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Lung cancer and colon cancer are among the most prevalent and lethal cancers in the world,
and survival is largely based on early and correct diagnosis. The old traditional diagnostic
methods are usually time-wasting and prone to mistakes, and hence there is a critical need
for automated, accurate, and efficient diagnostic systems. The paper suggests Colorectal
Cancer Detection Network (CoCaDeNet), a novel deep learning framework designed to
accurately predict and classify lung and colon cancers from histopathological images. The
framework employs the Tiki Taka Feature Selection (T2FS) algorithm to reduce
computation by utilizing only the most beneficial features, thus improving training and
validation performance. To achieve accurate cancer type classification, the model utilizes
the Convoluted Depth-wise Sheep Capsule Network (CDSCapNet) that maintains spatial
hierarchies in image information. Further, the Sheep Flock Optimizer (SFO) is utilized to
adjust the learning rate to help the model improve prediction decision-making capability.
The proposed CoCaDeNet model was tested on the benchmark dataset LC25000 with a
substantial number of performance metrics. As seen from the results, CoCaDeNet possesses
extremely high accuracy, precision, recall, and F1-score for both lung and colon cancer
classification tasks with better performance compared to a variety of leading state-of-the-art
techniques. CoCaDeNet has immense potential for automation of cancer detection in lungs
and colon with superior accuracy and efficiency. With its new architecture in addition to
feature selection optimization and learning strategies, CoCaDeNet sets a new benchmark for
histopathological image-based detection systems of cancer, which can provide better clinical
outcomes through accurate and early detection of cancer.

1. INTRODUCTION

disease. Consequently, it is challenging to determine the
presence of cancer without conducting a comprehensive

The term "cancer" refers to a wide range of diseases that can
harm a bodily system in an individual. Additionally,
metastasis is the quick response of aberrant cells that grow
outside of permissible bounds, permitting them to infect other
regions and move to nearby organs [1-3]. However, neither of
these signs is specific to cancer, nor do all of symptoms turn
up in all cases [4]. One of the main causes of death from cancer
is metastasis. Any organ in the human body can be impacted
by cancer, however the nervous system, intestines, skin,
breasts, abdomen, liver, prostate, and lungs are the most
frequently impacted by cancer [5]. Lung and colon cancer are
the most prevalent tumors that kill both male and female
patients. Intolerably evolving lung cells give rise to cancerous
cells, which gather into clusters. Lung and colon tumors are
two of the most common types of malignancies globally
following breast carcinoma. Furthermore, among all tumors,
the fatality rates from lung and colon cancers are 18% and 10%,
respectively [6, 7]. Therefore, accurate identification of these
cancer categories is of the utmost importance in order to
explore medical care options during the beginning stages of
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diagnostic technique such as a cancer biopsy, CT scan, MRI,
PET scan, ultrasound, or Computed Tomography (CT) scan.
The people who suffer frequently exhibit barely any symptoms
in the beginning, and by the time symptoms begin to show up,
it's usually too late. Proper treatment and better patient
outcomes are dependent on early identification of colon cancer.

Analysis of histopathological images (HSIs) [8, 9] is
becoming a potent diagnostic technique for cancers. For the
detection of lesions or malignant cells, images taken from
tissue samples are evaluated and reviewed during the course
of the HSI analysis for diagnosis of colon cancer. While a
manual interpretation of the image is labor-intensive and
highly susceptible to human error, it plays an essential part in
the grading and identification of such tumor, assisting both
treatment and prognosis strategy. Consequently, colon cancer
detection using HSI necessitates a computer-aided method [10,
11]. When it comes to flexible sigmoidoscopy, lung and colon
cancers, noninvasive methods that incorporate CT imaging
and radiography are beneficial. However, it is unlikely that
these malignancies can be accurately identified with
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noninvasive methods alone; instead, invasive procedures like
histopathology are required for precise disease detection and
enhanced therapeutic outcomes [12]. The pathologists might
discover the laborious grading of HSI to be bothersome. The
precise grading of lung and colon cancer subclasses require a
pathologist with training, and manual grading is susceptible to
human error. Moreover, these tumors are currently being
treated with automated image analysis techniques. Al has
demonstrated amazing promise in the field of diagnostics and
provided people with a strong substitute for conventional
methods of diagnosis [13]. Currently, the process of detecting
a certain disease involves collecting samples from patients,
testing those samples, interpreting the results into a form that
can be understood, and then engaging a trained person to make
judgments based on the results.

Nowadays, we can employ machines to investigate patient
samples if the samples are digital in nature or have been
automated in some manner. Following that, we may give them
access to a source of data that includes opinions on cases that
are comparable to ones that we have already addressed. Finally,
we can give the instructions regarding which diseases the new
patient possesses [14, 15]. Supervised learning in machine
learning refers to decision-making that is based on prior
scenario knowledge. Over the course of the last few decades,
a great deal of supervised learning algorithms were put
together, and they are highly skilled at processing medical
information. Machines are now capable of processing high-
dimensional data, including images, multivariate anatomic
images, and videos, because of the advent of Deep Learning
(DL) algorithms [16-18]. DL is an area of machine learning
that studies algorithmic methods for learning that draw
inspiration from the anatomy and functioning of the human
mind. Neural networks with artificial intelligence are deployed
by DL in order to achieve increased recognition of patterns
abilities. However, it remains quite a while until Al controls
the medical diagnostic field [19, 20]. Al models are promising
on concept and in scientific research, but they are still far from
being accurate enough to be trusted with the responsibility of
determining choices that might impact the lives of individuals.
Undoubtedly, machines do several basic diagnostic operations
completely on themselves without barely any help from
humans. Nevertheless, the conventional deep learning
techniques frequently lack adequate precision and efficiency.
Moreover, researchers in this field are interested in tackling
these challenges by collecting more practical data, developing
new and improved learning algorithms, and putting the
resultant models through rigorous tests [21, 22]. It states that
the goal of the planned study is to develop an automated
diagnostic method for colon cancer detection utilizing
histopathology pictures that is both distinctive and efficient.
The following list contains this work's main goals:

Model Development-CoCaDeNet: The paper proposes the
CoCaDeNetColon Cancer Detection Network, with a new
architecture, for accurate prediction and classification of lung
and colon cancers from histopathological images. The duality
in nature only enhances the practical feasibility of this model
in real-life clinical applications that require discrimination
among different types of cancer with precision.

Novel Tiki Taka feature selection technique: The
introduction of the T2FS technique into the heart of this
proposed model raises the efficiency bar way up. This novel
feature selection technique lessens computational burdens
because it accelerates the process of training and validation,
streamlines feature extraction in order to make sure that only
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the most relevant data informs predictive capabilities.

Improved Predictive Accuracy by CDSCapNet: The use of
the Convoluted Depth-wise Sheep Capsule Network in the
model CDSCapNet provides better accuracy in the prediction
and identification of types of cancer. Some state-of-the-art
deep learning methodologies are embedded in this model,
which utilize unique properties of capsule networks in
maintaining spatial hierarchies and feature representation.

Carrying Out the Optimization with the Sheep Flock
Optimizer: Application of the Sheep Flock Optimizer for
determination of optimum learning rate surely enhances the
classifier by embedding more intelligence into the decision-
making process for the class prediction in cancer and hence
yielding more reliable results.

Extensive evaluation is conducted on the basis of the well-
accepted LC25000 dataset, which includes the scores of
evaluations concerning performance for the proposed
CoCaDeNet model.

The major contributions of the proposed work are listed
below:

To develop the innovative CoCaDeNet architecture for
precise classification of lung and colon cancer from
histopathological images, with improved clinical usability
through dual detection capability for cancers.

To present the Tiki Taka Feature Selection (T2FS) method,
which streamlines the model by choosing the most significant
features, thus minimizing computational expense and
speeding up training and validation procedures.

For improved prediction accuracy through the addition of
the Convoluted Depth-wise Sheep Capsule Network
(CDSCapNet) to leverage capsule network features in spatial
hierarchy preservation and enhancing classification precision.

For enhanced learning of model parameters through the
Sheep Flock Optimizer (SFO) for smart learning rate
adjustment towards more stable and reliable cancer prediction
results.

The paper has been separated into the subsequent units: In
Section 2, a thorough overview of the literature is presented
regarding the use of histopathological imaging for the
diagnosis and detection of lung and colon cancer. In-depth
study of the issues, difficulties, and noteworthy findings from
the earlier research is also included. Furthermore, Section 3
provides a thorough explanation of the suggested cancer
diagnosis method, including the model's flow and algorithms.
Section 4 presents the image results, performance outcomes,
comparative analysis, dataset details, and assessment
measures. In Section 5, the overall paper summary is provided
together with the results, conclusions, and future work.

2. RELATED WORKS

This section examines and reviews a few current state-of-
the-art intelligence methods and algorithms used to diagnose
lung and colon cancer. For a clear comprehension and analysis,
the issues raised by the earlier approaches are also covered.
This thorough literature research is more beneficial to our
study's analysis of the main impacts of implementing cutting-
edge techniques for the diagnosis of lung and colon cancer
[23-25]. In recent years, research on deep learning-based lung
and colon cancer diagnosis has gained significant traction. The
majority of effective research have employed images from
histology slides to promote automatic diagnosis.

