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Real-time video surveillance applications need a high detection rate of suspicious activities
for public safety. Deep learning and computer vision have progressed with suitable solutions
in such applications. Effective learning and classification of video data highly influence the
detection of suspicious activities. The dimensions of deep features are relatively high, and
learning massive videos demands more computational time than traditional deep learning
techniques. This paper develops the spectral based deep learning technique for obtaining
surveillance video representations in a lower-dimensional or reduced representation. The
proposed technique uses two key steps. The first one is to transform the deep features of
video data into lower manifold spectral space; it uses visual classification approaches to
detect suspicious activities. For the spectral space, the affinity values of video frames and
their Laplacian matrix are computed to derive the reduced representation of video data; after
deriving the lower-rank representation of video data, the similarity features of frames are
analyzed with proposed visual classification techniques. Experiments are carried out on
benchmarked video surveillance datasets to demonstrate the efficacy of the proposed
technique compared to existing techniques.

1. INTRODUCTION

Nowadays, the detection of suspicious activities for Real-
time video surveillance is becoming increasingly important for
societal security applications [1]. Object identification and
learning of object activities are the most challenging issues for
classifying suspicious videos. Deep learning [2] is one of the
most successful methods for video classification tasks. Current
deep learning methods, namely, VGG16 [3], ResNet50 [4],
DenseNetl121 [5], MobileNet [6], GoogLeNet [7], and
EfficientNetBO [8], can be used to extract the features of video
frames batch-wise and learning the video data accordingly.
Practical training is needed for many videos that are useful to
improve the classification rate or detection efficiency of
suspicious activities in video surveillance. The deep features
are extracted and later trained using classifier models for
suspicious-activity classification. The extractions of deep
features of each video frame are massive; Each video consists
of a large number of frames, and the feature size of each frame
is also massive. In such cases, processing the deep features for
learning the suspicious activities may become practical
scalability issues concerning the significant parameters of
computation time. The curse of dimensionality is considered
the primary problem in existing deep-based classifier models.
Fabulous classifier models, i.e., random forest (RF) [9],
support vector classifier (SVC) [10], and k-nearest neighbor
classifier (kNN) [11] models, have been used in the existing
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deep-based classifier models. However, more computation
time is needed to train the frame's deep features in the existing
deep-based classifier models. Thus, the proposed trustworthy
classifier models with the development of spectral-based deep
classifier models for handling the scalability problem. The
spectral concept initially finds the projected subspace for the
high dimensional deep frame's features by finding the best
eigenvector space.

The affinity matrix of frame features was initially
constructed; later, the Laplacian matrix was computed. The
laplacian matrix (LM) computations are mentioned in the
proposed spectral-based deep classifier video model (SDC-
VM). The LM explores the frame deep features in terms of a
large number of Eigenvectors; the lower-rank frame's features
decide the number of components ('k') of the subspace of deep
features. The deep features subspace is derived by taking the
first k-largest Eigenvectors. Obtained k-Eigen vectors
subspace is referred to as low-dimensional manifold or
spectral space. The Spectral space denotes the reduced
representation of deep features of video frames. With this
spectral space, the large size of deep features of frames is
mapped into the lower manifold subspace without losing the
video frame information. The top k-Eigen vectors are enough
to define deep features of frame data rather than taking high-
dimensional frame features. Finally, the spectral features of
frames are used to classify videos with the classifier models of
RF, SVC, and kNN. With these proposed techniques, three
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hybrid variants of SDC-VM are developed using the models
of RF, SVC, and KNN. Proposed hybrid variants use spectral
features instead of the deep features of the high-dimensional
frame to address the problem of the curse of dimensionality.
Architectural diagram of the proposed SDC-VM shown in

Figure 1.
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Figure 1. Proposed SDC-VM architectural diagram

Spectral-based visual mining algorithms and three hybrid
variants of SDC-VM are presented in this paper to assess and
classify suspicious activities in video surveillance data
efficiently. Key objectives of the proposed work are to classify
or detect suspicious activities for the video surveillance data
faster with the SDC-VM models and assess the video
surveillance data for the detection of several activities
(including the normal and abnormal activities) using proposed
visual mining techniques.

