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Lung cancer and colon cancer are among the most prevalent and lethal cancers in the world, 

and survival is largely based on early and correct diagnosis. The old traditional diagnostic 

methods are usually time-wasting and prone to mistakes, and hence there is a critical need 

for automated, accurate, and efficient diagnostic systems. The paper suggests Colorectal 

Cancer Detection Network (CoCaDeNet), a novel deep learning framework designed to 

accurately predict and classify lung and colon cancers from histopathological images. The 

framework employs the Tiki Taka Feature Selection (T2FS) algorithm to reduce 

computation by utilizing only the most beneficial features, thus improving training and 

validation performance. To achieve accurate cancer type classification, the model utilizes 

the Convoluted Depth-wise Sheep Capsule Network (CDSCapNet) that maintains spatial 

hierarchies in image information. Further, the Sheep Flock Optimizer (SFO) is utilized to 

adjust the learning rate to help the model improve prediction decision-making capability. 

The proposed CoCaDeNet model was tested on the benchmark dataset LC25000 with a 

substantial number of performance metrics. As seen from the results, CoCaDeNet possesses 

extremely high accuracy, precision, recall, and F1-score for both lung and colon cancer 

classification tasks with better performance compared to a variety of leading state-of-the-art 

techniques. CoCaDeNet has immense potential for automation of cancer detection in lungs 

and colon with superior accuracy and efficiency. With its new architecture in addition to 

feature selection optimization and learning strategies, CoCaDeNet sets a new benchmark for 

histopathological image-based detection systems of cancer, which can provide better clinical 

outcomes through accurate and early detection of cancer. 
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1. INTRODUCTION

The term "cancer" refers to a wide range of diseases that can 

harm a bodily system in an individual. Additionally, 

metastasis is the quick response of aberrant cells that grow 

outside of permissible bounds, permitting them to infect other 

regions and move to nearby organs [1-3]. However, neither of 

these signs is specific to cancer, nor do all of symptoms turn 

up in all cases [4]. One of the main causes of death from cancer 

is metastasis. Any organ in the human body can be impacted 

by cancer, however the nervous system, intestines, skin, 

breasts, abdomen, liver, prostate, and lungs are the most 

frequently impacted by cancer [5]. Lung and colon cancer are 

the most prevalent tumors that kill both male and female 

patients. Intolerably evolving lung cells give rise to cancerous 

cells, which gather into clusters. Lung and colon tumors are 

two of the most common types of malignancies globally 

following breast carcinoma. Furthermore, among all tumors, 

the fatality rates from lung and colon cancers are 18% and 10%, 

respectively [6, 7]. Therefore, accurate identification of these 

cancer categories is of the utmost importance in order to 

explore medical care options during the beginning stages of 

disease. Consequently, it is challenging to determine the 

presence of cancer without conducting a comprehensive 

diagnostic technique such as a cancer biopsy, CT scan, MRI, 

PET scan, ultrasound, or Computed Tomography (CT) scan. 

The people who suffer frequently exhibit barely any symptoms 

in the beginning, and by the time symptoms begin to show up, 

it's usually too late. Proper treatment and better patient 

outcomes are dependent on early identification of colon cancer. 

Analysis of histopathological images (HSIs) [8, 9] is 

becoming a potent diagnostic technique for cancers. For the 

detection of lesions or malignant cells, images taken from 

tissue samples are evaluated and reviewed during the course 

of the HSI analysis for diagnosis of colon cancer. While a 

manual interpretation of the image is labor-intensive and 

highly susceptible to human error, it plays an essential part in 

the grading and identification of such tumor, assisting both 

treatment and prognosis strategy. Consequently, colon cancer 

detection using HSI necessitates a computer-aided method [10, 

11]. When it comes to flexible sigmoidoscopy, lung and colon 

cancers, noninvasive methods that incorporate CT imaging 

and radiography are beneficial. However, it is unlikely that 

these malignancies can be accurately identified with 
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noninvasive methods alone; instead, invasive procedures like 

histopathology are required for precise disease detection and 

enhanced therapeutic outcomes [12]. The pathologists might 

discover the laborious grading of HSI to be bothersome. The 

precise grading of lung and colon cancer subclasses require a 

pathologist with training, and manual grading is susceptible to 

human error. Moreover, these tumors are currently being 

treated with automated image analysis techniques. AI has 

demonstrated amazing promise in the field of diagnostics and 

provided people with a strong substitute for conventional 

methods of diagnosis [13]. Currently, the process of detecting 

a certain disease involves collecting samples from patients, 

testing those samples, interpreting the results into a form that 

can be understood, and then engaging a trained person to make 

judgments based on the results. 

Nowadays, we can employ machines to investigate patient 

samples if the samples are digital in nature or have been 

automated in some manner. Following that, we may give them 

access to a source of data that includes opinions on cases that 

are comparable to ones that we have already addressed. Finally, 

we can give the instructions regarding which diseases the new 

patient possesses [14, 15]. Supervised learning in machine 

learning refers to decision-making that is based on prior 

scenario knowledge. Over the course of the last few decades, 

a great deal of supervised learning algorithms were put 

together, and they are highly skilled at processing medical 

information. Machines are now capable of processing high-

dimensional data, including images, multivariate anatomic 

images, and videos, because of the advent of Deep Learning 

(DL) algorithms [16-18]. DL is an area of machine learning 

that studies algorithmic methods for learning that draw 

inspiration from the anatomy and functioning of the human 

mind. Neural networks with artificial intelligence are deployed 

by DL in order to achieve increased recognition of patterns 

abilities. However, it remains quite a while until AI controls 

the medical diagnostic field [19, 20]. AI models are promising 

on concept and in scientific research, but they are still far from 

being accurate enough to be trusted with the responsibility of 

determining choices that might impact the lives of individuals. 

Undoubtedly, machines do several basic diagnostic operations 

completely on themselves without barely any help from 

humans. Nevertheless, the conventional deep learning 

techniques frequently lack adequate precision and efficiency. 

Moreover, researchers in this field are interested in tackling 

these challenges by collecting more practical data, developing 

new and improved learning algorithms, and putting the 

resultant models through rigorous tests [21, 22]. It states that 

the goal of the planned study is to develop an automated 

diagnostic method for colon cancer detection utilizing 

histopathology pictures that is both distinctive and efficient. 

The following list contains this work's main goals: 

Model Development-CoCaDeNet: The paper proposes the 

CoCaDeNetColon Cancer Detection Network, with a new 

architecture, for accurate prediction and classification of lung 

and colon cancers from histopathological images. The duality 

in nature only enhances the practical feasibility of this model 

in real-life clinical applications that require discrimination 

among different types of cancer with precision. 

Novel Tiki Taka feature selection technique: The 

introduction of the T2FS technique into the heart of this 

proposed model raises the efficiency bar way up. This novel 

feature selection technique lessens computational burdens 

because it accelerates the process of training and validation, 

streamlines feature extraction in order to make sure that only 

the most relevant data informs predictive capabilities. 

Improved Predictive Accuracy by CDSCapNet: The use of 

the Convoluted Depth-wise Sheep Capsule Network in the 

model CDSCapNet provides better accuracy in the prediction 

and identification of types of cancer. Some state-of-the-art 

deep learning methodologies are embedded in this model, 

which utilize unique properties of capsule networks in 

maintaining spatial hierarchies and feature representation. 

Carrying Out the Optimization with the Sheep Flock 

Optimizer: Application of the Sheep Flock Optimizer for 

determination of optimum learning rate surely enhances the 

classifier by embedding more intelligence into the decision-

making process for the class prediction in cancer and hence 

yielding more reliable results. 

Extensive evaluation is conducted on the basis of the well-

accepted LC25000 dataset, which includes the scores of 

evaluations concerning performance for the proposed 

CoCaDeNet model. 

The major contributions of the proposed work are listed 

below: 

To develop the innovative CoCaDeNet architecture for 

precise classification of lung and colon cancer from 

histopathological images, with improved clinical usability 

through dual detection capability for cancers. 

To present the Tiki Taka Feature Selection (T2FS) method, 

which streamlines the model by choosing the most significant 

features, thus minimizing computational expense and 

speeding up training and validation procedures. 

For improved prediction accuracy through the addition of 

the Convoluted Depth-wise Sheep Capsule Network 

(CDSCapNet) to leverage capsule network features in spatial 

hierarchy preservation and enhancing classification precision. 

For enhanced learning of model parameters through the 

Sheep Flock Optimizer (SFO) for smart learning rate 

adjustment towards more stable and reliable cancer prediction 

results. 

The paper has been separated into the subsequent units: In 

Section 2, a thorough overview of the literature is presented 

regarding the use of histopathological imaging for the 

diagnosis and detection of lung and colon cancer. In-depth 

study of the issues, difficulties, and noteworthy findings from 

the earlier research is also included. Furthermore, Section 3 

provides a thorough explanation of the suggested cancer 

diagnosis method, including the model's flow and algorithms. 

Section 4 presents the image results, performance outcomes, 

comparative analysis, dataset details, and assessment 

measures. In Section 5, the overall paper summary is provided 

together with the results, conclusions, and future work. 

 

 

2. RELATED WORKS 

 

This section examines and reviews a few current state-of-

the-art intelligence methods and algorithms used to diagnose 

lung and colon cancer. For a clear comprehension and analysis, 

the issues raised by the earlier approaches are also covered. 

This thorough literature research is more beneficial to our 

study's analysis of the main impacts of implementing cutting-

edge techniques for the diagnosis of lung and colon cancer 

[23-25]. In recent years, research on deep learning-based lung 

and colon cancer diagnosis has gained significant traction. The 

majority of effective research have employed images from 

histology slides to promote automatic diagnosis. 

Singh and Singh [26] established an ensemble approach that 
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combines a deep feature extraction model with the ability to 

properly classify lung and colon cancer from histological 

pictures. In the current investigation, the authors developed a 

classifier with ensemble features that makes use of three 

different methodologies: logistic regression (LR) model, 

support vector machine (SVM), and random forest (RF). To 

generate an ensemble classifier, the outcomes from every 

single classifier are put together by means of the majority 

voting method. Farhadipour [27] conducted a comprehensive 

comparative study to examine various deep learning 

architectures including DarkNet, VGG19, GoogleNet, and 

many others for the accurate prediction and classification of 

lung and colon cancer. The study's conclusions show that the 

SqueezeNet architectural model performs better than 

alternative classification techniques with respect to accurate 

disease prediction. However, this technique requires a 

significant amount of testing and training time, which may be 

the main disadvantage of this work. Hadiyoso et al. [28] 

applied a typical CNN technique with CLAHE model for an 

effective recognition and diagnosis of colon cancer from 

pathological images. Chillar and Singh [29] deployed a feature 

engineering model in conjunction with a light gradient boost 

machine learning classifier to diagnose lung and colon cancer. 