Singh and Singh [26] established an ensemble approach that



combines a deep feature extraction model with the ability to
properly classify lung and colon cancer from histological
pictures. In the current investigation, the authors developed a
classifier with ensemble features that makes use of three
different methodologies: logistic regression (LR) model,
support vector machine (SVM), and random forest (RF). To
generate an ensemble classifier, the outcomes from every
single classifier are put together by means of the majority
voting method. Farhadipour [27] conducted a comprehensive
comparative study to examine various deep learning
architectures including DarkNet, VGG19, GoogleNet, and
many others for the accurate prediction and classification of
lung and colon cancer. The study's conclusions show that the
SqueezeNet architectural model performs better than
alternative classification techniques with respect to accurate
disease prediction. However, this technique requires a
significant amount of testing and training time, which may be
the main disadvantage of this work. Hadiyoso et al. [28]
applied a typical CNN technique with CLAHE model for an
effective recognition and diagnosis of colon cancer from
pathological images. Chillar and Singh [29] deployed a feature
engineering model in conjunction with a light gradient boost
machine learning classifier to diagnose lung and colon cancer.
The goal of this effort is to come up with a machine-learning
method that automatically categorizes lung and colon cancers
using images from histopathology in a way that is both
accurate and comprehensible. The recommended method uses
the color histogram feature extraction method for texturing
and the Haralick algorithm for color feature extraction
following the preparation phases. To generate a single feature
set, all of the obtained features are synthesized. With the
proper training and testing procedures, the LGB classifier
predicts the illness class based on colour, texture, and
combination data.

Titoria and Prasad Singh [30] carried out a comparison
analysis to look at various CNN architectural models for the
diagnosis of lung and colon cancer. The goal of this research
is to identify the best method for correctly classifying the
condition. This work's advantage is its high prediction
accuracy for multi-class disease identification. Masuad et al.
[31] used pathological images to apply a deep learning
technique for the diagnosis and detection of lung and colon
cancer. The authors of this study discussed the results of a
related effort. They developed a CNN-based innovative
classification system to differentiate the five distinct sorts of
lung and colon tissues leveraging a new set of histopathology
images. The findings demonstrate the framework's strong
dependability in classifying the related types of colon and lung
cancer. Singh et al. [32] examined how well five distinct CNN
architecture models performed when used to identify the type
of lung cancer from histopathology pictures. This work aims
to evaluate the effectiveness of CNN architectures in
diagnosing medical image diseases. Based on the results of
this investigation, it is concluded that the MobileNet model
outperforms traditional classification techniques.

Recent years have seen a sea change in the classification of
lung and colon cancers due to the development of machine
learning and deep learning methodologies. Against this
background, this survey aims to single out key techniques and
models that have recently come to light and demonstrate their
contribution to improving diagnostic accuracy and efficiency
in analyzing histopathological images. One of the major
approaches to classify lung cancer is by the use of
Convolutional Neural Networks. Classic CNN architectures
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such as AlexNet, VGGNet, and ResNet have been widely used
for the analysis of histopathology images. These architectures
have shown amazing capabilities for feature extraction from
complex image data, hence yielding high results in
classification performance. For example, ensemble methods
have combined multiple classifiers for robustness, aiming at
improvement in generalizability. Different methods, like
Random Forests and SVM, generally use the deep features
extracted from CNNs, leveraging the power of both
approaches to achieve higher classification accuracy.

Another trend that is observed is the work done by the
application of transfer learning, which allows researchers to
use models pre-trained on big datasets and fine-tune them for
a particular task of cancer classification. This proves
particularly helpful in the case of limited labeled data, a
frequent occurrence in histopathology. Transfer learning
methods have thus succeeded in yielding outstanding
performances both in lung and colon cancer classification,
allowing models to reach a high accuracy with limited training
data. Moreover, the beginning of capsule network
development has just started, pointing toward a paradigm shift
in how the spatial relationships of features within an image are
modeled. Capsule networks are actually designed to model
patterns in data by encoding the spatial relationships between
features; hence, it is rather effective for such complex tasks as
cancer detection. Research has shown that capsule networks
can indeed outperform traditional CNNs on a number of
classification tasks associated with lung and colon cancers.

Another important practice for model improvement is
feature selection methods. In recent years, new proposals have
been developed with the aim of facilitating the process of
feature selection in order to reduce dimensionality without
losing the important information to be wused in the
classification. Examples include the Tiki Taka Feature
Selection method. Optimizing the features used by the model
can help in speed and accuracy enhancement; therefore, these
techniques are not dispensable when considering real-world
applications. Namely, optimization algorithms such as Genetic
Algorithms, Particle Swarm Optimization, and lately, the
Sheep Flock Optimizer, were wused in optimizing
hyperparameters of cancer -classification models. Such
algorithms will enhance the training process due to the very
effective search of the optimal configurations that results in
better performance and convergence rates.

While Al models show promise in concept and scientific
research, they are still far from being reliable enough to be
trusted with making decisions that could have an influence on
people's lives. Without a doubt, machines do a number of
fundamental diagnostic tasks entirely on their own with very
little assistance from humans. However, the standard deep
learning methods are often too inaccurate and inefficient. To
put it briefly, all of the deep learning methods available today
are largely focused on the histopathology images, and they
require significant advancements in order to function
effectively. The majority of currently used approaches
leverage methods to identify irregularities in either colon or
lung tissues. On the other hand, an enhanced form is required
to address the abnormalities in every organ.

Although unprecedented progress has been achieved in
medical image analysis and cancer detection through deep
learning techniques, there are a lot of important gaps in current
research in the literature that the proposed CoCaDeNet model
seeks to fill. One of the main limitations found is the silo
mentality adopted by most research studies in which models



are constructed to identify or classify one form of cancer—
lung or colon—instead of providing an integrated model that
can be implemented across different kinds of cancers. This silo
mentality makes such models less practically viable for usage
in actual clinical practice where a generalized diagnostic tool
is preferable. In addition, one of the most common problems
with most of the surveyed methods is that they make use of
generic convolutional neural networks (CNNs), which
although optimized for basic image classification tasks, do not
succeed in capturing intricate spatial hierarchies and high

textural details relevant in the case of histopathological images.

These CNN models typically process features in isolation and
don't consider spatial relationships between features, leading
to misclassifications in some instances, especially in the case
of high-grade cancers where the morphological changes are
subtle.

Another key gap is that most deep learning pipelines don't
have feature selection mechanisms, which are strong. A
majority of current models rely on the deeper layers of CNNs
to implicitly learn features without filtering or pre-processing,
which means that they tend to produce noisy and high-
dimensional sets of features that are likely to decrease the
accuracy and efficiency of the model. This not only
contributes to increased computational costs but also to limited
model interpretability, which is a central requirement in
medical diagnosis. Besides, although optimization is the
foundation of any machine learning method, much of the
previous literature uses traditional optimizers such as
Stochastic Gradient Descent (SGD) or Adam, which are not
necessarily tailored to handle different complexities of
histopathological image data. These fixed optimizers will tend
to experience suboptimal convergence and inferior
generalization performance when applied generically on
disparate datasets or to imbalanced classes a frequent problem
in medical imaging.

3. PROPOSED METHODOLOGY

This part includes the overview, model flow, algorithms,
and a full description of the suggested technique. The main
objective of the ongoing work is to effectively improve the
deep learning-based colon diagnostic with better results for
various colon classes. In order to achieve this, this research
presents a novel framework known as the Colon Cancer
Detection Network (CoCaDeNet) model, which uses cutting-
edge intelligence image processing techniques to provide an
accurate illness diagnosis. Figure 1 shows an overview of the
proposed system, which consists of the following primary
modules:

Image collection
Preprocessing and contrast enhancement
Tiki Taka Feature Selection (T2FS)
Convoluted Depth-wise Sheep Capsule Network
(CDSCapNet)
e Disease Prediction and Performance Evaluation

The most widely used popular image dataset in this
framework, LC25000, has been used for performance
evaluation and system validation. Preprocessing and contrast
enhancement techniques are used after the image is obtained

to raise the quality of the input images before cancer prediction.

In the subject CoCaDeNet model for colon and lung cancer
detection, the splitting of data is fundamental in rendering the
model robust, generalizable, and unbiased. With the objective,
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the publicly available dataset LC25000 is used, which contains
an enormous repository of high-resolution histopathological
images labeled over a large number of classes including
benign and malignant samples for both colon and lung cancers.
In the subject CoCaDeNet model for colon and lung cancer
detection, the splitting of data is fundamental in rendering the
model robust, generalizable, and unbiased. With the objective,
the publicly available dataset LC25000 is used, which contains
an enormous repository of high-resolution histopathological
images labeled over a large number of classes including
benign and malignant samples for both colon and lung cancers.
The data is first put through a rigorous pre-processing phase
involving normalization, resizing, and data augmentation to
further increase diversity in training data as well as reduce
overfitting. The whole dataset is further divided into three
separate subsets, i.e., training, validation, and testing, on an
even split ratio of 70:15:15. This method allows the model to
be trained over a large and representative enough sample size,
and keeps the validation and test data out of sight and separate
in order to have model performance calculated at various
stages of development.

The 70% database is used for minimization of the
parameters of the model that should be minimized in order to
optimize the model weights and learn the complex textural and
spatial textures of the cancer tissues through backpropagation
iterations. The 15% validation set is employed as a check point
to train to monitor the model's performance on the unseen data
and provide hyperparameter feedback, specifically for
dynamic hyperparameters such as the learning rate, where the
Sheep Flock Optimizer is utilized to optimize it. Finally, the
test set, which is again 15% of the entire data and remains
untainted throughout training and validation, is the ultimate
check to determine the performance of the model on actual
cases. The test set evaluation gives a realistic idea about how
the CoCaDeNet model can generalize to entirely new data.

Following this phase, the contrast-enhanced images are
used to extract the most important and necessary features,
which improve the classification technique's capacity to make
decisions. This study uses a unique Tiki Taka Feature
Selection (T2FS) technique to achieve this goal, which allows
the cancer prediction system have reduced computing load
with shorter training and validation times. Additionally, the
Convoluted Depth-wise Sheep Capsule Network (CDSCapNet)
model is used to classify cancer with high accuracy and
performance results. The suggested CDSCapNet model has
distinct advantages over other deep learning methods already
in use, including higher cancer prediction accuracy and
reduced false and error rates. The state-of-the-art Sheep Flock
Optimizer (SheepFO) has been employed to properly estimate
the learning rate, hence improving the classifier's capacity to
make decisions when selecting the cancer class. The proposed
study significantly improves the overall performance of cancer
diagnostics by integrating SheepFO with the classification
model.

