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Real-time video surveillance applications need a high detection rate of suspicious activities 

for public safety. Deep learning and computer vision have progressed with suitable solutions 

in such applications. Effective learning and classification of video data highly influence the 

detection of suspicious activities. The dimensions of deep features are relatively high, and 

learning massive videos demands more computational time than traditional deep learning 

techniques. This paper develops the spectral based deep learning technique for obtaining 

surveillance video representations in a lower-dimensional or reduced representation. The 

proposed technique uses two key steps. The first one is to transform the deep features of 

video data into lower manifold spectral space; it uses visual classification approaches to 

detect suspicious activities. For the spectral space, the affinity values of video frames and 

their Laplacian matrix are computed to derive the reduced representation of video data; after 

deriving the lower-rank representation of video data, the similarity features of frames are 

analyzed with proposed visual classification techniques. Experiments are carried out on 

benchmarked video surveillance datasets to demonstrate the efficacy of the proposed 

technique compared to existing techniques. 
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1. INTRODUCTION

Nowadays, the detection of suspicious activities for Real-

time video surveillance is becoming increasingly important for 

societal security applications [1]. Object identification and 

learning of object activities are the most challenging issues for 

classifying suspicious videos. Deep learning [2] is one of the 

most successful methods for video classification tasks. Current 

deep learning methods, namely, VGG16 [3], ResNet50 [4], 

DenseNet121 [5], MobileNet [6], GoogLeNet [7], and 

EfficientNetB0 [8], can be used to extract the features of video 

frames batch-wise and learning the video data accordingly. 

Practical training is needed for many videos that are useful to 

improve the classification rate or detection efficiency of 

suspicious activities in video surveillance. The deep features 

are extracted and later trained using classifier models for 

suspicious-activity classification. The extractions of deep 

features of each video frame are massive; Each video consists 

of a large number of frames, and the feature size of each frame 

is also massive. In such cases, processing the deep features for 

learning the suspicious activities may become practical 

scalability issues concerning the significant parameters of 

computation time. The curse of dimensionality is considered 

the primary problem in existing deep-based classifier models. 

Fabulous classifier models, i.e., random forest (RF) [9], 

support vector classifier (SVC) [10], and k-nearest neighbor 

classifier (kNN) [11] models, have been used in the existing 

deep-based classifier models. However, more computation 

time is needed to train the frame's deep features in the existing 

deep-based classifier models. Thus, the proposed trustworthy 

classifier models with the development of spectral-based deep 

classifier models for handling the scalability problem. The 

spectral concept initially finds the projected subspace for the 

high dimensional deep frame's features by finding the best 

eigenvector space. 

The affinity matrix of frame features was initially 

constructed; later, the Laplacian matrix was computed. The 

laplacian matrix (LM) computations are mentioned in the 

proposed spectral-based deep classifier video model (SDC-

VM). The LM explores the frame deep features in terms of a 

large number of Eigenvectors; the lower-rank frame's features 

decide the number of components ('k') of the subspace of deep 

features. The deep features subspace is derived by taking the 

first k-largest Eigenvectors. Obtained k-Eigen vectors 

subspace is referred to as low-dimensional manifold or 

spectral space. The Spectral space denotes the reduced 

representation of deep features of video frames. With this 

spectral space, the large size of deep features of frames is 

mapped into the lower manifold subspace without losing the 

video frame information. The top k-Eigen vectors are enough 

to define deep features of frame data rather than taking high-

dimensional frame features. Finally, the spectral features of 

frames are used to classify videos with the classifier models of 

RF, SVC, and kNN. With these proposed techniques, three 
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hybrid variants of SDC-VM are developed using the models 

of RF, SVC, and KNN. Proposed hybrid variants use spectral 

features instead of the deep features of the high-dimensional 

frame to address the problem of the curse of dimensionality. 

Architectural diagram of the proposed SDC-VM shown in 

Figure 1. 

 

 
 

Figure 1. Proposed SDC-VM architectural diagram 

 

Spectral-based visual mining algorithms and three hybrid 

variants of SDC-VM are presented in this paper to assess and 

classify suspicious activities in video surveillance data 

efficiently. Key objectives of the proposed work are to classify 

or detect suspicious activities for the video surveillance data 

faster with the SDC-VM models and assess the video 

surveillance data for the detection of several activities 

(including the normal and abnormal activities) using proposed 

visual mining techniques. 

The proposed work is indeed inspired by classical spectral 

methods; the proposed approach is not a direct reuse of PCA 

or Laplacian Eigenmaps. Our novelty lies in the way spectral 

learning is integrated with deep video features, where we 

construct a task-specific affinity matrix based on frame-level 

deep feature dynamics and derive a low-rank spectral 

representation tailored for surveillance data. This 

representation captures temporal and semantic relationships 

that traditional dimensionality-reduction methods do not 

model. Furthermore, unlike standard spectral techniques that 

stop at embedding, we introduce a visualization-driven 

classification mechanism (namely, spectral-based deep 

classifier video model (SDC-VM)) that operates within the 

reduced spectral space to effectively detect suspicious 

activities. The overall framework forms a unified spectral–

deep learning pipeline designed for real-time surveillance, 

reducing computational complexity while maintaining high 

discriminative capability.  