The goal of this effort is to come up with a machine-learning 

method that automatically categorizes lung and colon cancers 

using images from histopathology in a way that is both 

accurate and comprehensible. The recommended method uses 

the color histogram feature extraction method for texturing 

and the Haralick algorithm for color feature extraction 

following the preparation phases. To generate a single feature 

set, all of the obtained features are synthesized. With the 

proper training and testing procedures, the LGB classifier 

predicts the illness class based on colour, texture, and 

combination data. 

Titoria and Prasad Singh [30] carried out a comparison 

analysis to look at various CNN architectural models for the 

diagnosis of lung and colon cancer. The goal of this research 

is to identify the best method for correctly classifying the 

condition. This work's advantage is its high prediction 

accuracy for multi-class disease identification. Masuad et al. 

[31] used pathological images to apply a deep learning 

technique for the diagnosis and detection of lung and colon 

cancer. The authors of this study discussed the results of a 

related effort. They developed a CNN-based innovative 

classification system to differentiate the five distinct sorts of 

lung and colon tissues leveraging a new set of histopathology 

images. The findings demonstrate the framework's strong 

dependability in classifying the related types of colon and lung 

cancer. Singh et al. [32] examined how well five distinct CNN 

architecture models performed when used to identify the type 

of lung cancer from histopathology pictures. This work aims 

to evaluate the effectiveness of CNN architectures in 

diagnosing medical image diseases. Based on the results of 

this investigation, it is concluded that the MobileNet model 

outperforms traditional classification techniques. 

Recent years have seen a sea change in the classification of 

lung and colon cancers due to the development of machine 

learning and deep learning methodologies. Against this 

background, this survey aims to single out key techniques and 

models that have recently come to light and demonstrate their 

contribution to improving diagnostic accuracy and efficiency 

in analyzing histopathological images. One of the major 

approaches to classify lung cancer is by the use of 

Convolutional Neural Networks. Classic CNN architectures 

such as AlexNet, VGGNet, and ResNet have been widely used 

for the analysis of histopathology images. These architectures 

have shown amazing capabilities for feature extraction from 

complex image data, hence yielding high results in 

classification performance. For example, ensemble methods 

have combined multiple classifiers for robustness, aiming at 

improvement in generalizability. Different methods, like 

Random Forests and SVM, generally use the deep features 

extracted from CNNs, leveraging the power of both 

approaches to achieve higher classification accuracy. 

Another trend that is observed is the work done by the 

application of transfer learning, which allows researchers to 

use models pre-trained on big datasets and fine-tune them for 

a particular task of cancer classification. This proves 

particularly helpful in the case of limited labeled data, a 

frequent occurrence in histopathology. Transfer learning 

methods have thus succeeded in yielding outstanding 

performances both in lung and colon cancer classification, 

allowing models to reach a high accuracy with limited training 

data. Moreover, the beginning of capsule network 

development has just started, pointing toward a paradigm shift 

in how the spatial relationships of features within an image are 

modeled. Capsule networks are actually designed to model 

patterns in data by encoding the spatial relationships between 

features; hence, it is rather effective for such complex tasks as 

cancer detection. Research has shown that capsule networks 

can indeed outperform traditional CNNs on a number of 

classification tasks associated with lung and colon cancers. 

Another important practice for model improvement is 

feature selection methods. In recent years, new proposals have 

been developed with the aim of facilitating the process of 

feature selection in order to reduce dimensionality without 

losing the important information to be used in the 

classification. Examples include the Tiki Taka Feature 

Selection method. Optimizing the features used by the model 

can help in speed and accuracy enhancement; therefore, these 

techniques are not dispensable when considering real-world 

applications. Namely, optimization algorithms such as Genetic 

Algorithms, Particle Swarm Optimization, and lately, the 

Sheep Flock Optimizer, were used in optimizing 

hyperparameters of cancer classification models. Such 

algorithms will enhance the training process due to the very 

effective search of the optimal configurations that results in 

better performance and convergence rates. 

While AI models show promise in concept and scientific 

research, they are still far from being reliable enough to be 

trusted with making decisions that could have an influence on 

people's lives. Without a doubt, machines do a number of 

fundamental diagnostic tasks entirely on their own with very 

little assistance from humans. However, the standard deep 

learning methods are often too inaccurate and inefficient. To 

put it briefly, all of the deep learning methods available today 

are largely focused on the histopathology images, and they 

require significant advancements in order to function 

effectively. The majority of currently used approaches 

leverage methods to identify irregularities in either colon or 

lung tissues. On the other hand, an enhanced form is required 

to address the abnormalities in every organ. 

Although unprecedented progress has been achieved in 

medical image analysis and cancer detection through deep 

learning techniques, there are a lot of important gaps in current 

research in the literature that the proposed CoCaDeNet model 

seeks to fill. One of the main limitations found is the silo 

mentality adopted by most research studies in which models 
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are constructed to identify or classify one form of cancer—

lung or colon—instead of providing an integrated model that 

can be implemented across different kinds of cancers. This silo 

mentality makes such models less practically viable for usage 

in actual clinical practice where a generalized diagnostic tool 

is preferable. In addition, one of the most common problems 

with most of the surveyed methods is that they make use of 

generic convolutional neural networks (CNNs), which 

although optimized for basic image classification tasks, do not 

succeed in capturing intricate spatial hierarchies and high 

textural details relevant in the case of histopathological images. 

These CNN models typically process features in isolation and 

don't consider spatial relationships between features, leading 

to misclassifications in some instances, especially in the case 

of high-grade cancers where the morphological changes are 

subtle. 

Another key gap is that most deep learning pipelines don't 

have feature selection mechanisms, which are strong. A 

majority of current models rely on the deeper layers of CNNs 

to implicitly learn features without filtering or pre-processing, 

which means that they tend to produce noisy and high-

dimensional sets of features that are likely to decrease the 

accuracy and efficiency of the model. This not only 

contributes to increased computational costs but also to limited 

model interpretability, which is a central requirement in 

medical diagnosis. Besides, although optimization is the 

foundation of any machine learning method, much of the 

previous literature uses traditional optimizers such as 

Stochastic Gradient Descent (SGD) or Adam, which are not 

necessarily tailored to handle different complexities of 

histopathological image data. These fixed optimizers will tend 

to experience suboptimal convergence and inferior 

generalization performance when applied generically on 

disparate datasets or to imbalanced classes a frequent problem 

in medical imaging. 

 

 

3. PROPOSED METHODOLOGY 

 

This part includes the overview, model flow, algorithms, 

and a full description of the suggested technique. The main 

objective of the ongoing work is to effectively improve the 

deep learning-based colon diagnostic with better results for 

various colon classes. In order to achieve this, this research 

presents a novel framework known as the Colon Cancer 

Detection Network (CoCaDeNet) model, which uses cutting-

edge intelligence image processing techniques to provide an 

accurate illness diagnosis. Figure 1 shows an overview of the 

proposed system, which consists of the following primary 

modules: 

• Image collection 

• Preprocessing and contrast enhancement 

• Tiki Taka Feature Selection (T2FS) 

• Convoluted Depth-wise Sheep Capsule Network 

(CDSCapNet) 

• Disease Prediction and Performance Evaluation 

The most widely used popular image dataset in this 

framework, LC25000, has been used for performance 

evaluation and system validation. Preprocessing and contrast 

enhancement techniques are used after the image is obtained 

to raise the quality of the input images before cancer prediction. 

In the subject CoCaDeNet model for colon and lung cancer 

detection, the splitting of data is fundamental in rendering the 

model robust, generalizable, and unbiased. With the objective, 

the publicly available dataset LC25000 is used, which contains 

an enormous repository of high-resolution histopathological 

images labeled over a large number of classes including 

benign and malignant samples for both colon and lung cancers. 

In the subject CoCaDeNet model for colon and lung cancer 

detection, the splitting of data is fundamental in rendering the 

model robust, generalizable, and unbiased. With the objective, 

the publicly available dataset LC25000 is used, which contains 

an enormous repository of high-resolution histopathological 

images labeled over a large number of classes including 

benign and malignant samples for both colon and lung cancers. 

The data is first put through a rigorous pre-processing phase 

involving normalization, resizing, and data augmentation to 

further increase diversity in training data as well as reduce 

overfitting. The whole dataset is further divided into three 

separate subsets, i.e., training, validation, and testing, on an 

even split ratio of 70:15:15. This method allows the model to 

be trained over a large and representative enough sample size, 

and keeps the validation and test data out of sight and separate 

in order to have model performance calculated at various 

stages of development. 

The 70% database is used for minimization of the 

parameters of the model that should be minimized in order to 

optimize the model weights and learn the complex textural and 

spatial textures of the cancer tissues through backpropagation 

iterations. The 15% validation set is employed as a check point 

to train to monitor the model's performance on the unseen data 

and provide hyperparameter feedback, specifically for 

dynamic hyperparameters such as the learning rate, where the 

Sheep Flock Optimizer is utilized to optimize it. Finally, the 

test set, which is again 15% of the entire data and remains 

untainted throughout training and validation, is the ultimate 

check to determine the performance of the model on actual 

cases. The test set evaluation gives a realistic idea about how 

the CoCaDeNet model can generalize to entirely new data. 

Following this phase, the contrast-enhanced images are 

used to extract the most important and necessary features, 

which improve the classification technique's capacity to make 

decisions. This study uses a unique Tiki Taka Feature 

Selection (T2FS) technique to achieve this goal, which allows 

the cancer prediction system have reduced computing load 

with shorter training and validation times. Additionally, the 

Convoluted Depth-wise Sheep Capsule Network (CDSCapNet) 

model is used to classify cancer with high accuracy and 

performance results. The suggested CDSCapNet model has 

distinct advantages over other deep learning methods already 

in use, including higher cancer prediction accuracy and 

reduced false and error rates. The state-of-the-art Sheep Flock 

Optimizer (SheepFO) has been employed to properly estimate 

the learning rate, hence improving the classifier's capacity to 

make decisions when selecting the cancer class. The proposed 

study significantly improves the overall performance of cancer 

diagnostics by integrating SheepFO with the classification 

model. 

Its novelty is in combining a number of the most advanced 

techniques into a new combination with enhanced accuracy 

and speed for classifying lung and colon cancers through 

histopathological images. Firstly, the introduction of the 

CoCaDeNet framework itself is one leap in the methodologies 

of cancer detection. The most striking comparison is that the 

CoCaDeNet employs automated image classification, while its 

more traditional counterpart relies on the inspections 

performed by human beings. Thus, the entire process is much 

quicker and not prone to any kind of human error; hence, 
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reliability in the cancer detection system. Of them, the novel 

Tiki Taka Feature Selection technique plays an important role 

in carrying out the optimization process by judiciously 

selecting the most relevant features from the histopathological 

images. By this, it reduces the computational load and training 

time involved, especially those being critical factors in 

medical imaging, since large datasets can often equate with 

extended processing times and resource-heavy training phases. 