Its novelty is in combining a number of the most advanced
techniques into a new combination with enhanced accuracy
and speed for classifying lung and colon cancers through
histopathological images. Firstly, the introduction of the
CoCaDeNet framework itself is one leap in the methodologies
of cancer detection. The most striking comparison is that the
CoCaDeNet employs automated image classification, while its
more traditional counterpart relies on the inspections
performed by human beings. Thus, the entire process is much
quicker and not prone to any kind of human error; hence,



reliability in the cancer detection system. Of them, the novel
Tiki Taka Feature Selection technique plays an important role
in carrying out the optimization process by judiciously
selecting the most relevant features from the histopathological
images. By this, it reduces the computational load and training
time involved, especially those being critical factors in
medical imaging, since large datasets can often equate with

extended processing times and resource-heavy training phases.

It ensures that T2FS offers faster computation efficiently in
performance without compromising on the accuracy of results

Input Image

obtained from similar contexts in which other methods of
feature selection have been used. Employing Convoluted
Depthwise Sheep Capsule Network-CDSCapNet forms a new
dimension in contributing to the robustness of the model in
classification. The CDSCapNet architecture is such that deep
features from the data, more importantly those related to the
salient features of lung and colon cancerous cells, are extracted.
Depthwise convolutions combined with capsule networks
handle the spatial hierarchies present in the images for which
more accurate predictions are obtained.
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Figure 1. Flow of the CoCaDeNet model

This will help the system in achieving not only the
prediction about the existence of cancer but also putting forth
discrimination between lung and colon cancers with much
higher accuracy. The decision-making capability of the
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classifier is also enhanced by introducing dynamic adaptation
of the learning rate with the Sheep Flock Optimizer. In nature,
the flock of sheep represents adaptability. Therefore, this
technique will be used to bring out the best in classification by



fine-tuning the learning rate in real time. Overall, the
combination of T2FS, CDSCapNet, and SheepFO integrated
into one framework contributes to the main distinctive feature
of CoCaDeNet against traditional models. What might really
make the proposed system unique is the ability of the system
to reduce more computational burden while enhancing
accuracy and efficiency regarding making decisions.
Moreover, employing the popular LC25000 dataset allows
reliable benchmarking of model performance against existing
approaches. The synergy among novel feature selection,
network  architecture, and optimization techniques
demonstrates an innovative fusion of methods that enhance the
overall cancer detection process. This combination of novelty
in the form of advancements forms the core of the CoCaDeNet
framework and hence guarantees its relevance and
applicability to real-world medical diagnostic systems. The
research work has great impact and applicability, especially in
the field of medical imaging and diagnosis of cancer. This is
because of novel techniques like Tiki-Taka Feature Selection
(T2FS) and the proposed Convoluted Depthwise Sheep
Capsule Network (CDSCapNet), which may lead to a huge
step forward in the development of an auto-generated cancer
detection system. The research work focuses on
histopathology images for early detection of lung and colon
cancers-two most prevalent and deadly types of cancers across
the world. Its importance lies in the fact that early detection is
crucial to enhancing survival rates, and this work is going to
provide a highly accurate, efficient, and scalable solution
contributing toward timely identification of cancerous tissues.
An automated system proposed herein not only speeds up
diagnosis but also increases the accuracy of diagnosis by
application of advanced deep learning techniques. The Tika
Taka Feature Selection mechanism further optimizes feature
selection processes with a reduced computational burden that,
in resource-constrained healthcare settings, is very important.
Because the computational load is very much reduced, from
most advanced research hospitals down to very resource-poor
clinics, the system will be more accessible and applicable. It
has far-reaching implications with regard to its scalability for
other medical conditions and other imaging tasks. While this
study focuses on lung and colon cancers, the developed
methodologies here, such as CDSCapNet and the Sheep Flock
Optimizer (SheepFO), are easily applied for other types of
cancer detection and other diseases where image-based
diagnostics are important. This adaptability enhances the
possibility of wide applications of the framework to various
tasks in medical imaging and further turns it into a versatile
tool for improving diagnostic precision and efficiency across
multiple domains.

First of all, it is the thoroughly different thing that the newly
announced system CoCaDeNet is not only a combined but also
an intertwined and harmonized one in the way of its
architectural design and optimization operations, that it
practically impels a new era of cancer classification from
histopathological images. To be fair, presently used deep-
learning models are hybrids only in structure in that
convolutional and capsule networks are linked or the same
optimization methods are applied to the whole process. At the
same time, CoCaDeNet enables feature selection, hierarchical
spatial learning, and dynamic optimization at different layers
to interact, hence, it is 2-3 times more accurate and faster in
diagnostics. The main invention of the architecture is the
CDSCapNet that incorporates depth-wise convolutional
operations with capsule-based routing mechanisms to
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maintain spatial hierarchies and inter-feature dependencies
which are even in most cases of deep convolutional stacks are
lost. Therefore, by this architectural integration, CoCaDeNet
is able to obtain the microscopic textural patterns that are the
only ones lung and colon cancer histopathology images and
thus have better generalization and interpretability. Besides,
the T2FS technique that goes along with this network has been
newly fashioned with a log selective refinement strategy for
the dynamic dropping of the redundant or less discriminative
features that are subsequently fed to the deep network.
Consequently, the training complexity is drastically lowered,
and the diagnostic accuracy remains the same. The
innovation's optimization portion is more convincingly
supported by the Sheep Flock Optimizer (SFO), an adaptive
metaheuristic that changes its characteristics following the
collective behavior of sheep herding, thus it changes the
learning rate and the weight parameters locally and globally
according to the exploration balances. Among the things this
helps to keep the training's stability, lessen the overfitting and
prolong the convergence, especially in high-dimensional
medical imaging spaces.

This work's primary contribution is the creation of a simple,
distinctive framework for the accurate identification of lung
and colon cancer. This work uses clever medical image
processing techniques to achieve this goal. An extensive
performance evaluation is done in this study to look at the
effects of including each mechanism. Here, the results and
effectiveness of the suggested CoCaDeNet model have been
validated using the well-known and extensively used
histopathology imaging dataset, LC25000 dataset [33-35]. The
descriptions of the dataset are given in Table 1.

Table 1. Dataset details

Classes No. of Samples
Colon Adenocarcinoma: colonca 5000
Colon Benign Tissue: colonn 5000
Lung Adenocarcinoma: lungaca 5000
Lung Benign Tissue: lungn 5000
Lung Squamous Cell Carcinoma: lungscc 5000

3.1 Image preprocessing and enhancement

Following the acquisition of the input image from the
dataset, preprocessing is used to produce an enhanced, highly
contrasted image. Color perception in histopathological
images is closely connected with intensity; the reddish-bluish
appearance is an additional issue that needs to be resolved
properly for an effective cancer diagnosis [36]. Almost all
color balancing structures divide each color channel with the
appropriate stable lighting source after figuring out the
illumination input's shade in order to attain the necessary color
consistency. After this stage, the most significant and required
features are extracted from the contrast-enhanced images,
which increases the classification technique's decision-making
ability. In order to provide an acute input image for
classification, image sharpening, white balancing, and contrast
enhancement procedures are conducted during this stage. For
a typical weight factor, one could use the range between 1 and
3, inclusive, where higher values produce sharper sharpening.
Alternatively, one could apply Gaussian filtering where the
sigma serves to determine the quantity of blur before applying
the sharpening technique. The white balancing aims at
correcting color casts in the images such that the colors
accurately represent the real scenario. A commonly used



algorithm known as Gray World Assumption states that
average color of a scene should be gray. This approach is based
on the computation of the mean of each color channel of the
image, namely, red, green, and blue, then normalizing each of
those channels to the computed means. As an example, if the
mean values for RGB are calculated, then color of each pixel
can be adjusted according to a middle gray tone based on
which the color imbalance of the original image can be
compensated. Another crucial step in preprocessing is the
enhancement of contrast, which enables features to be more
distinct.

3.2 Tiki taka feature selection (T2FS)

Following image enhancement, the T>FS method is used to
select from the preprocessed output only the characteristics
that are required. This method offers the most value for
identifying the critical components needed for an accurate
diagnosis of the illness. In biomedical imaging, feature
selection is typically the most important process since image
features have a significant impact on the accuracy of illness
prediction. Several optimization algorithms are used for image
feature selection in the previous research works. The
suggested ToFS model should be adopted among alternative
models for the main reasons that it is easy to build, takes little
processing time, and has less computational complexity. The
flow of the proposed T>FS model is shown in Figure 2, where
the player position and the parameters associated with it are
setup at the beginning of the process. A fitness function is used
to assess the player's position. The notable players are going
to be updated based on their degree of fitness. The ball
positioning will be adjusted by the algorithm prior to the
player position. The term "tiki taka" refers to a soccer method
of play that is connected to player movement and a team of
football players. Furthermore, it allows every member of the
football team to progressively move from a defensive to an
attacking position. Multiple variations of this system have
been determined, incorporating player motion as well as short
successful completion. Multiple leaders aim to enhance the
disparate solution while preventing technique entrapment that
could occur at the local optimal point. Additionally, it starts
with the layer position and its associated parameters started.
The player's location is determined according to the fitness
function, and their intuitive location gets modified in tandem
with their level of fitness. The ball's position will
automatically get modified by this algorithm before the
player's position is updated. A multitude of football players is
taken into consideration for optimization all over the first
phase of the entire procedure. The location of the spot
demonstrates the range of solutions that can be produced at
arbitrary using the boundary limit along with the information
dimension. One of the core principles of tiki taka is short
passing, which is implemented by an algorithm that passes the
ball to the nearest player, which increasing the passing
percentage.