The proposed work is indeed inspired by classical spectral
methods; the proposed approach is not a direct reuse of PCA
or Laplacian Eigenmaps. Our novelty lies in the way spectral
learning is integrated with deep video features, where we
construct a task-specific affinity matrix based on frame-level
deep feature dynamics and derive a low-rank spectral
representation  tailored for surveillance data. This
representation captures temporal and semantic relationships
that traditional dimensionality-reduction methods do not
model. Furthermore, unlike standard spectral techniques that
stop at embedding, we introduce a visualization-driven
classification mechanism (namely, spectral-based deep
classifier video model (SDC-VM)) that operates within the
reduced spectral space to effectively detect suspicious
activities. The overall framework forms a unified spectral—
deep learning pipeline designed for real-time surveillance,
reducing computational complexity while maintaining high
discriminative capability.

Contributions of the work are presented as follows:
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(1) The spectral features of frame data extracted for finding
the lower manifold subspace of higher-dimensional video
frame data to overcome the curse of dimensionality problem

(2) Three variants of the SDC-VM were developed to find
the video surveillance classification results in a faster way

(3) Partially supervised visual mining techniques are
implemented to assess video activities in video surveillance
datasets.

The organization of the paper is as follows. Section 2
presents the literature study of the work; Section 3 presents the
proposed SDC-VM and visual mining techniques. The
experimental study of the work and discussion are presented
in Section 4. Finally, the conclusion and future scope of the
work are presented in Section 5.

2. LITERATURE STUDY OF THE WORK

Video surveillance has become one of the significant
applications for public safety. The most challenging research
problem in surveillance is the learning and classification of
abnormal activities. In this process, classification accuracy and
computational scalability are the most significant issues
considered in the current video analytics research. Authors in
literatures [12-16] attempted to detect or classify loitering,
fighting, and abandoned objects based on the finding of
suspicious behaviours. Most of these works are performed on
offline video surveillance data; in real-time, the kind of post-
detection of abnormalities or anomalies in videos may not be
helpful. With this fact, the author in literature [17] developed
the real-time blob-matching technique by finding the temporal
features of blobs and activities. It can detect and classify
fighting, theft, loitering, fainting, etc. Findings of the work and
limitations are presented in Table 1. Long video event retrieval
has been most attractive in real-time video surveillance
systems. Text instruction (or caption) for long videos may also
give the solution indirectly to help people know abnormal
activities instantly. Lu and Grauman [18] implemented the
algorithm of video summary generation that can be used to
extract selected sub-videos from the long video based on the
image quality factors for describing the events happening in
the video. Another method is based on the key frame sequence,
the event detection technique developed by Wolf [19]. It uses
the frames rather than taking the video directly. It shows a
significant reduction in video content and improved efficacy
in video retrieval. Finding the specific moments from long
video faces majorly in the above methods. Wan et al. [20]
developed the superframe segmentation algorithm that
removes the redundant frame in a video sequence to reduce the
computational overheads when classifying video anomalies.
Findings and approach details are mentioned below, along
with the limitations of the work. The key literature and
observations or limitations are presented in Table 1.

Dimensionality reduction methods playing the crucial role
for handling the abnormalities in high-dimensional video
surveillance data. Huang et. al. [21] proposed the method in
study for reducing the computational complexities by
transforming the high-dimensional video data into a low-
dimensional notation. They proposed the variational-based
subspace (VBS), which basically uses the principal component
analysis (PCA) to prune the dimensions from N dimensional
to required k-principal components. Central problem of
determining k-components in PCA is resolved in VBS by
estimation of covariance matrices for the different selections