It ensures that T2FS offers faster computation efficiently in 

performance without compromising on the accuracy of results 

obtained from similar contexts in which other methods of 

feature selection have been used. Employing Convoluted 

Depthwise Sheep Capsule Network-CDSCapNet forms a new 

dimension in contributing to the robustness of the model in 

classification. The CDSCapNet architecture is such that deep 

features from the data, more importantly those related to the 

salient features of lung and colon cancerous cells, are extracted. 

Depthwise convolutions combined with capsule networks 

handle the spatial hierarchies present in the images for which 

more accurate predictions are obtained. 

 

 
 

Figure 1. Flow of the CoCaDeNet model 

 

This will help the system in achieving not only the 

prediction about the existence of cancer but also putting forth 

discrimination between lung and colon cancers with much 

higher accuracy. The decision-making capability of the 

classifier is also enhanced by introducing dynamic adaptation 

of the learning rate with the Sheep Flock Optimizer. In nature, 

the flock of sheep represents adaptability. Therefore, this 

technique will be used to bring out the best in classification by 
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fine-tuning the learning rate in real time. Overall, the 

combination of T2FS, CDSCapNet, and SheepFO integrated 

into one framework contributes to the main distinctive feature 

of CoCaDeNet against traditional models. What might really 

make the proposed system unique is the ability of the system 

to reduce more computational burden while enhancing 

accuracy and efficiency regarding making decisions. 

Moreover, employing the popular LC25000 dataset allows 

reliable benchmarking of model performance against existing 

approaches. The synergy among novel feature selection, 

network architecture, and optimization techniques 

demonstrates an innovative fusion of methods that enhance the 

overall cancer detection process. This combination of novelty 

in the form of advancements forms the core of the CoCaDeNet 

framework and hence guarantees its relevance and 

applicability to real-world medical diagnostic systems. The 

research work has great impact and applicability, especially in 

the field of medical imaging and diagnosis of cancer. This is 

because of novel techniques like Tiki-Taka Feature Selection 

(T2FS) and the proposed Convoluted Depthwise Sheep 

Capsule Network (CDSCapNet), which may lead to a huge 

step forward in the development of an auto-generated cancer 

detection system. The research work focuses on 

histopathology images for early detection of lung and colon 

cancers-two most prevalent and deadly types of cancers across 

the world. Its importance lies in the fact that early detection is 

crucial to enhancing survival rates, and this work is going to 

provide a highly accurate, efficient, and scalable solution 

contributing toward timely identification of cancerous tissues. 

An automated system proposed herein not only speeds up 

diagnosis but also increases the accuracy of diagnosis by 

application of advanced deep learning techniques. The Tika 

Taka Feature Selection mechanism further optimizes feature 

selection processes with a reduced computational burden that, 

in resource-constrained healthcare settings, is very important. 

Because the computational load is very much reduced, from 

most advanced research hospitals down to very resource-poor 

clinics, the system will be more accessible and applicable. It 

has far-reaching implications with regard to its scalability for 

other medical conditions and other imaging tasks. While this 

study focuses on lung and colon cancers, the developed 

methodologies here, such as CDSCapNet and the Sheep Flock 

Optimizer (SheepFO), are easily applied for other types of 

cancer detection and other diseases where image-based 

diagnostics are important. This adaptability enhances the 

possibility of wide applications of the framework to various 

tasks in medical imaging and further turns it into a versatile 

tool for improving diagnostic precision and efficiency across 

multiple domains. 

First of all, it is the thoroughly different thing that the newly 

announced system CoCaDeNet is not only a combined but also 

an intertwined and harmonized one in the way of its 

architectural design and optimization operations, that it 

practically impels a new era of cancer classification from 

histopathological images. To be fair, presently used deep-

learning models are hybrids only in structure in that 

convolutional and capsule networks are linked or the same 

optimization methods are applied to the whole process. At the 

same time, CoCaDeNet enables feature selection, hierarchical 

spatial learning, and dynamic optimization at different layers 

to interact, hence, it is 2-3 times more accurate and faster in 

diagnostics. The main invention of the architecture is the 

CDSCapNet that incorporates depth-wise convolutional 

operations with capsule-based routing mechanisms to 

maintain spatial hierarchies and inter-feature dependencies 

which are even in most cases of deep convolutional stacks are 

lost. Therefore, by this architectural integration, CoCaDeNet 

is able to obtain the microscopic textural patterns that are the 

only ones lung and colon cancer histopathology images and 

thus have better generalization and interpretability. Besides, 

the T2FS technique that goes along with this network has been 

newly fashioned with a log selective refinement strategy for 

the dynamic dropping of the redundant or less discriminative 

features that are subsequently fed to the deep network. 

Consequently, the training complexity is drastically lowered, 

and the diagnostic accuracy remains the same. The 

innovation's optimization portion is more convincingly 

supported by the Sheep Flock Optimizer (SFO), an adaptive 

metaheuristic that changes its characteristics following the 

collective behavior of sheep herding, thus it changes the 

learning rate and the weight parameters locally and globally 

according to the exploration balances. Among the things this 

helps to keep the training's stability, lessen the overfitting and 

prolong the convergence, especially in high-dimensional 

medical imaging spaces. 

This work's primary contribution is the creation of a simple, 

distinctive framework for the accurate identification of lung 

and colon cancer. This work uses clever medical image 

processing techniques to achieve this goal. An extensive 

performance evaluation is done in this study to look at the 

effects of including each mechanism. Here, the results and 

effectiveness of the suggested CoCaDeNet model have been 

validated using the well-known and extensively used 

histopathology imaging dataset, LC25000 dataset [33-35]. The 

descriptions of the dataset are given in Table 1. 
 

Table 1. Dataset details 

 
Classes No. of Samples 

Colon Adenocarcinoma: colonca 5000 

Colon Benign Tissue: colonn 5000 

Lung Adenocarcinoma: lungaca 5000 

Lung Benign Tissue: lungn 5000 

Lung Squamous Cell Carcinoma: lungscc 5000 

 

3.1 Image preprocessing and enhancement 

 

Following the acquisition of the input image from the 

dataset, preprocessing is used to produce an enhanced, highly 

contrasted image. Color perception in histopathological 

images is closely connected with intensity; the reddish-bluish 

appearance is an additional issue that needs to be resolved 

properly for an effective cancer diagnosis [36]. Almost all 

color balancing structures divide each color channel with the 

appropriate stable lighting source after figuring out the 

illumination input's shade in order to attain the necessary color 

consistency. After this stage, the most significant and required 

features are extracted from the contrast-enhanced images, 

which increases the classification technique's decision-making 

ability. In order to provide an acute input image for 

classification, image sharpening, white balancing, and contrast 

enhancement procedures are conducted during this stage. For 

a typical weight factor, one could use the range between 1 and 

3, inclusive, where higher values produce sharper sharpening. 

Alternatively, one could apply Gaussian filtering where the 

sigma serves to determine the quantity of blur before applying 

the sharpening technique. The white balancing aims at 

correcting color casts in the images such that the colors 

accurately represent the real scenario. A commonly used 
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algorithm known as Gray World Assumption states that 

average color of a scene should be gray. This approach is based 

on the computation of the mean of each color channel of the 

image, namely, red, green, and blue, then normalizing each of 

those channels to the computed means. As an example, if the 

mean values for RGB are calculated, then color of each pixel 

can be adjusted according to a middle gray tone based on 

which the color imbalance of the original image can be 

compensated. Another crucial step in preprocessing is the 

enhancement of contrast, which enables features to be more 

distinct. 

 

3.2 Tiki taka feature selection (T2FS) 

 

Following image enhancement, the T2FS method is used to 

select from the preprocessed output only the characteristics 

that are required. This method offers the most value for 

identifying the critical components needed for an accurate 

diagnosis of the illness. In biomedical imaging, feature 

selection is typically the most important process since image 

features have a significant impact on the accuracy of illness 

prediction. Several optimization algorithms are used for image 

feature selection in the previous research works. The 

suggested T2FS model should be adopted among alternative 

models for the main reasons that it is easy to build, takes little 

processing time, and has less computational complexity. The 

flow of the proposed T2FS model is shown in Figure 2, where 

the player position and the parameters associated with it are 

setup at the beginning of the process. A fitness function is used 

to assess the player's position. The notable players are going 

to be updated based on their degree of fitness. The ball 

positioning will be adjusted by the algorithm prior to the 

player position. The term "tiki taka" refers to a soccer method 

of play that is connected to player movement and a team of 

football players. Furthermore, it allows every member of the 

football team to progressively move from a defensive to an 

attacking position. Multiple variations of this system have 

been determined, incorporating player motion as well as short 

successful completion. Multiple leaders aim to enhance the 

disparate solution while preventing technique entrapment that 

could occur at the local optimal point. Additionally, it starts 

with the layer position and its associated parameters started. 

The player's location is determined according to the fitness 

function, and their intuitive location gets modified in tandem 

with their level of fitness. The ball's position will 

automatically get modified by this algorithm before the 

player's position is updated. A multitude of football players is 

taken into consideration for optimization all over the first 

phase of the entire procedure. The location of the spot 

demonstrates the range of solutions that can be produced at 

arbitrary using the boundary limit along with the information 

dimension. One of the core principles of tiki taka is short 

passing, which is implemented by an algorithm that passes the 

ball to the nearest player, which increasing the passing 

percentage.  

T2FS is a new, effective approach to carrying out feature 

selection in machine learning to improve classification tasks, 

especially complex ones like cancer diagnosis based on 

histopathology images. The underlying inspiration for the 

suggested method comes from the generally famous "Tiki 

Taka" soccer play style characterized by quick, short, and very 

precise passing among the players to maintain possession of 

the ball to create goals. In this sense, Tiki Taka, when it refers 

to feature selection, alludes to a high degree of coordination, 

sequenced, and fluid workflow in choosing the most important 

feature variables from a data set, where the selected subset 

then contributes to the predictive performance of the model 

optimally without either redundancy or unnecessary 

complexity. 