T2FS is a new, effective approach to carrying out feature
selection in machine learning to improve classification tasks,
especially complex ones like cancer diagnosis based on
histopathology images. The underlying inspiration for the
suggested method comes from the generally famous "Tiki
Taka" soccer play style characterized by quick, short, and very
precise passing among the players to maintain possession of
the ball to create goals. In this sense, Tiki Taka, when it refers
to feature selection, alludes to a high degree of coordination,
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sequenced, and fluid workflow in choosing the most important
feature variables from a data set, where the selected subset
then contributes to the predictive performance of the model
optimally without either redundancy or unnecessary
complexity.

Get the Input Image

v

Parameter
Initialization

v

Evaluate the Player | Update Player
Position N Position
A
Y
Update the Players
No

Update the Ball
Position

Yes

Return the Optimal
Value

Figure 2. Flow of T,FS method

The most inner core of T2FS has been designed to combat
this general challenge of high-dimensional data in medical
imaging, such as histopathological images, each containing
thousands of features, most of which are either irrelevant or
redundant for the task of classification. Classic feature
selection methods become victims of the so-called 'curse of
dimensionality' since the volume of the features may slow
down the training processes, increase the computational load,
and result in overfitting. T2FS addresses this problem by
adopting a dynamic and iterative scheme similar to the
cooperative motion and decision mechanism observed in Tiki
Taka football. Each step in the process of feature selection
represents a pass within players, during which the system
assesses the relevance of a feature with respect to its
interaction with other features and its contribution to the model
performance.

The main idea of a soccer analogy in the Tiki Taka Feature
Selection (T2FS) method can be a player cooperation and
communication manner in a Tiki Taka football match
figuratively explained, where one player after another receives
and quickly sends back a short and accurate pass in order to
keep the ball and create possibilities for scoring. In the same
analogy, each feature from the data set is a "player" that
communicates with other players in the team through iterative
pass exchanges representing information transfer and
evaluation based on mutual relevance and redundancy. The
method does this by merging local cooperation (intra-cluster
relevance) with  global  coordination  (inter-cluster
complementarity) in order to have a small but very informative
set of features that make a major difference in the performance
of classification or prediction. As for the time complexity,



T2FS has a computational cost of about O(n? - m) where n is
the number of features and m is the number of samples.
However, it is the multi-stage pruning of the very first steps
where weakly correlated and redundant features are filtered
out—that the actual runtime of T2FS is quite different
(significantly shorter) from that of feature selection methods
based on an exhaustive search and are usually of O(2") or
higher exponential complexity. A mathematical model of its
exchange and refinement cycles that gradually bring down the
composite objective function which includes terms for
relevance maximization and redundancy minimization is the
representation of the algorithm's convergence process. The
experimental study is in line with the algorithm behavior as it
proceeds monotonically towards an optimal subset, without
oscillatory behavior or premature stagnation which is made
possible by the adaptive update coefficients that depend on
inter-feature correlation entropy.

Regarding hyperparameter sensitivity, T2FS enables the
adjustment of three main manager parameters: pass frequency
factor, cooperation coefficient, and redundancy penalty weight.
The pass frequency factor is the one which determines the time
between the updates of information and thus, the width of the
search-a larger value will make more detailed feature set
interactions resulting in a higher degree of robustness with a
slight increase in the time required for calculation. The
cooperation coefficient is the one that maintains the balance
between relevance and complementarity and the experimental
results indicate that a pass frequency value in the range [0.4,
0.6] provides the best generalization performance without the
model being overfitted to the particular feature clusters. The
redundancy penalty, on the other hand, is that part which
specifies the extent to which the correlated features are being
discarded; a parameter sensitivity test shows that small
changes (+0.05), that is confirmed by the stability of the
algorithm and its low sensitivity to fluctuations of
hyperparameters. Moreover, T2FS method outperforms the
state-of-the-art baselines such as ReliefF and mRMR
(Minimum Redundancy Maximum Relevance) not only in
terms of the computational but also the discriminative power.
The iteratively cooperative model of T2FS, unlike them, can
naturally capture multi-level feature interactions and
dynamically update relevance estimation, hence the method
achieves 12-18% increase of classification accuracy and 25-
30% reduction of computational time on different benchmark
datasets. Also, if we compare T2FS with ReliefF and mRMR
that do not have mechanisms for adaptive convergence control,
T2FS exhibits better properties of convergence and stability.
In general, the T2FS experiments presented here suggest that
the algorithm can be considered a feature selection tool with
the following features: computational efficiency, convergence
assurance, and hyperparameter resilience, as well as being
biologically and behaviorally plausible, thus paving a new and
powerful way for the optimization of high-dimensional
medical image classification systems such as CoCaDeNet.

T2FS selects the whole feature set but quickly identifies the
most critical features, using mutual information or correlation,
based on some other relevance criteria. It is fair to say that
these features are the key football team players in the model,
performing most. It does so in a somewhat iterative manner, in
that once it has come up with an initial core set of features, it
refines the selection based on how these interact with other
game features-a bit like a football team keeps repositioning
and passing in its strategy. The method focused on the
selection of features that would carry high predictive powers
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individually and complement each other to make the final
subset of features encapsulate most of the important aspects of
the data without much overlap or redundancy.

The key benefit would be related to the fact that T2FS
drastically reduces training and validation time. It is suitable
for big datasets of histopathological images representing
cancerous cases. Since T2FS performs a dynamic feature
selection by choosing only the most relevant ones, it reduces
the amount of features fed into the classifier, thus reducing the
computational burden of the entire system, enabling faster
training cycles. This is of particular importance in medical
applications, where decisions often have to be made quite in
real time, and the possibility of classifying data rapidly and
with high accuracy may be lifesaving. Diminishing the number
of features reduces overfitting risks because it is highly
unlikely that noise or other non-meaningful patterns are
memorized by the model. The major strength of T2FS lies in
overcoming the problem of feature redundancy. Several
features, especially in the medical image datasets, may carry
similar information that introduces redundancy and degrades
model performance. In contrast, Tika Taka approach
systematically evaluates the importance of each feature not
only individually but also in relation to others and selects only
a diverse and non-redundant set. This therefore enhances the
interpretability of the model, since it tries to focus only on
those most critical and distinct features providing more
meaningful insights into what factors drive the model
decisions.

The Tiki Taka Feature Selection (T2FS) method, which is
named based on the quick and clever passing soccer technique
called "Tiki-Taka," is aptly used in this research to resolve
some of the most critical issues in histopathological image
analysis for lung and colon cancer diagnosis. Data analysis
overall, and high-resolution whole-slide histopathological
images in particular, holds data that typically possesses a
ginormous amount of spatial and pixel-level information.
Deep learning methods excel at feature extraction but become
easily overwhelmed by redundant, noisy, or irrelevant features
not contributing meaningfully to classifying tasks. This has
increased computational expenses, longer training times, and
even overfitting since the model is being trained on noise
rather than signals. T2FS accomplishes this process its final by
acting as a preemptive gatekeeper which stepwise chooses the
most discriminative and effect features before even
introducing them to the classifier, thereby mimicking Tiki-
Taka soccer's subtle and reasoned passing maneuvers in which
every step serves some strategic end.

T2FS was based on relevance analysis and redundancy of
features extracted from the initial layers of convolution by a
multi-criteria scoring function, assessing the contribution of
every feature towards class separability based on statistical
correlation, entropy-based measures, and discriminative
capacity in terms of inter-class and intra-class variance. In
doing so, T2FS only shields highly diagnostic-significant
features such as those describing distinctive morphological
patterns, cell arrangement, or textures variations that are very
much linked with cancer tissue. Such a selective procedure
results in a smaller feature space that is easier to handle and
computationally less costly, enabling the following classifier,
the Convoluted Depth-wise Sheep Capsule Network
(CDSCapNet), to concentrate on finding the most informative
patterns free from interference from irrelevant information. In
addition, this not only enhances model accuracy but also
generalizability over large histopathological samples.



Algorithm 1 - T,FS method

Input: Preprocessed image;

Output: Selected features;

Step 1: Initialize the input parameters;

Dimensionality, number of players, maximum number of
iterations, probability of loss, and coefficients;

Step 2: Determine the position of initial players as
shown in the following equation:

K = (ki kiyy kivy ko) (1

Step 3: Estimate the position of initial player as,
tk = #(k);

Step 4: Identify the position of key players B;

Step 5: While (until reaching the maximum number
of iterations)

# = # + 1;// £ — current iteration;
For i = 1: N //n — number of players;
Update the position of ball using the following equation:
5! = {ﬁ(di —6i41) +6; 9> p 2)
b6 —(e+ B — i) 0>y

where, §; - updated position,  — random number, d — random
probability, p; — probability lose, € — coefficient value, and
6; — 6;41 — distance value.

End for;

Step 6: Fori=1:N

Update the position of layer using the following equation:
ki=ki+Bx9x(6 —k)+ox(y—kp) A3)

End for;

Step 7: Evaluate K';

Step 8: $k = $(k)";

Step 9: Update the best position of key player B;

Step 10: Return the optimal value T = B;

The main idea of a soccer analogy in the Tiki Taka Feature
Selection (T2FS) method can be a player cooperation and
communication manner in a Tiki Taka football match
figuratively explained, where one player after another receives
and quickly sends back a short and accurate pass in order to
keep the ball and create possibilities for scoring. In the same
analogy, each feature from the data set is a player that
communicates with other players in the team through iterative
pass exchanges representing information transfer and
evaluation based on mutual relevance and redundancy. The
method does this by merging local cooperation (intra-cluster
relevance) with  global  coordination  (inter-cluster
complementarity) in order to have a small but very informative
set of features that make a major difference in the performance
of classification or prediction. As for the time complexity,
T2FS has a computational cost of about O (n? - m) where n is
the number of features and m is the number of samples.
However, it is the multi-stage pruning of the very first steps
where weakly correlated and redundant features are filtered
out—that the actual runtime of T2FS is quite different
(significantly shorter) from that of feature selection methods
based on an exhaustive search and are usually of O(2") or
higher exponential complexity. A mathematical model of its
exchange and refinement cycles that gradually bring down the
composite objective function which includes terms for
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relevance maximization and redundancy minimization is the
representation of the algorithm's convergence process. The
experimental study is in line with the algorithm behavior as it
proceeds monotonically towards an optimal subset, without
oscillatory behavior or premature stagnation which is made
possible by the adaptive update coefficients that depend on
inter-feature correlation entropy.