of k values. Finding covariance matrix is very expensive due
to its computations are relevant to single value decomposition
(SVD). Authors in study [22] faced the challenges of
dimensionality reduction and used the methods, independent
component analysis (ICA), non-negative matrix factorization
(NMF), autoencoders (AE), variational auto encoders (VAE),
and PCA. These methods were effectively applied in their
work for reducing the dimensions complexities. The ICA
transforms the high dimensional data in large scale
repositories to linear combinations of statistically independent
vectors. The limitation of ICA is unable to separate the
Gaussian resources. Thus, NMF is another better option for the
subspace learning to reduce the dimensions of large scale high-
dimensional data. Benefit of NMF is to find the reduced data
features and it also leads to automated the cluster tendency for
the targeted high-dimensional data. The problem of NMF is
does not yield a unique solution. In recent years, deep learning
techniques are the most recommended for obtaining the
optimized features. The autoencoders (AE) [23] greatly
applied for dimensionality reduction and data reduction;
therefore, reduced representation of features obtained that
useful optimizing the requirements. Another nonlinear
dimensionality reduction, namely, T-distributed Stochastic
Neighbor Embedding (t-SNE) and Uniform Manifold
Approximation and Projection (UMAP) [24], is widely used
in large scale dimensionality reduction for video data. The t-
SNE evaluates similarity in the original high-dimensional
space by transforming distances between points into
conditional probabilities. For every data point, the algorithm
assigns a probability distribution over all other points, where
close neighbors receive high probabilities and distant points
receive extremely small values. This is done by centering a
Gaussian kernel at each point and adjusting its width so that
the effective number of neighbors (controlled by perplexity)
remains consistent across the dataset. The complete set of
these probability distributions forms the high-dimensional
similarity structure that t-SNE attempts to preserve when
projecting the data into a lower-dimensional space. UMAP and
t-SNE offer considerable flexibility, allowing their
configurations to be adapted to the characteristics of different
datasets. The discussion [25] provides actionable insights to
guide users in selecting the most appropriate dimensionality
reduction approach and tuning its key parameters for their
intended use case. These recommendations act as a practical
framework for achieving an effective balance between
performance, computational cost, and clarity of the resulting
embeddings in a variety of video scenarios. Anomaly detection
for suspicious activities is the most promising in video
surveillance  applications for saving social people.
Surveillance cameras and their dynamic activity detections
play a significant role in such applications. Some of the
researchers [26-28] used unsupervised ideas for anomaly
detection. It requires careful classification and handling
approaches for abnormalities. Rather than unsupervised
techniques, deep-based classification presents impressive
abnormalities classifications. Sultani et al. [29] developed the
3D convolutional network (C3D), which extracts the
Spatiotemporal features and computes the score of anomalies
by a 3-layer fully connected network. This leads to one crucial
problem: video segmentation scalability before feature
extraction due to the massive size of the video frames. Zahid
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et al. [30] resolved the video segmentation problem with the
ensemble technique of IBaggedFCNet, in which bagging
imposes stringent segmentation and uses the Inception-v3
deep classifier technique for the video classification. With the
broader availability of video data from surveillance cameras
and social platforms, learning the importance of trained video
has become tedious. Finding an efficient automated violence
detection system concerned with the vital parameters of
computational efficiency and accuracy is the most needed for
real-time video surveillance applications. Violence detection
for more extensive videos can be optimized in references [31];
here, the keyframe selection process plays a crucial role in
selecting the optimal number of frames to reduce the
computational overheads. It employs ensemble classification
models using long short-term memory (LSTM), bidirectional-
LSTM (Bi-LSTM), and gated recurrent unit (GRU) models to
enable good video classification results. Manisha Mudgal et
al. proposed a smart and intelligent real-time video monitoring
system [32] for efficient detection of activities, slapping,
hitting, punching, etc. It models the activities using the
Gaussian Mixture Models (GMMs); It also develops the
universal attribute models (UAM) for deriving the super action
vector (SAV) that helps to improve the accuracy of
classification. Thus, GMM and UAM are majorly defined for
modeling the SAVs and making the classification using SVM.
Xu [32]. Cong et al. [33] another intelligent video surveillance
system using the deep learning approach was also proposed.
Faster R-CNN with Inception ResNet V2 was discovered to
achieve the best accuracies for classifying real-time activities.
State-of-the-art techniques [34-36] use the trained video
frames for extraction features and learning of one or more
activities, including normal and abnormal activities. For
testing data, suppose it matches any abnormal activities, then
mark it as abnormal; otherwise, mark it as normal. These deep
learning techniques are the most prominent in computer vision
and other object detection and activity recognition
applications. These works recommend the two-stage work for
the video classification tasks. Sun et al. [37] proposed the deep
one-class model (DOC), the end-to-end deep learning model.
One-class support vector machine and deep CNN are
integrated to optimize the accuracy and loss parameters.
Lamani et al. [38] developed an efficient hybrid technique for
human action recognition, in which lightweight residual 3D
CNN was built for handling the computational hurdles and
effective human action recognition. Existing deep learning
techniques more beneficial for extraction of frames learned
features. The real-time video capturing systems produce high-
quality videos (i.e., massive frames). The selection of the
frames and high dimensional deep features was initially
extracted. High-dimensional features require the equivalent
low-dimensional manifold subspace learning to reduce the
complexities. The proposed work focuses on subspace
learning techniques for the frame's deep features. In the high
dimensional deep features, the data sparsity problem occurred,
significantly impacting the classification rate. Thus, it needed
to obtain the equivalent low-manifold subspace to reduce the
effect of data sparsity problems. There are wider chances to
improve the efficacy-related parameter values for the video
classification results. Detailed procedural details and
algorithm descriptions of the proposed work are presented in
the following section.