Contributions of the work are presented as follows: 

(1) The spectral features of frame data extracted for finding 

the lower manifold subspace of higher-dimensional video 

frame data to overcome the curse of dimensionality problem 

(2) Three variants of the SDC-VM were developed to find 

the video surveillance classification results in a faster way  

(3) Partially supervised visual mining techniques are 

implemented to assess video activities in video surveillance 

datasets. 

The organization of the paper is as follows. Section 2 

presents the literature study of the work; Section 3 presents the 

proposed SDC-VM and visual mining techniques. The 

experimental study of the work and discussion are presented 

in Section 4. Finally, the conclusion and future scope of the 

work are presented in Section 5.  

 

 

2. LITERATURE STUDY OF THE WORK 

 

Video surveillance has become one of the significant 

applications for public safety. The most challenging research 

problem in surveillance is the learning and classification of 

abnormal activities. In this process, classification accuracy and 

computational scalability are the most significant issues 

considered in the current video analytics research. Authors in 

literatures [12-16] attempted to detect or classify loitering, 

fighting, and abandoned objects based on the finding of 

suspicious behaviours. Most of these works are performed on 

offline video surveillance data; in real-time, the kind of post-

detection of abnormalities or anomalies in videos may not be 

helpful. With this fact, the author in literature [17] developed 

the real-time blob-matching technique by finding the temporal 

features of blobs and activities. It can detect and classify 

fighting, theft, loitering, fainting, etc. Findings of the work and 

limitations are presented in Table 1. Long video event retrieval 

has been most attractive in real-time video surveillance 

systems. Text instruction (or caption) for long videos may also 

give the solution indirectly to help people know abnormal 

activities instantly. Lu and Grauman [18] implemented the 

algorithm of video summary generation that can be used to 

extract selected sub-videos from the long video based on the 

image quality factors for describing the events happening in 

the video. Another method is based on the key frame sequence, 

the event detection technique developed by Wolf [19]. It uses 

the frames rather than taking the video directly. It shows a 

significant reduction in video content and improved efficacy 

in video retrieval. Finding the specific moments from long 

video faces majorly in the above methods. Wan et al. [20] 

developed the superframe segmentation algorithm that 

removes the redundant frame in a video sequence to reduce the 

computational overheads when classifying video anomalies. 

Findings and approach details are mentioned below, along 

with the limitations of the work. The key literature and 

observations or limitations are presented in Table 1.  

Dimensionality reduction methods playing the crucial role 

for handling the abnormalities in high-dimensional video 

surveillance data. Huang et. al. [21] proposed the method in 

study for reducing the computational complexities by 

transforming the high-dimensional video data into a low-

dimensional notation. They proposed the variational-based 

subspace (VBS), which basically uses the principal component 

analysis (PCA) to prune the dimensions from N dimensional 

to required k-principal components. Central problem of 

determining k-components in PCA is resolved in VBS by 

estimation of covariance matrices for the different selections 

3290



 

of k values. Finding covariance matrix is very expensive due 

to its computations are relevant to single value decomposition 

(SVD). Authors in study [22] faced the challenges of 

dimensionality reduction and used the methods, independent 

component analysis (ICA), non-negative matrix factorization 

(NMF), autoencoders (AE), variational auto encoders (VAE), 

and PCA. These methods were effectively applied in their 

work for reducing the dimensions complexities. The ICA 

transforms the high dimensional data in large scale 

repositories to linear combinations of statistically independent 

vectors. The limitation of ICA is unable to separate the 

Gaussian resources. Thus, NMF is another better option for the 

subspace learning to reduce the dimensions of large scale high-

dimensional data. Benefit of NMF is to find the reduced data 

features and it also leads to automated the cluster tendency for 

the targeted high-dimensional data. The problem of NMF is 

does not yield a unique solution. In recent years, deep learning 

techniques are the most recommended for obtaining the 

optimized features. The autoencoders (AE) [23] greatly 

applied for dimensionality reduction and data reduction; 

therefore, reduced representation of features obtained that 

useful optimizing the requirements. Another nonlinear 

dimensionality reduction, namely, T-distributed Stochastic 

Neighbor Embedding (t-SNE) and Uniform Manifold 

Approximation and Projection (UMAP) [24], is widely used 

in large scale dimensionality reduction for video data. The t-

SNE evaluates similarity in the original high-dimensional 

space by transforming distances between points into 

conditional probabilities. For every data point, the algorithm 

assigns a probability distribution over all other points, where 

close neighbors receive high probabilities and distant points 

receive extremely small values. This is done by centering a 

Gaussian kernel at each point and adjusting its width so that 

the effective number of neighbors (controlled by perplexity) 

remains consistent across the dataset. The complete set of 

these probability distributions forms the high-dimensional 

similarity structure that t-SNE attempts to preserve when 

projecting the data into a lower-dimensional space. UMAP and 

t-SNE offer considerable flexibility, allowing their 

configurations to be adapted to the characteristics of different 

datasets. The discussion [25] provides actionable insights to 

guide users in selecting the most appropriate dimensionality 

reduction approach and tuning its key parameters for their 

intended use case. These recommendations act as a practical 

framework for achieving an effective balance between 

performance, computational cost, and clarity of the resulting 

embeddings in a variety of video scenarios. Anomaly detection 

for suspicious activities is the most promising in video 

surveillance applications for saving social people. 