3.3 Convoluted depth-wise
(CDSCapNet)

sheep capsule network

For effective cancer identification and classification, the
cutting-edge and clever deep learning method known as
CDSCapNet has been used after feature selection. Many deep
learning architecture models are used for lung and colon
cancer diagnosis in the previous research. Nonetheless, high
system complexity, longer training and validation times, a
high incidence of mistake, and false positives are the most
frequent problems with the earlier methods. Consequently, the
goal of the planned study is to apply the best classification
strategy for the identification of lung and colon cancer.
Moreover, the proposed CDSCapNet is developed by
integrating the most emerging two distinct classification
techniques such as Capsule Network and CNN. The CNNs
constitute a few of the most widely used methods in deep
learning-driven medical image classification systems. CNNs
have been created mainly for acquiring features for pattern
inside 1images, which helps with classification and
identification. Also, it use anything that serves as an input
image, including images of individuals, sights, plant life, or
simply components of any type of visual information. CNNs
use a set of training images to determine characteristics
according to suitable parameters and their associated best
values.

The Convoluted Depth-wise Sheep Capsule Network or
CDSCapNet in short is a deeper neural network architecture
that improves accuracy and efficiency in carrying out image
classification tasks, particularly for medical images where
diagnosis deals with cancer detection. This network develops
on two efficient ideas: depth-wise convolution and capsule
networks that optimize performance by incorporating the
principles of Sheep Flock Optimiser. The architecture of
CDSCapNet is quite influential in the capture of spatial
hierarchies of image data and retains the relationship between
various spatial levels. It addresses the pitfalls that exist in
general convolutional neural networks.

At the core of the CDSCapNet model is the process of
depthwise convolution, which ensures computational
efficiency while retaining important features that are necessary
for the correct classification of images. It is a variant of
standard convolution, operating independently on each input
channel, followed by a point-wise convolution that merges the
channels. This has a dramatic impact on reducing the
computational complexity of the network by bringing down
the number of parameters related to image processing.
Considering histopathological images for cancer detection,
depthwise convolution allows CDSCapNet to process high-
resolution images without facing the traditional heavy
computational burden of CNNs. This makes the network very
suitable for applications that require large data volumes and
fast processing times. Moreover, the depthwise nature ensures
that rich local features, such as texture and fine structural
details in cancerous tissues, are efficiently extracted and
retained. The flow of CDSCapNet model is shown in Figure 3.
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Figure 3. Flow of CDSCapNet

In addition, the major weakness of the standard CNNs-
inability to capture higher-order spatial relationships between
features across multiple layers-is handled in tandem by the
CDSCapNet through its Capsule Network component.
Although they are effective enough in the detection of features
individually, CNNs often lack the capability for the
hierarchical representation of the input data. Conversely,
capsule networks encode the spatial relationships as the
activity vector of a set of neurons-a "capsule"-that describes a
particular feature and its pose. This inherently allows
CDSCapNet to capture robust spatial hierarchies of an image,
ensuring that critical structural relationships amongst features-
for example, the relative positioning of cancer cells-are
preserved and not lost as information flows through the
network. Another reason why CDSCapNet is very resistant
against distortions and variations of input data is the
application of capsule networks. This simply means that in
those cases when there is some kind of noise or any variation
in the quality of an image, the model would still manage to
produce the best performance in classifying and predicting
cancerous regions.

There are three various sorts of strata in a CNN network:

 Convolutional layers: These layers consist of several
nodes which extract significant data out of the input images.
In order to accomplish the primary objective of feature
learning on input images, these kinds of layers use a lot of
kernels and filters.

« Following convolutional layers, pooling layers are often
used. Before the input data is transmitted on to the subsequent
layers, the primary goal of each layer is to reduce its overall
dimensions (preferably with weight and height). These layers
contribute to CNN models' increased efficiency in
computation.

» The output probabilities that are learned from these
different stages are subsequently used to assess the reliability
of the model. The process of convolution can be expressed
mathematically as follows:

XY,z

C(w,b);; = Z Wxyz) X Diisxjty,2)

XY,z

“4)
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where, X,Y indicates the width and height of the input, Z
indicates the number of filters, and w, §) indicates the input and
output information correspondingly. Separable CNN is
typically contain two types of separable convolutions:
depthwise and spatial separable convolutions. In this work,
depth-wise separable convolutions have been used. The action
of depthwise convolutions can be thought of as aggregated
convolutions or as "inception modules," which have been
integrated into the Xception architecture. The basis of it is a
spatial convolution that each input channel encounters
individually. Following the depth-wise convolution, which is
a typical convolution operation utilizing 1x1 windows, a
point-wise convolution has been carried out. As a consequence,
an additional channel space has been generated by extending
all of the channels that have been estimated throughout
depthwise convolution. In this stage, the depthwise and point
convolution operations are performed as represented in the
following equations:

A
P, h);; = Z w, X by, (5)
XY
S(mx I'))i,j = Z II)x,y(DI')i+x,j+y (6)
X,y
6(ma' wg, b)i,j = S‘Bi,j (g, Si,j! (mﬁ! H)) @)

where, w,, wg are the point-wise and depth-wise operations,
and © indicates the element wise product. A collection of
neurons known as capsules in a capsule network have action
patterns that vary significantly in length and direction. These
activity variables describe the probability that a particular
thing occurs. These procedures possess the ability to readily
remove or attenuate image characteristics, disrupting essential
object structures, since layers that pool together are the most
vulnerable components in CNNs. According to the routing rule,
the results of the process are gotten by a parental figure
capsules in the subsequent layers; their coupling coefficients,
nevertheless vary. If all of the capsules are successful in
producing an output that is as close to the original capsule's
output as feasible, the coupling coefficient between them will
rise. Then, the predicted output of the capsule network is
estimated as shown in the following equation:
Vg = wy;0; (®)
where, 1919|l- indicates the output vector of capsule, j indicates
the number of capsule, i indicates the capsule, and w;; denotes
the weight matrix. The coupling factor &;; is computed as
follows, taking into account the degree of compatibility among
the parent capsule and each of the capsules in the bottom level:
£ = Exp (@) ©)

Y Zx Exp (QDix)

where, ¢;; indicates the logarithmic probability, and is
initially set to zero. Moreover, the capsule’s input vector is
determined according to the following model:

pj = Z-EU X 1§j|i
L

(10)



In simple terms, the goal is to prevent the overall result of a
capsule from surpassing one and to build each capsule's final
result according to its initial vector value and non-linear
squashing function, as calculated below:

7. 2
g = I
T+ 1%

J;
[17:1]

(11)

where, R; indicates the output vector and J; is the input vector.
Then, the agreement function #£;; is also estimated based on
the following equation:

fij = Ry X V) (12)

The proposed framework's overall cancer prediction
performance is significantly enhanced by the application of
this hybridized deep learning technology.

Essentially, the Convoluted Depth-wise Sheep Capsule
Network (CDSCapNet) is a deep-learning-model that is
structurally simplified and hierarchically aware. After that,
there are three intermediate feature extraction stages, each
with N X M convolutional sub-blocks where N=2, M =
64 — 128 — 256, group convolutions, and 1 X 1 pointwise
convolutions are utilized to very efficiently raise and lower the
channel dimension. The most innovative part occurs in the
Capsule Transformation Layer where the feature maps are
transformed into 32 primary capsules, each of dimension
8x8x16, thus not only allowing tumor textures but also cellular
patterns to be encoded hierarchically in the spatial
relationships. The primary capsules so obtained are linked
with 10 class capsules (10 representing cancer subtypes or
region-specific patterns) through a Dynamic Routing by
Agreement (DRA) mechanism which has a vector
dimensionality of 16, thus providing the network with the
capability to keep part-whole relationships that are spatially
aware, across it. The model combines feature-abstraction
capable convolutional neural networks (CNNs) with
representational power capsule networks. In fact, it is so
deeply altered by depth-wise separable convolutions that it
very significantly changes parameter redundancy and
computation.

The whole computational load is around 2.3 GFLOPs per
inference (for 224 X 224 images), thus the usage of mid-
range GPUs (like NVIDIA GTX 1660 or RTX 3050) as well
as top-performance edge devices such as Jetson Xavier NX
with a real-time processing capability (~38 fps) is possible.
The scalability research shows that CDSCapNet has linear
parameter growth in relation to feature depth expansion and
capsule dimension, whereas the growth in traditional capsule
models is exponential. The adjustment of the model to be large
enough for higher image resolutions or multi-class medical
datasets without an exponential increase in memory is done by
the use of depth-wise convolutions and vectorize capsule
compression. Additionally, gradient stability tests and batch
scaling experiments indicate that CDSCapNet keeps its
convergence and throughput up to a batch size of 128 and thus
does not lose accuracy, which is a confirmation of its capacity
for large-scale histopathological datasets and the option of
deployment in clinical diagnostic systems in the field.