Table 1. Key literature of the work and observations

Author(s) Methodology / Key Contribution Limitations / Future Scope
Developed a real-time blob matching technique using temporal features, Detection is successful, but current learning
Elhamod . . . . . e . . .
and Levine object tracking, and semantic behavior analysis for suspicious activity approaches rely heavily on hyperparameter tuning
[17] detection. Experiments conducted on public datasets such as fighting, stolen rather than effectively leveraging semantic
objects, fainting, and loitering. features.
Wan et al Proposed redundant frame removal followed by video super frame Achieved accuracy up to 69.34% only. Real-time
[20] " segmentation to extract segments of interest (SOI). CNN with pre-trained SOI processing needs redesign using ensemble

Huang et al. Introduced a dimensionality reduction technique for network traffic anomaly
detection using statistical or projection-based modeling.

[21]

Vafaei Sadr

ctal. [22] detection models.

Ortiz-Perez Used dimensionality reduction techniques for video data on IoT edge devices

et al. [23] to reduce latency and computational complexity.
Mittal et al. Compared UMAP and t-SNE techniques for dimensionality reduction and
[24] visualization of high-dimensional data.

VGG used for abnormal video classification.

Proposed a generalizable framework combining dimensionality reduction
techniques such as PCA, autoencoders, and manifold learning with anomaly performance highly dependent on dimensionality

classifiers to improve accuracy.
Primarily evaluated on network traffic data;
limited generalization to other domains and
sensitive to feature distribution shifts.
Increased computational overhead and

reduction technique and hyperparameters.
Edge device limitations restrict model complexity;
dimensionality reduction may cause loss of fine-
grained details.
Computationally intensive for large datasets;
performance depends on hyperparameter tuning.

Zahid et al. Proposed IBaggedFCNet using pre-trained Inception-v3 and PCA for feature Fine-grained classification required for real-world

[30]

[31]

Xu [32] classifiers for suspicious activity detection.
COIE%? al. Applied Faster R-CNN with ResNet V2 for abnormal activity classification.

Sun et al. Proposed Deep One-Class (DOC) model integrating CNN and one-class SVM
for pedestrian video classification.
Lamani et Developed a lightweight residual 3D CNN combined with SVM for real-time

[37]

al. [38] video classification.
Kumar et al. Used CNN, BiLSTM, and attention mechanisms for anomalous human
[39] activity detection.
Ahmadi et Applied transfer learning for intelligent Object detection in surveillance
al. [40] systems.

extraction with ensemble bagging for video classification.

Shoaib et al. Developed DeepkeyFrm and AreaDiffKey keyframe models with ensemble
LSTM, Bi-LSTM, and GRU networks for violent activity detection.

Introduced a Universal Attribute Model (UAM) with GMM, SVM, and k-NN

datasets instead of synthetic data.
Scalability for large-scale real-time surveillance
applications remains a challenge.

Deep learning models outperform GMM; deep-
based classifiers should be further explored.
High-dimensional frames cause dimensionality
issues, limiting accuracy to 79.9%.
Performance depends on kernel choice;
optimization needed for real-world scenarios.
Real-time performance achieved with relatively
low accuracy.

Accuracy limited to 61.04% on sub UCF Crime
datasets.

Accuracy remains below 90% due to sparse and
dynamic real-time data

3. PROPOSED SDC-VM AND VISUAL
TECHNIQUES

MINING

The deep models VGG16, ResNet50, DenseNetl2l,
MobileNet, GoogleNet, and EfficientNetB0, are used to
extract frame features called deep features. The deep features
are high-dimensional, and data sparsity exists. Data sparsity is
a significant problem in video classification.

3.1 Spectral technique for obtaining the low-dimensional
manifolds (or spectral space) for the high-dimensional
deep features of video frames

The proposed work uses the spectral technique to reduce the
effect of data sparsity while performing the video
classification. The spectral technique consists of two key
steps: 1) Find the affinity matrix (or the weighted matrix),
which computes the weighted matrix for frame features while
considering the affinities. ii) The Laplacian matrix is
computed to derive the Eigen decomposition that presents
suitable low-dimensional manifolds (or subspace). The
following Eq. (1) to Eq. (7) illustrate the derivation of
Eigenvectors (also called spectral space) in the proposed work.
The Deepy refers to the deep features for the n number of
frames. The Sigma; calculates the local scale or affinity value
of i frame F; with the k-nearest (or most similar) frame, F,
whereas d(F;, Fy,) refers to the distance with the nearest frame,
i.e., distance gives the affinity value with the nearest frame.
The dissimilarity values presented in d;; and dj; denote the
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corresponding frames "i' and frame ‘j° and frame ‘' and frame
‘i’, respectively. The We F,,,, denotes the affinity matrix (or
weighted matrix) for the n number of frames and it can be
computed with affinity values of F;,F; (i.e., Sigma; and

Sigma;).