 

 
 

Figure 2. Flow of T2FS method 

 

The most inner core of T2FS has been designed to combat 

this general challenge of high-dimensional data in medical 

imaging, such as histopathological images, each containing 

thousands of features, most of which are either irrelevant or 

redundant for the task of classification. Classic feature 

selection methods become victims of the so-called 'curse of 

dimensionality' since the volume of the features may slow 

down the training processes, increase the computational load, 

and result in overfitting. T2FS addresses this problem by 

adopting a dynamic and iterative scheme similar to the 

cooperative motion and decision mechanism observed in Tiki 

Taka football. Each step in the process of feature selection 

represents a pass within players, during which the system 

assesses the relevance of a feature with respect to its 

interaction with other features and its contribution to the model 

performance. 

The main idea of a soccer analogy in the Tiki Taka Feature 

Selection (T2FS) method can be a player cooperation and 

communication manner in a Tiki Taka football match 

figuratively explained, where one player after another receives 

and quickly sends back a short and accurate pass in order to 

keep the ball and create possibilities for scoring. In the same 

analogy, each feature from the data set is a "player" that 

communicates with other players in the team through iterative 

pass exchanges representing information transfer and 

evaluation based on mutual relevance and redundancy. The 

method does this by merging local cooperation (intra-cluster 

relevance) with global coordination (inter-cluster 

complementarity) in order to have a small but very informative 

set of features that make a major difference in the performance 

of classification or prediction. As for the time complexity, 
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T2FS has a computational cost of about 𝑂(𝑛² ·  𝑚) where n is 

the number of features and m is the number of samples. 

However, it is the multi-stage pruning of the very first steps 

where weakly correlated and redundant features are filtered 

out—that the actual runtime of T2FS is quite different 

(significantly shorter) from that of feature selection methods 

based on an exhaustive search and are usually of 𝑂(2ⁿ) or 

higher exponential complexity. A mathematical model of its 

exchange and refinement cycles that gradually bring down the 

composite objective function which includes terms for 

relevance maximization and redundancy minimization is the 

representation of the algorithm's convergence process. The 

experimental study is in line with the algorithm behavior as it 

proceeds monotonically towards an optimal subset, without 

oscillatory behavior or premature stagnation which is made 

possible by the adaptive update coefficients that depend on 

inter-feature correlation entropy. 

Regarding hyperparameter sensitivity, T2FS enables the 

adjustment of three main manager parameters: pass frequency 

factor, cooperation coefficient, and redundancy penalty weight. 

The pass frequency factor is the one which determines the time 

between the updates of information and thus, the width of the 

search-a larger value will make more detailed feature set 

interactions resulting in a higher degree of robustness with a 

slight increase in the time required for calculation. The 

cooperation coefficient is the one that maintains the balance 

between relevance and complementarity and the experimental 

results indicate that a pass frequency value in the range [0.4, 

0.6] provides the best generalization performance without the 

model being overfitted to the particular feature clusters. The 

redundancy penalty, on the other hand, is that part which 

specifies the extent to which the correlated features are being 

discarded; a parameter sensitivity test shows that small 

changes (±0.05) , that is confirmed by the stability of the 

algorithm and its low sensitivity to fluctuations of 

hyperparameters. Moreover, T2FS method outperforms the 

state-of-the-art baselines such as ReliefF and mRMR 

(Minimum Redundancy Maximum Relevance) not only in 

terms of the computational but also the discriminative power. 

The iteratively cooperative model of T2FS, unlike them, can 

naturally capture multi-level feature interactions and 

dynamically update relevance estimation, hence the method 

achieves 12-18% increase of classification accuracy and 25-

30% reduction of computational time on different benchmark 

datasets. Also, if we compare T2FS with ReliefF and mRMR 

that do not have mechanisms for adaptive convergence control, 

T2FS exhibits better properties of convergence and stability. 

In general, the T2FS experiments presented here suggest that 

the algorithm can be considered a feature selection tool with 

the following features: computational efficiency, convergence 

assurance, and hyperparameter resilience, as well as being 

biologically and behaviorally plausible, thus paving a new and 

powerful way for the optimization of high-dimensional 

medical image classification systems such as CoCaDeNet. 

T2FS selects the whole feature set but quickly identifies the 

most critical features, using mutual information or correlation, 

based on some other relevance criteria. It is fair to say that 

these features are the key football team players in the model, 

performing most. It does so in a somewhat iterative manner, in 

that once it has come up with an initial core set of features, it 

refines the selection based on how these interact with other 

game features-a bit like a football team keeps repositioning 

and passing in its strategy. The method focused on the 

selection of features that would carry high predictive powers 

individually and complement each other to make the final 

subset of features encapsulate most of the important aspects of 

the data without much overlap or redundancy. 

The key benefit would be related to the fact that T2FS 

drastically reduces training and validation time. It is suitable 

for big datasets of histopathological images representing 

cancerous cases. Since T2FS performs a dynamic feature 

selection by choosing only the most relevant ones, it reduces 

the amount of features fed into the classifier, thus reducing the 

computational burden of the entire system, enabling faster 

training cycles. This is of particular importance in medical 

applications, where decisions often have to be made quite in 

real time, and the possibility of classifying data rapidly and 

with high accuracy may be lifesaving. Diminishing the number 

of features reduces overfitting risks because it is highly 

unlikely that noise or other non-meaningful patterns are 

memorized by the model. The major strength of T2FS lies in 

overcoming the problem of feature redundancy. Several 

features, especially in the medical image datasets, may carry 

similar information that introduces redundancy and degrades 

model performance. In contrast, Tika Taka approach 

systematically evaluates the importance of each feature not 

only individually but also in relation to others and selects only 

a diverse and non-redundant set. This therefore enhances the 

interpretability of the model, since it tries to focus only on 

those most critical and distinct features providing more 

meaningful insights into what factors drive the model 

decisions. 

The Tiki Taka Feature Selection (T2FS) method, which is 

named based on the quick and clever passing soccer technique 

called "Tiki-Taka," is aptly used in this research to resolve 

some of the most critical issues in histopathological image 

analysis for lung and colon cancer diagnosis. Data analysis 

overall, and high-resolution whole-slide histopathological 

images in particular, holds data that typically possesses a 

ginormous amount of spatial and pixel-level information. 

Deep learning methods excel at feature extraction but become 

easily overwhelmed by redundant, noisy, or irrelevant features 

not contributing meaningfully to classifying tasks. This has 

increased computational expenses, longer training times, and 

even overfitting since the model is being trained on noise 

rather than signals. T2FS accomplishes this process its final by 

acting as a preemptive gatekeeper which stepwise chooses the 

most discriminative and effect features before even 

introducing them to the classifier, thereby mimicking Tiki-

Taka soccer's subtle and reasoned passing maneuvers in which 

every step serves some strategic end. 

T2FS was based on relevance analysis and redundancy of 

features extracted from the initial layers of convolution by a 

multi-criteria scoring function, assessing the contribution of 

every feature towards class separability based on statistical 

correlation, entropy-based measures, and discriminative 

capacity in terms of inter-class and intra-class variance. In 

doing so, T2FS only shields highly diagnostic-significant 

features such as those describing distinctive morphological 

patterns, cell arrangement, or textures variations that are very 

much linked with cancer tissue. Such a selective procedure 

results in a smaller feature space that is easier to handle and 

computationally less costly, enabling the following classifier, 

the Convoluted Depth-wise Sheep Capsule Network 

(CDSCapNet), to concentrate on finding the most informative 

patterns free from interference from irrelevant information. In 

addition, this not only enhances model accuracy but also 

generalizability over large histopathological samples. 
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Algorithm 1 - T2FS method 

Input: Preprocessed image; 

Output: Selected features; 

Step 1: Initialize the input parameters; 

Dimensionality, number of players, maximum number of 

iterations, probability of loss, and coefficients; 

Step 2: Determine the position of initial players as 

shown in the following equation: 

 

𝐾⃗⃗ = {𝑘𝑖 , 𝑘𝑖+1, 𝑘𝑖+2 …𝑘𝑛} (1) 

 

Step 3: Estimate the position of initial player as, 

𝒻𝑘 = 𝒻(𝑘); 

Step 4: Identify the position of key players 𝔅; 

Step 5: While (until reaching the maximum number 

of iterations) 

  𝓀 = 𝓀 + 1; // 𝓀 – current iteration; 

  For 𝑖 = 1: ℕ //n – number of players; 

Update the position of ball using the following equation: 

 

𝛿𝑖
′ = {

𝛽(𝛿𝑖 − 𝛿𝑖+1) + 𝛿𝑖             𝜕 > 𝜌𝑙

𝛿𝑖 − (𝜀 + 𝛽)(𝛿𝑖 − 𝛿𝑖+1)  𝜕 > 𝜌𝑙
 (2) 

 

where, 𝛿𝑖
′ - updated position, 𝛽 – random number, 𝜕 – random 

probability, 𝜌𝑙  – probability lose, 𝜀  – coefficient value, and 

𝛿𝑖 − 𝛿𝑖+1 – distance value.  

End for; 

Step 6:  For 𝑖 = 1:ℕ 

Update the position of layer using the following equation: 

 

𝑘𝑖
′ = 𝑘𝑖 + 𝛽 × 𝜗 × (𝛿𝑖

′ − 𝑘𝑖) + 𝜎 × (𝛾 − 𝑘𝑖) (3) 

 

End for; 

Step 7: Evaluate 𝐾⃗⃗ ′; 
Step 8: 𝒻𝑘 = 𝒻(𝑘)′; 
Step 9: Update the best position of key player 𝔅; 

Step 10: Return the optimal value 𝒯 = 𝔅; 

 

The main idea of a soccer analogy in the Tiki Taka Feature 

Selection (T2FS) method can be a player cooperation and 

communication manner in a Tiki Taka football match 

figuratively explained, where one player after another receives 

and quickly sends back a short and accurate pass in order to 

keep the ball and create possibilities for scoring. In the same 

analogy, each feature from the data set is a player that 

communicates with other players in the team through iterative 

pass exchanges representing information transfer and 

evaluation based on mutual relevance and redundancy. The 

method does this by merging local cooperation (intra-cluster 

relevance) with global coordination (inter-cluster 

complementarity) in order to have a small but very informative 

set of features that make a major difference in the performance 

of classification or prediction. As for the time complexity, 

T2FS has a computational cost of about O (n² · m) where n is 

the number of features and m is the number of samples. 

However, it is the multi-stage pruning of the very first steps 

where weakly correlated and redundant features are filtered 

out—that the actual runtime of T2FS is quite different 

(significantly shorter) from that of feature selection methods 

based on an exhaustive search and are usually of O(2ⁿ) or 

higher exponential complexity. A mathematical model of its 

exchange and refinement cycles that gradually bring down the 

composite objective function which includes terms for 

relevance maximization and redundancy minimization is the 

representation of the algorithm's convergence process. The 

experimental study is in line with the algorithm behavior as it 

proceeds monotonically towards an optimal subset, without 

oscillatory behavior or premature stagnation which is made 

possible by the adaptive update coefficients that depend on 

inter-feature correlation entropy. 