Surveillance cameras and their dynamic activity detections 

play a significant role in such applications. Some of the 

researchers [26-28] used unsupervised ideas for anomaly 

detection. It requires careful classification and handling 

approaches for abnormalities. Rather than unsupervised 

techniques, deep-based classification presents impressive 

abnormalities classifications. Sultani et al. [29] developed the 

3D convolutional network (C3D), which extracts the 

Spatiotemporal features and computes the score of anomalies 

by a 3-layer fully connected network. This leads to one crucial 

problem: video segmentation scalability before feature 

extraction due to the massive size of the video frames. Zahid 

et al. [30] resolved the video segmentation problem with the 

ensemble technique of IBaggedFCNet, in which bagging 

imposes stringent segmentation and uses the Inception-v3 

deep classifier technique for the video classification. With the 

broader availability of video data from surveillance cameras 

and social platforms, learning the importance of trained video 

has become tedious. Finding an efficient automated violence 

detection system concerned with the vital parameters of 

computational efficiency and accuracy is the most needed for 

real-time video surveillance applications. Violence detection 

for more extensive videos can be optimized in references [31]; 

here, the keyframe selection process plays a crucial role in 

selecting the optimal number of frames to reduce the 

computational overheads. It employs ensemble classification 

models using long short-term memory (LSTM), bidirectional-

LSTM (Bi-LSTM), and gated recurrent unit (GRU) models to 

enable good video classification results. Manisha Mudgal et 

al. proposed a smart and intelligent real-time video monitoring 

system [32] for efficient detection of activities, slapping, 

hitting, punching, etc. It models the activities using the 

Gaussian Mixture Models (GMMs); It also develops the 

universal attribute models (UAM) for deriving the super action 

vector (SAV) that helps to improve the accuracy of 

classification. Thus, GMM and UAM are majorly defined for 

modeling the SAVs and making the classification using SVM. 

Xu [32]. Cong et al. [33] another intelligent video surveillance 

system using the deep learning approach was also proposed. 

Faster R-CNN with Inception ResNet V2 was discovered to 

achieve the best accuracies for classifying real-time activities. 

State-of-the-art techniques [34-36] use the trained video 

frames for extraction features and learning of one or more 

activities, including normal and abnormal activities. For 

testing data, suppose it matches any abnormal activities, then 

mark it as abnormal; otherwise, mark it as normal. These deep 

learning techniques are the most prominent in computer vision 

and other object detection and activity recognition 

applications. These works recommend the two-stage work for 

the video classification tasks. Sun et al. [37] proposed the deep 

one-class model (DOC), the end-to-end deep learning model. 

One-class support vector machine and deep CNN are 

integrated to optimize the accuracy and loss parameters. 

Lamani et al. [38] developed an efficient hybrid technique for 

human action recognition, in which lightweight residual 3D 

CNN was built for handling the computational hurdles and 

effective human action recognition. Existing deep learning 

techniques more beneficial for extraction of frames learned 

features. The real-time video capturing systems produce high-

quality videos (i.e., massive frames). The selection of the 

frames and high dimensional deep features was initially 

extracted. High-dimensional features require the equivalent 

low-dimensional manifold subspace learning to reduce the 

complexities. The proposed work focuses on subspace 

learning techniques for the frame's deep features. In the high 

dimensional deep features, the data sparsity problem occurred, 

significantly impacting the classification rate. Thus, it needed 

to obtain the equivalent low-manifold subspace to reduce the 

effect of data sparsity problems. There are wider chances to 

improve the efficacy-related parameter values for the video 

classification results. Detailed procedural details and 

algorithm descriptions of the proposed work are presented in 

the following section. 
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Table 1. Key literature of the work and observations 

 
Author(s) Methodology / Key Contribution Limitations / Future Scope 

Elhamod 

and Levine 

[17] 

Developed a real-time blob matching technique using temporal features, 

object tracking, and semantic behavior analysis for suspicious activity 

detection. Experiments conducted on public datasets such as fighting, stolen 

objects, fainting, and loitering. 

Detection is successful, but current learning 

approaches rely heavily on hyperparameter tuning 

rather than effectively leveraging semantic 

features. 

Wan et al. 