Deepr = {F1,Fy, e ..., F} (1
Sigma; = d(F;, F) 2)

d; =d(F,.F,)and d; =d(F,,F) 3)
W6 ann’ W :e((—du *dj; )/ (Sigma; *Sigma; )) (4)

The diagonal matrix of W is ‘D’, in which the diagonal

values are sum of the corresponding row i' values,
mathematically formulated as follows:
n
d; = Z\Nu (5)
i=1

The Laplacian matrix is required to find the Eigen
decomposition, which must derive the Eigenvectors. First, k-
Eigen vectors are selected to obtain the spectral space (or k-
principal component subspace). The Laplacian matrix 'L' is
computed using the W and diagonal matrix 'D' as shown
below. Eq. (5) is used to fill in the value of diagonal matrix D.



L=D"2wp 2 (6)

Values obtained in L are normalized and most suitable for
further classification (or clustering process). The size of L
becomes massive, and it is not needed to represent the high-
dimensional space of deep features. In L, columns represent
the Eigenvectors. The size of L becomes n x n. Initial Eigen
column vectors in L are usually referred to as the first largest
vectors. Now, we select the k-largest Eigen column vectors for
the n number deep features of frames. These can be
represented with the stacks of k-largest Eigenvectors, which
are presented as spectral space ‘SV” The SV denoted the
optimal low-dimensional manifold subspace for the high
dimensional deep features of n number of frames with the size
of n x k, here k refers to the reduced number of dimensions for
the spectral space or the low dimensional manifolds subspace.

SV =[EE,.....E] 7

The ELE), ... .... Ey denotes the k-largest Eigenvectors.

3.2 The spectral-based deep classifier visual model
algorithm

In the proposed spectral technique of video frames, the
optimal representation of the video frame's features is obtained
by deriving the k-largest Eigenvectors (here, the k value refers
to the number of principal components of spectral space). SV
describes the optimal frame features. The procedural ideas of
the proposed SDC-VM are shown in Algorithm 1. Initially, the
video dataset is organized in V, consisting of each class's
subset of videos. Each video can be divided into several frames
and combined into 64 frames as a single batch; in the
experiments, the fixed batch size was 64 frames.

Algorithm 1. SDC-VM

Input:

1. V= {vl,v2, ...vm}, m -number of videos of different
classes

2. BS- Batch Size, denotes the size of subset of frames for
the batch processing

Output: Anomaly Classifications

Methodology

1. Takes the input of V with m different classes, where as
v1 has set of videos of class 1, v2 has set of videos of class
2, ...., vim has set of videos of class m.

2. Divide each class of videos of V into frames

3. Batch the frames with size of 64 for the classes of
videos

4. Select the frames randomly at each class with a total
size of n number of batches, including all frames.

5. Apply the deep models on n batches of frames to extract
the deep features, which are to be high-dimensional.

6. Use the proposed spectral technique of video frames
(per the procedure described in section 3.1) and obtain the
reduced dimensions of high dimensional deep features of
video data. The obtained mapped features are stored in SV
as per the Eq. (1) to Eq. (7)

7. Use the SVM, Random Forest, and kNN classifier
techniques for the obtained SV to deliver video anomaly
classification results.

After obtaining the massive batches of frames, select
random samples of n batches of frames and pass the deep input
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layer with the specification of batch size 24 (maximum
sequence length) and size of frames as 224 %224. These steps
are illustrated from Step 1 to Step 4 in an algorithm. Step 5
uses the following deep models separately: VGGI6,
ResNet50, DenseNetl21, MobileNet, GoogLeNet, and
EfficientNetBO to extract deep features—the deep features of
each frame with 2048 dimensions. There is high data sparsity
problem occurred in the deep features. Thus, the spectral
technique was implemented to map the high dimensional deep
features into less data sparsity spectral space. It is explained in
Step 6. Finally, the converted spectral deep features of the
frames are used for the training model with specified
classification schemes mentioned in Step 7. It explores the best
accurate video anomaly classification results with the
proposed SDC-VM algorithm.

