of 0.118, and an R? value of 0.79.
Relative to MAT, MAE and RMSE are reduced by 14.6% and
12.8%, respectively. Moreover, performance variation
between the ONC and MPII datasets remains within 5%,
demonstrating stable predictive capability across differing
team compositions, task types, and interaction contexts. These
results indicate that the proposed approach exhibits
substantially stronger generalization ability than baseline
models that rely on scenario-specific features. The additional
column reporting core model characteristics in Table 1
provides a concise comparison of the examined methods in
terms of multimodal fusion, interaction modeling, and end-to-
end optimization. This comparison elucidates the technical
origins of the observed performance advantages.

Table 1. Comparison of team performance prediction results on the MPII Group Interaction dataset

Performance Difference from Statistical
. 0 2
Model Core Model Characteristics MAE RMSE R the Proposed Model (MAE) Significance
Dual-modality (RGB + optical flow)
Two-stream 13D and single-granularity frame-level 0.132 0.165 0.61 0.037 p <0.001
features
Video Swin Smgle-modahty RGB and temporal 0125 0.158 064 0.030 »<0.001
Transformer attention features
TeamGCN Single-modality skeleton and team- ) 116 149 67 0.023 <001
level graph convolution modeling
GroupViT Single-modality RGB and group-level - 15,153 (66 0.026 <001
visual Transformer
Multi-Agent Dual-_modaht_y and mu.ln-agent 0111  0.35 071 0.016 »<0.05
Transformer Interaction attention
Multimodal, multi-granularity, and
Proposed model latent variables + cross-member 0.095 0.118 0.79 - -

attention

Note: Statistical significance is assessed using independent-sample t-tests comparing the distribution of prediction errors between each baseline model and the
proposed model on the test set. Thresholds are defined as follows: p < 0.05 indicates statistical significance, p < 0.01 indicates high significance, and p < 0.001
indicates very high significance.

The performance advantages of the proposed model are
attributable to the synergistic effects of three core design
elements. First, end-to-end latent variable learning enables the
automatic, data-driven induction of communication patterns
that are strongly associated with performance, thereby
eliminating subjective bias and generalization limitations
inherent in expert-defined representations. Second, the cross-
member attention mechanism provides precise quantification
of dynamic interpersonal interaction dependencies,
strengthening the representation of critical collaborative
behaviors such as idea exchange and consensus formation.
Third, multi-granularity feature fusion is aligned with the
hierarchical structure of team nonverbal communication—
spanning individuals, interaction, and team—thereby
effectively integrating complementary information from fine-
grained individual behaviors and global team interactions.
Together, these components form a high-performance
prediction framework tailored to complex team collaboration
scenarios.

3.4 Ablation studies

Ablation studies were conducted by systematically
removing or replacing key components of the model, resulting
in six variant configurations, aiming to quantitatively assess
the contribution of multi-granularity fusion, cross-member
attention, latent variable decoding, and the auxiliary task to
overall performance. The results are summarized in Table 2.

All variants were derived from the original model architecture,
with only the target module modified in each case, thereby
satisfying the single-variable control principle. Evaluation
metrics include MAE, RMSE, and R?, providing a
comprehensive assessment of performance degradation.

The experimental results clearly indicate that the most
pronounced performance degradation occurs when the latent
variable decoding module is removed, with MAE increasing
by 41.4% and R?> decreasing by 20.7%. This finding
demonstrates that latent variables function as the core
representational carriers of communication patterns and are
essential for enabling data-driven induction of nonverbal
communication structures, directly determining the strength of
alignment between features and performance objectives.
When only a single granularity of features is retained,
substantial performance degradation is observed in all cases.
Notably, retaining only team-level granularity results in a
larger performance loss (MAE +28.7%) than retaining only
individual-level granularity (MAE +20.7%), indicating that
individual behavioral details constitute the foundational basis
of team interactions. A single granularity is therefore
insufficient to capture the hierarchical information on team
nonverbal communication, underscoring the irreplaceable role
of multi-granularity feature fusion. The removal of the cross-
member attention mechanism leads to an MAE increase of
13.8%, confirming its effectiveness in capturing inter-member
interaction dependencies and its critical role in distinguishing
interaction patterns between high- and low-performing teams.
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When the auxiliary task is removed, MAE increases by 16.1%,
indicating that the self-supervised reconstruction task
effectively constrains latent variable quality and enhances
representation robustness and generalization capability.
Furthermore, replacing adaptive fusion with fixed-weight

fusion results in a 24.1% increase in MAE, demonstrating that
dynamic weight learning enables more precise alignment
between feature contributions and performance prediction
across varying scenarios, thereby substantially improving
fusion effectiveness.

Table 2. Ablation study results of core modules (ONC test set)

Model Variant MAE RMSE R MAE Degradation R? Degradation
Full model 0.087 0.109 0.82 - -

Variant 1: Cross-member attention removed 0.099 0.126 0.75 13.8% 8.5%
Variant 2: Individual-level granularity only 0.105 0.134 0.72 20.7% 12.2%
Variant 3: Team-level granularity only 0.112 0.143 0.69 28.7% 15.9%
Variant 4: Latent variable decoding removed 0.123 0.158 0.65 41.4% 20.7%
Variant 5: Auxiliary task removed 0.101 0.129 0.74 16.1% 9.8%
Variant 6: Fixed-weight fusion 0.108 0.137 0.71 24.1% 13.4%

Taken together, the high performance of the proposed
model is not attributable to the optimization of any single
component, but rather to the synergistic integration of multi-
granularity feature fusion, cross-member attention, latent
variable decoding, and the auxiliary task. Among these
components, latent variable decoding serves as the core
innovation mechanism, multi-granularity fusion provides the
foundation for scenario adaptability, cross-member attention
constitutes the key to interaction modeling, and the auxiliary
task functions as a performance-enhancing regularizer.
Through their mutual reinforcement, these modules
collectively establish an efficient framework for modeling
team nonverbal communication and predicting team
performance in organizational contexts.