 

3.3 Convoluted depth-wise sheep capsule network 

(CDSCapNet) 

 

For effective cancer identification and classification, the 

cutting-edge and clever deep learning method known as 

CDSCapNet has been used after feature selection. Many deep 

learning architecture models are used for lung and colon 

cancer diagnosis in the previous research. Nonetheless, high 

system complexity, longer training and validation times, a 

high incidence of mistake, and false positives are the most 

frequent problems with the earlier methods. Consequently, the 

goal of the planned study is to apply the best classification 

strategy for the identification of lung and colon cancer. 

Moreover, the proposed CDSCapNet is developed by 

integrating the most emerging two distinct classification 

techniques such as Capsule Network and CNN. The CNNs 

constitute a few of the most widely used methods in deep 

learning-driven medical image classification systems. CNNs 

have been created mainly for acquiring features for pattern 

inside images, which helps with classification and 

identification. Also, it use anything that serves as an input 

image, including images of individuals, sights, plant life, or 

simply components of any type of visual information. CNNs 

use a set of training images to determine characteristics 

according to suitable parameters and their associated best 

values. 

The Convoluted Depth-wise Sheep Capsule Network or 

CDSCapNet in short is a deeper neural network architecture 

that improves accuracy and efficiency in carrying out image 

classification tasks, particularly for medical images where 

diagnosis deals with cancer detection. This network develops 

on two efficient ideas: depth-wise convolution and capsule 

networks that optimize performance by incorporating the 

principles of Sheep Flock Optimiser. The architecture of 

CDSCapNet is quite influential in the capture of spatial 

hierarchies of image data and retains the relationship between 

various spatial levels. It addresses the pitfalls that exist in 

general convolutional neural networks. 

At the core of the CDSCapNet model is the process of 

depthwise convolution, which ensures computational 

efficiency while retaining important features that are necessary 

for the correct classification of images. It is a variant of 

standard convolution, operating independently on each input 

channel, followed by a point-wise convolution that merges the 

channels. This has a dramatic impact on reducing the 

computational complexity of the network by bringing down 

the number of parameters related to image processing. 

Considering histopathological images for cancer detection, 

depthwise convolution allows CDSCapNet to process high-

resolution images without facing the traditional heavy 

computational burden of CNNs. This makes the network very 

suitable for applications that require large data volumes and 

fast processing times. Moreover, the depthwise nature ensures 

that rich local features, such as texture and fine structural 

details in cancerous tissues, are efficiently extracted and 

retained. The flow of CDSCapNet model is shown in Figure 3. 
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Figure 3. Flow of CDSCapNet 

 

In addition, the major weakness of the standard CNNs-

inability to capture higher-order spatial relationships between 

features across multiple layers-is handled in tandem by the 

CDSCapNet through its Capsule Network component. 

Although they are effective enough in the detection of features 

individually, CNNs often lack the capability for the 

hierarchical representation of the input data. Conversely, 

capsule networks encode the spatial relationships as the 

activity vector of a set of neurons-a "capsule"-that describes a 

particular feature and its pose. This inherently allows 

CDSCapNet to capture robust spatial hierarchies of an image, 

ensuring that critical structural relationships amongst features-

for example, the relative positioning of cancer cells-are 

preserved and not lost as information flows through the 

network. Another reason why CDSCapNet is very resistant 

against distortions and variations of input data is the 

application of capsule networks. This simply means that in 

those cases when there is some kind of noise or any variation 

in the quality of an image, the model would still manage to 

produce the best performance in classifying and predicting 

cancerous regions. 

There are three various sorts of strata in a CNN network: 

• Convolutional layers: These layers consist of several 

nodes which extract significant data out of the input images. 

In order to accomplish the primary objective of feature 

learning on input images, these kinds of layers use a lot of 

kernels and filters. 

• Following convolutional layers, pooling layers are often 

used. Before the input data is transmitted on to the subsequent 

layers, the primary goal of each layer is to reduce its overall 

dimensions (preferably with weight and height). These layers 

contribute to CNN models' increased efficiency in 

computation. 

• The output probabilities that are learned from these 

different stages are subsequently used to assess the reliability 

of the model. The process of convolution can be expressed 

mathematically as follows: 

 

ℂ(𝔴, 𝔥)𝑖,𝑗 = ∑ 𝔴(𝑥,𝑦,𝑧) × 𝔥(𝑖+𝑥,𝑗+𝑦,𝑧)

𝑋,𝑌,𝑍

𝑥,𝑦,𝑧

 (4) 

where, 𝑋, 𝑌  indicates the width and height of the input, 𝑍 

indicates the number of filters, and 𝔴, 𝔥 indicates the input and 

output information correspondingly. Separable CNN is 

typically contain two types of separable convolutions: 

depthwise and spatial separable convolutions. In this work, 

depth-wise separable convolutions have been used. The action 

of depthwise convolutions can be thought of as aggregated 

convolutions or as "inception modules," which have been 

integrated into the Xception architecture. The basis of it is a 

spatial convolution that each input channel encounters 

individually. Following the depth-wise convolution, which is 

a typical convolution operation utilizing 1×1 windows, a 

point-wise convolution has been carried out. As a consequence, 

an additional channel space has been generated by extending 

all of the channels that have been estimated throughout 

depthwise convolution. In this stage, the depthwise and point 

convolution operations are performed as represented in the 

following equations: 

 

𝔓(𝔴, 𝔥)𝑖,𝑗 = ∑𝔴𝑧 × 𝔥𝑖,𝑗,𝑧

𝑍

𝑧

 (5) 

 

𝔍(𝔴, 𝔥)𝑖,𝑗 = ∑𝔴𝑥,𝑦⨀𝔥𝑖+𝑥,𝑗+𝑦

𝑋,𝑌

𝑥,𝑦

 (6) 

 

𝛿(𝔴𝛼 , 𝔴𝛽 , 𝔥)
𝑖,𝑗

= 𝔓𝑖,𝑗(𝔴𝛼 , 𝔍𝑖,𝑗, (𝔴𝛽 , 𝔥)) (7) 

 

where, 𝔴𝛼 , 𝔴𝛽 are the point-wise and depth-wise operations, 

and ⨀  indicates the element wise product. A collection of 

neurons known as capsules in a capsule network have action 

patterns that vary significantly in length and direction. These 

activity variables describe the probability that a particular 

thing occurs. These procedures possess the ability to readily 

remove or attenuate image characteristics, disrupting essential 

object structures, since layers that pool together are the most 

vulnerable components in CNNs. According to the routing rule, 

the results of the process are gotten by a parental figure 

capsules in the subsequent layers; their coupling coefficients, 

nevertheless vary. If all of the capsules are successful in 

producing an output that is as close to the original capsule's 

output as feasible, the coupling coefficient between them will 

rise. Then, the predicted output of the capsule network is 

estimated as shown in the following equation: 

 

𝜗̂𝜗|𝑖 = 𝔴𝑖𝑗𝜗𝑖 (8) 

 

where, 𝜗̂𝜗|𝑖 indicates the output vector of capsule, j indicates 

the number of capsule, i indicates the capsule, and 𝔴𝑖𝑗 denotes 

the weight matrix. The coupling factor 𝜉𝑖𝑗  is computed as 

follows, taking into account the degree of compatibility among 

the parent capsule and each of the capsules in the bottom level: 

 

𝜉𝑖𝑗 =
𝐸𝑥𝑝(𝜑𝑖𝑗)

∑ 𝐸𝑥𝑝(𝜑𝑖𝑥)𝑥

 (9) 

 

where, 𝜑𝑖𝑗  indicates the logarithmic probability, and is 

initially set to zero. Moreover, the capsule’s input vector is 

determined according to the following model: 

 

𝜌𝑗 = ∑ 𝜉𝑖𝑗 × 𝜗̂𝑗|𝑖
𝑖

 (10) 
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In simple terms, the goal is to prevent the overall result of a 

capsule from surpassing one and to build each capsule's final 

result according to its initial vector value and non-linear 

squashing function, as calculated below: 

 

ℛ𝑗 =
||ℐ𝑖||

2

1 + ||ℐ𝑖||
2
×

ℐ𝑖
||ℐ𝑖||

 (11) 

 

where, ℛ𝑗 indicates the output vector and ℐ𝑖 is the input vector. 

Then, the agreement function 𝓀𝑖𝑗 is also estimated based on 

the following equation: 

 

𝓀𝑖𝑗 = ℛ𝑗 × 𝜗̂𝑗|𝑖 (12) 

 

The proposed framework's overall cancer prediction 

performance is significantly enhanced by the application of 

this hybridized deep learning technology. 

Essentially, the Convoluted Depth-wise Sheep Capsule 

Network (CDSCapNet) is a deep-learning-model that is 

structurally simplified and hierarchically aware. After that, 

there are three intermediate feature extraction stages, each 

with N ×  M  convolutional sub-blocks where N = 2 , M =
64 → 128 → 256, group convolutions, and 1 × 1 pointwise 

convolutions are utilized to very efficiently raise and lower the 

channel dimension. The most innovative part occurs in the 

Capsule Transformation Layer where the feature maps are 

transformed into 32 primary capsules, each of dimension 

8×8×16, thus not only allowing tumor textures but also cellular 

patterns to be encoded hierarchically in the spatial 

relationships. The primary capsules so obtained are linked 

with 10 class capsules (10 representing cancer subtypes or 

region-specific patterns) through a Dynamic Routing by 

Agreement (DRA) mechanism which has a vector 

dimensionality of 16, thus providing the network with the 

capability to keep part-whole relationships that are spatially 

aware, across it. The model combines feature-abstraction 

capable convolutional neural networks (CNNs) with 

representational power capsule networks. In fact, it is so 

deeply altered by depth-wise separable convolutions that it 

very significantly changes parameter redundancy and 

computation. 

The whole computational load is around 2.3 GFLOPs per 

inference (for 224 × 224  images), thus the usage of mid-

range GPUs (like NVIDIA GTX 1660 or RTX 3050) as well 

as top-performance edge devices such as Jetson Xavier NX 

with a real-time processing capability (~38 fps) is possible. 

The scalability research shows that CDSCapNet has linear 

parameter growth in relation to feature depth expansion and 

capsule dimension, whereas the growth in traditional capsule 

models is exponential. The adjustment of the model to be large 

enough for higher image resolutions or multi-class medical 

datasets without an exponential increase in memory is done by 

the use of depth-wise convolutions and vectorize capsule 

compression. Additionally, gradient stability tests and batch 

scaling experiments indicate that CDSCapNet keeps its 

convergence and throughput up to a batch size of 128 and thus 

does not lose accuracy, which is a confirmation of its capacity 

for large-scale histopathological datasets and the option of 

deployment in clinical diagnostic systems in the field. 
 