4. THE EXPERIMENTAL
AND DISCUSSION

STUDY OF THE WORK

The experiments are carried out on the 14 classes (Abuse,
Arrest, Arson, Assault, Burglary, Explosion, Fighting, Normal
Videos, Road Accidents, Robbery, Shooting, Shoplifting,
Stealing, Vandalism) of benchmarked video dataset, UCF-
Crime which publicly free available in reference [38]. After
initiating the pre-processing, the video of each of the classes is
divided into different frames (or images) and organized
according to the train labels and test labels. The deep features
are extracted using the Densenet, GoogLeNet, MobileNet,
EfficientNetB0O, Resnet, and VGG16 models. Further, these
features are mapped into the lower-dimensional manifolds by
deriving the principal components (or Eigenvectors) from the
Eigen decomposition of the Laplacian Matrix. These reduced
dimensional features are obtained in our proposed SDC-VM.
The results of existing deep-based-classifier models (i.e., Deep
Random Forest, Deep-SVC, and Deep-kNN) and proposed
spectral-based-deep classifier video models (SDC-VM-
Random Forest, SDC-VM-SVC, SDC-VM-kNN) are
illustrated in Table 2. The evaluation parameters of accuracy,
precision, recall, and f-score measure are depicted in reference
[39].

From these experimental values of performance scores, it
was noted that SDC-VM achieved a reasonable classification
rate compared to existing deep-based classifier models due to
the reduction of the effect of the data sparsity problem in
proposed spectral-based deep classifier models. The accuracy
value improved at a rate of 10 to 12% in the proposed models
compared to existing models. Similarly, the precision, recall,
and f-score values improved at the rate of 6% to 10%, 5% to
11%, and 4% to 12%, respectively. These are comparative
illustrations among the methods shown in Figure 1 to Figure
13.

The receiver operating characteristics (ROC) curves are
used to depict the classifier accuracy for the multi-class video
data. In the experimental work, 14 classes of the UCF-Crime
classification data evaluated with the ROC curves. The value
of the area under the curve (AUC) indicates the classifier's
accuracy. The AUC values are between 0 and 1. Higher values
indicate good classifier accuracy. Figure 14 to Figure 19
shows the ROC curves with estimated values of AUC for the
proposed models of SDC-VM-KNN, SDC-VM-RF, and SDC-
VM-SVC underlying the deep features extraction with the
Densenet, GoogLeNet, MobileNet, EfficientNetB0O, Resnet
50, and VGG16. The ROC analysis inference achieved good
video anomaly classification results using the kNN underlying



SDC-VM with all six variants of deep models. Mostly, the VM models.
AUC scored above 0.5 in all variants of the proposed SDC-

Table 2. Performance comparison for the existing deep-based classifier models and proposed SDC-VM based classifier models

Performance Models Deep Random SDC-VM- Deep- SDC-VM- Deep- SDC-VM-
Measure Forest RF SVC SVC KNN KNN
DenseNet 0.8464 0.9607 0.9429 0.9893 0.525 0.6464
GoogLeNet 0.8107 0.9786 0.8964 0.9964 0.5893 0.6571
Accuracy quiIeNet 0.8786 0.9607 0.9536 0.9929 0.6107 0.6929
EfficientNetB0 0.8107 0.8464 0.2786 0.7036 0.4071 0.5182
ResNet 0.8607 0.9821 0.9536 0.9929 0.6107 0.6964
VGG16 0.8321 0.9393 0.5536 0.9429 0.5464 0.6536
DenseNet 0.8614 0.9642 0.9474 0.9907 0.6185 0.7014
GooglLeNet 0.8331 0.9799 0.9091 0.9966 0.6904 0.7361
Precision quiIeNet 0.8847 0.9664 0.9588 0.9935 0.6522 0.725
EfficientNetB0 0.8597 0.8317 0.2051 0.7222 0.356 0.3984
ResNet 0.8775 0.9828 0.9588 0.9935 0.6522 0.7303
VGG16 0.8578 0.9518 0.6119 0.9504 0.5395 0.5543
DenseNet 0.8464 0.9607 0.9429 0.9893 0.525 0.6464
GooglLeNet 0.8107 0.9786 0.8964 0.9964 0.5893 0.6571
Recall quiIeNet 0.8786 0.9607 0.9536 0.9929 0.6107 0.6929
EfficientNetB0 0.8464 0.8107 0.2786 0.7036 0.4071 0.4871
ResNet 0.8607 0.9821 0.9536 0.9929 0.6107 0.6964
VGG16 0.8321 0.9393 0.5536 0.9429 0.5464 0.5536
DenseNet 0.8432 0.9609 0.9436 0.9895 0.5245 0.6413
GoogLeNet 0.8082 0.9785 0.8982 0.9964 0.5837 0.6558
F-Score quiIeNet 0.8775 0.9619 0.9545 0.9929 0.6059 0.6967
EfficientNetB0 0.8115 0.8447 0.2135 0.6946 0.3574 0.3968
ResNet 0.8628 0.982 0.9545 0.9929 0.6059 0.7013
VGG16 0.8299 0.941 0.543 0.9437 0.5071 0.5267
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Figure 6. Precision between Deep-RF and SDC-VM-RF
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Figure 8. Recall between Deep-KNN and SDC-VM-KNN
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Figure 10. Recall between Deep-SVC and SDC-VM-SVC
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Figure 12. F-Score between Deep-RF and SDC-VM-RF
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Figure 9. Recall between Deep-RF and SDC-VM-RF
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Figure 11. F-Score between Deep-KNN and SDC-VM-KNN