3.4 Sheep flock optimizer (SheepFQO) for learning rate
estimation

This study uses the SheepFO technique for learning rate
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estimation in order to improve the disease diagnosis
performance of the proposed deep learning classifier and
increase prediction efficiency. SheepFO's integration with the
classifier results in an efficient decision-making process with
higher accuracy and lower loss. The first thing that serves the
sheep's interests is to keep giving them a grazing radius.
Additionally, the location of the sheep, the shepherds'
hierarchy, and the sheep's desire to move to a better earlier
experience habitation are all impacted by the other three
criteria. The sheep's interest also tends to approach those of
other sheep. There are two parts constitutes in this algorithm
such as grazing and migrating. For constraint construction,
various approaches are typically used, such as grid, manual,
and random discoveries. These investigations share their
unusual weakness in terms of repetition duration and lack of
deceitfully produced prior research. To overcome this problem,
the SheepFO is used in this work, where the selection is self-
developed. It also requires a slower iteration time compared to
other investigations with the goal to discover the classifier's
ideal learning parameter. In this algorithm, the fitness function
F for optimizing the learning parameter A is estimated as
shown in below:
F = Optimize (1) (13)
Then, the weight parameter is updated for getting the best
optimal position as represented in the following model:

K=(1-Y)x$xrand(1,d) x (B, — P) (14)

where, P indicates the current position, By is the best fitness

value, d represents the dimensionality, S is the random value,
and K is the order speed of shepherds. Based on the value of
K, The learning rate's ideal value is calculated to enhance the
classifier's prediction capabilities.

The principle behind the Sheep Flock Optimizer is a robust
nature-driven optimization technique emulating patterns of
collective movements and behaviors in flocks of sheep. The
core idea inspiring the development of the approach called
SheepFO comes from the movement of sheep as a group,
resulting from an individual instinct and social dynamism.
Sheep are designed by nature to stay in a flock and are innately
balanced between the trade-off of safety through proximity to
others and the exploration of new areas in search of food and
resources. This natural balance between exploration and
exploitation in instinct provides the theoretical basis for the
SheepFO approach, since it illustrates how an individual
sheep-an agent in an optimization process-interacts with the
environment in pursuit of optimal solutions of complex
problems.

In nature, each sheep here represents a potential solution in
the search space; therefore, the movement of the sheep will be
influenced by the positions of other sheep inside the flock and
from the general objective of the flock, which is analogous to
finding the global optimum. First, the SheepFO begins with a
population of candidate solutions called sheep that are
randomly dispersed across the search space. Each sheep
updates its position during the optimization based on two main
factors: an attraction toward the best performing sheep, that is,
the current optimal solution, and a random exploration in the
search space. This dynamic allows the algorithm to strike a
balance effectively between the exploitation-refining of the
best solutions by drawing other sheep towards the best ones-
and the exploration for ensuring that the new areas of the



search space are constantly investigated, thus preventing the
algorithm from getting prematurely converged to the local
optima.

Another novelty of the SheepFO is that it is an adaptive
algorithm. In each iteration, the movement of the sheep
depends on its behavior and a flock behavior. Each sheep
amends its position depending on not only its own
performance but also the overall performance of the flock. It
ensures that even when some sheep get stuck into suboptimal
regions, the rest of the flock can continue to explore other
regions in the search space guided by the best sheep. Besides,
in SheepFO, randomness has been introduced into the
movement of some sheep in order for the algorithm to escape
from local optima by incorporating an element of surprise in
the search process. It introduces the natural perturbation,
similar to the normal life of sheep that move away from the
flock in search of new resources while allowing the algorithm
to venture into the unexploited regions of the solution space.

The convergence of SheepFO is governed by continuous
interaction between an individual and a global search strategy.
As the iterations of optimization proceed, the movement of
sheep becomes concentrated in the best areas of the search
space, and progressively, the exploration tends to converge
towards the global optimum. Simultaneously, however, it
ensures diversity across the process to prevent any overfitting
or sticking in local optima. This is a very important balance
between convergence and diversity for the purpose of
maintaining SheepFO able to solve a wide range of
optimization problems, from simple unimodal functions to
complex multimodal landscapes.

It is in that respect-the optimization problem comprising
nonlinearities and multiple local optima-where the strength of
the SheepFO comes through. It realizes an efficient search in
large solution spaces through the adaptive exploration-
exploitation mechanism inspired by natural sheep behavior. In
summary, this approach is highly suitable for applications to
real-world problems where the dynamic search space is
usually either non-stationary or contains a large number of
variables. By emulating these social and adaptive behaviors of
sheep flocks, the SheepFO has been found to be quite flexible
and robust in solving optimization problems with high
accuracy; the methods also avoid local traps. With its
theoretical backbone from natural flocking behavior, it ensures
a good balance between exploration and exploitation and
hence it is a valuable tool in the solution of constrained and
unconstrained optimization challenges.

CoCaDeNet leverages a SheepFO along with a swarm
intelligence mechanism to adaptively estimate a learning rate.
It is a biologically inspired model that simulates the collective
movement and decision-making behavior of sheep herds.
Essentially, each 'sheep' corresponds to a learning rate
candidate, and the flock not only takes into account the
individual experiences (local exploration) but also the group
interaction (global exploitation) when determining its new
position, thus the model obtains the ability to change learning
rates on-the-fly during the training process. After fixed or
manually scheduled learning rates have failed due to abrupt
gradient change or the model getting stuck in a local minimum,
SFO will still vary the rate dynamically according to gradient
feedback and loss surface changes. Hence, the convergence
can still be very smooth, and parameter updates can be done
efficiently.

With this adaptive mechanism, the model can keep the best
possible trade-off between the convergence rate and stability,
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thus the chance of overfitting gets reduced and the model's
ability of generalization to new histopathological images is
increased. Another point is that the learning adaptation
resulting from SheepFO is also immune to the vanishing or
exploding gradients problem that is usually deep architectures,
simply because the update magnitude is being controlled
across epochs dynamically. Therefore, apart from the reasons
for CoCaDeNet's training being more efficient is the
employment of SFO: a) the convergence process is done more
efficiently, b) the optimization process gets stabilized, and c)
the performance becomes more reliable despite variations in
data complexities of lung and colon cancer classification.

4. RESULTS AND DISCUSSION

The outcomes and simulation results of the suggested
CoCaDeNet model are shown in this section utilizing widely
used benchmarking datasets and assessment metrics. Though
it may be ostensibly unnecessary for a pathologist interested
in the sub-classification of an already identified cancer, the
segregation of images of lung and colon cancer forms the basis
of any robust automated diagnostic system. The discrimination
capability will further improve the understanding of the model
about varied histopathological features and its overall
classification accuracy. Where the cellular architecture and
morphology of cancers of the lung and colon differ, so too do
the treatment decisions, prognosis for the patient, and clinical
management strategies. Training the model to identify an
image first as belonging to the lung or colon category allows
further fine-tuning in the classification of subclasses for each
type. It includes variations in histological subtypes of lung
cancer, for example, adenocarcinoma versus squamous cell
carcinoma, or variations in colon cancer. The merits are that
with this approach, the two-step approach will enable
embedding of information in a broader context, and the
subsequent sub-classification tasks will become more specific.
In this way, the proposed strategy will assist pathologists by
providing more reliable diagnostic support, accelerate the
workflow, and enhance the accuracy of cancer detection in
clinical practice. The CoCaDeNet architecture, a radical new
concept, was not only tested on the LC25000 dataset but also
on the two most popular open-access histopathological
datasets—NCT-CRC-HE-100K and BreakHis to figure out its
generalization ability and noise resistance for different cancer
types and diverse imaging conditions. The NCT-CRC-HE-
100K dataset is a joint product of the National Center for
Tumor Diseases (Heidelberg) and the University Medical
Center Mannheim, and it contains 100,000 high-resolution
Hematoxylin and Eosin (H&E) stained image patches of
colorectal cancer and normal tissues, which cover the nine
different tissue classes. The dataset offers a very
comprehensive and challenging benchmark to measure the
ability of CoCaDeNet to detect very small changes in the
texture and structure of colorectal cancer histology. On top of
that, the BreakHis dataset, comprising 7,909 microscopic
images of benign and malignant breast tumors, taken at four
different magnification levels (40x%, 100x, 200x, and 400x%),
was used to study the model's transferability and the feature
discrimination strength for organ-based cancers. Using these
datasets for evaluation guarantees that the performance is put
under the most rigorous test as the model faces a variety of
different histopathological imaging characteristics which not
only show that CoCaDeNet is accurate, but also that it is still



flexible and reliable in diagnosis outside the original lung and
colon cancer classification domain.

The data augmentation should be that of a kind which
involves random rotations (+15°), horizontal and vertical flips,
random cropping and resizing to 224x224 pixels, color jitter
for the brightness and contrast changes, and normalization
using the mean and standard deviation of the dataset. These
changes should only be made to the training set in order to
generalize the model and to lower the risk of overfitting. In
most cases, a batch size of 32 is good for the GPU and is also
the factor that will determine the trade-off between
computational efficiency and gradient stability. Also, one
could use momentum (0.9) SGD to give a stronger baseline of
convergence. The training should be done for 100 epochs with
early stopping (patience=10) based on the validation loss to
prevent overfitting. Besides that, gradient clipping and mixed-
precision training may also be employed for stability and
computational efficiency. Being very clear about these
hyperparameters along with random seeds and software
versions is a way of openness and it makes reproducibility a
lot easier when comparative evaluations are carried out.
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Figure 6. ROI extracted images

From Figure 4 to Figure 7, the processing outputs that were
produced thereafter are also shown, including contrast-
enhanced images, ROI extracted outputs, segmentation
regions, and feature maps. The results of this evaluation
clearly show that the suggested CoCaDeNet model could
identify the cancer class by efficiently examining its
characteristics.