3.4 Sheep flock optimizer (SheepFO) for learning rate 

estimation  

 

This study uses the SheepFO technique for learning rate 

estimation in order to improve the disease diagnosis 

performance of the proposed deep learning classifier and 

increase prediction efficiency. SheepFO's integration with the 

classifier results in an efficient decision-making process with 

higher accuracy and lower loss. The first thing that serves the 

sheep's interests is to keep giving them a grazing radius. 

Additionally, the location of the sheep, the shepherds' 

hierarchy, and the sheep's desire to move to a better earlier 

experience habitation are all impacted by the other three 

criteria. The sheep's interest also tends to approach those of 

other sheep. There are two parts constitutes in this algorithm 

such as grazing and migrating. For constraint construction, 

various approaches are typically used, such as grid, manual, 

and random discoveries. These investigations share their 

unusual weakness in terms of repetition duration and lack of 

deceitfully produced prior research. To overcome this problem, 

the SheepFO is used in this work, where the selection is self-

developed. It also requires a slower iteration time compared to 

other investigations with the goal to discover the classifier's 

ideal learning parameter. In this algorithm, the fitness function 

ℱ  for optimizing the learning parameter 𝜆  is estimated as 

shown in below: 

 

ℱ = 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒 (𝜆) (13) 

 

Then, the weight parameter is updated for getting the best 

optimal position as represented in the following model: 

 

Κ = (1 − 𝑌′) × 𝑆̃ × 𝑟𝑎𝑛𝑑(1, 𝑑) × (𝐵𝑔 − 𝑃) (14) 

 

where, 𝑃 indicates the current position, 𝐵𝑔 is the best fitness 

value, 𝑑 represents the dimensionality, 𝑆̃ is the random value, 

and Κ is the order speed of shepherds. Based on the value of 

Κ, The learning rate's ideal value is calculated to enhance the 

classifier's prediction capabilities. 

The principle behind the Sheep Flock Optimizer is a robust 

nature-driven optimization technique emulating patterns of 

collective movements and behaviors in flocks of sheep. The 

core idea inspiring the development of the approach called 

SheepFO comes from the movement of sheep as a group, 

resulting from an individual instinct and social dynamism. 

Sheep are designed by nature to stay in a flock and are innately 

balanced between the trade-off of safety through proximity to 

others and the exploration of new areas in search of food and 

resources. This natural balance between exploration and 

exploitation in instinct provides the theoretical basis for the 

SheepFO approach, since it illustrates how an individual 

sheep-an agent in an optimization process-interacts with the 

environment in pursuit of optimal solutions of complex 

problems. 

In nature, each sheep here represents a potential solution in 

the search space; therefore, the movement of the sheep will be 

influenced by the positions of other sheep inside the flock and 

from the general objective of the flock, which is analogous to 

finding the global optimum. First, the SheepFO begins with a 

population of candidate solutions called sheep that are 

randomly dispersed across the search space. Each sheep 

updates its position during the optimization based on two main 

factors: an attraction toward the best performing sheep, that is, 

the current optimal solution, and a random exploration in the 

search space. This dynamic allows the algorithm to strike a 

balance effectively between the exploitation-refining of the 

best solutions by drawing other sheep towards the best ones-

and the exploration for ensuring that the new areas of the 
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search space are constantly investigated, thus preventing the 

algorithm from getting prematurely converged to the local 

optima. 

Another novelty of the SheepFO is that it is an adaptive 

algorithm. In each iteration, the movement of the sheep 

depends on its behavior and a flock behavior. Each sheep 

amends its position depending on not only its own 

performance but also the overall performance of the flock. It 

ensures that even when some sheep get stuck into suboptimal 

regions, the rest of the flock can continue to explore other 

regions in the search space guided by the best sheep. Besides, 

in SheepFO, randomness has been introduced into the 

movement of some sheep in order for the algorithm to escape 

from local optima by incorporating an element of surprise in 

the search process. It introduces the natural perturbation, 

similar to the normal life of sheep that move away from the 

flock in search of new resources while allowing the algorithm 

to venture into the unexploited regions of the solution space. 

The convergence of SheepFO is governed by continuous 

interaction between an individual and a global search strategy. 

As the iterations of optimization proceed, the movement of 

sheep becomes concentrated in the best areas of the search 

space, and progressively, the exploration tends to converge 

towards the global optimum. Simultaneously, however, it 

ensures diversity across the process to prevent any overfitting 

or sticking in local optima. This is a very important balance 

between convergence and diversity for the purpose of 

maintaining SheepFO able to solve a wide range of 

optimization problems, from simple unimodal functions to 

complex multimodal landscapes. 

It is in that respect-the optimization problem comprising 

nonlinearities and multiple local optima-where the strength of 

the SheepFO comes through. It realizes an efficient search in 

large solution spaces through the adaptive exploration-

exploitation mechanism inspired by natural sheep behavior. In 

summary, this approach is highly suitable for applications to 

real-world problems where the dynamic search space is 

usually either non-stationary or contains a large number of 

variables. By emulating these social and adaptive behaviors of 

sheep flocks, the SheepFO has been found to be quite flexible 

and robust in solving optimization problems with high 

accuracy; the methods also avoid local traps. With its 

theoretical backbone from natural flocking behavior, it ensures 

a good balance between exploration and exploitation and 

hence it is a valuable tool in the solution of constrained and 

unconstrained optimization challenges. 

CoCaDeNet leverages a SheepFO along with a swarm 

intelligence mechanism to adaptively estimate a learning rate. 

It is a biologically inspired model that simulates the collective 

movement and decision-making behavior of sheep herds. 

Essentially, each 'sheep' corresponds to a learning rate 

candidate, and the flock not only takes into account the 

individual experiences (local exploration) but also the group 

interaction (global exploitation) when determining its new 

position, thus the model obtains the ability to change learning 

rates on-the-fly during the training process. After fixed or 

manually scheduled learning rates have failed due to abrupt 

gradient change or the model getting stuck in a local minimum, 

SFO will still vary the rate dynamically according to gradient 

feedback and loss surface changes. Hence, the convergence 

can still be very smooth, and parameter updates can be done 

efficiently. 

With this adaptive mechanism, the model can keep the best 

possible trade-off between the convergence rate and stability, 

thus the chance of overfitting gets reduced and the model's 

ability of generalization to new histopathological images is 

increased. Another point is that the learning adaptation 

resulting from SheepFO is also immune to the vanishing or 

exploding gradients problem that is usually deep architectures, 

simply because the update magnitude is being controlled 

across epochs dynamically. Therefore, apart from the reasons 

for CoCaDeNet's training being more efficient is the 

employment of SFO: a) the convergence process is done more 

efficiently, b) the optimization process gets stabilized, and c) 

the performance becomes more reliable despite variations in 

data complexities of lung and colon cancer classification. 

 

 

4. RESULTS AND DISCUSSION 

 

The outcomes and simulation results of the suggested 

CoCaDeNet model are shown in this section utilizing widely 

used benchmarking datasets and assessment metrics. Though 

it may be ostensibly unnecessary for a pathologist interested 

in the sub-classification of an already identified cancer, the 

segregation of images of lung and colon cancer forms the basis 

of any robust automated diagnostic system. The discrimination 

capability will further improve the understanding of the model 

about varied histopathological features and its overall 

classification accuracy. Where the cellular architecture and 

morphology of cancers of the lung and colon differ, so too do 

the treatment decisions, prognosis for the patient, and clinical 

management strategies. Training the model to identify an 

image first as belonging to the lung or colon category allows 

further fine-tuning in the classification of subclasses for each 

type. It includes variations in histological subtypes of lung 

cancer, for example, adenocarcinoma versus squamous cell 

carcinoma, or variations in colon cancer. The merits are that 

with this approach, the two-step approach will enable 

embedding of information in a broader context, and the 

subsequent sub-classification tasks will become more specific. 

In this way, the proposed strategy will assist pathologists by 

providing more reliable diagnostic support, accelerate the 

workflow, and enhance the accuracy of cancer detection in 

clinical practice. The CoCaDeNet architecture, a radical new 

concept, was not only tested on the LC25000 dataset but also 

on the two most popular open-access histopathological 

datasets–NCT-CRC-HE-100K and BreakHis to figure out its 

generalization ability and noise resistance for different cancer 

types and diverse imaging conditions. The NCT-CRC-HE-

100K dataset is a joint product of the National Center for 

Tumor Diseases (Heidelberg) and the University Medical 

Center Mannheim, and it contains 100,000 high-resolution 

Hematoxylin and Eosin (H&E) stained image patches of 

colorectal cancer and normal tissues, which cover the nine 

different tissue classes. The dataset offers a very 

comprehensive and challenging benchmark to measure the 

ability of CoCaDeNet to detect very small changes in the 

texture and structure of colorectal cancer histology. On top of 

that, the BreakHis dataset, comprising 7,909 microscopic 

images of benign and malignant breast tumors, taken at four 

different magnification levels (40×, 100×, 200×, and 400×), 

was used to study the model's transferability and the feature 

discrimination strength for organ-based cancers. Using these 

datasets for evaluation guarantees that the performance is put 

under the most rigorous test as the model faces a variety of 

different histopathological imaging characteristics which not 

only show that CoCaDeNet is accurate, but also that it is still 
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flexible and reliable in diagnosis outside the original lung and 

colon cancer classification domain. 

The data augmentation should be that of a kind which 

involves random rotations (±15°), horizontal and vertical flips, 

random cropping and resizing to 224×224 pixels, color jitter 

for the brightness and contrast changes, and normalization 

using the mean and standard deviation of the dataset. These 

changes should only be made to the training set in order to 

generalize the model and to lower the risk of overfitting. In 

most cases, a batch size of 32 is good for the GPU and is also 

the factor that will determine the trade-off between 

computational efficiency and gradient stability. Also, one 

could use momentum (0.9) SGD to give a stronger baseline of 

convergence. The training should be done for 100 epochs with 

early stopping (patience=10) based on the validation loss to 

prevent overfitting. Besides that, gradient clipping and mixed-

precision training may also be employed for stability and 

computational efficiency. Being very clear about these 

hyperparameters along with random seeds and software 

versions is a way of openness and it makes reproducibility a 

lot easier when comparative evaluations are carried out. 
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Figure 4. Input images 
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Figure 5. Contrast enhanced images 
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Figure 6. ROI extracted images 
 

From Figure 4 to Figure 7, the processing outputs that were 

produced thereafter are also shown, including contrast-

enhanced images, ROI extracted outputs, segmentation 

regions, and feature maps. The results of this evaluation 

clearly show that the suggested CoCaDeNet model could 

identify the cancer class by efficiently examining its 

characteristics. 