F-Score Comparison

1.2

0 I I I I I I

g
é:

o
0

F-Score Value
o o
PO

o
[X]

°°° e°°$ @‘a’

H Deep-SVC w SDC-VM-SVC

Figure 13. F-Score between Deep-SVC and SDC-VM-SVC

3295



True Positive rate

True Positive rate

ROC curve ROC curve
1.0 Abuse 1.04 Abuse
--- RoadAccidents --- RoadAccidents
==~ Explosion —== Explosion
0.84 —-- Stealing 0.84 —=- Stealing
Burglary Burglary
a
. b
0.6 Pt £ e
et B
L ]
’,:,’ e £ e
-
0.4 ’,”/’/’ g 0.4 L
2 2 o
s o -
% s
024 s The ROC_AUC = 0.506 024 / L The ROC_AUC = 0.504
27 .
9””:/’ '-J ~
PRt i
0.0{ = 0.0 £
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) SDC-VM-KNN ROC curve (b) SDC-VM-RF ROC curve
ROC curve
1.0 Abuse
—=-- RoadAccidents
-=-= Explosion
0.8 === Stealing
Burglary a
T
&
o064
o
=
=3
@
2
w 0.4
H
0.2
0.0
00 02 0.4 06 08 10
False Positive Rate
(c) SDC-VM-SVC ROC curve
Figure 14. SDC-VM ROC curves using DenseNet-201 model
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Figure 15. SDC-VM ROC curves using GoogLeNet (Inception-V3) model
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Figure 16. SDC-VM ROC curves using MobileNet model
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Figure 17. SDC-VM ROC curves using EfficientNetB0O model
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clusters, reflected in lower intra-class variance (10-15%
reduction) and improved global-local structure preservation.
In contrast, t-SNE exhibits instability and poor generalization
in test mappings, while UMAP tends to distort global
relationships. Overall, the numerical trends clearly
demonstrate that SDC-VM yields the most discriminative low-
dimensional representation, enabling higher classifier
reliability and superior anomaly-detection performance.

Figure 20 presents a comparative evaluation of SDC-VM
against t-SNE and UMAP using KNN, Random Forest, and
SVC classifiers on MobileNet deep features for the
CamNuvem dataset. The results show that SDC-VM
consistently achieves stronger classification performance,
with KNN accuracy improving by approximately 4-8%,
Random Forest by 3—6%, and SVC by 5-9% compared to t-
SNE and UMAP. SDC-VM also provides more compact
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Figure 20. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep
features extracted from MOBILENET model) for the CamNuvem dataset
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Figure 21. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep
features extracted from DENSENET model) for the CamNuvem dataset

Figure 21 presents the experimental analysis comparing the
proposed SDC-VM dimensionality-reduction technique with
t-SNE and UMAP using KNN, Random Forest, and SVC
classifiers on DenseNet deep features extracted from the
CamNuvem dataset. The results demonstrate that SDC-VM

consistently produces more discriminative low-dimensional
improvements i

embeddings,

classification performance. In particular, SDC-VM shows an
average accuracy gain of 5-10% with KNN, 4-7% with
Random Forest, and 6-11% with SVC when compared to t-

le

ading to noticeable

m

SNE and UMAP. This improvement is attributed to SDC-
VM’s superior preservation of both global and local structures,
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reflected
neighborhood retention, while t-SNE suffers from non-

generalizable mappings and UMAP tends to distort global
geometry. The stability and structural clarity of SDC-VM
embeddings result in more compact class clusters, enabling the
classifiers to form clearer decision boundaries. Overall, the
experiments confirm that SDC-VM significantly enhances the
performance of multiple classifiers for DenseNet features,
further validating its robustness and effectiveness for video
anomaly detection on the CamNuvem dataset.
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Figure 22. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep
features extracted from MOBILENET model) for the UCF-Crime dataset
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Figure 23. Combative analysis of proposed SDC-VM based classifier methods with other dimensionality methods (deep
features extracted from DENSENET model) for the UCF-Crime dataset
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Memory Comparison (KB) — SVC Variants