[20] 

Proposed redundant frame removal followed by video super frame 

segmentation to extract segments of interest (SOI). CNN with pre-trained 

VGG used for abnormal video classification. 

Achieved accuracy up to 69.34% only. Real-time 

SOI processing needs redesign using ensemble 

classifiers to improve accuracy. 

Huang et al. 

[21] 

Introduced a dimensionality reduction technique for network traffic anomaly 

detection using statistical or projection-based modeling. 

Primarily evaluated on network traffic data; 

limited generalization to other domains and 

sensitive to feature distribution shifts. 

Vafaei Sadr 

et al. [22] 

Proposed a generalizable framework combining dimensionality reduction 

techniques such as PCA, autoencoders, and manifold learning with anomaly 

detection models. 

Increased computational overhead and 

performance highly dependent on dimensionality 

reduction technique and hyperparameters. 

Ortiz-Perez 

et al. [23] 

Used dimensionality reduction techniques for video data on IoT edge devices 

to reduce latency and computational complexity. 

Edge device limitations restrict model complexity; 

dimensionality reduction may cause loss of fine-

grained details. 

Mittal et al. 

[24] 

Compared UMAP and t-SNE techniques for dimensionality reduction and 

visualization of high-dimensional data. 

Computationally intensive for large datasets; 

performance depends on hyperparameter tuning. 

Zahid et al. 

[30] 

Proposed IBaggedFCNet using pre-trained Inception-v3 and PCA for feature 

extraction with ensemble bagging for video classification. 

Fine-grained classification required for real-world 

datasets instead of synthetic data. 

Shoaib et al. 

[31] 

Developed DeepkeyFrm and AreaDiffKey keyframe models with ensemble 

LSTM, Bi-LSTM, and GRU networks for violent activity detection. 

Scalability for large-scale real-time surveillance 

applications remains a challenge. 

Xu [32] 
Introduced a Universal Attribute Model (UAM) with GMM, SVM, and k-NN 

classifiers for suspicious activity detection. 

Deep learning models outperform GMM; deep-

based classifiers should be further explored. 

Cong et al. 

[33] 
Applied Faster R-CNN with ResNet V2 for abnormal activity classification. 

High-dimensional frames cause dimensionality 

issues, limiting accuracy to 79.9%. 

Sun et al. 

[37] 

Proposed Deep One-Class (DOC) model integrating CNN and one-class SVM 

for pedestrian video classification. 

Performance depends on kernel choice; 

optimization needed for real-world scenarios. 

Lamani et 

al. [38] 

Developed a lightweight residual 3D CNN combined with SVM for real-time 

video classification. 

Real-time performance achieved with relatively 

low accuracy. 

Kumar et al. 

[39] 

Used CNN, BiLSTM, and attention mechanisms for anomalous human 

activity detection. 

Accuracy limited to 61.04% on sub UCF Crime 

datasets. 

Ahmadi et 

al. [40] 

Applied transfer learning for intelligent Object detection in surveillance 

systems. 

Accuracy remains below 90% due to sparse and 

dynamic real-time data 

 

 

3. PROPOSED SDC-VM AND VISUAL MINING 

TECHNIQUES 

 

The deep models VGG16, ResNet50, DenseNet121, 

MobileNet, GoogLeNet, and EfficientNetB0, are used to 

extract frame features called deep features. The deep features 

are high-dimensional, and data sparsity exists. Data sparsity is 

a significant problem in video classification. 

 

3.1 Spectral technique for obtaining the low-dimensional 

manifolds (or spectral space) for the high-dimensional 

deep features of video frames 
 

The proposed work uses the spectral technique to reduce the 

effect of data sparsity while performing the video 

classification. The spectral technique consists of two key 

steps: i) Find the affinity matrix (or the weighted matrix), 

which computes the weighted matrix for frame features while 

considering the affinities. ii) The Laplacian matrix is 

computed to derive the Eigen decomposition that presents 

suitable low-dimensional manifolds (or subspace). The 

following Eq. (1) to Eq. (7) illustrate the derivation of 

Eigenvectors (also called spectral space) in the proposed work. 

The 𝐷𝑒𝑒𝑝𝐹  refers to the deep features for the n number of 

frames. The 𝑆𝑖𝑔𝑚𝑎𝑖  calculates the local scale or affinity value 

of ith frame 𝐹𝑖 with the k-nearest (or most similar) frame, 𝐹𝑘, 

whereas 𝑑(𝐹𝑖 , 𝐹𝑘) refers to the distance with the nearest frame, 

i.e., distance gives the affinity value with the nearest frame. 

The dissimilarity values presented in 𝑑𝑖𝑗  and 𝑑𝑗𝑖  denote the 

corresponding frames 'i' and frame ‘j’ and frame ‘j' and frame 

‘i’, respectively. The 𝑊𝜖 𝐹𝑛𝑥𝑛 denotes the affinity matrix (or 

weighted matrix) for the n number of frames and it can be 

computed with affinity values of 𝐹𝑖, 𝐹𝑗  (i.e., 𝑆𝑖𝑔𝑚𝑎𝑖  and 

𝑆𝑖𝑔𝑚𝑎𝑗). 