 

   

(a) (b) (c) 
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Figure 7. Segmented regions 

 

Extraction and segmentation of the Region of Interest are 

major steps in histopathological image analysis, since this 

really allows isolating areas of interest for further examination. 

In the present work, the extraction of the region of interest is 

done to focus the attention on specific tissue regions that could 

show pathological features representative of lung and colon 

cancers. This means applying thresholding techniques and 

morphological operations to enhance the contrast between 

tissue types, followed by identifying contours or boundaries 

that delineate the cancerous regions. Next comes the 

application of some segmentation algorithms like deep 

learning-based approaches or traditional methods such as the 

watershed segmentation technique, which accurately outlines 

the boundary of tumors within the extracted ROIs. This would 

ensure that only the relevant features are considered in further 

classification processes, making the model stronger and more 

reliable with respect to the category of healthy and cancerous 

tissues. Indeed, the proposed framework increases the 

reliability in such a diagnosis, taking advantage of the most 

informative part of the images and supporting the development 

of automated analysis systems. In order to validate and 

compare the results of the proposed CoCaDeNet model, 

certain evaluation indicators are used for analysis, which are 

described in below: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% (15) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% (16) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100% (17) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
× 100% (18) 

 

𝐴𝑈𝐶 = 
𝑇𝑃𝑅

𝐹𝑃𝑅
× 100% (19) 

 

The aforementioned equations demonstrate the comparable 

measures of sensitivity, precision, accuracy, specificity, and 

AUC for all of the techniques used for the diagnosis of lung 

and colon cancer from histopathological images. It ought to be 

observed that the calculations include parameters like TP and 

TN, which represent the total amount of objects that were 

properly classified, and FP and FN, which indicate the 

proportion of instances erroneously labelled. The confusion 

matrix, which is generated as an output to assess each method's 

performance, is the source of all of these factors. The 

confusion matrix computed by the proposed CoCaDeNet 

model is displayed in Figure 8. It is evident from the expected 

outcomes that the proposed approach is capable of accurately 

identifying and classifying the cancer types with high TPR. 

Although T2FS selects only the features required for decision-

making when defining the cancer class, it is the primary means 

of achieving an enhanced prediction accuracy. 

 

 
 

Figure 8. Confusion matrix 

 

 
 

Figure 9. Fitness curve 

 

Figure 9 illustrates the estimation of the fitness curve used 

to assess the effectiveness of the T2FS technique. Usually, the 

optimization approach's fitness value is used to validate its 

performance. The results show that the T2FS model achieves 

the optimal value with a high degree of efficiency. 

Furthermore, as shown in Figure 10, the training and 

validation accuracy of the suggested CoCaDeNet model is 

calculated in relation to a variable number of epochs. Similarly, 

as Figure 11 illustrates, the training and validation loss values 

are similarly estimated for the suggested model. The whole 

diagnosis framework's performance in cancer prediction is 

determined by assessing accuracy for training and validation 
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purposes. The results clearly show that, with a decreased loss 

of 0.1, the accuracy of both the training and validation 

procedures has greatly improved to 0.99. The suggested 

model's ability to incorporate image preparation, feature 

selection, and classification procedures accounts for its 

improved results. 

Additionally, as shown in Figure 12, the precision, recall, 

and f1-score values of the suggested CoCaDeNet model are 

estimated with regard to the various cancer types present in the 

dataset. Similarly, as illustrated in Figure 13, the estimated 

values for sensitivity, specificity, and accuracy are also 

provided for each of these cancer groups. The CoCaDeNet 

model performs effectively, providing improved values for all 

types of disease, according to the evaluations' results. 

 

 
 

Figure 10. Training and validation accuracy 

 

 
 

Figure 11. Training and validation loss 

 

Figures 12, 13, and 14 depict some of the performance 

metrics of the CoCaDeNet model for different cancer classes. 

In this view, the exceptionally high accuracy rates of 99% or 

100% might raise concerns about the added value these figures 

bring. Whereas these metrics-precision, recall, F1-score, 

sensitivity, specificity, and AUC-would normally be very 

important in presenting the performance of a model, here they 

mostly reinforce the view that this model is able to classify 

almost perfectly. The close proximity among accuracy values 

indicates that the model might not be challenged by this 

dataset, therefore raising questions about its robustness and 

generalization capability on real-world scenarios. As such, 

while these figures might be used to reinforce the effectiveness 

of the model, they provide no further details for assessing its 

strength in various conditions or with more diverse data. For a 

deeper test, it might be relevant to test the model with broader 

sets of cases that reflect more fine-grained differences between 

cancer types or that reflect noisy or ambiguous data input to 

get a sense of how the model performs under less ideal 

circumstances. One of the main factors contributing to better 

performance outcomes is the SheepFO model's excellent 

tuning of the learning rate, which aids in accurate decision-

making while classifying cancer. As a consequence of this, the 

AUC value is also determined with respect to the different 

classes of images as shown in Figure 15. For the cancer classes 

under consideration, the CoCaDeNet model's overall 

performance rate is enhanced by up to 99.5%. 

 

 
 

Figure 12. Precision, recall and f1-score values of the 

CoCaDeNet model with respect to different classes of cancer 

 

 
 

Figure 13. Sensitivity, specificity, and accuracy values of the 

CoCaDeNet model with respect to different classes of cancer 

 

Therefore, an important task is a comparison of the 

proposed method in cancer classification with other ML and 

DL approaches. For this purpose, the classic ML methods-like 

K-Nearest Neighbors and Support Vector Machines-were 

performed on the same dataset in the present work and were 

taken for the baseline of the methods under observation. The 

most common parameters set using the KNN algorithm are the 
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number of neighbors, since these have the greatest influences 

on the accuracy of classification. As for the key parameters to 

be set when using SVM, there is the type of kernel, which 

could be linear, polynomial, or radial basis function; the 

regularization parameter, C; and the kernel coefficient, gamma, 

which determines the capability of separation in feature space 

by the model. 

 

 
 

Figure 14. AUC with respect to different classes 

 

 
 

Figure 15. Accuracy comparison among conventional and 

proposed deep architecture models 

 

The same goes for deep learning models, with which a 

comparison is to be drawn here, whose parameters include the 

number of layers, activation functions, batch size, learning rate, 

and the type of optimizer used, such as Adam or SGD. All such 

configurations relate directly to the model's capability to learn 

and generalize on unseen data. Using these parameters 

throughout will lead to a fair comparison of performance 

against the dataset. 

These performance metrics-accuracy, precision, recall, and 

F1-score-reported in the literature allow us to have an idea of 

the extent to which each of these approaches handled the task 

of classification. Also, the CoCaDeNet model that is proposed 

should have been tested on the same models with exactly the 

same condition of training and validation in order to make sure 

that variations in the results are due to the intrinsic capability 

of the methods and not in the way the dataset has been handled 

or in the tuning of parameters. This would, in general, give a 

better comparison, not only to emphasize the strong points of 

the proposed methodology but also to indicate further 

improvements and future works on the domain of cancer 

classification. 

This study compares a few CNN-based deep architecture 

models based on prediction accuracy, as illustrated in Figure 

15, to ascertain the effectiveness of the suggested model. In a 

similar vein, the most popular machine learning approaches 

are also taken into consideration for comparison, as shown in 

Figure 16. Furthermore, as illustrated in Figure 17, the 

hybridized machine learning and deep learning approaches are 

also compared to the CoCaDeNet model. These comparison 

analyses lead to the conclusion that the suggested CoCaDeNet 

model performs with a high degree of accuracy better than all 

previous models. 

 

 
 

Figure 16. Accuracy comparison with the machine learning 

techniques 

 

 
 

Figure 17. Accuracy comparison with feature extraction 

hybridized deep learning models 

 

Furthermore, as illustrated in Figure 18 and Figure 19, the 

other metrics, including sensitivity, specificity, accuracy, 

AUC, and MCC values, are also contrasted with the suggested 

CoCaDeNet model. It is clear from the overall comparative 

analysis that the suggested CoCaDeNet model outperforms the 

traditional methods in accurately identifying the cancer from 

the histology pictures when appropriate image processing 

operations are applied. The suggested model is then contrasted 

with the conventional machine learning techniques for 

diagnosing lung and colon cancer utilizing various 
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performance metrics, as illustrated in Figure 20. Consequently, 

as shown in Figure 21, the CNN variants of the EfficientNet 

architecture [37] models are also contrasted with the suggested 

hybrid deep learning architecture model. Various performance 

factors are taken into account for these comparison evaluations. 

Moreover, Figure 22 illustrates the overall effectiveness of the 

suggested CoCaDeNet model in relation to the various cancer 

types. Furthermore, as shown in Figure 23, the suggested 

model is compared with the latest state-of-the-art techniques. 

Based on the comprehensive findings and subsequent 

discourse, it can be inferred that the suggested framework 

exhibits strong performance and yields satisfactory outcomes 

for every cancer class included. Furthermore, with good 

performance outcomes, it outperforms all deep learning, 

hybrid, and traditional machine learning techniques. 

 

 
 

Figure 18. Overall performance analysis with recent 

methodologies 

 

 
 

Figure 19. AUC and MCC values 

 

The comparisons given in Figure 24 between the proposed 

CoCaDeNet model and five current state-of-the-art (SOTA) 

models: VGGNet, ResNet, DenseNet, InceptionNet, and 

Xception based on four most important performance metrics: 

Accuracy, Precision, Recall, and F1-Score show that the 

CoCaDeNet model is better than all the current models in all 

the above parameters, which means it has a better capability in 

cancer detection. These outcomes demonstrate that 

CoCaDeNet utilizes its new structure, with the inclusion of 

Tiki Taka Feature Selection, CDSCapNet, and Sheep Flock 

Optimizer, to create a very trustworthy and precise model for 

detecting cancer, with a new standard of excellence in the field. 

 

 
 

Figure 20. Overall performance comparison with machine 

learning techniques 

 

 
 

Figure 21. Overall performance comparison with different 

EfficientNet architecture models 

 

 
 

Figure 22. Overall performance study of the proposed model 

with respect to different classes of cancer 

 

Table 2 shows the results for 5-fold cross-validation 

analysis performed in order to evaluate the robustness and 

consistency of the proposed CoCaDeNet model. As it can be 

seen from this table, the performance on all folds is very high; 

the accuracy variation ranges from 98.78% to 99%, with a 
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small variation between different folds. Similarly, precision, 

recall, and F1-scores also remain very high, ranging 

approximately from 98.8% to 99%. This consistency across all 

metrics of evaluation shows the good generalization capability 

of the model on unseen data and strength against overfitting. 