350000

300000 +

250000

200000 4

150000 -

100000 -

50000 -

125,000

SDC-VM-SVC

320,000

210,000

+SNE-SVC UMAP-SVC

Memory (KB)

3304

Memory Comparison (KB) — RF Variants

UMAP-RF

300000

250000 4

200000 4

150000 -

100000 -

50000 A

280,000

135,000

SDC-VM-RF

t-SNE-RF

250,000

UMAP-RF



Memory Comparison (KB) — KNN Variants

400000

300000 4

Memory (KB)

200000 -

128,000

100000 -

SDC-VM-KNN

400,000

T-SNE-KNN

350,000

UMAP-KNN

Figure 25. Memory comparison

Reconstruction Error

80

o-

Score

Information Preservation

Trustworthiness

0.8

0.6

Score

0.4 4

0.2 1

0.0 -

N
oo

S

b e

one®

Figure 26. Reconstruction error, information preservation, and trustworthiness analysis

The experimental results illustrated in Figures 22 and 23
demonstrate the consistent superiority of the proposed SDC-
VM dimensionality-reduction framework over t-SNE and
UMAP across multiple classifiers on the UCF-Crime dataset.
Using deep features extracted from both MobileNet and
DenseNet, SDC-VM shows significant improvements in
classification performance, maintaining 5-12% higher
accuracy with KNN, 4-9% with Random Forest, and 6—-14%
with SVC compared to the baseline methods. These gains
highlight SDC-VM’s stronger ability to preserve intrinsic
structure in high-dimensional video representations, enabling
more compact and well-separated feature clusters that
facilitate improved classifier decision-making. In contrast, t-
SNE exhibits unstable embeddings and lacks a reliable
transform for unseen data, while UMAP sometimes
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compromises global geometry, resulting in weaker inter-class
boundaries. The observed reductions in reconstruction error
and enhanced preservation of neighborhood relationships
further confirm that SDC-VM generates more semantically
meaningful embeddings tailored for anomaly detection.

The experimental evaluation presented in Figures 24-26
offers a comprehensive analysis of the proposed SDC-VM
framework in comparison with t-SNE and UMAP across
multiple performance dimensions. The runtime comparison
(Figure 24) shows that SDC-VM consistently achieves the
lowest execution time, operating 25-40% faster than UMAP
and 40-55% faster than t-SNE, which is critical for large-scale
video-feature processing. Similarly, the memory comparison
in Figure 25 presents that SDC-VM requires significantly
fewer computational resources, consuming 20-35% less



memory than UMAP and nearly half the memory footprint of
t-SNE, making it highly suitable for real-time and resource-
constrained environments. Beyond computational efficiency,
Figure 26 demonstrates that SDC-VM also excels in
representation quality, yielding the lowest reconstruction
error, the highest information-preservation ratio, and superior
trustworthiness scores, indicating stronger retention of local
and global structures in reduced-dimensional embeddings.
These advantages collectively highlight SDC-VM’s ability to
generate compact, discriminative feature mappings while
maintaining computational efficiency, establishing it as a
robust and scalable alternative to conventional nonlinear
embedding methods for video anomaly-detection tasks.

5. CONCLUSIONS

Video surveillance classification is an emerging
requirement for societal security applications, especially for
public safety. Threatening, suspicious, and other anomaly
activity classifications are progressing more in computer
vision research. The deep models are the most successful
techniques for video classification. However, there are some
issues regarding the data sparsity for deep features of video
frames. The deep features are massive dimensional, and they
accumulate sparsity issues. By the efficient spectral
techniques, the deep features are mapped with spectral features
with reduced effect of sparsity problem in the proposed SDC-
VM technique. Reduced data sparsity in deep features is
critical for achieving high classification accuracy for video
anomalies. The same observations in the experiments clearly
indicate that the spectral-based deep classifier models
improved classification performance by approximately 9-12%
compared to deep-based classifier video models. The proposed
spectral-based deep models are implemented with a single
view of subspace learning, and there is scope to further extend
the SDC-VM with multi-view subspace learning for
improving future video classification performance.
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