 

𝐷𝑒𝑒𝑝𝐹 = {𝐹1, 𝐹2, … … . , 𝐹𝑛} (1) 

 

𝑆𝑖𝑔𝑚𝑎𝑖 = 𝑑(𝐹𝑖 , 𝐹𝑘) (2) 

 

( ), ( , )ij i j ji j id d F F and d d F F= =  (3) 

 
(( )/( ))

, ij ji i jd d Sigma Sigma

nxnW F W e
−  

=  (4) 

 

The diagonal matrix of W is ‘D’, in which the diagonal 

values are sum of the corresponding row ‘i' values, 

mathematically formulated as follows: 

 

1

n

ii ij

i

d W
=

=  (5) 

 

The Laplacian matrix is required to find the Eigen 

decomposition, which must derive the Eigenvectors. First, k-

Eigen vectors are selected to obtain the spectral space (or k-

principal component subspace). The Laplacian matrix 'L' is 

computed using the W and diagonal matrix 'D' as shown 

below. Eq. (5) is used to fill in the value of diagonal matrix D. 
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𝐿 = 𝐷
−1

2⁄  𝑊 𝐷
−1

2⁄  (6) 

 

Values obtained in L are normalized and most suitable for 

further classification (or clustering process). The size of L 

becomes massive, and it is not needed to represent the high-

dimensional space of deep features. In L, columns represent 

the Eigenvectors. The size of L becomes n x n. Initial Eigen 

column vectors in L are usually referred to as the first largest 

vectors. Now, we select the k-largest Eigen column vectors for 

the n number deep features of frames. These can be 

represented with the stacks of k-largest Eigenvectors, which 

are presented as spectral space ‘SV’ The SV denoted the 

optimal low-dimensional manifold subspace for the high 

dimensional deep features of n number of frames with the size 

of n x k, here k refers to the reduced number of dimensions for 

the spectral space or the low dimensional manifolds subspace. 

 

1 2[ . ]kSV E E E=   (7) 

 

The 𝐸1𝐸2 … … . 𝐸𝑘  denotes the k-largest Eigenvectors. 

 

3.2 The spectral-based deep classifier visual model 

algorithm 

 

In the proposed spectral technique of video frames, the 

optimal representation of the video frame's features is obtained 

by deriving the k-largest Eigenvectors (here, the k value refers 

to the number of principal components of spectral space). SV 

describes the optimal frame features. The procedural ideas of 

the proposed SDC-VM are shown in Algorithm 1. Initially, the 

video dataset is organized in V, consisting of each class's 

subset of videos. Each video can be divided into several frames 

and combined into 64 frames as a single batch; in the 

experiments, the fixed batch size was 64 frames.  

 

Algorithm 1. SDC-VM 

Input: 

1. V= {v1, v2, …vm}, m -number of videos of different 

classes 

2. BS- Batch Size, denotes the size of subset of frames for 

the batch processing 

Output: Anomaly Classifications 

Methodology 

1. Takes the input of V with m different classes, where as 

v1 has set of videos of class 1, v2 has set of videos of class 

2, …., vm has set of videos of class m.  

2. Divide each class of videos of V into frames  

3. Batch the frames with size of 64 for the classes of 

videos 

4. Select the frames randomly at each class with a total 

size of n number of batches, including all frames.  

5. Apply the deep models on n batches of frames to extract 

the deep features, which are to be high-dimensional.  

6. Use the proposed spectral technique of video frames 

(per the procedure described in section 3.1) and obtain the 

reduced dimensions of high dimensional deep features of 

video data. The obtained mapped features are stored in SV 

as per the Eq. (1) to Eq. (7) 

7. Use the SVM, Random Forest, and kNN classifier 

techniques for the obtained SV to deliver video anomaly 

classification results.  

 

After obtaining the massive batches of frames, select 

random samples of n batches of frames and pass the deep input 

layer with the specification of batch size 24 (maximum 

sequence length) and size of frames as 224 × 224. These steps 

are illustrated from Step 1 to Step 4 in an algorithm. Step 5 

uses the following deep models separately: VGG16, 

ResNet50, DenseNet121, MobileNet, GoogLeNet, and 

EfficientNetB0 to extract deep features—the deep features of 

each frame with 2048 dimensions. There is high data sparsity 

problem occurred in the deep features. Thus, the spectral 

technique was implemented to map the high dimensional deep 

features into less data sparsity spectral space. It is explained in 

Step 6. Finally, the converted spectral deep features of the 

frames are used for the training model with specified 

classification schemes mentioned in Step 7. It explores the best 

accurate video anomaly classification results with the 

proposed SDC-VM algorithm. 