3.5 Sensitivity analysis of latent variable dimensionality

Figure 6 illustrates the wvariation in MAE for team
performance prediction on the ONC test set as the
dimensionality of latent variables increases from 16 to 256. As
shown, MAE decreases monotonically as the latent
dimensionality increases from 16 to 64, with MAE values of
0.12 at 16 dimensions, 0.10 at 32 dimensions, and a minimum
0f 0.087 at 64 dimensions. This trend indicates that increasing
dimensionality enhances the model’s capacity to represent
nonverbal communication patterns, enabling the capture of
more fine-grained interaction features. When the latent
dimensionality exceeds 64, MAE begins to increase gradually.

SHAP value

Excessive dimensionality facilitates the fitting of noise present
in the training data, leading to degraded generalization
performance.

16 32 64 128 256

Latent variable dimensionality

Figure 6. Effect of latent variable dimensionality on MAE
for team performance prediction

These results empirically validate the rationality of the
selected latent dimensionality. A dimensionality of 64
provides sufficient representational capacity to capture the
core patterns of team nonverbal communication while
avoiding the overfitting risks associated with higher-
dimensional latent spaces. As such, this configuration
represents an optimal balance between expressive power and
generalization capability for the proposed model.

Synchrony  Attention balance =~ Emotional Bodily Gesture Number of gaze Sifting posture
dimension positivity orientation frequency interactions uprightness
consistency

Model-learned latent features

Traditional handcrafted features

Figure 7. SHAP values of different feature types for team performance prediction
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3.6 SHAP-based feature importance analysis

SHAP values were employed to quantify the marginal
contributions of individual features to team performance
prediction. Figure 7 presents a comparative visualization of the
contribution magnitudes between model-learned latent
variable features and traditional handcrafted features. As
shown, SHAP values associated with latent variable features
are substantially higher than those of handcrafted features.
Among the latent variables, the synchrony dimension exhibits
the highest SHAP value (0.28), followed by attention balance
(0.23). Even the latent feature with the lowest contribution—
bodily orientation consistency (0.16)—exceeds the mean
SHAP value of traditional handcrafted features (0.11).

These results indicate that the automatically induced latent
variables of nonverbal communication learned by the
proposed model capture core information that is strongly
associated with team performance with greater precision.
Specifically, the synchrony dimension corresponds to
coordination efficiency in collaborative processes, while
attention balance reflects interactional equity among team
members; both factors constitute critical drivers of team
performance. By contrast, traditional handcrafted features
focus on isolated behavioral indicators and fail to characterize
inter-behavioral relational patterns, resulting in substantially
lower contribution levels. This analysis not only clarifies the
principal basis underlying the model’s performance
predictions but also highlights the representational superiority
of data-driven latent variable learning over conventional
handcrafted feature engineering.

4. CONCLUSION

This study addressed the longstanding challenge in
organizational management of objectively quantifying team
collaboration states by integrating computational behavioral
science with organizational behavior theory. An end-to-end,
multi-task, multimodal, multi-granularity CNN framework
was proposed, through which nonverbal communication
patterns were automatically induced and team performance
was accurately predicted via the coordinated design of multi-
granularity feature extraction, cross-member attention
mechanisms, and latent variable decoding. The results
demonstrated that the proposed model achieved significantly
higher performance prediction accuracy than existing baseline
methods on both self-constructed and public datasets, with all
three core hypotheses quantitatively validated. Ablation
experiments and SHAP-based analyses further confirmed the
necessity of the key architectural components and the
representational superiority of the learned latent variables. The
contributions of this study are manifested across three
dimensions. At the technical level, the application boundary of
video-based behavioral representation learning is extended to
multi-agent team interaction scenarios. At the theoretical level,
objective quantitative evidence is provided for coordination
theory and team diversity theory within organizational
behavior research. At the practical level, an implementable
technological solution is offered for team collaboration
diagnosis and performance prediction in organizational
settings.

Despite these advances, several limitations remain. The
dataset coverage is primarily concentrated in technology-
oriented industries, and emerging work settings such as remote
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collaboration have not yet been incorporated. Audio modality
information has not been integrated, potentially omitting
complementary nonverbal cues such as prosody and vocal
tone. In addition, the proposed framework has not yet been
deployed as an operational management tool, and validation in
real corporate environments is still lacking. Future research
may be advanced along three directions. First, the multimodal
fusion framework may be extended to incorporate audio
signals and physiological data in order to enrich the
dimensionality of communication features. Second, more
advanced temporal modeling strategies may be introduced to
enable real-time tracking and prediction of team performance.
Third, lightweight enterprise collaboration analysis tools may
be developed and deployed in real organizational contexts to
validate practical value, while further expanding dataset
diversity across scenarios and industries to enhance
generalizability and applied relevance.
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