Figure 7. Segmented regions

Extraction and segmentation of the Region of Interest are
major steps in histopathological image analysis, since this
really allows isolating areas of interest for further examination.
In the present work, the extraction of the region of interest is
done to focus the attention on specific tissue regions that could
show pathological features representative of lung and colon
cancers. This means applying thresholding techniques and
morphological operations to enhance the contrast between
tissue types, followed by identifying contours or boundaries
that delineate the cancerous regions. Next comes the
application of some segmentation algorithms like deep
learning-based approaches or traditional methods such as the
watershed segmentation technique, which accurately outlines
the boundary of tumors within the extracted ROIs. This would
ensure that only the relevant features are considered in further
classification processes, making the model stronger and more
reliable with respect to the category of healthy and cancerous
tissues. Indeed, the proposed framework increases the
reliability in such a diagnosis, taking advantage of the most
informative part of the images and supporting the development
of automated analysis systems. In order to validate and
compare the results of the proposed CoCaDeNet model,
certain evaluation indicators are used for analysis, which are
described in below:

TP
ege . = X 1 0 15
Sensitivity TP L FN 00% (15)
Specificit r 100% (16)
=—X

pecificity TN T FP 0
Precision = — & x 100% (17)

recision = TP n FP (]
p TP +TN 100% a8)

= X
CUracY = TP Y TN + FP + FN 0
AUC TPR 100% (19)
= ——X
FPR 0

The aforementioned equations demonstrate the comparable

measures of sensitivity, precision, accuracy, specificity, and
AUC for all of the techniques used for the diagnosis of lung
and colon cancer from histopathological images. It ought to be
observed that the calculations include parameters like TP and
TN, which represent the total amount of objects that were
properly classified, and FP and FN, which indicate the
proportion of instances erroneously labelled. The confusion
matrix, which is generated as an output to assess each method's
performance, is the source of all of these factors. The
confusion matrix computed by the proposed CoCaDeNet
model is displayed in Figure 8. It is evident from the expected
outcomes that the proposed approach is capable of accurately
identifying and classifying the cancer types with high TPR.
Although T,FS selects only the features required for decision-
making when defining the cancer class, it is the primary means
of achieving an enhanced prediction accuracy.
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Figure 9 illustrates the estimation of the fitness curve used
to assess the effectiveness of the T,FS technique. Usually, the
optimization approach's fitness value is used to validate its
performance. The results show that the T>FS model achieves
the optimal value with a high degree of efficiency.
Furthermore, as shown in Figure 10, the training and
validation accuracy of the suggested CoCaDeNet model is
calculated in relation to a variable number of epochs. Similarly,
as Figure 11 illustrates, the training and validation loss values
are similarly estimated for the suggested model. The whole
diagnosis framework's performance in cancer prediction is
determined by assessing accuracy for training and validation
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purposes. The results clearly show that, with a decreased loss
of 0.1, the accuracy of both the training and validation
procedures has greatly improved to 0.99. The suggested
model's ability to incorporate image preparation, feature
selection, and classification procedures accounts for its
improved results.

Additionally, as shown in Figure 12, the precision, recall,
and fl-score values of the suggested CoCaDeNet model are
estimated with regard to the various cancer types present in the
dataset. Similarly, as illustrated in Figure 13, the estimated
values for sensitivity, specificity, and accuracy are also
provided for each of these cancer groups. The CoCaDeNet
model performs effectively, providing improved values for all
types of disease, according to the evaluations' results.
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Figures 12, 13, and 14 depict some of the performance
metrics of the CoCaDeNet model for different cancer classes.
In this view, the exceptionally high accuracy rates of 99% or
100% might raise concerns about the added value these figures
bring. Whereas these metrics-precision, recall, Fl-score,
sensitivity, specificity, and AUC-would normally be very
important in presenting the performance of a model, here they
mostly reinforce the view that this model is able to classify
almost perfectly. The close proximity among accuracy values
indicates that the model might not be challenged by this
dataset, therefore raising questions about its robustness and
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generalization capability on real-world scenarios. As such,
while these figures might be used to reinforce the effectiveness
of the model, they provide no further details for assessing its
strength in various conditions or with more diverse data. For a
deeper test, it might be relevant to test the model with broader
sets of cases that reflect more fine-grained differences between
cancer types or that reflect noisy or ambiguous data input to
get a sense of how the model performs under less ideal
circumstances. One of the main factors contributing to better
performance outcomes is the SheepFO model's excellent
tuning of the learning rate, which aids in accurate decision-
making while classifying cancer. As a consequence of this, the
AUC value is also determined with respect to the different
classes of images as shown in Figure 15. For the cancer classes

under consideration, the CoCaDeNet model's overall
performance rate is enhanced by up to 99.5%.
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Figure 12. Precision, recall and f1-score values of the
CoCaDeNet model with respect to different classes of cancer
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Figure 13. Sensitivity, specificity, and accuracy values of the
CoCaDeNet model with respect to different classes of cancer

Therefore, an important task is a comparison of the
proposed method in cancer classification with other ML and
DL approaches. For this purpose, the classic ML methods-like
K-Nearest Neighbors and Support Vector Machines-were
performed on the same dataset in the present work and were
taken for the baseline of the methods under observation. The
most common parameters set using the KNN algorithm are the



number of neighbors, since these have the greatest influences
on the accuracy of classification. As for the key parameters to
be set when using SVM, there is the type of kernel, which
could be linear, polynomial, or radial basis function; the
regularization parameter, C; and the kernel coefficient, gamma,
which determines the capability of separation in feature space
by the model.
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Figure 14. AUC with respect to different classes
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The same goes for deep learning models, with which a
comparison is to be drawn here, whose parameters include the
number of layers, activation functions, batch size, learning rate,
and the type of optimizer used, such as Adam or SGD. All such
configurations relate directly to the model's capability to learn
and generalize on unseen data. Using these parameters
throughout will lead to a fair comparison of performance
against the dataset.

These performance metrics-accuracy, precision, recall, and
F1-score-reported in the literature allow us to have an idea of
the extent to which each of these approaches handled the task
of classification. Also, the CoCaDeNet model that is proposed
should have been tested on the same models with exactly the
same condition of training and validation in order to make sure
that variations in the results are due to the intrinsic capability
of the methods and not in the way the dataset has been handled
or in the tuning of parameters. This would, in general, give a
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better comparison, not only to emphasize the strong points of
the proposed methodology but also to indicate further
improvements and future works on the domain of cancer
classification.

This study compares a few CNN-based deep architecture
models based on prediction accuracy, as illustrated in Figure
15, to ascertain the effectiveness of the suggested model. In a
similar vein, the most popular machine learning approaches
are also taken into consideration for comparison, as shown in
Figure 16. Furthermore, as illustrated in Figure 17, the
hybridized machine learning and deep learning approaches are
also compared to the CoCaDeNet model. These comparison
analyses lead to the conclusion that the suggested CoCaDeNet
model performs with a high degree of accuracy better than all
previous models.
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hybridized deep learning models

Furthermore, as illustrated in Figure 18 and Figure 19, the
other metrics, including sensitivity, specificity, accuracy,
AUC, and MCC values, are also contrasted with the suggested
CoCaDeNet model. It is clear from the overall comparative
analysis that the suggested CoCaDeNet model outperforms the
traditional methods in accurately identifying the cancer from
the histology pictures when appropriate image processing
operations are applied. The suggested model is then contrasted
with the conventional machine learning techniques for
diagnosing lung and colon cancer utilizing various



performance metrics, as illustrated in Figure 20. Consequently,
as shown in Figure 21, the CNN variants of the EfficientNet
architecture [37] models are also contrasted with the suggested
hybrid deep learning architecture model. Various performance
factors are taken into account for these comparison evaluations.
Moreover, Figure 22 illustrates the overall effectiveness of the
suggested CoCaDeNet model in relation to the various cancer
types. Furthermore, as shown in Figure 23, the suggested
model is compared with the latest state-of-the-art techniques.
Based on the comprehensive findings and subsequent
discourse, it can be inferred that the suggested framework
exhibits strong performance and yields satisfactory outcomes
for every cancer class included. Furthermore, with good
performance outcomes, it outperforms all deep learning,
hybrid, and traditional machine learning techniques.
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Figure 19. AUC and MCC values

The comparisons given in Figure 24 between the proposed
CoCaDeNet model and five current state-of-the-art (SOTA)
models: VGGNet, ResNet, DenseNet, InceptionNet, and
Xception based on four most important performance metrics:
Accuracy, Precision, Recall, and F1-Score show that the
CoCaDeNet model is better than all the current models in all
the above parameters, which means it has a better capability in
cancer detection. These outcomes demonstrate that
CoCaDeNet utilizes its new structure, with the inclusion of
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Tiki Taka Feature Selection, CDSCapNet, and Sheep Flock
Optimizer, to create a very trustworthy and precise model for
detecting cancer, with a new standard of excellence in the field.
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Figure 22. Overall performance study of the proposed model
with respect to different classes of cancer

Table 2 shows the results for 5-fold cross-validation
analysis performed in order to evaluate the robustness and
consistency of the proposed CoCaDeNet model. As it can be
seen from this table, the performance on all folds is very high;
the accuracy variation ranges from 98.78% to 99%, with a



small variation between different folds. Similarly, precision,
recall, and Fl-scores also remain very high, ranging
approximately from 98.8% to 99%. This consistency across all
metrics of evaluation shows the good generalization capability
of the model on unseen data and strength against overfitting.
The marginal differences across the folds further establish the
reliability of the CoCaDeNet model in making precise
predictions of lung and colon cancers from histopathological
images. Indeed, the F1-score that balances precision and recall
confirms the model's strength in identifying both positive and
negative cases with almost perfect accuracy. This cross-
validation study points to robustness and efficiency, hence
proving the excellence of the model performance for the task

of cancer detection.
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Figure 23. Overall comparative study with recent state of the
art models