 

 

4. THE EXPERIMENTAL STUDY OF THE WORK 

AND DISCUSSION  
 

The experiments are carried out on the 14 classes (Abuse, 

Arrest, Arson, Assault, Burglary, Explosion, Fighting, Normal 

Videos, Road Accidents, Robbery, Shooting, Shoplifting, 

Stealing, Vandalism) of benchmarked video dataset, UCF-

Crime which publicly free available in reference [38]. After 

initiating the pre-processing, the video of each of the classes is 

divided into different frames (or images) and organized 

according to the train labels and test labels. The deep features 

are extracted using the Densenet, GoogLeNet, MobileNet, 

EfficientNetB0, Resnet, and VGG16 models. Further, these 

features are mapped into the lower-dimensional manifolds by 

deriving the principal components (or Eigenvectors) from the 

Eigen decomposition of the Laplacian Matrix. These reduced 

dimensional features are obtained in our proposed SDC-VM. 

The results of existing deep-based-classifier models (i.e., Deep 

Random Forest, Deep-SVC, and Deep-kNN) and proposed 

spectral-based-deep classifier video models (SDC-VM-

Random Forest, SDC-VM-SVC, SDC-VM-kNN) are 

illustrated in Table 2. The evaluation parameters of accuracy, 

precision, recall, and f-score measure are depicted in reference 

[39]. 

From these experimental values of performance scores, it 

was noted that SDC-VM achieved a reasonable classification 

rate compared to existing deep-based classifier models due to 

the reduction of the effect of the data sparsity problem in 

proposed spectral-based deep classifier models. The accuracy 

value improved at a rate of 10 to 12% in the proposed models 

compared to existing models. Similarly, the precision, recall, 

and f-score values improved at the rate of 6% to 10%, 5% to 

11%, and 4% to 12%, respectively. These are comparative 

illustrations among the methods shown in Figure 1 to Figure 

13. 

The receiver operating characteristics (ROC) curves are 

used to depict the classifier accuracy for the multi-class video 

data. In the experimental work, 14 classes of the UCF-Crime 

classification data evaluated with the ROC curves. The value 

of the area under the curve (AUC) indicates the classifier's 

accuracy. The AUC values are between 0 and 1. Higher values 

indicate good classifier accuracy. Figure 14 to Figure 19 

shows the ROC curves with estimated values of AUC for the 

proposed models of SDC-VM-KNN, SDC-VM-RF, and SDC-

VM-SVC underlying the deep features extraction with the 

Densenet, GoogLeNet, MobileNet, EfficientNetB0, Resnet 

50, and VGG16. The ROC analysis inference achieved good 

video anomaly classification results using the kNN underlying 
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SDC-VM with all six variants of deep models. Mostly, the 

AUC scored above 0.5 in all variants of the proposed SDC-

VM models. 

 

Table 2. Performance comparison for the existing deep-based classifier models and proposed SDC-VM based classifier models 

 
Performance 

Measure 
Models 

Deep Random 

Forest 

SDC-VM-

RF 

Deep-

SVC 

SDC-VM-

SVC 

Deep-

KNN 

SDC-VM-

KNN 

Accuracy 

DenseNet 0.8464 0.9607 0.9429 0.9893 0.525 0.6464 

GoogLeNet 0.8107 0.9786 0.8964 0.9964 0.5893 0.6571 

MobileNet 0.8786 0.9607 0.9536 0.9929 0.6107 0.6929 

EfficientNetB0 0.8107 0.8464 0.2786 0.7036 0.4071 0.5182 

ResNet 0.8607 0.9821 0.9536 0.9929 0.6107 0.6964 

VGG16 0.8321 0.9393 0.5536 0.9429 0.5464 0.6536 

Precision 

DenseNet 0.8614 0.9642 0.9474 0.9907 0.6185 0.7014 

GoogLeNet 0.8331 0.9799 0.9091 0.9966 0.6904 0.7361 

MobileNet 0.8847 0.9664 0.9588 0.9935 0.6522 0.725 

EfficientNetB0 0.8597 0.8317 0.2051 0.7222 0.356 0.3984 

ResNet 0.8775 0.9828 0.9588 0.9935 0.6522 0.7303 

VGG16 0.8578 0.9518 0.6119 0.9504 0.5395 0.5543 

Recall 

DenseNet 0.8464 0.9607 0.9429 0.9893 0.525 0.6464 

GoogLeNet 0.8107 0.9786 0.8964 0.9964 0.5893 0.6571 

MobileNet 0.8786 0.9607 0.9536 0.9929 0.6107 0.6929 

EfficientNetB0 0.8464 0.8107 0.2786 0.7036 0.4071 0.4871 

ResNet 0.8607 0.9821 0.9536 0.9929 0.6107 0.6964 

VGG16 0.8321 0.9393 0.5536 0.9429 0.5464 0.5536 

F-Score 

DenseNet 0.8432 0.9609 0.9436 0.9895 0.5245 0.6413 

GoogLeNet 0.8082 0.9785 0.8982 0.9964 0.5837 0.6558 

MobileNet 0.8775 0.9619 0.9545 0.9929 0.6059 0.6967 

EfficientNetB0 0.8115 0.8447 0.2135 0.6946 0.3574 0.3968 

ResNet 0.8628 0.982 0.9545 0.9929 0.6059 0.7013 

VGG16 0.8299 0.941 0.543 0.9437 0.5071 0.5267 

 