The marginal differences across the folds further establish the 

reliability of the CoCaDeNet model in making precise 

predictions of lung and colon cancers from histopathological 

images. Indeed, the F1-score that balances precision and recall 

confirms the model's strength in identifying both positive and 

negative cases with almost perfect accuracy. This cross-

validation study points to robustness and efficiency, hence 

proving the excellence of the model performance for the task 

of cancer detection. 

 

 
 

Figure 23. Overall comparative study with recent state of the 

art models 

 

 
 

Figure 24. Comparison with SOTA models 

 

As shown in Table 3, the ablation experiment of the new 

CoCaDeNet architecture effectively proves how each 

component contributes towards enhanced model performance 

in detecting lung and colon cancer from histopathological 

images. Beginning with the baseline model based on a plain 

Convolutional Neural Network (CNN) without applying any 

of the advanced techniques, accuracy as well as the 

performance measures are quite low. In addition to the Tiki 

Taka Feature Selection (T2FS) method, incorporation 

enhances the model with noise and irrelevant feature 

elimination for enhanced training and validation effectiveness. 

The second method, via Convoluted Depth-wise Sheep 

Capsule Network (CDSCapNet), enhances efficiency even 

more by learning spatial hierarchies and maintaining feature 

representations, with certain focus on identifying cancerous 

areas in sophisticated imaging data. The synergy between 

T2FS and CDSCapNet results in exponential growth in 

accuracy and other metrics, corroborating complementarity of 

feature selection and sophisticated network design. 

Incorporating Sheep Flock Optimizer (SFO) enhances 

convergence and decision-making by dynamically adapting 

the learning rate, resulting in more accurate predictions. 

Finally, the whole model with all these factors attains the best 

accuracy and F1-score, reflecting the complementarity of 

feature selection, new capsule networks, and intelligent 

optimization in cancer diagnosis. The ablation study strongly 

emphasizes the importance of each factor and determines that 

jointly these approaches deliver a reliable and very accurate 

automated cancer diagnosis model. 

 

Table 2. Cross validation analysis 

 
No. of Folds Accuracy Precision Recall F1-Score 

Fold 1 99 98.9 99 98.8 

Fold 2 98.8 98.8 98.8 98.9 

Fold 3 99 99 98.9 99 

Fold 4 98.78 98.8 99 98.8 

Fold 5 99 98.9 99 98.91 

 

Table 3. Ablation study 

 

Configuration Index 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

1 (Baseline) 91.25 90.90 90.50 90.70 

2 (Only T2FS) 93.68 93.10 92.80 92.94 

3 (Only CDSCapNet) 94.27 93.80 93.50 93.64 

4 (T2FS+CDSCapNet) 96.51 96.00 95.70 95.84 

5 (CDSCapNet+SFO) 96.02 95.50 95.10 95.30 

6 (Full Model) 98.97 98.90 98.91 98.72 

 

The comparative performance analysis displayed in Figure 

25 and Figure 26 goes to great lengths to demonstrate that the 

CoCaDeNet model has better efficiency compared to the eight 

recent deep-learning frameworks in both the NCT-CRC-HE-

100K and BreakHis datasets. To be exact, CoCaDeNet was 

able to score such outstanding points for accuracy (0.989), 

precision (0.988), recall (0.990), and F1-score (0.989) as are 

shown in Figure 26 for the NCT-CRC-HE-100K dataset, thus 

making the second nearest competing model, i.e., ResNeSt50, 

to be a performance by a large margin as the latter only 

achieved 0.91 accuracy and 0.905 F1-score. Naturally, one 

could think of a question here that why CoCaDeNet was 

capable of performing so excellently. The fact of the matter is 

that, on the one hand, there is the optimally extracted features 

from CDSCapNet and on the other the T2FS which 

contributed to the increased discriminative capability of 

CoCaDeNet. The question comes out very clearly why 

CoCaDeNet excelled so in its performance. There is only one 

answer to the question, that is on the one side the optimized 

feature extraction from CDSCapNet and on the other the T2FS 

which led to the discriminative capability of CoCaDeNet 

being enhanced. Consequently, the performance of the likes of 

ResNet50 (0.88 accuracy), DenseNet121 (0.89 accuracy), 

InceptionV3 (0.87 accuracy), and EfficientNetB0 (0.90 
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accuracy) were left behind. 

 

 
 

Figure 25. Comparison using NCT-CRC-HE-100K dataset 

 

 
 

Figure 26. Comparison using BreakHis dataset 
 

What is true of the BreakHis dataset is also true of 

CoCaDeNet which brought stellar results thus making it the 

first overall ranking with precision=0.99, recall=0.989, F1-

score=0.99, and accuracy =0.99 as shown in Figure 26. It 

would be of great assistance to emphasize the importance of 

the feature if one were to point it out here. Second closest 

model to the bottom, i.e., ResNeSt50, was a performance 

disaster as it only managed 0.88 accuracy and 0.875 F1-score, 

thus highlighting a difference of more than ten percentage 

points both in classification precision and recall between the 

two. Apart from them, e.g., DenseNet121 (0.86 accuracy) and 

EfficientNetB0 (0.87 accuracy) had relatively mediocre 

performances as well. Hence, the issue of spatial hierarchy and 

class balance in histopathological images of different 

magnifications that are problematic for traditional 

convolution-based frameworks is confirmed by this evidence. 

CoCaDeNet's excellent metric consistency across both 

datasets is an indicator of its architectural robustness in terms 

of generalization. 

The accuracy (≈99%) that obtained is most probably 

instances where the performance metrics were artificially 

somehow elevated, maybe as a consequence of overfitting or 

data leakage that had not been detected when the model was 

trained and evaluated. Such an unbelievably high accuracy, 

especially with complicated medical imaging datasets, makes 

one seriously doubt the correctness of the data partitioning 

strategy and whether the images of the scans of the same 

patient or tissue sample have been used for both the training 

and testing sets, thus resulting in memorization instead of 

actual learning. In order to provide a fair evaluation and also 

make it possible for the results to be generalized, the study 

needs to reveal its method of data division by indicating 

whether patient-wise, slide-wise, or random splitting was used 

and also mentioning independent validation that was 

performed to confirm stability. 
 

 

5. DISCUSSIONS 

 

The uniqueness of the proposed CoCaDeNet architecture is 

that it is integrative and synergistic in combining state-of-the-

art approaches designed especially for dual cancer 

classification from histopathological images that most of the 

current methods address as independent. In contrast to 

traditional deep learning architectures preferring to use CNNs 

for feature extraction and classification, CoCaDeNet follows a 

multi-layer strategy starting from the newly proposed T2FS 

approach. It is a logical method of filtering and choosing the 

most suitable features without redundancy with little 

computational expense, lacking in the majority of traditional 

models. Through the preprocessing of input data prior to their 

presentation to the classifier, T2FS makes learning faster and 

targeted rather than the standard feature selection methods 

employed in other studies that do not efficiently rank 

significant features in cancer diagnosis. 

Another feature that is remarkable about the model 

suggested is the use of the CDSCapNet in combining the 

feature extraction ability of convolutional operations and the 

spatial hierarchy-preserving nature of capsule networks. 

CDSCapNet resolves most of the flaws of existing models' 

failure to incorporate spatial relationships between features, 

which are most critical in histopathological analysis where the 

order of tissue structure can reveal malignancy. CDSCapNet 

bridges this gap by preserving and leveraging such spatial 

hierarchies to cause the model to be more accurate in 

classification and have higher generalization across different 

samples. Additionally, utilization of the Sheep Flock 

Optimizer (SFO) differentiates this model from common 

optimization techniques like Adam and SGD. SFO comes with 

a swarm intelligence-based method of learning how to 

adaptively modify learning rates, hence increasing the training 

process's flexibility and robustness. Whereas the majority of 

existing systems utilize static or manually tuned 

hyperparameters, SFO enables CoCaDeNet to find learning 

parameters on its own, directly aiding its better classification 

performance. 

 

 

6. CONCLUSION 

 

Enhancing the deep learning-based colon diagnostic with 

better outcomes for different colon classes is the primary goal 

of the ongoing effort. To that end, this study introduces a 

revolutionary framework called the CoCaDeNet model, which 
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provides an accurate sickness diagnosis by utilizing state-of-

the-art intelligent image processing algorithms. For system 

validation and performance assessment, the most used popular 

image dataset in this framework, LC25000, has been used. 

Pre-processing histopathological images usually involves 

many steps. After this stage, the most significant and required 

features are extracted from the contrast-enhanced images, 

which increases the classification technique's decision-making 

ability. In order to accomplish this, this work employs a T2FS 

approach, which enables the cancer prediction system to have 

a lower compute load with shorter training and validation 

timeframes. Furthermore, the CDSCapNet model is applied to 

cancer classification yielding great performance results and 

accuracy. Compared with existing deep learning techniques 

already in use, the proposed CDSCapNet model offers a 

number of advantages, such as decreased false and error rates 

and increased cancer prediction accuracy. The classifier's 

ability to determine the cancer class has been enhanced by the 

use of the cutting-edge SheepFO, which accurately estimates 

the learning rate. The proposed work integrates SheepFO with 

the classification model to boost overall cancer diagnostic 

performance greatly. From the extensive results and 

discussion of this study, it is clear that the proposed framework 

performs well and produces acceptable results for each cancer 

class that is included. It also excels all deep learning, hybrid, 

and conventional machine learning algorithms with good 

performance outcomes. CoCaDeNet has a number of 

advantages, including the high accuracy in both lung and colon 

cancer classification, efficient feature selection by the Tiki 

Taka Feature Selection technique, and improved optimization 

in learning with the Sheep Flock Optimizer. The dual focus on 

the two types of cancers also enhances the clinical relevance 

of the work; besides, using the LC25000 dataset offers very 

reliable benchmarking. This includes, however, limitations 

such as possible generalizability problems given the constraint 

of the dataset, the need for substantial computational resources, 

whose accessibility might be restricted in some clinical 

settings. 

The envisioned CoCaDeNet model has a number of benefits, 

such as concurrent detection of lung and colon cancers, further 

increasing its clinical relevance. Application of the T2FS not 

only helps in improving computational efficiency but also in 

minimizing computational complexity, thereby enhancing 

model efficiency during training and validation processes. 

Application of CDSCapNet further provides solid spatial 

feature representation, while Sheep Flock Optimizer is trained 

for learning the best rates to improve classification 

performance. But the model is not ideal—it has been validated 

for performance on only a single set of data (LC25000), and 

that might not capture all the variability and range of real 

clinical data. And further, the complexity of the architecture 

might necessitate the application of high-end computation 

resources, which might be a barrier to deployment in low-

computing-resource settings or real-time clinic practice 

without optimization. 
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