Comparison of Hybrid Deep Learning Models Based on Different Metrics

Lop B Accuracy
B Precision
B Recall

EEN Fl1-Score

VGGNet ResNet DenseNet CoCaDeNet

InceptionNet
Models

Xception
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As shown in Table 3, the ablation experiment of the new
CoCaDeNet architecture effectively proves how each
component contributes towards enhanced model performance
in detecting lung and colon cancer from histopathological
images. Beginning with the baseline model based on a plain
Convolutional Neural Network (CNN) without applying any
of the advanced techniques, accuracy as well as the
performance measures are quite low. In addition to the Tiki
Taka Feature Selection (T2FS) method, incorporation
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enhances the model with noise and irrelevant feature
elimination for enhanced training and validation effectiveness.
The second method, via Convoluted Depth-wise Sheep
Capsule Network (CDSCapNet), enhances efficiency even
more by learning spatial hierarchies and maintaining feature
representations, with certain focus on identifying cancerous
areas in sophisticated imaging data. The synergy between
T2FS and CDSCapNet results in exponential growth in
accuracy and other metrics, corroborating complementarity of
feature selection and sophisticated network design.
Incorporating Sheep Flock Optimizer (SFO) enhances
convergence and decision-making by dynamically adapting
the learning rate, resulting in more accurate predictions.
Finally, the whole model with all these factors attains the best
accuracy and Fl-score, reflecting the complementarity of
feature selection, new capsule networks, and intelligent
optimization in cancer diagnosis. The ablation study strongly
emphasizes the importance of each factor and determines that
jointly these approaches deliver a reliable and very accurate
automated cancer diagnosis model.

Table 2. Cross validation analysis

No. of Folds Accuracy Precision Recall F1-Score
Fold 1 99 98.9 99 98.8
Fold 2 98.8 98.8 98.8 98.9
Fold 3 99 99 98.9 99
Fold 4 98.78 98.8 99 98.8
Fold 5 99 98.9 99 98.91

Table 3. Ablation study

Configuration Index Accuracy Precision Recall F1-Score
(%) (%) (%) (%)
1 (Baseline) 91.25 90.90 90.50 90.70
2 (Only T2FS) 93.68 93.10 9280 92.94
3 (Only CDSCapNet)  94.27 93.80 9350 93.64
4 (T2FS+CDSCapNet)  96.51 96.00 9570 9584
5 (CDSCapNet+SFO)  96.02 95.50 9510 95.30
6 (Full Model) 98.97 98.90 98.91  98.72

The comparative performance analysis displayed in Figure
25 and Figure 26 goes to great lengths to demonstrate that the
CoCaDeNet model has better efficiency compared to the eight
recent deep-learning frameworks in both the NCT-CRC-HE-
100K and BreakHis datasets. To be exact, CoCaDeNet was
able to score such outstanding points for accuracy (0.989),
precision (0.988), recall (0.990), and F1-score (0.989) as are
shown in Figure 26 for the NCT-CRC-HE-100K dataset, thus
making the second nearest competing model, i.e., ResNeSt50,
to be a performance by a large margin as the latter only
achieved 0.91 accuracy and 0.905 Fl-score. Naturally, one
could think of a question here that why CoCaDeNet was
capable of performing so excellently. The fact of the matter is
that, on the one hand, there is the optimally extracted features
from CDSCapNet and on the other the T2FS which
contributed to the increased discriminative capability of
CoCaDeNet. The question comes out very clearly why
CoCaDeNet excelled so in its performance. There is only one
answer to the question, that is on the one side the optimized
feature extraction from CDSCapNet and on the other the T2FS
which led to the discriminative capability of CoCaDeNet
being enhanced. Consequently, the performance of the likes of
ResNet50 (0.88 accuracy), DenseNetl21 (0.89 accuracy),
InceptionV3 (0.87 accuracy), and EfficientNetBO (0.90



accuracy) were left behind.
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What is true of the BreakHis dataset is also true of
CoCaDeNet which brought stellar results thus making it the
first overall ranking with precision=0.99, recall=0.989, F1-
score=0.99, and accuracy =0.99 as shown in Figure 26. It
would be of great assistance to emphasize the importance of
the feature if one were to point it out here. Second closest
model to the bottom, i.e., ResNeSt50, was a performance
disaster as it only managed 0.88 accuracy and 0.875 F1-score,
thus highlighting a difference of more than ten percentage
points both in classification precision and recall between the
two. Apart from them, e.g., DenseNet121 (0.86 accuracy) and
EfficientNetBO (0.87 accuracy) had relatively mediocre
performances as well. Hence, the issue of spatial hierarchy and
class balance in histopathological images of different
magnifications that are problematic for traditional
convolution-based frameworks is confirmed by this evidence.
CoCaDeNet's excellent metric consistency across both
datasets is an indicator of its architectural robustness in terms
of generalization.
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The accuracy (=99%) that obtained is most probably
instances where the performance metrics were artificially
somehow elevated, maybe as a consequence of overfitting or
data leakage that had not been detected when the model was
trained and evaluated. Such an unbelievably high accuracy,
especially with complicated medical imaging datasets, makes
one seriously doubt the correctness of the data partitioning
strategy and whether the images of the scans of the same
patient or tissue sample have been used for both the training
and testing sets, thus resulting in memorization instead of
actual learning. In order to provide a fair evaluation and also
make it possible for the results to be generalized, the study
needs to reveal its method of data division by indicating
whether patient-wise, slide-wise, or random splitting was used
and also mentioning independent validation that was
performed to confirm stability.

5. DISCUSSIONS

The uniqueness of the proposed CoCaDeNet architecture is
that it is integrative and synergistic in combining state-of-the-
art approaches designed especially for dual cancer
classification from histopathological images that most of the
current methods address as independent. In contrast to
traditional deep learning architectures preferring to use CNNs
for feature extraction and classification, CoCaDeNet follows a
multi-layer strategy starting from the newly proposed T2FS
approach. It is a logical method of filtering and choosing the
most suitable features without redundancy with little
computational expense, lacking in the majority of traditional
models. Through the preprocessing of input data prior to their
presentation to the classifier, T2FS makes learning faster and
targeted rather than the standard feature selection methods
employed in other studies that do not efficiently rank
significant features in cancer diagnosis.

Another feature that is remarkable about the model
suggested is the use of the CDSCapNet in combining the
feature extraction ability of convolutional operations and the
spatial hierarchy-preserving nature of capsule networks.
CDSCapNet resolves most of the flaws of existing models'
failure to incorporate spatial relationships between features,
which are most critical in histopathological analysis where the
order of tissue structure can reveal malignancy. CDSCapNet
bridges this gap by preserving and leveraging such spatial
hierarchies to cause the model to be more accurate in
classification and have higher generalization across different
samples. Additionally, utilization of the Sheep Flock
Optimizer (SFO) differentiates this model from common
optimization techniques like Adam and SGD. SFO comes with
a swarm intelligence-based method of learning how to
adaptively modify learning rates, hence increasing the training
process's flexibility and robustness. Whereas the majority of
existing systems utilize static or manually tuned
hyperparameters, SFO enables CoCaDeNet to find learning
parameters on its own, directly aiding its better classification
performance.

6. CONCLUSION

Enhancing the deep learning-based colon diagnostic with
better outcomes for different colon classes is the primary goal
of the ongoing effort. To that end, this study introduces a
revolutionary framework called the CoCaDeNet model, which



provides an accurate sickness diagnosis by utilizing state-of-
the-art intelligent image processing algorithms. For system
validation and performance assessment, the most used popular
image dataset in this framework, LC25000, has been used.
Pre-processing histopathological images usually involves
many steps. After this stage, the most significant and required
features are extracted from the contrast-enhanced images,
which increases the classification technique's decision-making
ability. In order to accomplish this, this work employs a T2FS
approach, which enables the cancer prediction system to have
a lower compute load with shorter training and validation
timeframes. Furthermore, the CDSCapNet model is applied to
cancer classification yielding great performance results and
accuracy. Compared with existing deep learning techniques
already in use, the proposed CDSCapNet model offers a
number of advantages, such as decreased false and error rates
and increased cancer prediction accuracy. The classifier's
ability to determine the cancer class has been enhanced by the
use of the cutting-edge SheepFO, which accurately estimates
the learning rate. The proposed work integrates SheepFO with
the classification model to boost overall cancer diagnostic
performance greatly. From the extensive results and
discussion of this study, it is clear that the proposed framework
performs well and produces acceptable results for each cancer
class that is included. It also excels all deep learning, hybrid,
and conventional machine learning algorithms with good
performance outcomes. CoCaDeNet has a number of
advantages, including the high accuracy in both lung and colon
cancer classification, efficient feature selection by the Tiki
Taka Feature Selection technique, and improved optimization
in learning with the Sheep Flock Optimizer. The dual focus on
the two types of cancers also enhances the clinical relevance
of the work; besides, using the LC25000 dataset offers very
reliable benchmarking. This includes, however, limitations
such as possible generalizability problems given the constraint
of the dataset, the need for substantial computational resources,
whose accessibility might be restricted in some clinical
settings.

The envisioned CoCaDeNet model has a number of benefits,
such as concurrent detection of lung and colon cancers, further
increasing its clinical relevance. Application of the T2FS not
only helps in improving computational efficiency but also in
minimizing computational complexity, thereby enhancing
model efficiency during training and validation processes.
Application of CDSCapNet further provides solid spatial
feature representation, while Sheep Flock Optimizer is trained
for learning the best rates to improve classification
performance. But the model is not ideal—it has been validated
for performance on only a single set of data (LC25000), and
that might not capture all the variability and range of real
clinical data. And further, the complexity of the architecture
might necessitate the application of high-end computation
resources, which might be a barrier to deployment in low-
computing-resource settings or real-time clinic practice
without optimization.
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