  
  

Figure 2. Accuracy between Deep-KNN and SDC-VM-KNN Figure 3. Accuracy between Deep-RF and SDC-VM-RF 

  

  
  

Figure 4. Accuracy between Deep-SVC and SDC-VM-SVC Figure 5. Precision between Deep-KNN and SDC-VM-KNN 
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Figure 6. Precision between Deep-RF and SDC-VM-RF Figure 7. Precision between Deep-SVC and SDC-VM-SVC 

  

  
  

Figure 8. Recall between Deep-KNN and SDC-VM-KNN Figure 9. Recall between Deep-RF and SDC-VM-RF 
 

  
  

Figure 10. Recall between Deep-SVC and SDC-VM-SVC Figure 11. F-Score between Deep-KNN and SDC-VM-KNN 
  

  
  

Figure 12. F-Score between Deep-RF and SDC-VM-RF Figure 13. F-Score between Deep-SVC and SDC-VM-SVC 
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(a) SDC-VM-KNN ROC curve (b) SDC-VM-RF ROC curve 

 
(c) SDC-VM-SVC ROC curve 

 

Figure 14. SDC-VM ROC curves using DenseNet-201 model 
 

  
(a) SDC-VM-KNN ROC curve (b) SDC-VM-RF ROC curve 

 
(c) SDC-VM-SVC ROC curve 

 

Figure 15. SDC-VM ROC curves using GoogLeNet (Inception-V3) model 
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(a) SDC-VM-KNN ROC curve (b) SDC-VM-RF ROC curve 

 
(c) SDC-VM-SVC ROC curve 

 

Figure 16. SDC-VM ROC curves using MobileNet model 

 

  
(a) SDC-VM-KNN ROC curve (b) SDC-VM-RF ROC curve 

 
(c) SDC-VM-SVC ROC curve 

 

Figure 17. SDC-VM ROC curves using EfficientNetB0 model 
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(a) SDC-VM-KNN ROC curve (b) SDC-VM-RF ROC curve 

 
(c) SDC-VM-SVC ROC curve 

 

Figure 18. SDC-VM ROC curves using ResNet-50 model 

 

  
(a) SDC-VM-KNN ROC curve (b) SDC-VM-RF ROC curve 

 
(c) SDC-VM-SVC ROC curve 

 

Figure 19. SDC-VM ROC Curves using VGG16 model 
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Figure 20 presents a comparative evaluation of SDC-VM 

against t-SNE and UMAP using KNN, Random Forest, and 

SVC classifiers on MobileNet deep features for the 

CamNuvem dataset. The results show that SDC-VM 

consistently achieves stronger classification performance, 

with KNN accuracy improving by approximately 4–8%, 

Random Forest by 3–6%, and SVC by 5–9% compared to t-

SNE and UMAP. SDC-VM also provides more compact 

clusters, reflected in lower intra-class variance (10–15% 

reduction) and improved global–local structure preservation. 

In contrast, t-SNE exhibits instability and poor generalization 

in test mappings, while UMAP tends to distort global 

relationships. Overall, the numerical trends clearly 

demonstrate that SDC-VM yields the most discriminative low-

dimensional representation, enabling higher classifier 

reliability and superior anomaly-detection performance. 

 

  
KNN-PCA-ROC KNN-TSNE-ROC 

  
KNN-UMAP-ROC RF-PCA-ROC 

  
RF-TSNE-ROC RF-UMAP-ROC 

  
SVC-PCA-ROC SVC-TSNE-ROC 
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SVC-UMAP-ROC 

  

Figure 20. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep 

features extracted from MOBILENET model) for the CamNuvem dataset 

 

  
KNN-PCA-ROC KNN-TSNE-ROC 

  
KNN-UMAP-ROC RF-PCA-ROC 

  
RF-TSNE-ROC RF-UMAP-ROC 
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SVC-PCA-ROC SVC-TSNE-ROC 

 
SVC-UMAP-ROC 

  

Figure 21. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep 

features extracted from DENSENET model) for the CamNuvem dataset 

 

Figure 21 presents the experimental analysis comparing the 

proposed SDC-VM dimensionality-reduction technique with 

t-SNE and UMAP using KNN, Random Forest, and SVC 

classifiers on DenseNet deep features extracted from the 

CamNuvem dataset. The results demonstrate that SDC-VM 

consistently produces more discriminative low-dimensional 

embeddings, leading to noticeable improvements in 

classification performance. In particular, SDC-VM shows an 

average accuracy gain of 5–10% with KNN, 4–7% with 

Random Forest, and 6–11% with SVC when compared to t-

SNE and UMAP. This improvement is attributed to SDC-

VM’s superior preservation of both global and local structures, 

reflected in lower reconstruction error and better 

neighborhood retention, while t-SNE suffers from non-

generalizable mappings and UMAP tends to distort global 

geometry. The stability and structural clarity of SDC-VM 

embeddings result in more compact class clusters, enabling the 

classifiers to form clearer decision boundaries. Overall, the 

experiments confirm that SDC-VM significantly enhances the 

performance of multiple classifiers for DenseNet features, 

further validating its robustness and effectiveness for video 

anomaly detection on the CamNuvem dataset. 

 

 

  
KNN-PCA-ROC KNN-TSNE-ROC 
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KNN-UMAP-ROC RF-PCA-ROC 

  
RF-TSNE-ROC RF-UMAP-ROC 

  
SVC-PCA-ROC SVC-TSNE-ROC 

 
SVC-UMAP-ROC 

  

Figure 22. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep 

features extracted from MOBILENET model) for the UCF-Crime dataset 
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KNN-PCA-ROC KNN-TSNE-ROC 

  

  
KNN-UMAP-ROC RF-PCA-ROC 

  

  
RF-TSNE-ROC RF-UMAP-ROC 

  

  
SVC-PCA-ROC SVC-TSNE-ROC 
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SVC-UMAP-ROC 

  

Figure 23. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep 

features extracted from DENSENET model) for the UCF-Crime dataset 

 

  

 
 

Figure 24. Runtime comparison 

 

  

3304



 

 
 

Figure 25. Memory comparison 

 

   

 
 

Figure 26. Reconstruction error, information preservation, and trustworthiness analysis 

 

The experimental results illustrated in Figures 22 and 23 

demonstrate the consistent superiority of the proposed SDC-

VM dimensionality-reduction framework over t-SNE and 

UMAP across multiple classifiers on the UCF-Crime dataset. 

Using deep features extracted from both MobileNet and 

DenseNet, SDC-VM shows significant improvements in 

classification performance, maintaining 5–12% higher 

accuracy with KNN, 4–9% with Random Forest, and 6–14% 

with SVC compared to the baseline methods. These gains 

highlight SDC-VM’s stronger ability to preserve intrinsic 

structure in high-dimensional video representations, enabling 

more compact and well-separated feature clusters that 

facilitate improved classifier decision-making. In contrast, t-

SNE exhibits unstable embeddings and lacks a reliable 

transform for unseen data, while UMAP sometimes 

compromises global geometry, resulting in weaker inter-class 

boundaries. The observed reductions in reconstruction error 

and enhanced preservation of neighborhood relationships 

further confirm that SDC-VM generates more semantically 

meaningful embeddings tailored for anomaly detection. 

The experimental evaluation presented in Figures 24-26 

offers a comprehensive analysis of the proposed SDC-VM 

framework in comparison with t-SNE and UMAP across 

multiple performance dimensions. The runtime comparison 

(Figure 24) shows that SDC-VM consistently achieves the 

lowest execution time, operating 25-40% faster than UMAP 

and 40-55% faster than t-SNE, which is critical for large-scale 

video-feature processing. Similarly, the memory comparison 

in Figure 25 presents that SDC-VM requires significantly 

fewer computational resources, consuming 20-35% less 
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memory than UMAP and nearly half the memory footprint of 

t-SNE, making it highly suitable for real-time and resource-

constrained environments. Beyond computational efficiency, 

Figure 26 demonstrates that SDC-VM also excels in 

representation quality, yielding the lowest reconstruction 

error, the highest information-preservation ratio, and superior 

trustworthiness scores, indicating stronger retention of local 

and global structures in reduced-dimensional embeddings. 

These advantages collectively highlight SDC-VM’s ability to 

generate compact, discriminative feature mappings while 

maintaining computational efficiency, establishing it as a 

robust and scalable alternative to conventional nonlinear 

embedding methods for video anomaly-detection tasks. 

 

 

5. CONCLUSIONS 

 

Video surveillance classification is an emerging 

requirement for societal security applications, especially for 

public safety. Threatening, suspicious, and other anomaly 

activity classifications are progressing more in computer 

vision research. The deep models are the most successful 

techniques for video classification. However, there are some 

issues regarding the data sparsity for deep features of video 

frames. The deep features are massive dimensional, and they 

accumulate sparsity issues. By the efficient spectral 

techniques, the deep features are mapped with spectral features 

with reduced effect of sparsity problem in the proposed SDC-

VM technique. Reduced data sparsity in deep features is 

critical for achieving high classification accuracy for video 

anomalies. The same observations in the experiments clearly 

indicate that the spectral-based deep classifier models 

improved classification performance by approximately 9–12% 

compared to deep-based classifier video models. The proposed 

spectral-based deep models are implemented with a single 

view of subspace learning, and there is scope to further extend 

the SDC-VM with multi-view subspace learning for 

improving future video classification performance. 
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